1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/workqueue.c - generic async execution with shared worker pool
4 *
5 * Copyright (C) 2002 Ingo Molnar
6 *
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
12 *
13 * Made to use alloc_percpu by Christoph Lameter.
14 *
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 *
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
24 *
25 * Please read Documentation/core-api/workqueue.rst for details.
26 */
27
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/signal.h>
34 #include <linux/completion.h>
35 #include <linux/workqueue.h>
36 #include <linux/slab.h>
37 #include <linux/cpu.h>
38 #include <linux/notifier.h>
39 #include <linux/kthread.h>
40 #include <linux/hardirq.h>
41 #include <linux/mempolicy.h>
42 #include <linux/freezer.h>
43 #include <linux/debug_locks.h>
44 #include <linux/lockdep.h>
45 #include <linux/idr.h>
46 #include <linux/jhash.h>
47 #include <linux/hashtable.h>
48 #include <linux/rculist.h>
49 #include <linux/nodemask.h>
50 #include <linux/moduleparam.h>
51 #include <linux/uaccess.h>
52 #include <linux/sched/isolation.h>
53 #include <linux/sched/debug.h>
54 #include <linux/nmi.h>
55 #include <linux/kvm_para.h>
56 #include <linux/delay.h>
57 #include <linux/irq_work.h>
58
59 #include "workqueue_internal.h"
60
61 enum worker_pool_flags {
62 /*
63 * worker_pool flags
64 *
65 * A bound pool is either associated or disassociated with its CPU.
66 * While associated (!DISASSOCIATED), all workers are bound to the
67 * CPU and none has %WORKER_UNBOUND set and concurrency management
68 * is in effect.
69 *
70 * While DISASSOCIATED, the cpu may be offline and all workers have
71 * %WORKER_UNBOUND set and concurrency management disabled, and may
72 * be executing on any CPU. The pool behaves as an unbound one.
73 *
74 * Note that DISASSOCIATED should be flipped only while holding
75 * wq_pool_attach_mutex to avoid changing binding state while
76 * worker_attach_to_pool() is in progress.
77 *
78 * As there can only be one concurrent BH execution context per CPU, a
79 * BH pool is per-CPU and always DISASSOCIATED.
80 */
81 POOL_BH = 1 << 0, /* is a BH pool */
82 POOL_MANAGER_ACTIVE = 1 << 1, /* being managed */
83 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
84 POOL_BH_DRAINING = 1 << 3, /* draining after CPU offline */
85 };
86
87 enum worker_flags {
88 /* worker flags */
89 WORKER_DIE = 1 << 1, /* die die die */
90 WORKER_IDLE = 1 << 2, /* is idle */
91 WORKER_PREP = 1 << 3, /* preparing to run works */
92 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
93 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
94 WORKER_REBOUND = 1 << 8, /* worker was rebound */
95
96 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
97 WORKER_UNBOUND | WORKER_REBOUND,
98 };
99
100 enum work_cancel_flags {
101 WORK_CANCEL_DELAYED = 1 << 0, /* canceling a delayed_work */
102 WORK_CANCEL_DISABLE = 1 << 1, /* canceling to disable */
103 };
104
105 enum wq_internal_consts {
106 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
107
108 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
109 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
110
111 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
112 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
113
114 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
115 /* call for help after 10ms
116 (min two ticks) */
117 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
118 CREATE_COOLDOWN = HZ, /* time to breath after fail */
119
120 /*
121 * Rescue workers are used only on emergencies and shared by
122 * all cpus. Give MIN_NICE.
123 */
124 RESCUER_NICE_LEVEL = MIN_NICE,
125 HIGHPRI_NICE_LEVEL = MIN_NICE,
126
127 WQ_NAME_LEN = 32,
128 WORKER_ID_LEN = 10 + WQ_NAME_LEN, /* "kworker/R-" + WQ_NAME_LEN */
129 };
130
131 /*
132 * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
133 * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
134 * msecs_to_jiffies() can't be an initializer.
135 */
136 #define BH_WORKER_JIFFIES msecs_to_jiffies(2)
137 #define BH_WORKER_RESTARTS 10
138
139 /*
140 * Structure fields follow one of the following exclusion rules.
141 *
142 * I: Modifiable by initialization/destruction paths and read-only for
143 * everyone else.
144 *
145 * P: Preemption protected. Disabling preemption is enough and should
146 * only be modified and accessed from the local cpu.
147 *
148 * L: pool->lock protected. Access with pool->lock held.
149 *
150 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
151 * reads.
152 *
153 * K: Only modified by worker while holding pool->lock. Can be safely read by
154 * self, while holding pool->lock or from IRQ context if %current is the
155 * kworker.
156 *
157 * S: Only modified by worker self.
158 *
159 * A: wq_pool_attach_mutex protected.
160 *
161 * PL: wq_pool_mutex protected.
162 *
163 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
164 *
165 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
166 *
167 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
168 * RCU for reads.
169 *
170 * WQ: wq->mutex protected.
171 *
172 * WR: wq->mutex protected for writes. RCU protected for reads.
173 *
174 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
175 * with READ_ONCE() without locking.
176 *
177 * MD: wq_mayday_lock protected.
178 *
179 * WD: Used internally by the watchdog.
180 */
181
182 /* struct worker is defined in workqueue_internal.h */
183
184 struct worker_pool {
185 raw_spinlock_t lock; /* the pool lock */
186 int cpu; /* I: the associated cpu */
187 int node; /* I: the associated node ID */
188 int id; /* I: pool ID */
189 unsigned int flags; /* L: flags */
190
191 unsigned long watchdog_ts; /* L: watchdog timestamp */
192 bool cpu_stall; /* WD: stalled cpu bound pool */
193
194 /*
195 * The counter is incremented in a process context on the associated CPU
196 * w/ preemption disabled, and decremented or reset in the same context
197 * but w/ pool->lock held. The readers grab pool->lock and are
198 * guaranteed to see if the counter reached zero.
199 */
200 int nr_running;
201
202 struct list_head worklist; /* L: list of pending works */
203
204 int nr_workers; /* L: total number of workers */
205 int nr_idle; /* L: currently idle workers */
206
207 struct list_head idle_list; /* L: list of idle workers */
208 struct timer_list idle_timer; /* L: worker idle timeout */
209 struct work_struct idle_cull_work; /* L: worker idle cleanup */
210
211 struct timer_list mayday_timer; /* L: SOS timer for workers */
212
213 /* a workers is either on busy_hash or idle_list, or the manager */
214 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
215 /* L: hash of busy workers */
216
217 struct worker *manager; /* L: purely informational */
218 struct list_head workers; /* A: attached workers */
219
220 struct ida worker_ida; /* worker IDs for task name */
221
222 struct workqueue_attrs *attrs; /* I: worker attributes */
223 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
224 int refcnt; /* PL: refcnt for unbound pools */
225
226 /*
227 * Destruction of pool is RCU protected to allow dereferences
228 * from get_work_pool().
229 */
230 struct rcu_head rcu;
231 };
232
233 /*
234 * Per-pool_workqueue statistics. These can be monitored using
235 * tools/workqueue/wq_monitor.py.
236 */
237 enum pool_workqueue_stats {
238 PWQ_STAT_STARTED, /* work items started execution */
239 PWQ_STAT_COMPLETED, /* work items completed execution */
240 PWQ_STAT_CPU_TIME, /* total CPU time consumed */
241 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */
242 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */
243 PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */
244 PWQ_STAT_MAYDAY, /* maydays to rescuer */
245 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */
246
247 PWQ_NR_STATS,
248 };
249
250 /*
251 * The per-pool workqueue. While queued, bits below WORK_PWQ_SHIFT
252 * of work_struct->data are used for flags and the remaining high bits
253 * point to the pwq; thus, pwqs need to be aligned at two's power of the
254 * number of flag bits.
255 */
256 struct pool_workqueue {
257 struct worker_pool *pool; /* I: the associated pool */
258 struct workqueue_struct *wq; /* I: the owning workqueue */
259 int work_color; /* L: current color */
260 int flush_color; /* L: flushing color */
261 int refcnt; /* L: reference count */
262 int nr_in_flight[WORK_NR_COLORS];
263 /* L: nr of in_flight works */
264 bool plugged; /* L: execution suspended */
265
266 /*
267 * nr_active management and WORK_STRUCT_INACTIVE:
268 *
269 * When pwq->nr_active >= max_active, new work item is queued to
270 * pwq->inactive_works instead of pool->worklist and marked with
271 * WORK_STRUCT_INACTIVE.
272 *
273 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
274 * nr_active and all work items in pwq->inactive_works are marked with
275 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
276 * in pwq->inactive_works. Some of them are ready to run in
277 * pool->worklist or worker->scheduled. Those work itmes are only struct
278 * wq_barrier which is used for flush_work() and should not participate
279 * in nr_active. For non-barrier work item, it is marked with
280 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
281 */
282 int nr_active; /* L: nr of active works */
283 struct list_head inactive_works; /* L: inactive works */
284 struct list_head pending_node; /* LN: node on wq_node_nr_active->pending_pwqs */
285 struct list_head pwqs_node; /* WR: node on wq->pwqs */
286 struct list_head mayday_node; /* MD: node on wq->maydays */
287
288 u64 stats[PWQ_NR_STATS];
289
290 /*
291 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
292 * and pwq_release_workfn() for details. pool_workqueue itself is also
293 * RCU protected so that the first pwq can be determined without
294 * grabbing wq->mutex.
295 */
296 struct kthread_work release_work;
297 struct rcu_head rcu;
298 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT);
299
300 /*
301 * Structure used to wait for workqueue flush.
302 */
303 struct wq_flusher {
304 struct list_head list; /* WQ: list of flushers */
305 int flush_color; /* WQ: flush color waiting for */
306 struct completion done; /* flush completion */
307 };
308
309 struct wq_device;
310
311 /*
312 * Unlike in a per-cpu workqueue where max_active limits its concurrency level
313 * on each CPU, in an unbound workqueue, max_active applies to the whole system.
314 * As sharing a single nr_active across multiple sockets can be very expensive,
315 * the counting and enforcement is per NUMA node.
316 *
317 * The following struct is used to enforce per-node max_active. When a pwq wants
318 * to start executing a work item, it should increment ->nr using
319 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
320 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
321 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
322 * round-robin order.
323 */
324 struct wq_node_nr_active {
325 int max; /* per-node max_active */
326 atomic_t nr; /* per-node nr_active */
327 raw_spinlock_t lock; /* nests inside pool locks */
328 struct list_head pending_pwqs; /* LN: pwqs with inactive works */
329 };
330
331 /*
332 * The externally visible workqueue. It relays the issued work items to
333 * the appropriate worker_pool through its pool_workqueues.
334 */
335 struct workqueue_struct {
336 struct list_head pwqs; /* WR: all pwqs of this wq */
337 struct list_head list; /* PR: list of all workqueues */
338
339 struct mutex mutex; /* protects this wq */
340 int work_color; /* WQ: current work color */
341 int flush_color; /* WQ: current flush color */
342 atomic_t nr_pwqs_to_flush; /* flush in progress */
343 struct wq_flusher *first_flusher; /* WQ: first flusher */
344 struct list_head flusher_queue; /* WQ: flush waiters */
345 struct list_head flusher_overflow; /* WQ: flush overflow list */
346
347 struct list_head maydays; /* MD: pwqs requesting rescue */
348 struct worker *rescuer; /* MD: rescue worker */
349
350 int nr_drainers; /* WQ: drain in progress */
351
352 /* See alloc_workqueue() function comment for info on min/max_active */
353 int max_active; /* WO: max active works */
354 int min_active; /* WO: min active works */
355 int saved_max_active; /* WQ: saved max_active */
356 int saved_min_active; /* WQ: saved min_active */
357
358 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
359 struct pool_workqueue __rcu *dfl_pwq; /* PW: only for unbound wqs */
360
361 #ifdef CONFIG_SYSFS
362 struct wq_device *wq_dev; /* I: for sysfs interface */
363 #endif
364 #ifdef CONFIG_LOCKDEP
365 char *lock_name;
366 struct lock_class_key key;
367 struct lockdep_map __lockdep_map;
368 struct lockdep_map *lockdep_map;
369 #endif
370 char name[WQ_NAME_LEN]; /* I: workqueue name */
371
372 /*
373 * Destruction of workqueue_struct is RCU protected to allow walking
374 * the workqueues list without grabbing wq_pool_mutex.
375 * This is used to dump all workqueues from sysrq.
376 */
377 struct rcu_head rcu;
378
379 /* hot fields used during command issue, aligned to cacheline */
380 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
381 struct pool_workqueue __rcu * __percpu *cpu_pwq; /* I: per-cpu pwqs */
382 struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
383 };
384
385 /*
386 * Each pod type describes how CPUs should be grouped for unbound workqueues.
387 * See the comment above workqueue_attrs->affn_scope.
388 */
389 struct wq_pod_type {
390 int nr_pods; /* number of pods */
391 cpumask_var_t *pod_cpus; /* pod -> cpus */
392 int *pod_node; /* pod -> node */
393 int *cpu_pod; /* cpu -> pod */
394 };
395
396 struct work_offq_data {
397 u32 pool_id;
398 u32 disable;
399 u32 flags;
400 };
401
402 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
403 [WQ_AFFN_DFL] = "default",
404 [WQ_AFFN_CPU] = "cpu",
405 [WQ_AFFN_SMT] = "smt",
406 [WQ_AFFN_CACHE] = "cache",
407 [WQ_AFFN_NUMA] = "numa",
408 [WQ_AFFN_SYSTEM] = "system",
409 };
410
411 /*
412 * Per-cpu work items which run for longer than the following threshold are
413 * automatically considered CPU intensive and excluded from concurrency
414 * management to prevent them from noticeably delaying other per-cpu work items.
415 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
416 * The actual value is initialized in wq_cpu_intensive_thresh_init().
417 */
418 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
419 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
420 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
421 static unsigned int wq_cpu_intensive_warning_thresh = 4;
422 module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644);
423 #endif
424
425 /* see the comment above the definition of WQ_POWER_EFFICIENT */
426 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
427 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
428
429 static bool wq_online; /* can kworkers be created yet? */
430 static bool wq_topo_initialized __read_mostly = false;
431
432 static struct kmem_cache *pwq_cache;
433
434 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
435 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
436
437 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
438 static struct workqueue_attrs *unbound_wq_update_pwq_attrs_buf;
439
440 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
441 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
442 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
443 /* wait for manager to go away */
444 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
445
446 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
447 static bool workqueue_freezing; /* PL: have wqs started freezing? */
448
449 /* PL: mirror the cpu_online_mask excluding the CPU in the midst of hotplugging */
450 static cpumask_var_t wq_online_cpumask;
451
452 /* PL&A: allowable cpus for unbound wqs and work items */
453 static cpumask_var_t wq_unbound_cpumask;
454
455 /* PL: user requested unbound cpumask via sysfs */
456 static cpumask_var_t wq_requested_unbound_cpumask;
457
458 /* PL: isolated cpumask to be excluded from unbound cpumask */
459 static cpumask_var_t wq_isolated_cpumask;
460
461 /* for further constrain wq_unbound_cpumask by cmdline parameter*/
462 static struct cpumask wq_cmdline_cpumask __initdata;
463
464 /* CPU where unbound work was last round robin scheduled from this CPU */
465 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
466
467 /*
468 * Local execution of unbound work items is no longer guaranteed. The
469 * following always forces round-robin CPU selection on unbound work items
470 * to uncover usages which depend on it.
471 */
472 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
473 static bool wq_debug_force_rr_cpu = true;
474 #else
475 static bool wq_debug_force_rr_cpu = false;
476 #endif
477 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
478
479 /* to raise softirq for the BH worker pools on other CPUs */
480 static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS], bh_pool_irq_works);
481
482 /* the BH worker pools */
483 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], bh_worker_pools);
484
485 /* the per-cpu worker pools */
486 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
487
488 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
489
490 /* PL: hash of all unbound pools keyed by pool->attrs */
491 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
492
493 /* I: attributes used when instantiating standard unbound pools on demand */
494 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
495
496 /* I: attributes used when instantiating ordered pools on demand */
497 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
498
499 /*
500 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
501 * process context while holding a pool lock. Bounce to a dedicated kthread
502 * worker to avoid A-A deadlocks.
503 */
504 static struct kthread_worker *pwq_release_worker __ro_after_init;
505
506 struct workqueue_struct *system_wq __ro_after_init;
507 EXPORT_SYMBOL(system_wq);
508 struct workqueue_struct *system_highpri_wq __ro_after_init;
509 EXPORT_SYMBOL_GPL(system_highpri_wq);
510 struct workqueue_struct *system_long_wq __ro_after_init;
511 EXPORT_SYMBOL_GPL(system_long_wq);
512 struct workqueue_struct *system_unbound_wq __ro_after_init;
513 EXPORT_SYMBOL_GPL(system_unbound_wq);
514 struct workqueue_struct *system_freezable_wq __ro_after_init;
515 EXPORT_SYMBOL_GPL(system_freezable_wq);
516 struct workqueue_struct *system_power_efficient_wq __ro_after_init;
517 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
518 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
519 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
520 struct workqueue_struct *system_bh_wq;
521 EXPORT_SYMBOL_GPL(system_bh_wq);
522 struct workqueue_struct *system_bh_highpri_wq;
523 EXPORT_SYMBOL_GPL(system_bh_highpri_wq);
524
525 static int worker_thread(void *__worker);
526 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
527 static void show_pwq(struct pool_workqueue *pwq);
528 static void show_one_worker_pool(struct worker_pool *pool);
529
530 #define CREATE_TRACE_POINTS
531 #include <trace/events/workqueue.h>
532
533 #define assert_rcu_or_pool_mutex() \
534 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \
535 !lockdep_is_held(&wq_pool_mutex), \
536 "RCU or wq_pool_mutex should be held")
537
538 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
539 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \
540 !lockdep_is_held(&wq->mutex) && \
541 !lockdep_is_held(&wq_pool_mutex), \
542 "RCU, wq->mutex or wq_pool_mutex should be held")
543
544 #define for_each_bh_worker_pool(pool, cpu) \
545 for ((pool) = &per_cpu(bh_worker_pools, cpu)[0]; \
546 (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
547 (pool)++)
548
549 #define for_each_cpu_worker_pool(pool, cpu) \
550 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
551 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
552 (pool)++)
553
554 /**
555 * for_each_pool - iterate through all worker_pools in the system
556 * @pool: iteration cursor
557 * @pi: integer used for iteration
558 *
559 * This must be called either with wq_pool_mutex held or RCU read
560 * locked. If the pool needs to be used beyond the locking in effect, the
561 * caller is responsible for guaranteeing that the pool stays online.
562 *
563 * The if/else clause exists only for the lockdep assertion and can be
564 * ignored.
565 */
566 #define for_each_pool(pool, pi) \
567 idr_for_each_entry(&worker_pool_idr, pool, pi) \
568 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
569 else
570
571 /**
572 * for_each_pool_worker - iterate through all workers of a worker_pool
573 * @worker: iteration cursor
574 * @pool: worker_pool to iterate workers of
575 *
576 * This must be called with wq_pool_attach_mutex.
577 *
578 * The if/else clause exists only for the lockdep assertion and can be
579 * ignored.
580 */
581 #define for_each_pool_worker(worker, pool) \
582 list_for_each_entry((worker), &(pool)->workers, node) \
583 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
584 else
585
586 /**
587 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
588 * @pwq: iteration cursor
589 * @wq: the target workqueue
590 *
591 * This must be called either with wq->mutex held or RCU read locked.
592 * If the pwq needs to be used beyond the locking in effect, the caller is
593 * responsible for guaranteeing that the pwq stays online.
594 *
595 * The if/else clause exists only for the lockdep assertion and can be
596 * ignored.
597 */
598 #define for_each_pwq(pwq, wq) \
599 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
600 lockdep_is_held(&(wq->mutex)))
601
602 #ifdef CONFIG_DEBUG_OBJECTS_WORK
603
604 static const struct debug_obj_descr work_debug_descr;
605
work_debug_hint(void * addr)606 static void *work_debug_hint(void *addr)
607 {
608 return ((struct work_struct *) addr)->func;
609 }
610
work_is_static_object(void * addr)611 static bool work_is_static_object(void *addr)
612 {
613 struct work_struct *work = addr;
614
615 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
616 }
617
618 /*
619 * fixup_init is called when:
620 * - an active object is initialized
621 */
work_fixup_init(void * addr,enum debug_obj_state state)622 static bool work_fixup_init(void *addr, enum debug_obj_state state)
623 {
624 struct work_struct *work = addr;
625
626 switch (state) {
627 case ODEBUG_STATE_ACTIVE:
628 cancel_work_sync(work);
629 debug_object_init(work, &work_debug_descr);
630 return true;
631 default:
632 return false;
633 }
634 }
635
636 /*
637 * fixup_free is called when:
638 * - an active object is freed
639 */
work_fixup_free(void * addr,enum debug_obj_state state)640 static bool work_fixup_free(void *addr, enum debug_obj_state state)
641 {
642 struct work_struct *work = addr;
643
644 switch (state) {
645 case ODEBUG_STATE_ACTIVE:
646 cancel_work_sync(work);
647 debug_object_free(work, &work_debug_descr);
648 return true;
649 default:
650 return false;
651 }
652 }
653
654 static const struct debug_obj_descr work_debug_descr = {
655 .name = "work_struct",
656 .debug_hint = work_debug_hint,
657 .is_static_object = work_is_static_object,
658 .fixup_init = work_fixup_init,
659 .fixup_free = work_fixup_free,
660 };
661
debug_work_activate(struct work_struct * work)662 static inline void debug_work_activate(struct work_struct *work)
663 {
664 debug_object_activate(work, &work_debug_descr);
665 }
666
debug_work_deactivate(struct work_struct * work)667 static inline void debug_work_deactivate(struct work_struct *work)
668 {
669 debug_object_deactivate(work, &work_debug_descr);
670 }
671
__init_work(struct work_struct * work,int onstack)672 void __init_work(struct work_struct *work, int onstack)
673 {
674 if (onstack)
675 debug_object_init_on_stack(work, &work_debug_descr);
676 else
677 debug_object_init(work, &work_debug_descr);
678 }
679 EXPORT_SYMBOL_GPL(__init_work);
680
destroy_work_on_stack(struct work_struct * work)681 void destroy_work_on_stack(struct work_struct *work)
682 {
683 debug_object_free(work, &work_debug_descr);
684 }
685 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
686
destroy_delayed_work_on_stack(struct delayed_work * work)687 void destroy_delayed_work_on_stack(struct delayed_work *work)
688 {
689 timer_destroy_on_stack(&work->timer);
690 debug_object_free(&work->work, &work_debug_descr);
691 }
692 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
693
694 #else
debug_work_activate(struct work_struct * work)695 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)696 static inline void debug_work_deactivate(struct work_struct *work) { }
697 #endif
698
699 /**
700 * worker_pool_assign_id - allocate ID and assign it to @pool
701 * @pool: the pool pointer of interest
702 *
703 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
704 * successfully, -errno on failure.
705 */
worker_pool_assign_id(struct worker_pool * pool)706 static int worker_pool_assign_id(struct worker_pool *pool)
707 {
708 int ret;
709
710 lockdep_assert_held(&wq_pool_mutex);
711
712 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
713 GFP_KERNEL);
714 if (ret >= 0) {
715 pool->id = ret;
716 return 0;
717 }
718 return ret;
719 }
720
721 static struct pool_workqueue __rcu **
unbound_pwq_slot(struct workqueue_struct * wq,int cpu)722 unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
723 {
724 if (cpu >= 0)
725 return per_cpu_ptr(wq->cpu_pwq, cpu);
726 else
727 return &wq->dfl_pwq;
728 }
729
730 /* @cpu < 0 for dfl_pwq */
unbound_pwq(struct workqueue_struct * wq,int cpu)731 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
732 {
733 return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
734 lockdep_is_held(&wq_pool_mutex) ||
735 lockdep_is_held(&wq->mutex));
736 }
737
738 /**
739 * unbound_effective_cpumask - effective cpumask of an unbound workqueue
740 * @wq: workqueue of interest
741 *
742 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
743 * is masked with wq_unbound_cpumask to determine the effective cpumask. The
744 * default pwq is always mapped to the pool with the current effective cpumask.
745 */
unbound_effective_cpumask(struct workqueue_struct * wq)746 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
747 {
748 return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
749 }
750
work_color_to_flags(int color)751 static unsigned int work_color_to_flags(int color)
752 {
753 return color << WORK_STRUCT_COLOR_SHIFT;
754 }
755
get_work_color(unsigned long work_data)756 static int get_work_color(unsigned long work_data)
757 {
758 return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
759 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
760 }
761
work_next_color(int color)762 static int work_next_color(int color)
763 {
764 return (color + 1) % WORK_NR_COLORS;
765 }
766
pool_offq_flags(struct worker_pool * pool)767 static unsigned long pool_offq_flags(struct worker_pool *pool)
768 {
769 return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0;
770 }
771
772 /*
773 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
774 * contain the pointer to the queued pwq. Once execution starts, the flag
775 * is cleared and the high bits contain OFFQ flags and pool ID.
776 *
777 * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling()
778 * can be used to set the pwq, pool or clear work->data. These functions should
779 * only be called while the work is owned - ie. while the PENDING bit is set.
780 *
781 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
782 * corresponding to a work. Pool is available once the work has been
783 * queued anywhere after initialization until it is sync canceled. pwq is
784 * available only while the work item is queued.
785 */
set_work_data(struct work_struct * work,unsigned long data)786 static inline void set_work_data(struct work_struct *work, unsigned long data)
787 {
788 WARN_ON_ONCE(!work_pending(work));
789 atomic_long_set(&work->data, data | work_static(work));
790 }
791
set_work_pwq(struct work_struct * work,struct pool_workqueue * pwq,unsigned long flags)792 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
793 unsigned long flags)
794 {
795 set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING |
796 WORK_STRUCT_PWQ | flags);
797 }
798
set_work_pool_and_keep_pending(struct work_struct * work,int pool_id,unsigned long flags)799 static void set_work_pool_and_keep_pending(struct work_struct *work,
800 int pool_id, unsigned long flags)
801 {
802 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
803 WORK_STRUCT_PENDING | flags);
804 }
805
set_work_pool_and_clear_pending(struct work_struct * work,int pool_id,unsigned long flags)806 static void set_work_pool_and_clear_pending(struct work_struct *work,
807 int pool_id, unsigned long flags)
808 {
809 /*
810 * The following wmb is paired with the implied mb in
811 * test_and_set_bit(PENDING) and ensures all updates to @work made
812 * here are visible to and precede any updates by the next PENDING
813 * owner.
814 */
815 smp_wmb();
816 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
817 flags);
818 /*
819 * The following mb guarantees that previous clear of a PENDING bit
820 * will not be reordered with any speculative LOADS or STORES from
821 * work->current_func, which is executed afterwards. This possible
822 * reordering can lead to a missed execution on attempt to queue
823 * the same @work. E.g. consider this case:
824 *
825 * CPU#0 CPU#1
826 * ---------------------------- --------------------------------
827 *
828 * 1 STORE event_indicated
829 * 2 queue_work_on() {
830 * 3 test_and_set_bit(PENDING)
831 * 4 } set_..._and_clear_pending() {
832 * 5 set_work_data() # clear bit
833 * 6 smp_mb()
834 * 7 work->current_func() {
835 * 8 LOAD event_indicated
836 * }
837 *
838 * Without an explicit full barrier speculative LOAD on line 8 can
839 * be executed before CPU#0 does STORE on line 1. If that happens,
840 * CPU#0 observes the PENDING bit is still set and new execution of
841 * a @work is not queued in a hope, that CPU#1 will eventually
842 * finish the queued @work. Meanwhile CPU#1 does not see
843 * event_indicated is set, because speculative LOAD was executed
844 * before actual STORE.
845 */
846 smp_mb();
847 }
848
work_struct_pwq(unsigned long data)849 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
850 {
851 return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK);
852 }
853
get_work_pwq(struct work_struct * work)854 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
855 {
856 unsigned long data = atomic_long_read(&work->data);
857
858 if (data & WORK_STRUCT_PWQ)
859 return work_struct_pwq(data);
860 else
861 return NULL;
862 }
863
864 /**
865 * get_work_pool - return the worker_pool a given work was associated with
866 * @work: the work item of interest
867 *
868 * Pools are created and destroyed under wq_pool_mutex, and allows read
869 * access under RCU read lock. As such, this function should be
870 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
871 *
872 * All fields of the returned pool are accessible as long as the above
873 * mentioned locking is in effect. If the returned pool needs to be used
874 * beyond the critical section, the caller is responsible for ensuring the
875 * returned pool is and stays online.
876 *
877 * Return: The worker_pool @work was last associated with. %NULL if none.
878 */
get_work_pool(struct work_struct * work)879 static struct worker_pool *get_work_pool(struct work_struct *work)
880 {
881 unsigned long data = atomic_long_read(&work->data);
882 int pool_id;
883
884 assert_rcu_or_pool_mutex();
885
886 if (data & WORK_STRUCT_PWQ)
887 return work_struct_pwq(data)->pool;
888
889 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
890 if (pool_id == WORK_OFFQ_POOL_NONE)
891 return NULL;
892
893 return idr_find(&worker_pool_idr, pool_id);
894 }
895
shift_and_mask(unsigned long v,u32 shift,u32 bits)896 static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits)
897 {
898 return (v >> shift) & ((1U << bits) - 1);
899 }
900
work_offqd_unpack(struct work_offq_data * offqd,unsigned long data)901 static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data)
902 {
903 WARN_ON_ONCE(data & WORK_STRUCT_PWQ);
904
905 offqd->pool_id = shift_and_mask(data, WORK_OFFQ_POOL_SHIFT,
906 WORK_OFFQ_POOL_BITS);
907 offqd->disable = shift_and_mask(data, WORK_OFFQ_DISABLE_SHIFT,
908 WORK_OFFQ_DISABLE_BITS);
909 offqd->flags = data & WORK_OFFQ_FLAG_MASK;
910 }
911
work_offqd_pack_flags(struct work_offq_data * offqd)912 static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd)
913 {
914 return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) |
915 ((unsigned long)offqd->flags);
916 }
917
918 /*
919 * Policy functions. These define the policies on how the global worker
920 * pools are managed. Unless noted otherwise, these functions assume that
921 * they're being called with pool->lock held.
922 */
923
924 /*
925 * Need to wake up a worker? Called from anything but currently
926 * running workers.
927 *
928 * Note that, because unbound workers never contribute to nr_running, this
929 * function will always return %true for unbound pools as long as the
930 * worklist isn't empty.
931 */
need_more_worker(struct worker_pool * pool)932 static bool need_more_worker(struct worker_pool *pool)
933 {
934 return !list_empty(&pool->worklist) && !pool->nr_running;
935 }
936
937 /* Can I start working? Called from busy but !running workers. */
may_start_working(struct worker_pool * pool)938 static bool may_start_working(struct worker_pool *pool)
939 {
940 return pool->nr_idle;
941 }
942
943 /* Do I need to keep working? Called from currently running workers. */
keep_working(struct worker_pool * pool)944 static bool keep_working(struct worker_pool *pool)
945 {
946 return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
947 }
948
949 /* Do we need a new worker? Called from manager. */
need_to_create_worker(struct worker_pool * pool)950 static bool need_to_create_worker(struct worker_pool *pool)
951 {
952 return need_more_worker(pool) && !may_start_working(pool);
953 }
954
955 /* Do we have too many workers and should some go away? */
too_many_workers(struct worker_pool * pool)956 static bool too_many_workers(struct worker_pool *pool)
957 {
958 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
959 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
960 int nr_busy = pool->nr_workers - nr_idle;
961
962 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
963 }
964
965 /**
966 * worker_set_flags - set worker flags and adjust nr_running accordingly
967 * @worker: self
968 * @flags: flags to set
969 *
970 * Set @flags in @worker->flags and adjust nr_running accordingly.
971 */
worker_set_flags(struct worker * worker,unsigned int flags)972 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
973 {
974 struct worker_pool *pool = worker->pool;
975
976 lockdep_assert_held(&pool->lock);
977
978 /* If transitioning into NOT_RUNNING, adjust nr_running. */
979 if ((flags & WORKER_NOT_RUNNING) &&
980 !(worker->flags & WORKER_NOT_RUNNING)) {
981 pool->nr_running--;
982 }
983
984 worker->flags |= flags;
985 }
986
987 /**
988 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
989 * @worker: self
990 * @flags: flags to clear
991 *
992 * Clear @flags in @worker->flags and adjust nr_running accordingly.
993 */
worker_clr_flags(struct worker * worker,unsigned int flags)994 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
995 {
996 struct worker_pool *pool = worker->pool;
997 unsigned int oflags = worker->flags;
998
999 lockdep_assert_held(&pool->lock);
1000
1001 worker->flags &= ~flags;
1002
1003 /*
1004 * If transitioning out of NOT_RUNNING, increment nr_running. Note
1005 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
1006 * of multiple flags, not a single flag.
1007 */
1008 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1009 if (!(worker->flags & WORKER_NOT_RUNNING))
1010 pool->nr_running++;
1011 }
1012
1013 /* Return the first idle worker. Called with pool->lock held. */
first_idle_worker(struct worker_pool * pool)1014 static struct worker *first_idle_worker(struct worker_pool *pool)
1015 {
1016 if (unlikely(list_empty(&pool->idle_list)))
1017 return NULL;
1018
1019 return list_first_entry(&pool->idle_list, struct worker, entry);
1020 }
1021
1022 /**
1023 * worker_enter_idle - enter idle state
1024 * @worker: worker which is entering idle state
1025 *
1026 * @worker is entering idle state. Update stats and idle timer if
1027 * necessary.
1028 *
1029 * LOCKING:
1030 * raw_spin_lock_irq(pool->lock).
1031 */
worker_enter_idle(struct worker * worker)1032 static void worker_enter_idle(struct worker *worker)
1033 {
1034 struct worker_pool *pool = worker->pool;
1035
1036 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1037 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1038 (worker->hentry.next || worker->hentry.pprev)))
1039 return;
1040
1041 /* can't use worker_set_flags(), also called from create_worker() */
1042 worker->flags |= WORKER_IDLE;
1043 pool->nr_idle++;
1044 worker->last_active = jiffies;
1045
1046 /* idle_list is LIFO */
1047 list_add(&worker->entry, &pool->idle_list);
1048
1049 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1050 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1051
1052 /* Sanity check nr_running. */
1053 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1054 }
1055
1056 /**
1057 * worker_leave_idle - leave idle state
1058 * @worker: worker which is leaving idle state
1059 *
1060 * @worker is leaving idle state. Update stats.
1061 *
1062 * LOCKING:
1063 * raw_spin_lock_irq(pool->lock).
1064 */
worker_leave_idle(struct worker * worker)1065 static void worker_leave_idle(struct worker *worker)
1066 {
1067 struct worker_pool *pool = worker->pool;
1068
1069 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1070 return;
1071 worker_clr_flags(worker, WORKER_IDLE);
1072 pool->nr_idle--;
1073 list_del_init(&worker->entry);
1074 }
1075
1076 /**
1077 * find_worker_executing_work - find worker which is executing a work
1078 * @pool: pool of interest
1079 * @work: work to find worker for
1080 *
1081 * Find a worker which is executing @work on @pool by searching
1082 * @pool->busy_hash which is keyed by the address of @work. For a worker
1083 * to match, its current execution should match the address of @work and
1084 * its work function. This is to avoid unwanted dependency between
1085 * unrelated work executions through a work item being recycled while still
1086 * being executed.
1087 *
1088 * This is a bit tricky. A work item may be freed once its execution
1089 * starts and nothing prevents the freed area from being recycled for
1090 * another work item. If the same work item address ends up being reused
1091 * before the original execution finishes, workqueue will identify the
1092 * recycled work item as currently executing and make it wait until the
1093 * current execution finishes, introducing an unwanted dependency.
1094 *
1095 * This function checks the work item address and work function to avoid
1096 * false positives. Note that this isn't complete as one may construct a
1097 * work function which can introduce dependency onto itself through a
1098 * recycled work item. Well, if somebody wants to shoot oneself in the
1099 * foot that badly, there's only so much we can do, and if such deadlock
1100 * actually occurs, it should be easy to locate the culprit work function.
1101 *
1102 * CONTEXT:
1103 * raw_spin_lock_irq(pool->lock).
1104 *
1105 * Return:
1106 * Pointer to worker which is executing @work if found, %NULL
1107 * otherwise.
1108 */
find_worker_executing_work(struct worker_pool * pool,struct work_struct * work)1109 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1110 struct work_struct *work)
1111 {
1112 struct worker *worker;
1113
1114 hash_for_each_possible(pool->busy_hash, worker, hentry,
1115 (unsigned long)work)
1116 if (worker->current_work == work &&
1117 worker->current_func == work->func)
1118 return worker;
1119
1120 return NULL;
1121 }
1122
1123 /**
1124 * move_linked_works - move linked works to a list
1125 * @work: start of series of works to be scheduled
1126 * @head: target list to append @work to
1127 * @nextp: out parameter for nested worklist walking
1128 *
1129 * Schedule linked works starting from @work to @head. Work series to be
1130 * scheduled starts at @work and includes any consecutive work with
1131 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1132 * @nextp.
1133 *
1134 * CONTEXT:
1135 * raw_spin_lock_irq(pool->lock).
1136 */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1137 static void move_linked_works(struct work_struct *work, struct list_head *head,
1138 struct work_struct **nextp)
1139 {
1140 struct work_struct *n;
1141
1142 /*
1143 * Linked worklist will always end before the end of the list,
1144 * use NULL for list head.
1145 */
1146 list_for_each_entry_safe_from(work, n, NULL, entry) {
1147 list_move_tail(&work->entry, head);
1148 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1149 break;
1150 }
1151
1152 /*
1153 * If we're already inside safe list traversal and have moved
1154 * multiple works to the scheduled queue, the next position
1155 * needs to be updated.
1156 */
1157 if (nextp)
1158 *nextp = n;
1159 }
1160
1161 /**
1162 * assign_work - assign a work item and its linked work items to a worker
1163 * @work: work to assign
1164 * @worker: worker to assign to
1165 * @nextp: out parameter for nested worklist walking
1166 *
1167 * Assign @work and its linked work items to @worker. If @work is already being
1168 * executed by another worker in the same pool, it'll be punted there.
1169 *
1170 * If @nextp is not NULL, it's updated to point to the next work of the last
1171 * scheduled work. This allows assign_work() to be nested inside
1172 * list_for_each_entry_safe().
1173 *
1174 * Returns %true if @work was successfully assigned to @worker. %false if @work
1175 * was punted to another worker already executing it.
1176 */
assign_work(struct work_struct * work,struct worker * worker,struct work_struct ** nextp)1177 static bool assign_work(struct work_struct *work, struct worker *worker,
1178 struct work_struct **nextp)
1179 {
1180 struct worker_pool *pool = worker->pool;
1181 struct worker *collision;
1182
1183 lockdep_assert_held(&pool->lock);
1184
1185 /*
1186 * A single work shouldn't be executed concurrently by multiple workers.
1187 * __queue_work() ensures that @work doesn't jump to a different pool
1188 * while still running in the previous pool. Here, we should ensure that
1189 * @work is not executed concurrently by multiple workers from the same
1190 * pool. Check whether anyone is already processing the work. If so,
1191 * defer the work to the currently executing one.
1192 */
1193 collision = find_worker_executing_work(pool, work);
1194 if (unlikely(collision)) {
1195 move_linked_works(work, &collision->scheduled, nextp);
1196 return false;
1197 }
1198
1199 move_linked_works(work, &worker->scheduled, nextp);
1200 return true;
1201 }
1202
bh_pool_irq_work(struct worker_pool * pool)1203 static struct irq_work *bh_pool_irq_work(struct worker_pool *pool)
1204 {
1205 int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0;
1206
1207 return &per_cpu(bh_pool_irq_works, pool->cpu)[high];
1208 }
1209
kick_bh_pool(struct worker_pool * pool)1210 static void kick_bh_pool(struct worker_pool *pool)
1211 {
1212 #ifdef CONFIG_SMP
1213 /* see drain_dead_softirq_workfn() for BH_DRAINING */
1214 if (unlikely(pool->cpu != smp_processor_id() &&
1215 !(pool->flags & POOL_BH_DRAINING))) {
1216 irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu);
1217 return;
1218 }
1219 #endif
1220 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
1221 raise_softirq_irqoff(HI_SOFTIRQ);
1222 else
1223 raise_softirq_irqoff(TASKLET_SOFTIRQ);
1224 }
1225
1226 /**
1227 * kick_pool - wake up an idle worker if necessary
1228 * @pool: pool to kick
1229 *
1230 * @pool may have pending work items. Wake up worker if necessary. Returns
1231 * whether a worker was woken up.
1232 */
kick_pool(struct worker_pool * pool)1233 static bool kick_pool(struct worker_pool *pool)
1234 {
1235 struct worker *worker = first_idle_worker(pool);
1236 struct task_struct *p;
1237
1238 lockdep_assert_held(&pool->lock);
1239
1240 if (!need_more_worker(pool) || !worker)
1241 return false;
1242
1243 if (pool->flags & POOL_BH) {
1244 kick_bh_pool(pool);
1245 return true;
1246 }
1247
1248 p = worker->task;
1249
1250 #ifdef CONFIG_SMP
1251 /*
1252 * Idle @worker is about to execute @work and waking up provides an
1253 * opportunity to migrate @worker at a lower cost by setting the task's
1254 * wake_cpu field. Let's see if we want to move @worker to improve
1255 * execution locality.
1256 *
1257 * We're waking the worker that went idle the latest and there's some
1258 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1259 * so, setting the wake_cpu won't do anything. As this is a best-effort
1260 * optimization and the race window is narrow, let's leave as-is for
1261 * now. If this becomes pronounced, we can skip over workers which are
1262 * still on cpu when picking an idle worker.
1263 *
1264 * If @pool has non-strict affinity, @worker might have ended up outside
1265 * its affinity scope. Repatriate.
1266 */
1267 if (!pool->attrs->affn_strict &&
1268 !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1269 struct work_struct *work = list_first_entry(&pool->worklist,
1270 struct work_struct, entry);
1271 int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask,
1272 cpu_online_mask);
1273 if (wake_cpu < nr_cpu_ids) {
1274 p->wake_cpu = wake_cpu;
1275 get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1276 }
1277 }
1278 #endif
1279 wake_up_process(p);
1280 return true;
1281 }
1282
1283 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1284
1285 /*
1286 * Concurrency-managed per-cpu work items that hog CPU for longer than
1287 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1288 * which prevents them from stalling other concurrency-managed work items. If a
1289 * work function keeps triggering this mechanism, it's likely that the work item
1290 * should be using an unbound workqueue instead.
1291 *
1292 * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1293 * and report them so that they can be examined and converted to use unbound
1294 * workqueues as appropriate. To avoid flooding the console, each violating work
1295 * function is tracked and reported with exponential backoff.
1296 */
1297 #define WCI_MAX_ENTS 128
1298
1299 struct wci_ent {
1300 work_func_t func;
1301 atomic64_t cnt;
1302 struct hlist_node hash_node;
1303 };
1304
1305 static struct wci_ent wci_ents[WCI_MAX_ENTS];
1306 static int wci_nr_ents;
1307 static DEFINE_RAW_SPINLOCK(wci_lock);
1308 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1309
wci_find_ent(work_func_t func)1310 static struct wci_ent *wci_find_ent(work_func_t func)
1311 {
1312 struct wci_ent *ent;
1313
1314 hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1315 (unsigned long)func) {
1316 if (ent->func == func)
1317 return ent;
1318 }
1319 return NULL;
1320 }
1321
wq_cpu_intensive_report(work_func_t func)1322 static void wq_cpu_intensive_report(work_func_t func)
1323 {
1324 struct wci_ent *ent;
1325
1326 restart:
1327 ent = wci_find_ent(func);
1328 if (ent) {
1329 u64 cnt;
1330
1331 /*
1332 * Start reporting from the warning_thresh and back off
1333 * exponentially.
1334 */
1335 cnt = atomic64_inc_return_relaxed(&ent->cnt);
1336 if (wq_cpu_intensive_warning_thresh &&
1337 cnt >= wq_cpu_intensive_warning_thresh &&
1338 is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh))
1339 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1340 ent->func, wq_cpu_intensive_thresh_us,
1341 atomic64_read(&ent->cnt));
1342 return;
1343 }
1344
1345 /*
1346 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1347 * is exhausted, something went really wrong and we probably made enough
1348 * noise already.
1349 */
1350 if (wci_nr_ents >= WCI_MAX_ENTS)
1351 return;
1352
1353 raw_spin_lock(&wci_lock);
1354
1355 if (wci_nr_ents >= WCI_MAX_ENTS) {
1356 raw_spin_unlock(&wci_lock);
1357 return;
1358 }
1359
1360 if (wci_find_ent(func)) {
1361 raw_spin_unlock(&wci_lock);
1362 goto restart;
1363 }
1364
1365 ent = &wci_ents[wci_nr_ents++];
1366 ent->func = func;
1367 atomic64_set(&ent->cnt, 0);
1368 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1369
1370 raw_spin_unlock(&wci_lock);
1371
1372 goto restart;
1373 }
1374
1375 #else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
wq_cpu_intensive_report(work_func_t func)1376 static void wq_cpu_intensive_report(work_func_t func) {}
1377 #endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1378
1379 /**
1380 * wq_worker_running - a worker is running again
1381 * @task: task waking up
1382 *
1383 * This function is called when a worker returns from schedule()
1384 */
wq_worker_running(struct task_struct * task)1385 void wq_worker_running(struct task_struct *task)
1386 {
1387 struct worker *worker = kthread_data(task);
1388
1389 if (!READ_ONCE(worker->sleeping))
1390 return;
1391
1392 /*
1393 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1394 * and the nr_running increment below, we may ruin the nr_running reset
1395 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1396 * pool. Protect against such race.
1397 */
1398 preempt_disable();
1399 if (!(worker->flags & WORKER_NOT_RUNNING))
1400 worker->pool->nr_running++;
1401 preempt_enable();
1402
1403 /*
1404 * CPU intensive auto-detection cares about how long a work item hogged
1405 * CPU without sleeping. Reset the starting timestamp on wakeup.
1406 */
1407 worker->current_at = worker->task->se.sum_exec_runtime;
1408
1409 WRITE_ONCE(worker->sleeping, 0);
1410 }
1411
1412 /**
1413 * wq_worker_sleeping - a worker is going to sleep
1414 * @task: task going to sleep
1415 *
1416 * This function is called from schedule() when a busy worker is
1417 * going to sleep.
1418 */
wq_worker_sleeping(struct task_struct * task)1419 void wq_worker_sleeping(struct task_struct *task)
1420 {
1421 struct worker *worker = kthread_data(task);
1422 struct worker_pool *pool;
1423
1424 /*
1425 * Rescuers, which may not have all the fields set up like normal
1426 * workers, also reach here, let's not access anything before
1427 * checking NOT_RUNNING.
1428 */
1429 if (worker->flags & WORKER_NOT_RUNNING)
1430 return;
1431
1432 pool = worker->pool;
1433
1434 /* Return if preempted before wq_worker_running() was reached */
1435 if (READ_ONCE(worker->sleeping))
1436 return;
1437
1438 WRITE_ONCE(worker->sleeping, 1);
1439 raw_spin_lock_irq(&pool->lock);
1440
1441 /*
1442 * Recheck in case unbind_workers() preempted us. We don't
1443 * want to decrement nr_running after the worker is unbound
1444 * and nr_running has been reset.
1445 */
1446 if (worker->flags & WORKER_NOT_RUNNING) {
1447 raw_spin_unlock_irq(&pool->lock);
1448 return;
1449 }
1450
1451 pool->nr_running--;
1452 if (kick_pool(pool))
1453 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1454
1455 raw_spin_unlock_irq(&pool->lock);
1456 }
1457
1458 /**
1459 * wq_worker_tick - a scheduler tick occurred while a kworker is running
1460 * @task: task currently running
1461 *
1462 * Called from sched_tick(). We're in the IRQ context and the current
1463 * worker's fields which follow the 'K' locking rule can be accessed safely.
1464 */
wq_worker_tick(struct task_struct * task)1465 void wq_worker_tick(struct task_struct *task)
1466 {
1467 struct worker *worker = kthread_data(task);
1468 struct pool_workqueue *pwq = worker->current_pwq;
1469 struct worker_pool *pool = worker->pool;
1470
1471 if (!pwq)
1472 return;
1473
1474 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1475
1476 if (!wq_cpu_intensive_thresh_us)
1477 return;
1478
1479 /*
1480 * If the current worker is concurrency managed and hogged the CPU for
1481 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1482 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1483 *
1484 * Set @worker->sleeping means that @worker is in the process of
1485 * switching out voluntarily and won't be contributing to
1486 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1487 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1488 * double decrements. The task is releasing the CPU anyway. Let's skip.
1489 * We probably want to make this prettier in the future.
1490 */
1491 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1492 worker->task->se.sum_exec_runtime - worker->current_at <
1493 wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1494 return;
1495
1496 raw_spin_lock(&pool->lock);
1497
1498 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1499 wq_cpu_intensive_report(worker->current_func);
1500 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1501
1502 if (kick_pool(pool))
1503 pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1504
1505 raw_spin_unlock(&pool->lock);
1506 }
1507
1508 /**
1509 * wq_worker_last_func - retrieve worker's last work function
1510 * @task: Task to retrieve last work function of.
1511 *
1512 * Determine the last function a worker executed. This is called from
1513 * the scheduler to get a worker's last known identity.
1514 *
1515 * CONTEXT:
1516 * raw_spin_lock_irq(rq->lock)
1517 *
1518 * This function is called during schedule() when a kworker is going
1519 * to sleep. It's used by psi to identify aggregation workers during
1520 * dequeuing, to allow periodic aggregation to shut-off when that
1521 * worker is the last task in the system or cgroup to go to sleep.
1522 *
1523 * As this function doesn't involve any workqueue-related locking, it
1524 * only returns stable values when called from inside the scheduler's
1525 * queuing and dequeuing paths, when @task, which must be a kworker,
1526 * is guaranteed to not be processing any works.
1527 *
1528 * Return:
1529 * The last work function %current executed as a worker, NULL if it
1530 * hasn't executed any work yet.
1531 */
wq_worker_last_func(struct task_struct * task)1532 work_func_t wq_worker_last_func(struct task_struct *task)
1533 {
1534 struct worker *worker = kthread_data(task);
1535
1536 return worker->last_func;
1537 }
1538
1539 /**
1540 * wq_node_nr_active - Determine wq_node_nr_active to use
1541 * @wq: workqueue of interest
1542 * @node: NUMA node, can be %NUMA_NO_NODE
1543 *
1544 * Determine wq_node_nr_active to use for @wq on @node. Returns:
1545 *
1546 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1547 *
1548 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1549 *
1550 * - Otherwise, node_nr_active[@node].
1551 */
wq_node_nr_active(struct workqueue_struct * wq,int node)1552 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1553 int node)
1554 {
1555 if (!(wq->flags & WQ_UNBOUND))
1556 return NULL;
1557
1558 if (node == NUMA_NO_NODE)
1559 node = nr_node_ids;
1560
1561 return wq->node_nr_active[node];
1562 }
1563
1564 /**
1565 * wq_update_node_max_active - Update per-node max_actives to use
1566 * @wq: workqueue to update
1567 * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1568 *
1569 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1570 * distributed among nodes according to the proportions of numbers of online
1571 * cpus. The result is always between @wq->min_active and max_active.
1572 */
wq_update_node_max_active(struct workqueue_struct * wq,int off_cpu)1573 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1574 {
1575 struct cpumask *effective = unbound_effective_cpumask(wq);
1576 int min_active = READ_ONCE(wq->min_active);
1577 int max_active = READ_ONCE(wq->max_active);
1578 int total_cpus, node;
1579
1580 lockdep_assert_held(&wq->mutex);
1581
1582 if (!wq_topo_initialized)
1583 return;
1584
1585 if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
1586 off_cpu = -1;
1587
1588 total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1589 if (off_cpu >= 0)
1590 total_cpus--;
1591
1592 /* If all CPUs of the wq get offline, use the default values */
1593 if (unlikely(!total_cpus)) {
1594 for_each_node(node)
1595 wq_node_nr_active(wq, node)->max = min_active;
1596
1597 wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1598 return;
1599 }
1600
1601 for_each_node(node) {
1602 int node_cpus;
1603
1604 node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1605 if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1606 node_cpus--;
1607
1608 wq_node_nr_active(wq, node)->max =
1609 clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1610 min_active, max_active);
1611 }
1612
1613 wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1614 }
1615
1616 /**
1617 * get_pwq - get an extra reference on the specified pool_workqueue
1618 * @pwq: pool_workqueue to get
1619 *
1620 * Obtain an extra reference on @pwq. The caller should guarantee that
1621 * @pwq has positive refcnt and be holding the matching pool->lock.
1622 */
get_pwq(struct pool_workqueue * pwq)1623 static void get_pwq(struct pool_workqueue *pwq)
1624 {
1625 lockdep_assert_held(&pwq->pool->lock);
1626 WARN_ON_ONCE(pwq->refcnt <= 0);
1627 pwq->refcnt++;
1628 }
1629
1630 /**
1631 * put_pwq - put a pool_workqueue reference
1632 * @pwq: pool_workqueue to put
1633 *
1634 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1635 * destruction. The caller should be holding the matching pool->lock.
1636 */
put_pwq(struct pool_workqueue * pwq)1637 static void put_pwq(struct pool_workqueue *pwq)
1638 {
1639 lockdep_assert_held(&pwq->pool->lock);
1640 if (likely(--pwq->refcnt))
1641 return;
1642 /*
1643 * @pwq can't be released under pool->lock, bounce to a dedicated
1644 * kthread_worker to avoid A-A deadlocks.
1645 */
1646 kthread_queue_work(pwq_release_worker, &pwq->release_work);
1647 }
1648
1649 /**
1650 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1651 * @pwq: pool_workqueue to put (can be %NULL)
1652 *
1653 * put_pwq() with locking. This function also allows %NULL @pwq.
1654 */
put_pwq_unlocked(struct pool_workqueue * pwq)1655 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1656 {
1657 if (pwq) {
1658 /*
1659 * As both pwqs and pools are RCU protected, the
1660 * following lock operations are safe.
1661 */
1662 raw_spin_lock_irq(&pwq->pool->lock);
1663 put_pwq(pwq);
1664 raw_spin_unlock_irq(&pwq->pool->lock);
1665 }
1666 }
1667
pwq_is_empty(struct pool_workqueue * pwq)1668 static bool pwq_is_empty(struct pool_workqueue *pwq)
1669 {
1670 return !pwq->nr_active && list_empty(&pwq->inactive_works);
1671 }
1672
__pwq_activate_work(struct pool_workqueue * pwq,struct work_struct * work)1673 static void __pwq_activate_work(struct pool_workqueue *pwq,
1674 struct work_struct *work)
1675 {
1676 unsigned long *wdb = work_data_bits(work);
1677
1678 WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
1679 trace_workqueue_activate_work(work);
1680 if (list_empty(&pwq->pool->worklist))
1681 pwq->pool->watchdog_ts = jiffies;
1682 move_linked_works(work, &pwq->pool->worklist, NULL);
1683 __clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
1684 }
1685
tryinc_node_nr_active(struct wq_node_nr_active * nna)1686 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1687 {
1688 int max = READ_ONCE(nna->max);
1689
1690 while (true) {
1691 int old, tmp;
1692
1693 old = atomic_read(&nna->nr);
1694 if (old >= max)
1695 return false;
1696 tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1);
1697 if (tmp == old)
1698 return true;
1699 }
1700 }
1701
1702 /**
1703 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1704 * @pwq: pool_workqueue of interest
1705 * @fill: max_active may have increased, try to increase concurrency level
1706 *
1707 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1708 * successfully obtained. %false otherwise.
1709 */
pwq_tryinc_nr_active(struct pool_workqueue * pwq,bool fill)1710 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1711 {
1712 struct workqueue_struct *wq = pwq->wq;
1713 struct worker_pool *pool = pwq->pool;
1714 struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
1715 bool obtained = false;
1716
1717 lockdep_assert_held(&pool->lock);
1718
1719 if (!nna) {
1720 /* BH or per-cpu workqueue, pwq->nr_active is sufficient */
1721 obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1722 goto out;
1723 }
1724
1725 if (unlikely(pwq->plugged))
1726 return false;
1727
1728 /*
1729 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1730 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1731 * concurrency level. Don't jump the line.
1732 *
1733 * We need to ignore the pending test after max_active has increased as
1734 * pwq_dec_nr_active() can only maintain the concurrency level but not
1735 * increase it. This is indicated by @fill.
1736 */
1737 if (!list_empty(&pwq->pending_node) && likely(!fill))
1738 goto out;
1739
1740 obtained = tryinc_node_nr_active(nna);
1741 if (obtained)
1742 goto out;
1743
1744 /*
1745 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1746 * and try again. The smp_mb() is paired with the implied memory barrier
1747 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1748 * we see the decremented $nna->nr or they see non-empty
1749 * $nna->pending_pwqs.
1750 */
1751 raw_spin_lock(&nna->lock);
1752
1753 if (list_empty(&pwq->pending_node))
1754 list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1755 else if (likely(!fill))
1756 goto out_unlock;
1757
1758 smp_mb();
1759
1760 obtained = tryinc_node_nr_active(nna);
1761
1762 /*
1763 * If @fill, @pwq might have already been pending. Being spuriously
1764 * pending in cold paths doesn't affect anything. Let's leave it be.
1765 */
1766 if (obtained && likely(!fill))
1767 list_del_init(&pwq->pending_node);
1768
1769 out_unlock:
1770 raw_spin_unlock(&nna->lock);
1771 out:
1772 if (obtained)
1773 pwq->nr_active++;
1774 return obtained;
1775 }
1776
1777 /**
1778 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1779 * @pwq: pool_workqueue of interest
1780 * @fill: max_active may have increased, try to increase concurrency level
1781 *
1782 * Activate the first inactive work item of @pwq if available and allowed by
1783 * max_active limit.
1784 *
1785 * Returns %true if an inactive work item has been activated. %false if no
1786 * inactive work item is found or max_active limit is reached.
1787 */
pwq_activate_first_inactive(struct pool_workqueue * pwq,bool fill)1788 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1789 {
1790 struct work_struct *work =
1791 list_first_entry_or_null(&pwq->inactive_works,
1792 struct work_struct, entry);
1793
1794 if (work && pwq_tryinc_nr_active(pwq, fill)) {
1795 __pwq_activate_work(pwq, work);
1796 return true;
1797 } else {
1798 return false;
1799 }
1800 }
1801
1802 /**
1803 * unplug_oldest_pwq - unplug the oldest pool_workqueue
1804 * @wq: workqueue_struct where its oldest pwq is to be unplugged
1805 *
1806 * This function should only be called for ordered workqueues where only the
1807 * oldest pwq is unplugged, the others are plugged to suspend execution to
1808 * ensure proper work item ordering::
1809 *
1810 * dfl_pwq --------------+ [P] - plugged
1811 * |
1812 * v
1813 * pwqs -> A -> B [P] -> C [P] (newest)
1814 * | | |
1815 * 1 3 5
1816 * | | |
1817 * 2 4 6
1818 *
1819 * When the oldest pwq is drained and removed, this function should be called
1820 * to unplug the next oldest one to start its work item execution. Note that
1821 * pwq's are linked into wq->pwqs with the oldest first, so the first one in
1822 * the list is the oldest.
1823 */
unplug_oldest_pwq(struct workqueue_struct * wq)1824 static void unplug_oldest_pwq(struct workqueue_struct *wq)
1825 {
1826 struct pool_workqueue *pwq;
1827
1828 lockdep_assert_held(&wq->mutex);
1829
1830 /* Caller should make sure that pwqs isn't empty before calling */
1831 pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue,
1832 pwqs_node);
1833 raw_spin_lock_irq(&pwq->pool->lock);
1834 if (pwq->plugged) {
1835 pwq->plugged = false;
1836 if (pwq_activate_first_inactive(pwq, true))
1837 kick_pool(pwq->pool);
1838 }
1839 raw_spin_unlock_irq(&pwq->pool->lock);
1840 }
1841
1842 /**
1843 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1844 * @nna: wq_node_nr_active to activate a pending pwq for
1845 * @caller_pool: worker_pool the caller is locking
1846 *
1847 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1848 * @caller_pool may be unlocked and relocked to lock other worker_pools.
1849 */
node_activate_pending_pwq(struct wq_node_nr_active * nna,struct worker_pool * caller_pool)1850 static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1851 struct worker_pool *caller_pool)
1852 {
1853 struct worker_pool *locked_pool = caller_pool;
1854 struct pool_workqueue *pwq;
1855 struct work_struct *work;
1856
1857 lockdep_assert_held(&caller_pool->lock);
1858
1859 raw_spin_lock(&nna->lock);
1860 retry:
1861 pwq = list_first_entry_or_null(&nna->pending_pwqs,
1862 struct pool_workqueue, pending_node);
1863 if (!pwq)
1864 goto out_unlock;
1865
1866 /*
1867 * If @pwq is for a different pool than @locked_pool, we need to lock
1868 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1869 * / lock dance. For that, we also need to release @nna->lock as it's
1870 * nested inside pool locks.
1871 */
1872 if (pwq->pool != locked_pool) {
1873 raw_spin_unlock(&locked_pool->lock);
1874 locked_pool = pwq->pool;
1875 if (!raw_spin_trylock(&locked_pool->lock)) {
1876 raw_spin_unlock(&nna->lock);
1877 raw_spin_lock(&locked_pool->lock);
1878 raw_spin_lock(&nna->lock);
1879 goto retry;
1880 }
1881 }
1882
1883 /*
1884 * $pwq may not have any inactive work items due to e.g. cancellations.
1885 * Drop it from pending_pwqs and see if there's another one.
1886 */
1887 work = list_first_entry_or_null(&pwq->inactive_works,
1888 struct work_struct, entry);
1889 if (!work) {
1890 list_del_init(&pwq->pending_node);
1891 goto retry;
1892 }
1893
1894 /*
1895 * Acquire an nr_active count and activate the inactive work item. If
1896 * $pwq still has inactive work items, rotate it to the end of the
1897 * pending_pwqs so that we round-robin through them. This means that
1898 * inactive work items are not activated in queueing order which is fine
1899 * given that there has never been any ordering across different pwqs.
1900 */
1901 if (likely(tryinc_node_nr_active(nna))) {
1902 pwq->nr_active++;
1903 __pwq_activate_work(pwq, work);
1904
1905 if (list_empty(&pwq->inactive_works))
1906 list_del_init(&pwq->pending_node);
1907 else
1908 list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1909
1910 /* if activating a foreign pool, make sure it's running */
1911 if (pwq->pool != caller_pool)
1912 kick_pool(pwq->pool);
1913 }
1914
1915 out_unlock:
1916 raw_spin_unlock(&nna->lock);
1917 if (locked_pool != caller_pool) {
1918 raw_spin_unlock(&locked_pool->lock);
1919 raw_spin_lock(&caller_pool->lock);
1920 }
1921 }
1922
1923 /**
1924 * pwq_dec_nr_active - Retire an active count
1925 * @pwq: pool_workqueue of interest
1926 *
1927 * Decrement @pwq's nr_active and try to activate the first inactive work item.
1928 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1929 */
pwq_dec_nr_active(struct pool_workqueue * pwq)1930 static void pwq_dec_nr_active(struct pool_workqueue *pwq)
1931 {
1932 struct worker_pool *pool = pwq->pool;
1933 struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
1934
1935 lockdep_assert_held(&pool->lock);
1936
1937 /*
1938 * @pwq->nr_active should be decremented for both percpu and unbound
1939 * workqueues.
1940 */
1941 pwq->nr_active--;
1942
1943 /*
1944 * For a percpu workqueue, it's simple. Just need to kick the first
1945 * inactive work item on @pwq itself.
1946 */
1947 if (!nna) {
1948 pwq_activate_first_inactive(pwq, false);
1949 return;
1950 }
1951
1952 /*
1953 * If @pwq is for an unbound workqueue, it's more complicated because
1954 * multiple pwqs and pools may be sharing the nr_active count. When a
1955 * pwq needs to wait for an nr_active count, it puts itself on
1956 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1957 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1958 * guarantee that either we see non-empty pending_pwqs or they see
1959 * decremented $nna->nr.
1960 *
1961 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1962 * max_active gets updated. However, it is guaranteed to be equal to or
1963 * larger than @pwq->wq->min_active which is above zero unless freezing.
1964 * This maintains the forward progress guarantee.
1965 */
1966 if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
1967 return;
1968
1969 if (!list_empty(&nna->pending_pwqs))
1970 node_activate_pending_pwq(nna, pool);
1971 }
1972
1973 /**
1974 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1975 * @pwq: pwq of interest
1976 * @work_data: work_data of work which left the queue
1977 *
1978 * A work either has completed or is removed from pending queue,
1979 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1980 *
1981 * NOTE:
1982 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
1983 * and thus should be called after all other state updates for the in-flight
1984 * work item is complete.
1985 *
1986 * CONTEXT:
1987 * raw_spin_lock_irq(pool->lock).
1988 */
pwq_dec_nr_in_flight(struct pool_workqueue * pwq,unsigned long work_data)1989 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1990 {
1991 int color = get_work_color(work_data);
1992
1993 if (!(work_data & WORK_STRUCT_INACTIVE))
1994 pwq_dec_nr_active(pwq);
1995
1996 pwq->nr_in_flight[color]--;
1997
1998 /* is flush in progress and are we at the flushing tip? */
1999 if (likely(pwq->flush_color != color))
2000 goto out_put;
2001
2002 /* are there still in-flight works? */
2003 if (pwq->nr_in_flight[color])
2004 goto out_put;
2005
2006 /* this pwq is done, clear flush_color */
2007 pwq->flush_color = -1;
2008
2009 /*
2010 * If this was the last pwq, wake up the first flusher. It
2011 * will handle the rest.
2012 */
2013 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
2014 complete(&pwq->wq->first_flusher->done);
2015 out_put:
2016 put_pwq(pwq);
2017 }
2018
2019 /**
2020 * try_to_grab_pending - steal work item from worklist and disable irq
2021 * @work: work item to steal
2022 * @cflags: %WORK_CANCEL_ flags
2023 * @irq_flags: place to store irq state
2024 *
2025 * Try to grab PENDING bit of @work. This function can handle @work in any
2026 * stable state - idle, on timer or on worklist.
2027 *
2028 * Return:
2029 *
2030 * ======== ================================================================
2031 * 1 if @work was pending and we successfully stole PENDING
2032 * 0 if @work was idle and we claimed PENDING
2033 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
2034 * ======== ================================================================
2035 *
2036 * Note:
2037 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
2038 * interrupted while holding PENDING and @work off queue, irq must be
2039 * disabled on entry. This, combined with delayed_work->timer being
2040 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
2041 *
2042 * On successful return, >= 0, irq is disabled and the caller is
2043 * responsible for releasing it using local_irq_restore(*@irq_flags).
2044 *
2045 * This function is safe to call from any context including IRQ handler.
2046 */
try_to_grab_pending(struct work_struct * work,u32 cflags,unsigned long * irq_flags)2047 static int try_to_grab_pending(struct work_struct *work, u32 cflags,
2048 unsigned long *irq_flags)
2049 {
2050 struct worker_pool *pool;
2051 struct pool_workqueue *pwq;
2052
2053 local_irq_save(*irq_flags);
2054
2055 /* try to steal the timer if it exists */
2056 if (cflags & WORK_CANCEL_DELAYED) {
2057 struct delayed_work *dwork = to_delayed_work(work);
2058
2059 /*
2060 * dwork->timer is irqsafe. If timer_delete() fails, it's
2061 * guaranteed that the timer is not queued anywhere and not
2062 * running on the local CPU.
2063 */
2064 if (likely(timer_delete(&dwork->timer)))
2065 return 1;
2066 }
2067
2068 /* try to claim PENDING the normal way */
2069 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2070 return 0;
2071
2072 rcu_read_lock();
2073 /*
2074 * The queueing is in progress, or it is already queued. Try to
2075 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2076 */
2077 pool = get_work_pool(work);
2078 if (!pool)
2079 goto fail;
2080
2081 raw_spin_lock(&pool->lock);
2082 /*
2083 * work->data is guaranteed to point to pwq only while the work
2084 * item is queued on pwq->wq, and both updating work->data to point
2085 * to pwq on queueing and to pool on dequeueing are done under
2086 * pwq->pool->lock. This in turn guarantees that, if work->data
2087 * points to pwq which is associated with a locked pool, the work
2088 * item is currently queued on that pool.
2089 */
2090 pwq = get_work_pwq(work);
2091 if (pwq && pwq->pool == pool) {
2092 unsigned long work_data = *work_data_bits(work);
2093
2094 debug_work_deactivate(work);
2095
2096 /*
2097 * A cancelable inactive work item must be in the
2098 * pwq->inactive_works since a queued barrier can't be
2099 * canceled (see the comments in insert_wq_barrier()).
2100 *
2101 * An inactive work item cannot be deleted directly because
2102 * it might have linked barrier work items which, if left
2103 * on the inactive_works list, will confuse pwq->nr_active
2104 * management later on and cause stall. Move the linked
2105 * barrier work items to the worklist when deleting the grabbed
2106 * item. Also keep WORK_STRUCT_INACTIVE in work_data, so that
2107 * it doesn't participate in nr_active management in later
2108 * pwq_dec_nr_in_flight().
2109 */
2110 if (work_data & WORK_STRUCT_INACTIVE)
2111 move_linked_works(work, &pwq->pool->worklist, NULL);
2112
2113 list_del_init(&work->entry);
2114
2115 /*
2116 * work->data points to pwq iff queued. Let's point to pool. As
2117 * this destroys work->data needed by the next step, stash it.
2118 */
2119 set_work_pool_and_keep_pending(work, pool->id,
2120 pool_offq_flags(pool));
2121
2122 /* must be the last step, see the function comment */
2123 pwq_dec_nr_in_flight(pwq, work_data);
2124
2125 raw_spin_unlock(&pool->lock);
2126 rcu_read_unlock();
2127 return 1;
2128 }
2129 raw_spin_unlock(&pool->lock);
2130 fail:
2131 rcu_read_unlock();
2132 local_irq_restore(*irq_flags);
2133 return -EAGAIN;
2134 }
2135
2136 /**
2137 * work_grab_pending - steal work item from worklist and disable irq
2138 * @work: work item to steal
2139 * @cflags: %WORK_CANCEL_ flags
2140 * @irq_flags: place to store IRQ state
2141 *
2142 * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer
2143 * or on worklist.
2144 *
2145 * Can be called from any context. IRQ is disabled on return with IRQ state
2146 * stored in *@irq_flags. The caller is responsible for re-enabling it using
2147 * local_irq_restore().
2148 *
2149 * Returns %true if @work was pending. %false if idle.
2150 */
work_grab_pending(struct work_struct * work,u32 cflags,unsigned long * irq_flags)2151 static bool work_grab_pending(struct work_struct *work, u32 cflags,
2152 unsigned long *irq_flags)
2153 {
2154 int ret;
2155
2156 while (true) {
2157 ret = try_to_grab_pending(work, cflags, irq_flags);
2158 if (ret >= 0)
2159 return ret;
2160 cpu_relax();
2161 }
2162 }
2163
2164 /**
2165 * insert_work - insert a work into a pool
2166 * @pwq: pwq @work belongs to
2167 * @work: work to insert
2168 * @head: insertion point
2169 * @extra_flags: extra WORK_STRUCT_* flags to set
2170 *
2171 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
2172 * work_struct flags.
2173 *
2174 * CONTEXT:
2175 * raw_spin_lock_irq(pool->lock).
2176 */
insert_work(struct pool_workqueue * pwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)2177 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2178 struct list_head *head, unsigned int extra_flags)
2179 {
2180 debug_work_activate(work);
2181
2182 /* record the work call stack in order to print it in KASAN reports */
2183 kasan_record_aux_stack(work);
2184
2185 /* we own @work, set data and link */
2186 set_work_pwq(work, pwq, extra_flags);
2187 list_add_tail(&work->entry, head);
2188 get_pwq(pwq);
2189 }
2190
2191 /*
2192 * Test whether @work is being queued from another work executing on the
2193 * same workqueue.
2194 */
is_chained_work(struct workqueue_struct * wq)2195 static bool is_chained_work(struct workqueue_struct *wq)
2196 {
2197 struct worker *worker;
2198
2199 worker = current_wq_worker();
2200 /*
2201 * Return %true iff I'm a worker executing a work item on @wq. If
2202 * I'm @worker, it's safe to dereference it without locking.
2203 */
2204 return worker && worker->current_pwq->wq == wq;
2205 }
2206
2207 /*
2208 * When queueing an unbound work item to a wq, prefer local CPU if allowed
2209 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
2210 * avoid perturbing sensitive tasks.
2211 */
wq_select_unbound_cpu(int cpu)2212 static int wq_select_unbound_cpu(int cpu)
2213 {
2214 int new_cpu;
2215
2216 if (likely(!wq_debug_force_rr_cpu)) {
2217 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2218 return cpu;
2219 } else {
2220 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
2221 }
2222
2223 new_cpu = __this_cpu_read(wq_rr_cpu_last);
2224 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2225 if (unlikely(new_cpu >= nr_cpu_ids)) {
2226 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
2227 if (unlikely(new_cpu >= nr_cpu_ids))
2228 return cpu;
2229 }
2230 __this_cpu_write(wq_rr_cpu_last, new_cpu);
2231
2232 return new_cpu;
2233 }
2234
__queue_work(int cpu,struct workqueue_struct * wq,struct work_struct * work)2235 static void __queue_work(int cpu, struct workqueue_struct *wq,
2236 struct work_struct *work)
2237 {
2238 struct pool_workqueue *pwq;
2239 struct worker_pool *last_pool, *pool;
2240 unsigned int work_flags;
2241 unsigned int req_cpu = cpu;
2242
2243 /*
2244 * While a work item is PENDING && off queue, a task trying to
2245 * steal the PENDING will busy-loop waiting for it to either get
2246 * queued or lose PENDING. Grabbing PENDING and queueing should
2247 * happen with IRQ disabled.
2248 */
2249 lockdep_assert_irqs_disabled();
2250
2251 /*
2252 * For a draining wq, only works from the same workqueue are
2253 * allowed. The __WQ_DESTROYING helps to spot the issue that
2254 * queues a new work item to a wq after destroy_workqueue(wq).
2255 */
2256 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2257 WARN_ONCE(!is_chained_work(wq), "workqueue: cannot queue %ps on wq %s\n",
2258 work->func, wq->name))) {
2259 return;
2260 }
2261 rcu_read_lock();
2262 retry:
2263 /* pwq which will be used unless @work is executing elsewhere */
2264 if (req_cpu == WORK_CPU_UNBOUND) {
2265 if (wq->flags & WQ_UNBOUND)
2266 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
2267 else
2268 cpu = raw_smp_processor_id();
2269 }
2270
2271 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
2272 pool = pwq->pool;
2273
2274 /*
2275 * If @work was previously on a different pool, it might still be
2276 * running there, in which case the work needs to be queued on that
2277 * pool to guarantee non-reentrancy.
2278 *
2279 * For ordered workqueue, work items must be queued on the newest pwq
2280 * for accurate order management. Guaranteed order also guarantees
2281 * non-reentrancy. See the comments above unplug_oldest_pwq().
2282 */
2283 last_pool = get_work_pool(work);
2284 if (last_pool && last_pool != pool && !(wq->flags & __WQ_ORDERED)) {
2285 struct worker *worker;
2286
2287 raw_spin_lock(&last_pool->lock);
2288
2289 worker = find_worker_executing_work(last_pool, work);
2290
2291 if (worker && worker->current_pwq->wq == wq) {
2292 pwq = worker->current_pwq;
2293 pool = pwq->pool;
2294 WARN_ON_ONCE(pool != last_pool);
2295 } else {
2296 /* meh... not running there, queue here */
2297 raw_spin_unlock(&last_pool->lock);
2298 raw_spin_lock(&pool->lock);
2299 }
2300 } else {
2301 raw_spin_lock(&pool->lock);
2302 }
2303
2304 /*
2305 * pwq is determined and locked. For unbound pools, we could have raced
2306 * with pwq release and it could already be dead. If its refcnt is zero,
2307 * repeat pwq selection. Note that unbound pwqs never die without
2308 * another pwq replacing it in cpu_pwq or while work items are executing
2309 * on it, so the retrying is guaranteed to make forward-progress.
2310 */
2311 if (unlikely(!pwq->refcnt)) {
2312 if (wq->flags & WQ_UNBOUND) {
2313 raw_spin_unlock(&pool->lock);
2314 cpu_relax();
2315 goto retry;
2316 }
2317 /* oops */
2318 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2319 wq->name, cpu);
2320 }
2321
2322 /* pwq determined, queue */
2323 trace_workqueue_queue_work(req_cpu, pwq, work);
2324
2325 if (WARN_ON(!list_empty(&work->entry)))
2326 goto out;
2327
2328 pwq->nr_in_flight[pwq->work_color]++;
2329 work_flags = work_color_to_flags(pwq->work_color);
2330
2331 /*
2332 * Limit the number of concurrently active work items to max_active.
2333 * @work must also queue behind existing inactive work items to maintain
2334 * ordering when max_active changes. See wq_adjust_max_active().
2335 */
2336 if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
2337 if (list_empty(&pool->worklist))
2338 pool->watchdog_ts = jiffies;
2339
2340 trace_workqueue_activate_work(work);
2341 insert_work(pwq, work, &pool->worklist, work_flags);
2342 kick_pool(pool);
2343 } else {
2344 work_flags |= WORK_STRUCT_INACTIVE;
2345 insert_work(pwq, work, &pwq->inactive_works, work_flags);
2346 }
2347
2348 out:
2349 raw_spin_unlock(&pool->lock);
2350 rcu_read_unlock();
2351 }
2352
clear_pending_if_disabled(struct work_struct * work)2353 static bool clear_pending_if_disabled(struct work_struct *work)
2354 {
2355 unsigned long data = *work_data_bits(work);
2356 struct work_offq_data offqd;
2357
2358 if (likely((data & WORK_STRUCT_PWQ) ||
2359 !(data & WORK_OFFQ_DISABLE_MASK)))
2360 return false;
2361
2362 work_offqd_unpack(&offqd, data);
2363 set_work_pool_and_clear_pending(work, offqd.pool_id,
2364 work_offqd_pack_flags(&offqd));
2365 return true;
2366 }
2367
2368 /**
2369 * queue_work_on - queue work on specific cpu
2370 * @cpu: CPU number to execute work on
2371 * @wq: workqueue to use
2372 * @work: work to queue
2373 *
2374 * We queue the work to a specific CPU, the caller must ensure it
2375 * can't go away. Callers that fail to ensure that the specified
2376 * CPU cannot go away will execute on a randomly chosen CPU.
2377 * But note well that callers specifying a CPU that never has been
2378 * online will get a splat.
2379 *
2380 * Return: %false if @work was already on a queue, %true otherwise.
2381 */
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)2382 bool queue_work_on(int cpu, struct workqueue_struct *wq,
2383 struct work_struct *work)
2384 {
2385 bool ret = false;
2386 unsigned long irq_flags;
2387
2388 local_irq_save(irq_flags);
2389
2390 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2391 !clear_pending_if_disabled(work)) {
2392 __queue_work(cpu, wq, work);
2393 ret = true;
2394 }
2395
2396 local_irq_restore(irq_flags);
2397 return ret;
2398 }
2399 EXPORT_SYMBOL(queue_work_on);
2400
2401 /**
2402 * select_numa_node_cpu - Select a CPU based on NUMA node
2403 * @node: NUMA node ID that we want to select a CPU from
2404 *
2405 * This function will attempt to find a "random" cpu available on a given
2406 * node. If there are no CPUs available on the given node it will return
2407 * WORK_CPU_UNBOUND indicating that we should just schedule to any
2408 * available CPU if we need to schedule this work.
2409 */
select_numa_node_cpu(int node)2410 static int select_numa_node_cpu(int node)
2411 {
2412 int cpu;
2413
2414 /* Delay binding to CPU if node is not valid or online */
2415 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2416 return WORK_CPU_UNBOUND;
2417
2418 /* Use local node/cpu if we are already there */
2419 cpu = raw_smp_processor_id();
2420 if (node == cpu_to_node(cpu))
2421 return cpu;
2422
2423 /* Use "random" otherwise know as "first" online CPU of node */
2424 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2425
2426 /* If CPU is valid return that, otherwise just defer */
2427 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2428 }
2429
2430 /**
2431 * queue_work_node - queue work on a "random" cpu for a given NUMA node
2432 * @node: NUMA node that we are targeting the work for
2433 * @wq: workqueue to use
2434 * @work: work to queue
2435 *
2436 * We queue the work to a "random" CPU within a given NUMA node. The basic
2437 * idea here is to provide a way to somehow associate work with a given
2438 * NUMA node.
2439 *
2440 * This function will only make a best effort attempt at getting this onto
2441 * the right NUMA node. If no node is requested or the requested node is
2442 * offline then we just fall back to standard queue_work behavior.
2443 *
2444 * Currently the "random" CPU ends up being the first available CPU in the
2445 * intersection of cpu_online_mask and the cpumask of the node, unless we
2446 * are running on the node. In that case we just use the current CPU.
2447 *
2448 * Return: %false if @work was already on a queue, %true otherwise.
2449 */
queue_work_node(int node,struct workqueue_struct * wq,struct work_struct * work)2450 bool queue_work_node(int node, struct workqueue_struct *wq,
2451 struct work_struct *work)
2452 {
2453 unsigned long irq_flags;
2454 bool ret = false;
2455
2456 /*
2457 * This current implementation is specific to unbound workqueues.
2458 * Specifically we only return the first available CPU for a given
2459 * node instead of cycling through individual CPUs within the node.
2460 *
2461 * If this is used with a per-cpu workqueue then the logic in
2462 * workqueue_select_cpu_near would need to be updated to allow for
2463 * some round robin type logic.
2464 */
2465 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2466
2467 local_irq_save(irq_flags);
2468
2469 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2470 !clear_pending_if_disabled(work)) {
2471 int cpu = select_numa_node_cpu(node);
2472
2473 __queue_work(cpu, wq, work);
2474 ret = true;
2475 }
2476
2477 local_irq_restore(irq_flags);
2478 return ret;
2479 }
2480 EXPORT_SYMBOL_GPL(queue_work_node);
2481
delayed_work_timer_fn(struct timer_list * t)2482 void delayed_work_timer_fn(struct timer_list *t)
2483 {
2484 struct delayed_work *dwork = timer_container_of(dwork, t, timer);
2485
2486 /* should have been called from irqsafe timer with irq already off */
2487 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2488 }
2489 EXPORT_SYMBOL(delayed_work_timer_fn);
2490
__queue_delayed_work(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2491 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2492 struct delayed_work *dwork, unsigned long delay)
2493 {
2494 struct timer_list *timer = &dwork->timer;
2495 struct work_struct *work = &dwork->work;
2496
2497 WARN_ON_ONCE(!wq);
2498 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
2499 WARN_ON_ONCE(timer_pending(timer));
2500 WARN_ON_ONCE(!list_empty(&work->entry));
2501
2502 /*
2503 * If @delay is 0, queue @dwork->work immediately. This is for
2504 * both optimization and correctness. The earliest @timer can
2505 * expire is on the closest next tick and delayed_work users depend
2506 * on that there's no such delay when @delay is 0.
2507 */
2508 if (!delay) {
2509 __queue_work(cpu, wq, &dwork->work);
2510 return;
2511 }
2512
2513 WARN_ON_ONCE(cpu != WORK_CPU_UNBOUND && !cpu_online(cpu));
2514 dwork->wq = wq;
2515 dwork->cpu = cpu;
2516 timer->expires = jiffies + delay;
2517
2518 if (housekeeping_enabled(HK_TYPE_TIMER)) {
2519 /* If the current cpu is a housekeeping cpu, use it. */
2520 cpu = smp_processor_id();
2521 if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
2522 cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
2523 add_timer_on(timer, cpu);
2524 } else {
2525 if (likely(cpu == WORK_CPU_UNBOUND))
2526 add_timer_global(timer);
2527 else
2528 add_timer_on(timer, cpu);
2529 }
2530 }
2531
2532 /**
2533 * queue_delayed_work_on - queue work on specific CPU after delay
2534 * @cpu: CPU number to execute work on
2535 * @wq: workqueue to use
2536 * @dwork: work to queue
2537 * @delay: number of jiffies to wait before queueing
2538 *
2539 * We queue the delayed_work to a specific CPU, for non-zero delays the
2540 * caller must ensure it is online and can't go away. Callers that fail
2541 * to ensure this, may get @dwork->timer queued to an offlined CPU and
2542 * this will prevent queueing of @dwork->work unless the offlined CPU
2543 * becomes online again.
2544 *
2545 * Return: %false if @work was already on a queue, %true otherwise. If
2546 * @delay is zero and @dwork is idle, it will be scheduled for immediate
2547 * execution.
2548 */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2549 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2550 struct delayed_work *dwork, unsigned long delay)
2551 {
2552 struct work_struct *work = &dwork->work;
2553 bool ret = false;
2554 unsigned long irq_flags;
2555
2556 /* read the comment in __queue_work() */
2557 local_irq_save(irq_flags);
2558
2559 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2560 !clear_pending_if_disabled(work)) {
2561 __queue_delayed_work(cpu, wq, dwork, delay);
2562 ret = true;
2563 }
2564
2565 local_irq_restore(irq_flags);
2566 return ret;
2567 }
2568 EXPORT_SYMBOL(queue_delayed_work_on);
2569
2570 /**
2571 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2572 * @cpu: CPU number to execute work on
2573 * @wq: workqueue to use
2574 * @dwork: work to queue
2575 * @delay: number of jiffies to wait before queueing
2576 *
2577 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2578 * modify @dwork's timer so that it expires after @delay. If @delay is
2579 * zero, @work is guaranteed to be scheduled immediately regardless of its
2580 * current state.
2581 *
2582 * Return: %false if @dwork was idle and queued, %true if @dwork was
2583 * pending and its timer was modified.
2584 *
2585 * This function is safe to call from any context including IRQ handler.
2586 * See try_to_grab_pending() for details.
2587 */
mod_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2588 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2589 struct delayed_work *dwork, unsigned long delay)
2590 {
2591 unsigned long irq_flags;
2592 bool ret;
2593
2594 ret = work_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, &irq_flags);
2595
2596 if (!clear_pending_if_disabled(&dwork->work))
2597 __queue_delayed_work(cpu, wq, dwork, delay);
2598
2599 local_irq_restore(irq_flags);
2600 return ret;
2601 }
2602 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2603
rcu_work_rcufn(struct rcu_head * rcu)2604 static void rcu_work_rcufn(struct rcu_head *rcu)
2605 {
2606 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2607
2608 /* read the comment in __queue_work() */
2609 local_irq_disable();
2610 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2611 local_irq_enable();
2612 }
2613
2614 /**
2615 * queue_rcu_work - queue work after a RCU grace period
2616 * @wq: workqueue to use
2617 * @rwork: work to queue
2618 *
2619 * Return: %false if @rwork was already pending, %true otherwise. Note
2620 * that a full RCU grace period is guaranteed only after a %true return.
2621 * While @rwork is guaranteed to be executed after a %false return, the
2622 * execution may happen before a full RCU grace period has passed.
2623 */
queue_rcu_work(struct workqueue_struct * wq,struct rcu_work * rwork)2624 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2625 {
2626 struct work_struct *work = &rwork->work;
2627
2628 /*
2629 * rcu_work can't be canceled or disabled. Warn if the user reached
2630 * inside @rwork and disabled the inner work.
2631 */
2632 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2633 !WARN_ON_ONCE(clear_pending_if_disabled(work))) {
2634 rwork->wq = wq;
2635 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2636 return true;
2637 }
2638
2639 return false;
2640 }
2641 EXPORT_SYMBOL(queue_rcu_work);
2642
alloc_worker(int node)2643 static struct worker *alloc_worker(int node)
2644 {
2645 struct worker *worker;
2646
2647 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2648 if (worker) {
2649 INIT_LIST_HEAD(&worker->entry);
2650 INIT_LIST_HEAD(&worker->scheduled);
2651 INIT_LIST_HEAD(&worker->node);
2652 /* on creation a worker is in !idle && prep state */
2653 worker->flags = WORKER_PREP;
2654 }
2655 return worker;
2656 }
2657
pool_allowed_cpus(struct worker_pool * pool)2658 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2659 {
2660 if (pool->cpu < 0 && pool->attrs->affn_strict)
2661 return pool->attrs->__pod_cpumask;
2662 else
2663 return pool->attrs->cpumask;
2664 }
2665
2666 /**
2667 * worker_attach_to_pool() - attach a worker to a pool
2668 * @worker: worker to be attached
2669 * @pool: the target pool
2670 *
2671 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
2672 * cpu-binding of @worker are kept coordinated with the pool across
2673 * cpu-[un]hotplugs.
2674 */
worker_attach_to_pool(struct worker * worker,struct worker_pool * pool)2675 static void worker_attach_to_pool(struct worker *worker,
2676 struct worker_pool *pool)
2677 {
2678 mutex_lock(&wq_pool_attach_mutex);
2679
2680 /*
2681 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
2682 * across this function. See the comments above the flag definition for
2683 * details. BH workers are, while per-CPU, always DISASSOCIATED.
2684 */
2685 if (pool->flags & POOL_DISASSOCIATED) {
2686 worker->flags |= WORKER_UNBOUND;
2687 } else {
2688 WARN_ON_ONCE(pool->flags & POOL_BH);
2689 kthread_set_per_cpu(worker->task, pool->cpu);
2690 }
2691
2692 if (worker->rescue_wq)
2693 set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2694
2695 list_add_tail(&worker->node, &pool->workers);
2696 worker->pool = pool;
2697
2698 mutex_unlock(&wq_pool_attach_mutex);
2699 }
2700
unbind_worker(struct worker * worker)2701 static void unbind_worker(struct worker *worker)
2702 {
2703 lockdep_assert_held(&wq_pool_attach_mutex);
2704
2705 kthread_set_per_cpu(worker->task, -1);
2706 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2707 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2708 else
2709 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2710 }
2711
2712
detach_worker(struct worker * worker)2713 static void detach_worker(struct worker *worker)
2714 {
2715 lockdep_assert_held(&wq_pool_attach_mutex);
2716
2717 unbind_worker(worker);
2718 list_del(&worker->node);
2719 }
2720
2721 /**
2722 * worker_detach_from_pool() - detach a worker from its pool
2723 * @worker: worker which is attached to its pool
2724 *
2725 * Undo the attaching which had been done in worker_attach_to_pool(). The
2726 * caller worker shouldn't access to the pool after detached except it has
2727 * other reference to the pool.
2728 */
worker_detach_from_pool(struct worker * worker)2729 static void worker_detach_from_pool(struct worker *worker)
2730 {
2731 struct worker_pool *pool = worker->pool;
2732
2733 /* there is one permanent BH worker per CPU which should never detach */
2734 WARN_ON_ONCE(pool->flags & POOL_BH);
2735
2736 mutex_lock(&wq_pool_attach_mutex);
2737 detach_worker(worker);
2738 worker->pool = NULL;
2739 mutex_unlock(&wq_pool_attach_mutex);
2740
2741 /* clear leftover flags without pool->lock after it is detached */
2742 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2743 }
2744
format_worker_id(char * buf,size_t size,struct worker * worker,struct worker_pool * pool)2745 static int format_worker_id(char *buf, size_t size, struct worker *worker,
2746 struct worker_pool *pool)
2747 {
2748 if (worker->rescue_wq)
2749 return scnprintf(buf, size, "kworker/R-%s",
2750 worker->rescue_wq->name);
2751
2752 if (pool) {
2753 if (pool->cpu >= 0)
2754 return scnprintf(buf, size, "kworker/%d:%d%s",
2755 pool->cpu, worker->id,
2756 pool->attrs->nice < 0 ? "H" : "");
2757 else
2758 return scnprintf(buf, size, "kworker/u%d:%d",
2759 pool->id, worker->id);
2760 } else {
2761 return scnprintf(buf, size, "kworker/dying");
2762 }
2763 }
2764
2765 /**
2766 * create_worker - create a new workqueue worker
2767 * @pool: pool the new worker will belong to
2768 *
2769 * Create and start a new worker which is attached to @pool.
2770 *
2771 * CONTEXT:
2772 * Might sleep. Does GFP_KERNEL allocations.
2773 *
2774 * Return:
2775 * Pointer to the newly created worker.
2776 */
create_worker(struct worker_pool * pool)2777 static struct worker *create_worker(struct worker_pool *pool)
2778 {
2779 struct worker *worker;
2780 int id;
2781
2782 /* ID is needed to determine kthread name */
2783 id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2784 if (id < 0) {
2785 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2786 ERR_PTR(id));
2787 return NULL;
2788 }
2789
2790 worker = alloc_worker(pool->node);
2791 if (!worker) {
2792 pr_err_once("workqueue: Failed to allocate a worker\n");
2793 goto fail;
2794 }
2795
2796 worker->id = id;
2797
2798 if (!(pool->flags & POOL_BH)) {
2799 char id_buf[WORKER_ID_LEN];
2800
2801 format_worker_id(id_buf, sizeof(id_buf), worker, pool);
2802 worker->task = kthread_create_on_node(worker_thread, worker,
2803 pool->node, "%s", id_buf);
2804 if (IS_ERR(worker->task)) {
2805 if (PTR_ERR(worker->task) == -EINTR) {
2806 pr_err("workqueue: Interrupted when creating a worker thread \"%s\"\n",
2807 id_buf);
2808 } else {
2809 pr_err_once("workqueue: Failed to create a worker thread: %pe",
2810 worker->task);
2811 }
2812 goto fail;
2813 }
2814
2815 set_user_nice(worker->task, pool->attrs->nice);
2816 kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2817 }
2818
2819 /* successful, attach the worker to the pool */
2820 worker_attach_to_pool(worker, pool);
2821
2822 /* start the newly created worker */
2823 raw_spin_lock_irq(&pool->lock);
2824
2825 worker->pool->nr_workers++;
2826 worker_enter_idle(worker);
2827
2828 /*
2829 * @worker is waiting on a completion in kthread() and will trigger hung
2830 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2831 * wake it up explicitly.
2832 */
2833 if (worker->task)
2834 wake_up_process(worker->task);
2835
2836 raw_spin_unlock_irq(&pool->lock);
2837
2838 return worker;
2839
2840 fail:
2841 ida_free(&pool->worker_ida, id);
2842 kfree(worker);
2843 return NULL;
2844 }
2845
detach_dying_workers(struct list_head * cull_list)2846 static void detach_dying_workers(struct list_head *cull_list)
2847 {
2848 struct worker *worker;
2849
2850 list_for_each_entry(worker, cull_list, entry)
2851 detach_worker(worker);
2852 }
2853
reap_dying_workers(struct list_head * cull_list)2854 static void reap_dying_workers(struct list_head *cull_list)
2855 {
2856 struct worker *worker, *tmp;
2857
2858 list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2859 list_del_init(&worker->entry);
2860 kthread_stop_put(worker->task);
2861 kfree(worker);
2862 }
2863 }
2864
2865 /**
2866 * set_worker_dying - Tag a worker for destruction
2867 * @worker: worker to be destroyed
2868 * @list: transfer worker away from its pool->idle_list and into list
2869 *
2870 * Tag @worker for destruction and adjust @pool stats accordingly. The worker
2871 * should be idle.
2872 *
2873 * CONTEXT:
2874 * raw_spin_lock_irq(pool->lock).
2875 */
set_worker_dying(struct worker * worker,struct list_head * list)2876 static void set_worker_dying(struct worker *worker, struct list_head *list)
2877 {
2878 struct worker_pool *pool = worker->pool;
2879
2880 lockdep_assert_held(&pool->lock);
2881 lockdep_assert_held(&wq_pool_attach_mutex);
2882
2883 /* sanity check frenzy */
2884 if (WARN_ON(worker->current_work) ||
2885 WARN_ON(!list_empty(&worker->scheduled)) ||
2886 WARN_ON(!(worker->flags & WORKER_IDLE)))
2887 return;
2888
2889 pool->nr_workers--;
2890 pool->nr_idle--;
2891
2892 worker->flags |= WORKER_DIE;
2893
2894 list_move(&worker->entry, list);
2895
2896 /* get an extra task struct reference for later kthread_stop_put() */
2897 get_task_struct(worker->task);
2898 }
2899
2900 /**
2901 * idle_worker_timeout - check if some idle workers can now be deleted.
2902 * @t: The pool's idle_timer that just expired
2903 *
2904 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2905 * worker_leave_idle(), as a worker flicking between idle and active while its
2906 * pool is at the too_many_workers() tipping point would cause too much timer
2907 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2908 * it expire and re-evaluate things from there.
2909 */
idle_worker_timeout(struct timer_list * t)2910 static void idle_worker_timeout(struct timer_list *t)
2911 {
2912 struct worker_pool *pool = timer_container_of(pool, t, idle_timer);
2913 bool do_cull = false;
2914
2915 if (work_pending(&pool->idle_cull_work))
2916 return;
2917
2918 raw_spin_lock_irq(&pool->lock);
2919
2920 if (too_many_workers(pool)) {
2921 struct worker *worker;
2922 unsigned long expires;
2923
2924 /* idle_list is kept in LIFO order, check the last one */
2925 worker = list_last_entry(&pool->idle_list, struct worker, entry);
2926 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2927 do_cull = !time_before(jiffies, expires);
2928
2929 if (!do_cull)
2930 mod_timer(&pool->idle_timer, expires);
2931 }
2932 raw_spin_unlock_irq(&pool->lock);
2933
2934 if (do_cull)
2935 queue_work(system_unbound_wq, &pool->idle_cull_work);
2936 }
2937
2938 /**
2939 * idle_cull_fn - cull workers that have been idle for too long.
2940 * @work: the pool's work for handling these idle workers
2941 *
2942 * This goes through a pool's idle workers and gets rid of those that have been
2943 * idle for at least IDLE_WORKER_TIMEOUT seconds.
2944 *
2945 * We don't want to disturb isolated CPUs because of a pcpu kworker being
2946 * culled, so this also resets worker affinity. This requires a sleepable
2947 * context, hence the split between timer callback and work item.
2948 */
idle_cull_fn(struct work_struct * work)2949 static void idle_cull_fn(struct work_struct *work)
2950 {
2951 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2952 LIST_HEAD(cull_list);
2953
2954 /*
2955 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2956 * cannot proceed beyong set_pf_worker() in its self-destruct path.
2957 * This is required as a previously-preempted worker could run after
2958 * set_worker_dying() has happened but before detach_dying_workers() did.
2959 */
2960 mutex_lock(&wq_pool_attach_mutex);
2961 raw_spin_lock_irq(&pool->lock);
2962
2963 while (too_many_workers(pool)) {
2964 struct worker *worker;
2965 unsigned long expires;
2966
2967 worker = list_last_entry(&pool->idle_list, struct worker, entry);
2968 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2969
2970 if (time_before(jiffies, expires)) {
2971 mod_timer(&pool->idle_timer, expires);
2972 break;
2973 }
2974
2975 set_worker_dying(worker, &cull_list);
2976 }
2977
2978 raw_spin_unlock_irq(&pool->lock);
2979 detach_dying_workers(&cull_list);
2980 mutex_unlock(&wq_pool_attach_mutex);
2981
2982 reap_dying_workers(&cull_list);
2983 }
2984
send_mayday(struct work_struct * work)2985 static void send_mayday(struct work_struct *work)
2986 {
2987 struct pool_workqueue *pwq = get_work_pwq(work);
2988 struct workqueue_struct *wq = pwq->wq;
2989
2990 lockdep_assert_held(&wq_mayday_lock);
2991
2992 if (!wq->rescuer)
2993 return;
2994
2995 /* mayday mayday mayday */
2996 if (list_empty(&pwq->mayday_node)) {
2997 /*
2998 * If @pwq is for an unbound wq, its base ref may be put at
2999 * any time due to an attribute change. Pin @pwq until the
3000 * rescuer is done with it.
3001 */
3002 get_pwq(pwq);
3003 list_add_tail(&pwq->mayday_node, &wq->maydays);
3004 wake_up_process(wq->rescuer->task);
3005 pwq->stats[PWQ_STAT_MAYDAY]++;
3006 }
3007 }
3008
pool_mayday_timeout(struct timer_list * t)3009 static void pool_mayday_timeout(struct timer_list *t)
3010 {
3011 struct worker_pool *pool = timer_container_of(pool, t, mayday_timer);
3012 struct work_struct *work;
3013
3014 raw_spin_lock_irq(&pool->lock);
3015 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
3016
3017 if (need_to_create_worker(pool)) {
3018 /*
3019 * We've been trying to create a new worker but
3020 * haven't been successful. We might be hitting an
3021 * allocation deadlock. Send distress signals to
3022 * rescuers.
3023 */
3024 list_for_each_entry(work, &pool->worklist, entry)
3025 send_mayday(work);
3026 }
3027
3028 raw_spin_unlock(&wq_mayday_lock);
3029 raw_spin_unlock_irq(&pool->lock);
3030
3031 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
3032 }
3033
3034 /**
3035 * maybe_create_worker - create a new worker if necessary
3036 * @pool: pool to create a new worker for
3037 *
3038 * Create a new worker for @pool if necessary. @pool is guaranteed to
3039 * have at least one idle worker on return from this function. If
3040 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
3041 * sent to all rescuers with works scheduled on @pool to resolve
3042 * possible allocation deadlock.
3043 *
3044 * On return, need_to_create_worker() is guaranteed to be %false and
3045 * may_start_working() %true.
3046 *
3047 * LOCKING:
3048 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3049 * multiple times. Does GFP_KERNEL allocations. Called only from
3050 * manager.
3051 */
maybe_create_worker(struct worker_pool * pool)3052 static void maybe_create_worker(struct worker_pool *pool)
3053 __releases(&pool->lock)
3054 __acquires(&pool->lock)
3055 {
3056 restart:
3057 raw_spin_unlock_irq(&pool->lock);
3058
3059 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
3060 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
3061
3062 while (true) {
3063 if (create_worker(pool) || !need_to_create_worker(pool))
3064 break;
3065
3066 schedule_timeout_interruptible(CREATE_COOLDOWN);
3067
3068 if (!need_to_create_worker(pool))
3069 break;
3070 }
3071
3072 timer_delete_sync(&pool->mayday_timer);
3073 raw_spin_lock_irq(&pool->lock);
3074 /*
3075 * This is necessary even after a new worker was just successfully
3076 * created as @pool->lock was dropped and the new worker might have
3077 * already become busy.
3078 */
3079 if (need_to_create_worker(pool))
3080 goto restart;
3081 }
3082
3083 /**
3084 * manage_workers - manage worker pool
3085 * @worker: self
3086 *
3087 * Assume the manager role and manage the worker pool @worker belongs
3088 * to. At any given time, there can be only zero or one manager per
3089 * pool. The exclusion is handled automatically by this function.
3090 *
3091 * The caller can safely start processing works on false return. On
3092 * true return, it's guaranteed that need_to_create_worker() is false
3093 * and may_start_working() is true.
3094 *
3095 * CONTEXT:
3096 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3097 * multiple times. Does GFP_KERNEL allocations.
3098 *
3099 * Return:
3100 * %false if the pool doesn't need management and the caller can safely
3101 * start processing works, %true if management function was performed and
3102 * the conditions that the caller verified before calling the function may
3103 * no longer be true.
3104 */
manage_workers(struct worker * worker)3105 static bool manage_workers(struct worker *worker)
3106 {
3107 struct worker_pool *pool = worker->pool;
3108
3109 if (pool->flags & POOL_MANAGER_ACTIVE)
3110 return false;
3111
3112 pool->flags |= POOL_MANAGER_ACTIVE;
3113 pool->manager = worker;
3114
3115 maybe_create_worker(pool);
3116
3117 pool->manager = NULL;
3118 pool->flags &= ~POOL_MANAGER_ACTIVE;
3119 rcuwait_wake_up(&manager_wait);
3120 return true;
3121 }
3122
3123 /**
3124 * process_one_work - process single work
3125 * @worker: self
3126 * @work: work to process
3127 *
3128 * Process @work. This function contains all the logics necessary to
3129 * process a single work including synchronization against and
3130 * interaction with other workers on the same cpu, queueing and
3131 * flushing. As long as context requirement is met, any worker can
3132 * call this function to process a work.
3133 *
3134 * CONTEXT:
3135 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
3136 */
process_one_work(struct worker * worker,struct work_struct * work)3137 static void process_one_work(struct worker *worker, struct work_struct *work)
3138 __releases(&pool->lock)
3139 __acquires(&pool->lock)
3140 {
3141 struct pool_workqueue *pwq = get_work_pwq(work);
3142 struct worker_pool *pool = worker->pool;
3143 unsigned long work_data;
3144 int lockdep_start_depth, rcu_start_depth;
3145 bool bh_draining = pool->flags & POOL_BH_DRAINING;
3146 #ifdef CONFIG_LOCKDEP
3147 /*
3148 * It is permissible to free the struct work_struct from
3149 * inside the function that is called from it, this we need to
3150 * take into account for lockdep too. To avoid bogus "held
3151 * lock freed" warnings as well as problems when looking into
3152 * work->lockdep_map, make a copy and use that here.
3153 */
3154 struct lockdep_map lockdep_map;
3155
3156 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
3157 #endif
3158 /* ensure we're on the correct CPU */
3159 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
3160 raw_smp_processor_id() != pool->cpu);
3161
3162 /* claim and dequeue */
3163 debug_work_deactivate(work);
3164 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
3165 worker->current_work = work;
3166 worker->current_func = work->func;
3167 worker->current_pwq = pwq;
3168 if (worker->task)
3169 worker->current_at = worker->task->se.sum_exec_runtime;
3170 work_data = *work_data_bits(work);
3171 worker->current_color = get_work_color(work_data);
3172
3173 /*
3174 * Record wq name for cmdline and debug reporting, may get
3175 * overridden through set_worker_desc().
3176 */
3177 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
3178
3179 list_del_init(&work->entry);
3180
3181 /*
3182 * CPU intensive works don't participate in concurrency management.
3183 * They're the scheduler's responsibility. This takes @worker out
3184 * of concurrency management and the next code block will chain
3185 * execution of the pending work items.
3186 */
3187 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
3188 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
3189
3190 /*
3191 * Kick @pool if necessary. It's always noop for per-cpu worker pools
3192 * since nr_running would always be >= 1 at this point. This is used to
3193 * chain execution of the pending work items for WORKER_NOT_RUNNING
3194 * workers such as the UNBOUND and CPU_INTENSIVE ones.
3195 */
3196 kick_pool(pool);
3197
3198 /*
3199 * Record the last pool and clear PENDING which should be the last
3200 * update to @work. Also, do this inside @pool->lock so that
3201 * PENDING and queued state changes happen together while IRQ is
3202 * disabled.
3203 */
3204 set_work_pool_and_clear_pending(work, pool->id, pool_offq_flags(pool));
3205
3206 pwq->stats[PWQ_STAT_STARTED]++;
3207 raw_spin_unlock_irq(&pool->lock);
3208
3209 rcu_start_depth = rcu_preempt_depth();
3210 lockdep_start_depth = lockdep_depth(current);
3211 /* see drain_dead_softirq_workfn() */
3212 if (!bh_draining)
3213 lock_map_acquire(pwq->wq->lockdep_map);
3214 lock_map_acquire(&lockdep_map);
3215 /*
3216 * Strictly speaking we should mark the invariant state without holding
3217 * any locks, that is, before these two lock_map_acquire()'s.
3218 *
3219 * However, that would result in:
3220 *
3221 * A(W1)
3222 * WFC(C)
3223 * A(W1)
3224 * C(C)
3225 *
3226 * Which would create W1->C->W1 dependencies, even though there is no
3227 * actual deadlock possible. There are two solutions, using a
3228 * read-recursive acquire on the work(queue) 'locks', but this will then
3229 * hit the lockdep limitation on recursive locks, or simply discard
3230 * these locks.
3231 *
3232 * AFAICT there is no possible deadlock scenario between the
3233 * flush_work() and complete() primitives (except for single-threaded
3234 * workqueues), so hiding them isn't a problem.
3235 */
3236 lockdep_invariant_state(true);
3237 trace_workqueue_execute_start(work);
3238 worker->current_func(work);
3239 /*
3240 * While we must be careful to not use "work" after this, the trace
3241 * point will only record its address.
3242 */
3243 trace_workqueue_execute_end(work, worker->current_func);
3244
3245 lock_map_release(&lockdep_map);
3246 if (!bh_draining)
3247 lock_map_release(pwq->wq->lockdep_map);
3248
3249 if (unlikely((worker->task && in_atomic()) ||
3250 lockdep_depth(current) != lockdep_start_depth ||
3251 rcu_preempt_depth() != rcu_start_depth)) {
3252 pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
3253 " preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
3254 current->comm, task_pid_nr(current), preempt_count(),
3255 lockdep_start_depth, lockdep_depth(current),
3256 rcu_start_depth, rcu_preempt_depth(),
3257 worker->current_func);
3258 debug_show_held_locks(current);
3259 dump_stack();
3260 }
3261
3262 /*
3263 * The following prevents a kworker from hogging CPU on !PREEMPTION
3264 * kernels, where a requeueing work item waiting for something to
3265 * happen could deadlock with stop_machine as such work item could
3266 * indefinitely requeue itself while all other CPUs are trapped in
3267 * stop_machine. At the same time, report a quiescent RCU state so
3268 * the same condition doesn't freeze RCU.
3269 */
3270 if (worker->task)
3271 cond_resched();
3272
3273 raw_spin_lock_irq(&pool->lock);
3274
3275 pwq->stats[PWQ_STAT_COMPLETED]++;
3276
3277 /*
3278 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3279 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3280 * wq_cpu_intensive_thresh_us. Clear it.
3281 */
3282 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
3283
3284 /* tag the worker for identification in schedule() */
3285 worker->last_func = worker->current_func;
3286
3287 /* we're done with it, release */
3288 hash_del(&worker->hentry);
3289 worker->current_work = NULL;
3290 worker->current_func = NULL;
3291 worker->current_pwq = NULL;
3292 worker->current_color = INT_MAX;
3293
3294 /* must be the last step, see the function comment */
3295 pwq_dec_nr_in_flight(pwq, work_data);
3296 }
3297
3298 /**
3299 * process_scheduled_works - process scheduled works
3300 * @worker: self
3301 *
3302 * Process all scheduled works. Please note that the scheduled list
3303 * may change while processing a work, so this function repeatedly
3304 * fetches a work from the top and executes it.
3305 *
3306 * CONTEXT:
3307 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3308 * multiple times.
3309 */
process_scheduled_works(struct worker * worker)3310 static void process_scheduled_works(struct worker *worker)
3311 {
3312 struct work_struct *work;
3313 bool first = true;
3314
3315 while ((work = list_first_entry_or_null(&worker->scheduled,
3316 struct work_struct, entry))) {
3317 if (first) {
3318 worker->pool->watchdog_ts = jiffies;
3319 first = false;
3320 }
3321 process_one_work(worker, work);
3322 }
3323 }
3324
set_pf_worker(bool val)3325 static void set_pf_worker(bool val)
3326 {
3327 mutex_lock(&wq_pool_attach_mutex);
3328 if (val)
3329 current->flags |= PF_WQ_WORKER;
3330 else
3331 current->flags &= ~PF_WQ_WORKER;
3332 mutex_unlock(&wq_pool_attach_mutex);
3333 }
3334
3335 /**
3336 * worker_thread - the worker thread function
3337 * @__worker: self
3338 *
3339 * The worker thread function. All workers belong to a worker_pool -
3340 * either a per-cpu one or dynamic unbound one. These workers process all
3341 * work items regardless of their specific target workqueue. The only
3342 * exception is work items which belong to workqueues with a rescuer which
3343 * will be explained in rescuer_thread().
3344 *
3345 * Return: 0
3346 */
worker_thread(void * __worker)3347 static int worker_thread(void *__worker)
3348 {
3349 struct worker *worker = __worker;
3350 struct worker_pool *pool = worker->pool;
3351
3352 /* tell the scheduler that this is a workqueue worker */
3353 set_pf_worker(true);
3354 woke_up:
3355 raw_spin_lock_irq(&pool->lock);
3356
3357 /* am I supposed to die? */
3358 if (unlikely(worker->flags & WORKER_DIE)) {
3359 raw_spin_unlock_irq(&pool->lock);
3360 set_pf_worker(false);
3361 /*
3362 * The worker is dead and PF_WQ_WORKER is cleared, worker->pool
3363 * shouldn't be accessed, reset it to NULL in case otherwise.
3364 */
3365 worker->pool = NULL;
3366 ida_free(&pool->worker_ida, worker->id);
3367 return 0;
3368 }
3369
3370 worker_leave_idle(worker);
3371 recheck:
3372 /* no more worker necessary? */
3373 if (!need_more_worker(pool))
3374 goto sleep;
3375
3376 /* do we need to manage? */
3377 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
3378 goto recheck;
3379
3380 /*
3381 * ->scheduled list can only be filled while a worker is
3382 * preparing to process a work or actually processing it.
3383 * Make sure nobody diddled with it while I was sleeping.
3384 */
3385 WARN_ON_ONCE(!list_empty(&worker->scheduled));
3386
3387 /*
3388 * Finish PREP stage. We're guaranteed to have at least one idle
3389 * worker or that someone else has already assumed the manager
3390 * role. This is where @worker starts participating in concurrency
3391 * management if applicable and concurrency management is restored
3392 * after being rebound. See rebind_workers() for details.
3393 */
3394 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3395
3396 do {
3397 struct work_struct *work =
3398 list_first_entry(&pool->worklist,
3399 struct work_struct, entry);
3400
3401 if (assign_work(work, worker, NULL))
3402 process_scheduled_works(worker);
3403 } while (keep_working(pool));
3404
3405 worker_set_flags(worker, WORKER_PREP);
3406 sleep:
3407 /*
3408 * pool->lock is held and there's no work to process and no need to
3409 * manage, sleep. Workers are woken up only while holding
3410 * pool->lock or from local cpu, so setting the current state
3411 * before releasing pool->lock is enough to prevent losing any
3412 * event.
3413 */
3414 worker_enter_idle(worker);
3415 __set_current_state(TASK_IDLE);
3416 raw_spin_unlock_irq(&pool->lock);
3417 schedule();
3418 goto woke_up;
3419 }
3420
3421 /**
3422 * rescuer_thread - the rescuer thread function
3423 * @__rescuer: self
3424 *
3425 * Workqueue rescuer thread function. There's one rescuer for each
3426 * workqueue which has WQ_MEM_RECLAIM set.
3427 *
3428 * Regular work processing on a pool may block trying to create a new
3429 * worker which uses GFP_KERNEL allocation which has slight chance of
3430 * developing into deadlock if some works currently on the same queue
3431 * need to be processed to satisfy the GFP_KERNEL allocation. This is
3432 * the problem rescuer solves.
3433 *
3434 * When such condition is possible, the pool summons rescuers of all
3435 * workqueues which have works queued on the pool and let them process
3436 * those works so that forward progress can be guaranteed.
3437 *
3438 * This should happen rarely.
3439 *
3440 * Return: 0
3441 */
rescuer_thread(void * __rescuer)3442 static int rescuer_thread(void *__rescuer)
3443 {
3444 struct worker *rescuer = __rescuer;
3445 struct workqueue_struct *wq = rescuer->rescue_wq;
3446 bool should_stop;
3447
3448 set_user_nice(current, RESCUER_NICE_LEVEL);
3449
3450 /*
3451 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
3452 * doesn't participate in concurrency management.
3453 */
3454 set_pf_worker(true);
3455 repeat:
3456 set_current_state(TASK_IDLE);
3457
3458 /*
3459 * By the time the rescuer is requested to stop, the workqueue
3460 * shouldn't have any work pending, but @wq->maydays may still have
3461 * pwq(s) queued. This can happen by non-rescuer workers consuming
3462 * all the work items before the rescuer got to them. Go through
3463 * @wq->maydays processing before acting on should_stop so that the
3464 * list is always empty on exit.
3465 */
3466 should_stop = kthread_should_stop();
3467
3468 /* see whether any pwq is asking for help */
3469 raw_spin_lock_irq(&wq_mayday_lock);
3470
3471 while (!list_empty(&wq->maydays)) {
3472 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3473 struct pool_workqueue, mayday_node);
3474 struct worker_pool *pool = pwq->pool;
3475 struct work_struct *work, *n;
3476
3477 __set_current_state(TASK_RUNNING);
3478 list_del_init(&pwq->mayday_node);
3479
3480 raw_spin_unlock_irq(&wq_mayday_lock);
3481
3482 worker_attach_to_pool(rescuer, pool);
3483
3484 raw_spin_lock_irq(&pool->lock);
3485
3486 /*
3487 * Slurp in all works issued via this workqueue and
3488 * process'em.
3489 */
3490 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
3491 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
3492 if (get_work_pwq(work) == pwq &&
3493 assign_work(work, rescuer, &n))
3494 pwq->stats[PWQ_STAT_RESCUED]++;
3495 }
3496
3497 if (!list_empty(&rescuer->scheduled)) {
3498 process_scheduled_works(rescuer);
3499
3500 /*
3501 * The above execution of rescued work items could
3502 * have created more to rescue through
3503 * pwq_activate_first_inactive() or chained
3504 * queueing. Let's put @pwq back on mayday list so
3505 * that such back-to-back work items, which may be
3506 * being used to relieve memory pressure, don't
3507 * incur MAYDAY_INTERVAL delay inbetween.
3508 */
3509 if (pwq->nr_active && need_to_create_worker(pool)) {
3510 raw_spin_lock(&wq_mayday_lock);
3511 /*
3512 * Queue iff we aren't racing destruction
3513 * and somebody else hasn't queued it already.
3514 */
3515 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
3516 get_pwq(pwq);
3517 list_add_tail(&pwq->mayday_node, &wq->maydays);
3518 }
3519 raw_spin_unlock(&wq_mayday_lock);
3520 }
3521 }
3522
3523 /*
3524 * Leave this pool. Notify regular workers; otherwise, we end up
3525 * with 0 concurrency and stalling the execution.
3526 */
3527 kick_pool(pool);
3528
3529 raw_spin_unlock_irq(&pool->lock);
3530
3531 worker_detach_from_pool(rescuer);
3532
3533 /*
3534 * Put the reference grabbed by send_mayday(). @pool might
3535 * go away any time after it.
3536 */
3537 put_pwq_unlocked(pwq);
3538
3539 raw_spin_lock_irq(&wq_mayday_lock);
3540 }
3541
3542 raw_spin_unlock_irq(&wq_mayday_lock);
3543
3544 if (should_stop) {
3545 __set_current_state(TASK_RUNNING);
3546 set_pf_worker(false);
3547 return 0;
3548 }
3549
3550 /* rescuers should never participate in concurrency management */
3551 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
3552 schedule();
3553 goto repeat;
3554 }
3555
bh_worker(struct worker * worker)3556 static void bh_worker(struct worker *worker)
3557 {
3558 struct worker_pool *pool = worker->pool;
3559 int nr_restarts = BH_WORKER_RESTARTS;
3560 unsigned long end = jiffies + BH_WORKER_JIFFIES;
3561
3562 raw_spin_lock_irq(&pool->lock);
3563 worker_leave_idle(worker);
3564
3565 /*
3566 * This function follows the structure of worker_thread(). See there for
3567 * explanations on each step.
3568 */
3569 if (!need_more_worker(pool))
3570 goto done;
3571
3572 WARN_ON_ONCE(!list_empty(&worker->scheduled));
3573 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3574
3575 do {
3576 struct work_struct *work =
3577 list_first_entry(&pool->worklist,
3578 struct work_struct, entry);
3579
3580 if (assign_work(work, worker, NULL))
3581 process_scheduled_works(worker);
3582 } while (keep_working(pool) &&
3583 --nr_restarts && time_before(jiffies, end));
3584
3585 worker_set_flags(worker, WORKER_PREP);
3586 done:
3587 worker_enter_idle(worker);
3588 kick_pool(pool);
3589 raw_spin_unlock_irq(&pool->lock);
3590 }
3591
3592 /*
3593 * TODO: Convert all tasklet users to workqueue and use softirq directly.
3594 *
3595 * This is currently called from tasklet[_hi]action() and thus is also called
3596 * whenever there are tasklets to run. Let's do an early exit if there's nothing
3597 * queued. Once conversion from tasklet is complete, the need_more_worker() test
3598 * can be dropped.
3599 *
3600 * After full conversion, we'll add worker->softirq_action, directly use the
3601 * softirq action and obtain the worker pointer from the softirq_action pointer.
3602 */
workqueue_softirq_action(bool highpri)3603 void workqueue_softirq_action(bool highpri)
3604 {
3605 struct worker_pool *pool =
3606 &per_cpu(bh_worker_pools, smp_processor_id())[highpri];
3607 if (need_more_worker(pool))
3608 bh_worker(list_first_entry(&pool->workers, struct worker, node));
3609 }
3610
3611 struct wq_drain_dead_softirq_work {
3612 struct work_struct work;
3613 struct worker_pool *pool;
3614 struct completion done;
3615 };
3616
drain_dead_softirq_workfn(struct work_struct * work)3617 static void drain_dead_softirq_workfn(struct work_struct *work)
3618 {
3619 struct wq_drain_dead_softirq_work *dead_work =
3620 container_of(work, struct wq_drain_dead_softirq_work, work);
3621 struct worker_pool *pool = dead_work->pool;
3622 bool repeat;
3623
3624 /*
3625 * @pool's CPU is dead and we want to execute its still pending work
3626 * items from this BH work item which is running on a different CPU. As
3627 * its CPU is dead, @pool can't be kicked and, as work execution path
3628 * will be nested, a lockdep annotation needs to be suppressed. Mark
3629 * @pool with %POOL_BH_DRAINING for the special treatments.
3630 */
3631 raw_spin_lock_irq(&pool->lock);
3632 pool->flags |= POOL_BH_DRAINING;
3633 raw_spin_unlock_irq(&pool->lock);
3634
3635 bh_worker(list_first_entry(&pool->workers, struct worker, node));
3636
3637 raw_spin_lock_irq(&pool->lock);
3638 pool->flags &= ~POOL_BH_DRAINING;
3639 repeat = need_more_worker(pool);
3640 raw_spin_unlock_irq(&pool->lock);
3641
3642 /*
3643 * bh_worker() might hit consecutive execution limit and bail. If there
3644 * still are pending work items, reschedule self and return so that we
3645 * don't hog this CPU's BH.
3646 */
3647 if (repeat) {
3648 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3649 queue_work(system_bh_highpri_wq, work);
3650 else
3651 queue_work(system_bh_wq, work);
3652 } else {
3653 complete(&dead_work->done);
3654 }
3655 }
3656
3657 /*
3658 * @cpu is dead. Drain the remaining BH work items on the current CPU. It's
3659 * possible to allocate dead_work per CPU and avoid flushing. However, then we
3660 * have to worry about draining overlapping with CPU coming back online or
3661 * nesting (one CPU's dead_work queued on another CPU which is also dead and so
3662 * on). Let's keep it simple and drain them synchronously. These are BH work
3663 * items which shouldn't be requeued on the same pool. Shouldn't take long.
3664 */
workqueue_softirq_dead(unsigned int cpu)3665 void workqueue_softirq_dead(unsigned int cpu)
3666 {
3667 int i;
3668
3669 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
3670 struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i];
3671 struct wq_drain_dead_softirq_work dead_work;
3672
3673 if (!need_more_worker(pool))
3674 continue;
3675
3676 INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn);
3677 dead_work.pool = pool;
3678 init_completion(&dead_work.done);
3679
3680 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3681 queue_work(system_bh_highpri_wq, &dead_work.work);
3682 else
3683 queue_work(system_bh_wq, &dead_work.work);
3684
3685 wait_for_completion(&dead_work.done);
3686 destroy_work_on_stack(&dead_work.work);
3687 }
3688 }
3689
3690 /**
3691 * check_flush_dependency - check for flush dependency sanity
3692 * @target_wq: workqueue being flushed
3693 * @target_work: work item being flushed (NULL for workqueue flushes)
3694 * @from_cancel: are we called from the work cancel path
3695 *
3696 * %current is trying to flush the whole @target_wq or @target_work on it.
3697 * If this is not the cancel path (which implies work being flushed is either
3698 * already running, or will not be at all), check if @target_wq doesn't have
3699 * %WQ_MEM_RECLAIM and verify that %current is not reclaiming memory or running
3700 * on a workqueue which doesn't have %WQ_MEM_RECLAIM as that can break forward-
3701 * progress guarantee leading to a deadlock.
3702 */
check_flush_dependency(struct workqueue_struct * target_wq,struct work_struct * target_work,bool from_cancel)3703 static void check_flush_dependency(struct workqueue_struct *target_wq,
3704 struct work_struct *target_work,
3705 bool from_cancel)
3706 {
3707 work_func_t target_func;
3708 struct worker *worker;
3709
3710 if (from_cancel || target_wq->flags & WQ_MEM_RECLAIM)
3711 return;
3712
3713 worker = current_wq_worker();
3714 target_func = target_work ? target_work->func : NULL;
3715
3716 WARN_ONCE(current->flags & PF_MEMALLOC,
3717 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
3718 current->pid, current->comm, target_wq->name, target_func);
3719 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3720 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
3721 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
3722 worker->current_pwq->wq->name, worker->current_func,
3723 target_wq->name, target_func);
3724 }
3725
3726 struct wq_barrier {
3727 struct work_struct work;
3728 struct completion done;
3729 struct task_struct *task; /* purely informational */
3730 };
3731
wq_barrier_func(struct work_struct * work)3732 static void wq_barrier_func(struct work_struct *work)
3733 {
3734 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3735 complete(&barr->done);
3736 }
3737
3738 /**
3739 * insert_wq_barrier - insert a barrier work
3740 * @pwq: pwq to insert barrier into
3741 * @barr: wq_barrier to insert
3742 * @target: target work to attach @barr to
3743 * @worker: worker currently executing @target, NULL if @target is not executing
3744 *
3745 * @barr is linked to @target such that @barr is completed only after
3746 * @target finishes execution. Please note that the ordering
3747 * guarantee is observed only with respect to @target and on the local
3748 * cpu.
3749 *
3750 * Currently, a queued barrier can't be canceled. This is because
3751 * try_to_grab_pending() can't determine whether the work to be
3752 * grabbed is at the head of the queue and thus can't clear LINKED
3753 * flag of the previous work while there must be a valid next work
3754 * after a work with LINKED flag set.
3755 *
3756 * Note that when @worker is non-NULL, @target may be modified
3757 * underneath us, so we can't reliably determine pwq from @target.
3758 *
3759 * CONTEXT:
3760 * raw_spin_lock_irq(pool->lock).
3761 */
insert_wq_barrier(struct pool_workqueue * pwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)3762 static void insert_wq_barrier(struct pool_workqueue *pwq,
3763 struct wq_barrier *barr,
3764 struct work_struct *target, struct worker *worker)
3765 {
3766 static __maybe_unused struct lock_class_key bh_key, thr_key;
3767 unsigned int work_flags = 0;
3768 unsigned int work_color;
3769 struct list_head *head;
3770
3771 /*
3772 * debugobject calls are safe here even with pool->lock locked
3773 * as we know for sure that this will not trigger any of the
3774 * checks and call back into the fixup functions where we
3775 * might deadlock.
3776 *
3777 * BH and threaded workqueues need separate lockdep keys to avoid
3778 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
3779 * usage".
3780 */
3781 INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func,
3782 (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key);
3783 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3784
3785 init_completion_map(&barr->done, &target->lockdep_map);
3786
3787 barr->task = current;
3788
3789 /* The barrier work item does not participate in nr_active. */
3790 work_flags |= WORK_STRUCT_INACTIVE;
3791
3792 /*
3793 * If @target is currently being executed, schedule the
3794 * barrier to the worker; otherwise, put it after @target.
3795 */
3796 if (worker) {
3797 head = worker->scheduled.next;
3798 work_color = worker->current_color;
3799 } else {
3800 unsigned long *bits = work_data_bits(target);
3801
3802 head = target->entry.next;
3803 /* there can already be other linked works, inherit and set */
3804 work_flags |= *bits & WORK_STRUCT_LINKED;
3805 work_color = get_work_color(*bits);
3806 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
3807 }
3808
3809 pwq->nr_in_flight[work_color]++;
3810 work_flags |= work_color_to_flags(work_color);
3811
3812 insert_work(pwq, &barr->work, head, work_flags);
3813 }
3814
3815 /**
3816 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3817 * @wq: workqueue being flushed
3818 * @flush_color: new flush color, < 0 for no-op
3819 * @work_color: new work color, < 0 for no-op
3820 *
3821 * Prepare pwqs for workqueue flushing.
3822 *
3823 * If @flush_color is non-negative, flush_color on all pwqs should be
3824 * -1. If no pwq has in-flight commands at the specified color, all
3825 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
3826 * has in flight commands, its pwq->flush_color is set to
3827 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3828 * wakeup logic is armed and %true is returned.
3829 *
3830 * The caller should have initialized @wq->first_flusher prior to
3831 * calling this function with non-negative @flush_color. If
3832 * @flush_color is negative, no flush color update is done and %false
3833 * is returned.
3834 *
3835 * If @work_color is non-negative, all pwqs should have the same
3836 * work_color which is previous to @work_color and all will be
3837 * advanced to @work_color.
3838 *
3839 * CONTEXT:
3840 * mutex_lock(wq->mutex).
3841 *
3842 * Return:
3843 * %true if @flush_color >= 0 and there's something to flush. %false
3844 * otherwise.
3845 */
flush_workqueue_prep_pwqs(struct workqueue_struct * wq,int flush_color,int work_color)3846 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3847 int flush_color, int work_color)
3848 {
3849 bool wait = false;
3850 struct pool_workqueue *pwq;
3851 struct worker_pool *current_pool = NULL;
3852
3853 if (flush_color >= 0) {
3854 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3855 atomic_set(&wq->nr_pwqs_to_flush, 1);
3856 }
3857
3858 /*
3859 * For unbound workqueue, pwqs will map to only a few pools.
3860 * Most of the time, pwqs within the same pool will be linked
3861 * sequentially to wq->pwqs by cpu index. So in the majority
3862 * of pwq iters, the pool is the same, only doing lock/unlock
3863 * if the pool has changed. This can largely reduce expensive
3864 * lock operations.
3865 */
3866 for_each_pwq(pwq, wq) {
3867 if (current_pool != pwq->pool) {
3868 if (likely(current_pool))
3869 raw_spin_unlock_irq(¤t_pool->lock);
3870 current_pool = pwq->pool;
3871 raw_spin_lock_irq(¤t_pool->lock);
3872 }
3873
3874 if (flush_color >= 0) {
3875 WARN_ON_ONCE(pwq->flush_color != -1);
3876
3877 if (pwq->nr_in_flight[flush_color]) {
3878 pwq->flush_color = flush_color;
3879 atomic_inc(&wq->nr_pwqs_to_flush);
3880 wait = true;
3881 }
3882 }
3883
3884 if (work_color >= 0) {
3885 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3886 pwq->work_color = work_color;
3887 }
3888
3889 }
3890
3891 if (current_pool)
3892 raw_spin_unlock_irq(¤t_pool->lock);
3893
3894 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3895 complete(&wq->first_flusher->done);
3896
3897 return wait;
3898 }
3899
touch_wq_lockdep_map(struct workqueue_struct * wq)3900 static void touch_wq_lockdep_map(struct workqueue_struct *wq)
3901 {
3902 #ifdef CONFIG_LOCKDEP
3903 if (unlikely(!wq->lockdep_map))
3904 return;
3905
3906 if (wq->flags & WQ_BH)
3907 local_bh_disable();
3908
3909 lock_map_acquire(wq->lockdep_map);
3910 lock_map_release(wq->lockdep_map);
3911
3912 if (wq->flags & WQ_BH)
3913 local_bh_enable();
3914 #endif
3915 }
3916
touch_work_lockdep_map(struct work_struct * work,struct workqueue_struct * wq)3917 static void touch_work_lockdep_map(struct work_struct *work,
3918 struct workqueue_struct *wq)
3919 {
3920 #ifdef CONFIG_LOCKDEP
3921 if (wq->flags & WQ_BH)
3922 local_bh_disable();
3923
3924 lock_map_acquire(&work->lockdep_map);
3925 lock_map_release(&work->lockdep_map);
3926
3927 if (wq->flags & WQ_BH)
3928 local_bh_enable();
3929 #endif
3930 }
3931
3932 /**
3933 * __flush_workqueue - ensure that any scheduled work has run to completion.
3934 * @wq: workqueue to flush
3935 *
3936 * This function sleeps until all work items which were queued on entry
3937 * have finished execution, but it is not livelocked by new incoming ones.
3938 */
__flush_workqueue(struct workqueue_struct * wq)3939 void __flush_workqueue(struct workqueue_struct *wq)
3940 {
3941 struct wq_flusher this_flusher = {
3942 .list = LIST_HEAD_INIT(this_flusher.list),
3943 .flush_color = -1,
3944 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, (*wq->lockdep_map)),
3945 };
3946 int next_color;
3947
3948 if (WARN_ON(!wq_online))
3949 return;
3950
3951 touch_wq_lockdep_map(wq);
3952
3953 mutex_lock(&wq->mutex);
3954
3955 /*
3956 * Start-to-wait phase
3957 */
3958 next_color = work_next_color(wq->work_color);
3959
3960 if (next_color != wq->flush_color) {
3961 /*
3962 * Color space is not full. The current work_color
3963 * becomes our flush_color and work_color is advanced
3964 * by one.
3965 */
3966 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3967 this_flusher.flush_color = wq->work_color;
3968 wq->work_color = next_color;
3969
3970 if (!wq->first_flusher) {
3971 /* no flush in progress, become the first flusher */
3972 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3973
3974 wq->first_flusher = &this_flusher;
3975
3976 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3977 wq->work_color)) {
3978 /* nothing to flush, done */
3979 wq->flush_color = next_color;
3980 wq->first_flusher = NULL;
3981 goto out_unlock;
3982 }
3983 } else {
3984 /* wait in queue */
3985 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3986 list_add_tail(&this_flusher.list, &wq->flusher_queue);
3987 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3988 }
3989 } else {
3990 /*
3991 * Oops, color space is full, wait on overflow queue.
3992 * The next flush completion will assign us
3993 * flush_color and transfer to flusher_queue.
3994 */
3995 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3996 }
3997
3998 check_flush_dependency(wq, NULL, false);
3999
4000 mutex_unlock(&wq->mutex);
4001
4002 wait_for_completion(&this_flusher.done);
4003
4004 /*
4005 * Wake-up-and-cascade phase
4006 *
4007 * First flushers are responsible for cascading flushes and
4008 * handling overflow. Non-first flushers can simply return.
4009 */
4010 if (READ_ONCE(wq->first_flusher) != &this_flusher)
4011 return;
4012
4013 mutex_lock(&wq->mutex);
4014
4015 /* we might have raced, check again with mutex held */
4016 if (wq->first_flusher != &this_flusher)
4017 goto out_unlock;
4018
4019 WRITE_ONCE(wq->first_flusher, NULL);
4020
4021 WARN_ON_ONCE(!list_empty(&this_flusher.list));
4022 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
4023
4024 while (true) {
4025 struct wq_flusher *next, *tmp;
4026
4027 /* complete all the flushers sharing the current flush color */
4028 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
4029 if (next->flush_color != wq->flush_color)
4030 break;
4031 list_del_init(&next->list);
4032 complete(&next->done);
4033 }
4034
4035 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
4036 wq->flush_color != work_next_color(wq->work_color));
4037
4038 /* this flush_color is finished, advance by one */
4039 wq->flush_color = work_next_color(wq->flush_color);
4040
4041 /* one color has been freed, handle overflow queue */
4042 if (!list_empty(&wq->flusher_overflow)) {
4043 /*
4044 * Assign the same color to all overflowed
4045 * flushers, advance work_color and append to
4046 * flusher_queue. This is the start-to-wait
4047 * phase for these overflowed flushers.
4048 */
4049 list_for_each_entry(tmp, &wq->flusher_overflow, list)
4050 tmp->flush_color = wq->work_color;
4051
4052 wq->work_color = work_next_color(wq->work_color);
4053
4054 list_splice_tail_init(&wq->flusher_overflow,
4055 &wq->flusher_queue);
4056 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
4057 }
4058
4059 if (list_empty(&wq->flusher_queue)) {
4060 WARN_ON_ONCE(wq->flush_color != wq->work_color);
4061 break;
4062 }
4063
4064 /*
4065 * Need to flush more colors. Make the next flusher
4066 * the new first flusher and arm pwqs.
4067 */
4068 WARN_ON_ONCE(wq->flush_color == wq->work_color);
4069 WARN_ON_ONCE(wq->flush_color != next->flush_color);
4070
4071 list_del_init(&next->list);
4072 wq->first_flusher = next;
4073
4074 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
4075 break;
4076
4077 /*
4078 * Meh... this color is already done, clear first
4079 * flusher and repeat cascading.
4080 */
4081 wq->first_flusher = NULL;
4082 }
4083
4084 out_unlock:
4085 mutex_unlock(&wq->mutex);
4086 }
4087 EXPORT_SYMBOL(__flush_workqueue);
4088
4089 /**
4090 * drain_workqueue - drain a workqueue
4091 * @wq: workqueue to drain
4092 *
4093 * Wait until the workqueue becomes empty. While draining is in progress,
4094 * only chain queueing is allowed. IOW, only currently pending or running
4095 * work items on @wq can queue further work items on it. @wq is flushed
4096 * repeatedly until it becomes empty. The number of flushing is determined
4097 * by the depth of chaining and should be relatively short. Whine if it
4098 * takes too long.
4099 */
drain_workqueue(struct workqueue_struct * wq)4100 void drain_workqueue(struct workqueue_struct *wq)
4101 {
4102 unsigned int flush_cnt = 0;
4103 struct pool_workqueue *pwq;
4104
4105 /*
4106 * __queue_work() needs to test whether there are drainers, is much
4107 * hotter than drain_workqueue() and already looks at @wq->flags.
4108 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
4109 */
4110 mutex_lock(&wq->mutex);
4111 if (!wq->nr_drainers++)
4112 wq->flags |= __WQ_DRAINING;
4113 mutex_unlock(&wq->mutex);
4114 reflush:
4115 __flush_workqueue(wq);
4116
4117 mutex_lock(&wq->mutex);
4118
4119 for_each_pwq(pwq, wq) {
4120 bool drained;
4121
4122 raw_spin_lock_irq(&pwq->pool->lock);
4123 drained = pwq_is_empty(pwq);
4124 raw_spin_unlock_irq(&pwq->pool->lock);
4125
4126 if (drained)
4127 continue;
4128
4129 if (++flush_cnt == 10 ||
4130 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
4131 pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
4132 wq->name, __func__, flush_cnt);
4133
4134 mutex_unlock(&wq->mutex);
4135 goto reflush;
4136 }
4137
4138 if (!--wq->nr_drainers)
4139 wq->flags &= ~__WQ_DRAINING;
4140 mutex_unlock(&wq->mutex);
4141 }
4142 EXPORT_SYMBOL_GPL(drain_workqueue);
4143
start_flush_work(struct work_struct * work,struct wq_barrier * barr,bool from_cancel)4144 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
4145 bool from_cancel)
4146 {
4147 struct worker *worker = NULL;
4148 struct worker_pool *pool;
4149 struct pool_workqueue *pwq;
4150 struct workqueue_struct *wq;
4151
4152 rcu_read_lock();
4153 pool = get_work_pool(work);
4154 if (!pool) {
4155 rcu_read_unlock();
4156 return false;
4157 }
4158
4159 raw_spin_lock_irq(&pool->lock);
4160 /* see the comment in try_to_grab_pending() with the same code */
4161 pwq = get_work_pwq(work);
4162 if (pwq) {
4163 if (unlikely(pwq->pool != pool))
4164 goto already_gone;
4165 } else {
4166 worker = find_worker_executing_work(pool, work);
4167 if (!worker)
4168 goto already_gone;
4169 pwq = worker->current_pwq;
4170 }
4171
4172 wq = pwq->wq;
4173 check_flush_dependency(wq, work, from_cancel);
4174
4175 insert_wq_barrier(pwq, barr, work, worker);
4176 raw_spin_unlock_irq(&pool->lock);
4177
4178 touch_work_lockdep_map(work, wq);
4179
4180 /*
4181 * Force a lock recursion deadlock when using flush_work() inside a
4182 * single-threaded or rescuer equipped workqueue.
4183 *
4184 * For single threaded workqueues the deadlock happens when the work
4185 * is after the work issuing the flush_work(). For rescuer equipped
4186 * workqueues the deadlock happens when the rescuer stalls, blocking
4187 * forward progress.
4188 */
4189 if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer))
4190 touch_wq_lockdep_map(wq);
4191
4192 rcu_read_unlock();
4193 return true;
4194 already_gone:
4195 raw_spin_unlock_irq(&pool->lock);
4196 rcu_read_unlock();
4197 return false;
4198 }
4199
__flush_work(struct work_struct * work,bool from_cancel)4200 static bool __flush_work(struct work_struct *work, bool from_cancel)
4201 {
4202 struct wq_barrier barr;
4203
4204 if (WARN_ON(!wq_online))
4205 return false;
4206
4207 if (WARN_ON(!work->func))
4208 return false;
4209
4210 if (!start_flush_work(work, &barr, from_cancel))
4211 return false;
4212
4213 /*
4214 * start_flush_work() returned %true. If @from_cancel is set, we know
4215 * that @work must have been executing during start_flush_work() and
4216 * can't currently be queued. Its data must contain OFFQ bits. If @work
4217 * was queued on a BH workqueue, we also know that it was running in the
4218 * BH context and thus can be busy-waited.
4219 */
4220 if (from_cancel) {
4221 unsigned long data = *work_data_bits(work);
4222
4223 if (!WARN_ON_ONCE(data & WORK_STRUCT_PWQ) &&
4224 (data & WORK_OFFQ_BH)) {
4225 /*
4226 * On RT, prevent a live lock when %current preempted
4227 * soft interrupt processing or prevents ksoftirqd from
4228 * running by keeping flipping BH. If the BH work item
4229 * runs on a different CPU then this has no effect other
4230 * than doing the BH disable/enable dance for nothing.
4231 * This is copied from
4232 * kernel/softirq.c::tasklet_unlock_spin_wait().
4233 */
4234 while (!try_wait_for_completion(&barr.done)) {
4235 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4236 local_bh_disable();
4237 local_bh_enable();
4238 } else {
4239 cpu_relax();
4240 }
4241 }
4242 goto out_destroy;
4243 }
4244 }
4245
4246 wait_for_completion(&barr.done);
4247
4248 out_destroy:
4249 destroy_work_on_stack(&barr.work);
4250 return true;
4251 }
4252
4253 /**
4254 * flush_work - wait for a work to finish executing the last queueing instance
4255 * @work: the work to flush
4256 *
4257 * Wait until @work has finished execution. @work is guaranteed to be idle
4258 * on return if it hasn't been requeued since flush started.
4259 *
4260 * Return:
4261 * %true if flush_work() waited for the work to finish execution,
4262 * %false if it was already idle.
4263 */
flush_work(struct work_struct * work)4264 bool flush_work(struct work_struct *work)
4265 {
4266 might_sleep();
4267 return __flush_work(work, false);
4268 }
4269 EXPORT_SYMBOL_GPL(flush_work);
4270
4271 /**
4272 * flush_delayed_work - wait for a dwork to finish executing the last queueing
4273 * @dwork: the delayed work to flush
4274 *
4275 * Delayed timer is cancelled and the pending work is queued for
4276 * immediate execution. Like flush_work(), this function only
4277 * considers the last queueing instance of @dwork.
4278 *
4279 * Return:
4280 * %true if flush_work() waited for the work to finish execution,
4281 * %false if it was already idle.
4282 */
flush_delayed_work(struct delayed_work * dwork)4283 bool flush_delayed_work(struct delayed_work *dwork)
4284 {
4285 local_irq_disable();
4286 if (timer_delete_sync(&dwork->timer))
4287 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
4288 local_irq_enable();
4289 return flush_work(&dwork->work);
4290 }
4291 EXPORT_SYMBOL(flush_delayed_work);
4292
4293 /**
4294 * flush_rcu_work - wait for a rwork to finish executing the last queueing
4295 * @rwork: the rcu work to flush
4296 *
4297 * Return:
4298 * %true if flush_rcu_work() waited for the work to finish execution,
4299 * %false if it was already idle.
4300 */
flush_rcu_work(struct rcu_work * rwork)4301 bool flush_rcu_work(struct rcu_work *rwork)
4302 {
4303 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
4304 rcu_barrier();
4305 flush_work(&rwork->work);
4306 return true;
4307 } else {
4308 return flush_work(&rwork->work);
4309 }
4310 }
4311 EXPORT_SYMBOL(flush_rcu_work);
4312
work_offqd_disable(struct work_offq_data * offqd)4313 static void work_offqd_disable(struct work_offq_data *offqd)
4314 {
4315 const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1;
4316
4317 if (likely(offqd->disable < max))
4318 offqd->disable++;
4319 else
4320 WARN_ONCE(true, "workqueue: work disable count overflowed\n");
4321 }
4322
work_offqd_enable(struct work_offq_data * offqd)4323 static void work_offqd_enable(struct work_offq_data *offqd)
4324 {
4325 if (likely(offqd->disable > 0))
4326 offqd->disable--;
4327 else
4328 WARN_ONCE(true, "workqueue: work disable count underflowed\n");
4329 }
4330
__cancel_work(struct work_struct * work,u32 cflags)4331 static bool __cancel_work(struct work_struct *work, u32 cflags)
4332 {
4333 struct work_offq_data offqd;
4334 unsigned long irq_flags;
4335 int ret;
4336
4337 ret = work_grab_pending(work, cflags, &irq_flags);
4338
4339 work_offqd_unpack(&offqd, *work_data_bits(work));
4340
4341 if (cflags & WORK_CANCEL_DISABLE)
4342 work_offqd_disable(&offqd);
4343
4344 set_work_pool_and_clear_pending(work, offqd.pool_id,
4345 work_offqd_pack_flags(&offqd));
4346 local_irq_restore(irq_flags);
4347 return ret;
4348 }
4349
__cancel_work_sync(struct work_struct * work,u32 cflags)4350 static bool __cancel_work_sync(struct work_struct *work, u32 cflags)
4351 {
4352 bool ret;
4353
4354 ret = __cancel_work(work, cflags | WORK_CANCEL_DISABLE);
4355
4356 if (*work_data_bits(work) & WORK_OFFQ_BH)
4357 WARN_ON_ONCE(in_hardirq());
4358 else
4359 might_sleep();
4360
4361 /*
4362 * Skip __flush_work() during early boot when we know that @work isn't
4363 * executing. This allows canceling during early boot.
4364 */
4365 if (wq_online)
4366 __flush_work(work, true);
4367
4368 if (!(cflags & WORK_CANCEL_DISABLE))
4369 enable_work(work);
4370
4371 return ret;
4372 }
4373
4374 /*
4375 * See cancel_delayed_work()
4376 */
cancel_work(struct work_struct * work)4377 bool cancel_work(struct work_struct *work)
4378 {
4379 return __cancel_work(work, 0);
4380 }
4381 EXPORT_SYMBOL(cancel_work);
4382
4383 /**
4384 * cancel_work_sync - cancel a work and wait for it to finish
4385 * @work: the work to cancel
4386 *
4387 * Cancel @work and wait for its execution to finish. This function can be used
4388 * even if the work re-queues itself or migrates to another workqueue. On return
4389 * from this function, @work is guaranteed to be not pending or executing on any
4390 * CPU as long as there aren't racing enqueues.
4391 *
4392 * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's.
4393 * Use cancel_delayed_work_sync() instead.
4394 *
4395 * Must be called from a sleepable context if @work was last queued on a non-BH
4396 * workqueue. Can also be called from non-hardirq atomic contexts including BH
4397 * if @work was last queued on a BH workqueue.
4398 *
4399 * Returns %true if @work was pending, %false otherwise.
4400 */
cancel_work_sync(struct work_struct * work)4401 bool cancel_work_sync(struct work_struct *work)
4402 {
4403 return __cancel_work_sync(work, 0);
4404 }
4405 EXPORT_SYMBOL_GPL(cancel_work_sync);
4406
4407 /**
4408 * cancel_delayed_work - cancel a delayed work
4409 * @dwork: delayed_work to cancel
4410 *
4411 * Kill off a pending delayed_work.
4412 *
4413 * Return: %true if @dwork was pending and canceled; %false if it wasn't
4414 * pending.
4415 *
4416 * Note:
4417 * The work callback function may still be running on return, unless
4418 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
4419 * use cancel_delayed_work_sync() to wait on it.
4420 *
4421 * This function is safe to call from any context including IRQ handler.
4422 */
cancel_delayed_work(struct delayed_work * dwork)4423 bool cancel_delayed_work(struct delayed_work *dwork)
4424 {
4425 return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED);
4426 }
4427 EXPORT_SYMBOL(cancel_delayed_work);
4428
4429 /**
4430 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4431 * @dwork: the delayed work cancel
4432 *
4433 * This is cancel_work_sync() for delayed works.
4434 *
4435 * Return:
4436 * %true if @dwork was pending, %false otherwise.
4437 */
cancel_delayed_work_sync(struct delayed_work * dwork)4438 bool cancel_delayed_work_sync(struct delayed_work *dwork)
4439 {
4440 return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED);
4441 }
4442 EXPORT_SYMBOL(cancel_delayed_work_sync);
4443
4444 /**
4445 * disable_work - Disable and cancel a work item
4446 * @work: work item to disable
4447 *
4448 * Disable @work by incrementing its disable count and cancel it if currently
4449 * pending. As long as the disable count is non-zero, any attempt to queue @work
4450 * will fail and return %false. The maximum supported disable depth is 2 to the
4451 * power of %WORK_OFFQ_DISABLE_BITS, currently 65536.
4452 *
4453 * Can be called from any context. Returns %true if @work was pending, %false
4454 * otherwise.
4455 */
disable_work(struct work_struct * work)4456 bool disable_work(struct work_struct *work)
4457 {
4458 return __cancel_work(work, WORK_CANCEL_DISABLE);
4459 }
4460 EXPORT_SYMBOL_GPL(disable_work);
4461
4462 /**
4463 * disable_work_sync - Disable, cancel and drain a work item
4464 * @work: work item to disable
4465 *
4466 * Similar to disable_work() but also wait for @work to finish if currently
4467 * executing.
4468 *
4469 * Must be called from a sleepable context if @work was last queued on a non-BH
4470 * workqueue. Can also be called from non-hardirq atomic contexts including BH
4471 * if @work was last queued on a BH workqueue.
4472 *
4473 * Returns %true if @work was pending, %false otherwise.
4474 */
disable_work_sync(struct work_struct * work)4475 bool disable_work_sync(struct work_struct *work)
4476 {
4477 return __cancel_work_sync(work, WORK_CANCEL_DISABLE);
4478 }
4479 EXPORT_SYMBOL_GPL(disable_work_sync);
4480
4481 /**
4482 * enable_work - Enable a work item
4483 * @work: work item to enable
4484 *
4485 * Undo disable_work[_sync]() by decrementing @work's disable count. @work can
4486 * only be queued if its disable count is 0.
4487 *
4488 * Can be called from any context. Returns %true if the disable count reached 0.
4489 * Otherwise, %false.
4490 */
enable_work(struct work_struct * work)4491 bool enable_work(struct work_struct *work)
4492 {
4493 struct work_offq_data offqd;
4494 unsigned long irq_flags;
4495
4496 work_grab_pending(work, 0, &irq_flags);
4497
4498 work_offqd_unpack(&offqd, *work_data_bits(work));
4499 work_offqd_enable(&offqd);
4500 set_work_pool_and_clear_pending(work, offqd.pool_id,
4501 work_offqd_pack_flags(&offqd));
4502 local_irq_restore(irq_flags);
4503
4504 return !offqd.disable;
4505 }
4506 EXPORT_SYMBOL_GPL(enable_work);
4507
4508 /**
4509 * disable_delayed_work - Disable and cancel a delayed work item
4510 * @dwork: delayed work item to disable
4511 *
4512 * disable_work() for delayed work items.
4513 */
disable_delayed_work(struct delayed_work * dwork)4514 bool disable_delayed_work(struct delayed_work *dwork)
4515 {
4516 return __cancel_work(&dwork->work,
4517 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4518 }
4519 EXPORT_SYMBOL_GPL(disable_delayed_work);
4520
4521 /**
4522 * disable_delayed_work_sync - Disable, cancel and drain a delayed work item
4523 * @dwork: delayed work item to disable
4524 *
4525 * disable_work_sync() for delayed work items.
4526 */
disable_delayed_work_sync(struct delayed_work * dwork)4527 bool disable_delayed_work_sync(struct delayed_work *dwork)
4528 {
4529 return __cancel_work_sync(&dwork->work,
4530 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4531 }
4532 EXPORT_SYMBOL_GPL(disable_delayed_work_sync);
4533
4534 /**
4535 * enable_delayed_work - Enable a delayed work item
4536 * @dwork: delayed work item to enable
4537 *
4538 * enable_work() for delayed work items.
4539 */
enable_delayed_work(struct delayed_work * dwork)4540 bool enable_delayed_work(struct delayed_work *dwork)
4541 {
4542 return enable_work(&dwork->work);
4543 }
4544 EXPORT_SYMBOL_GPL(enable_delayed_work);
4545
4546 /**
4547 * schedule_on_each_cpu - execute a function synchronously on each online CPU
4548 * @func: the function to call
4549 *
4550 * schedule_on_each_cpu() executes @func on each online CPU using the
4551 * system workqueue and blocks until all CPUs have completed.
4552 * schedule_on_each_cpu() is very slow.
4553 *
4554 * Return:
4555 * 0 on success, -errno on failure.
4556 */
schedule_on_each_cpu(work_func_t func)4557 int schedule_on_each_cpu(work_func_t func)
4558 {
4559 int cpu;
4560 struct work_struct __percpu *works;
4561
4562 works = alloc_percpu(struct work_struct);
4563 if (!works)
4564 return -ENOMEM;
4565
4566 cpus_read_lock();
4567
4568 for_each_online_cpu(cpu) {
4569 struct work_struct *work = per_cpu_ptr(works, cpu);
4570
4571 INIT_WORK(work, func);
4572 schedule_work_on(cpu, work);
4573 }
4574
4575 for_each_online_cpu(cpu)
4576 flush_work(per_cpu_ptr(works, cpu));
4577
4578 cpus_read_unlock();
4579 free_percpu(works);
4580 return 0;
4581 }
4582
4583 /**
4584 * execute_in_process_context - reliably execute the routine with user context
4585 * @fn: the function to execute
4586 * @ew: guaranteed storage for the execute work structure (must
4587 * be available when the work executes)
4588 *
4589 * Executes the function immediately if process context is available,
4590 * otherwise schedules the function for delayed execution.
4591 *
4592 * Return: 0 - function was executed
4593 * 1 - function was scheduled for execution
4594 */
execute_in_process_context(work_func_t fn,struct execute_work * ew)4595 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
4596 {
4597 if (!in_interrupt()) {
4598 fn(&ew->work);
4599 return 0;
4600 }
4601
4602 INIT_WORK(&ew->work, fn);
4603 schedule_work(&ew->work);
4604
4605 return 1;
4606 }
4607 EXPORT_SYMBOL_GPL(execute_in_process_context);
4608
4609 /**
4610 * free_workqueue_attrs - free a workqueue_attrs
4611 * @attrs: workqueue_attrs to free
4612 *
4613 * Undo alloc_workqueue_attrs().
4614 */
free_workqueue_attrs(struct workqueue_attrs * attrs)4615 void free_workqueue_attrs(struct workqueue_attrs *attrs)
4616 {
4617 if (attrs) {
4618 free_cpumask_var(attrs->cpumask);
4619 free_cpumask_var(attrs->__pod_cpumask);
4620 kfree(attrs);
4621 }
4622 }
4623
4624 /**
4625 * alloc_workqueue_attrs - allocate a workqueue_attrs
4626 *
4627 * Allocate a new workqueue_attrs, initialize with default settings and
4628 * return it.
4629 *
4630 * Return: The allocated new workqueue_attr on success. %NULL on failure.
4631 */
alloc_workqueue_attrs(void)4632 struct workqueue_attrs *alloc_workqueue_attrs(void)
4633 {
4634 struct workqueue_attrs *attrs;
4635
4636 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
4637 if (!attrs)
4638 goto fail;
4639 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
4640 goto fail;
4641 if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4642 goto fail;
4643
4644 cpumask_copy(attrs->cpumask, cpu_possible_mask);
4645 attrs->affn_scope = WQ_AFFN_DFL;
4646 return attrs;
4647 fail:
4648 free_workqueue_attrs(attrs);
4649 return NULL;
4650 }
4651
copy_workqueue_attrs(struct workqueue_attrs * to,const struct workqueue_attrs * from)4652 static void copy_workqueue_attrs(struct workqueue_attrs *to,
4653 const struct workqueue_attrs *from)
4654 {
4655 to->nice = from->nice;
4656 cpumask_copy(to->cpumask, from->cpumask);
4657 cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
4658 to->affn_strict = from->affn_strict;
4659
4660 /*
4661 * Unlike hash and equality test, copying shouldn't ignore wq-only
4662 * fields as copying is used for both pool and wq attrs. Instead,
4663 * get_unbound_pool() explicitly clears the fields.
4664 */
4665 to->affn_scope = from->affn_scope;
4666 to->ordered = from->ordered;
4667 }
4668
4669 /*
4670 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4671 * comments in 'struct workqueue_attrs' definition.
4672 */
wqattrs_clear_for_pool(struct workqueue_attrs * attrs)4673 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4674 {
4675 attrs->affn_scope = WQ_AFFN_NR_TYPES;
4676 attrs->ordered = false;
4677 if (attrs->affn_strict)
4678 cpumask_copy(attrs->cpumask, cpu_possible_mask);
4679 }
4680
4681 /* hash value of the content of @attr */
wqattrs_hash(const struct workqueue_attrs * attrs)4682 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
4683 {
4684 u32 hash = 0;
4685
4686 hash = jhash_1word(attrs->nice, hash);
4687 hash = jhash_1word(attrs->affn_strict, hash);
4688 hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4689 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4690 if (!attrs->affn_strict)
4691 hash = jhash(cpumask_bits(attrs->cpumask),
4692 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4693 return hash;
4694 }
4695
4696 /* content equality test */
wqattrs_equal(const struct workqueue_attrs * a,const struct workqueue_attrs * b)4697 static bool wqattrs_equal(const struct workqueue_attrs *a,
4698 const struct workqueue_attrs *b)
4699 {
4700 if (a->nice != b->nice)
4701 return false;
4702 if (a->affn_strict != b->affn_strict)
4703 return false;
4704 if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4705 return false;
4706 if (!a->affn_strict && !cpumask_equal(a->cpumask, b->cpumask))
4707 return false;
4708 return true;
4709 }
4710
4711 /* Update @attrs with actually available CPUs */
wqattrs_actualize_cpumask(struct workqueue_attrs * attrs,const cpumask_t * unbound_cpumask)4712 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4713 const cpumask_t *unbound_cpumask)
4714 {
4715 /*
4716 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4717 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4718 * @unbound_cpumask.
4719 */
4720 cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4721 if (unlikely(cpumask_empty(attrs->cpumask)))
4722 cpumask_copy(attrs->cpumask, unbound_cpumask);
4723 }
4724
4725 /* find wq_pod_type to use for @attrs */
4726 static const struct wq_pod_type *
wqattrs_pod_type(const struct workqueue_attrs * attrs)4727 wqattrs_pod_type(const struct workqueue_attrs *attrs)
4728 {
4729 enum wq_affn_scope scope;
4730 struct wq_pod_type *pt;
4731
4732 /* to synchronize access to wq_affn_dfl */
4733 lockdep_assert_held(&wq_pool_mutex);
4734
4735 if (attrs->affn_scope == WQ_AFFN_DFL)
4736 scope = wq_affn_dfl;
4737 else
4738 scope = attrs->affn_scope;
4739
4740 pt = &wq_pod_types[scope];
4741
4742 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4743 likely(pt->nr_pods))
4744 return pt;
4745
4746 /*
4747 * Before workqueue_init_topology(), only SYSTEM is available which is
4748 * initialized in workqueue_init_early().
4749 */
4750 pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4751 BUG_ON(!pt->nr_pods);
4752 return pt;
4753 }
4754
4755 /**
4756 * init_worker_pool - initialize a newly zalloc'd worker_pool
4757 * @pool: worker_pool to initialize
4758 *
4759 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
4760 *
4761 * Return: 0 on success, -errno on failure. Even on failure, all fields
4762 * inside @pool proper are initialized and put_unbound_pool() can be called
4763 * on @pool safely to release it.
4764 */
init_worker_pool(struct worker_pool * pool)4765 static int init_worker_pool(struct worker_pool *pool)
4766 {
4767 raw_spin_lock_init(&pool->lock);
4768 pool->id = -1;
4769 pool->cpu = -1;
4770 pool->node = NUMA_NO_NODE;
4771 pool->flags |= POOL_DISASSOCIATED;
4772 pool->watchdog_ts = jiffies;
4773 INIT_LIST_HEAD(&pool->worklist);
4774 INIT_LIST_HEAD(&pool->idle_list);
4775 hash_init(pool->busy_hash);
4776
4777 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
4778 INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
4779
4780 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
4781
4782 INIT_LIST_HEAD(&pool->workers);
4783
4784 ida_init(&pool->worker_ida);
4785 INIT_HLIST_NODE(&pool->hash_node);
4786 pool->refcnt = 1;
4787
4788 /* shouldn't fail above this point */
4789 pool->attrs = alloc_workqueue_attrs();
4790 if (!pool->attrs)
4791 return -ENOMEM;
4792
4793 wqattrs_clear_for_pool(pool->attrs);
4794
4795 return 0;
4796 }
4797
4798 #ifdef CONFIG_LOCKDEP
wq_init_lockdep(struct workqueue_struct * wq)4799 static void wq_init_lockdep(struct workqueue_struct *wq)
4800 {
4801 char *lock_name;
4802
4803 lockdep_register_key(&wq->key);
4804 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4805 if (!lock_name)
4806 lock_name = wq->name;
4807
4808 wq->lock_name = lock_name;
4809 wq->lockdep_map = &wq->__lockdep_map;
4810 lockdep_init_map(wq->lockdep_map, lock_name, &wq->key, 0);
4811 }
4812
wq_unregister_lockdep(struct workqueue_struct * wq)4813 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4814 {
4815 if (wq->lockdep_map != &wq->__lockdep_map)
4816 return;
4817
4818 lockdep_unregister_key(&wq->key);
4819 }
4820
wq_free_lockdep(struct workqueue_struct * wq)4821 static void wq_free_lockdep(struct workqueue_struct *wq)
4822 {
4823 if (wq->lockdep_map != &wq->__lockdep_map)
4824 return;
4825
4826 if (wq->lock_name != wq->name)
4827 kfree(wq->lock_name);
4828 }
4829 #else
wq_init_lockdep(struct workqueue_struct * wq)4830 static void wq_init_lockdep(struct workqueue_struct *wq)
4831 {
4832 }
4833
wq_unregister_lockdep(struct workqueue_struct * wq)4834 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4835 {
4836 }
4837
wq_free_lockdep(struct workqueue_struct * wq)4838 static void wq_free_lockdep(struct workqueue_struct *wq)
4839 {
4840 }
4841 #endif
4842
free_node_nr_active(struct wq_node_nr_active ** nna_ar)4843 static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4844 {
4845 int node;
4846
4847 for_each_node(node) {
4848 kfree(nna_ar[node]);
4849 nna_ar[node] = NULL;
4850 }
4851
4852 kfree(nna_ar[nr_node_ids]);
4853 nna_ar[nr_node_ids] = NULL;
4854 }
4855
init_node_nr_active(struct wq_node_nr_active * nna)4856 static void init_node_nr_active(struct wq_node_nr_active *nna)
4857 {
4858 nna->max = WQ_DFL_MIN_ACTIVE;
4859 atomic_set(&nna->nr, 0);
4860 raw_spin_lock_init(&nna->lock);
4861 INIT_LIST_HEAD(&nna->pending_pwqs);
4862 }
4863
4864 /*
4865 * Each node's nr_active counter will be accessed mostly from its own node and
4866 * should be allocated in the node.
4867 */
alloc_node_nr_active(struct wq_node_nr_active ** nna_ar)4868 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4869 {
4870 struct wq_node_nr_active *nna;
4871 int node;
4872
4873 for_each_node(node) {
4874 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4875 if (!nna)
4876 goto err_free;
4877 init_node_nr_active(nna);
4878 nna_ar[node] = nna;
4879 }
4880
4881 /* [nr_node_ids] is used as the fallback */
4882 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4883 if (!nna)
4884 goto err_free;
4885 init_node_nr_active(nna);
4886 nna_ar[nr_node_ids] = nna;
4887
4888 return 0;
4889
4890 err_free:
4891 free_node_nr_active(nna_ar);
4892 return -ENOMEM;
4893 }
4894
rcu_free_wq(struct rcu_head * rcu)4895 static void rcu_free_wq(struct rcu_head *rcu)
4896 {
4897 struct workqueue_struct *wq =
4898 container_of(rcu, struct workqueue_struct, rcu);
4899
4900 if (wq->flags & WQ_UNBOUND)
4901 free_node_nr_active(wq->node_nr_active);
4902
4903 wq_free_lockdep(wq);
4904 free_percpu(wq->cpu_pwq);
4905 free_workqueue_attrs(wq->unbound_attrs);
4906 kfree(wq);
4907 }
4908
rcu_free_pool(struct rcu_head * rcu)4909 static void rcu_free_pool(struct rcu_head *rcu)
4910 {
4911 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
4912
4913 ida_destroy(&pool->worker_ida);
4914 free_workqueue_attrs(pool->attrs);
4915 kfree(pool);
4916 }
4917
4918 /**
4919 * put_unbound_pool - put a worker_pool
4920 * @pool: worker_pool to put
4921 *
4922 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
4923 * safe manner. get_unbound_pool() calls this function on its failure path
4924 * and this function should be able to release pools which went through,
4925 * successfully or not, init_worker_pool().
4926 *
4927 * Should be called with wq_pool_mutex held.
4928 */
put_unbound_pool(struct worker_pool * pool)4929 static void put_unbound_pool(struct worker_pool *pool)
4930 {
4931 struct worker *worker;
4932 LIST_HEAD(cull_list);
4933
4934 lockdep_assert_held(&wq_pool_mutex);
4935
4936 if (--pool->refcnt)
4937 return;
4938
4939 /* sanity checks */
4940 if (WARN_ON(!(pool->cpu < 0)) ||
4941 WARN_ON(!list_empty(&pool->worklist)))
4942 return;
4943
4944 /* release id and unhash */
4945 if (pool->id >= 0)
4946 idr_remove(&worker_pool_idr, pool->id);
4947 hash_del(&pool->hash_node);
4948
4949 /*
4950 * Become the manager and destroy all workers. This prevents
4951 * @pool's workers from blocking on attach_mutex. We're the last
4952 * manager and @pool gets freed with the flag set.
4953 *
4954 * Having a concurrent manager is quite unlikely to happen as we can
4955 * only get here with
4956 * pwq->refcnt == pool->refcnt == 0
4957 * which implies no work queued to the pool, which implies no worker can
4958 * become the manager. However a worker could have taken the role of
4959 * manager before the refcnts dropped to 0, since maybe_create_worker()
4960 * drops pool->lock
4961 */
4962 while (true) {
4963 rcuwait_wait_event(&manager_wait,
4964 !(pool->flags & POOL_MANAGER_ACTIVE),
4965 TASK_UNINTERRUPTIBLE);
4966
4967 mutex_lock(&wq_pool_attach_mutex);
4968 raw_spin_lock_irq(&pool->lock);
4969 if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4970 pool->flags |= POOL_MANAGER_ACTIVE;
4971 break;
4972 }
4973 raw_spin_unlock_irq(&pool->lock);
4974 mutex_unlock(&wq_pool_attach_mutex);
4975 }
4976
4977 while ((worker = first_idle_worker(pool)))
4978 set_worker_dying(worker, &cull_list);
4979 WARN_ON(pool->nr_workers || pool->nr_idle);
4980 raw_spin_unlock_irq(&pool->lock);
4981
4982 detach_dying_workers(&cull_list);
4983
4984 mutex_unlock(&wq_pool_attach_mutex);
4985
4986 reap_dying_workers(&cull_list);
4987
4988 /* shut down the timers */
4989 timer_delete_sync(&pool->idle_timer);
4990 cancel_work_sync(&pool->idle_cull_work);
4991 timer_delete_sync(&pool->mayday_timer);
4992
4993 /* RCU protected to allow dereferences from get_work_pool() */
4994 call_rcu(&pool->rcu, rcu_free_pool);
4995 }
4996
4997 /**
4998 * get_unbound_pool - get a worker_pool with the specified attributes
4999 * @attrs: the attributes of the worker_pool to get
5000 *
5001 * Obtain a worker_pool which has the same attributes as @attrs, bump the
5002 * reference count and return it. If there already is a matching
5003 * worker_pool, it will be used; otherwise, this function attempts to
5004 * create a new one.
5005 *
5006 * Should be called with wq_pool_mutex held.
5007 *
5008 * Return: On success, a worker_pool with the same attributes as @attrs.
5009 * On failure, %NULL.
5010 */
get_unbound_pool(const struct workqueue_attrs * attrs)5011 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
5012 {
5013 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
5014 u32 hash = wqattrs_hash(attrs);
5015 struct worker_pool *pool;
5016 int pod, node = NUMA_NO_NODE;
5017
5018 lockdep_assert_held(&wq_pool_mutex);
5019
5020 /* do we already have a matching pool? */
5021 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
5022 if (wqattrs_equal(pool->attrs, attrs)) {
5023 pool->refcnt++;
5024 return pool;
5025 }
5026 }
5027
5028 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */
5029 for (pod = 0; pod < pt->nr_pods; pod++) {
5030 if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
5031 node = pt->pod_node[pod];
5032 break;
5033 }
5034 }
5035
5036 /* nope, create a new one */
5037 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
5038 if (!pool || init_worker_pool(pool) < 0)
5039 goto fail;
5040
5041 pool->node = node;
5042 copy_workqueue_attrs(pool->attrs, attrs);
5043 wqattrs_clear_for_pool(pool->attrs);
5044
5045 if (worker_pool_assign_id(pool) < 0)
5046 goto fail;
5047
5048 /* create and start the initial worker */
5049 if (wq_online && !create_worker(pool))
5050 goto fail;
5051
5052 /* install */
5053 hash_add(unbound_pool_hash, &pool->hash_node, hash);
5054
5055 return pool;
5056 fail:
5057 if (pool)
5058 put_unbound_pool(pool);
5059 return NULL;
5060 }
5061
5062 /*
5063 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
5064 * refcnt and needs to be destroyed.
5065 */
pwq_release_workfn(struct kthread_work * work)5066 static void pwq_release_workfn(struct kthread_work *work)
5067 {
5068 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
5069 release_work);
5070 struct workqueue_struct *wq = pwq->wq;
5071 struct worker_pool *pool = pwq->pool;
5072 bool is_last = false;
5073
5074 /*
5075 * When @pwq is not linked, it doesn't hold any reference to the
5076 * @wq, and @wq is invalid to access.
5077 */
5078 if (!list_empty(&pwq->pwqs_node)) {
5079 mutex_lock(&wq->mutex);
5080 list_del_rcu(&pwq->pwqs_node);
5081 is_last = list_empty(&wq->pwqs);
5082
5083 /*
5084 * For ordered workqueue with a plugged dfl_pwq, restart it now.
5085 */
5086 if (!is_last && (wq->flags & __WQ_ORDERED))
5087 unplug_oldest_pwq(wq);
5088
5089 mutex_unlock(&wq->mutex);
5090 }
5091
5092 if (wq->flags & WQ_UNBOUND) {
5093 mutex_lock(&wq_pool_mutex);
5094 put_unbound_pool(pool);
5095 mutex_unlock(&wq_pool_mutex);
5096 }
5097
5098 if (!list_empty(&pwq->pending_node)) {
5099 struct wq_node_nr_active *nna =
5100 wq_node_nr_active(pwq->wq, pwq->pool->node);
5101
5102 raw_spin_lock_irq(&nna->lock);
5103 list_del_init(&pwq->pending_node);
5104 raw_spin_unlock_irq(&nna->lock);
5105 }
5106
5107 kfree_rcu(pwq, rcu);
5108
5109 /*
5110 * If we're the last pwq going away, @wq is already dead and no one
5111 * is gonna access it anymore. Schedule RCU free.
5112 */
5113 if (is_last) {
5114 wq_unregister_lockdep(wq);
5115 call_rcu(&wq->rcu, rcu_free_wq);
5116 }
5117 }
5118
5119 /* initialize newly allocated @pwq which is associated with @wq and @pool */
init_pwq(struct pool_workqueue * pwq,struct workqueue_struct * wq,struct worker_pool * pool)5120 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
5121 struct worker_pool *pool)
5122 {
5123 BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK);
5124
5125 memset(pwq, 0, sizeof(*pwq));
5126
5127 pwq->pool = pool;
5128 pwq->wq = wq;
5129 pwq->flush_color = -1;
5130 pwq->refcnt = 1;
5131 INIT_LIST_HEAD(&pwq->inactive_works);
5132 INIT_LIST_HEAD(&pwq->pending_node);
5133 INIT_LIST_HEAD(&pwq->pwqs_node);
5134 INIT_LIST_HEAD(&pwq->mayday_node);
5135 kthread_init_work(&pwq->release_work, pwq_release_workfn);
5136 }
5137
5138 /* sync @pwq with the current state of its associated wq and link it */
link_pwq(struct pool_workqueue * pwq)5139 static void link_pwq(struct pool_workqueue *pwq)
5140 {
5141 struct workqueue_struct *wq = pwq->wq;
5142
5143 lockdep_assert_held(&wq->mutex);
5144
5145 /* may be called multiple times, ignore if already linked */
5146 if (!list_empty(&pwq->pwqs_node))
5147 return;
5148
5149 /* set the matching work_color */
5150 pwq->work_color = wq->work_color;
5151
5152 /* link in @pwq */
5153 list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
5154 }
5155
5156 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
alloc_unbound_pwq(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)5157 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
5158 const struct workqueue_attrs *attrs)
5159 {
5160 struct worker_pool *pool;
5161 struct pool_workqueue *pwq;
5162
5163 lockdep_assert_held(&wq_pool_mutex);
5164
5165 pool = get_unbound_pool(attrs);
5166 if (!pool)
5167 return NULL;
5168
5169 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
5170 if (!pwq) {
5171 put_unbound_pool(pool);
5172 return NULL;
5173 }
5174
5175 init_pwq(pwq, wq, pool);
5176 return pwq;
5177 }
5178
apply_wqattrs_lock(void)5179 static void apply_wqattrs_lock(void)
5180 {
5181 mutex_lock(&wq_pool_mutex);
5182 }
5183
apply_wqattrs_unlock(void)5184 static void apply_wqattrs_unlock(void)
5185 {
5186 mutex_unlock(&wq_pool_mutex);
5187 }
5188
5189 /**
5190 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
5191 * @attrs: the wq_attrs of the default pwq of the target workqueue
5192 * @cpu: the target CPU
5193 *
5194 * Calculate the cpumask a workqueue with @attrs should use on @pod.
5195 * The result is stored in @attrs->__pod_cpumask.
5196 *
5197 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
5198 * and @pod has online CPUs requested by @attrs, the returned cpumask is the
5199 * intersection of the possible CPUs of @pod and @attrs->cpumask.
5200 *
5201 * The caller is responsible for ensuring that the cpumask of @pod stays stable.
5202 */
wq_calc_pod_cpumask(struct workqueue_attrs * attrs,int cpu)5203 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu)
5204 {
5205 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5206 int pod = pt->cpu_pod[cpu];
5207
5208 /* calculate possible CPUs in @pod that @attrs wants */
5209 cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
5210 /* does @pod have any online CPUs @attrs wants? */
5211 if (!cpumask_intersects(attrs->__pod_cpumask, wq_online_cpumask)) {
5212 cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
5213 return;
5214 }
5215 }
5216
5217 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
install_unbound_pwq(struct workqueue_struct * wq,int cpu,struct pool_workqueue * pwq)5218 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
5219 int cpu, struct pool_workqueue *pwq)
5220 {
5221 struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
5222 struct pool_workqueue *old_pwq;
5223
5224 lockdep_assert_held(&wq_pool_mutex);
5225 lockdep_assert_held(&wq->mutex);
5226
5227 /* link_pwq() can handle duplicate calls */
5228 link_pwq(pwq);
5229
5230 old_pwq = rcu_access_pointer(*slot);
5231 rcu_assign_pointer(*slot, pwq);
5232 return old_pwq;
5233 }
5234
5235 /* context to store the prepared attrs & pwqs before applying */
5236 struct apply_wqattrs_ctx {
5237 struct workqueue_struct *wq; /* target workqueue */
5238 struct workqueue_attrs *attrs; /* attrs to apply */
5239 struct list_head list; /* queued for batching commit */
5240 struct pool_workqueue *dfl_pwq;
5241 struct pool_workqueue *pwq_tbl[];
5242 };
5243
5244 /* free the resources after success or abort */
apply_wqattrs_cleanup(struct apply_wqattrs_ctx * ctx)5245 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
5246 {
5247 if (ctx) {
5248 int cpu;
5249
5250 for_each_possible_cpu(cpu)
5251 put_pwq_unlocked(ctx->pwq_tbl[cpu]);
5252 put_pwq_unlocked(ctx->dfl_pwq);
5253
5254 free_workqueue_attrs(ctx->attrs);
5255
5256 kfree(ctx);
5257 }
5258 }
5259
5260 /* allocate the attrs and pwqs for later installation */
5261 static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct * wq,const struct workqueue_attrs * attrs,const cpumask_var_t unbound_cpumask)5262 apply_wqattrs_prepare(struct workqueue_struct *wq,
5263 const struct workqueue_attrs *attrs,
5264 const cpumask_var_t unbound_cpumask)
5265 {
5266 struct apply_wqattrs_ctx *ctx;
5267 struct workqueue_attrs *new_attrs;
5268 int cpu;
5269
5270 lockdep_assert_held(&wq_pool_mutex);
5271
5272 if (WARN_ON(attrs->affn_scope < 0 ||
5273 attrs->affn_scope >= WQ_AFFN_NR_TYPES))
5274 return ERR_PTR(-EINVAL);
5275
5276 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
5277
5278 new_attrs = alloc_workqueue_attrs();
5279 if (!ctx || !new_attrs)
5280 goto out_free;
5281
5282 /*
5283 * If something goes wrong during CPU up/down, we'll fall back to
5284 * the default pwq covering whole @attrs->cpumask. Always create
5285 * it even if we don't use it immediately.
5286 */
5287 copy_workqueue_attrs(new_attrs, attrs);
5288 wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
5289 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5290 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
5291 if (!ctx->dfl_pwq)
5292 goto out_free;
5293
5294 for_each_possible_cpu(cpu) {
5295 if (new_attrs->ordered) {
5296 ctx->dfl_pwq->refcnt++;
5297 ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
5298 } else {
5299 wq_calc_pod_cpumask(new_attrs, cpu);
5300 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
5301 if (!ctx->pwq_tbl[cpu])
5302 goto out_free;
5303 }
5304 }
5305
5306 /* save the user configured attrs and sanitize it. */
5307 copy_workqueue_attrs(new_attrs, attrs);
5308 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
5309 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5310 ctx->attrs = new_attrs;
5311
5312 /*
5313 * For initialized ordered workqueues, there should only be one pwq
5314 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution
5315 * of newly queued work items until execution of older work items in
5316 * the old pwq's have completed.
5317 */
5318 if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))
5319 ctx->dfl_pwq->plugged = true;
5320
5321 ctx->wq = wq;
5322 return ctx;
5323
5324 out_free:
5325 free_workqueue_attrs(new_attrs);
5326 apply_wqattrs_cleanup(ctx);
5327 return ERR_PTR(-ENOMEM);
5328 }
5329
5330 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
apply_wqattrs_commit(struct apply_wqattrs_ctx * ctx)5331 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
5332 {
5333 int cpu;
5334
5335 /* all pwqs have been created successfully, let's install'em */
5336 mutex_lock(&ctx->wq->mutex);
5337
5338 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
5339
5340 /* save the previous pwqs and install the new ones */
5341 for_each_possible_cpu(cpu)
5342 ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
5343 ctx->pwq_tbl[cpu]);
5344 ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
5345
5346 /* update node_nr_active->max */
5347 wq_update_node_max_active(ctx->wq, -1);
5348
5349 /* rescuer needs to respect wq cpumask changes */
5350 if (ctx->wq->rescuer)
5351 set_cpus_allowed_ptr(ctx->wq->rescuer->task,
5352 unbound_effective_cpumask(ctx->wq));
5353
5354 mutex_unlock(&ctx->wq->mutex);
5355 }
5356
apply_workqueue_attrs_locked(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)5357 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
5358 const struct workqueue_attrs *attrs)
5359 {
5360 struct apply_wqattrs_ctx *ctx;
5361
5362 /* only unbound workqueues can change attributes */
5363 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
5364 return -EINVAL;
5365
5366 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
5367 if (IS_ERR(ctx))
5368 return PTR_ERR(ctx);
5369
5370 /* the ctx has been prepared successfully, let's commit it */
5371 apply_wqattrs_commit(ctx);
5372 apply_wqattrs_cleanup(ctx);
5373
5374 return 0;
5375 }
5376
5377 /**
5378 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
5379 * @wq: the target workqueue
5380 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
5381 *
5382 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
5383 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
5384 * work items are affine to the pod it was issued on. Older pwqs are released as
5385 * in-flight work items finish. Note that a work item which repeatedly requeues
5386 * itself back-to-back will stay on its current pwq.
5387 *
5388 * Performs GFP_KERNEL allocations.
5389 *
5390 * Return: 0 on success and -errno on failure.
5391 */
apply_workqueue_attrs(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)5392 int apply_workqueue_attrs(struct workqueue_struct *wq,
5393 const struct workqueue_attrs *attrs)
5394 {
5395 int ret;
5396
5397 mutex_lock(&wq_pool_mutex);
5398 ret = apply_workqueue_attrs_locked(wq, attrs);
5399 mutex_unlock(&wq_pool_mutex);
5400
5401 return ret;
5402 }
5403
5404 /**
5405 * unbound_wq_update_pwq - update a pwq slot for CPU hot[un]plug
5406 * @wq: the target workqueue
5407 * @cpu: the CPU to update the pwq slot for
5408 *
5409 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
5410 * %CPU_DOWN_FAILED. @cpu is in the same pod of the CPU being hot[un]plugged.
5411 *
5412 *
5413 * If pod affinity can't be adjusted due to memory allocation failure, it falls
5414 * back to @wq->dfl_pwq which may not be optimal but is always correct.
5415 *
5416 * Note that when the last allowed CPU of a pod goes offline for a workqueue
5417 * with a cpumask spanning multiple pods, the workers which were already
5418 * executing the work items for the workqueue will lose their CPU affinity and
5419 * may execute on any CPU. This is similar to how per-cpu workqueues behave on
5420 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
5421 * responsibility to flush the work item from CPU_DOWN_PREPARE.
5422 */
unbound_wq_update_pwq(struct workqueue_struct * wq,int cpu)5423 static void unbound_wq_update_pwq(struct workqueue_struct *wq, int cpu)
5424 {
5425 struct pool_workqueue *old_pwq = NULL, *pwq;
5426 struct workqueue_attrs *target_attrs;
5427
5428 lockdep_assert_held(&wq_pool_mutex);
5429
5430 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
5431 return;
5432
5433 /*
5434 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
5435 * Let's use a preallocated one. The following buf is protected by
5436 * CPU hotplug exclusion.
5437 */
5438 target_attrs = unbound_wq_update_pwq_attrs_buf;
5439
5440 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
5441 wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
5442
5443 /* nothing to do if the target cpumask matches the current pwq */
5444 wq_calc_pod_cpumask(target_attrs, cpu);
5445 if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
5446 return;
5447
5448 /* create a new pwq */
5449 pwq = alloc_unbound_pwq(wq, target_attrs);
5450 if (!pwq) {
5451 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
5452 wq->name);
5453 goto use_dfl_pwq;
5454 }
5455
5456 /* Install the new pwq. */
5457 mutex_lock(&wq->mutex);
5458 old_pwq = install_unbound_pwq(wq, cpu, pwq);
5459 goto out_unlock;
5460
5461 use_dfl_pwq:
5462 mutex_lock(&wq->mutex);
5463 pwq = unbound_pwq(wq, -1);
5464 raw_spin_lock_irq(&pwq->pool->lock);
5465 get_pwq(pwq);
5466 raw_spin_unlock_irq(&pwq->pool->lock);
5467 old_pwq = install_unbound_pwq(wq, cpu, pwq);
5468 out_unlock:
5469 mutex_unlock(&wq->mutex);
5470 put_pwq_unlocked(old_pwq);
5471 }
5472
alloc_and_link_pwqs(struct workqueue_struct * wq)5473 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
5474 {
5475 bool highpri = wq->flags & WQ_HIGHPRI;
5476 int cpu, ret;
5477
5478 lockdep_assert_held(&wq_pool_mutex);
5479
5480 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
5481 if (!wq->cpu_pwq)
5482 goto enomem;
5483
5484 if (!(wq->flags & WQ_UNBOUND)) {
5485 struct worker_pool __percpu *pools;
5486
5487 if (wq->flags & WQ_BH)
5488 pools = bh_worker_pools;
5489 else
5490 pools = cpu_worker_pools;
5491
5492 for_each_possible_cpu(cpu) {
5493 struct pool_workqueue **pwq_p;
5494 struct worker_pool *pool;
5495
5496 pool = &(per_cpu_ptr(pools, cpu)[highpri]);
5497 pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu);
5498
5499 *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
5500 pool->node);
5501 if (!*pwq_p)
5502 goto enomem;
5503
5504 init_pwq(*pwq_p, wq, pool);
5505
5506 mutex_lock(&wq->mutex);
5507 link_pwq(*pwq_p);
5508 mutex_unlock(&wq->mutex);
5509 }
5510 return 0;
5511 }
5512
5513 if (wq->flags & __WQ_ORDERED) {
5514 struct pool_workqueue *dfl_pwq;
5515
5516 ret = apply_workqueue_attrs_locked(wq, ordered_wq_attrs[highpri]);
5517 /* there should only be single pwq for ordering guarantee */
5518 dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5519 WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5520 wq->pwqs.prev != &dfl_pwq->pwqs_node),
5521 "ordering guarantee broken for workqueue %s\n", wq->name);
5522 } else {
5523 ret = apply_workqueue_attrs_locked(wq, unbound_std_wq_attrs[highpri]);
5524 }
5525
5526 return ret;
5527
5528 enomem:
5529 if (wq->cpu_pwq) {
5530 for_each_possible_cpu(cpu) {
5531 struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5532
5533 if (pwq)
5534 kmem_cache_free(pwq_cache, pwq);
5535 }
5536 free_percpu(wq->cpu_pwq);
5537 wq->cpu_pwq = NULL;
5538 }
5539 return -ENOMEM;
5540 }
5541
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)5542 static int wq_clamp_max_active(int max_active, unsigned int flags,
5543 const char *name)
5544 {
5545 if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
5546 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
5547 max_active, name, 1, WQ_MAX_ACTIVE);
5548
5549 return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
5550 }
5551
5552 /*
5553 * Workqueues which may be used during memory reclaim should have a rescuer
5554 * to guarantee forward progress.
5555 */
init_rescuer(struct workqueue_struct * wq)5556 static int init_rescuer(struct workqueue_struct *wq)
5557 {
5558 struct worker *rescuer;
5559 char id_buf[WORKER_ID_LEN];
5560 int ret;
5561
5562 lockdep_assert_held(&wq_pool_mutex);
5563
5564 if (!(wq->flags & WQ_MEM_RECLAIM))
5565 return 0;
5566
5567 rescuer = alloc_worker(NUMA_NO_NODE);
5568 if (!rescuer) {
5569 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5570 wq->name);
5571 return -ENOMEM;
5572 }
5573
5574 rescuer->rescue_wq = wq;
5575 format_worker_id(id_buf, sizeof(id_buf), rescuer, NULL);
5576
5577 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", id_buf);
5578 if (IS_ERR(rescuer->task)) {
5579 ret = PTR_ERR(rescuer->task);
5580 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5581 wq->name, ERR_PTR(ret));
5582 kfree(rescuer);
5583 return ret;
5584 }
5585
5586 wq->rescuer = rescuer;
5587 if (wq->flags & WQ_UNBOUND)
5588 kthread_bind_mask(rescuer->task, unbound_effective_cpumask(wq));
5589 else
5590 kthread_bind_mask(rescuer->task, cpu_possible_mask);
5591 wake_up_process(rescuer->task);
5592
5593 return 0;
5594 }
5595
5596 /**
5597 * wq_adjust_max_active - update a wq's max_active to the current setting
5598 * @wq: target workqueue
5599 *
5600 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5601 * activate inactive work items accordingly. If @wq is freezing, clear
5602 * @wq->max_active to zero.
5603 */
wq_adjust_max_active(struct workqueue_struct * wq)5604 static void wq_adjust_max_active(struct workqueue_struct *wq)
5605 {
5606 bool activated;
5607 int new_max, new_min;
5608
5609 lockdep_assert_held(&wq->mutex);
5610
5611 if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5612 new_max = 0;
5613 new_min = 0;
5614 } else {
5615 new_max = wq->saved_max_active;
5616 new_min = wq->saved_min_active;
5617 }
5618
5619 if (wq->max_active == new_max && wq->min_active == new_min)
5620 return;
5621
5622 /*
5623 * Update @wq->max/min_active and then kick inactive work items if more
5624 * active work items are allowed. This doesn't break work item ordering
5625 * because new work items are always queued behind existing inactive
5626 * work items if there are any.
5627 */
5628 WRITE_ONCE(wq->max_active, new_max);
5629 WRITE_ONCE(wq->min_active, new_min);
5630
5631 if (wq->flags & WQ_UNBOUND)
5632 wq_update_node_max_active(wq, -1);
5633
5634 if (new_max == 0)
5635 return;
5636
5637 /*
5638 * Round-robin through pwq's activating the first inactive work item
5639 * until max_active is filled.
5640 */
5641 do {
5642 struct pool_workqueue *pwq;
5643
5644 activated = false;
5645 for_each_pwq(pwq, wq) {
5646 unsigned long irq_flags;
5647
5648 /* can be called during early boot w/ irq disabled */
5649 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
5650 if (pwq_activate_first_inactive(pwq, true)) {
5651 activated = true;
5652 kick_pool(pwq->pool);
5653 }
5654 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
5655 }
5656 } while (activated);
5657 }
5658
5659 __printf(1, 0)
__alloc_workqueue(const char * fmt,unsigned int flags,int max_active,va_list args)5660 static struct workqueue_struct *__alloc_workqueue(const char *fmt,
5661 unsigned int flags,
5662 int max_active, va_list args)
5663 {
5664 struct workqueue_struct *wq;
5665 size_t wq_size;
5666 int name_len;
5667
5668 if (flags & WQ_BH) {
5669 if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS))
5670 return NULL;
5671 if (WARN_ON_ONCE(max_active))
5672 return NULL;
5673 }
5674
5675 /* see the comment above the definition of WQ_POWER_EFFICIENT */
5676 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5677 flags |= WQ_UNBOUND;
5678
5679 /* allocate wq and format name */
5680 if (flags & WQ_UNBOUND)
5681 wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5682 else
5683 wq_size = sizeof(*wq);
5684
5685 wq = kzalloc(wq_size, GFP_KERNEL);
5686 if (!wq)
5687 return NULL;
5688
5689 if (flags & WQ_UNBOUND) {
5690 wq->unbound_attrs = alloc_workqueue_attrs();
5691 if (!wq->unbound_attrs)
5692 goto err_free_wq;
5693 }
5694
5695 name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
5696
5697 if (name_len >= WQ_NAME_LEN)
5698 pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5699 wq->name);
5700
5701 if (flags & WQ_BH) {
5702 /*
5703 * BH workqueues always share a single execution context per CPU
5704 * and don't impose any max_active limit.
5705 */
5706 max_active = INT_MAX;
5707 } else {
5708 max_active = max_active ?: WQ_DFL_ACTIVE;
5709 max_active = wq_clamp_max_active(max_active, flags, wq->name);
5710 }
5711
5712 /* init wq */
5713 wq->flags = flags;
5714 wq->max_active = max_active;
5715 wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5716 wq->saved_max_active = wq->max_active;
5717 wq->saved_min_active = wq->min_active;
5718 mutex_init(&wq->mutex);
5719 atomic_set(&wq->nr_pwqs_to_flush, 0);
5720 INIT_LIST_HEAD(&wq->pwqs);
5721 INIT_LIST_HEAD(&wq->flusher_queue);
5722 INIT_LIST_HEAD(&wq->flusher_overflow);
5723 INIT_LIST_HEAD(&wq->maydays);
5724
5725 INIT_LIST_HEAD(&wq->list);
5726
5727 if (flags & WQ_UNBOUND) {
5728 if (alloc_node_nr_active(wq->node_nr_active) < 0)
5729 goto err_free_wq;
5730 }
5731
5732 /*
5733 * wq_pool_mutex protects the workqueues list, allocations of PWQs,
5734 * and the global freeze state.
5735 */
5736 apply_wqattrs_lock();
5737
5738 if (alloc_and_link_pwqs(wq) < 0)
5739 goto err_unlock_free_node_nr_active;
5740
5741 mutex_lock(&wq->mutex);
5742 wq_adjust_max_active(wq);
5743 mutex_unlock(&wq->mutex);
5744
5745 list_add_tail_rcu(&wq->list, &workqueues);
5746
5747 if (wq_online && init_rescuer(wq) < 0)
5748 goto err_unlock_destroy;
5749
5750 apply_wqattrs_unlock();
5751
5752 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5753 goto err_destroy;
5754
5755 return wq;
5756
5757 err_unlock_free_node_nr_active:
5758 apply_wqattrs_unlock();
5759 /*
5760 * Failed alloc_and_link_pwqs() may leave pending pwq->release_work,
5761 * flushing the pwq_release_worker ensures that the pwq_release_workfn()
5762 * completes before calling kfree(wq).
5763 */
5764 if (wq->flags & WQ_UNBOUND) {
5765 kthread_flush_worker(pwq_release_worker);
5766 free_node_nr_active(wq->node_nr_active);
5767 }
5768 err_free_wq:
5769 free_workqueue_attrs(wq->unbound_attrs);
5770 kfree(wq);
5771 return NULL;
5772 err_unlock_destroy:
5773 apply_wqattrs_unlock();
5774 err_destroy:
5775 destroy_workqueue(wq);
5776 return NULL;
5777 }
5778
5779 __printf(1, 4)
alloc_workqueue(const char * fmt,unsigned int flags,int max_active,...)5780 struct workqueue_struct *alloc_workqueue(const char *fmt,
5781 unsigned int flags,
5782 int max_active, ...)
5783 {
5784 struct workqueue_struct *wq;
5785 va_list args;
5786
5787 va_start(args, max_active);
5788 wq = __alloc_workqueue(fmt, flags, max_active, args);
5789 va_end(args);
5790 if (!wq)
5791 return NULL;
5792
5793 wq_init_lockdep(wq);
5794
5795 return wq;
5796 }
5797 EXPORT_SYMBOL_GPL(alloc_workqueue);
5798
5799 #ifdef CONFIG_LOCKDEP
5800 __printf(1, 5)
5801 struct workqueue_struct *
alloc_workqueue_lockdep_map(const char * fmt,unsigned int flags,int max_active,struct lockdep_map * lockdep_map,...)5802 alloc_workqueue_lockdep_map(const char *fmt, unsigned int flags,
5803 int max_active, struct lockdep_map *lockdep_map, ...)
5804 {
5805 struct workqueue_struct *wq;
5806 va_list args;
5807
5808 va_start(args, lockdep_map);
5809 wq = __alloc_workqueue(fmt, flags, max_active, args);
5810 va_end(args);
5811 if (!wq)
5812 return NULL;
5813
5814 wq->lockdep_map = lockdep_map;
5815
5816 return wq;
5817 }
5818 EXPORT_SYMBOL_GPL(alloc_workqueue_lockdep_map);
5819 #endif
5820
pwq_busy(struct pool_workqueue * pwq)5821 static bool pwq_busy(struct pool_workqueue *pwq)
5822 {
5823 int i;
5824
5825 for (i = 0; i < WORK_NR_COLORS; i++)
5826 if (pwq->nr_in_flight[i])
5827 return true;
5828
5829 if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
5830 return true;
5831 if (!pwq_is_empty(pwq))
5832 return true;
5833
5834 return false;
5835 }
5836
5837 /**
5838 * destroy_workqueue - safely terminate a workqueue
5839 * @wq: target workqueue
5840 *
5841 * Safely destroy a workqueue. All work currently pending will be done first.
5842 *
5843 * This function does NOT guarantee that non-pending work that has been
5844 * submitted with queue_delayed_work() and similar functions will be done
5845 * before destroying the workqueue. The fundamental problem is that, currently,
5846 * the workqueue has no way of accessing non-pending delayed_work. delayed_work
5847 * is only linked on the timer-side. All delayed_work must, therefore, be
5848 * canceled before calling this function.
5849 *
5850 * TODO: It would be better if the problem described above wouldn't exist and
5851 * destroy_workqueue() would cleanly cancel all pending and non-pending
5852 * delayed_work.
5853 */
destroy_workqueue(struct workqueue_struct * wq)5854 void destroy_workqueue(struct workqueue_struct *wq)
5855 {
5856 struct pool_workqueue *pwq;
5857 int cpu;
5858
5859 /*
5860 * Remove it from sysfs first so that sanity check failure doesn't
5861 * lead to sysfs name conflicts.
5862 */
5863 workqueue_sysfs_unregister(wq);
5864
5865 /* mark the workqueue destruction is in progress */
5866 mutex_lock(&wq->mutex);
5867 wq->flags |= __WQ_DESTROYING;
5868 mutex_unlock(&wq->mutex);
5869
5870 /* drain it before proceeding with destruction */
5871 drain_workqueue(wq);
5872
5873 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5874 if (wq->rescuer) {
5875 struct worker *rescuer = wq->rescuer;
5876
5877 /* this prevents new queueing */
5878 raw_spin_lock_irq(&wq_mayday_lock);
5879 wq->rescuer = NULL;
5880 raw_spin_unlock_irq(&wq_mayday_lock);
5881
5882 /* rescuer will empty maydays list before exiting */
5883 kthread_stop(rescuer->task);
5884 kfree(rescuer);
5885 }
5886
5887 /*
5888 * Sanity checks - grab all the locks so that we wait for all
5889 * in-flight operations which may do put_pwq().
5890 */
5891 mutex_lock(&wq_pool_mutex);
5892 mutex_lock(&wq->mutex);
5893 for_each_pwq(pwq, wq) {
5894 raw_spin_lock_irq(&pwq->pool->lock);
5895 if (WARN_ON(pwq_busy(pwq))) {
5896 pr_warn("%s: %s has the following busy pwq\n",
5897 __func__, wq->name);
5898 show_pwq(pwq);
5899 raw_spin_unlock_irq(&pwq->pool->lock);
5900 mutex_unlock(&wq->mutex);
5901 mutex_unlock(&wq_pool_mutex);
5902 show_one_workqueue(wq);
5903 return;
5904 }
5905 raw_spin_unlock_irq(&pwq->pool->lock);
5906 }
5907 mutex_unlock(&wq->mutex);
5908
5909 /*
5910 * wq list is used to freeze wq, remove from list after
5911 * flushing is complete in case freeze races us.
5912 */
5913 list_del_rcu(&wq->list);
5914 mutex_unlock(&wq_pool_mutex);
5915
5916 /*
5917 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5918 * to put the base refs. @wq will be auto-destroyed from the last
5919 * pwq_put. RCU read lock prevents @wq from going away from under us.
5920 */
5921 rcu_read_lock();
5922
5923 for_each_possible_cpu(cpu) {
5924 put_pwq_unlocked(unbound_pwq(wq, cpu));
5925 RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
5926 }
5927
5928 put_pwq_unlocked(unbound_pwq(wq, -1));
5929 RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
5930
5931 rcu_read_unlock();
5932 }
5933 EXPORT_SYMBOL_GPL(destroy_workqueue);
5934
5935 /**
5936 * workqueue_set_max_active - adjust max_active of a workqueue
5937 * @wq: target workqueue
5938 * @max_active: new max_active value.
5939 *
5940 * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5941 * comment.
5942 *
5943 * CONTEXT:
5944 * Don't call from IRQ context.
5945 */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)5946 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5947 {
5948 /* max_active doesn't mean anything for BH workqueues */
5949 if (WARN_ON(wq->flags & WQ_BH))
5950 return;
5951 /* disallow meddling with max_active for ordered workqueues */
5952 if (WARN_ON(wq->flags & __WQ_ORDERED))
5953 return;
5954
5955 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
5956
5957 mutex_lock(&wq->mutex);
5958
5959 wq->saved_max_active = max_active;
5960 if (wq->flags & WQ_UNBOUND)
5961 wq->saved_min_active = min(wq->saved_min_active, max_active);
5962
5963 wq_adjust_max_active(wq);
5964
5965 mutex_unlock(&wq->mutex);
5966 }
5967 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
5968
5969 /**
5970 * workqueue_set_min_active - adjust min_active of an unbound workqueue
5971 * @wq: target unbound workqueue
5972 * @min_active: new min_active value
5973 *
5974 * Set min_active of an unbound workqueue. Unlike other types of workqueues, an
5975 * unbound workqueue is not guaranteed to be able to process max_active
5976 * interdependent work items. Instead, an unbound workqueue is guaranteed to be
5977 * able to process min_active number of interdependent work items which is
5978 * %WQ_DFL_MIN_ACTIVE by default.
5979 *
5980 * Use this function to adjust the min_active value between 0 and the current
5981 * max_active.
5982 */
workqueue_set_min_active(struct workqueue_struct * wq,int min_active)5983 void workqueue_set_min_active(struct workqueue_struct *wq, int min_active)
5984 {
5985 /* min_active is only meaningful for non-ordered unbound workqueues */
5986 if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) !=
5987 WQ_UNBOUND))
5988 return;
5989
5990 mutex_lock(&wq->mutex);
5991 wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active);
5992 wq_adjust_max_active(wq);
5993 mutex_unlock(&wq->mutex);
5994 }
5995
5996 /**
5997 * current_work - retrieve %current task's work struct
5998 *
5999 * Determine if %current task is a workqueue worker and what it's working on.
6000 * Useful to find out the context that the %current task is running in.
6001 *
6002 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
6003 */
current_work(void)6004 struct work_struct *current_work(void)
6005 {
6006 struct worker *worker = current_wq_worker();
6007
6008 return worker ? worker->current_work : NULL;
6009 }
6010 EXPORT_SYMBOL(current_work);
6011
6012 /**
6013 * current_is_workqueue_rescuer - is %current workqueue rescuer?
6014 *
6015 * Determine whether %current is a workqueue rescuer. Can be used from
6016 * work functions to determine whether it's being run off the rescuer task.
6017 *
6018 * Return: %true if %current is a workqueue rescuer. %false otherwise.
6019 */
current_is_workqueue_rescuer(void)6020 bool current_is_workqueue_rescuer(void)
6021 {
6022 struct worker *worker = current_wq_worker();
6023
6024 return worker && worker->rescue_wq;
6025 }
6026
6027 /**
6028 * workqueue_congested - test whether a workqueue is congested
6029 * @cpu: CPU in question
6030 * @wq: target workqueue
6031 *
6032 * Test whether @wq's cpu workqueue for @cpu is congested. There is
6033 * no synchronization around this function and the test result is
6034 * unreliable and only useful as advisory hints or for debugging.
6035 *
6036 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
6037 *
6038 * With the exception of ordered workqueues, all workqueues have per-cpu
6039 * pool_workqueues, each with its own congested state. A workqueue being
6040 * congested on one CPU doesn't mean that the workqueue is contested on any
6041 * other CPUs.
6042 *
6043 * Return:
6044 * %true if congested, %false otherwise.
6045 */
workqueue_congested(int cpu,struct workqueue_struct * wq)6046 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
6047 {
6048 struct pool_workqueue *pwq;
6049 bool ret;
6050
6051 rcu_read_lock();
6052 preempt_disable();
6053
6054 if (cpu == WORK_CPU_UNBOUND)
6055 cpu = smp_processor_id();
6056
6057 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
6058 ret = !list_empty(&pwq->inactive_works);
6059
6060 preempt_enable();
6061 rcu_read_unlock();
6062
6063 return ret;
6064 }
6065 EXPORT_SYMBOL_GPL(workqueue_congested);
6066
6067 /**
6068 * work_busy - test whether a work is currently pending or running
6069 * @work: the work to be tested
6070 *
6071 * Test whether @work is currently pending or running. There is no
6072 * synchronization around this function and the test result is
6073 * unreliable and only useful as advisory hints or for debugging.
6074 *
6075 * Return:
6076 * OR'd bitmask of WORK_BUSY_* bits.
6077 */
work_busy(struct work_struct * work)6078 unsigned int work_busy(struct work_struct *work)
6079 {
6080 struct worker_pool *pool;
6081 unsigned long irq_flags;
6082 unsigned int ret = 0;
6083
6084 if (work_pending(work))
6085 ret |= WORK_BUSY_PENDING;
6086
6087 rcu_read_lock();
6088 pool = get_work_pool(work);
6089 if (pool) {
6090 raw_spin_lock_irqsave(&pool->lock, irq_flags);
6091 if (find_worker_executing_work(pool, work))
6092 ret |= WORK_BUSY_RUNNING;
6093 raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6094 }
6095 rcu_read_unlock();
6096
6097 return ret;
6098 }
6099 EXPORT_SYMBOL_GPL(work_busy);
6100
6101 /**
6102 * set_worker_desc - set description for the current work item
6103 * @fmt: printf-style format string
6104 * @...: arguments for the format string
6105 *
6106 * This function can be called by a running work function to describe what
6107 * the work item is about. If the worker task gets dumped, this
6108 * information will be printed out together to help debugging. The
6109 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
6110 */
set_worker_desc(const char * fmt,...)6111 void set_worker_desc(const char *fmt, ...)
6112 {
6113 struct worker *worker = current_wq_worker();
6114 va_list args;
6115
6116 if (worker) {
6117 va_start(args, fmt);
6118 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
6119 va_end(args);
6120 }
6121 }
6122 EXPORT_SYMBOL_GPL(set_worker_desc);
6123
6124 /**
6125 * print_worker_info - print out worker information and description
6126 * @log_lvl: the log level to use when printing
6127 * @task: target task
6128 *
6129 * If @task is a worker and currently executing a work item, print out the
6130 * name of the workqueue being serviced and worker description set with
6131 * set_worker_desc() by the currently executing work item.
6132 *
6133 * This function can be safely called on any task as long as the
6134 * task_struct itself is accessible. While safe, this function isn't
6135 * synchronized and may print out mixups or garbages of limited length.
6136 */
print_worker_info(const char * log_lvl,struct task_struct * task)6137 void print_worker_info(const char *log_lvl, struct task_struct *task)
6138 {
6139 work_func_t *fn = NULL;
6140 char name[WQ_NAME_LEN] = { };
6141 char desc[WORKER_DESC_LEN] = { };
6142 struct pool_workqueue *pwq = NULL;
6143 struct workqueue_struct *wq = NULL;
6144 struct worker *worker;
6145
6146 if (!(task->flags & PF_WQ_WORKER))
6147 return;
6148
6149 /*
6150 * This function is called without any synchronization and @task
6151 * could be in any state. Be careful with dereferences.
6152 */
6153 worker = kthread_probe_data(task);
6154
6155 /*
6156 * Carefully copy the associated workqueue's workfn, name and desc.
6157 * Keep the original last '\0' in case the original is garbage.
6158 */
6159 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
6160 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
6161 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
6162 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
6163 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
6164
6165 if (fn || name[0] || desc[0]) {
6166 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
6167 if (strcmp(name, desc))
6168 pr_cont(" (%s)", desc);
6169 pr_cont("\n");
6170 }
6171 }
6172
pr_cont_pool_info(struct worker_pool * pool)6173 static void pr_cont_pool_info(struct worker_pool *pool)
6174 {
6175 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
6176 if (pool->node != NUMA_NO_NODE)
6177 pr_cont(" node=%d", pool->node);
6178 pr_cont(" flags=0x%x", pool->flags);
6179 if (pool->flags & POOL_BH)
6180 pr_cont(" bh%s",
6181 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6182 else
6183 pr_cont(" nice=%d", pool->attrs->nice);
6184 }
6185
pr_cont_worker_id(struct worker * worker)6186 static void pr_cont_worker_id(struct worker *worker)
6187 {
6188 struct worker_pool *pool = worker->pool;
6189
6190 if (pool->flags & WQ_BH)
6191 pr_cont("bh%s",
6192 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6193 else
6194 pr_cont("%d%s", task_pid_nr(worker->task),
6195 worker->rescue_wq ? "(RESCUER)" : "");
6196 }
6197
6198 struct pr_cont_work_struct {
6199 bool comma;
6200 work_func_t func;
6201 long ctr;
6202 };
6203
pr_cont_work_flush(bool comma,work_func_t func,struct pr_cont_work_struct * pcwsp)6204 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
6205 {
6206 if (!pcwsp->ctr)
6207 goto out_record;
6208 if (func == pcwsp->func) {
6209 pcwsp->ctr++;
6210 return;
6211 }
6212 if (pcwsp->ctr == 1)
6213 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
6214 else
6215 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
6216 pcwsp->ctr = 0;
6217 out_record:
6218 if ((long)func == -1L)
6219 return;
6220 pcwsp->comma = comma;
6221 pcwsp->func = func;
6222 pcwsp->ctr = 1;
6223 }
6224
pr_cont_work(bool comma,struct work_struct * work,struct pr_cont_work_struct * pcwsp)6225 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
6226 {
6227 if (work->func == wq_barrier_func) {
6228 struct wq_barrier *barr;
6229
6230 barr = container_of(work, struct wq_barrier, work);
6231
6232 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6233 pr_cont("%s BAR(%d)", comma ? "," : "",
6234 task_pid_nr(barr->task));
6235 } else {
6236 if (!comma)
6237 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6238 pr_cont_work_flush(comma, work->func, pcwsp);
6239 }
6240 }
6241
show_pwq(struct pool_workqueue * pwq)6242 static void show_pwq(struct pool_workqueue *pwq)
6243 {
6244 struct pr_cont_work_struct pcws = { .ctr = 0, };
6245 struct worker_pool *pool = pwq->pool;
6246 struct work_struct *work;
6247 struct worker *worker;
6248 bool has_in_flight = false, has_pending = false;
6249 int bkt;
6250
6251 pr_info(" pwq %d:", pool->id);
6252 pr_cont_pool_info(pool);
6253
6254 pr_cont(" active=%d refcnt=%d%s\n",
6255 pwq->nr_active, pwq->refcnt,
6256 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
6257
6258 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6259 if (worker->current_pwq == pwq) {
6260 has_in_flight = true;
6261 break;
6262 }
6263 }
6264 if (has_in_flight) {
6265 bool comma = false;
6266
6267 pr_info(" in-flight:");
6268 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6269 if (worker->current_pwq != pwq)
6270 continue;
6271
6272 pr_cont(" %s", comma ? "," : "");
6273 pr_cont_worker_id(worker);
6274 pr_cont(":%ps", worker->current_func);
6275 list_for_each_entry(work, &worker->scheduled, entry)
6276 pr_cont_work(false, work, &pcws);
6277 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6278 comma = true;
6279 }
6280 pr_cont("\n");
6281 }
6282
6283 list_for_each_entry(work, &pool->worklist, entry) {
6284 if (get_work_pwq(work) == pwq) {
6285 has_pending = true;
6286 break;
6287 }
6288 }
6289 if (has_pending) {
6290 bool comma = false;
6291
6292 pr_info(" pending:");
6293 list_for_each_entry(work, &pool->worklist, entry) {
6294 if (get_work_pwq(work) != pwq)
6295 continue;
6296
6297 pr_cont_work(comma, work, &pcws);
6298 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6299 }
6300 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6301 pr_cont("\n");
6302 }
6303
6304 if (!list_empty(&pwq->inactive_works)) {
6305 bool comma = false;
6306
6307 pr_info(" inactive:");
6308 list_for_each_entry(work, &pwq->inactive_works, entry) {
6309 pr_cont_work(comma, work, &pcws);
6310 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6311 }
6312 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6313 pr_cont("\n");
6314 }
6315 }
6316
6317 /**
6318 * show_one_workqueue - dump state of specified workqueue
6319 * @wq: workqueue whose state will be printed
6320 */
show_one_workqueue(struct workqueue_struct * wq)6321 void show_one_workqueue(struct workqueue_struct *wq)
6322 {
6323 struct pool_workqueue *pwq;
6324 bool idle = true;
6325 unsigned long irq_flags;
6326
6327 for_each_pwq(pwq, wq) {
6328 if (!pwq_is_empty(pwq)) {
6329 idle = false;
6330 break;
6331 }
6332 }
6333 if (idle) /* Nothing to print for idle workqueue */
6334 return;
6335
6336 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
6337
6338 for_each_pwq(pwq, wq) {
6339 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
6340 if (!pwq_is_empty(pwq)) {
6341 /*
6342 * Defer printing to avoid deadlocks in console
6343 * drivers that queue work while holding locks
6344 * also taken in their write paths.
6345 */
6346 printk_deferred_enter();
6347 show_pwq(pwq);
6348 printk_deferred_exit();
6349 }
6350 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
6351 /*
6352 * We could be printing a lot from atomic context, e.g.
6353 * sysrq-t -> show_all_workqueues(). Avoid triggering
6354 * hard lockup.
6355 */
6356 touch_nmi_watchdog();
6357 }
6358
6359 }
6360
6361 /**
6362 * show_one_worker_pool - dump state of specified worker pool
6363 * @pool: worker pool whose state will be printed
6364 */
show_one_worker_pool(struct worker_pool * pool)6365 static void show_one_worker_pool(struct worker_pool *pool)
6366 {
6367 struct worker *worker;
6368 bool first = true;
6369 unsigned long irq_flags;
6370 unsigned long hung = 0;
6371
6372 raw_spin_lock_irqsave(&pool->lock, irq_flags);
6373 if (pool->nr_workers == pool->nr_idle)
6374 goto next_pool;
6375
6376 /* How long the first pending work is waiting for a worker. */
6377 if (!list_empty(&pool->worklist))
6378 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
6379
6380 /*
6381 * Defer printing to avoid deadlocks in console drivers that
6382 * queue work while holding locks also taken in their write
6383 * paths.
6384 */
6385 printk_deferred_enter();
6386 pr_info("pool %d:", pool->id);
6387 pr_cont_pool_info(pool);
6388 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
6389 if (pool->manager)
6390 pr_cont(" manager: %d",
6391 task_pid_nr(pool->manager->task));
6392 list_for_each_entry(worker, &pool->idle_list, entry) {
6393 pr_cont(" %s", first ? "idle: " : "");
6394 pr_cont_worker_id(worker);
6395 first = false;
6396 }
6397 pr_cont("\n");
6398 printk_deferred_exit();
6399 next_pool:
6400 raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6401 /*
6402 * We could be printing a lot from atomic context, e.g.
6403 * sysrq-t -> show_all_workqueues(). Avoid triggering
6404 * hard lockup.
6405 */
6406 touch_nmi_watchdog();
6407
6408 }
6409
6410 /**
6411 * show_all_workqueues - dump workqueue state
6412 *
6413 * Called from a sysrq handler and prints out all busy workqueues and pools.
6414 */
show_all_workqueues(void)6415 void show_all_workqueues(void)
6416 {
6417 struct workqueue_struct *wq;
6418 struct worker_pool *pool;
6419 int pi;
6420
6421 rcu_read_lock();
6422
6423 pr_info("Showing busy workqueues and worker pools:\n");
6424
6425 list_for_each_entry_rcu(wq, &workqueues, list)
6426 show_one_workqueue(wq);
6427
6428 for_each_pool(pool, pi)
6429 show_one_worker_pool(pool);
6430
6431 rcu_read_unlock();
6432 }
6433
6434 /**
6435 * show_freezable_workqueues - dump freezable workqueue state
6436 *
6437 * Called from try_to_freeze_tasks() and prints out all freezable workqueues
6438 * still busy.
6439 */
show_freezable_workqueues(void)6440 void show_freezable_workqueues(void)
6441 {
6442 struct workqueue_struct *wq;
6443
6444 rcu_read_lock();
6445
6446 pr_info("Showing freezable workqueues that are still busy:\n");
6447
6448 list_for_each_entry_rcu(wq, &workqueues, list) {
6449 if (!(wq->flags & WQ_FREEZABLE))
6450 continue;
6451 show_one_workqueue(wq);
6452 }
6453
6454 rcu_read_unlock();
6455 }
6456
6457 /* used to show worker information through /proc/PID/{comm,stat,status} */
wq_worker_comm(char * buf,size_t size,struct task_struct * task)6458 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
6459 {
6460 /* stabilize PF_WQ_WORKER and worker pool association */
6461 mutex_lock(&wq_pool_attach_mutex);
6462
6463 if (task->flags & PF_WQ_WORKER) {
6464 struct worker *worker = kthread_data(task);
6465 struct worker_pool *pool = worker->pool;
6466 int off;
6467
6468 off = format_worker_id(buf, size, worker, pool);
6469
6470 if (pool) {
6471 raw_spin_lock_irq(&pool->lock);
6472 /*
6473 * ->desc tracks information (wq name or
6474 * set_worker_desc()) for the latest execution. If
6475 * current, prepend '+', otherwise '-'.
6476 */
6477 if (worker->desc[0] != '\0') {
6478 if (worker->current_work)
6479 scnprintf(buf + off, size - off, "+%s",
6480 worker->desc);
6481 else
6482 scnprintf(buf + off, size - off, "-%s",
6483 worker->desc);
6484 }
6485 raw_spin_unlock_irq(&pool->lock);
6486 }
6487 } else {
6488 strscpy(buf, task->comm, size);
6489 }
6490
6491 mutex_unlock(&wq_pool_attach_mutex);
6492 }
6493
6494 #ifdef CONFIG_SMP
6495
6496 /*
6497 * CPU hotplug.
6498 *
6499 * There are two challenges in supporting CPU hotplug. Firstly, there
6500 * are a lot of assumptions on strong associations among work, pwq and
6501 * pool which make migrating pending and scheduled works very
6502 * difficult to implement without impacting hot paths. Secondly,
6503 * worker pools serve mix of short, long and very long running works making
6504 * blocked draining impractical.
6505 *
6506 * This is solved by allowing the pools to be disassociated from the CPU
6507 * running as an unbound one and allowing it to be reattached later if the
6508 * cpu comes back online.
6509 */
6510
unbind_workers(int cpu)6511 static void unbind_workers(int cpu)
6512 {
6513 struct worker_pool *pool;
6514 struct worker *worker;
6515
6516 for_each_cpu_worker_pool(pool, cpu) {
6517 mutex_lock(&wq_pool_attach_mutex);
6518 raw_spin_lock_irq(&pool->lock);
6519
6520 /*
6521 * We've blocked all attach/detach operations. Make all workers
6522 * unbound and set DISASSOCIATED. Before this, all workers
6523 * must be on the cpu. After this, they may become diasporas.
6524 * And the preemption disabled section in their sched callbacks
6525 * are guaranteed to see WORKER_UNBOUND since the code here
6526 * is on the same cpu.
6527 */
6528 for_each_pool_worker(worker, pool)
6529 worker->flags |= WORKER_UNBOUND;
6530
6531 pool->flags |= POOL_DISASSOCIATED;
6532
6533 /*
6534 * The handling of nr_running in sched callbacks are disabled
6535 * now. Zap nr_running. After this, nr_running stays zero and
6536 * need_more_worker() and keep_working() are always true as
6537 * long as the worklist is not empty. This pool now behaves as
6538 * an unbound (in terms of concurrency management) pool which
6539 * are served by workers tied to the pool.
6540 */
6541 pool->nr_running = 0;
6542
6543 /*
6544 * With concurrency management just turned off, a busy
6545 * worker blocking could lead to lengthy stalls. Kick off
6546 * unbound chain execution of currently pending work items.
6547 */
6548 kick_pool(pool);
6549
6550 raw_spin_unlock_irq(&pool->lock);
6551
6552 for_each_pool_worker(worker, pool)
6553 unbind_worker(worker);
6554
6555 mutex_unlock(&wq_pool_attach_mutex);
6556 }
6557 }
6558
6559 /**
6560 * rebind_workers - rebind all workers of a pool to the associated CPU
6561 * @pool: pool of interest
6562 *
6563 * @pool->cpu is coming online. Rebind all workers to the CPU.
6564 */
rebind_workers(struct worker_pool * pool)6565 static void rebind_workers(struct worker_pool *pool)
6566 {
6567 struct worker *worker;
6568
6569 lockdep_assert_held(&wq_pool_attach_mutex);
6570
6571 /*
6572 * Restore CPU affinity of all workers. As all idle workers should
6573 * be on the run-queue of the associated CPU before any local
6574 * wake-ups for concurrency management happen, restore CPU affinity
6575 * of all workers first and then clear UNBOUND. As we're called
6576 * from CPU_ONLINE, the following shouldn't fail.
6577 */
6578 for_each_pool_worker(worker, pool) {
6579 kthread_set_per_cpu(worker->task, pool->cpu);
6580 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
6581 pool_allowed_cpus(pool)) < 0);
6582 }
6583
6584 raw_spin_lock_irq(&pool->lock);
6585
6586 pool->flags &= ~POOL_DISASSOCIATED;
6587
6588 for_each_pool_worker(worker, pool) {
6589 unsigned int worker_flags = worker->flags;
6590
6591 /*
6592 * We want to clear UNBOUND but can't directly call
6593 * worker_clr_flags() or adjust nr_running. Atomically
6594 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
6595 * @worker will clear REBOUND using worker_clr_flags() when
6596 * it initiates the next execution cycle thus restoring
6597 * concurrency management. Note that when or whether
6598 * @worker clears REBOUND doesn't affect correctness.
6599 *
6600 * WRITE_ONCE() is necessary because @worker->flags may be
6601 * tested without holding any lock in
6602 * wq_worker_running(). Without it, NOT_RUNNING test may
6603 * fail incorrectly leading to premature concurrency
6604 * management operations.
6605 */
6606 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
6607 worker_flags |= WORKER_REBOUND;
6608 worker_flags &= ~WORKER_UNBOUND;
6609 WRITE_ONCE(worker->flags, worker_flags);
6610 }
6611
6612 raw_spin_unlock_irq(&pool->lock);
6613 }
6614
6615 /**
6616 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6617 * @pool: unbound pool of interest
6618 * @cpu: the CPU which is coming up
6619 *
6620 * An unbound pool may end up with a cpumask which doesn't have any online
6621 * CPUs. When a worker of such pool get scheduled, the scheduler resets
6622 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
6623 * online CPU before, cpus_allowed of all its workers should be restored.
6624 */
restore_unbound_workers_cpumask(struct worker_pool * pool,int cpu)6625 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6626 {
6627 static cpumask_t cpumask;
6628 struct worker *worker;
6629
6630 lockdep_assert_held(&wq_pool_attach_mutex);
6631
6632 /* is @cpu allowed for @pool? */
6633 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6634 return;
6635
6636 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
6637
6638 /* as we're called from CPU_ONLINE, the following shouldn't fail */
6639 for_each_pool_worker(worker, pool)
6640 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
6641 }
6642
workqueue_prepare_cpu(unsigned int cpu)6643 int workqueue_prepare_cpu(unsigned int cpu)
6644 {
6645 struct worker_pool *pool;
6646
6647 for_each_cpu_worker_pool(pool, cpu) {
6648 if (pool->nr_workers)
6649 continue;
6650 if (!create_worker(pool))
6651 return -ENOMEM;
6652 }
6653 return 0;
6654 }
6655
workqueue_online_cpu(unsigned int cpu)6656 int workqueue_online_cpu(unsigned int cpu)
6657 {
6658 struct worker_pool *pool;
6659 struct workqueue_struct *wq;
6660 int pi;
6661
6662 mutex_lock(&wq_pool_mutex);
6663
6664 cpumask_set_cpu(cpu, wq_online_cpumask);
6665
6666 for_each_pool(pool, pi) {
6667 /* BH pools aren't affected by hotplug */
6668 if (pool->flags & POOL_BH)
6669 continue;
6670
6671 mutex_lock(&wq_pool_attach_mutex);
6672 if (pool->cpu == cpu)
6673 rebind_workers(pool);
6674 else if (pool->cpu < 0)
6675 restore_unbound_workers_cpumask(pool, cpu);
6676 mutex_unlock(&wq_pool_attach_mutex);
6677 }
6678
6679 /* update pod affinity of unbound workqueues */
6680 list_for_each_entry(wq, &workqueues, list) {
6681 struct workqueue_attrs *attrs = wq->unbound_attrs;
6682
6683 if (attrs) {
6684 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6685 int tcpu;
6686
6687 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6688 unbound_wq_update_pwq(wq, tcpu);
6689
6690 mutex_lock(&wq->mutex);
6691 wq_update_node_max_active(wq, -1);
6692 mutex_unlock(&wq->mutex);
6693 }
6694 }
6695
6696 mutex_unlock(&wq_pool_mutex);
6697 return 0;
6698 }
6699
workqueue_offline_cpu(unsigned int cpu)6700 int workqueue_offline_cpu(unsigned int cpu)
6701 {
6702 struct workqueue_struct *wq;
6703
6704 /* unbinding per-cpu workers should happen on the local CPU */
6705 if (WARN_ON(cpu != smp_processor_id()))
6706 return -1;
6707
6708 unbind_workers(cpu);
6709
6710 /* update pod affinity of unbound workqueues */
6711 mutex_lock(&wq_pool_mutex);
6712
6713 cpumask_clear_cpu(cpu, wq_online_cpumask);
6714
6715 list_for_each_entry(wq, &workqueues, list) {
6716 struct workqueue_attrs *attrs = wq->unbound_attrs;
6717
6718 if (attrs) {
6719 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6720 int tcpu;
6721
6722 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6723 unbound_wq_update_pwq(wq, tcpu);
6724
6725 mutex_lock(&wq->mutex);
6726 wq_update_node_max_active(wq, cpu);
6727 mutex_unlock(&wq->mutex);
6728 }
6729 }
6730 mutex_unlock(&wq_pool_mutex);
6731
6732 return 0;
6733 }
6734
6735 struct work_for_cpu {
6736 struct work_struct work;
6737 long (*fn)(void *);
6738 void *arg;
6739 long ret;
6740 };
6741
work_for_cpu_fn(struct work_struct * work)6742 static void work_for_cpu_fn(struct work_struct *work)
6743 {
6744 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6745
6746 wfc->ret = wfc->fn(wfc->arg);
6747 }
6748
6749 /**
6750 * work_on_cpu_key - run a function in thread context on a particular cpu
6751 * @cpu: the cpu to run on
6752 * @fn: the function to run
6753 * @arg: the function arg
6754 * @key: The lock class key for lock debugging purposes
6755 *
6756 * It is up to the caller to ensure that the cpu doesn't go offline.
6757 * The caller must not hold any locks which would prevent @fn from completing.
6758 *
6759 * Return: The value @fn returns.
6760 */
work_on_cpu_key(int cpu,long (* fn)(void *),void * arg,struct lock_class_key * key)6761 long work_on_cpu_key(int cpu, long (*fn)(void *),
6762 void *arg, struct lock_class_key *key)
6763 {
6764 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6765
6766 INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6767 schedule_work_on(cpu, &wfc.work);
6768 flush_work(&wfc.work);
6769 destroy_work_on_stack(&wfc.work);
6770 return wfc.ret;
6771 }
6772 EXPORT_SYMBOL_GPL(work_on_cpu_key);
6773
6774 /**
6775 * work_on_cpu_safe_key - run a function in thread context on a particular cpu
6776 * @cpu: the cpu to run on
6777 * @fn: the function to run
6778 * @arg: the function argument
6779 * @key: The lock class key for lock debugging purposes
6780 *
6781 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
6782 * any locks which would prevent @fn from completing.
6783 *
6784 * Return: The value @fn returns.
6785 */
work_on_cpu_safe_key(int cpu,long (* fn)(void *),void * arg,struct lock_class_key * key)6786 long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
6787 void *arg, struct lock_class_key *key)
6788 {
6789 long ret = -ENODEV;
6790
6791 cpus_read_lock();
6792 if (cpu_online(cpu))
6793 ret = work_on_cpu_key(cpu, fn, arg, key);
6794 cpus_read_unlock();
6795 return ret;
6796 }
6797 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
6798 #endif /* CONFIG_SMP */
6799
6800 #ifdef CONFIG_FREEZER
6801
6802 /**
6803 * freeze_workqueues_begin - begin freezing workqueues
6804 *
6805 * Start freezing workqueues. After this function returns, all freezable
6806 * workqueues will queue new works to their inactive_works list instead of
6807 * pool->worklist.
6808 *
6809 * CONTEXT:
6810 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6811 */
freeze_workqueues_begin(void)6812 void freeze_workqueues_begin(void)
6813 {
6814 struct workqueue_struct *wq;
6815
6816 mutex_lock(&wq_pool_mutex);
6817
6818 WARN_ON_ONCE(workqueue_freezing);
6819 workqueue_freezing = true;
6820
6821 list_for_each_entry(wq, &workqueues, list) {
6822 mutex_lock(&wq->mutex);
6823 wq_adjust_max_active(wq);
6824 mutex_unlock(&wq->mutex);
6825 }
6826
6827 mutex_unlock(&wq_pool_mutex);
6828 }
6829
6830 /**
6831 * freeze_workqueues_busy - are freezable workqueues still busy?
6832 *
6833 * Check whether freezing is complete. This function must be called
6834 * between freeze_workqueues_begin() and thaw_workqueues().
6835 *
6836 * CONTEXT:
6837 * Grabs and releases wq_pool_mutex.
6838 *
6839 * Return:
6840 * %true if some freezable workqueues are still busy. %false if freezing
6841 * is complete.
6842 */
freeze_workqueues_busy(void)6843 bool freeze_workqueues_busy(void)
6844 {
6845 bool busy = false;
6846 struct workqueue_struct *wq;
6847 struct pool_workqueue *pwq;
6848
6849 mutex_lock(&wq_pool_mutex);
6850
6851 WARN_ON_ONCE(!workqueue_freezing);
6852
6853 list_for_each_entry(wq, &workqueues, list) {
6854 if (!(wq->flags & WQ_FREEZABLE))
6855 continue;
6856 /*
6857 * nr_active is monotonically decreasing. It's safe
6858 * to peek without lock.
6859 */
6860 rcu_read_lock();
6861 for_each_pwq(pwq, wq) {
6862 WARN_ON_ONCE(pwq->nr_active < 0);
6863 if (pwq->nr_active) {
6864 busy = true;
6865 rcu_read_unlock();
6866 goto out_unlock;
6867 }
6868 }
6869 rcu_read_unlock();
6870 }
6871 out_unlock:
6872 mutex_unlock(&wq_pool_mutex);
6873 return busy;
6874 }
6875
6876 /**
6877 * thaw_workqueues - thaw workqueues
6878 *
6879 * Thaw workqueues. Normal queueing is restored and all collected
6880 * frozen works are transferred to their respective pool worklists.
6881 *
6882 * CONTEXT:
6883 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6884 */
thaw_workqueues(void)6885 void thaw_workqueues(void)
6886 {
6887 struct workqueue_struct *wq;
6888
6889 mutex_lock(&wq_pool_mutex);
6890
6891 if (!workqueue_freezing)
6892 goto out_unlock;
6893
6894 workqueue_freezing = false;
6895
6896 /* restore max_active and repopulate worklist */
6897 list_for_each_entry(wq, &workqueues, list) {
6898 mutex_lock(&wq->mutex);
6899 wq_adjust_max_active(wq);
6900 mutex_unlock(&wq->mutex);
6901 }
6902
6903 out_unlock:
6904 mutex_unlock(&wq_pool_mutex);
6905 }
6906 #endif /* CONFIG_FREEZER */
6907
workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)6908 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
6909 {
6910 LIST_HEAD(ctxs);
6911 int ret = 0;
6912 struct workqueue_struct *wq;
6913 struct apply_wqattrs_ctx *ctx, *n;
6914
6915 lockdep_assert_held(&wq_pool_mutex);
6916
6917 list_for_each_entry(wq, &workqueues, list) {
6918 if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING))
6919 continue;
6920
6921 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
6922 if (IS_ERR(ctx)) {
6923 ret = PTR_ERR(ctx);
6924 break;
6925 }
6926
6927 list_add_tail(&ctx->list, &ctxs);
6928 }
6929
6930 list_for_each_entry_safe(ctx, n, &ctxs, list) {
6931 if (!ret)
6932 apply_wqattrs_commit(ctx);
6933 apply_wqattrs_cleanup(ctx);
6934 }
6935
6936 if (!ret) {
6937 mutex_lock(&wq_pool_attach_mutex);
6938 cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6939 mutex_unlock(&wq_pool_attach_mutex);
6940 }
6941 return ret;
6942 }
6943
6944 /**
6945 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
6946 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
6947 *
6948 * This function can be called from cpuset code to provide a set of isolated
6949 * CPUs that should be excluded from wq_unbound_cpumask.
6950 */
workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)6951 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
6952 {
6953 cpumask_var_t cpumask;
6954 int ret = 0;
6955
6956 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6957 return -ENOMEM;
6958
6959 mutex_lock(&wq_pool_mutex);
6960
6961 /*
6962 * If the operation fails, it will fall back to
6963 * wq_requested_unbound_cpumask which is initially set to
6964 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
6965 * by any subsequent write to workqueue/cpumask sysfs file.
6966 */
6967 if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
6968 cpumask_copy(cpumask, wq_requested_unbound_cpumask);
6969 if (!cpumask_equal(cpumask, wq_unbound_cpumask))
6970 ret = workqueue_apply_unbound_cpumask(cpumask);
6971
6972 /* Save the current isolated cpumask & export it via sysfs */
6973 if (!ret)
6974 cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
6975
6976 mutex_unlock(&wq_pool_mutex);
6977 free_cpumask_var(cpumask);
6978 return ret;
6979 }
6980
parse_affn_scope(const char * val)6981 static int parse_affn_scope(const char *val)
6982 {
6983 int i;
6984
6985 for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
6986 if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
6987 return i;
6988 }
6989 return -EINVAL;
6990 }
6991
wq_affn_dfl_set(const char * val,const struct kernel_param * kp)6992 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
6993 {
6994 struct workqueue_struct *wq;
6995 int affn, cpu;
6996
6997 affn = parse_affn_scope(val);
6998 if (affn < 0)
6999 return affn;
7000 if (affn == WQ_AFFN_DFL)
7001 return -EINVAL;
7002
7003 cpus_read_lock();
7004 mutex_lock(&wq_pool_mutex);
7005
7006 wq_affn_dfl = affn;
7007
7008 list_for_each_entry(wq, &workqueues, list) {
7009 for_each_online_cpu(cpu)
7010 unbound_wq_update_pwq(wq, cpu);
7011 }
7012
7013 mutex_unlock(&wq_pool_mutex);
7014 cpus_read_unlock();
7015
7016 return 0;
7017 }
7018
wq_affn_dfl_get(char * buffer,const struct kernel_param * kp)7019 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
7020 {
7021 return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
7022 }
7023
7024 static const struct kernel_param_ops wq_affn_dfl_ops = {
7025 .set = wq_affn_dfl_set,
7026 .get = wq_affn_dfl_get,
7027 };
7028
7029 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
7030
7031 #ifdef CONFIG_SYSFS
7032 /*
7033 * Workqueues with WQ_SYSFS flag set is visible to userland via
7034 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
7035 * following attributes.
7036 *
7037 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
7038 * max_active RW int : maximum number of in-flight work items
7039 *
7040 * Unbound workqueues have the following extra attributes.
7041 *
7042 * nice RW int : nice value of the workers
7043 * cpumask RW mask : bitmask of allowed CPUs for the workers
7044 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none)
7045 * affinity_strict RW bool : worker CPU affinity is strict
7046 */
7047 struct wq_device {
7048 struct workqueue_struct *wq;
7049 struct device dev;
7050 };
7051
dev_to_wq(struct device * dev)7052 static struct workqueue_struct *dev_to_wq(struct device *dev)
7053 {
7054 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7055
7056 return wq_dev->wq;
7057 }
7058
per_cpu_show(struct device * dev,struct device_attribute * attr,char * buf)7059 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
7060 char *buf)
7061 {
7062 struct workqueue_struct *wq = dev_to_wq(dev);
7063
7064 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
7065 }
7066 static DEVICE_ATTR_RO(per_cpu);
7067
max_active_show(struct device * dev,struct device_attribute * attr,char * buf)7068 static ssize_t max_active_show(struct device *dev,
7069 struct device_attribute *attr, char *buf)
7070 {
7071 struct workqueue_struct *wq = dev_to_wq(dev);
7072
7073 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
7074 }
7075
max_active_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7076 static ssize_t max_active_store(struct device *dev,
7077 struct device_attribute *attr, const char *buf,
7078 size_t count)
7079 {
7080 struct workqueue_struct *wq = dev_to_wq(dev);
7081 int val;
7082
7083 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
7084 return -EINVAL;
7085
7086 workqueue_set_max_active(wq, val);
7087 return count;
7088 }
7089 static DEVICE_ATTR_RW(max_active);
7090
7091 static struct attribute *wq_sysfs_attrs[] = {
7092 &dev_attr_per_cpu.attr,
7093 &dev_attr_max_active.attr,
7094 NULL,
7095 };
7096 ATTRIBUTE_GROUPS(wq_sysfs);
7097
wq_nice_show(struct device * dev,struct device_attribute * attr,char * buf)7098 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
7099 char *buf)
7100 {
7101 struct workqueue_struct *wq = dev_to_wq(dev);
7102 int written;
7103
7104 mutex_lock(&wq->mutex);
7105 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
7106 mutex_unlock(&wq->mutex);
7107
7108 return written;
7109 }
7110
7111 /* prepare workqueue_attrs for sysfs store operations */
wq_sysfs_prep_attrs(struct workqueue_struct * wq)7112 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
7113 {
7114 struct workqueue_attrs *attrs;
7115
7116 lockdep_assert_held(&wq_pool_mutex);
7117
7118 attrs = alloc_workqueue_attrs();
7119 if (!attrs)
7120 return NULL;
7121
7122 copy_workqueue_attrs(attrs, wq->unbound_attrs);
7123 return attrs;
7124 }
7125
wq_nice_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7126 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
7127 const char *buf, size_t count)
7128 {
7129 struct workqueue_struct *wq = dev_to_wq(dev);
7130 struct workqueue_attrs *attrs;
7131 int ret = -ENOMEM;
7132
7133 apply_wqattrs_lock();
7134
7135 attrs = wq_sysfs_prep_attrs(wq);
7136 if (!attrs)
7137 goto out_unlock;
7138
7139 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
7140 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
7141 ret = apply_workqueue_attrs_locked(wq, attrs);
7142 else
7143 ret = -EINVAL;
7144
7145 out_unlock:
7146 apply_wqattrs_unlock();
7147 free_workqueue_attrs(attrs);
7148 return ret ?: count;
7149 }
7150
wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)7151 static ssize_t wq_cpumask_show(struct device *dev,
7152 struct device_attribute *attr, char *buf)
7153 {
7154 struct workqueue_struct *wq = dev_to_wq(dev);
7155 int written;
7156
7157 mutex_lock(&wq->mutex);
7158 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
7159 cpumask_pr_args(wq->unbound_attrs->cpumask));
7160 mutex_unlock(&wq->mutex);
7161 return written;
7162 }
7163
wq_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7164 static ssize_t wq_cpumask_store(struct device *dev,
7165 struct device_attribute *attr,
7166 const char *buf, size_t count)
7167 {
7168 struct workqueue_struct *wq = dev_to_wq(dev);
7169 struct workqueue_attrs *attrs;
7170 int ret = -ENOMEM;
7171
7172 apply_wqattrs_lock();
7173
7174 attrs = wq_sysfs_prep_attrs(wq);
7175 if (!attrs)
7176 goto out_unlock;
7177
7178 ret = cpumask_parse(buf, attrs->cpumask);
7179 if (!ret)
7180 ret = apply_workqueue_attrs_locked(wq, attrs);
7181
7182 out_unlock:
7183 apply_wqattrs_unlock();
7184 free_workqueue_attrs(attrs);
7185 return ret ?: count;
7186 }
7187
wq_affn_scope_show(struct device * dev,struct device_attribute * attr,char * buf)7188 static ssize_t wq_affn_scope_show(struct device *dev,
7189 struct device_attribute *attr, char *buf)
7190 {
7191 struct workqueue_struct *wq = dev_to_wq(dev);
7192 int written;
7193
7194 mutex_lock(&wq->mutex);
7195 if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
7196 written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
7197 wq_affn_names[WQ_AFFN_DFL],
7198 wq_affn_names[wq_affn_dfl]);
7199 else
7200 written = scnprintf(buf, PAGE_SIZE, "%s\n",
7201 wq_affn_names[wq->unbound_attrs->affn_scope]);
7202 mutex_unlock(&wq->mutex);
7203
7204 return written;
7205 }
7206
wq_affn_scope_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7207 static ssize_t wq_affn_scope_store(struct device *dev,
7208 struct device_attribute *attr,
7209 const char *buf, size_t count)
7210 {
7211 struct workqueue_struct *wq = dev_to_wq(dev);
7212 struct workqueue_attrs *attrs;
7213 int affn, ret = -ENOMEM;
7214
7215 affn = parse_affn_scope(buf);
7216 if (affn < 0)
7217 return affn;
7218
7219 apply_wqattrs_lock();
7220 attrs = wq_sysfs_prep_attrs(wq);
7221 if (attrs) {
7222 attrs->affn_scope = affn;
7223 ret = apply_workqueue_attrs_locked(wq, attrs);
7224 }
7225 apply_wqattrs_unlock();
7226 free_workqueue_attrs(attrs);
7227 return ret ?: count;
7228 }
7229
wq_affinity_strict_show(struct device * dev,struct device_attribute * attr,char * buf)7230 static ssize_t wq_affinity_strict_show(struct device *dev,
7231 struct device_attribute *attr, char *buf)
7232 {
7233 struct workqueue_struct *wq = dev_to_wq(dev);
7234
7235 return scnprintf(buf, PAGE_SIZE, "%d\n",
7236 wq->unbound_attrs->affn_strict);
7237 }
7238
wq_affinity_strict_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7239 static ssize_t wq_affinity_strict_store(struct device *dev,
7240 struct device_attribute *attr,
7241 const char *buf, size_t count)
7242 {
7243 struct workqueue_struct *wq = dev_to_wq(dev);
7244 struct workqueue_attrs *attrs;
7245 int v, ret = -ENOMEM;
7246
7247 if (sscanf(buf, "%d", &v) != 1)
7248 return -EINVAL;
7249
7250 apply_wqattrs_lock();
7251 attrs = wq_sysfs_prep_attrs(wq);
7252 if (attrs) {
7253 attrs->affn_strict = (bool)v;
7254 ret = apply_workqueue_attrs_locked(wq, attrs);
7255 }
7256 apply_wqattrs_unlock();
7257 free_workqueue_attrs(attrs);
7258 return ret ?: count;
7259 }
7260
7261 static struct device_attribute wq_sysfs_unbound_attrs[] = {
7262 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
7263 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
7264 __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
7265 __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
7266 __ATTR_NULL,
7267 };
7268
7269 static const struct bus_type wq_subsys = {
7270 .name = "workqueue",
7271 .dev_groups = wq_sysfs_groups,
7272 };
7273
7274 /**
7275 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
7276 * @cpumask: the cpumask to set
7277 *
7278 * The low-level workqueues cpumask is a global cpumask that limits
7279 * the affinity of all unbound workqueues. This function check the @cpumask
7280 * and apply it to all unbound workqueues and updates all pwqs of them.
7281 *
7282 * Return: 0 - Success
7283 * -EINVAL - Invalid @cpumask
7284 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
7285 */
workqueue_set_unbound_cpumask(cpumask_var_t cpumask)7286 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
7287 {
7288 int ret = -EINVAL;
7289
7290 /*
7291 * Not excluding isolated cpus on purpose.
7292 * If the user wishes to include them, we allow that.
7293 */
7294 cpumask_and(cpumask, cpumask, cpu_possible_mask);
7295 if (!cpumask_empty(cpumask)) {
7296 ret = 0;
7297 apply_wqattrs_lock();
7298 if (!cpumask_equal(cpumask, wq_unbound_cpumask))
7299 ret = workqueue_apply_unbound_cpumask(cpumask);
7300 if (!ret)
7301 cpumask_copy(wq_requested_unbound_cpumask, cpumask);
7302 apply_wqattrs_unlock();
7303 }
7304
7305 return ret;
7306 }
7307
__wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf,cpumask_var_t mask)7308 static ssize_t __wq_cpumask_show(struct device *dev,
7309 struct device_attribute *attr, char *buf, cpumask_var_t mask)
7310 {
7311 int written;
7312
7313 mutex_lock(&wq_pool_mutex);
7314 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
7315 mutex_unlock(&wq_pool_mutex);
7316
7317 return written;
7318 }
7319
cpumask_requested_show(struct device * dev,struct device_attribute * attr,char * buf)7320 static ssize_t cpumask_requested_show(struct device *dev,
7321 struct device_attribute *attr, char *buf)
7322 {
7323 return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
7324 }
7325 static DEVICE_ATTR_RO(cpumask_requested);
7326
cpumask_isolated_show(struct device * dev,struct device_attribute * attr,char * buf)7327 static ssize_t cpumask_isolated_show(struct device *dev,
7328 struct device_attribute *attr, char *buf)
7329 {
7330 return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
7331 }
7332 static DEVICE_ATTR_RO(cpumask_isolated);
7333
cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)7334 static ssize_t cpumask_show(struct device *dev,
7335 struct device_attribute *attr, char *buf)
7336 {
7337 return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
7338 }
7339
cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7340 static ssize_t cpumask_store(struct device *dev,
7341 struct device_attribute *attr, const char *buf, size_t count)
7342 {
7343 cpumask_var_t cpumask;
7344 int ret;
7345
7346 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
7347 return -ENOMEM;
7348
7349 ret = cpumask_parse(buf, cpumask);
7350 if (!ret)
7351 ret = workqueue_set_unbound_cpumask(cpumask);
7352
7353 free_cpumask_var(cpumask);
7354 return ret ? ret : count;
7355 }
7356 static DEVICE_ATTR_RW(cpumask);
7357
7358 static struct attribute *wq_sysfs_cpumask_attrs[] = {
7359 &dev_attr_cpumask.attr,
7360 &dev_attr_cpumask_requested.attr,
7361 &dev_attr_cpumask_isolated.attr,
7362 NULL,
7363 };
7364 ATTRIBUTE_GROUPS(wq_sysfs_cpumask);
7365
wq_sysfs_init(void)7366 static int __init wq_sysfs_init(void)
7367 {
7368 return subsys_virtual_register(&wq_subsys, wq_sysfs_cpumask_groups);
7369 }
7370 core_initcall(wq_sysfs_init);
7371
wq_device_release(struct device * dev)7372 static void wq_device_release(struct device *dev)
7373 {
7374 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7375
7376 kfree(wq_dev);
7377 }
7378
7379 /**
7380 * workqueue_sysfs_register - make a workqueue visible in sysfs
7381 * @wq: the workqueue to register
7382 *
7383 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
7384 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
7385 * which is the preferred method.
7386 *
7387 * Workqueue user should use this function directly iff it wants to apply
7388 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
7389 * apply_workqueue_attrs() may race against userland updating the
7390 * attributes.
7391 *
7392 * Return: 0 on success, -errno on failure.
7393 */
workqueue_sysfs_register(struct workqueue_struct * wq)7394 int workqueue_sysfs_register(struct workqueue_struct *wq)
7395 {
7396 struct wq_device *wq_dev;
7397 int ret;
7398
7399 /*
7400 * Adjusting max_active breaks ordering guarantee. Disallow exposing
7401 * ordered workqueues.
7402 */
7403 if (WARN_ON(wq->flags & __WQ_ORDERED))
7404 return -EINVAL;
7405
7406 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
7407 if (!wq_dev)
7408 return -ENOMEM;
7409
7410 wq_dev->wq = wq;
7411 wq_dev->dev.bus = &wq_subsys;
7412 wq_dev->dev.release = wq_device_release;
7413 dev_set_name(&wq_dev->dev, "%s", wq->name);
7414
7415 /*
7416 * unbound_attrs are created separately. Suppress uevent until
7417 * everything is ready.
7418 */
7419 dev_set_uevent_suppress(&wq_dev->dev, true);
7420
7421 ret = device_register(&wq_dev->dev);
7422 if (ret) {
7423 put_device(&wq_dev->dev);
7424 wq->wq_dev = NULL;
7425 return ret;
7426 }
7427
7428 if (wq->flags & WQ_UNBOUND) {
7429 struct device_attribute *attr;
7430
7431 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
7432 ret = device_create_file(&wq_dev->dev, attr);
7433 if (ret) {
7434 device_unregister(&wq_dev->dev);
7435 wq->wq_dev = NULL;
7436 return ret;
7437 }
7438 }
7439 }
7440
7441 dev_set_uevent_suppress(&wq_dev->dev, false);
7442 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
7443 return 0;
7444 }
7445
7446 /**
7447 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
7448 * @wq: the workqueue to unregister
7449 *
7450 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
7451 */
workqueue_sysfs_unregister(struct workqueue_struct * wq)7452 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
7453 {
7454 struct wq_device *wq_dev = wq->wq_dev;
7455
7456 if (!wq->wq_dev)
7457 return;
7458
7459 wq->wq_dev = NULL;
7460 device_unregister(&wq_dev->dev);
7461 }
7462 #else /* CONFIG_SYSFS */
workqueue_sysfs_unregister(struct workqueue_struct * wq)7463 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
7464 #endif /* CONFIG_SYSFS */
7465
7466 /*
7467 * Workqueue watchdog.
7468 *
7469 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
7470 * flush dependency, a concurrency managed work item which stays RUNNING
7471 * indefinitely. Workqueue stalls can be very difficult to debug as the
7472 * usual warning mechanisms don't trigger and internal workqueue state is
7473 * largely opaque.
7474 *
7475 * Workqueue watchdog monitors all worker pools periodically and dumps
7476 * state if some pools failed to make forward progress for a while where
7477 * forward progress is defined as the first item on ->worklist changing.
7478 *
7479 * This mechanism is controlled through the kernel parameter
7480 * "workqueue.watchdog_thresh" which can be updated at runtime through the
7481 * corresponding sysfs parameter file.
7482 */
7483 #ifdef CONFIG_WQ_WATCHDOG
7484
7485 static unsigned long wq_watchdog_thresh = 30;
7486 static struct timer_list wq_watchdog_timer;
7487
7488 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
7489 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
7490
7491 static unsigned int wq_panic_on_stall;
7492 module_param_named(panic_on_stall, wq_panic_on_stall, uint, 0644);
7493
7494 /*
7495 * Show workers that might prevent the processing of pending work items.
7496 * The only candidates are CPU-bound workers in the running state.
7497 * Pending work items should be handled by another idle worker
7498 * in all other situations.
7499 */
show_cpu_pool_hog(struct worker_pool * pool)7500 static void show_cpu_pool_hog(struct worker_pool *pool)
7501 {
7502 struct worker *worker;
7503 unsigned long irq_flags;
7504 int bkt;
7505
7506 raw_spin_lock_irqsave(&pool->lock, irq_flags);
7507
7508 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
7509 if (task_is_running(worker->task)) {
7510 /*
7511 * Defer printing to avoid deadlocks in console
7512 * drivers that queue work while holding locks
7513 * also taken in their write paths.
7514 */
7515 printk_deferred_enter();
7516
7517 pr_info("pool %d:\n", pool->id);
7518 sched_show_task(worker->task);
7519
7520 printk_deferred_exit();
7521 }
7522 }
7523
7524 raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
7525 }
7526
show_cpu_pools_hogs(void)7527 static void show_cpu_pools_hogs(void)
7528 {
7529 struct worker_pool *pool;
7530 int pi;
7531
7532 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
7533
7534 rcu_read_lock();
7535
7536 for_each_pool(pool, pi) {
7537 if (pool->cpu_stall)
7538 show_cpu_pool_hog(pool);
7539
7540 }
7541
7542 rcu_read_unlock();
7543 }
7544
panic_on_wq_watchdog(void)7545 static void panic_on_wq_watchdog(void)
7546 {
7547 static unsigned int wq_stall;
7548
7549 if (wq_panic_on_stall) {
7550 wq_stall++;
7551 BUG_ON(wq_stall >= wq_panic_on_stall);
7552 }
7553 }
7554
wq_watchdog_reset_touched(void)7555 static void wq_watchdog_reset_touched(void)
7556 {
7557 int cpu;
7558
7559 wq_watchdog_touched = jiffies;
7560 for_each_possible_cpu(cpu)
7561 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7562 }
7563
wq_watchdog_timer_fn(struct timer_list * unused)7564 static void wq_watchdog_timer_fn(struct timer_list *unused)
7565 {
7566 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7567 bool lockup_detected = false;
7568 bool cpu_pool_stall = false;
7569 unsigned long now = jiffies;
7570 struct worker_pool *pool;
7571 int pi;
7572
7573 if (!thresh)
7574 return;
7575
7576 rcu_read_lock();
7577
7578 for_each_pool(pool, pi) {
7579 unsigned long pool_ts, touched, ts;
7580
7581 pool->cpu_stall = false;
7582 if (list_empty(&pool->worklist))
7583 continue;
7584
7585 /*
7586 * If a virtual machine is stopped by the host it can look to
7587 * the watchdog like a stall.
7588 */
7589 kvm_check_and_clear_guest_paused();
7590
7591 /* get the latest of pool and touched timestamps */
7592 if (pool->cpu >= 0)
7593 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
7594 else
7595 touched = READ_ONCE(wq_watchdog_touched);
7596 pool_ts = READ_ONCE(pool->watchdog_ts);
7597
7598 if (time_after(pool_ts, touched))
7599 ts = pool_ts;
7600 else
7601 ts = touched;
7602
7603 /* did we stall? */
7604 if (time_after(now, ts + thresh)) {
7605 lockup_detected = true;
7606 if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) {
7607 pool->cpu_stall = true;
7608 cpu_pool_stall = true;
7609 }
7610 pr_emerg("BUG: workqueue lockup - pool");
7611 pr_cont_pool_info(pool);
7612 pr_cont(" stuck for %us!\n",
7613 jiffies_to_msecs(now - pool_ts) / 1000);
7614 }
7615
7616
7617 }
7618
7619 rcu_read_unlock();
7620
7621 if (lockup_detected)
7622 show_all_workqueues();
7623
7624 if (cpu_pool_stall)
7625 show_cpu_pools_hogs();
7626
7627 if (lockup_detected)
7628 panic_on_wq_watchdog();
7629
7630 wq_watchdog_reset_touched();
7631 mod_timer(&wq_watchdog_timer, jiffies + thresh);
7632 }
7633
wq_watchdog_touch(int cpu)7634 notrace void wq_watchdog_touch(int cpu)
7635 {
7636 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7637 unsigned long touch_ts = READ_ONCE(wq_watchdog_touched);
7638 unsigned long now = jiffies;
7639
7640 if (cpu >= 0)
7641 per_cpu(wq_watchdog_touched_cpu, cpu) = now;
7642 else
7643 WARN_ONCE(1, "%s should be called with valid CPU", __func__);
7644
7645 /* Don't unnecessarily store to global cacheline */
7646 if (time_after(now, touch_ts + thresh / 4))
7647 WRITE_ONCE(wq_watchdog_touched, jiffies);
7648 }
7649
wq_watchdog_set_thresh(unsigned long thresh)7650 static void wq_watchdog_set_thresh(unsigned long thresh)
7651 {
7652 wq_watchdog_thresh = 0;
7653 timer_delete_sync(&wq_watchdog_timer);
7654
7655 if (thresh) {
7656 wq_watchdog_thresh = thresh;
7657 wq_watchdog_reset_touched();
7658 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
7659 }
7660 }
7661
wq_watchdog_param_set_thresh(const char * val,const struct kernel_param * kp)7662 static int wq_watchdog_param_set_thresh(const char *val,
7663 const struct kernel_param *kp)
7664 {
7665 unsigned long thresh;
7666 int ret;
7667
7668 ret = kstrtoul(val, 0, &thresh);
7669 if (ret)
7670 return ret;
7671
7672 if (system_wq)
7673 wq_watchdog_set_thresh(thresh);
7674 else
7675 wq_watchdog_thresh = thresh;
7676
7677 return 0;
7678 }
7679
7680 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
7681 .set = wq_watchdog_param_set_thresh,
7682 .get = param_get_ulong,
7683 };
7684
7685 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
7686 0644);
7687
wq_watchdog_init(void)7688 static void wq_watchdog_init(void)
7689 {
7690 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
7691 wq_watchdog_set_thresh(wq_watchdog_thresh);
7692 }
7693
7694 #else /* CONFIG_WQ_WATCHDOG */
7695
wq_watchdog_init(void)7696 static inline void wq_watchdog_init(void) { }
7697
7698 #endif /* CONFIG_WQ_WATCHDOG */
7699
bh_pool_kick_normal(struct irq_work * irq_work)7700 static void bh_pool_kick_normal(struct irq_work *irq_work)
7701 {
7702 raise_softirq_irqoff(TASKLET_SOFTIRQ);
7703 }
7704
bh_pool_kick_highpri(struct irq_work * irq_work)7705 static void bh_pool_kick_highpri(struct irq_work *irq_work)
7706 {
7707 raise_softirq_irqoff(HI_SOFTIRQ);
7708 }
7709
restrict_unbound_cpumask(const char * name,const struct cpumask * mask)7710 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7711 {
7712 if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7713 pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7714 cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7715 return;
7716 }
7717
7718 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7719 }
7720
init_cpu_worker_pool(struct worker_pool * pool,int cpu,int nice)7721 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice)
7722 {
7723 BUG_ON(init_worker_pool(pool));
7724 pool->cpu = cpu;
7725 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7726 cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7727 pool->attrs->nice = nice;
7728 pool->attrs->affn_strict = true;
7729 pool->node = cpu_to_node(cpu);
7730
7731 /* alloc pool ID */
7732 mutex_lock(&wq_pool_mutex);
7733 BUG_ON(worker_pool_assign_id(pool));
7734 mutex_unlock(&wq_pool_mutex);
7735 }
7736
7737 /**
7738 * workqueue_init_early - early init for workqueue subsystem
7739 *
7740 * This is the first step of three-staged workqueue subsystem initialization and
7741 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7742 * up. It sets up all the data structures and system workqueues and allows early
7743 * boot code to create workqueues and queue/cancel work items. Actual work item
7744 * execution starts only after kthreads can be created and scheduled right
7745 * before early initcalls.
7746 */
workqueue_init_early(void)7747 void __init workqueue_init_early(void)
7748 {
7749 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7750 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
7751 void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal,
7752 bh_pool_kick_highpri };
7753 int i, cpu;
7754
7755 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
7756
7757 BUG_ON(!alloc_cpumask_var(&wq_online_cpumask, GFP_KERNEL));
7758 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
7759 BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
7760 BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
7761
7762 cpumask_copy(wq_online_cpumask, cpu_online_mask);
7763 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7764 restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7765 restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
7766 if (!cpumask_empty(&wq_cmdline_cpumask))
7767 restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
7768
7769 cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
7770 cpumask_andnot(wq_isolated_cpumask, cpu_possible_mask,
7771 housekeeping_cpumask(HK_TYPE_DOMAIN));
7772 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7773
7774 unbound_wq_update_pwq_attrs_buf = alloc_workqueue_attrs();
7775 BUG_ON(!unbound_wq_update_pwq_attrs_buf);
7776
7777 /*
7778 * If nohz_full is enabled, set power efficient workqueue as unbound.
7779 * This allows workqueue items to be moved to HK CPUs.
7780 */
7781 if (housekeeping_enabled(HK_TYPE_TICK))
7782 wq_power_efficient = true;
7783
7784 /* initialize WQ_AFFN_SYSTEM pods */
7785 pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7786 pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7787 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7788 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7789
7790 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7791
7792 pt->nr_pods = 1;
7793 cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7794 pt->pod_node[0] = NUMA_NO_NODE;
7795 pt->cpu_pod[0] = 0;
7796
7797 /* initialize BH and CPU pools */
7798 for_each_possible_cpu(cpu) {
7799 struct worker_pool *pool;
7800
7801 i = 0;
7802 for_each_bh_worker_pool(pool, cpu) {
7803 init_cpu_worker_pool(pool, cpu, std_nice[i]);
7804 pool->flags |= POOL_BH;
7805 init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]);
7806 i++;
7807 }
7808
7809 i = 0;
7810 for_each_cpu_worker_pool(pool, cpu)
7811 init_cpu_worker_pool(pool, cpu, std_nice[i++]);
7812 }
7813
7814 /* create default unbound and ordered wq attrs */
7815 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7816 struct workqueue_attrs *attrs;
7817
7818 BUG_ON(!(attrs = alloc_workqueue_attrs()));
7819 attrs->nice = std_nice[i];
7820 unbound_std_wq_attrs[i] = attrs;
7821
7822 /*
7823 * An ordered wq should have only one pwq as ordering is
7824 * guaranteed by max_active which is enforced by pwqs.
7825 */
7826 BUG_ON(!(attrs = alloc_workqueue_attrs()));
7827 attrs->nice = std_nice[i];
7828 attrs->ordered = true;
7829 ordered_wq_attrs[i] = attrs;
7830 }
7831
7832 system_wq = alloc_workqueue("events", 0, 0);
7833 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
7834 system_long_wq = alloc_workqueue("events_long", 0, 0);
7835 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
7836 WQ_MAX_ACTIVE);
7837 system_freezable_wq = alloc_workqueue("events_freezable",
7838 WQ_FREEZABLE, 0);
7839 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7840 WQ_POWER_EFFICIENT, 0);
7841 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
7842 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
7843 0);
7844 system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0);
7845 system_bh_highpri_wq = alloc_workqueue("events_bh_highpri",
7846 WQ_BH | WQ_HIGHPRI, 0);
7847 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
7848 !system_unbound_wq || !system_freezable_wq ||
7849 !system_power_efficient_wq ||
7850 !system_freezable_power_efficient_wq ||
7851 !system_bh_wq || !system_bh_highpri_wq);
7852 }
7853
wq_cpu_intensive_thresh_init(void)7854 static void __init wq_cpu_intensive_thresh_init(void)
7855 {
7856 unsigned long thresh;
7857 unsigned long bogo;
7858
7859 pwq_release_worker = kthread_run_worker(0, "pool_workqueue_release");
7860 BUG_ON(IS_ERR(pwq_release_worker));
7861
7862 /* if the user set it to a specific value, keep it */
7863 if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7864 return;
7865
7866 /*
7867 * The default of 10ms is derived from the fact that most modern (as of
7868 * 2023) processors can do a lot in 10ms and that it's just below what
7869 * most consider human-perceivable. However, the kernel also runs on a
7870 * lot slower CPUs including microcontrollers where the threshold is way
7871 * too low.
7872 *
7873 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7874 * This is by no means accurate but it doesn't have to be. The mechanism
7875 * is still useful even when the threshold is fully scaled up. Also, as
7876 * the reports would usually be applicable to everyone, some machines
7877 * operating on longer thresholds won't significantly diminish their
7878 * usefulness.
7879 */
7880 thresh = 10 * USEC_PER_MSEC;
7881
7882 /* see init/calibrate.c for lpj -> BogoMIPS calculation */
7883 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7884 if (bogo < 4000)
7885 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7886
7887 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7888 loops_per_jiffy, bogo, thresh);
7889
7890 wq_cpu_intensive_thresh_us = thresh;
7891 }
7892
7893 /**
7894 * workqueue_init - bring workqueue subsystem fully online
7895 *
7896 * This is the second step of three-staged workqueue subsystem initialization
7897 * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7898 * been created and work items queued on them, but there are no kworkers
7899 * executing the work items yet. Populate the worker pools with the initial
7900 * workers and enable future kworker creations.
7901 */
workqueue_init(void)7902 void __init workqueue_init(void)
7903 {
7904 struct workqueue_struct *wq;
7905 struct worker_pool *pool;
7906 int cpu, bkt;
7907
7908 wq_cpu_intensive_thresh_init();
7909
7910 mutex_lock(&wq_pool_mutex);
7911
7912 /*
7913 * Per-cpu pools created earlier could be missing node hint. Fix them
7914 * up. Also, create a rescuer for workqueues that requested it.
7915 */
7916 for_each_possible_cpu(cpu) {
7917 for_each_bh_worker_pool(pool, cpu)
7918 pool->node = cpu_to_node(cpu);
7919 for_each_cpu_worker_pool(pool, cpu)
7920 pool->node = cpu_to_node(cpu);
7921 }
7922
7923 list_for_each_entry(wq, &workqueues, list) {
7924 WARN(init_rescuer(wq),
7925 "workqueue: failed to create early rescuer for %s",
7926 wq->name);
7927 }
7928
7929 mutex_unlock(&wq_pool_mutex);
7930
7931 /*
7932 * Create the initial workers. A BH pool has one pseudo worker that
7933 * represents the shared BH execution context and thus doesn't get
7934 * affected by hotplug events. Create the BH pseudo workers for all
7935 * possible CPUs here.
7936 */
7937 for_each_possible_cpu(cpu)
7938 for_each_bh_worker_pool(pool, cpu)
7939 BUG_ON(!create_worker(pool));
7940
7941 for_each_online_cpu(cpu) {
7942 for_each_cpu_worker_pool(pool, cpu) {
7943 pool->flags &= ~POOL_DISASSOCIATED;
7944 BUG_ON(!create_worker(pool));
7945 }
7946 }
7947
7948 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7949 BUG_ON(!create_worker(pool));
7950
7951 wq_online = true;
7952 wq_watchdog_init();
7953 }
7954
7955 /*
7956 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7957 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7958 * and consecutive pod ID. The rest of @pt is initialized accordingly.
7959 */
init_pod_type(struct wq_pod_type * pt,bool (* cpus_share_pod)(int,int))7960 static void __init init_pod_type(struct wq_pod_type *pt,
7961 bool (*cpus_share_pod)(int, int))
7962 {
7963 int cur, pre, cpu, pod;
7964
7965 pt->nr_pods = 0;
7966
7967 /* init @pt->cpu_pod[] according to @cpus_share_pod() */
7968 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7969 BUG_ON(!pt->cpu_pod);
7970
7971 for_each_possible_cpu(cur) {
7972 for_each_possible_cpu(pre) {
7973 if (pre >= cur) {
7974 pt->cpu_pod[cur] = pt->nr_pods++;
7975 break;
7976 }
7977 if (cpus_share_pod(cur, pre)) {
7978 pt->cpu_pod[cur] = pt->cpu_pod[pre];
7979 break;
7980 }
7981 }
7982 }
7983
7984 /* init the rest to match @pt->cpu_pod[] */
7985 pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7986 pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
7987 BUG_ON(!pt->pod_cpus || !pt->pod_node);
7988
7989 for (pod = 0; pod < pt->nr_pods; pod++)
7990 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
7991
7992 for_each_possible_cpu(cpu) {
7993 cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
7994 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
7995 }
7996 }
7997
cpus_dont_share(int cpu0,int cpu1)7998 static bool __init cpus_dont_share(int cpu0, int cpu1)
7999 {
8000 return false;
8001 }
8002
cpus_share_smt(int cpu0,int cpu1)8003 static bool __init cpus_share_smt(int cpu0, int cpu1)
8004 {
8005 #ifdef CONFIG_SCHED_SMT
8006 return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
8007 #else
8008 return false;
8009 #endif
8010 }
8011
cpus_share_numa(int cpu0,int cpu1)8012 static bool __init cpus_share_numa(int cpu0, int cpu1)
8013 {
8014 return cpu_to_node(cpu0) == cpu_to_node(cpu1);
8015 }
8016
8017 /**
8018 * workqueue_init_topology - initialize CPU pods for unbound workqueues
8019 *
8020 * This is the third step of three-staged workqueue subsystem initialization and
8021 * invoked after SMP and topology information are fully initialized. It
8022 * initializes the unbound CPU pods accordingly.
8023 */
workqueue_init_topology(void)8024 void __init workqueue_init_topology(void)
8025 {
8026 struct workqueue_struct *wq;
8027 int cpu;
8028
8029 init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
8030 init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
8031 init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
8032 init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
8033
8034 wq_topo_initialized = true;
8035
8036 mutex_lock(&wq_pool_mutex);
8037
8038 /*
8039 * Workqueues allocated earlier would have all CPUs sharing the default
8040 * worker pool. Explicitly call unbound_wq_update_pwq() on all workqueue
8041 * and CPU combinations to apply per-pod sharing.
8042 */
8043 list_for_each_entry(wq, &workqueues, list) {
8044 for_each_online_cpu(cpu)
8045 unbound_wq_update_pwq(wq, cpu);
8046 if (wq->flags & WQ_UNBOUND) {
8047 mutex_lock(&wq->mutex);
8048 wq_update_node_max_active(wq, -1);
8049 mutex_unlock(&wq->mutex);
8050 }
8051 }
8052
8053 mutex_unlock(&wq_pool_mutex);
8054 }
8055
__warn_flushing_systemwide_wq(void)8056 void __warn_flushing_systemwide_wq(void)
8057 {
8058 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
8059 dump_stack();
8060 }
8061 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
8062
workqueue_unbound_cpus_setup(char * str)8063 static int __init workqueue_unbound_cpus_setup(char *str)
8064 {
8065 if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
8066 cpumask_clear(&wq_cmdline_cpumask);
8067 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
8068 }
8069
8070 return 1;
8071 }
8072 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
8073