1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2022 Intel Corporation
4 */
5
6 #include "xe_guc_submit.h"
7
8 #include <linux/bitfield.h>
9 #include <linux/bitmap.h>
10 #include <linux/circ_buf.h>
11 #include <linux/delay.h>
12 #include <linux/dma-fence-array.h>
13 #include <linux/math64.h>
14
15 #include <drm/drm_managed.h>
16
17 #include "abi/guc_actions_abi.h"
18 #include "abi/guc_actions_slpc_abi.h"
19 #include "abi/guc_klvs_abi.h"
20 #include "regs/xe_lrc_layout.h"
21 #include "xe_assert.h"
22 #include "xe_devcoredump.h"
23 #include "xe_device.h"
24 #include "xe_exec_queue.h"
25 #include "xe_force_wake.h"
26 #include "xe_gpu_scheduler.h"
27 #include "xe_gt.h"
28 #include "xe_gt_clock.h"
29 #include "xe_gt_printk.h"
30 #include "xe_guc.h"
31 #include "xe_guc_capture.h"
32 #include "xe_guc_ct.h"
33 #include "xe_guc_exec_queue_types.h"
34 #include "xe_guc_id_mgr.h"
35 #include "xe_guc_submit_types.h"
36 #include "xe_hw_engine.h"
37 #include "xe_hw_fence.h"
38 #include "xe_lrc.h"
39 #include "xe_macros.h"
40 #include "xe_map.h"
41 #include "xe_mocs.h"
42 #include "xe_pm.h"
43 #include "xe_ring_ops_types.h"
44 #include "xe_sched_job.h"
45 #include "xe_trace.h"
46 #include "xe_vm.h"
47
48 static struct xe_guc *
exec_queue_to_guc(struct xe_exec_queue * q)49 exec_queue_to_guc(struct xe_exec_queue *q)
50 {
51 return &q->gt->uc.guc;
52 }
53
54 /*
55 * Helpers for engine state, using an atomic as some of the bits can transition
56 * as the same time (e.g. a suspend can be happning at the same time as schedule
57 * engine done being processed).
58 */
59 #define EXEC_QUEUE_STATE_REGISTERED (1 << 0)
60 #define EXEC_QUEUE_STATE_ENABLED (1 << 1)
61 #define EXEC_QUEUE_STATE_PENDING_ENABLE (1 << 2)
62 #define EXEC_QUEUE_STATE_PENDING_DISABLE (1 << 3)
63 #define EXEC_QUEUE_STATE_DESTROYED (1 << 4)
64 #define EXEC_QUEUE_STATE_SUSPENDED (1 << 5)
65 #define EXEC_QUEUE_STATE_RESET (1 << 6)
66 #define EXEC_QUEUE_STATE_KILLED (1 << 7)
67 #define EXEC_QUEUE_STATE_WEDGED (1 << 8)
68 #define EXEC_QUEUE_STATE_BANNED (1 << 9)
69 #define EXEC_QUEUE_STATE_CHECK_TIMEOUT (1 << 10)
70 #define EXEC_QUEUE_STATE_EXTRA_REF (1 << 11)
71
exec_queue_registered(struct xe_exec_queue * q)72 static bool exec_queue_registered(struct xe_exec_queue *q)
73 {
74 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_REGISTERED;
75 }
76
set_exec_queue_registered(struct xe_exec_queue * q)77 static void set_exec_queue_registered(struct xe_exec_queue *q)
78 {
79 atomic_or(EXEC_QUEUE_STATE_REGISTERED, &q->guc->state);
80 }
81
clear_exec_queue_registered(struct xe_exec_queue * q)82 static void clear_exec_queue_registered(struct xe_exec_queue *q)
83 {
84 atomic_and(~EXEC_QUEUE_STATE_REGISTERED, &q->guc->state);
85 }
86
exec_queue_enabled(struct xe_exec_queue * q)87 static bool exec_queue_enabled(struct xe_exec_queue *q)
88 {
89 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_ENABLED;
90 }
91
set_exec_queue_enabled(struct xe_exec_queue * q)92 static void set_exec_queue_enabled(struct xe_exec_queue *q)
93 {
94 atomic_or(EXEC_QUEUE_STATE_ENABLED, &q->guc->state);
95 }
96
clear_exec_queue_enabled(struct xe_exec_queue * q)97 static void clear_exec_queue_enabled(struct xe_exec_queue *q)
98 {
99 atomic_and(~EXEC_QUEUE_STATE_ENABLED, &q->guc->state);
100 }
101
exec_queue_pending_enable(struct xe_exec_queue * q)102 static bool exec_queue_pending_enable(struct xe_exec_queue *q)
103 {
104 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_ENABLE;
105 }
106
set_exec_queue_pending_enable(struct xe_exec_queue * q)107 static void set_exec_queue_pending_enable(struct xe_exec_queue *q)
108 {
109 atomic_or(EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state);
110 }
111
clear_exec_queue_pending_enable(struct xe_exec_queue * q)112 static void clear_exec_queue_pending_enable(struct xe_exec_queue *q)
113 {
114 atomic_and(~EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state);
115 }
116
exec_queue_pending_disable(struct xe_exec_queue * q)117 static bool exec_queue_pending_disable(struct xe_exec_queue *q)
118 {
119 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_DISABLE;
120 }
121
set_exec_queue_pending_disable(struct xe_exec_queue * q)122 static void set_exec_queue_pending_disable(struct xe_exec_queue *q)
123 {
124 atomic_or(EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state);
125 }
126
clear_exec_queue_pending_disable(struct xe_exec_queue * q)127 static void clear_exec_queue_pending_disable(struct xe_exec_queue *q)
128 {
129 atomic_and(~EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state);
130 }
131
exec_queue_destroyed(struct xe_exec_queue * q)132 static bool exec_queue_destroyed(struct xe_exec_queue *q)
133 {
134 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_DESTROYED;
135 }
136
set_exec_queue_destroyed(struct xe_exec_queue * q)137 static void set_exec_queue_destroyed(struct xe_exec_queue *q)
138 {
139 atomic_or(EXEC_QUEUE_STATE_DESTROYED, &q->guc->state);
140 }
141
exec_queue_banned(struct xe_exec_queue * q)142 static bool exec_queue_banned(struct xe_exec_queue *q)
143 {
144 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_BANNED;
145 }
146
set_exec_queue_banned(struct xe_exec_queue * q)147 static void set_exec_queue_banned(struct xe_exec_queue *q)
148 {
149 atomic_or(EXEC_QUEUE_STATE_BANNED, &q->guc->state);
150 }
151
exec_queue_suspended(struct xe_exec_queue * q)152 static bool exec_queue_suspended(struct xe_exec_queue *q)
153 {
154 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_SUSPENDED;
155 }
156
set_exec_queue_suspended(struct xe_exec_queue * q)157 static void set_exec_queue_suspended(struct xe_exec_queue *q)
158 {
159 atomic_or(EXEC_QUEUE_STATE_SUSPENDED, &q->guc->state);
160 }
161
clear_exec_queue_suspended(struct xe_exec_queue * q)162 static void clear_exec_queue_suspended(struct xe_exec_queue *q)
163 {
164 atomic_and(~EXEC_QUEUE_STATE_SUSPENDED, &q->guc->state);
165 }
166
exec_queue_reset(struct xe_exec_queue * q)167 static bool exec_queue_reset(struct xe_exec_queue *q)
168 {
169 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_RESET;
170 }
171
set_exec_queue_reset(struct xe_exec_queue * q)172 static void set_exec_queue_reset(struct xe_exec_queue *q)
173 {
174 atomic_or(EXEC_QUEUE_STATE_RESET, &q->guc->state);
175 }
176
exec_queue_killed(struct xe_exec_queue * q)177 static bool exec_queue_killed(struct xe_exec_queue *q)
178 {
179 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_KILLED;
180 }
181
set_exec_queue_killed(struct xe_exec_queue * q)182 static void set_exec_queue_killed(struct xe_exec_queue *q)
183 {
184 atomic_or(EXEC_QUEUE_STATE_KILLED, &q->guc->state);
185 }
186
exec_queue_wedged(struct xe_exec_queue * q)187 static bool exec_queue_wedged(struct xe_exec_queue *q)
188 {
189 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_WEDGED;
190 }
191
set_exec_queue_wedged(struct xe_exec_queue * q)192 static void set_exec_queue_wedged(struct xe_exec_queue *q)
193 {
194 atomic_or(EXEC_QUEUE_STATE_WEDGED, &q->guc->state);
195 }
196
exec_queue_check_timeout(struct xe_exec_queue * q)197 static bool exec_queue_check_timeout(struct xe_exec_queue *q)
198 {
199 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_CHECK_TIMEOUT;
200 }
201
set_exec_queue_check_timeout(struct xe_exec_queue * q)202 static void set_exec_queue_check_timeout(struct xe_exec_queue *q)
203 {
204 atomic_or(EXEC_QUEUE_STATE_CHECK_TIMEOUT, &q->guc->state);
205 }
206
clear_exec_queue_check_timeout(struct xe_exec_queue * q)207 static void clear_exec_queue_check_timeout(struct xe_exec_queue *q)
208 {
209 atomic_and(~EXEC_QUEUE_STATE_CHECK_TIMEOUT, &q->guc->state);
210 }
211
exec_queue_extra_ref(struct xe_exec_queue * q)212 static bool exec_queue_extra_ref(struct xe_exec_queue *q)
213 {
214 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_EXTRA_REF;
215 }
216
set_exec_queue_extra_ref(struct xe_exec_queue * q)217 static void set_exec_queue_extra_ref(struct xe_exec_queue *q)
218 {
219 atomic_or(EXEC_QUEUE_STATE_EXTRA_REF, &q->guc->state);
220 }
221
exec_queue_killed_or_banned_or_wedged(struct xe_exec_queue * q)222 static bool exec_queue_killed_or_banned_or_wedged(struct xe_exec_queue *q)
223 {
224 return (atomic_read(&q->guc->state) &
225 (EXEC_QUEUE_STATE_WEDGED | EXEC_QUEUE_STATE_KILLED |
226 EXEC_QUEUE_STATE_BANNED));
227 }
228
guc_submit_fini(struct drm_device * drm,void * arg)229 static void guc_submit_fini(struct drm_device *drm, void *arg)
230 {
231 struct xe_guc *guc = arg;
232
233 xa_destroy(&guc->submission_state.exec_queue_lookup);
234 }
235
guc_submit_wedged_fini(void * arg)236 static void guc_submit_wedged_fini(void *arg)
237 {
238 struct xe_guc *guc = arg;
239 struct xe_exec_queue *q;
240 unsigned long index;
241
242 mutex_lock(&guc->submission_state.lock);
243 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) {
244 if (exec_queue_wedged(q)) {
245 mutex_unlock(&guc->submission_state.lock);
246 xe_exec_queue_put(q);
247 mutex_lock(&guc->submission_state.lock);
248 }
249 }
250 mutex_unlock(&guc->submission_state.lock);
251 }
252
253 static const struct xe_exec_queue_ops guc_exec_queue_ops;
254
primelockdep(struct xe_guc * guc)255 static void primelockdep(struct xe_guc *guc)
256 {
257 if (!IS_ENABLED(CONFIG_LOCKDEP))
258 return;
259
260 fs_reclaim_acquire(GFP_KERNEL);
261
262 mutex_lock(&guc->submission_state.lock);
263 mutex_unlock(&guc->submission_state.lock);
264
265 fs_reclaim_release(GFP_KERNEL);
266 }
267
268 /**
269 * xe_guc_submit_init() - Initialize GuC submission.
270 * @guc: the &xe_guc to initialize
271 * @num_ids: number of GuC context IDs to use
272 *
273 * The bare-metal or PF driver can pass ~0 as &num_ids to indicate that all
274 * GuC context IDs supported by the GuC firmware should be used for submission.
275 *
276 * Only VF drivers will have to provide explicit number of GuC context IDs
277 * that they can use for submission.
278 *
279 * Return: 0 on success or a negative error code on failure.
280 */
xe_guc_submit_init(struct xe_guc * guc,unsigned int num_ids)281 int xe_guc_submit_init(struct xe_guc *guc, unsigned int num_ids)
282 {
283 struct xe_device *xe = guc_to_xe(guc);
284 struct xe_gt *gt = guc_to_gt(guc);
285 int err;
286
287 err = drmm_mutex_init(&xe->drm, &guc->submission_state.lock);
288 if (err)
289 return err;
290
291 err = xe_guc_id_mgr_init(&guc->submission_state.idm, num_ids);
292 if (err)
293 return err;
294
295 gt->exec_queue_ops = &guc_exec_queue_ops;
296
297 xa_init(&guc->submission_state.exec_queue_lookup);
298
299 init_waitqueue_head(&guc->submission_state.fini_wq);
300
301 primelockdep(guc);
302
303 return drmm_add_action_or_reset(&xe->drm, guc_submit_fini, guc);
304 }
305
__release_guc_id(struct xe_guc * guc,struct xe_exec_queue * q,u32 xa_count)306 static void __release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q, u32 xa_count)
307 {
308 int i;
309
310 lockdep_assert_held(&guc->submission_state.lock);
311
312 for (i = 0; i < xa_count; ++i)
313 xa_erase(&guc->submission_state.exec_queue_lookup, q->guc->id + i);
314
315 xe_guc_id_mgr_release_locked(&guc->submission_state.idm,
316 q->guc->id, q->width);
317
318 if (xa_empty(&guc->submission_state.exec_queue_lookup))
319 wake_up(&guc->submission_state.fini_wq);
320 }
321
alloc_guc_id(struct xe_guc * guc,struct xe_exec_queue * q)322 static int alloc_guc_id(struct xe_guc *guc, struct xe_exec_queue *q)
323 {
324 int ret;
325 int i;
326
327 /*
328 * Must use GFP_NOWAIT as this lock is in the dma fence signalling path,
329 * worse case user gets -ENOMEM on engine create and has to try again.
330 *
331 * FIXME: Have caller pre-alloc or post-alloc /w GFP_KERNEL to prevent
332 * failure.
333 */
334 lockdep_assert_held(&guc->submission_state.lock);
335
336 ret = xe_guc_id_mgr_reserve_locked(&guc->submission_state.idm,
337 q->width);
338 if (ret < 0)
339 return ret;
340
341 q->guc->id = ret;
342
343 for (i = 0; i < q->width; ++i) {
344 ret = xa_err(xa_store(&guc->submission_state.exec_queue_lookup,
345 q->guc->id + i, q, GFP_NOWAIT));
346 if (ret)
347 goto err_release;
348 }
349
350 return 0;
351
352 err_release:
353 __release_guc_id(guc, q, i);
354
355 return ret;
356 }
357
release_guc_id(struct xe_guc * guc,struct xe_exec_queue * q)358 static void release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q)
359 {
360 mutex_lock(&guc->submission_state.lock);
361 __release_guc_id(guc, q, q->width);
362 mutex_unlock(&guc->submission_state.lock);
363 }
364
365 struct exec_queue_policy {
366 u32 count;
367 struct guc_update_exec_queue_policy h2g;
368 };
369
__guc_exec_queue_policy_action_size(struct exec_queue_policy * policy)370 static u32 __guc_exec_queue_policy_action_size(struct exec_queue_policy *policy)
371 {
372 size_t bytes = sizeof(policy->h2g.header) +
373 (sizeof(policy->h2g.klv[0]) * policy->count);
374
375 return bytes / sizeof(u32);
376 }
377
__guc_exec_queue_policy_start_klv(struct exec_queue_policy * policy,u16 guc_id)378 static void __guc_exec_queue_policy_start_klv(struct exec_queue_policy *policy,
379 u16 guc_id)
380 {
381 policy->h2g.header.action =
382 XE_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
383 policy->h2g.header.guc_id = guc_id;
384 policy->count = 0;
385 }
386
387 #define MAKE_EXEC_QUEUE_POLICY_ADD(func, id) \
388 static void __guc_exec_queue_policy_add_##func(struct exec_queue_policy *policy, \
389 u32 data) \
390 { \
391 XE_WARN_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
392 \
393 policy->h2g.klv[policy->count].kl = \
394 FIELD_PREP(GUC_KLV_0_KEY, \
395 GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
396 FIELD_PREP(GUC_KLV_0_LEN, 1); \
397 policy->h2g.klv[policy->count].value = data; \
398 policy->count++; \
399 }
400
401 MAKE_EXEC_QUEUE_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
402 MAKE_EXEC_QUEUE_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
403 MAKE_EXEC_QUEUE_POLICY_ADD(priority, SCHEDULING_PRIORITY)
404 MAKE_EXEC_QUEUE_POLICY_ADD(slpc_exec_queue_freq_req, SLPM_GT_FREQUENCY)
405 #undef MAKE_EXEC_QUEUE_POLICY_ADD
406
407 static const int xe_exec_queue_prio_to_guc[] = {
408 [XE_EXEC_QUEUE_PRIORITY_LOW] = GUC_CLIENT_PRIORITY_NORMAL,
409 [XE_EXEC_QUEUE_PRIORITY_NORMAL] = GUC_CLIENT_PRIORITY_KMD_NORMAL,
410 [XE_EXEC_QUEUE_PRIORITY_HIGH] = GUC_CLIENT_PRIORITY_HIGH,
411 [XE_EXEC_QUEUE_PRIORITY_KERNEL] = GUC_CLIENT_PRIORITY_KMD_HIGH,
412 };
413
init_policies(struct xe_guc * guc,struct xe_exec_queue * q)414 static void init_policies(struct xe_guc *guc, struct xe_exec_queue *q)
415 {
416 struct exec_queue_policy policy;
417 enum xe_exec_queue_priority prio = q->sched_props.priority;
418 u32 timeslice_us = q->sched_props.timeslice_us;
419 u32 slpc_exec_queue_freq_req = 0;
420 u32 preempt_timeout_us = q->sched_props.preempt_timeout_us;
421
422 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
423
424 if (q->flags & EXEC_QUEUE_FLAG_LOW_LATENCY)
425 slpc_exec_queue_freq_req |= SLPC_CTX_FREQ_REQ_IS_COMPUTE;
426
427 __guc_exec_queue_policy_start_klv(&policy, q->guc->id);
428 __guc_exec_queue_policy_add_priority(&policy, xe_exec_queue_prio_to_guc[prio]);
429 __guc_exec_queue_policy_add_execution_quantum(&policy, timeslice_us);
430 __guc_exec_queue_policy_add_preemption_timeout(&policy, preempt_timeout_us);
431 __guc_exec_queue_policy_add_slpc_exec_queue_freq_req(&policy,
432 slpc_exec_queue_freq_req);
433
434 xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g,
435 __guc_exec_queue_policy_action_size(&policy), 0, 0);
436 }
437
set_min_preemption_timeout(struct xe_guc * guc,struct xe_exec_queue * q)438 static void set_min_preemption_timeout(struct xe_guc *guc, struct xe_exec_queue *q)
439 {
440 struct exec_queue_policy policy;
441
442 __guc_exec_queue_policy_start_klv(&policy, q->guc->id);
443 __guc_exec_queue_policy_add_preemption_timeout(&policy, 1);
444
445 xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g,
446 __guc_exec_queue_policy_action_size(&policy), 0, 0);
447 }
448
449 #define parallel_read(xe_, map_, field_) \
450 xe_map_rd_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \
451 field_)
452 #define parallel_write(xe_, map_, field_, val_) \
453 xe_map_wr_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \
454 field_, val_)
455
__register_mlrc_exec_queue(struct xe_guc * guc,struct xe_exec_queue * q,struct guc_ctxt_registration_info * info)456 static void __register_mlrc_exec_queue(struct xe_guc *guc,
457 struct xe_exec_queue *q,
458 struct guc_ctxt_registration_info *info)
459 {
460 #define MAX_MLRC_REG_SIZE (13 + XE_HW_ENGINE_MAX_INSTANCE * 2)
461 u32 action[MAX_MLRC_REG_SIZE];
462 int len = 0;
463 int i;
464
465 xe_gt_assert(guc_to_gt(guc), xe_exec_queue_is_parallel(q));
466
467 action[len++] = XE_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
468 action[len++] = info->flags;
469 action[len++] = info->context_idx;
470 action[len++] = info->engine_class;
471 action[len++] = info->engine_submit_mask;
472 action[len++] = info->wq_desc_lo;
473 action[len++] = info->wq_desc_hi;
474 action[len++] = info->wq_base_lo;
475 action[len++] = info->wq_base_hi;
476 action[len++] = info->wq_size;
477 action[len++] = q->width;
478 action[len++] = info->hwlrca_lo;
479 action[len++] = info->hwlrca_hi;
480
481 for (i = 1; i < q->width; ++i) {
482 struct xe_lrc *lrc = q->lrc[i];
483
484 action[len++] = lower_32_bits(xe_lrc_descriptor(lrc));
485 action[len++] = upper_32_bits(xe_lrc_descriptor(lrc));
486 }
487
488 xe_gt_assert(guc_to_gt(guc), len <= MAX_MLRC_REG_SIZE);
489 #undef MAX_MLRC_REG_SIZE
490
491 xe_guc_ct_send(&guc->ct, action, len, 0, 0);
492 }
493
__register_exec_queue(struct xe_guc * guc,struct guc_ctxt_registration_info * info)494 static void __register_exec_queue(struct xe_guc *guc,
495 struct guc_ctxt_registration_info *info)
496 {
497 u32 action[] = {
498 XE_GUC_ACTION_REGISTER_CONTEXT,
499 info->flags,
500 info->context_idx,
501 info->engine_class,
502 info->engine_submit_mask,
503 info->wq_desc_lo,
504 info->wq_desc_hi,
505 info->wq_base_lo,
506 info->wq_base_hi,
507 info->wq_size,
508 info->hwlrca_lo,
509 info->hwlrca_hi,
510 };
511
512 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 0, 0);
513 }
514
register_exec_queue(struct xe_exec_queue * q)515 static void register_exec_queue(struct xe_exec_queue *q)
516 {
517 struct xe_guc *guc = exec_queue_to_guc(q);
518 struct xe_device *xe = guc_to_xe(guc);
519 struct xe_lrc *lrc = q->lrc[0];
520 struct guc_ctxt_registration_info info;
521
522 xe_gt_assert(guc_to_gt(guc), !exec_queue_registered(q));
523
524 memset(&info, 0, sizeof(info));
525 info.context_idx = q->guc->id;
526 info.engine_class = xe_engine_class_to_guc_class(q->class);
527 info.engine_submit_mask = q->logical_mask;
528 info.hwlrca_lo = lower_32_bits(xe_lrc_descriptor(lrc));
529 info.hwlrca_hi = upper_32_bits(xe_lrc_descriptor(lrc));
530 info.flags = CONTEXT_REGISTRATION_FLAG_KMD;
531
532 if (xe_exec_queue_is_parallel(q)) {
533 u64 ggtt_addr = xe_lrc_parallel_ggtt_addr(lrc);
534 struct iosys_map map = xe_lrc_parallel_map(lrc);
535
536 info.wq_desc_lo = lower_32_bits(ggtt_addr +
537 offsetof(struct guc_submit_parallel_scratch, wq_desc));
538 info.wq_desc_hi = upper_32_bits(ggtt_addr +
539 offsetof(struct guc_submit_parallel_scratch, wq_desc));
540 info.wq_base_lo = lower_32_bits(ggtt_addr +
541 offsetof(struct guc_submit_parallel_scratch, wq[0]));
542 info.wq_base_hi = upper_32_bits(ggtt_addr +
543 offsetof(struct guc_submit_parallel_scratch, wq[0]));
544 info.wq_size = WQ_SIZE;
545
546 q->guc->wqi_head = 0;
547 q->guc->wqi_tail = 0;
548 xe_map_memset(xe, &map, 0, 0, PARALLEL_SCRATCH_SIZE - WQ_SIZE);
549 parallel_write(xe, map, wq_desc.wq_status, WQ_STATUS_ACTIVE);
550 }
551
552 /*
553 * We must keep a reference for LR engines if engine is registered with
554 * the GuC as jobs signal immediately and can't destroy an engine if the
555 * GuC has a reference to it.
556 */
557 if (xe_exec_queue_is_lr(q))
558 xe_exec_queue_get(q);
559
560 set_exec_queue_registered(q);
561 trace_xe_exec_queue_register(q);
562 if (xe_exec_queue_is_parallel(q))
563 __register_mlrc_exec_queue(guc, q, &info);
564 else
565 __register_exec_queue(guc, &info);
566 init_policies(guc, q);
567 }
568
wq_space_until_wrap(struct xe_exec_queue * q)569 static u32 wq_space_until_wrap(struct xe_exec_queue *q)
570 {
571 return (WQ_SIZE - q->guc->wqi_tail);
572 }
573
wq_wait_for_space(struct xe_exec_queue * q,u32 wqi_size)574 static int wq_wait_for_space(struct xe_exec_queue *q, u32 wqi_size)
575 {
576 struct xe_guc *guc = exec_queue_to_guc(q);
577 struct xe_device *xe = guc_to_xe(guc);
578 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
579 unsigned int sleep_period_ms = 1;
580
581 #define AVAILABLE_SPACE \
582 CIRC_SPACE(q->guc->wqi_tail, q->guc->wqi_head, WQ_SIZE)
583 if (wqi_size > AVAILABLE_SPACE) {
584 try_again:
585 q->guc->wqi_head = parallel_read(xe, map, wq_desc.head);
586 if (wqi_size > AVAILABLE_SPACE) {
587 if (sleep_period_ms == 1024) {
588 xe_gt_reset_async(q->gt);
589 return -ENODEV;
590 }
591
592 msleep(sleep_period_ms);
593 sleep_period_ms <<= 1;
594 goto try_again;
595 }
596 }
597 #undef AVAILABLE_SPACE
598
599 return 0;
600 }
601
wq_noop_append(struct xe_exec_queue * q)602 static int wq_noop_append(struct xe_exec_queue *q)
603 {
604 struct xe_guc *guc = exec_queue_to_guc(q);
605 struct xe_device *xe = guc_to_xe(guc);
606 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
607 u32 len_dw = wq_space_until_wrap(q) / sizeof(u32) - 1;
608
609 if (wq_wait_for_space(q, wq_space_until_wrap(q)))
610 return -ENODEV;
611
612 xe_gt_assert(guc_to_gt(guc), FIELD_FIT(WQ_LEN_MASK, len_dw));
613
614 parallel_write(xe, map, wq[q->guc->wqi_tail / sizeof(u32)],
615 FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
616 FIELD_PREP(WQ_LEN_MASK, len_dw));
617 q->guc->wqi_tail = 0;
618
619 return 0;
620 }
621
wq_item_append(struct xe_exec_queue * q)622 static void wq_item_append(struct xe_exec_queue *q)
623 {
624 struct xe_guc *guc = exec_queue_to_guc(q);
625 struct xe_device *xe = guc_to_xe(guc);
626 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
627 #define WQ_HEADER_SIZE 4 /* Includes 1 LRC address too */
628 u32 wqi[XE_HW_ENGINE_MAX_INSTANCE + (WQ_HEADER_SIZE - 1)];
629 u32 wqi_size = (q->width + (WQ_HEADER_SIZE - 1)) * sizeof(u32);
630 u32 len_dw = (wqi_size / sizeof(u32)) - 1;
631 int i = 0, j;
632
633 if (wqi_size > wq_space_until_wrap(q)) {
634 if (wq_noop_append(q))
635 return;
636 }
637 if (wq_wait_for_space(q, wqi_size))
638 return;
639
640 wqi[i++] = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
641 FIELD_PREP(WQ_LEN_MASK, len_dw);
642 wqi[i++] = xe_lrc_descriptor(q->lrc[0]);
643 wqi[i++] = FIELD_PREP(WQ_GUC_ID_MASK, q->guc->id) |
644 FIELD_PREP(WQ_RING_TAIL_MASK, q->lrc[0]->ring.tail / sizeof(u64));
645 wqi[i++] = 0;
646 for (j = 1; j < q->width; ++j) {
647 struct xe_lrc *lrc = q->lrc[j];
648
649 wqi[i++] = lrc->ring.tail / sizeof(u64);
650 }
651
652 xe_gt_assert(guc_to_gt(guc), i == wqi_size / sizeof(u32));
653
654 iosys_map_incr(&map, offsetof(struct guc_submit_parallel_scratch,
655 wq[q->guc->wqi_tail / sizeof(u32)]));
656 xe_map_memcpy_to(xe, &map, 0, wqi, wqi_size);
657 q->guc->wqi_tail += wqi_size;
658 xe_gt_assert(guc_to_gt(guc), q->guc->wqi_tail <= WQ_SIZE);
659
660 xe_device_wmb(xe);
661
662 map = xe_lrc_parallel_map(q->lrc[0]);
663 parallel_write(xe, map, wq_desc.tail, q->guc->wqi_tail);
664 }
665
666 #define RESUME_PENDING ~0x0ull
submit_exec_queue(struct xe_exec_queue * q)667 static void submit_exec_queue(struct xe_exec_queue *q)
668 {
669 struct xe_guc *guc = exec_queue_to_guc(q);
670 struct xe_lrc *lrc = q->lrc[0];
671 u32 action[3];
672 u32 g2h_len = 0;
673 u32 num_g2h = 0;
674 int len = 0;
675 bool extra_submit = false;
676
677 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
678
679 if (xe_exec_queue_is_parallel(q))
680 wq_item_append(q);
681 else
682 xe_lrc_set_ring_tail(lrc, lrc->ring.tail);
683
684 if (exec_queue_suspended(q) && !xe_exec_queue_is_parallel(q))
685 return;
686
687 if (!exec_queue_enabled(q) && !exec_queue_suspended(q)) {
688 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
689 action[len++] = q->guc->id;
690 action[len++] = GUC_CONTEXT_ENABLE;
691 g2h_len = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
692 num_g2h = 1;
693 if (xe_exec_queue_is_parallel(q))
694 extra_submit = true;
695
696 q->guc->resume_time = RESUME_PENDING;
697 set_exec_queue_pending_enable(q);
698 set_exec_queue_enabled(q);
699 trace_xe_exec_queue_scheduling_enable(q);
700 } else {
701 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT;
702 action[len++] = q->guc->id;
703 trace_xe_exec_queue_submit(q);
704 }
705
706 xe_guc_ct_send(&guc->ct, action, len, g2h_len, num_g2h);
707
708 if (extra_submit) {
709 len = 0;
710 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT;
711 action[len++] = q->guc->id;
712 trace_xe_exec_queue_submit(q);
713
714 xe_guc_ct_send(&guc->ct, action, len, 0, 0);
715 }
716 }
717
718 static struct dma_fence *
guc_exec_queue_run_job(struct drm_sched_job * drm_job)719 guc_exec_queue_run_job(struct drm_sched_job *drm_job)
720 {
721 struct xe_sched_job *job = to_xe_sched_job(drm_job);
722 struct xe_exec_queue *q = job->q;
723 struct xe_guc *guc = exec_queue_to_guc(q);
724 struct dma_fence *fence = NULL;
725 bool lr = xe_exec_queue_is_lr(q);
726
727 xe_gt_assert(guc_to_gt(guc), !(exec_queue_destroyed(q) || exec_queue_pending_disable(q)) ||
728 exec_queue_banned(q) || exec_queue_suspended(q));
729
730 trace_xe_sched_job_run(job);
731
732 if (!exec_queue_killed_or_banned_or_wedged(q) && !xe_sched_job_is_error(job)) {
733 if (!exec_queue_registered(q))
734 register_exec_queue(q);
735 if (!lr) /* LR jobs are emitted in the exec IOCTL */
736 q->ring_ops->emit_job(job);
737 submit_exec_queue(q);
738 }
739
740 if (lr) {
741 xe_sched_job_set_error(job, -EOPNOTSUPP);
742 dma_fence_put(job->fence); /* Drop ref from xe_sched_job_arm */
743 } else {
744 fence = job->fence;
745 }
746
747 return fence;
748 }
749
guc_exec_queue_free_job(struct drm_sched_job * drm_job)750 static void guc_exec_queue_free_job(struct drm_sched_job *drm_job)
751 {
752 struct xe_sched_job *job = to_xe_sched_job(drm_job);
753
754 trace_xe_sched_job_free(job);
755 xe_sched_job_put(job);
756 }
757
xe_guc_read_stopped(struct xe_guc * guc)758 int xe_guc_read_stopped(struct xe_guc *guc)
759 {
760 return atomic_read(&guc->submission_state.stopped);
761 }
762
763 #define MAKE_SCHED_CONTEXT_ACTION(q, enable_disable) \
764 u32 action[] = { \
765 XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET, \
766 q->guc->id, \
767 GUC_CONTEXT_##enable_disable, \
768 }
769
disable_scheduling_deregister(struct xe_guc * guc,struct xe_exec_queue * q)770 static void disable_scheduling_deregister(struct xe_guc *guc,
771 struct xe_exec_queue *q)
772 {
773 MAKE_SCHED_CONTEXT_ACTION(q, DISABLE);
774 int ret;
775
776 set_min_preemption_timeout(guc, q);
777 smp_rmb();
778 ret = wait_event_timeout(guc->ct.wq,
779 (!exec_queue_pending_enable(q) &&
780 !exec_queue_pending_disable(q)) ||
781 xe_guc_read_stopped(guc),
782 HZ * 5);
783 if (!ret) {
784 struct xe_gpu_scheduler *sched = &q->guc->sched;
785
786 xe_gt_warn(q->gt, "Pending enable/disable failed to respond\n");
787 xe_sched_submission_start(sched);
788 xe_gt_reset_async(q->gt);
789 xe_sched_tdr_queue_imm(sched);
790 return;
791 }
792
793 clear_exec_queue_enabled(q);
794 set_exec_queue_pending_disable(q);
795 set_exec_queue_destroyed(q);
796 trace_xe_exec_queue_scheduling_disable(q);
797
798 /*
799 * Reserve space for both G2H here as the 2nd G2H is sent from a G2H
800 * handler and we are not allowed to reserved G2H space in handlers.
801 */
802 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
803 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET +
804 G2H_LEN_DW_DEREGISTER_CONTEXT, 2);
805 }
806
xe_guc_exec_queue_trigger_cleanup(struct xe_exec_queue * q)807 static void xe_guc_exec_queue_trigger_cleanup(struct xe_exec_queue *q)
808 {
809 struct xe_guc *guc = exec_queue_to_guc(q);
810 struct xe_device *xe = guc_to_xe(guc);
811
812 /** to wakeup xe_wait_user_fence ioctl if exec queue is reset */
813 wake_up_all(&xe->ufence_wq);
814
815 if (xe_exec_queue_is_lr(q))
816 queue_work(guc_to_gt(guc)->ordered_wq, &q->guc->lr_tdr);
817 else
818 xe_sched_tdr_queue_imm(&q->guc->sched);
819 }
820
821 /**
822 * xe_guc_submit_wedge() - Wedge GuC submission
823 * @guc: the GuC object
824 *
825 * Save exec queue's registered with GuC state by taking a ref to each queue.
826 * Register a DRMM handler to drop refs upon driver unload.
827 */
xe_guc_submit_wedge(struct xe_guc * guc)828 void xe_guc_submit_wedge(struct xe_guc *guc)
829 {
830 struct xe_gt *gt = guc_to_gt(guc);
831 struct xe_exec_queue *q;
832 unsigned long index;
833 int err;
834
835 xe_gt_assert(guc_to_gt(guc), guc_to_xe(guc)->wedged.mode);
836
837 err = devm_add_action_or_reset(guc_to_xe(guc)->drm.dev,
838 guc_submit_wedged_fini, guc);
839 if (err) {
840 xe_gt_err(gt, "Failed to register clean-up on wedged.mode=2; "
841 "Although device is wedged.\n");
842 return;
843 }
844
845 mutex_lock(&guc->submission_state.lock);
846 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q)
847 if (xe_exec_queue_get_unless_zero(q))
848 set_exec_queue_wedged(q);
849 mutex_unlock(&guc->submission_state.lock);
850 }
851
guc_submit_hint_wedged(struct xe_guc * guc)852 static bool guc_submit_hint_wedged(struct xe_guc *guc)
853 {
854 struct xe_device *xe = guc_to_xe(guc);
855
856 if (xe->wedged.mode != 2)
857 return false;
858
859 if (xe_device_wedged(xe))
860 return true;
861
862 xe_device_declare_wedged(xe);
863
864 return true;
865 }
866
xe_guc_exec_queue_lr_cleanup(struct work_struct * w)867 static void xe_guc_exec_queue_lr_cleanup(struct work_struct *w)
868 {
869 struct xe_guc_exec_queue *ge =
870 container_of(w, struct xe_guc_exec_queue, lr_tdr);
871 struct xe_exec_queue *q = ge->q;
872 struct xe_guc *guc = exec_queue_to_guc(q);
873 struct xe_gpu_scheduler *sched = &ge->sched;
874 bool wedged;
875
876 xe_gt_assert(guc_to_gt(guc), xe_exec_queue_is_lr(q));
877 trace_xe_exec_queue_lr_cleanup(q);
878
879 wedged = guc_submit_hint_wedged(exec_queue_to_guc(q));
880
881 /* Kill the run_job / process_msg entry points */
882 xe_sched_submission_stop(sched);
883
884 /*
885 * Engine state now mostly stable, disable scheduling / deregister if
886 * needed. This cleanup routine might be called multiple times, where
887 * the actual async engine deregister drops the final engine ref.
888 * Calling disable_scheduling_deregister will mark the engine as
889 * destroyed and fire off the CT requests to disable scheduling /
890 * deregister, which we only want to do once. We also don't want to mark
891 * the engine as pending_disable again as this may race with the
892 * xe_guc_deregister_done_handler() which treats it as an unexpected
893 * state.
894 */
895 if (!wedged && exec_queue_registered(q) && !exec_queue_destroyed(q)) {
896 struct xe_guc *guc = exec_queue_to_guc(q);
897 int ret;
898
899 set_exec_queue_banned(q);
900 disable_scheduling_deregister(guc, q);
901
902 /*
903 * Must wait for scheduling to be disabled before signalling
904 * any fences, if GT broken the GT reset code should signal us.
905 */
906 ret = wait_event_timeout(guc->ct.wq,
907 !exec_queue_pending_disable(q) ||
908 xe_guc_read_stopped(guc), HZ * 5);
909 if (!ret) {
910 xe_gt_warn(q->gt, "Schedule disable failed to respond, guc_id=%d\n",
911 q->guc->id);
912 xe_devcoredump(q, NULL, "Schedule disable failed to respond, guc_id=%d\n",
913 q->guc->id);
914 xe_sched_submission_start(sched);
915 xe_gt_reset_async(q->gt);
916 return;
917 }
918 }
919
920 if (!exec_queue_killed(q) && !xe_lrc_ring_is_idle(q->lrc[0]))
921 xe_devcoredump(q, NULL, "LR job cleanup, guc_id=%d", q->guc->id);
922
923 xe_sched_submission_start(sched);
924 }
925
926 #define ADJUST_FIVE_PERCENT(__t) mul_u64_u32_div(__t, 105, 100)
927
check_timeout(struct xe_exec_queue * q,struct xe_sched_job * job)928 static bool check_timeout(struct xe_exec_queue *q, struct xe_sched_job *job)
929 {
930 struct xe_gt *gt = guc_to_gt(exec_queue_to_guc(q));
931 u32 ctx_timestamp, ctx_job_timestamp;
932 u32 timeout_ms = q->sched_props.job_timeout_ms;
933 u32 diff;
934 u64 running_time_ms;
935
936 if (!xe_sched_job_started(job)) {
937 xe_gt_warn(gt, "Check job timeout: seqno=%u, lrc_seqno=%u, guc_id=%d, not started",
938 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job),
939 q->guc->id);
940
941 return xe_sched_invalidate_job(job, 2);
942 }
943
944 ctx_timestamp = xe_lrc_ctx_timestamp(q->lrc[0]);
945 ctx_job_timestamp = xe_lrc_ctx_job_timestamp(q->lrc[0]);
946
947 /*
948 * Counter wraps at ~223s at the usual 19.2MHz, be paranoid catch
949 * possible overflows with a high timeout.
950 */
951 xe_gt_assert(gt, timeout_ms < 100 * MSEC_PER_SEC);
952
953 if (ctx_timestamp < ctx_job_timestamp)
954 diff = ctx_timestamp + U32_MAX - ctx_job_timestamp;
955 else
956 diff = ctx_timestamp - ctx_job_timestamp;
957
958 /*
959 * Ensure timeout is within 5% to account for an GuC scheduling latency
960 */
961 running_time_ms =
962 ADJUST_FIVE_PERCENT(xe_gt_clock_interval_to_ms(gt, diff));
963
964 xe_gt_dbg(gt,
965 "Check job timeout: seqno=%u, lrc_seqno=%u, guc_id=%d, running_time_ms=%llu, timeout_ms=%u, diff=0x%08x",
966 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job),
967 q->guc->id, running_time_ms, timeout_ms, diff);
968
969 return running_time_ms >= timeout_ms;
970 }
971
enable_scheduling(struct xe_exec_queue * q)972 static void enable_scheduling(struct xe_exec_queue *q)
973 {
974 MAKE_SCHED_CONTEXT_ACTION(q, ENABLE);
975 struct xe_guc *guc = exec_queue_to_guc(q);
976 int ret;
977
978 xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q));
979 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
980 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
981 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q));
982
983 set_exec_queue_pending_enable(q);
984 set_exec_queue_enabled(q);
985 trace_xe_exec_queue_scheduling_enable(q);
986
987 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
988 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1);
989
990 ret = wait_event_timeout(guc->ct.wq,
991 !exec_queue_pending_enable(q) ||
992 xe_guc_read_stopped(guc), HZ * 5);
993 if (!ret || xe_guc_read_stopped(guc)) {
994 xe_gt_warn(guc_to_gt(guc), "Schedule enable failed to respond");
995 set_exec_queue_banned(q);
996 xe_gt_reset_async(q->gt);
997 xe_sched_tdr_queue_imm(&q->guc->sched);
998 }
999 }
1000
disable_scheduling(struct xe_exec_queue * q,bool immediate)1001 static void disable_scheduling(struct xe_exec_queue *q, bool immediate)
1002 {
1003 MAKE_SCHED_CONTEXT_ACTION(q, DISABLE);
1004 struct xe_guc *guc = exec_queue_to_guc(q);
1005
1006 xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q));
1007 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
1008 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
1009
1010 if (immediate)
1011 set_min_preemption_timeout(guc, q);
1012 clear_exec_queue_enabled(q);
1013 set_exec_queue_pending_disable(q);
1014 trace_xe_exec_queue_scheduling_disable(q);
1015
1016 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
1017 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1);
1018 }
1019
__deregister_exec_queue(struct xe_guc * guc,struct xe_exec_queue * q)1020 static void __deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q)
1021 {
1022 u32 action[] = {
1023 XE_GUC_ACTION_DEREGISTER_CONTEXT,
1024 q->guc->id,
1025 };
1026
1027 xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q));
1028 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
1029 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q));
1030 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
1031
1032 set_exec_queue_destroyed(q);
1033 trace_xe_exec_queue_deregister(q);
1034
1035 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
1036 G2H_LEN_DW_DEREGISTER_CONTEXT, 1);
1037 }
1038
1039 static enum drm_gpu_sched_stat
guc_exec_queue_timedout_job(struct drm_sched_job * drm_job)1040 guc_exec_queue_timedout_job(struct drm_sched_job *drm_job)
1041 {
1042 struct xe_sched_job *job = to_xe_sched_job(drm_job);
1043 struct xe_sched_job *tmp_job;
1044 struct xe_exec_queue *q = job->q;
1045 struct xe_gpu_scheduler *sched = &q->guc->sched;
1046 struct xe_guc *guc = exec_queue_to_guc(q);
1047 const char *process_name = "no process";
1048 struct xe_device *xe = guc_to_xe(guc);
1049 unsigned int fw_ref;
1050 int err = -ETIME;
1051 pid_t pid = -1;
1052 int i = 0;
1053 bool wedged, skip_timeout_check;
1054
1055 /*
1056 * TDR has fired before free job worker. Common if exec queue
1057 * immediately closed after last fence signaled. Add back to pending
1058 * list so job can be freed and kick scheduler ensuring free job is not
1059 * lost.
1060 */
1061 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &job->fence->flags)) {
1062 xe_sched_add_pending_job(sched, job);
1063 xe_sched_submission_start(sched);
1064
1065 return DRM_GPU_SCHED_STAT_NOMINAL;
1066 }
1067
1068 /* Kill the run_job entry point */
1069 xe_sched_submission_stop(sched);
1070
1071 /* Must check all state after stopping scheduler */
1072 skip_timeout_check = exec_queue_reset(q) ||
1073 exec_queue_killed_or_banned_or_wedged(q) ||
1074 exec_queue_destroyed(q);
1075
1076 /*
1077 * If devcoredump not captured and GuC capture for the job is not ready
1078 * do manual capture first and decide later if we need to use it
1079 */
1080 if (!exec_queue_killed(q) && !xe->devcoredump.captured &&
1081 !xe_guc_capture_get_matching_and_lock(q)) {
1082 /* take force wake before engine register manual capture */
1083 fw_ref = xe_force_wake_get(gt_to_fw(q->gt), XE_FORCEWAKE_ALL);
1084 if (!xe_force_wake_ref_has_domain(fw_ref, XE_FORCEWAKE_ALL))
1085 xe_gt_info(q->gt, "failed to get forcewake for coredump capture\n");
1086
1087 xe_engine_snapshot_capture_for_queue(q);
1088
1089 xe_force_wake_put(gt_to_fw(q->gt), fw_ref);
1090 }
1091
1092 /*
1093 * XXX: Sampling timeout doesn't work in wedged mode as we have to
1094 * modify scheduling state to read timestamp. We could read the
1095 * timestamp from a register to accumulate current running time but this
1096 * doesn't work for SRIOV. For now assuming timeouts in wedged mode are
1097 * genuine timeouts.
1098 */
1099 wedged = guc_submit_hint_wedged(exec_queue_to_guc(q));
1100
1101 /* Engine state now stable, disable scheduling to check timestamp */
1102 if (!wedged && exec_queue_registered(q)) {
1103 int ret;
1104
1105 if (exec_queue_reset(q))
1106 err = -EIO;
1107
1108 if (!exec_queue_destroyed(q)) {
1109 /*
1110 * Wait for any pending G2H to flush out before
1111 * modifying state
1112 */
1113 ret = wait_event_timeout(guc->ct.wq,
1114 (!exec_queue_pending_enable(q) &&
1115 !exec_queue_pending_disable(q)) ||
1116 xe_guc_read_stopped(guc), HZ * 5);
1117 if (!ret || xe_guc_read_stopped(guc))
1118 goto trigger_reset;
1119
1120 /*
1121 * Flag communicates to G2H handler that schedule
1122 * disable originated from a timeout check. The G2H then
1123 * avoid triggering cleanup or deregistering the exec
1124 * queue.
1125 */
1126 set_exec_queue_check_timeout(q);
1127 disable_scheduling(q, skip_timeout_check);
1128 }
1129
1130 /*
1131 * Must wait for scheduling to be disabled before signalling
1132 * any fences, if GT broken the GT reset code should signal us.
1133 *
1134 * FIXME: Tests can generate a ton of 0x6000 (IOMMU CAT fault
1135 * error) messages which can cause the schedule disable to get
1136 * lost. If this occurs, trigger a GT reset to recover.
1137 */
1138 smp_rmb();
1139 ret = wait_event_timeout(guc->ct.wq,
1140 !exec_queue_pending_disable(q) ||
1141 xe_guc_read_stopped(guc), HZ * 5);
1142 if (!ret || xe_guc_read_stopped(guc)) {
1143 trigger_reset:
1144 if (!ret)
1145 xe_gt_warn(guc_to_gt(guc),
1146 "Schedule disable failed to respond, guc_id=%d",
1147 q->guc->id);
1148 xe_devcoredump(q, job,
1149 "Schedule disable failed to respond, guc_id=%d, ret=%d, guc_read=%d",
1150 q->guc->id, ret, xe_guc_read_stopped(guc));
1151 set_exec_queue_extra_ref(q);
1152 xe_exec_queue_get(q); /* GT reset owns this */
1153 set_exec_queue_banned(q);
1154 xe_gt_reset_async(q->gt);
1155 xe_sched_tdr_queue_imm(sched);
1156 goto rearm;
1157 }
1158 }
1159
1160 /*
1161 * Check if job is actually timed out, if so restart job execution and TDR
1162 */
1163 if (!wedged && !skip_timeout_check && !check_timeout(q, job) &&
1164 !exec_queue_reset(q) && exec_queue_registered(q)) {
1165 clear_exec_queue_check_timeout(q);
1166 goto sched_enable;
1167 }
1168
1169 if (q->vm && q->vm->xef) {
1170 process_name = q->vm->xef->process_name;
1171 pid = q->vm->xef->pid;
1172 }
1173 xe_gt_notice(guc_to_gt(guc), "Timedout job: seqno=%u, lrc_seqno=%u, guc_id=%d, flags=0x%lx in %s [%d]",
1174 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job),
1175 q->guc->id, q->flags, process_name, pid);
1176
1177 trace_xe_sched_job_timedout(job);
1178
1179 if (!exec_queue_killed(q))
1180 xe_devcoredump(q, job,
1181 "Timedout job - seqno=%u, lrc_seqno=%u, guc_id=%d, flags=0x%lx",
1182 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job),
1183 q->guc->id, q->flags);
1184
1185 /*
1186 * Kernel jobs should never fail, nor should VM jobs if they do
1187 * somethings has gone wrong and the GT needs a reset
1188 */
1189 xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_KERNEL,
1190 "Kernel-submitted job timed out\n");
1191 xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q),
1192 "VM job timed out on non-killed execqueue\n");
1193 if (!wedged && (q->flags & EXEC_QUEUE_FLAG_KERNEL ||
1194 (q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q)))) {
1195 if (!xe_sched_invalidate_job(job, 2)) {
1196 clear_exec_queue_check_timeout(q);
1197 xe_gt_reset_async(q->gt);
1198 goto rearm;
1199 }
1200 }
1201
1202 /* Finish cleaning up exec queue via deregister */
1203 set_exec_queue_banned(q);
1204 if (!wedged && exec_queue_registered(q) && !exec_queue_destroyed(q)) {
1205 set_exec_queue_extra_ref(q);
1206 xe_exec_queue_get(q);
1207 __deregister_exec_queue(guc, q);
1208 }
1209
1210 /* Stop fence signaling */
1211 xe_hw_fence_irq_stop(q->fence_irq);
1212
1213 /*
1214 * Fence state now stable, stop / start scheduler which cleans up any
1215 * fences that are complete
1216 */
1217 xe_sched_add_pending_job(sched, job);
1218 xe_sched_submission_start(sched);
1219
1220 xe_guc_exec_queue_trigger_cleanup(q);
1221
1222 /* Mark all outstanding jobs as bad, thus completing them */
1223 spin_lock(&sched->base.job_list_lock);
1224 list_for_each_entry(tmp_job, &sched->base.pending_list, drm.list)
1225 xe_sched_job_set_error(tmp_job, !i++ ? err : -ECANCELED);
1226 spin_unlock(&sched->base.job_list_lock);
1227
1228 /* Start fence signaling */
1229 xe_hw_fence_irq_start(q->fence_irq);
1230
1231 return DRM_GPU_SCHED_STAT_NOMINAL;
1232
1233 sched_enable:
1234 enable_scheduling(q);
1235 rearm:
1236 /*
1237 * XXX: Ideally want to adjust timeout based on current execution time
1238 * but there is not currently an easy way to do in DRM scheduler. With
1239 * some thought, do this in a follow up.
1240 */
1241 xe_sched_add_pending_job(sched, job);
1242 xe_sched_submission_start(sched);
1243
1244 return DRM_GPU_SCHED_STAT_NOMINAL;
1245 }
1246
__guc_exec_queue_fini_async(struct work_struct * w)1247 static void __guc_exec_queue_fini_async(struct work_struct *w)
1248 {
1249 struct xe_guc_exec_queue *ge =
1250 container_of(w, struct xe_guc_exec_queue, fini_async);
1251 struct xe_exec_queue *q = ge->q;
1252 struct xe_guc *guc = exec_queue_to_guc(q);
1253
1254 xe_pm_runtime_get(guc_to_xe(guc));
1255 trace_xe_exec_queue_destroy(q);
1256
1257 release_guc_id(guc, q);
1258 if (xe_exec_queue_is_lr(q))
1259 cancel_work_sync(&ge->lr_tdr);
1260 /* Confirm no work left behind accessing device structures */
1261 cancel_delayed_work_sync(&ge->sched.base.work_tdr);
1262 xe_sched_entity_fini(&ge->entity);
1263 xe_sched_fini(&ge->sched);
1264
1265 kfree(ge);
1266 xe_exec_queue_fini(q);
1267 xe_pm_runtime_put(guc_to_xe(guc));
1268 }
1269
guc_exec_queue_fini_async(struct xe_exec_queue * q)1270 static void guc_exec_queue_fini_async(struct xe_exec_queue *q)
1271 {
1272 struct xe_guc *guc = exec_queue_to_guc(q);
1273 struct xe_device *xe = guc_to_xe(guc);
1274
1275 INIT_WORK(&q->guc->fini_async, __guc_exec_queue_fini_async);
1276
1277 /* We must block on kernel engines so slabs are empty on driver unload */
1278 if (q->flags & EXEC_QUEUE_FLAG_PERMANENT || exec_queue_wedged(q))
1279 __guc_exec_queue_fini_async(&q->guc->fini_async);
1280 else
1281 queue_work(xe->destroy_wq, &q->guc->fini_async);
1282 }
1283
__guc_exec_queue_fini(struct xe_guc * guc,struct xe_exec_queue * q)1284 static void __guc_exec_queue_fini(struct xe_guc *guc, struct xe_exec_queue *q)
1285 {
1286 /*
1287 * Might be done from within the GPU scheduler, need to do async as we
1288 * fini the scheduler when the engine is fini'd, the scheduler can't
1289 * complete fini within itself (circular dependency). Async resolves
1290 * this we and don't really care when everything is fini'd, just that it
1291 * is.
1292 */
1293 guc_exec_queue_fini_async(q);
1294 }
1295
__guc_exec_queue_process_msg_cleanup(struct xe_sched_msg * msg)1296 static void __guc_exec_queue_process_msg_cleanup(struct xe_sched_msg *msg)
1297 {
1298 struct xe_exec_queue *q = msg->private_data;
1299 struct xe_guc *guc = exec_queue_to_guc(q);
1300
1301 xe_gt_assert(guc_to_gt(guc), !(q->flags & EXEC_QUEUE_FLAG_PERMANENT));
1302 trace_xe_exec_queue_cleanup_entity(q);
1303
1304 if (exec_queue_registered(q))
1305 disable_scheduling_deregister(guc, q);
1306 else
1307 __guc_exec_queue_fini(guc, q);
1308 }
1309
guc_exec_queue_allowed_to_change_state(struct xe_exec_queue * q)1310 static bool guc_exec_queue_allowed_to_change_state(struct xe_exec_queue *q)
1311 {
1312 return !exec_queue_killed_or_banned_or_wedged(q) && exec_queue_registered(q);
1313 }
1314
__guc_exec_queue_process_msg_set_sched_props(struct xe_sched_msg * msg)1315 static void __guc_exec_queue_process_msg_set_sched_props(struct xe_sched_msg *msg)
1316 {
1317 struct xe_exec_queue *q = msg->private_data;
1318 struct xe_guc *guc = exec_queue_to_guc(q);
1319
1320 if (guc_exec_queue_allowed_to_change_state(q))
1321 init_policies(guc, q);
1322 kfree(msg);
1323 }
1324
__suspend_fence_signal(struct xe_exec_queue * q)1325 static void __suspend_fence_signal(struct xe_exec_queue *q)
1326 {
1327 if (!q->guc->suspend_pending)
1328 return;
1329
1330 WRITE_ONCE(q->guc->suspend_pending, false);
1331 wake_up(&q->guc->suspend_wait);
1332 }
1333
suspend_fence_signal(struct xe_exec_queue * q)1334 static void suspend_fence_signal(struct xe_exec_queue *q)
1335 {
1336 struct xe_guc *guc = exec_queue_to_guc(q);
1337
1338 xe_gt_assert(guc_to_gt(guc), exec_queue_suspended(q) || exec_queue_killed(q) ||
1339 xe_guc_read_stopped(guc));
1340 xe_gt_assert(guc_to_gt(guc), q->guc->suspend_pending);
1341
1342 __suspend_fence_signal(q);
1343 }
1344
__guc_exec_queue_process_msg_suspend(struct xe_sched_msg * msg)1345 static void __guc_exec_queue_process_msg_suspend(struct xe_sched_msg *msg)
1346 {
1347 struct xe_exec_queue *q = msg->private_data;
1348 struct xe_guc *guc = exec_queue_to_guc(q);
1349
1350 if (guc_exec_queue_allowed_to_change_state(q) && !exec_queue_suspended(q) &&
1351 exec_queue_enabled(q)) {
1352 wait_event(guc->ct.wq, (q->guc->resume_time != RESUME_PENDING ||
1353 xe_guc_read_stopped(guc)) && !exec_queue_pending_disable(q));
1354
1355 if (!xe_guc_read_stopped(guc)) {
1356 s64 since_resume_ms =
1357 ktime_ms_delta(ktime_get(),
1358 q->guc->resume_time);
1359 s64 wait_ms = q->vm->preempt.min_run_period_ms -
1360 since_resume_ms;
1361
1362 if (wait_ms > 0 && q->guc->resume_time)
1363 msleep(wait_ms);
1364
1365 set_exec_queue_suspended(q);
1366 disable_scheduling(q, false);
1367 }
1368 } else if (q->guc->suspend_pending) {
1369 set_exec_queue_suspended(q);
1370 suspend_fence_signal(q);
1371 }
1372 }
1373
__guc_exec_queue_process_msg_resume(struct xe_sched_msg * msg)1374 static void __guc_exec_queue_process_msg_resume(struct xe_sched_msg *msg)
1375 {
1376 struct xe_exec_queue *q = msg->private_data;
1377
1378 if (guc_exec_queue_allowed_to_change_state(q)) {
1379 clear_exec_queue_suspended(q);
1380 if (!exec_queue_enabled(q)) {
1381 q->guc->resume_time = RESUME_PENDING;
1382 enable_scheduling(q);
1383 }
1384 } else {
1385 clear_exec_queue_suspended(q);
1386 }
1387 }
1388
1389 #define CLEANUP 1 /* Non-zero values to catch uninitialized msg */
1390 #define SET_SCHED_PROPS 2
1391 #define SUSPEND 3
1392 #define RESUME 4
1393 #define OPCODE_MASK 0xf
1394 #define MSG_LOCKED BIT(8)
1395
guc_exec_queue_process_msg(struct xe_sched_msg * msg)1396 static void guc_exec_queue_process_msg(struct xe_sched_msg *msg)
1397 {
1398 struct xe_device *xe = guc_to_xe(exec_queue_to_guc(msg->private_data));
1399
1400 trace_xe_sched_msg_recv(msg);
1401
1402 switch (msg->opcode) {
1403 case CLEANUP:
1404 __guc_exec_queue_process_msg_cleanup(msg);
1405 break;
1406 case SET_SCHED_PROPS:
1407 __guc_exec_queue_process_msg_set_sched_props(msg);
1408 break;
1409 case SUSPEND:
1410 __guc_exec_queue_process_msg_suspend(msg);
1411 break;
1412 case RESUME:
1413 __guc_exec_queue_process_msg_resume(msg);
1414 break;
1415 default:
1416 XE_WARN_ON("Unknown message type");
1417 }
1418
1419 xe_pm_runtime_put(xe);
1420 }
1421
1422 static const struct drm_sched_backend_ops drm_sched_ops = {
1423 .run_job = guc_exec_queue_run_job,
1424 .free_job = guc_exec_queue_free_job,
1425 .timedout_job = guc_exec_queue_timedout_job,
1426 };
1427
1428 static const struct xe_sched_backend_ops xe_sched_ops = {
1429 .process_msg = guc_exec_queue_process_msg,
1430 };
1431
guc_exec_queue_init(struct xe_exec_queue * q)1432 static int guc_exec_queue_init(struct xe_exec_queue *q)
1433 {
1434 struct xe_gpu_scheduler *sched;
1435 struct xe_guc *guc = exec_queue_to_guc(q);
1436 struct xe_guc_exec_queue *ge;
1437 long timeout;
1438 int err, i;
1439
1440 xe_gt_assert(guc_to_gt(guc), xe_device_uc_enabled(guc_to_xe(guc)));
1441
1442 ge = kzalloc(sizeof(*ge), GFP_KERNEL);
1443 if (!ge)
1444 return -ENOMEM;
1445
1446 q->guc = ge;
1447 ge->q = q;
1448 init_waitqueue_head(&ge->suspend_wait);
1449
1450 for (i = 0; i < MAX_STATIC_MSG_TYPE; ++i)
1451 INIT_LIST_HEAD(&ge->static_msgs[i].link);
1452
1453 timeout = (q->vm && xe_vm_in_lr_mode(q->vm)) ? MAX_SCHEDULE_TIMEOUT :
1454 msecs_to_jiffies(q->sched_props.job_timeout_ms);
1455 err = xe_sched_init(&ge->sched, &drm_sched_ops, &xe_sched_ops,
1456 NULL, q->lrc[0]->ring.size / MAX_JOB_SIZE_BYTES, 64,
1457 timeout, guc_to_gt(guc)->ordered_wq, NULL,
1458 q->name, gt_to_xe(q->gt)->drm.dev);
1459 if (err)
1460 goto err_free;
1461
1462 sched = &ge->sched;
1463 err = xe_sched_entity_init(&ge->entity, sched);
1464 if (err)
1465 goto err_sched;
1466
1467 if (xe_exec_queue_is_lr(q))
1468 INIT_WORK(&q->guc->lr_tdr, xe_guc_exec_queue_lr_cleanup);
1469
1470 mutex_lock(&guc->submission_state.lock);
1471
1472 err = alloc_guc_id(guc, q);
1473 if (err)
1474 goto err_entity;
1475
1476 q->entity = &ge->entity;
1477
1478 if (xe_guc_read_stopped(guc))
1479 xe_sched_stop(sched);
1480
1481 mutex_unlock(&guc->submission_state.lock);
1482
1483 xe_exec_queue_assign_name(q, q->guc->id);
1484
1485 trace_xe_exec_queue_create(q);
1486
1487 return 0;
1488
1489 err_entity:
1490 mutex_unlock(&guc->submission_state.lock);
1491 xe_sched_entity_fini(&ge->entity);
1492 err_sched:
1493 xe_sched_fini(&ge->sched);
1494 err_free:
1495 kfree(ge);
1496
1497 return err;
1498 }
1499
guc_exec_queue_kill(struct xe_exec_queue * q)1500 static void guc_exec_queue_kill(struct xe_exec_queue *q)
1501 {
1502 trace_xe_exec_queue_kill(q);
1503 set_exec_queue_killed(q);
1504 __suspend_fence_signal(q);
1505 xe_guc_exec_queue_trigger_cleanup(q);
1506 }
1507
guc_exec_queue_add_msg(struct xe_exec_queue * q,struct xe_sched_msg * msg,u32 opcode)1508 static void guc_exec_queue_add_msg(struct xe_exec_queue *q, struct xe_sched_msg *msg,
1509 u32 opcode)
1510 {
1511 xe_pm_runtime_get_noresume(guc_to_xe(exec_queue_to_guc(q)));
1512
1513 INIT_LIST_HEAD(&msg->link);
1514 msg->opcode = opcode & OPCODE_MASK;
1515 msg->private_data = q;
1516
1517 trace_xe_sched_msg_add(msg);
1518 if (opcode & MSG_LOCKED)
1519 xe_sched_add_msg_locked(&q->guc->sched, msg);
1520 else
1521 xe_sched_add_msg(&q->guc->sched, msg);
1522 }
1523
guc_exec_queue_try_add_msg(struct xe_exec_queue * q,struct xe_sched_msg * msg,u32 opcode)1524 static bool guc_exec_queue_try_add_msg(struct xe_exec_queue *q,
1525 struct xe_sched_msg *msg,
1526 u32 opcode)
1527 {
1528 if (!list_empty(&msg->link))
1529 return false;
1530
1531 guc_exec_queue_add_msg(q, msg, opcode | MSG_LOCKED);
1532
1533 return true;
1534 }
1535
1536 #define STATIC_MSG_CLEANUP 0
1537 #define STATIC_MSG_SUSPEND 1
1538 #define STATIC_MSG_RESUME 2
guc_exec_queue_fini(struct xe_exec_queue * q)1539 static void guc_exec_queue_fini(struct xe_exec_queue *q)
1540 {
1541 struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_CLEANUP;
1542
1543 if (!(q->flags & EXEC_QUEUE_FLAG_PERMANENT) && !exec_queue_wedged(q))
1544 guc_exec_queue_add_msg(q, msg, CLEANUP);
1545 else
1546 __guc_exec_queue_fini(exec_queue_to_guc(q), q);
1547 }
1548
guc_exec_queue_set_priority(struct xe_exec_queue * q,enum xe_exec_queue_priority priority)1549 static int guc_exec_queue_set_priority(struct xe_exec_queue *q,
1550 enum xe_exec_queue_priority priority)
1551 {
1552 struct xe_sched_msg *msg;
1553
1554 if (q->sched_props.priority == priority ||
1555 exec_queue_killed_or_banned_or_wedged(q))
1556 return 0;
1557
1558 msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1559 if (!msg)
1560 return -ENOMEM;
1561
1562 q->sched_props.priority = priority;
1563 guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS);
1564
1565 return 0;
1566 }
1567
guc_exec_queue_set_timeslice(struct xe_exec_queue * q,u32 timeslice_us)1568 static int guc_exec_queue_set_timeslice(struct xe_exec_queue *q, u32 timeslice_us)
1569 {
1570 struct xe_sched_msg *msg;
1571
1572 if (q->sched_props.timeslice_us == timeslice_us ||
1573 exec_queue_killed_or_banned_or_wedged(q))
1574 return 0;
1575
1576 msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1577 if (!msg)
1578 return -ENOMEM;
1579
1580 q->sched_props.timeslice_us = timeslice_us;
1581 guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS);
1582
1583 return 0;
1584 }
1585
guc_exec_queue_set_preempt_timeout(struct xe_exec_queue * q,u32 preempt_timeout_us)1586 static int guc_exec_queue_set_preempt_timeout(struct xe_exec_queue *q,
1587 u32 preempt_timeout_us)
1588 {
1589 struct xe_sched_msg *msg;
1590
1591 if (q->sched_props.preempt_timeout_us == preempt_timeout_us ||
1592 exec_queue_killed_or_banned_or_wedged(q))
1593 return 0;
1594
1595 msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1596 if (!msg)
1597 return -ENOMEM;
1598
1599 q->sched_props.preempt_timeout_us = preempt_timeout_us;
1600 guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS);
1601
1602 return 0;
1603 }
1604
guc_exec_queue_suspend(struct xe_exec_queue * q)1605 static int guc_exec_queue_suspend(struct xe_exec_queue *q)
1606 {
1607 struct xe_gpu_scheduler *sched = &q->guc->sched;
1608 struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_SUSPEND;
1609
1610 if (exec_queue_killed_or_banned_or_wedged(q))
1611 return -EINVAL;
1612
1613 xe_sched_msg_lock(sched);
1614 if (guc_exec_queue_try_add_msg(q, msg, SUSPEND))
1615 q->guc->suspend_pending = true;
1616 xe_sched_msg_unlock(sched);
1617
1618 return 0;
1619 }
1620
guc_exec_queue_suspend_wait(struct xe_exec_queue * q)1621 static int guc_exec_queue_suspend_wait(struct xe_exec_queue *q)
1622 {
1623 struct xe_guc *guc = exec_queue_to_guc(q);
1624 int ret;
1625
1626 /*
1627 * Likely don't need to check exec_queue_killed() as we clear
1628 * suspend_pending upon kill but to be paranoid but races in which
1629 * suspend_pending is set after kill also check kill here.
1630 */
1631 ret = wait_event_interruptible_timeout(q->guc->suspend_wait,
1632 !READ_ONCE(q->guc->suspend_pending) ||
1633 exec_queue_killed(q) ||
1634 xe_guc_read_stopped(guc),
1635 HZ * 5);
1636
1637 if (!ret) {
1638 xe_gt_warn(guc_to_gt(guc),
1639 "Suspend fence, guc_id=%d, failed to respond",
1640 q->guc->id);
1641 /* XXX: Trigger GT reset? */
1642 return -ETIME;
1643 }
1644
1645 return ret < 0 ? ret : 0;
1646 }
1647
guc_exec_queue_resume(struct xe_exec_queue * q)1648 static void guc_exec_queue_resume(struct xe_exec_queue *q)
1649 {
1650 struct xe_gpu_scheduler *sched = &q->guc->sched;
1651 struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_RESUME;
1652 struct xe_guc *guc = exec_queue_to_guc(q);
1653
1654 xe_gt_assert(guc_to_gt(guc), !q->guc->suspend_pending);
1655
1656 xe_sched_msg_lock(sched);
1657 guc_exec_queue_try_add_msg(q, msg, RESUME);
1658 xe_sched_msg_unlock(sched);
1659 }
1660
guc_exec_queue_reset_status(struct xe_exec_queue * q)1661 static bool guc_exec_queue_reset_status(struct xe_exec_queue *q)
1662 {
1663 return exec_queue_reset(q) || exec_queue_killed_or_banned_or_wedged(q);
1664 }
1665
1666 /*
1667 * All of these functions are an abstraction layer which other parts of XE can
1668 * use to trap into the GuC backend. All of these functions, aside from init,
1669 * really shouldn't do much other than trap into the DRM scheduler which
1670 * synchronizes these operations.
1671 */
1672 static const struct xe_exec_queue_ops guc_exec_queue_ops = {
1673 .init = guc_exec_queue_init,
1674 .kill = guc_exec_queue_kill,
1675 .fini = guc_exec_queue_fini,
1676 .set_priority = guc_exec_queue_set_priority,
1677 .set_timeslice = guc_exec_queue_set_timeslice,
1678 .set_preempt_timeout = guc_exec_queue_set_preempt_timeout,
1679 .suspend = guc_exec_queue_suspend,
1680 .suspend_wait = guc_exec_queue_suspend_wait,
1681 .resume = guc_exec_queue_resume,
1682 .reset_status = guc_exec_queue_reset_status,
1683 };
1684
guc_exec_queue_stop(struct xe_guc * guc,struct xe_exec_queue * q)1685 static void guc_exec_queue_stop(struct xe_guc *guc, struct xe_exec_queue *q)
1686 {
1687 struct xe_gpu_scheduler *sched = &q->guc->sched;
1688
1689 /* Stop scheduling + flush any DRM scheduler operations */
1690 xe_sched_submission_stop(sched);
1691
1692 /* Clean up lost G2H + reset engine state */
1693 if (exec_queue_registered(q)) {
1694 if (exec_queue_extra_ref(q) || xe_exec_queue_is_lr(q))
1695 xe_exec_queue_put(q);
1696 else if (exec_queue_destroyed(q))
1697 __guc_exec_queue_fini(guc, q);
1698 }
1699 if (q->guc->suspend_pending) {
1700 set_exec_queue_suspended(q);
1701 suspend_fence_signal(q);
1702 }
1703 atomic_and(EXEC_QUEUE_STATE_WEDGED | EXEC_QUEUE_STATE_BANNED |
1704 EXEC_QUEUE_STATE_KILLED | EXEC_QUEUE_STATE_DESTROYED |
1705 EXEC_QUEUE_STATE_SUSPENDED,
1706 &q->guc->state);
1707 q->guc->resume_time = 0;
1708 trace_xe_exec_queue_stop(q);
1709
1710 /*
1711 * Ban any engine (aside from kernel and engines used for VM ops) with a
1712 * started but not complete job or if a job has gone through a GT reset
1713 * more than twice.
1714 */
1715 if (!(q->flags & (EXEC_QUEUE_FLAG_KERNEL | EXEC_QUEUE_FLAG_VM))) {
1716 struct xe_sched_job *job = xe_sched_first_pending_job(sched);
1717 bool ban = false;
1718
1719 if (job) {
1720 if ((xe_sched_job_started(job) &&
1721 !xe_sched_job_completed(job)) ||
1722 xe_sched_invalidate_job(job, 2)) {
1723 trace_xe_sched_job_ban(job);
1724 ban = true;
1725 }
1726 } else if (xe_exec_queue_is_lr(q) &&
1727 !xe_lrc_ring_is_idle(q->lrc[0])) {
1728 ban = true;
1729 }
1730
1731 if (ban) {
1732 set_exec_queue_banned(q);
1733 xe_guc_exec_queue_trigger_cleanup(q);
1734 }
1735 }
1736 }
1737
xe_guc_submit_reset_prepare(struct xe_guc * guc)1738 int xe_guc_submit_reset_prepare(struct xe_guc *guc)
1739 {
1740 int ret;
1741
1742 /*
1743 * Using an atomic here rather than submission_state.lock as this
1744 * function can be called while holding the CT lock (engine reset
1745 * failure). submission_state.lock needs the CT lock to resubmit jobs.
1746 * Atomic is not ideal, but it works to prevent against concurrent reset
1747 * and releasing any TDRs waiting on guc->submission_state.stopped.
1748 */
1749 ret = atomic_fetch_or(1, &guc->submission_state.stopped);
1750 smp_wmb();
1751 wake_up_all(&guc->ct.wq);
1752
1753 return ret;
1754 }
1755
xe_guc_submit_reset_wait(struct xe_guc * guc)1756 void xe_guc_submit_reset_wait(struct xe_guc *guc)
1757 {
1758 wait_event(guc->ct.wq, xe_device_wedged(guc_to_xe(guc)) ||
1759 !xe_guc_read_stopped(guc));
1760 }
1761
xe_guc_submit_stop(struct xe_guc * guc)1762 void xe_guc_submit_stop(struct xe_guc *guc)
1763 {
1764 struct xe_exec_queue *q;
1765 unsigned long index;
1766
1767 xe_gt_assert(guc_to_gt(guc), xe_guc_read_stopped(guc) == 1);
1768
1769 mutex_lock(&guc->submission_state.lock);
1770
1771 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) {
1772 /* Prevent redundant attempts to stop parallel queues */
1773 if (q->guc->id != index)
1774 continue;
1775
1776 guc_exec_queue_stop(guc, q);
1777 }
1778
1779 mutex_unlock(&guc->submission_state.lock);
1780
1781 /*
1782 * No one can enter the backend at this point, aside from new engine
1783 * creation which is protected by guc->submission_state.lock.
1784 */
1785
1786 }
1787
guc_exec_queue_start(struct xe_exec_queue * q)1788 static void guc_exec_queue_start(struct xe_exec_queue *q)
1789 {
1790 struct xe_gpu_scheduler *sched = &q->guc->sched;
1791
1792 if (!exec_queue_killed_or_banned_or_wedged(q)) {
1793 int i;
1794
1795 trace_xe_exec_queue_resubmit(q);
1796 for (i = 0; i < q->width; ++i)
1797 xe_lrc_set_ring_head(q->lrc[i], q->lrc[i]->ring.tail);
1798 xe_sched_resubmit_jobs(sched);
1799 }
1800
1801 xe_sched_submission_start(sched);
1802 xe_sched_submission_resume_tdr(sched);
1803 }
1804
xe_guc_submit_start(struct xe_guc * guc)1805 int xe_guc_submit_start(struct xe_guc *guc)
1806 {
1807 struct xe_exec_queue *q;
1808 unsigned long index;
1809
1810 xe_gt_assert(guc_to_gt(guc), xe_guc_read_stopped(guc) == 1);
1811
1812 mutex_lock(&guc->submission_state.lock);
1813 atomic_dec(&guc->submission_state.stopped);
1814 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) {
1815 /* Prevent redundant attempts to start parallel queues */
1816 if (q->guc->id != index)
1817 continue;
1818
1819 guc_exec_queue_start(q);
1820 }
1821 mutex_unlock(&guc->submission_state.lock);
1822
1823 wake_up_all(&guc->ct.wq);
1824
1825 return 0;
1826 }
1827
1828 static struct xe_exec_queue *
g2h_exec_queue_lookup(struct xe_guc * guc,u32 guc_id)1829 g2h_exec_queue_lookup(struct xe_guc *guc, u32 guc_id)
1830 {
1831 struct xe_gt *gt = guc_to_gt(guc);
1832 struct xe_exec_queue *q;
1833
1834 if (unlikely(guc_id >= GUC_ID_MAX)) {
1835 xe_gt_err(gt, "Invalid guc_id %u\n", guc_id);
1836 return NULL;
1837 }
1838
1839 q = xa_load(&guc->submission_state.exec_queue_lookup, guc_id);
1840 if (unlikely(!q)) {
1841 xe_gt_err(gt, "Not engine present for guc_id %u\n", guc_id);
1842 return NULL;
1843 }
1844
1845 xe_gt_assert(guc_to_gt(guc), guc_id >= q->guc->id);
1846 xe_gt_assert(guc_to_gt(guc), guc_id < (q->guc->id + q->width));
1847
1848 return q;
1849 }
1850
deregister_exec_queue(struct xe_guc * guc,struct xe_exec_queue * q)1851 static void deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q)
1852 {
1853 u32 action[] = {
1854 XE_GUC_ACTION_DEREGISTER_CONTEXT,
1855 q->guc->id,
1856 };
1857
1858 xe_gt_assert(guc_to_gt(guc), exec_queue_destroyed(q));
1859 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
1860 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
1861 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q));
1862
1863 trace_xe_exec_queue_deregister(q);
1864
1865 xe_guc_ct_send_g2h_handler(&guc->ct, action, ARRAY_SIZE(action));
1866 }
1867
handle_sched_done(struct xe_guc * guc,struct xe_exec_queue * q,u32 runnable_state)1868 static void handle_sched_done(struct xe_guc *guc, struct xe_exec_queue *q,
1869 u32 runnable_state)
1870 {
1871 trace_xe_exec_queue_scheduling_done(q);
1872
1873 if (runnable_state == 1) {
1874 xe_gt_assert(guc_to_gt(guc), exec_queue_pending_enable(q));
1875
1876 q->guc->resume_time = ktime_get();
1877 clear_exec_queue_pending_enable(q);
1878 smp_wmb();
1879 wake_up_all(&guc->ct.wq);
1880 } else {
1881 bool check_timeout = exec_queue_check_timeout(q);
1882
1883 xe_gt_assert(guc_to_gt(guc), runnable_state == 0);
1884 xe_gt_assert(guc_to_gt(guc), exec_queue_pending_disable(q));
1885
1886 if (q->guc->suspend_pending) {
1887 suspend_fence_signal(q);
1888 clear_exec_queue_pending_disable(q);
1889 } else {
1890 if (exec_queue_banned(q) || check_timeout) {
1891 smp_wmb();
1892 wake_up_all(&guc->ct.wq);
1893 }
1894 if (!check_timeout && exec_queue_destroyed(q)) {
1895 /*
1896 * Make sure to clear the pending_disable only
1897 * after sampling the destroyed state. We want
1898 * to ensure we don't trigger the unregister too
1899 * early with something intending to only
1900 * disable scheduling. The caller doing the
1901 * destroy must wait for an ongoing
1902 * pending_disable before marking as destroyed.
1903 */
1904 clear_exec_queue_pending_disable(q);
1905 deregister_exec_queue(guc, q);
1906 } else {
1907 clear_exec_queue_pending_disable(q);
1908 }
1909 }
1910 }
1911 }
1912
xe_guc_sched_done_handler(struct xe_guc * guc,u32 * msg,u32 len)1913 int xe_guc_sched_done_handler(struct xe_guc *guc, u32 *msg, u32 len)
1914 {
1915 struct xe_exec_queue *q;
1916 u32 guc_id, runnable_state;
1917
1918 if (unlikely(len < 2))
1919 return -EPROTO;
1920
1921 guc_id = msg[0];
1922 runnable_state = msg[1];
1923
1924 q = g2h_exec_queue_lookup(guc, guc_id);
1925 if (unlikely(!q))
1926 return -EPROTO;
1927
1928 if (unlikely(!exec_queue_pending_enable(q) &&
1929 !exec_queue_pending_disable(q))) {
1930 xe_gt_err(guc_to_gt(guc),
1931 "SCHED_DONE: Unexpected engine state 0x%04x, guc_id=%d, runnable_state=%u",
1932 atomic_read(&q->guc->state), q->guc->id,
1933 runnable_state);
1934 return -EPROTO;
1935 }
1936
1937 handle_sched_done(guc, q, runnable_state);
1938
1939 return 0;
1940 }
1941
handle_deregister_done(struct xe_guc * guc,struct xe_exec_queue * q)1942 static void handle_deregister_done(struct xe_guc *guc, struct xe_exec_queue *q)
1943 {
1944 trace_xe_exec_queue_deregister_done(q);
1945
1946 clear_exec_queue_registered(q);
1947
1948 if (exec_queue_extra_ref(q) || xe_exec_queue_is_lr(q))
1949 xe_exec_queue_put(q);
1950 else
1951 __guc_exec_queue_fini(guc, q);
1952 }
1953
xe_guc_deregister_done_handler(struct xe_guc * guc,u32 * msg,u32 len)1954 int xe_guc_deregister_done_handler(struct xe_guc *guc, u32 *msg, u32 len)
1955 {
1956 struct xe_exec_queue *q;
1957 u32 guc_id;
1958
1959 if (unlikely(len < 1))
1960 return -EPROTO;
1961
1962 guc_id = msg[0];
1963
1964 q = g2h_exec_queue_lookup(guc, guc_id);
1965 if (unlikely(!q))
1966 return -EPROTO;
1967
1968 if (!exec_queue_destroyed(q) || exec_queue_pending_disable(q) ||
1969 exec_queue_pending_enable(q) || exec_queue_enabled(q)) {
1970 xe_gt_err(guc_to_gt(guc),
1971 "DEREGISTER_DONE: Unexpected engine state 0x%04x, guc_id=%d",
1972 atomic_read(&q->guc->state), q->guc->id);
1973 return -EPROTO;
1974 }
1975
1976 handle_deregister_done(guc, q);
1977
1978 return 0;
1979 }
1980
xe_guc_exec_queue_reset_handler(struct xe_guc * guc,u32 * msg,u32 len)1981 int xe_guc_exec_queue_reset_handler(struct xe_guc *guc, u32 *msg, u32 len)
1982 {
1983 struct xe_gt *gt = guc_to_gt(guc);
1984 struct xe_exec_queue *q;
1985 u32 guc_id;
1986
1987 if (unlikely(len < 1))
1988 return -EPROTO;
1989
1990 guc_id = msg[0];
1991
1992 q = g2h_exec_queue_lookup(guc, guc_id);
1993 if (unlikely(!q))
1994 return -EPROTO;
1995
1996 xe_gt_info(gt, "Engine reset: engine_class=%s, logical_mask: 0x%x, guc_id=%d",
1997 xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id);
1998
1999 trace_xe_exec_queue_reset(q);
2000
2001 /*
2002 * A banned engine is a NOP at this point (came from
2003 * guc_exec_queue_timedout_job). Otherwise, kick drm scheduler to cancel
2004 * jobs by setting timeout of the job to the minimum value kicking
2005 * guc_exec_queue_timedout_job.
2006 */
2007 set_exec_queue_reset(q);
2008 if (!exec_queue_banned(q) && !exec_queue_check_timeout(q))
2009 xe_guc_exec_queue_trigger_cleanup(q);
2010
2011 return 0;
2012 }
2013
2014 /*
2015 * xe_guc_error_capture_handler - Handler of GuC captured message
2016 * @guc: The GuC object
2017 * @msg: Point to the message
2018 * @len: The message length
2019 *
2020 * When GuC captured data is ready, GuC will send message
2021 * XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION to host, this function will be
2022 * called 1st to check status before process the data comes with the message.
2023 *
2024 * Returns: error code. 0 if success
2025 */
xe_guc_error_capture_handler(struct xe_guc * guc,u32 * msg,u32 len)2026 int xe_guc_error_capture_handler(struct xe_guc *guc, u32 *msg, u32 len)
2027 {
2028 u32 status;
2029
2030 if (unlikely(len != XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION_DATA_LEN))
2031 return -EPROTO;
2032
2033 status = msg[0] & XE_GUC_STATE_CAPTURE_EVENT_STATUS_MASK;
2034 if (status == XE_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE)
2035 xe_gt_warn(guc_to_gt(guc), "G2H-Error capture no space");
2036
2037 xe_guc_capture_process(guc);
2038
2039 return 0;
2040 }
2041
xe_guc_exec_queue_memory_cat_error_handler(struct xe_guc * guc,u32 * msg,u32 len)2042 int xe_guc_exec_queue_memory_cat_error_handler(struct xe_guc *guc, u32 *msg,
2043 u32 len)
2044 {
2045 struct xe_gt *gt = guc_to_gt(guc);
2046 struct xe_exec_queue *q;
2047 u32 guc_id;
2048
2049 if (unlikely(len < 1))
2050 return -EPROTO;
2051
2052 guc_id = msg[0];
2053
2054 if (guc_id == GUC_ID_UNKNOWN) {
2055 /*
2056 * GuC uses GUC_ID_UNKNOWN if it can not map the CAT fault to any PF/VF
2057 * context. In such case only PF will be notified about that fault.
2058 */
2059 xe_gt_err_ratelimited(gt, "Memory CAT error reported by GuC!\n");
2060 return 0;
2061 }
2062
2063 q = g2h_exec_queue_lookup(guc, guc_id);
2064 if (unlikely(!q))
2065 return -EPROTO;
2066
2067 xe_gt_dbg(gt, "Engine memory cat error: engine_class=%s, logical_mask: 0x%x, guc_id=%d",
2068 xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id);
2069
2070 trace_xe_exec_queue_memory_cat_error(q);
2071
2072 /* Treat the same as engine reset */
2073 set_exec_queue_reset(q);
2074 if (!exec_queue_banned(q) && !exec_queue_check_timeout(q))
2075 xe_guc_exec_queue_trigger_cleanup(q);
2076
2077 return 0;
2078 }
2079
xe_guc_exec_queue_reset_failure_handler(struct xe_guc * guc,u32 * msg,u32 len)2080 int xe_guc_exec_queue_reset_failure_handler(struct xe_guc *guc, u32 *msg, u32 len)
2081 {
2082 struct xe_gt *gt = guc_to_gt(guc);
2083 u8 guc_class, instance;
2084 u32 reason;
2085
2086 if (unlikely(len != 3))
2087 return -EPROTO;
2088
2089 guc_class = msg[0];
2090 instance = msg[1];
2091 reason = msg[2];
2092
2093 /* Unexpected failure of a hardware feature, log an actual error */
2094 xe_gt_err(gt, "GuC engine reset request failed on %d:%d because 0x%08X",
2095 guc_class, instance, reason);
2096
2097 xe_gt_reset_async(gt);
2098
2099 return 0;
2100 }
2101
2102 static void
guc_exec_queue_wq_snapshot_capture(struct xe_exec_queue * q,struct xe_guc_submit_exec_queue_snapshot * snapshot)2103 guc_exec_queue_wq_snapshot_capture(struct xe_exec_queue *q,
2104 struct xe_guc_submit_exec_queue_snapshot *snapshot)
2105 {
2106 struct xe_guc *guc = exec_queue_to_guc(q);
2107 struct xe_device *xe = guc_to_xe(guc);
2108 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
2109 int i;
2110
2111 snapshot->guc.wqi_head = q->guc->wqi_head;
2112 snapshot->guc.wqi_tail = q->guc->wqi_tail;
2113 snapshot->parallel.wq_desc.head = parallel_read(xe, map, wq_desc.head);
2114 snapshot->parallel.wq_desc.tail = parallel_read(xe, map, wq_desc.tail);
2115 snapshot->parallel.wq_desc.status = parallel_read(xe, map,
2116 wq_desc.wq_status);
2117
2118 if (snapshot->parallel.wq_desc.head !=
2119 snapshot->parallel.wq_desc.tail) {
2120 for (i = snapshot->parallel.wq_desc.head;
2121 i != snapshot->parallel.wq_desc.tail;
2122 i = (i + sizeof(u32)) % WQ_SIZE)
2123 snapshot->parallel.wq[i / sizeof(u32)] =
2124 parallel_read(xe, map, wq[i / sizeof(u32)]);
2125 }
2126 }
2127
2128 static void
guc_exec_queue_wq_snapshot_print(struct xe_guc_submit_exec_queue_snapshot * snapshot,struct drm_printer * p)2129 guc_exec_queue_wq_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot,
2130 struct drm_printer *p)
2131 {
2132 int i;
2133
2134 drm_printf(p, "\tWQ head: %u (internal), %d (memory)\n",
2135 snapshot->guc.wqi_head, snapshot->parallel.wq_desc.head);
2136 drm_printf(p, "\tWQ tail: %u (internal), %d (memory)\n",
2137 snapshot->guc.wqi_tail, snapshot->parallel.wq_desc.tail);
2138 drm_printf(p, "\tWQ status: %u\n", snapshot->parallel.wq_desc.status);
2139
2140 if (snapshot->parallel.wq_desc.head !=
2141 snapshot->parallel.wq_desc.tail) {
2142 for (i = snapshot->parallel.wq_desc.head;
2143 i != snapshot->parallel.wq_desc.tail;
2144 i = (i + sizeof(u32)) % WQ_SIZE)
2145 drm_printf(p, "\tWQ[%zu]: 0x%08x\n", i / sizeof(u32),
2146 snapshot->parallel.wq[i / sizeof(u32)]);
2147 }
2148 }
2149
2150 /**
2151 * xe_guc_exec_queue_snapshot_capture - Take a quick snapshot of the GuC Engine.
2152 * @q: faulty exec queue
2153 *
2154 * This can be printed out in a later stage like during dev_coredump
2155 * analysis.
2156 *
2157 * Returns: a GuC Submit Engine snapshot object that must be freed by the
2158 * caller, using `xe_guc_exec_queue_snapshot_free`.
2159 */
2160 struct xe_guc_submit_exec_queue_snapshot *
xe_guc_exec_queue_snapshot_capture(struct xe_exec_queue * q)2161 xe_guc_exec_queue_snapshot_capture(struct xe_exec_queue *q)
2162 {
2163 struct xe_gpu_scheduler *sched = &q->guc->sched;
2164 struct xe_guc_submit_exec_queue_snapshot *snapshot;
2165 int i;
2166
2167 snapshot = kzalloc(sizeof(*snapshot), GFP_ATOMIC);
2168
2169 if (!snapshot)
2170 return NULL;
2171
2172 snapshot->guc.id = q->guc->id;
2173 memcpy(&snapshot->name, &q->name, sizeof(snapshot->name));
2174 snapshot->class = q->class;
2175 snapshot->logical_mask = q->logical_mask;
2176 snapshot->width = q->width;
2177 snapshot->refcount = kref_read(&q->refcount);
2178 snapshot->sched_timeout = sched->base.timeout;
2179 snapshot->sched_props.timeslice_us = q->sched_props.timeslice_us;
2180 snapshot->sched_props.preempt_timeout_us =
2181 q->sched_props.preempt_timeout_us;
2182
2183 snapshot->lrc = kmalloc_array(q->width, sizeof(struct xe_lrc_snapshot *),
2184 GFP_ATOMIC);
2185
2186 if (snapshot->lrc) {
2187 for (i = 0; i < q->width; ++i) {
2188 struct xe_lrc *lrc = q->lrc[i];
2189
2190 snapshot->lrc[i] = xe_lrc_snapshot_capture(lrc);
2191 }
2192 }
2193
2194 snapshot->schedule_state = atomic_read(&q->guc->state);
2195 snapshot->exec_queue_flags = q->flags;
2196
2197 snapshot->parallel_execution = xe_exec_queue_is_parallel(q);
2198 if (snapshot->parallel_execution)
2199 guc_exec_queue_wq_snapshot_capture(q, snapshot);
2200
2201 spin_lock(&sched->base.job_list_lock);
2202 snapshot->pending_list_size = list_count_nodes(&sched->base.pending_list);
2203 snapshot->pending_list = kmalloc_array(snapshot->pending_list_size,
2204 sizeof(struct pending_list_snapshot),
2205 GFP_ATOMIC);
2206
2207 if (snapshot->pending_list) {
2208 struct xe_sched_job *job_iter;
2209
2210 i = 0;
2211 list_for_each_entry(job_iter, &sched->base.pending_list, drm.list) {
2212 snapshot->pending_list[i].seqno =
2213 xe_sched_job_seqno(job_iter);
2214 snapshot->pending_list[i].fence =
2215 dma_fence_is_signaled(job_iter->fence) ? 1 : 0;
2216 snapshot->pending_list[i].finished =
2217 dma_fence_is_signaled(&job_iter->drm.s_fence->finished)
2218 ? 1 : 0;
2219 i++;
2220 }
2221 }
2222
2223 spin_unlock(&sched->base.job_list_lock);
2224
2225 return snapshot;
2226 }
2227
2228 /**
2229 * xe_guc_exec_queue_snapshot_capture_delayed - Take delayed part of snapshot of the GuC Engine.
2230 * @snapshot: Previously captured snapshot of job.
2231 *
2232 * This captures some data that requires taking some locks, so it cannot be done in signaling path.
2233 */
2234 void
xe_guc_exec_queue_snapshot_capture_delayed(struct xe_guc_submit_exec_queue_snapshot * snapshot)2235 xe_guc_exec_queue_snapshot_capture_delayed(struct xe_guc_submit_exec_queue_snapshot *snapshot)
2236 {
2237 int i;
2238
2239 if (!snapshot || !snapshot->lrc)
2240 return;
2241
2242 for (i = 0; i < snapshot->width; ++i)
2243 xe_lrc_snapshot_capture_delayed(snapshot->lrc[i]);
2244 }
2245
2246 /**
2247 * xe_guc_exec_queue_snapshot_print - Print out a given GuC Engine snapshot.
2248 * @snapshot: GuC Submit Engine snapshot object.
2249 * @p: drm_printer where it will be printed out.
2250 *
2251 * This function prints out a given GuC Submit Engine snapshot object.
2252 */
2253 void
xe_guc_exec_queue_snapshot_print(struct xe_guc_submit_exec_queue_snapshot * snapshot,struct drm_printer * p)2254 xe_guc_exec_queue_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot,
2255 struct drm_printer *p)
2256 {
2257 int i;
2258
2259 if (!snapshot)
2260 return;
2261
2262 drm_printf(p, "GuC ID: %d\n", snapshot->guc.id);
2263 drm_printf(p, "\tName: %s\n", snapshot->name);
2264 drm_printf(p, "\tClass: %d\n", snapshot->class);
2265 drm_printf(p, "\tLogical mask: 0x%x\n", snapshot->logical_mask);
2266 drm_printf(p, "\tWidth: %d\n", snapshot->width);
2267 drm_printf(p, "\tRef: %d\n", snapshot->refcount);
2268 drm_printf(p, "\tTimeout: %ld (ms)\n", snapshot->sched_timeout);
2269 drm_printf(p, "\tTimeslice: %u (us)\n",
2270 snapshot->sched_props.timeslice_us);
2271 drm_printf(p, "\tPreempt timeout: %u (us)\n",
2272 snapshot->sched_props.preempt_timeout_us);
2273
2274 for (i = 0; snapshot->lrc && i < snapshot->width; ++i)
2275 xe_lrc_snapshot_print(snapshot->lrc[i], p);
2276
2277 drm_printf(p, "\tSchedule State: 0x%x\n", snapshot->schedule_state);
2278 drm_printf(p, "\tFlags: 0x%lx\n", snapshot->exec_queue_flags);
2279
2280 if (snapshot->parallel_execution)
2281 guc_exec_queue_wq_snapshot_print(snapshot, p);
2282
2283 for (i = 0; snapshot->pending_list && i < snapshot->pending_list_size;
2284 i++)
2285 drm_printf(p, "\tJob: seqno=%d, fence=%d, finished=%d\n",
2286 snapshot->pending_list[i].seqno,
2287 snapshot->pending_list[i].fence,
2288 snapshot->pending_list[i].finished);
2289 }
2290
2291 /**
2292 * xe_guc_exec_queue_snapshot_free - Free all allocated objects for a given
2293 * snapshot.
2294 * @snapshot: GuC Submit Engine snapshot object.
2295 *
2296 * This function free all the memory that needed to be allocated at capture
2297 * time.
2298 */
xe_guc_exec_queue_snapshot_free(struct xe_guc_submit_exec_queue_snapshot * snapshot)2299 void xe_guc_exec_queue_snapshot_free(struct xe_guc_submit_exec_queue_snapshot *snapshot)
2300 {
2301 int i;
2302
2303 if (!snapshot)
2304 return;
2305
2306 if (snapshot->lrc) {
2307 for (i = 0; i < snapshot->width; i++)
2308 xe_lrc_snapshot_free(snapshot->lrc[i]);
2309 kfree(snapshot->lrc);
2310 }
2311 kfree(snapshot->pending_list);
2312 kfree(snapshot);
2313 }
2314
guc_exec_queue_print(struct xe_exec_queue * q,struct drm_printer * p)2315 static void guc_exec_queue_print(struct xe_exec_queue *q, struct drm_printer *p)
2316 {
2317 struct xe_guc_submit_exec_queue_snapshot *snapshot;
2318
2319 snapshot = xe_guc_exec_queue_snapshot_capture(q);
2320 xe_guc_exec_queue_snapshot_print(snapshot, p);
2321 xe_guc_exec_queue_snapshot_free(snapshot);
2322 }
2323
2324 /**
2325 * xe_guc_submit_print - GuC Submit Print.
2326 * @guc: GuC.
2327 * @p: drm_printer where it will be printed out.
2328 *
2329 * This function capture and prints snapshots of **all** GuC Engines.
2330 */
xe_guc_submit_print(struct xe_guc * guc,struct drm_printer * p)2331 void xe_guc_submit_print(struct xe_guc *guc, struct drm_printer *p)
2332 {
2333 struct xe_exec_queue *q;
2334 unsigned long index;
2335
2336 if (!xe_device_uc_enabled(guc_to_xe(guc)))
2337 return;
2338
2339 mutex_lock(&guc->submission_state.lock);
2340 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q)
2341 guc_exec_queue_print(q, p);
2342 mutex_unlock(&guc->submission_state.lock);
2343 }
2344