xref: /linux/include/linux/fs.h (revision 9c5968db9e625019a0ee5226c7eebef5519d366a)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_FS_H
3 #define _LINUX_FS_H
4 
5 #include <linux/linkage.h>
6 #include <linux/wait_bit.h>
7 #include <linux/kdev_t.h>
8 #include <linux/dcache.h>
9 #include <linux/path.h>
10 #include <linux/stat.h>
11 #include <linux/cache.h>
12 #include <linux/list.h>
13 #include <linux/list_lru.h>
14 #include <linux/llist.h>
15 #include <linux/radix-tree.h>
16 #include <linux/xarray.h>
17 #include <linux/rbtree.h>
18 #include <linux/init.h>
19 #include <linux/pid.h>
20 #include <linux/bug.h>
21 #include <linux/mutex.h>
22 #include <linux/rwsem.h>
23 #include <linux/mm_types.h>
24 #include <linux/capability.h>
25 #include <linux/semaphore.h>
26 #include <linux/fcntl.h>
27 #include <linux/rculist_bl.h>
28 #include <linux/atomic.h>
29 #include <linux/shrinker.h>
30 #include <linux/migrate_mode.h>
31 #include <linux/uidgid.h>
32 #include <linux/lockdep.h>
33 #include <linux/percpu-rwsem.h>
34 #include <linux/workqueue.h>
35 #include <linux/delayed_call.h>
36 #include <linux/uuid.h>
37 #include <linux/errseq.h>
38 #include <linux/ioprio.h>
39 #include <linux/fs_types.h>
40 #include <linux/build_bug.h>
41 #include <linux/stddef.h>
42 #include <linux/mount.h>
43 #include <linux/cred.h>
44 #include <linux/mnt_idmapping.h>
45 #include <linux/slab.h>
46 #include <linux/maple_tree.h>
47 #include <linux/rw_hint.h>
48 #include <linux/file_ref.h>
49 #include <linux/unicode.h>
50 
51 #include <asm/byteorder.h>
52 #include <uapi/linux/fs.h>
53 
54 struct backing_dev_info;
55 struct bdi_writeback;
56 struct bio;
57 struct io_comp_batch;
58 struct export_operations;
59 struct fiemap_extent_info;
60 struct hd_geometry;
61 struct iovec;
62 struct kiocb;
63 struct kobject;
64 struct pipe_inode_info;
65 struct poll_table_struct;
66 struct kstatfs;
67 struct vm_area_struct;
68 struct vfsmount;
69 struct cred;
70 struct swap_info_struct;
71 struct seq_file;
72 struct workqueue_struct;
73 struct iov_iter;
74 struct fscrypt_inode_info;
75 struct fscrypt_operations;
76 struct fsverity_info;
77 struct fsverity_operations;
78 struct fsnotify_mark_connector;
79 struct fsnotify_sb_info;
80 struct fs_context;
81 struct fs_parameter_spec;
82 struct fileattr;
83 struct iomap_ops;
84 
85 extern void __init inode_init(void);
86 extern void __init inode_init_early(void);
87 extern void __init files_init(void);
88 extern void __init files_maxfiles_init(void);
89 
90 extern unsigned long get_max_files(void);
91 extern unsigned int sysctl_nr_open;
92 
93 typedef __kernel_rwf_t rwf_t;
94 
95 struct buffer_head;
96 typedef int (get_block_t)(struct inode *inode, sector_t iblock,
97 			struct buffer_head *bh_result, int create);
98 typedef int (dio_iodone_t)(struct kiocb *iocb, loff_t offset,
99 			ssize_t bytes, void *private);
100 
101 #define MAY_EXEC		0x00000001
102 #define MAY_WRITE		0x00000002
103 #define MAY_READ		0x00000004
104 #define MAY_APPEND		0x00000008
105 #define MAY_ACCESS		0x00000010
106 #define MAY_OPEN		0x00000020
107 #define MAY_CHDIR		0x00000040
108 /* called from RCU mode, don't block */
109 #define MAY_NOT_BLOCK		0x00000080
110 
111 /*
112  * flags in file.f_mode.  Note that FMODE_READ and FMODE_WRITE must correspond
113  * to O_WRONLY and O_RDWR via the strange trick in do_dentry_open()
114  */
115 
116 /* file is open for reading */
117 #define FMODE_READ		((__force fmode_t)(1 << 0))
118 /* file is open for writing */
119 #define FMODE_WRITE		((__force fmode_t)(1 << 1))
120 /* file is seekable */
121 #define FMODE_LSEEK		((__force fmode_t)(1 << 2))
122 /* file can be accessed using pread */
123 #define FMODE_PREAD		((__force fmode_t)(1 << 3))
124 /* file can be accessed using pwrite */
125 #define FMODE_PWRITE		((__force fmode_t)(1 << 4))
126 /* File is opened for execution with sys_execve / sys_uselib */
127 #define FMODE_EXEC		((__force fmode_t)(1 << 5))
128 /* File writes are restricted (block device specific) */
129 #define FMODE_WRITE_RESTRICTED	((__force fmode_t)(1 << 6))
130 /* File supports atomic writes */
131 #define FMODE_CAN_ATOMIC_WRITE	((__force fmode_t)(1 << 7))
132 
133 /* FMODE_* bit 8 */
134 
135 /* 32bit hashes as llseek() offset (for directories) */
136 #define FMODE_32BITHASH         ((__force fmode_t)(1 << 9))
137 /* 64bit hashes as llseek() offset (for directories) */
138 #define FMODE_64BITHASH         ((__force fmode_t)(1 << 10))
139 
140 /*
141  * Don't update ctime and mtime.
142  *
143  * Currently a special hack for the XFS open_by_handle ioctl, but we'll
144  * hopefully graduate it to a proper O_CMTIME flag supported by open(2) soon.
145  */
146 #define FMODE_NOCMTIME		((__force fmode_t)(1 << 11))
147 
148 /* Expect random access pattern */
149 #define FMODE_RANDOM		((__force fmode_t)(1 << 12))
150 
151 /* FMODE_* bit 13 */
152 
153 /* File is opened with O_PATH; almost nothing can be done with it */
154 #define FMODE_PATH		((__force fmode_t)(1 << 14))
155 
156 /* File needs atomic accesses to f_pos */
157 #define FMODE_ATOMIC_POS	((__force fmode_t)(1 << 15))
158 /* Write access to underlying fs */
159 #define FMODE_WRITER		((__force fmode_t)(1 << 16))
160 /* Has read method(s) */
161 #define FMODE_CAN_READ          ((__force fmode_t)(1 << 17))
162 /* Has write method(s) */
163 #define FMODE_CAN_WRITE         ((__force fmode_t)(1 << 18))
164 
165 #define FMODE_OPENED		((__force fmode_t)(1 << 19))
166 #define FMODE_CREATED		((__force fmode_t)(1 << 20))
167 
168 /* File is stream-like */
169 #define FMODE_STREAM		((__force fmode_t)(1 << 21))
170 
171 /* File supports DIRECT IO */
172 #define	FMODE_CAN_ODIRECT	((__force fmode_t)(1 << 22))
173 
174 #define	FMODE_NOREUSE		((__force fmode_t)(1 << 23))
175 
176 /* File is embedded in backing_file object */
177 #define FMODE_BACKING		((__force fmode_t)(1 << 24))
178 
179 /*
180  * Together with FMODE_NONOTIFY_PERM defines which fsnotify events shouldn't be
181  * generated (see below)
182  */
183 #define FMODE_NONOTIFY		((__force fmode_t)(1 << 25))
184 
185 /*
186  * Together with FMODE_NONOTIFY defines which fsnotify events shouldn't be
187  * generated (see below)
188  */
189 #define FMODE_NONOTIFY_PERM	((__force fmode_t)(1 << 26))
190 
191 /* File is capable of returning -EAGAIN if I/O will block */
192 #define FMODE_NOWAIT		((__force fmode_t)(1 << 27))
193 
194 /* File represents mount that needs unmounting */
195 #define FMODE_NEED_UNMOUNT	((__force fmode_t)(1 << 28))
196 
197 /* File does not contribute to nr_files count */
198 #define FMODE_NOACCOUNT		((__force fmode_t)(1 << 29))
199 
200 /*
201  * The two FMODE_NONOTIFY* define which fsnotify events should not be generated
202  * for a file. These are the possible values of (f->f_mode &
203  * FMODE_FSNOTIFY_MASK) and their meaning:
204  *
205  * FMODE_NONOTIFY - suppress all (incl. non-permission) events.
206  * FMODE_NONOTIFY_PERM - suppress permission (incl. pre-content) events.
207  * FMODE_NONOTIFY | FMODE_NONOTIFY_PERM - suppress only pre-content events.
208  */
209 #define FMODE_FSNOTIFY_MASK \
210 	(FMODE_NONOTIFY | FMODE_NONOTIFY_PERM)
211 
212 #define FMODE_FSNOTIFY_NONE(mode) \
213 	((mode & FMODE_FSNOTIFY_MASK) == FMODE_NONOTIFY)
214 #ifdef CONFIG_FANOTIFY_ACCESS_PERMISSIONS
215 #define FMODE_FSNOTIFY_PERM(mode) \
216 	((mode & FMODE_FSNOTIFY_MASK) == 0 || \
217 	 (mode & FMODE_FSNOTIFY_MASK) == (FMODE_NONOTIFY | FMODE_NONOTIFY_PERM))
218 #define FMODE_FSNOTIFY_HSM(mode) \
219 	((mode & FMODE_FSNOTIFY_MASK) == 0)
220 #else
221 #define FMODE_FSNOTIFY_PERM(mode)	0
222 #define FMODE_FSNOTIFY_HSM(mode)	0
223 #endif
224 
225 
226 /*
227  * Attribute flags.  These should be or-ed together to figure out what
228  * has been changed!
229  */
230 #define ATTR_MODE	(1 << 0)
231 #define ATTR_UID	(1 << 1)
232 #define ATTR_GID	(1 << 2)
233 #define ATTR_SIZE	(1 << 3)
234 #define ATTR_ATIME	(1 << 4)
235 #define ATTR_MTIME	(1 << 5)
236 #define ATTR_CTIME	(1 << 6)
237 #define ATTR_ATIME_SET	(1 << 7)
238 #define ATTR_MTIME_SET	(1 << 8)
239 #define ATTR_FORCE	(1 << 9) /* Not a change, but a change it */
240 #define ATTR_KILL_SUID	(1 << 11)
241 #define ATTR_KILL_SGID	(1 << 12)
242 #define ATTR_FILE	(1 << 13)
243 #define ATTR_KILL_PRIV	(1 << 14)
244 #define ATTR_OPEN	(1 << 15) /* Truncating from open(O_TRUNC) */
245 #define ATTR_TIMES_SET	(1 << 16)
246 #define ATTR_TOUCH	(1 << 17)
247 #define ATTR_DELEG	(1 << 18) /* Delegated attrs. Don't break write delegations */
248 
249 /*
250  * Whiteout is represented by a char device.  The following constants define the
251  * mode and device number to use.
252  */
253 #define WHITEOUT_MODE 0
254 #define WHITEOUT_DEV 0
255 
256 /*
257  * This is the Inode Attributes structure, used for notify_change().  It
258  * uses the above definitions as flags, to know which values have changed.
259  * Also, in this manner, a Filesystem can look at only the values it cares
260  * about.  Basically, these are the attributes that the VFS layer can
261  * request to change from the FS layer.
262  *
263  * Derek Atkins <warlord@MIT.EDU> 94-10-20
264  */
265 struct iattr {
266 	unsigned int	ia_valid;
267 	umode_t		ia_mode;
268 	/*
269 	 * The two anonymous unions wrap structures with the same member.
270 	 *
271 	 * Filesystems raising FS_ALLOW_IDMAP need to use ia_vfs{g,u}id which
272 	 * are a dedicated type requiring the filesystem to use the dedicated
273 	 * helpers. Other filesystem can continue to use ia_{g,u}id until they
274 	 * have been ported.
275 	 *
276 	 * They always contain the same value. In other words FS_ALLOW_IDMAP
277 	 * pass down the same value on idmapped mounts as they would on regular
278 	 * mounts.
279 	 */
280 	union {
281 		kuid_t		ia_uid;
282 		vfsuid_t	ia_vfsuid;
283 	};
284 	union {
285 		kgid_t		ia_gid;
286 		vfsgid_t	ia_vfsgid;
287 	};
288 	loff_t		ia_size;
289 	struct timespec64 ia_atime;
290 	struct timespec64 ia_mtime;
291 	struct timespec64 ia_ctime;
292 
293 	/*
294 	 * Not an attribute, but an auxiliary info for filesystems wanting to
295 	 * implement an ftruncate() like method.  NOTE: filesystem should
296 	 * check for (ia_valid & ATTR_FILE), and not for (ia_file != NULL).
297 	 */
298 	struct file	*ia_file;
299 };
300 
301 /*
302  * Includes for diskquotas.
303  */
304 #include <linux/quota.h>
305 
306 /*
307  * Maximum number of layers of fs stack.  Needs to be limited to
308  * prevent kernel stack overflow
309  */
310 #define FILESYSTEM_MAX_STACK_DEPTH 2
311 
312 /**
313  * enum positive_aop_returns - aop return codes with specific semantics
314  *
315  * @AOP_WRITEPAGE_ACTIVATE: Informs the caller that page writeback has
316  * 			    completed, that the page is still locked, and
317  * 			    should be considered active.  The VM uses this hint
318  * 			    to return the page to the active list -- it won't
319  * 			    be a candidate for writeback again in the near
320  * 			    future.  Other callers must be careful to unlock
321  * 			    the page if they get this return.  Returned by
322  * 			    writepage();
323  *
324  * @AOP_TRUNCATED_PAGE: The AOP method that was handed a locked page has
325  *  			unlocked it and the page might have been truncated.
326  *  			The caller should back up to acquiring a new page and
327  *  			trying again.  The aop will be taking reasonable
328  *  			precautions not to livelock.  If the caller held a page
329  *  			reference, it should drop it before retrying.  Returned
330  *  			by read_folio().
331  *
332  * address_space_operation functions return these large constants to indicate
333  * special semantics to the caller.  These are much larger than the bytes in a
334  * page to allow for functions that return the number of bytes operated on in a
335  * given page.
336  */
337 
338 enum positive_aop_returns {
339 	AOP_WRITEPAGE_ACTIVATE	= 0x80000,
340 	AOP_TRUNCATED_PAGE	= 0x80001,
341 };
342 
343 /*
344  * oh the beauties of C type declarations.
345  */
346 struct page;
347 struct address_space;
348 struct writeback_control;
349 struct readahead_control;
350 
351 /* Match RWF_* bits to IOCB bits */
352 #define IOCB_HIPRI		(__force int) RWF_HIPRI
353 #define IOCB_DSYNC		(__force int) RWF_DSYNC
354 #define IOCB_SYNC		(__force int) RWF_SYNC
355 #define IOCB_NOWAIT		(__force int) RWF_NOWAIT
356 #define IOCB_APPEND		(__force int) RWF_APPEND
357 #define IOCB_ATOMIC		(__force int) RWF_ATOMIC
358 #define IOCB_DONTCACHE		(__force int) RWF_DONTCACHE
359 
360 /* non-RWF related bits - start at 16 */
361 #define IOCB_EVENTFD		(1 << 16)
362 #define IOCB_DIRECT		(1 << 17)
363 #define IOCB_WRITE		(1 << 18)
364 /* iocb->ki_waitq is valid */
365 #define IOCB_WAITQ		(1 << 19)
366 #define IOCB_NOIO		(1 << 20)
367 /* can use bio alloc cache */
368 #define IOCB_ALLOC_CACHE	(1 << 21)
369 /*
370  * IOCB_DIO_CALLER_COMP can be set by the iocb owner, to indicate that the
371  * iocb completion can be passed back to the owner for execution from a safe
372  * context rather than needing to be punted through a workqueue. If this
373  * flag is set, the bio completion handling may set iocb->dio_complete to a
374  * handler function and iocb->private to context information for that handler.
375  * The issuer should call the handler with that context information from task
376  * context to complete the processing of the iocb. Note that while this
377  * provides a task context for the dio_complete() callback, it should only be
378  * used on the completion side for non-IO generating completions. It's fine to
379  * call blocking functions from this callback, but they should not wait for
380  * unrelated IO (like cache flushing, new IO generation, etc).
381  */
382 #define IOCB_DIO_CALLER_COMP	(1 << 22)
383 /* kiocb is a read or write operation submitted by fs/aio.c. */
384 #define IOCB_AIO_RW		(1 << 23)
385 #define IOCB_HAS_METADATA	(1 << 24)
386 
387 /* for use in trace events */
388 #define TRACE_IOCB_STRINGS \
389 	{ IOCB_HIPRI,		"HIPRI" }, \
390 	{ IOCB_DSYNC,		"DSYNC" }, \
391 	{ IOCB_SYNC,		"SYNC" }, \
392 	{ IOCB_NOWAIT,		"NOWAIT" }, \
393 	{ IOCB_APPEND,		"APPEND" }, \
394 	{ IOCB_ATOMIC,		"ATOMIC" }, \
395 	{ IOCB_DONTCACHE,	"DONTCACHE" }, \
396 	{ IOCB_EVENTFD,		"EVENTFD"}, \
397 	{ IOCB_DIRECT,		"DIRECT" }, \
398 	{ IOCB_WRITE,		"WRITE" }, \
399 	{ IOCB_WAITQ,		"WAITQ" }, \
400 	{ IOCB_NOIO,		"NOIO" }, \
401 	{ IOCB_ALLOC_CACHE,	"ALLOC_CACHE" }, \
402 	{ IOCB_DIO_CALLER_COMP,	"CALLER_COMP" }
403 
404 struct kiocb {
405 	struct file		*ki_filp;
406 	loff_t			ki_pos;
407 	void (*ki_complete)(struct kiocb *iocb, long ret);
408 	void			*private;
409 	int			ki_flags;
410 	u16			ki_ioprio; /* See linux/ioprio.h */
411 	union {
412 		/*
413 		 * Only used for async buffered reads, where it denotes the
414 		 * page waitqueue associated with completing the read. Valid
415 		 * IFF IOCB_WAITQ is set.
416 		 */
417 		struct wait_page_queue	*ki_waitq;
418 		/*
419 		 * Can be used for O_DIRECT IO, where the completion handling
420 		 * is punted back to the issuer of the IO. May only be set
421 		 * if IOCB_DIO_CALLER_COMP is set by the issuer, and the issuer
422 		 * must then check for presence of this handler when ki_complete
423 		 * is invoked. The data passed in to this handler must be
424 		 * assigned to ->private when dio_complete is assigned.
425 		 */
426 		ssize_t (*dio_complete)(void *data);
427 	};
428 };
429 
430 static inline bool is_sync_kiocb(struct kiocb *kiocb)
431 {
432 	return kiocb->ki_complete == NULL;
433 }
434 
435 struct address_space_operations {
436 	int (*writepage)(struct page *page, struct writeback_control *wbc);
437 	int (*read_folio)(struct file *, struct folio *);
438 
439 	/* Write back some dirty pages from this mapping. */
440 	int (*writepages)(struct address_space *, struct writeback_control *);
441 
442 	/* Mark a folio dirty.  Return true if this dirtied it */
443 	bool (*dirty_folio)(struct address_space *, struct folio *);
444 
445 	void (*readahead)(struct readahead_control *);
446 
447 	int (*write_begin)(struct file *, struct address_space *mapping,
448 				loff_t pos, unsigned len,
449 				struct folio **foliop, void **fsdata);
450 	int (*write_end)(struct file *, struct address_space *mapping,
451 				loff_t pos, unsigned len, unsigned copied,
452 				struct folio *folio, void *fsdata);
453 
454 	/* Unfortunately this kludge is needed for FIBMAP. Don't use it */
455 	sector_t (*bmap)(struct address_space *, sector_t);
456 	void (*invalidate_folio) (struct folio *, size_t offset, size_t len);
457 	bool (*release_folio)(struct folio *, gfp_t);
458 	void (*free_folio)(struct folio *folio);
459 	ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter);
460 	/*
461 	 * migrate the contents of a folio to the specified target. If
462 	 * migrate_mode is MIGRATE_ASYNC, it must not block.
463 	 */
464 	int (*migrate_folio)(struct address_space *, struct folio *dst,
465 			struct folio *src, enum migrate_mode);
466 	int (*launder_folio)(struct folio *);
467 	bool (*is_partially_uptodate) (struct folio *, size_t from,
468 			size_t count);
469 	void (*is_dirty_writeback) (struct folio *, bool *dirty, bool *wb);
470 	int (*error_remove_folio)(struct address_space *, struct folio *);
471 
472 	/* swapfile support */
473 	int (*swap_activate)(struct swap_info_struct *sis, struct file *file,
474 				sector_t *span);
475 	void (*swap_deactivate)(struct file *file);
476 	int (*swap_rw)(struct kiocb *iocb, struct iov_iter *iter);
477 };
478 
479 extern const struct address_space_operations empty_aops;
480 
481 /**
482  * struct address_space - Contents of a cacheable, mappable object.
483  * @host: Owner, either the inode or the block_device.
484  * @i_pages: Cached pages.
485  * @invalidate_lock: Guards coherency between page cache contents and
486  *   file offset->disk block mappings in the filesystem during invalidates.
487  *   It is also used to block modification of page cache contents through
488  *   memory mappings.
489  * @gfp_mask: Memory allocation flags to use for allocating pages.
490  * @i_mmap_writable: Number of VM_SHARED, VM_MAYWRITE mappings.
491  * @nr_thps: Number of THPs in the pagecache (non-shmem only).
492  * @i_mmap: Tree of private and shared mappings.
493  * @i_mmap_rwsem: Protects @i_mmap and @i_mmap_writable.
494  * @nrpages: Number of page entries, protected by the i_pages lock.
495  * @writeback_index: Writeback starts here.
496  * @a_ops: Methods.
497  * @flags: Error bits and flags (AS_*).
498  * @wb_err: The most recent error which has occurred.
499  * @i_private_lock: For use by the owner of the address_space.
500  * @i_private_list: For use by the owner of the address_space.
501  * @i_private_data: For use by the owner of the address_space.
502  */
503 struct address_space {
504 	struct inode		*host;
505 	struct xarray		i_pages;
506 	struct rw_semaphore	invalidate_lock;
507 	gfp_t			gfp_mask;
508 	atomic_t		i_mmap_writable;
509 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
510 	/* number of thp, only for non-shmem files */
511 	atomic_t		nr_thps;
512 #endif
513 	struct rb_root_cached	i_mmap;
514 	unsigned long		nrpages;
515 	pgoff_t			writeback_index;
516 	const struct address_space_operations *a_ops;
517 	unsigned long		flags;
518 	errseq_t		wb_err;
519 	spinlock_t		i_private_lock;
520 	struct list_head	i_private_list;
521 	struct rw_semaphore	i_mmap_rwsem;
522 	void *			i_private_data;
523 } __attribute__((aligned(sizeof(long)))) __randomize_layout;
524 	/*
525 	 * On most architectures that alignment is already the case; but
526 	 * must be enforced here for CRIS, to let the least significant bit
527 	 * of struct page's "mapping" pointer be used for PAGE_MAPPING_ANON.
528 	 */
529 
530 /* XArray tags, for tagging dirty and writeback pages in the pagecache. */
531 #define PAGECACHE_TAG_DIRTY	XA_MARK_0
532 #define PAGECACHE_TAG_WRITEBACK	XA_MARK_1
533 #define PAGECACHE_TAG_TOWRITE	XA_MARK_2
534 
535 /*
536  * Returns true if any of the pages in the mapping are marked with the tag.
537  */
538 static inline bool mapping_tagged(struct address_space *mapping, xa_mark_t tag)
539 {
540 	return xa_marked(&mapping->i_pages, tag);
541 }
542 
543 static inline void i_mmap_lock_write(struct address_space *mapping)
544 {
545 	down_write(&mapping->i_mmap_rwsem);
546 }
547 
548 static inline int i_mmap_trylock_write(struct address_space *mapping)
549 {
550 	return down_write_trylock(&mapping->i_mmap_rwsem);
551 }
552 
553 static inline void i_mmap_unlock_write(struct address_space *mapping)
554 {
555 	up_write(&mapping->i_mmap_rwsem);
556 }
557 
558 static inline int i_mmap_trylock_read(struct address_space *mapping)
559 {
560 	return down_read_trylock(&mapping->i_mmap_rwsem);
561 }
562 
563 static inline void i_mmap_lock_read(struct address_space *mapping)
564 {
565 	down_read(&mapping->i_mmap_rwsem);
566 }
567 
568 static inline void i_mmap_unlock_read(struct address_space *mapping)
569 {
570 	up_read(&mapping->i_mmap_rwsem);
571 }
572 
573 static inline void i_mmap_assert_locked(struct address_space *mapping)
574 {
575 	lockdep_assert_held(&mapping->i_mmap_rwsem);
576 }
577 
578 static inline void i_mmap_assert_write_locked(struct address_space *mapping)
579 {
580 	lockdep_assert_held_write(&mapping->i_mmap_rwsem);
581 }
582 
583 /*
584  * Might pages of this file be mapped into userspace?
585  */
586 static inline int mapping_mapped(struct address_space *mapping)
587 {
588 	return	!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root);
589 }
590 
591 /*
592  * Might pages of this file have been modified in userspace?
593  * Note that i_mmap_writable counts all VM_SHARED, VM_MAYWRITE vmas: do_mmap
594  * marks vma as VM_SHARED if it is shared, and the file was opened for
595  * writing i.e. vma may be mprotected writable even if now readonly.
596  *
597  * If i_mmap_writable is negative, no new writable mappings are allowed. You
598  * can only deny writable mappings, if none exists right now.
599  */
600 static inline int mapping_writably_mapped(struct address_space *mapping)
601 {
602 	return atomic_read(&mapping->i_mmap_writable) > 0;
603 }
604 
605 static inline int mapping_map_writable(struct address_space *mapping)
606 {
607 	return atomic_inc_unless_negative(&mapping->i_mmap_writable) ?
608 		0 : -EPERM;
609 }
610 
611 static inline void mapping_unmap_writable(struct address_space *mapping)
612 {
613 	atomic_dec(&mapping->i_mmap_writable);
614 }
615 
616 static inline int mapping_deny_writable(struct address_space *mapping)
617 {
618 	return atomic_dec_unless_positive(&mapping->i_mmap_writable) ?
619 		0 : -EBUSY;
620 }
621 
622 static inline void mapping_allow_writable(struct address_space *mapping)
623 {
624 	atomic_inc(&mapping->i_mmap_writable);
625 }
626 
627 /*
628  * Use sequence counter to get consistent i_size on 32-bit processors.
629  */
630 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
631 #include <linux/seqlock.h>
632 #define __NEED_I_SIZE_ORDERED
633 #define i_size_ordered_init(inode) seqcount_init(&inode->i_size_seqcount)
634 #else
635 #define i_size_ordered_init(inode) do { } while (0)
636 #endif
637 
638 struct posix_acl;
639 #define ACL_NOT_CACHED ((void *)(-1))
640 /*
641  * ACL_DONT_CACHE is for stacked filesystems, that rely on underlying fs to
642  * cache the ACL.  This also means that ->get_inode_acl() can be called in RCU
643  * mode with the LOOKUP_RCU flag.
644  */
645 #define ACL_DONT_CACHE ((void *)(-3))
646 
647 static inline struct posix_acl *
648 uncached_acl_sentinel(struct task_struct *task)
649 {
650 	return (void *)task + 1;
651 }
652 
653 static inline bool
654 is_uncached_acl(struct posix_acl *acl)
655 {
656 	return (long)acl & 1;
657 }
658 
659 #define IOP_FASTPERM	0x0001
660 #define IOP_LOOKUP	0x0002
661 #define IOP_NOFOLLOW	0x0004
662 #define IOP_XATTR	0x0008
663 #define IOP_DEFAULT_READLINK	0x0010
664 #define IOP_MGTIME	0x0020
665 #define IOP_CACHED_LINK	0x0040
666 
667 /*
668  * Keep mostly read-only and often accessed (especially for
669  * the RCU path lookup and 'stat' data) fields at the beginning
670  * of the 'struct inode'
671  */
672 struct inode {
673 	umode_t			i_mode;
674 	unsigned short		i_opflags;
675 	kuid_t			i_uid;
676 	kgid_t			i_gid;
677 	unsigned int		i_flags;
678 
679 #ifdef CONFIG_FS_POSIX_ACL
680 	struct posix_acl	*i_acl;
681 	struct posix_acl	*i_default_acl;
682 #endif
683 
684 	const struct inode_operations	*i_op;
685 	struct super_block	*i_sb;
686 	struct address_space	*i_mapping;
687 
688 #ifdef CONFIG_SECURITY
689 	void			*i_security;
690 #endif
691 
692 	/* Stat data, not accessed from path walking */
693 	unsigned long		i_ino;
694 	/*
695 	 * Filesystems may only read i_nlink directly.  They shall use the
696 	 * following functions for modification:
697 	 *
698 	 *    (set|clear|inc|drop)_nlink
699 	 *    inode_(inc|dec)_link_count
700 	 */
701 	union {
702 		const unsigned int i_nlink;
703 		unsigned int __i_nlink;
704 	};
705 	dev_t			i_rdev;
706 	loff_t			i_size;
707 	time64_t		i_atime_sec;
708 	time64_t		i_mtime_sec;
709 	time64_t		i_ctime_sec;
710 	u32			i_atime_nsec;
711 	u32			i_mtime_nsec;
712 	u32			i_ctime_nsec;
713 	u32			i_generation;
714 	spinlock_t		i_lock;	/* i_blocks, i_bytes, maybe i_size */
715 	unsigned short          i_bytes;
716 	u8			i_blkbits;
717 	enum rw_hint		i_write_hint;
718 	blkcnt_t		i_blocks;
719 
720 #ifdef __NEED_I_SIZE_ORDERED
721 	seqcount_t		i_size_seqcount;
722 #endif
723 
724 	/* Misc */
725 	u32			i_state;
726 	/* 32-bit hole */
727 	struct rw_semaphore	i_rwsem;
728 
729 	unsigned long		dirtied_when;	/* jiffies of first dirtying */
730 	unsigned long		dirtied_time_when;
731 
732 	struct hlist_node	i_hash;
733 	struct list_head	i_io_list;	/* backing dev IO list */
734 #ifdef CONFIG_CGROUP_WRITEBACK
735 	struct bdi_writeback	*i_wb;		/* the associated cgroup wb */
736 
737 	/* foreign inode detection, see wbc_detach_inode() */
738 	int			i_wb_frn_winner;
739 	u16			i_wb_frn_avg_time;
740 	u16			i_wb_frn_history;
741 #endif
742 	struct list_head	i_lru;		/* inode LRU list */
743 	struct list_head	i_sb_list;
744 	struct list_head	i_wb_list;	/* backing dev writeback list */
745 	union {
746 		struct hlist_head	i_dentry;
747 		struct rcu_head		i_rcu;
748 	};
749 	atomic64_t		i_version;
750 	atomic64_t		i_sequence; /* see futex */
751 	atomic_t		i_count;
752 	atomic_t		i_dio_count;
753 	atomic_t		i_writecount;
754 #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING)
755 	atomic_t		i_readcount; /* struct files open RO */
756 #endif
757 	union {
758 		const struct file_operations	*i_fop;	/* former ->i_op->default_file_ops */
759 		void (*free_inode)(struct inode *);
760 	};
761 	struct file_lock_context	*i_flctx;
762 	struct address_space	i_data;
763 	union {
764 		struct list_head	i_devices;
765 		int			i_linklen;
766 	};
767 	union {
768 		struct pipe_inode_info	*i_pipe;
769 		struct cdev		*i_cdev;
770 		char			*i_link;
771 		unsigned		i_dir_seq;
772 	};
773 
774 
775 #ifdef CONFIG_FSNOTIFY
776 	__u32			i_fsnotify_mask; /* all events this inode cares about */
777 	/* 32-bit hole reserved for expanding i_fsnotify_mask */
778 	struct fsnotify_mark_connector __rcu	*i_fsnotify_marks;
779 #endif
780 
781 #ifdef CONFIG_FS_ENCRYPTION
782 	struct fscrypt_inode_info	*i_crypt_info;
783 #endif
784 
785 #ifdef CONFIG_FS_VERITY
786 	struct fsverity_info	*i_verity_info;
787 #endif
788 
789 	void			*i_private; /* fs or device private pointer */
790 } __randomize_layout;
791 
792 static inline void inode_set_cached_link(struct inode *inode, char *link, int linklen)
793 {
794 	inode->i_link = link;
795 	inode->i_linklen = linklen;
796 	inode->i_opflags |= IOP_CACHED_LINK;
797 }
798 
799 /*
800  * Get bit address from inode->i_state to use with wait_var_event()
801  * infrastructre.
802  */
803 #define inode_state_wait_address(inode, bit) ((char *)&(inode)->i_state + (bit))
804 
805 struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe,
806 					    struct inode *inode, u32 bit);
807 
808 static inline void inode_wake_up_bit(struct inode *inode, u32 bit)
809 {
810 	/* Caller is responsible for correct memory barriers. */
811 	wake_up_var(inode_state_wait_address(inode, bit));
812 }
813 
814 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode);
815 
816 static inline unsigned int i_blocksize(const struct inode *node)
817 {
818 	return (1 << node->i_blkbits);
819 }
820 
821 static inline int inode_unhashed(struct inode *inode)
822 {
823 	return hlist_unhashed(&inode->i_hash);
824 }
825 
826 /*
827  * __mark_inode_dirty expects inodes to be hashed.  Since we don't
828  * want special inodes in the fileset inode space, we make them
829  * appear hashed, but do not put on any lists.  hlist_del()
830  * will work fine and require no locking.
831  */
832 static inline void inode_fake_hash(struct inode *inode)
833 {
834 	hlist_add_fake(&inode->i_hash);
835 }
836 
837 /*
838  * inode->i_mutex nesting subclasses for the lock validator:
839  *
840  * 0: the object of the current VFS operation
841  * 1: parent
842  * 2: child/target
843  * 3: xattr
844  * 4: second non-directory
845  * 5: second parent (when locking independent directories in rename)
846  *
847  * I_MUTEX_NONDIR2 is for certain operations (such as rename) which lock two
848  * non-directories at once.
849  *
850  * The locking order between these classes is
851  * parent[2] -> child -> grandchild -> normal -> xattr -> second non-directory
852  */
853 enum inode_i_mutex_lock_class
854 {
855 	I_MUTEX_NORMAL,
856 	I_MUTEX_PARENT,
857 	I_MUTEX_CHILD,
858 	I_MUTEX_XATTR,
859 	I_MUTEX_NONDIR2,
860 	I_MUTEX_PARENT2,
861 };
862 
863 static inline void inode_lock(struct inode *inode)
864 {
865 	down_write(&inode->i_rwsem);
866 }
867 
868 static inline void inode_unlock(struct inode *inode)
869 {
870 	up_write(&inode->i_rwsem);
871 }
872 
873 static inline void inode_lock_shared(struct inode *inode)
874 {
875 	down_read(&inode->i_rwsem);
876 }
877 
878 static inline void inode_unlock_shared(struct inode *inode)
879 {
880 	up_read(&inode->i_rwsem);
881 }
882 
883 static inline int inode_trylock(struct inode *inode)
884 {
885 	return down_write_trylock(&inode->i_rwsem);
886 }
887 
888 static inline int inode_trylock_shared(struct inode *inode)
889 {
890 	return down_read_trylock(&inode->i_rwsem);
891 }
892 
893 static inline int inode_is_locked(struct inode *inode)
894 {
895 	return rwsem_is_locked(&inode->i_rwsem);
896 }
897 
898 static inline void inode_lock_nested(struct inode *inode, unsigned subclass)
899 {
900 	down_write_nested(&inode->i_rwsem, subclass);
901 }
902 
903 static inline void inode_lock_shared_nested(struct inode *inode, unsigned subclass)
904 {
905 	down_read_nested(&inode->i_rwsem, subclass);
906 }
907 
908 static inline void filemap_invalidate_lock(struct address_space *mapping)
909 {
910 	down_write(&mapping->invalidate_lock);
911 }
912 
913 static inline void filemap_invalidate_unlock(struct address_space *mapping)
914 {
915 	up_write(&mapping->invalidate_lock);
916 }
917 
918 static inline void filemap_invalidate_lock_shared(struct address_space *mapping)
919 {
920 	down_read(&mapping->invalidate_lock);
921 }
922 
923 static inline int filemap_invalidate_trylock_shared(
924 					struct address_space *mapping)
925 {
926 	return down_read_trylock(&mapping->invalidate_lock);
927 }
928 
929 static inline void filemap_invalidate_unlock_shared(
930 					struct address_space *mapping)
931 {
932 	up_read(&mapping->invalidate_lock);
933 }
934 
935 void lock_two_nondirectories(struct inode *, struct inode*);
936 void unlock_two_nondirectories(struct inode *, struct inode*);
937 
938 void filemap_invalidate_lock_two(struct address_space *mapping1,
939 				 struct address_space *mapping2);
940 void filemap_invalidate_unlock_two(struct address_space *mapping1,
941 				   struct address_space *mapping2);
942 
943 
944 /*
945  * NOTE: in a 32bit arch with a preemptable kernel and
946  * an UP compile the i_size_read/write must be atomic
947  * with respect to the local cpu (unlike with preempt disabled),
948  * but they don't need to be atomic with respect to other cpus like in
949  * true SMP (so they need either to either locally disable irq around
950  * the read or for example on x86 they can be still implemented as a
951  * cmpxchg8b without the need of the lock prefix). For SMP compiles
952  * and 64bit archs it makes no difference if preempt is enabled or not.
953  */
954 static inline loff_t i_size_read(const struct inode *inode)
955 {
956 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
957 	loff_t i_size;
958 	unsigned int seq;
959 
960 	do {
961 		seq = read_seqcount_begin(&inode->i_size_seqcount);
962 		i_size = inode->i_size;
963 	} while (read_seqcount_retry(&inode->i_size_seqcount, seq));
964 	return i_size;
965 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
966 	loff_t i_size;
967 
968 	preempt_disable();
969 	i_size = inode->i_size;
970 	preempt_enable();
971 	return i_size;
972 #else
973 	/* Pairs with smp_store_release() in i_size_write() */
974 	return smp_load_acquire(&inode->i_size);
975 #endif
976 }
977 
978 /*
979  * NOTE: unlike i_size_read(), i_size_write() does need locking around it
980  * (normally i_mutex), otherwise on 32bit/SMP an update of i_size_seqcount
981  * can be lost, resulting in subsequent i_size_read() calls spinning forever.
982  */
983 static inline void i_size_write(struct inode *inode, loff_t i_size)
984 {
985 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
986 	preempt_disable();
987 	write_seqcount_begin(&inode->i_size_seqcount);
988 	inode->i_size = i_size;
989 	write_seqcount_end(&inode->i_size_seqcount);
990 	preempt_enable();
991 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
992 	preempt_disable();
993 	inode->i_size = i_size;
994 	preempt_enable();
995 #else
996 	/*
997 	 * Pairs with smp_load_acquire() in i_size_read() to ensure
998 	 * changes related to inode size (such as page contents) are
999 	 * visible before we see the changed inode size.
1000 	 */
1001 	smp_store_release(&inode->i_size, i_size);
1002 #endif
1003 }
1004 
1005 static inline unsigned iminor(const struct inode *inode)
1006 {
1007 	return MINOR(inode->i_rdev);
1008 }
1009 
1010 static inline unsigned imajor(const struct inode *inode)
1011 {
1012 	return MAJOR(inode->i_rdev);
1013 }
1014 
1015 struct fown_struct {
1016 	struct file *file;	/* backpointer for security modules */
1017 	rwlock_t lock;          /* protects pid, uid, euid fields */
1018 	struct pid *pid;	/* pid or -pgrp where SIGIO should be sent */
1019 	enum pid_type pid_type;	/* Kind of process group SIGIO should be sent to */
1020 	kuid_t uid, euid;	/* uid/euid of process setting the owner */
1021 	int signum;		/* posix.1b rt signal to be delivered on IO */
1022 };
1023 
1024 /**
1025  * struct file_ra_state - Track a file's readahead state.
1026  * @start: Where the most recent readahead started.
1027  * @size: Number of pages read in the most recent readahead.
1028  * @async_size: Numer of pages that were/are not needed immediately
1029  *      and so were/are genuinely "ahead".  Start next readahead when
1030  *      the first of these pages is accessed.
1031  * @ra_pages: Maximum size of a readahead request, copied from the bdi.
1032  * @mmap_miss: How many mmap accesses missed in the page cache.
1033  * @prev_pos: The last byte in the most recent read request.
1034  *
1035  * When this structure is passed to ->readahead(), the "most recent"
1036  * readahead means the current readahead.
1037  */
1038 struct file_ra_state {
1039 	pgoff_t start;
1040 	unsigned int size;
1041 	unsigned int async_size;
1042 	unsigned int ra_pages;
1043 	unsigned int mmap_miss;
1044 	loff_t prev_pos;
1045 };
1046 
1047 /*
1048  * Check if @index falls in the readahead windows.
1049  */
1050 static inline int ra_has_index(struct file_ra_state *ra, pgoff_t index)
1051 {
1052 	return (index >= ra->start &&
1053 		index <  ra->start + ra->size);
1054 }
1055 
1056 /**
1057  * struct file - Represents a file
1058  * @f_ref: reference count
1059  * @f_lock: Protects f_ep, f_flags. Must not be taken from IRQ context.
1060  * @f_mode: FMODE_* flags often used in hotpaths
1061  * @f_op: file operations
1062  * @f_mapping: Contents of a cacheable, mappable object.
1063  * @private_data: filesystem or driver specific data
1064  * @f_inode: cached inode
1065  * @f_flags: file flags
1066  * @f_iocb_flags: iocb flags
1067  * @f_cred: stashed credentials of creator/opener
1068  * @f_path: path of the file
1069  * @f_pos_lock: lock protecting file position
1070  * @f_pipe: specific to pipes
1071  * @f_pos: file position
1072  * @f_security: LSM security context of this file
1073  * @f_owner: file owner
1074  * @f_wb_err: writeback error
1075  * @f_sb_err: per sb writeback errors
1076  * @f_ep: link of all epoll hooks for this file
1077  * @f_task_work: task work entry point
1078  * @f_llist: work queue entrypoint
1079  * @f_ra: file's readahead state
1080  * @f_freeptr: Pointer used by SLAB_TYPESAFE_BY_RCU file cache (don't touch.)
1081  */
1082 struct file {
1083 	file_ref_t			f_ref;
1084 	spinlock_t			f_lock;
1085 	fmode_t				f_mode;
1086 	const struct file_operations	*f_op;
1087 	struct address_space		*f_mapping;
1088 	void				*private_data;
1089 	struct inode			*f_inode;
1090 	unsigned int			f_flags;
1091 	unsigned int			f_iocb_flags;
1092 	const struct cred		*f_cred;
1093 	/* --- cacheline 1 boundary (64 bytes) --- */
1094 	struct path			f_path;
1095 	union {
1096 		/* regular files (with FMODE_ATOMIC_POS) and directories */
1097 		struct mutex		f_pos_lock;
1098 		/* pipes */
1099 		u64			f_pipe;
1100 	};
1101 	loff_t				f_pos;
1102 #ifdef CONFIG_SECURITY
1103 	void				*f_security;
1104 #endif
1105 	/* --- cacheline 2 boundary (128 bytes) --- */
1106 	struct fown_struct		*f_owner;
1107 	errseq_t			f_wb_err;
1108 	errseq_t			f_sb_err;
1109 #ifdef CONFIG_EPOLL
1110 	struct hlist_head		*f_ep;
1111 #endif
1112 	union {
1113 		struct callback_head	f_task_work;
1114 		struct llist_node	f_llist;
1115 		struct file_ra_state	f_ra;
1116 		freeptr_t		f_freeptr;
1117 	};
1118 	/* --- cacheline 3 boundary (192 bytes) --- */
1119 } __randomize_layout
1120   __attribute__((aligned(4)));	/* lest something weird decides that 2 is OK */
1121 
1122 struct file_handle {
1123 	__u32 handle_bytes;
1124 	int handle_type;
1125 	/* file identifier */
1126 	unsigned char f_handle[] __counted_by(handle_bytes);
1127 };
1128 
1129 static inline struct file *get_file(struct file *f)
1130 {
1131 	file_ref_inc(&f->f_ref);
1132 	return f;
1133 }
1134 
1135 struct file *get_file_rcu(struct file __rcu **f);
1136 struct file *get_file_active(struct file **f);
1137 
1138 #define file_count(f)	file_ref_read(&(f)->f_ref)
1139 
1140 #define	MAX_NON_LFS	((1UL<<31) - 1)
1141 
1142 /* Page cache limit. The filesystems should put that into their s_maxbytes
1143    limits, otherwise bad things can happen in VM. */
1144 #if BITS_PER_LONG==32
1145 #define MAX_LFS_FILESIZE	((loff_t)ULONG_MAX << PAGE_SHIFT)
1146 #elif BITS_PER_LONG==64
1147 #define MAX_LFS_FILESIZE 	((loff_t)LLONG_MAX)
1148 #endif
1149 
1150 /* legacy typedef, should eventually be removed */
1151 typedef void *fl_owner_t;
1152 
1153 struct file_lock;
1154 struct file_lease;
1155 
1156 /* The following constant reflects the upper bound of the file/locking space */
1157 #ifndef OFFSET_MAX
1158 #define OFFSET_MAX	type_max(loff_t)
1159 #define OFFT_OFFSET_MAX	type_max(off_t)
1160 #endif
1161 
1162 int file_f_owner_allocate(struct file *file);
1163 static inline struct fown_struct *file_f_owner(const struct file *file)
1164 {
1165 	return READ_ONCE(file->f_owner);
1166 }
1167 
1168 extern void send_sigio(struct fown_struct *fown, int fd, int band);
1169 
1170 static inline struct inode *file_inode(const struct file *f)
1171 {
1172 	return f->f_inode;
1173 }
1174 
1175 /*
1176  * file_dentry() is a relic from the days that overlayfs was using files with a
1177  * "fake" path, meaning, f_path on overlayfs and f_inode on underlying fs.
1178  * In those days, file_dentry() was needed to get the underlying fs dentry that
1179  * matches f_inode.
1180  * Files with "fake" path should not exist nowadays, so use an assertion to make
1181  * sure that file_dentry() was not papering over filesystem bugs.
1182  */
1183 static inline struct dentry *file_dentry(const struct file *file)
1184 {
1185 	struct dentry *dentry = file->f_path.dentry;
1186 
1187 	WARN_ON_ONCE(d_inode(dentry) != file_inode(file));
1188 	return dentry;
1189 }
1190 
1191 struct fasync_struct {
1192 	rwlock_t		fa_lock;
1193 	int			magic;
1194 	int			fa_fd;
1195 	struct fasync_struct	*fa_next; /* singly linked list */
1196 	struct file		*fa_file;
1197 	struct rcu_head		fa_rcu;
1198 };
1199 
1200 #define FASYNC_MAGIC 0x4601
1201 
1202 /* SMP safe fasync helpers: */
1203 extern int fasync_helper(int, struct file *, int, struct fasync_struct **);
1204 extern struct fasync_struct *fasync_insert_entry(int, struct file *, struct fasync_struct **, struct fasync_struct *);
1205 extern int fasync_remove_entry(struct file *, struct fasync_struct **);
1206 extern struct fasync_struct *fasync_alloc(void);
1207 extern void fasync_free(struct fasync_struct *);
1208 
1209 /* can be called from interrupts */
1210 extern void kill_fasync(struct fasync_struct **, int, int);
1211 
1212 extern void __f_setown(struct file *filp, struct pid *, enum pid_type, int force);
1213 extern int f_setown(struct file *filp, int who, int force);
1214 extern void f_delown(struct file *filp);
1215 extern pid_t f_getown(struct file *filp);
1216 extern int send_sigurg(struct file *file);
1217 
1218 /*
1219  * sb->s_flags.  Note that these mirror the equivalent MS_* flags where
1220  * represented in both.
1221  */
1222 #define SB_RDONLY       BIT(0)	/* Mount read-only */
1223 #define SB_NOSUID       BIT(1)	/* Ignore suid and sgid bits */
1224 #define SB_NODEV        BIT(2)	/* Disallow access to device special files */
1225 #define SB_NOEXEC       BIT(3)	/* Disallow program execution */
1226 #define SB_SYNCHRONOUS  BIT(4)	/* Writes are synced at once */
1227 #define SB_MANDLOCK     BIT(6)	/* Allow mandatory locks on an FS */
1228 #define SB_DIRSYNC      BIT(7)	/* Directory modifications are synchronous */
1229 #define SB_NOATIME      BIT(10)	/* Do not update access times. */
1230 #define SB_NODIRATIME   BIT(11)	/* Do not update directory access times */
1231 #define SB_SILENT       BIT(15)
1232 #define SB_POSIXACL     BIT(16)	/* Supports POSIX ACLs */
1233 #define SB_INLINECRYPT  BIT(17)	/* Use blk-crypto for encrypted files */
1234 #define SB_KERNMOUNT    BIT(22)	/* this is a kern_mount call */
1235 #define SB_I_VERSION    BIT(23)	/* Update inode I_version field */
1236 #define SB_LAZYTIME     BIT(25)	/* Update the on-disk [acm]times lazily */
1237 
1238 /* These sb flags are internal to the kernel */
1239 #define SB_DEAD         BIT(21)
1240 #define SB_DYING        BIT(24)
1241 #define SB_SUBMOUNT     BIT(26)
1242 #define SB_FORCE        BIT(27)
1243 #define SB_NOSEC        BIT(28)
1244 #define SB_BORN         BIT(29)
1245 #define SB_ACTIVE       BIT(30)
1246 #define SB_NOUSER       BIT(31)
1247 
1248 /* These flags relate to encoding and casefolding */
1249 #define SB_ENC_STRICT_MODE_FL	(1 << 0)
1250 
1251 #define sb_has_strict_encoding(sb) \
1252 	(sb->s_encoding_flags & SB_ENC_STRICT_MODE_FL)
1253 
1254 /*
1255  *	Umount options
1256  */
1257 
1258 #define MNT_FORCE	0x00000001	/* Attempt to forcibily umount */
1259 #define MNT_DETACH	0x00000002	/* Just detach from the tree */
1260 #define MNT_EXPIRE	0x00000004	/* Mark for expiry */
1261 #define UMOUNT_NOFOLLOW	0x00000008	/* Don't follow symlink on umount */
1262 #define UMOUNT_UNUSED	0x80000000	/* Flag guaranteed to be unused */
1263 
1264 /* sb->s_iflags */
1265 #define SB_I_CGROUPWB	0x00000001	/* cgroup-aware writeback enabled */
1266 #define SB_I_NOEXEC	0x00000002	/* Ignore executables on this fs */
1267 #define SB_I_NODEV	0x00000004	/* Ignore devices on this fs */
1268 #define SB_I_STABLE_WRITES 0x00000008	/* don't modify blks until WB is done */
1269 
1270 /* sb->s_iflags to limit user namespace mounts */
1271 #define SB_I_USERNS_VISIBLE		0x00000010 /* fstype already mounted */
1272 #define SB_I_IMA_UNVERIFIABLE_SIGNATURE	0x00000020
1273 #define SB_I_UNTRUSTED_MOUNTER		0x00000040
1274 #define SB_I_EVM_HMAC_UNSUPPORTED	0x00000080
1275 
1276 #define SB_I_SKIP_SYNC	0x00000100	/* Skip superblock at global sync */
1277 #define SB_I_PERSB_BDI	0x00000200	/* has a per-sb bdi */
1278 #define SB_I_TS_EXPIRY_WARNED 0x00000400 /* warned about timestamp range expiry */
1279 #define SB_I_RETIRED	0x00000800	/* superblock shouldn't be reused */
1280 #define SB_I_NOUMASK	0x00001000	/* VFS does not apply umask */
1281 #define SB_I_NOIDMAP	0x00002000	/* No idmapped mounts on this superblock */
1282 #define SB_I_ALLOW_HSM	0x00004000	/* Allow HSM events on this superblock */
1283 
1284 /* Possible states of 'frozen' field */
1285 enum {
1286 	SB_UNFROZEN = 0,		/* FS is unfrozen */
1287 	SB_FREEZE_WRITE	= 1,		/* Writes, dir ops, ioctls frozen */
1288 	SB_FREEZE_PAGEFAULT = 2,	/* Page faults stopped as well */
1289 	SB_FREEZE_FS = 3,		/* For internal FS use (e.g. to stop
1290 					 * internal threads if needed) */
1291 	SB_FREEZE_COMPLETE = 4,		/* ->freeze_fs finished successfully */
1292 };
1293 
1294 #define SB_FREEZE_LEVELS (SB_FREEZE_COMPLETE - 1)
1295 
1296 struct sb_writers {
1297 	unsigned short			frozen;		/* Is sb frozen? */
1298 	int				freeze_kcount;	/* How many kernel freeze requests? */
1299 	int				freeze_ucount;	/* How many userspace freeze requests? */
1300 	struct percpu_rw_semaphore	rw_sem[SB_FREEZE_LEVELS];
1301 };
1302 
1303 struct super_block {
1304 	struct list_head	s_list;		/* Keep this first */
1305 	dev_t			s_dev;		/* search index; _not_ kdev_t */
1306 	unsigned char		s_blocksize_bits;
1307 	unsigned long		s_blocksize;
1308 	loff_t			s_maxbytes;	/* Max file size */
1309 	struct file_system_type	*s_type;
1310 	const struct super_operations	*s_op;
1311 	const struct dquot_operations	*dq_op;
1312 	const struct quotactl_ops	*s_qcop;
1313 	const struct export_operations *s_export_op;
1314 	unsigned long		s_flags;
1315 	unsigned long		s_iflags;	/* internal SB_I_* flags */
1316 	unsigned long		s_magic;
1317 	struct dentry		*s_root;
1318 	struct rw_semaphore	s_umount;
1319 	int			s_count;
1320 	atomic_t		s_active;
1321 #ifdef CONFIG_SECURITY
1322 	void                    *s_security;
1323 #endif
1324 	const struct xattr_handler * const *s_xattr;
1325 #ifdef CONFIG_FS_ENCRYPTION
1326 	const struct fscrypt_operations	*s_cop;
1327 	struct fscrypt_keyring	*s_master_keys; /* master crypto keys in use */
1328 #endif
1329 #ifdef CONFIG_FS_VERITY
1330 	const struct fsverity_operations *s_vop;
1331 #endif
1332 #if IS_ENABLED(CONFIG_UNICODE)
1333 	struct unicode_map *s_encoding;
1334 	__u16 s_encoding_flags;
1335 #endif
1336 	struct hlist_bl_head	s_roots;	/* alternate root dentries for NFS */
1337 	struct list_head	s_mounts;	/* list of mounts; _not_ for fs use */
1338 	struct block_device	*s_bdev;	/* can go away once we use an accessor for @s_bdev_file */
1339 	struct file		*s_bdev_file;
1340 	struct backing_dev_info *s_bdi;
1341 	struct mtd_info		*s_mtd;
1342 	struct hlist_node	s_instances;
1343 	unsigned int		s_quota_types;	/* Bitmask of supported quota types */
1344 	struct quota_info	s_dquot;	/* Diskquota specific options */
1345 
1346 	struct sb_writers	s_writers;
1347 
1348 	/*
1349 	 * Keep s_fs_info, s_time_gran, s_fsnotify_mask, and
1350 	 * s_fsnotify_info together for cache efficiency. They are frequently
1351 	 * accessed and rarely modified.
1352 	 */
1353 	void			*s_fs_info;	/* Filesystem private info */
1354 
1355 	/* Granularity of c/m/atime in ns (cannot be worse than a second) */
1356 	u32			s_time_gran;
1357 	/* Time limits for c/m/atime in seconds */
1358 	time64_t		   s_time_min;
1359 	time64_t		   s_time_max;
1360 #ifdef CONFIG_FSNOTIFY
1361 	u32			s_fsnotify_mask;
1362 	struct fsnotify_sb_info	*s_fsnotify_info;
1363 #endif
1364 
1365 	/*
1366 	 * q: why are s_id and s_sysfs_name not the same? both are human
1367 	 * readable strings that identify the filesystem
1368 	 * a: s_id is allowed to change at runtime; it's used in log messages,
1369 	 * and we want to when a device starts out as single device (s_id is dev
1370 	 * name) but then a device is hot added and we have to switch to
1371 	 * identifying it by UUID
1372 	 * but s_sysfs_name is a handle for programmatic access, and can't
1373 	 * change at runtime
1374 	 */
1375 	char			s_id[32];	/* Informational name */
1376 	uuid_t			s_uuid;		/* UUID */
1377 	u8			s_uuid_len;	/* Default 16, possibly smaller for weird filesystems */
1378 
1379 	/* if set, fs shows up under sysfs at /sys/fs/$FSTYP/s_sysfs_name */
1380 	char			s_sysfs_name[UUID_STRING_LEN + 1];
1381 
1382 	unsigned int		s_max_links;
1383 
1384 	/*
1385 	 * The next field is for VFS *only*. No filesystems have any business
1386 	 * even looking at it. You had been warned.
1387 	 */
1388 	struct mutex s_vfs_rename_mutex;	/* Kludge */
1389 
1390 	/*
1391 	 * Filesystem subtype.  If non-empty the filesystem type field
1392 	 * in /proc/mounts will be "type.subtype"
1393 	 */
1394 	const char *s_subtype;
1395 
1396 	const struct dentry_operations *s_d_op; /* default d_op for dentries */
1397 
1398 	struct shrinker *s_shrink;	/* per-sb shrinker handle */
1399 
1400 	/* Number of inodes with nlink == 0 but still referenced */
1401 	atomic_long_t s_remove_count;
1402 
1403 	/* Read-only state of the superblock is being changed */
1404 	int s_readonly_remount;
1405 
1406 	/* per-sb errseq_t for reporting writeback errors via syncfs */
1407 	errseq_t s_wb_err;
1408 
1409 	/* AIO completions deferred from interrupt context */
1410 	struct workqueue_struct *s_dio_done_wq;
1411 	struct hlist_head s_pins;
1412 
1413 	/*
1414 	 * Owning user namespace and default context in which to
1415 	 * interpret filesystem uids, gids, quotas, device nodes,
1416 	 * xattrs and security labels.
1417 	 */
1418 	struct user_namespace *s_user_ns;
1419 
1420 	/*
1421 	 * The list_lru structure is essentially just a pointer to a table
1422 	 * of per-node lru lists, each of which has its own spinlock.
1423 	 * There is no need to put them into separate cachelines.
1424 	 */
1425 	struct list_lru		s_dentry_lru;
1426 	struct list_lru		s_inode_lru;
1427 	struct rcu_head		rcu;
1428 	struct work_struct	destroy_work;
1429 
1430 	struct mutex		s_sync_lock;	/* sync serialisation lock */
1431 
1432 	/*
1433 	 * Indicates how deep in a filesystem stack this SB is
1434 	 */
1435 	int s_stack_depth;
1436 
1437 	/* s_inode_list_lock protects s_inodes */
1438 	spinlock_t		s_inode_list_lock ____cacheline_aligned_in_smp;
1439 	struct list_head	s_inodes;	/* all inodes */
1440 
1441 	spinlock_t		s_inode_wblist_lock;
1442 	struct list_head	s_inodes_wb;	/* writeback inodes */
1443 } __randomize_layout;
1444 
1445 static inline struct user_namespace *i_user_ns(const struct inode *inode)
1446 {
1447 	return inode->i_sb->s_user_ns;
1448 }
1449 
1450 /* Helper functions so that in most cases filesystems will
1451  * not need to deal directly with kuid_t and kgid_t and can
1452  * instead deal with the raw numeric values that are stored
1453  * in the filesystem.
1454  */
1455 static inline uid_t i_uid_read(const struct inode *inode)
1456 {
1457 	return from_kuid(i_user_ns(inode), inode->i_uid);
1458 }
1459 
1460 static inline gid_t i_gid_read(const struct inode *inode)
1461 {
1462 	return from_kgid(i_user_ns(inode), inode->i_gid);
1463 }
1464 
1465 static inline void i_uid_write(struct inode *inode, uid_t uid)
1466 {
1467 	inode->i_uid = make_kuid(i_user_ns(inode), uid);
1468 }
1469 
1470 static inline void i_gid_write(struct inode *inode, gid_t gid)
1471 {
1472 	inode->i_gid = make_kgid(i_user_ns(inode), gid);
1473 }
1474 
1475 /**
1476  * i_uid_into_vfsuid - map an inode's i_uid down according to an idmapping
1477  * @idmap: idmap of the mount the inode was found from
1478  * @inode: inode to map
1479  *
1480  * Return: whe inode's i_uid mapped down according to @idmap.
1481  * If the inode's i_uid has no mapping INVALID_VFSUID is returned.
1482  */
1483 static inline vfsuid_t i_uid_into_vfsuid(struct mnt_idmap *idmap,
1484 					 const struct inode *inode)
1485 {
1486 	return make_vfsuid(idmap, i_user_ns(inode), inode->i_uid);
1487 }
1488 
1489 /**
1490  * i_uid_needs_update - check whether inode's i_uid needs to be updated
1491  * @idmap: idmap of the mount the inode was found from
1492  * @attr: the new attributes of @inode
1493  * @inode: the inode to update
1494  *
1495  * Check whether the $inode's i_uid field needs to be updated taking idmapped
1496  * mounts into account if the filesystem supports it.
1497  *
1498  * Return: true if @inode's i_uid field needs to be updated, false if not.
1499  */
1500 static inline bool i_uid_needs_update(struct mnt_idmap *idmap,
1501 				      const struct iattr *attr,
1502 				      const struct inode *inode)
1503 {
1504 	return ((attr->ia_valid & ATTR_UID) &&
1505 		!vfsuid_eq(attr->ia_vfsuid,
1506 			   i_uid_into_vfsuid(idmap, inode)));
1507 }
1508 
1509 /**
1510  * i_uid_update - update @inode's i_uid field
1511  * @idmap: idmap of the mount the inode was found from
1512  * @attr: the new attributes of @inode
1513  * @inode: the inode to update
1514  *
1515  * Safely update @inode's i_uid field translating the vfsuid of any idmapped
1516  * mount into the filesystem kuid.
1517  */
1518 static inline void i_uid_update(struct mnt_idmap *idmap,
1519 				const struct iattr *attr,
1520 				struct inode *inode)
1521 {
1522 	if (attr->ia_valid & ATTR_UID)
1523 		inode->i_uid = from_vfsuid(idmap, i_user_ns(inode),
1524 					   attr->ia_vfsuid);
1525 }
1526 
1527 /**
1528  * i_gid_into_vfsgid - map an inode's i_gid down according to an idmapping
1529  * @idmap: idmap of the mount the inode was found from
1530  * @inode: inode to map
1531  *
1532  * Return: the inode's i_gid mapped down according to @idmap.
1533  * If the inode's i_gid has no mapping INVALID_VFSGID is returned.
1534  */
1535 static inline vfsgid_t i_gid_into_vfsgid(struct mnt_idmap *idmap,
1536 					 const struct inode *inode)
1537 {
1538 	return make_vfsgid(idmap, i_user_ns(inode), inode->i_gid);
1539 }
1540 
1541 /**
1542  * i_gid_needs_update - check whether inode's i_gid needs to be updated
1543  * @idmap: idmap of the mount the inode was found from
1544  * @attr: the new attributes of @inode
1545  * @inode: the inode to update
1546  *
1547  * Check whether the $inode's i_gid field needs to be updated taking idmapped
1548  * mounts into account if the filesystem supports it.
1549  *
1550  * Return: true if @inode's i_gid field needs to be updated, false if not.
1551  */
1552 static inline bool i_gid_needs_update(struct mnt_idmap *idmap,
1553 				      const struct iattr *attr,
1554 				      const struct inode *inode)
1555 {
1556 	return ((attr->ia_valid & ATTR_GID) &&
1557 		!vfsgid_eq(attr->ia_vfsgid,
1558 			   i_gid_into_vfsgid(idmap, inode)));
1559 }
1560 
1561 /**
1562  * i_gid_update - update @inode's i_gid field
1563  * @idmap: idmap of the mount the inode was found from
1564  * @attr: the new attributes of @inode
1565  * @inode: the inode to update
1566  *
1567  * Safely update @inode's i_gid field translating the vfsgid of any idmapped
1568  * mount into the filesystem kgid.
1569  */
1570 static inline void i_gid_update(struct mnt_idmap *idmap,
1571 				const struct iattr *attr,
1572 				struct inode *inode)
1573 {
1574 	if (attr->ia_valid & ATTR_GID)
1575 		inode->i_gid = from_vfsgid(idmap, i_user_ns(inode),
1576 					   attr->ia_vfsgid);
1577 }
1578 
1579 /**
1580  * inode_fsuid_set - initialize inode's i_uid field with callers fsuid
1581  * @inode: inode to initialize
1582  * @idmap: idmap of the mount the inode was found from
1583  *
1584  * Initialize the i_uid field of @inode. If the inode was found/created via
1585  * an idmapped mount map the caller's fsuid according to @idmap.
1586  */
1587 static inline void inode_fsuid_set(struct inode *inode,
1588 				   struct mnt_idmap *idmap)
1589 {
1590 	inode->i_uid = mapped_fsuid(idmap, i_user_ns(inode));
1591 }
1592 
1593 /**
1594  * inode_fsgid_set - initialize inode's i_gid field with callers fsgid
1595  * @inode: inode to initialize
1596  * @idmap: idmap of the mount the inode was found from
1597  *
1598  * Initialize the i_gid field of @inode. If the inode was found/created via
1599  * an idmapped mount map the caller's fsgid according to @idmap.
1600  */
1601 static inline void inode_fsgid_set(struct inode *inode,
1602 				   struct mnt_idmap *idmap)
1603 {
1604 	inode->i_gid = mapped_fsgid(idmap, i_user_ns(inode));
1605 }
1606 
1607 /**
1608  * fsuidgid_has_mapping() - check whether caller's fsuid/fsgid is mapped
1609  * @sb: the superblock we want a mapping in
1610  * @idmap: idmap of the relevant mount
1611  *
1612  * Check whether the caller's fsuid and fsgid have a valid mapping in the
1613  * s_user_ns of the superblock @sb. If the caller is on an idmapped mount map
1614  * the caller's fsuid and fsgid according to the @idmap first.
1615  *
1616  * Return: true if fsuid and fsgid is mapped, false if not.
1617  */
1618 static inline bool fsuidgid_has_mapping(struct super_block *sb,
1619 					struct mnt_idmap *idmap)
1620 {
1621 	struct user_namespace *fs_userns = sb->s_user_ns;
1622 	kuid_t kuid;
1623 	kgid_t kgid;
1624 
1625 	kuid = mapped_fsuid(idmap, fs_userns);
1626 	if (!uid_valid(kuid))
1627 		return false;
1628 	kgid = mapped_fsgid(idmap, fs_userns);
1629 	if (!gid_valid(kgid))
1630 		return false;
1631 	return kuid_has_mapping(fs_userns, kuid) &&
1632 	       kgid_has_mapping(fs_userns, kgid);
1633 }
1634 
1635 struct timespec64 current_time(struct inode *inode);
1636 struct timespec64 inode_set_ctime_current(struct inode *inode);
1637 struct timespec64 inode_set_ctime_deleg(struct inode *inode,
1638 					struct timespec64 update);
1639 
1640 static inline time64_t inode_get_atime_sec(const struct inode *inode)
1641 {
1642 	return inode->i_atime_sec;
1643 }
1644 
1645 static inline long inode_get_atime_nsec(const struct inode *inode)
1646 {
1647 	return inode->i_atime_nsec;
1648 }
1649 
1650 static inline struct timespec64 inode_get_atime(const struct inode *inode)
1651 {
1652 	struct timespec64 ts = { .tv_sec  = inode_get_atime_sec(inode),
1653 				 .tv_nsec = inode_get_atime_nsec(inode) };
1654 
1655 	return ts;
1656 }
1657 
1658 static inline struct timespec64 inode_set_atime_to_ts(struct inode *inode,
1659 						      struct timespec64 ts)
1660 {
1661 	inode->i_atime_sec = ts.tv_sec;
1662 	inode->i_atime_nsec = ts.tv_nsec;
1663 	return ts;
1664 }
1665 
1666 static inline struct timespec64 inode_set_atime(struct inode *inode,
1667 						time64_t sec, long nsec)
1668 {
1669 	struct timespec64 ts = { .tv_sec  = sec,
1670 				 .tv_nsec = nsec };
1671 
1672 	return inode_set_atime_to_ts(inode, ts);
1673 }
1674 
1675 static inline time64_t inode_get_mtime_sec(const struct inode *inode)
1676 {
1677 	return inode->i_mtime_sec;
1678 }
1679 
1680 static inline long inode_get_mtime_nsec(const struct inode *inode)
1681 {
1682 	return inode->i_mtime_nsec;
1683 }
1684 
1685 static inline struct timespec64 inode_get_mtime(const struct inode *inode)
1686 {
1687 	struct timespec64 ts = { .tv_sec  = inode_get_mtime_sec(inode),
1688 				 .tv_nsec = inode_get_mtime_nsec(inode) };
1689 	return ts;
1690 }
1691 
1692 static inline struct timespec64 inode_set_mtime_to_ts(struct inode *inode,
1693 						      struct timespec64 ts)
1694 {
1695 	inode->i_mtime_sec = ts.tv_sec;
1696 	inode->i_mtime_nsec = ts.tv_nsec;
1697 	return ts;
1698 }
1699 
1700 static inline struct timespec64 inode_set_mtime(struct inode *inode,
1701 						time64_t sec, long nsec)
1702 {
1703 	struct timespec64 ts = { .tv_sec  = sec,
1704 				 .tv_nsec = nsec };
1705 	return inode_set_mtime_to_ts(inode, ts);
1706 }
1707 
1708 /*
1709  * Multigrain timestamps
1710  *
1711  * Conditionally use fine-grained ctime and mtime timestamps when there
1712  * are users actively observing them via getattr. The primary use-case
1713  * for this is NFS clients that use the ctime to distinguish between
1714  * different states of the file, and that are often fooled by multiple
1715  * operations that occur in the same coarse-grained timer tick.
1716  */
1717 #define I_CTIME_QUERIED		((u32)BIT(31))
1718 
1719 static inline time64_t inode_get_ctime_sec(const struct inode *inode)
1720 {
1721 	return inode->i_ctime_sec;
1722 }
1723 
1724 static inline long inode_get_ctime_nsec(const struct inode *inode)
1725 {
1726 	return inode->i_ctime_nsec & ~I_CTIME_QUERIED;
1727 }
1728 
1729 static inline struct timespec64 inode_get_ctime(const struct inode *inode)
1730 {
1731 	struct timespec64 ts = { .tv_sec  = inode_get_ctime_sec(inode),
1732 				 .tv_nsec = inode_get_ctime_nsec(inode) };
1733 
1734 	return ts;
1735 }
1736 
1737 struct timespec64 inode_set_ctime_to_ts(struct inode *inode, struct timespec64 ts);
1738 
1739 /**
1740  * inode_set_ctime - set the ctime in the inode
1741  * @inode: inode in which to set the ctime
1742  * @sec: tv_sec value to set
1743  * @nsec: tv_nsec value to set
1744  *
1745  * Set the ctime in @inode to { @sec, @nsec }
1746  */
1747 static inline struct timespec64 inode_set_ctime(struct inode *inode,
1748 						time64_t sec, long nsec)
1749 {
1750 	struct timespec64 ts = { .tv_sec  = sec,
1751 				 .tv_nsec = nsec };
1752 
1753 	return inode_set_ctime_to_ts(inode, ts);
1754 }
1755 
1756 struct timespec64 simple_inode_init_ts(struct inode *inode);
1757 
1758 /*
1759  * Snapshotting support.
1760  */
1761 
1762 /*
1763  * These are internal functions, please use sb_start_{write,pagefault,intwrite}
1764  * instead.
1765  */
1766 static inline void __sb_end_write(struct super_block *sb, int level)
1767 {
1768 	percpu_up_read(sb->s_writers.rw_sem + level-1);
1769 }
1770 
1771 static inline void __sb_start_write(struct super_block *sb, int level)
1772 {
1773 	percpu_down_read(sb->s_writers.rw_sem + level - 1);
1774 }
1775 
1776 static inline bool __sb_start_write_trylock(struct super_block *sb, int level)
1777 {
1778 	return percpu_down_read_trylock(sb->s_writers.rw_sem + level - 1);
1779 }
1780 
1781 #define __sb_writers_acquired(sb, lev)	\
1782 	percpu_rwsem_acquire(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_)
1783 #define __sb_writers_release(sb, lev)	\
1784 	percpu_rwsem_release(&(sb)->s_writers.rw_sem[(lev)-1], _THIS_IP_)
1785 
1786 /**
1787  * __sb_write_started - check if sb freeze level is held
1788  * @sb: the super we write to
1789  * @level: the freeze level
1790  *
1791  * * > 0 - sb freeze level is held
1792  * *   0 - sb freeze level is not held
1793  * * < 0 - !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN
1794  */
1795 static inline int __sb_write_started(const struct super_block *sb, int level)
1796 {
1797 	return lockdep_is_held_type(sb->s_writers.rw_sem + level - 1, 1);
1798 }
1799 
1800 /**
1801  * sb_write_started - check if SB_FREEZE_WRITE is held
1802  * @sb: the super we write to
1803  *
1804  * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1805  */
1806 static inline bool sb_write_started(const struct super_block *sb)
1807 {
1808 	return __sb_write_started(sb, SB_FREEZE_WRITE);
1809 }
1810 
1811 /**
1812  * sb_write_not_started - check if SB_FREEZE_WRITE is not held
1813  * @sb: the super we write to
1814  *
1815  * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1816  */
1817 static inline bool sb_write_not_started(const struct super_block *sb)
1818 {
1819 	return __sb_write_started(sb, SB_FREEZE_WRITE) <= 0;
1820 }
1821 
1822 /**
1823  * file_write_started - check if SB_FREEZE_WRITE is held
1824  * @file: the file we write to
1825  *
1826  * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1827  * May be false positive with !S_ISREG, because file_start_write() has
1828  * no effect on !S_ISREG.
1829  */
1830 static inline bool file_write_started(const struct file *file)
1831 {
1832 	if (!S_ISREG(file_inode(file)->i_mode))
1833 		return true;
1834 	return sb_write_started(file_inode(file)->i_sb);
1835 }
1836 
1837 /**
1838  * file_write_not_started - check if SB_FREEZE_WRITE is not held
1839  * @file: the file we write to
1840  *
1841  * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN.
1842  * May be false positive with !S_ISREG, because file_start_write() has
1843  * no effect on !S_ISREG.
1844  */
1845 static inline bool file_write_not_started(const struct file *file)
1846 {
1847 	if (!S_ISREG(file_inode(file)->i_mode))
1848 		return true;
1849 	return sb_write_not_started(file_inode(file)->i_sb);
1850 }
1851 
1852 /**
1853  * sb_end_write - drop write access to a superblock
1854  * @sb: the super we wrote to
1855  *
1856  * Decrement number of writers to the filesystem. Wake up possible waiters
1857  * wanting to freeze the filesystem.
1858  */
1859 static inline void sb_end_write(struct super_block *sb)
1860 {
1861 	__sb_end_write(sb, SB_FREEZE_WRITE);
1862 }
1863 
1864 /**
1865  * sb_end_pagefault - drop write access to a superblock from a page fault
1866  * @sb: the super we wrote to
1867  *
1868  * Decrement number of processes handling write page fault to the filesystem.
1869  * Wake up possible waiters wanting to freeze the filesystem.
1870  */
1871 static inline void sb_end_pagefault(struct super_block *sb)
1872 {
1873 	__sb_end_write(sb, SB_FREEZE_PAGEFAULT);
1874 }
1875 
1876 /**
1877  * sb_end_intwrite - drop write access to a superblock for internal fs purposes
1878  * @sb: the super we wrote to
1879  *
1880  * Decrement fs-internal number of writers to the filesystem.  Wake up possible
1881  * waiters wanting to freeze the filesystem.
1882  */
1883 static inline void sb_end_intwrite(struct super_block *sb)
1884 {
1885 	__sb_end_write(sb, SB_FREEZE_FS);
1886 }
1887 
1888 /**
1889  * sb_start_write - get write access to a superblock
1890  * @sb: the super we write to
1891  *
1892  * When a process wants to write data or metadata to a file system (i.e. dirty
1893  * a page or an inode), it should embed the operation in a sb_start_write() -
1894  * sb_end_write() pair to get exclusion against file system freezing. This
1895  * function increments number of writers preventing freezing. If the file
1896  * system is already frozen, the function waits until the file system is
1897  * thawed.
1898  *
1899  * Since freeze protection behaves as a lock, users have to preserve
1900  * ordering of freeze protection and other filesystem locks. Generally,
1901  * freeze protection should be the outermost lock. In particular, we have:
1902  *
1903  * sb_start_write
1904  *   -> i_mutex			(write path, truncate, directory ops, ...)
1905  *   -> s_umount		(freeze_super, thaw_super)
1906  */
1907 static inline void sb_start_write(struct super_block *sb)
1908 {
1909 	__sb_start_write(sb, SB_FREEZE_WRITE);
1910 }
1911 
1912 static inline bool sb_start_write_trylock(struct super_block *sb)
1913 {
1914 	return __sb_start_write_trylock(sb, SB_FREEZE_WRITE);
1915 }
1916 
1917 /**
1918  * sb_start_pagefault - get write access to a superblock from a page fault
1919  * @sb: the super we write to
1920  *
1921  * When a process starts handling write page fault, it should embed the
1922  * operation into sb_start_pagefault() - sb_end_pagefault() pair to get
1923  * exclusion against file system freezing. This is needed since the page fault
1924  * is going to dirty a page. This function increments number of running page
1925  * faults preventing freezing. If the file system is already frozen, the
1926  * function waits until the file system is thawed.
1927  *
1928  * Since page fault freeze protection behaves as a lock, users have to preserve
1929  * ordering of freeze protection and other filesystem locks. It is advised to
1930  * put sb_start_pagefault() close to mmap_lock in lock ordering. Page fault
1931  * handling code implies lock dependency:
1932  *
1933  * mmap_lock
1934  *   -> sb_start_pagefault
1935  */
1936 static inline void sb_start_pagefault(struct super_block *sb)
1937 {
1938 	__sb_start_write(sb, SB_FREEZE_PAGEFAULT);
1939 }
1940 
1941 /**
1942  * sb_start_intwrite - get write access to a superblock for internal fs purposes
1943  * @sb: the super we write to
1944  *
1945  * This is the third level of protection against filesystem freezing. It is
1946  * free for use by a filesystem. The only requirement is that it must rank
1947  * below sb_start_pagefault.
1948  *
1949  * For example filesystem can call sb_start_intwrite() when starting a
1950  * transaction which somewhat eases handling of freezing for internal sources
1951  * of filesystem changes (internal fs threads, discarding preallocation on file
1952  * close, etc.).
1953  */
1954 static inline void sb_start_intwrite(struct super_block *sb)
1955 {
1956 	__sb_start_write(sb, SB_FREEZE_FS);
1957 }
1958 
1959 static inline bool sb_start_intwrite_trylock(struct super_block *sb)
1960 {
1961 	return __sb_start_write_trylock(sb, SB_FREEZE_FS);
1962 }
1963 
1964 bool inode_owner_or_capable(struct mnt_idmap *idmap,
1965 			    const struct inode *inode);
1966 
1967 /*
1968  * VFS helper functions..
1969  */
1970 int vfs_create(struct mnt_idmap *, struct inode *,
1971 	       struct dentry *, umode_t, bool);
1972 int vfs_mkdir(struct mnt_idmap *, struct inode *,
1973 	      struct dentry *, umode_t);
1974 int vfs_mknod(struct mnt_idmap *, struct inode *, struct dentry *,
1975               umode_t, dev_t);
1976 int vfs_symlink(struct mnt_idmap *, struct inode *,
1977 		struct dentry *, const char *);
1978 int vfs_link(struct dentry *, struct mnt_idmap *, struct inode *,
1979 	     struct dentry *, struct inode **);
1980 int vfs_rmdir(struct mnt_idmap *, struct inode *, struct dentry *);
1981 int vfs_unlink(struct mnt_idmap *, struct inode *, struct dentry *,
1982 	       struct inode **);
1983 
1984 /**
1985  * struct renamedata - contains all information required for renaming
1986  * @old_mnt_idmap:     idmap of the old mount the inode was found from
1987  * @old_dir:           parent of source
1988  * @old_dentry:                source
1989  * @new_mnt_idmap:     idmap of the new mount the inode was found from
1990  * @new_dir:           parent of destination
1991  * @new_dentry:                destination
1992  * @delegated_inode:   returns an inode needing a delegation break
1993  * @flags:             rename flags
1994  */
1995 struct renamedata {
1996 	struct mnt_idmap *old_mnt_idmap;
1997 	struct inode *old_dir;
1998 	struct dentry *old_dentry;
1999 	struct mnt_idmap *new_mnt_idmap;
2000 	struct inode *new_dir;
2001 	struct dentry *new_dentry;
2002 	struct inode **delegated_inode;
2003 	unsigned int flags;
2004 } __randomize_layout;
2005 
2006 int vfs_rename(struct renamedata *);
2007 
2008 static inline int vfs_whiteout(struct mnt_idmap *idmap,
2009 			       struct inode *dir, struct dentry *dentry)
2010 {
2011 	return vfs_mknod(idmap, dir, dentry, S_IFCHR | WHITEOUT_MODE,
2012 			 WHITEOUT_DEV);
2013 }
2014 
2015 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
2016 				 const struct path *parentpath,
2017 				 umode_t mode, int open_flag,
2018 				 const struct cred *cred);
2019 struct file *kernel_file_open(const struct path *path, int flags,
2020 			      const struct cred *cred);
2021 
2022 int vfs_mkobj(struct dentry *, umode_t,
2023 		int (*f)(struct dentry *, umode_t, void *),
2024 		void *);
2025 
2026 int vfs_fchown(struct file *file, uid_t user, gid_t group);
2027 int vfs_fchmod(struct file *file, umode_t mode);
2028 int vfs_utimes(const struct path *path, struct timespec64 *times);
2029 
2030 extern long vfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2031 
2032 #ifdef CONFIG_COMPAT
2033 extern long compat_ptr_ioctl(struct file *file, unsigned int cmd,
2034 					unsigned long arg);
2035 #else
2036 #define compat_ptr_ioctl NULL
2037 #endif
2038 
2039 /*
2040  * VFS file helper functions.
2041  */
2042 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
2043 		      const struct inode *dir, umode_t mode);
2044 extern bool may_open_dev(const struct path *path);
2045 umode_t mode_strip_sgid(struct mnt_idmap *idmap,
2046 			const struct inode *dir, umode_t mode);
2047 bool in_group_or_capable(struct mnt_idmap *idmap,
2048 			 const struct inode *inode, vfsgid_t vfsgid);
2049 
2050 /*
2051  * This is the "filldir" function type, used by readdir() to let
2052  * the kernel specify what kind of dirent layout it wants to have.
2053  * This allows the kernel to read directories into kernel space or
2054  * to have different dirent layouts depending on the binary type.
2055  * Return 'true' to keep going and 'false' if there are no more entries.
2056  */
2057 struct dir_context;
2058 typedef bool (*filldir_t)(struct dir_context *, const char *, int, loff_t, u64,
2059 			 unsigned);
2060 
2061 struct dir_context {
2062 	filldir_t actor;
2063 	loff_t pos;
2064 };
2065 
2066 /*
2067  * These flags let !MMU mmap() govern direct device mapping vs immediate
2068  * copying more easily for MAP_PRIVATE, especially for ROM filesystems.
2069  *
2070  * NOMMU_MAP_COPY:	Copy can be mapped (MAP_PRIVATE)
2071  * NOMMU_MAP_DIRECT:	Can be mapped directly (MAP_SHARED)
2072  * NOMMU_MAP_READ:	Can be mapped for reading
2073  * NOMMU_MAP_WRITE:	Can be mapped for writing
2074  * NOMMU_MAP_EXEC:	Can be mapped for execution
2075  */
2076 #define NOMMU_MAP_COPY		0x00000001
2077 #define NOMMU_MAP_DIRECT	0x00000008
2078 #define NOMMU_MAP_READ		VM_MAYREAD
2079 #define NOMMU_MAP_WRITE		VM_MAYWRITE
2080 #define NOMMU_MAP_EXEC		VM_MAYEXEC
2081 
2082 #define NOMMU_VMFLAGS \
2083 	(NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC)
2084 
2085 /*
2086  * These flags control the behavior of the remap_file_range function pointer.
2087  * If it is called with len == 0 that means "remap to end of source file".
2088  * See Documentation/filesystems/vfs.rst for more details about this call.
2089  *
2090  * REMAP_FILE_DEDUP: only remap if contents identical (i.e. deduplicate)
2091  * REMAP_FILE_CAN_SHORTEN: caller can handle a shortened request
2092  */
2093 #define REMAP_FILE_DEDUP		(1 << 0)
2094 #define REMAP_FILE_CAN_SHORTEN		(1 << 1)
2095 
2096 /*
2097  * These flags signal that the caller is ok with altering various aspects of
2098  * the behavior of the remap operation.  The changes must be made by the
2099  * implementation; the vfs remap helper functions can take advantage of them.
2100  * Flags in this category exist to preserve the quirky behavior of the hoisted
2101  * btrfs clone/dedupe ioctls.
2102  */
2103 #define REMAP_FILE_ADVISORY		(REMAP_FILE_CAN_SHORTEN)
2104 
2105 /*
2106  * These flags control the behavior of vfs_copy_file_range().
2107  * They are not available to the user via syscall.
2108  *
2109  * COPY_FILE_SPLICE: call splice direct instead of fs clone/copy ops
2110  */
2111 #define COPY_FILE_SPLICE		(1 << 0)
2112 
2113 struct iov_iter;
2114 struct io_uring_cmd;
2115 struct offset_ctx;
2116 
2117 typedef unsigned int __bitwise fop_flags_t;
2118 
2119 struct file_operations {
2120 	struct module *owner;
2121 	fop_flags_t fop_flags;
2122 	loff_t (*llseek) (struct file *, loff_t, int);
2123 	ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
2124 	ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
2125 	ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
2126 	ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
2127 	int (*iopoll)(struct kiocb *kiocb, struct io_comp_batch *,
2128 			unsigned int flags);
2129 	int (*iterate_shared) (struct file *, struct dir_context *);
2130 	__poll_t (*poll) (struct file *, struct poll_table_struct *);
2131 	long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
2132 	long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
2133 	int (*mmap) (struct file *, struct vm_area_struct *);
2134 	int (*open) (struct inode *, struct file *);
2135 	int (*flush) (struct file *, fl_owner_t id);
2136 	int (*release) (struct inode *, struct file *);
2137 	int (*fsync) (struct file *, loff_t, loff_t, int datasync);
2138 	int (*fasync) (int, struct file *, int);
2139 	int (*lock) (struct file *, int, struct file_lock *);
2140 	unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2141 	int (*check_flags)(int);
2142 	int (*flock) (struct file *, int, struct file_lock *);
2143 	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int);
2144 	ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int);
2145 	void (*splice_eof)(struct file *file);
2146 	int (*setlease)(struct file *, int, struct file_lease **, void **);
2147 	long (*fallocate)(struct file *file, int mode, loff_t offset,
2148 			  loff_t len);
2149 	void (*show_fdinfo)(struct seq_file *m, struct file *f);
2150 #ifndef CONFIG_MMU
2151 	unsigned (*mmap_capabilities)(struct file *);
2152 #endif
2153 	ssize_t (*copy_file_range)(struct file *, loff_t, struct file *,
2154 			loff_t, size_t, unsigned int);
2155 	loff_t (*remap_file_range)(struct file *file_in, loff_t pos_in,
2156 				   struct file *file_out, loff_t pos_out,
2157 				   loff_t len, unsigned int remap_flags);
2158 	int (*fadvise)(struct file *, loff_t, loff_t, int);
2159 	int (*uring_cmd)(struct io_uring_cmd *ioucmd, unsigned int issue_flags);
2160 	int (*uring_cmd_iopoll)(struct io_uring_cmd *, struct io_comp_batch *,
2161 				unsigned int poll_flags);
2162 } __randomize_layout;
2163 
2164 /* Supports async buffered reads */
2165 #define FOP_BUFFER_RASYNC	((__force fop_flags_t)(1 << 0))
2166 /* Supports async buffered writes */
2167 #define FOP_BUFFER_WASYNC	((__force fop_flags_t)(1 << 1))
2168 /* Supports synchronous page faults for mappings */
2169 #define FOP_MMAP_SYNC		((__force fop_flags_t)(1 << 2))
2170 /* Supports non-exclusive O_DIRECT writes from multiple threads */
2171 #define FOP_DIO_PARALLEL_WRITE	((__force fop_flags_t)(1 << 3))
2172 /* Contains huge pages */
2173 #define FOP_HUGE_PAGES		((__force fop_flags_t)(1 << 4))
2174 /* Treat loff_t as unsigned (e.g., /dev/mem) */
2175 #define FOP_UNSIGNED_OFFSET	((__force fop_flags_t)(1 << 5))
2176 /* Supports asynchronous lock callbacks */
2177 #define FOP_ASYNC_LOCK		((__force fop_flags_t)(1 << 6))
2178 /* File system supports uncached read/write buffered IO */
2179 #define FOP_DONTCACHE		((__force fop_flags_t)(1 << 7))
2180 
2181 /* Wrap a directory iterator that needs exclusive inode access */
2182 int wrap_directory_iterator(struct file *, struct dir_context *,
2183 			    int (*) (struct file *, struct dir_context *));
2184 #define WRAP_DIR_ITER(x) \
2185 	static int shared_##x(struct file *file , struct dir_context *ctx) \
2186 	{ return wrap_directory_iterator(file, ctx, x); }
2187 
2188 struct inode_operations {
2189 	struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int);
2190 	const char * (*get_link) (struct dentry *, struct inode *, struct delayed_call *);
2191 	int (*permission) (struct mnt_idmap *, struct inode *, int);
2192 	struct posix_acl * (*get_inode_acl)(struct inode *, int, bool);
2193 
2194 	int (*readlink) (struct dentry *, char __user *,int);
2195 
2196 	int (*create) (struct mnt_idmap *, struct inode *,struct dentry *,
2197 		       umode_t, bool);
2198 	int (*link) (struct dentry *,struct inode *,struct dentry *);
2199 	int (*unlink) (struct inode *,struct dentry *);
2200 	int (*symlink) (struct mnt_idmap *, struct inode *,struct dentry *,
2201 			const char *);
2202 	int (*mkdir) (struct mnt_idmap *, struct inode *,struct dentry *,
2203 		      umode_t);
2204 	int (*rmdir) (struct inode *,struct dentry *);
2205 	int (*mknod) (struct mnt_idmap *, struct inode *,struct dentry *,
2206 		      umode_t,dev_t);
2207 	int (*rename) (struct mnt_idmap *, struct inode *, struct dentry *,
2208 			struct inode *, struct dentry *, unsigned int);
2209 	int (*setattr) (struct mnt_idmap *, struct dentry *, struct iattr *);
2210 	int (*getattr) (struct mnt_idmap *, const struct path *,
2211 			struct kstat *, u32, unsigned int);
2212 	ssize_t (*listxattr) (struct dentry *, char *, size_t);
2213 	int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start,
2214 		      u64 len);
2215 	int (*update_time)(struct inode *, int);
2216 	int (*atomic_open)(struct inode *, struct dentry *,
2217 			   struct file *, unsigned open_flag,
2218 			   umode_t create_mode);
2219 	int (*tmpfile) (struct mnt_idmap *, struct inode *,
2220 			struct file *, umode_t);
2221 	struct posix_acl *(*get_acl)(struct mnt_idmap *, struct dentry *,
2222 				     int);
2223 	int (*set_acl)(struct mnt_idmap *, struct dentry *,
2224 		       struct posix_acl *, int);
2225 	int (*fileattr_set)(struct mnt_idmap *idmap,
2226 			    struct dentry *dentry, struct fileattr *fa);
2227 	int (*fileattr_get)(struct dentry *dentry, struct fileattr *fa);
2228 	struct offset_ctx *(*get_offset_ctx)(struct inode *inode);
2229 } ____cacheline_aligned;
2230 
2231 static inline int call_mmap(struct file *file, struct vm_area_struct *vma)
2232 {
2233 	return file->f_op->mmap(file, vma);
2234 }
2235 
2236 extern ssize_t vfs_read(struct file *, char __user *, size_t, loff_t *);
2237 extern ssize_t vfs_write(struct file *, const char __user *, size_t, loff_t *);
2238 extern ssize_t vfs_copy_file_range(struct file *, loff_t , struct file *,
2239 				   loff_t, size_t, unsigned int);
2240 int remap_verify_area(struct file *file, loff_t pos, loff_t len, bool write);
2241 int __generic_remap_file_range_prep(struct file *file_in, loff_t pos_in,
2242 				    struct file *file_out, loff_t pos_out,
2243 				    loff_t *len, unsigned int remap_flags,
2244 				    const struct iomap_ops *dax_read_ops);
2245 int generic_remap_file_range_prep(struct file *file_in, loff_t pos_in,
2246 				  struct file *file_out, loff_t pos_out,
2247 				  loff_t *count, unsigned int remap_flags);
2248 extern loff_t vfs_clone_file_range(struct file *file_in, loff_t pos_in,
2249 				   struct file *file_out, loff_t pos_out,
2250 				   loff_t len, unsigned int remap_flags);
2251 extern int vfs_dedupe_file_range(struct file *file,
2252 				 struct file_dedupe_range *same);
2253 extern loff_t vfs_dedupe_file_range_one(struct file *src_file, loff_t src_pos,
2254 					struct file *dst_file, loff_t dst_pos,
2255 					loff_t len, unsigned int remap_flags);
2256 
2257 /**
2258  * enum freeze_holder - holder of the freeze
2259  * @FREEZE_HOLDER_KERNEL: kernel wants to freeze or thaw filesystem
2260  * @FREEZE_HOLDER_USERSPACE: userspace wants to freeze or thaw filesystem
2261  * @FREEZE_MAY_NEST: whether nesting freeze and thaw requests is allowed
2262  *
2263  * Indicate who the owner of the freeze or thaw request is and whether
2264  * the freeze needs to be exclusive or can nest.
2265  * Without @FREEZE_MAY_NEST, multiple freeze and thaw requests from the
2266  * same holder aren't allowed. It is however allowed to hold a single
2267  * @FREEZE_HOLDER_USERSPACE and a single @FREEZE_HOLDER_KERNEL freeze at
2268  * the same time. This is relied upon by some filesystems during online
2269  * repair or similar.
2270  */
2271 enum freeze_holder {
2272 	FREEZE_HOLDER_KERNEL	= (1U << 0),
2273 	FREEZE_HOLDER_USERSPACE	= (1U << 1),
2274 	FREEZE_MAY_NEST		= (1U << 2),
2275 };
2276 
2277 struct super_operations {
2278    	struct inode *(*alloc_inode)(struct super_block *sb);
2279 	void (*destroy_inode)(struct inode *);
2280 	void (*free_inode)(struct inode *);
2281 
2282    	void (*dirty_inode) (struct inode *, int flags);
2283 	int (*write_inode) (struct inode *, struct writeback_control *wbc);
2284 	int (*drop_inode) (struct inode *);
2285 	void (*evict_inode) (struct inode *);
2286 	void (*put_super) (struct super_block *);
2287 	int (*sync_fs)(struct super_block *sb, int wait);
2288 	int (*freeze_super) (struct super_block *, enum freeze_holder who);
2289 	int (*freeze_fs) (struct super_block *);
2290 	int (*thaw_super) (struct super_block *, enum freeze_holder who);
2291 	int (*unfreeze_fs) (struct super_block *);
2292 	int (*statfs) (struct dentry *, struct kstatfs *);
2293 	int (*remount_fs) (struct super_block *, int *, char *);
2294 	void (*umount_begin) (struct super_block *);
2295 
2296 	int (*show_options)(struct seq_file *, struct dentry *);
2297 	int (*show_devname)(struct seq_file *, struct dentry *);
2298 	int (*show_path)(struct seq_file *, struct dentry *);
2299 	int (*show_stats)(struct seq_file *, struct dentry *);
2300 #ifdef CONFIG_QUOTA
2301 	ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t);
2302 	ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t);
2303 	struct dquot __rcu **(*get_dquots)(struct inode *);
2304 #endif
2305 	long (*nr_cached_objects)(struct super_block *,
2306 				  struct shrink_control *);
2307 	long (*free_cached_objects)(struct super_block *,
2308 				    struct shrink_control *);
2309 	void (*shutdown)(struct super_block *sb);
2310 };
2311 
2312 /*
2313  * Inode flags - they have no relation to superblock flags now
2314  */
2315 #define S_SYNC		(1 << 0)  /* Writes are synced at once */
2316 #define S_NOATIME	(1 << 1)  /* Do not update access times */
2317 #define S_APPEND	(1 << 2)  /* Append-only file */
2318 #define S_IMMUTABLE	(1 << 3)  /* Immutable file */
2319 #define S_DEAD		(1 << 4)  /* removed, but still open directory */
2320 #define S_NOQUOTA	(1 << 5)  /* Inode is not counted to quota */
2321 #define S_DIRSYNC	(1 << 6)  /* Directory modifications are synchronous */
2322 #define S_NOCMTIME	(1 << 7)  /* Do not update file c/mtime */
2323 #define S_SWAPFILE	(1 << 8)  /* Do not truncate: swapon got its bmaps */
2324 #define S_PRIVATE	(1 << 9)  /* Inode is fs-internal */
2325 #define S_IMA		(1 << 10) /* Inode has an associated IMA struct */
2326 #define S_AUTOMOUNT	(1 << 11) /* Automount/referral quasi-directory */
2327 #define S_NOSEC		(1 << 12) /* no suid or xattr security attributes */
2328 #ifdef CONFIG_FS_DAX
2329 #define S_DAX		(1 << 13) /* Direct Access, avoiding the page cache */
2330 #else
2331 #define S_DAX		0	  /* Make all the DAX code disappear */
2332 #endif
2333 #define S_ENCRYPTED	(1 << 14) /* Encrypted file (using fs/crypto/) */
2334 #define S_CASEFOLD	(1 << 15) /* Casefolded file */
2335 #define S_VERITY	(1 << 16) /* Verity file (using fs/verity/) */
2336 #define S_KERNEL_FILE	(1 << 17) /* File is in use by the kernel (eg. fs/cachefiles) */
2337 
2338 /*
2339  * Note that nosuid etc flags are inode-specific: setting some file-system
2340  * flags just means all the inodes inherit those flags by default. It might be
2341  * possible to override it selectively if you really wanted to with some
2342  * ioctl() that is not currently implemented.
2343  *
2344  * Exception: SB_RDONLY is always applied to the entire file system.
2345  *
2346  * Unfortunately, it is possible to change a filesystems flags with it mounted
2347  * with files in use.  This means that all of the inodes will not have their
2348  * i_flags updated.  Hence, i_flags no longer inherit the superblock mount
2349  * flags, so these have to be checked separately. -- rmk@arm.uk.linux.org
2350  */
2351 #define __IS_FLG(inode, flg)	((inode)->i_sb->s_flags & (flg))
2352 
2353 static inline bool sb_rdonly(const struct super_block *sb) { return sb->s_flags & SB_RDONLY; }
2354 #define IS_RDONLY(inode)	sb_rdonly((inode)->i_sb)
2355 #define IS_SYNC(inode)		(__IS_FLG(inode, SB_SYNCHRONOUS) || \
2356 					((inode)->i_flags & S_SYNC))
2357 #define IS_DIRSYNC(inode)	(__IS_FLG(inode, SB_SYNCHRONOUS|SB_DIRSYNC) || \
2358 					((inode)->i_flags & (S_SYNC|S_DIRSYNC)))
2359 #define IS_MANDLOCK(inode)	__IS_FLG(inode, SB_MANDLOCK)
2360 #define IS_NOATIME(inode)	__IS_FLG(inode, SB_RDONLY|SB_NOATIME)
2361 #define IS_I_VERSION(inode)	__IS_FLG(inode, SB_I_VERSION)
2362 
2363 #define IS_NOQUOTA(inode)	((inode)->i_flags & S_NOQUOTA)
2364 #define IS_APPEND(inode)	((inode)->i_flags & S_APPEND)
2365 #define IS_IMMUTABLE(inode)	((inode)->i_flags & S_IMMUTABLE)
2366 
2367 #ifdef CONFIG_FS_POSIX_ACL
2368 #define IS_POSIXACL(inode)	__IS_FLG(inode, SB_POSIXACL)
2369 #else
2370 #define IS_POSIXACL(inode)	0
2371 #endif
2372 
2373 #define IS_DEADDIR(inode)	((inode)->i_flags & S_DEAD)
2374 #define IS_NOCMTIME(inode)	((inode)->i_flags & S_NOCMTIME)
2375 
2376 #ifdef CONFIG_SWAP
2377 #define IS_SWAPFILE(inode)	((inode)->i_flags & S_SWAPFILE)
2378 #else
2379 #define IS_SWAPFILE(inode)	((void)(inode), 0U)
2380 #endif
2381 
2382 #define IS_PRIVATE(inode)	((inode)->i_flags & S_PRIVATE)
2383 #define IS_IMA(inode)		((inode)->i_flags & S_IMA)
2384 #define IS_AUTOMOUNT(inode)	((inode)->i_flags & S_AUTOMOUNT)
2385 #define IS_NOSEC(inode)		((inode)->i_flags & S_NOSEC)
2386 #define IS_DAX(inode)		((inode)->i_flags & S_DAX)
2387 #define IS_ENCRYPTED(inode)	((inode)->i_flags & S_ENCRYPTED)
2388 #define IS_CASEFOLDED(inode)	((inode)->i_flags & S_CASEFOLD)
2389 #define IS_VERITY(inode)	((inode)->i_flags & S_VERITY)
2390 
2391 #define IS_WHITEOUT(inode)	(S_ISCHR(inode->i_mode) && \
2392 				 (inode)->i_rdev == WHITEOUT_DEV)
2393 
2394 static inline bool HAS_UNMAPPED_ID(struct mnt_idmap *idmap,
2395 				   struct inode *inode)
2396 {
2397 	return !vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
2398 	       !vfsgid_valid(i_gid_into_vfsgid(idmap, inode));
2399 }
2400 
2401 static inline void init_sync_kiocb(struct kiocb *kiocb, struct file *filp)
2402 {
2403 	*kiocb = (struct kiocb) {
2404 		.ki_filp = filp,
2405 		.ki_flags = filp->f_iocb_flags,
2406 		.ki_ioprio = get_current_ioprio(),
2407 	};
2408 }
2409 
2410 static inline void kiocb_clone(struct kiocb *kiocb, struct kiocb *kiocb_src,
2411 			       struct file *filp)
2412 {
2413 	*kiocb = (struct kiocb) {
2414 		.ki_filp = filp,
2415 		.ki_flags = kiocb_src->ki_flags,
2416 		.ki_ioprio = kiocb_src->ki_ioprio,
2417 		.ki_pos = kiocb_src->ki_pos,
2418 	};
2419 }
2420 
2421 /*
2422  * Inode state bits.  Protected by inode->i_lock
2423  *
2424  * Four bits determine the dirty state of the inode: I_DIRTY_SYNC,
2425  * I_DIRTY_DATASYNC, I_DIRTY_PAGES, and I_DIRTY_TIME.
2426  *
2427  * Four bits define the lifetime of an inode.  Initially, inodes are I_NEW,
2428  * until that flag is cleared.  I_WILL_FREE, I_FREEING and I_CLEAR are set at
2429  * various stages of removing an inode.
2430  *
2431  * Two bits are used for locking and completion notification, I_NEW and I_SYNC.
2432  *
2433  * I_DIRTY_SYNC		Inode is dirty, but doesn't have to be written on
2434  *			fdatasync() (unless I_DIRTY_DATASYNC is also set).
2435  *			Timestamp updates are the usual cause.
2436  * I_DIRTY_DATASYNC	Data-related inode changes pending.  We keep track of
2437  *			these changes separately from I_DIRTY_SYNC so that we
2438  *			don't have to write inode on fdatasync() when only
2439  *			e.g. the timestamps have changed.
2440  * I_DIRTY_PAGES	Inode has dirty pages.  Inode itself may be clean.
2441  * I_DIRTY_TIME		The inode itself has dirty timestamps, and the
2442  *			lazytime mount option is enabled.  We keep track of this
2443  *			separately from I_DIRTY_SYNC in order to implement
2444  *			lazytime.  This gets cleared if I_DIRTY_INODE
2445  *			(I_DIRTY_SYNC and/or I_DIRTY_DATASYNC) gets set. But
2446  *			I_DIRTY_TIME can still be set if I_DIRTY_SYNC is already
2447  *			in place because writeback might already be in progress
2448  *			and we don't want to lose the time update
2449  * I_NEW		Serves as both a mutex and completion notification.
2450  *			New inodes set I_NEW.  If two processes both create
2451  *			the same inode, one of them will release its inode and
2452  *			wait for I_NEW to be released before returning.
2453  *			Inodes in I_WILL_FREE, I_FREEING or I_CLEAR state can
2454  *			also cause waiting on I_NEW, without I_NEW actually
2455  *			being set.  find_inode() uses this to prevent returning
2456  *			nearly-dead inodes.
2457  * I_WILL_FREE		Must be set when calling write_inode_now() if i_count
2458  *			is zero.  I_FREEING must be set when I_WILL_FREE is
2459  *			cleared.
2460  * I_FREEING		Set when inode is about to be freed but still has dirty
2461  *			pages or buffers attached or the inode itself is still
2462  *			dirty.
2463  * I_CLEAR		Added by clear_inode().  In this state the inode is
2464  *			clean and can be destroyed.  Inode keeps I_FREEING.
2465  *
2466  *			Inodes that are I_WILL_FREE, I_FREEING or I_CLEAR are
2467  *			prohibited for many purposes.  iget() must wait for
2468  *			the inode to be completely released, then create it
2469  *			anew.  Other functions will just ignore such inodes,
2470  *			if appropriate.  I_NEW is used for waiting.
2471  *
2472  * I_SYNC		Writeback of inode is running. The bit is set during
2473  *			data writeback, and cleared with a wakeup on the bit
2474  *			address once it is done. The bit is also used to pin
2475  *			the inode in memory for flusher thread.
2476  *
2477  * I_REFERENCED		Marks the inode as recently references on the LRU list.
2478  *
2479  * I_WB_SWITCH		Cgroup bdi_writeback switching in progress.  Used to
2480  *			synchronize competing switching instances and to tell
2481  *			wb stat updates to grab the i_pages lock.  See
2482  *			inode_switch_wbs_work_fn() for details.
2483  *
2484  * I_OVL_INUSE		Used by overlayfs to get exclusive ownership on upper
2485  *			and work dirs among overlayfs mounts.
2486  *
2487  * I_CREATING		New object's inode in the middle of setting up.
2488  *
2489  * I_DONTCACHE		Evict inode as soon as it is not used anymore.
2490  *
2491  * I_SYNC_QUEUED	Inode is queued in b_io or b_more_io writeback lists.
2492  *			Used to detect that mark_inode_dirty() should not move
2493  * 			inode between dirty lists.
2494  *
2495  * I_PINNING_FSCACHE_WB	Inode is pinning an fscache object for writeback.
2496  *
2497  * I_LRU_ISOLATING	Inode is pinned being isolated from LRU without holding
2498  *			i_count.
2499  *
2500  * Q: What is the difference between I_WILL_FREE and I_FREEING?
2501  *
2502  * __I_{SYNC,NEW,LRU_ISOLATING} are used to derive unique addresses to wait
2503  * upon. There's one free address left.
2504  */
2505 #define __I_NEW			0
2506 #define I_NEW			(1 << __I_NEW)
2507 #define __I_SYNC		1
2508 #define I_SYNC			(1 << __I_SYNC)
2509 #define __I_LRU_ISOLATING	2
2510 #define I_LRU_ISOLATING		(1 << __I_LRU_ISOLATING)
2511 
2512 #define I_DIRTY_SYNC		(1 << 3)
2513 #define I_DIRTY_DATASYNC	(1 << 4)
2514 #define I_DIRTY_PAGES		(1 << 5)
2515 #define I_WILL_FREE		(1 << 6)
2516 #define I_FREEING		(1 << 7)
2517 #define I_CLEAR			(1 << 8)
2518 #define I_REFERENCED		(1 << 9)
2519 #define I_LINKABLE		(1 << 10)
2520 #define I_DIRTY_TIME		(1 << 11)
2521 #define I_WB_SWITCH		(1 << 12)
2522 #define I_OVL_INUSE		(1 << 13)
2523 #define I_CREATING		(1 << 14)
2524 #define I_DONTCACHE		(1 << 15)
2525 #define I_SYNC_QUEUED		(1 << 16)
2526 #define I_PINNING_NETFS_WB	(1 << 17)
2527 
2528 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2529 #define I_DIRTY (I_DIRTY_INODE | I_DIRTY_PAGES)
2530 #define I_DIRTY_ALL (I_DIRTY | I_DIRTY_TIME)
2531 
2532 extern void __mark_inode_dirty(struct inode *, int);
2533 static inline void mark_inode_dirty(struct inode *inode)
2534 {
2535 	__mark_inode_dirty(inode, I_DIRTY);
2536 }
2537 
2538 static inline void mark_inode_dirty_sync(struct inode *inode)
2539 {
2540 	__mark_inode_dirty(inode, I_DIRTY_SYNC);
2541 }
2542 
2543 /*
2544  * Returns true if the given inode itself only has dirty timestamps (its pages
2545  * may still be dirty) and isn't currently being allocated or freed.
2546  * Filesystems should call this if when writing an inode when lazytime is
2547  * enabled, they want to opportunistically write the timestamps of other inodes
2548  * located very nearby on-disk, e.g. in the same inode block.  This returns true
2549  * if the given inode is in need of such an opportunistic update.  Requires
2550  * i_lock, or at least later re-checking under i_lock.
2551  */
2552 static inline bool inode_is_dirtytime_only(struct inode *inode)
2553 {
2554 	return (inode->i_state & (I_DIRTY_TIME | I_NEW |
2555 				  I_FREEING | I_WILL_FREE)) == I_DIRTY_TIME;
2556 }
2557 
2558 extern void inc_nlink(struct inode *inode);
2559 extern void drop_nlink(struct inode *inode);
2560 extern void clear_nlink(struct inode *inode);
2561 extern void set_nlink(struct inode *inode, unsigned int nlink);
2562 
2563 static inline void inode_inc_link_count(struct inode *inode)
2564 {
2565 	inc_nlink(inode);
2566 	mark_inode_dirty(inode);
2567 }
2568 
2569 static inline void inode_dec_link_count(struct inode *inode)
2570 {
2571 	drop_nlink(inode);
2572 	mark_inode_dirty(inode);
2573 }
2574 
2575 enum file_time_flags {
2576 	S_ATIME = 1,
2577 	S_MTIME = 2,
2578 	S_CTIME = 4,
2579 	S_VERSION = 8,
2580 };
2581 
2582 extern bool atime_needs_update(const struct path *, struct inode *);
2583 extern void touch_atime(const struct path *);
2584 int inode_update_time(struct inode *inode, int flags);
2585 
2586 static inline void file_accessed(struct file *file)
2587 {
2588 	if (!(file->f_flags & O_NOATIME))
2589 		touch_atime(&file->f_path);
2590 }
2591 
2592 extern int file_modified(struct file *file);
2593 int kiocb_modified(struct kiocb *iocb);
2594 
2595 int sync_inode_metadata(struct inode *inode, int wait);
2596 
2597 struct file_system_type {
2598 	const char *name;
2599 	int fs_flags;
2600 #define FS_REQUIRES_DEV		1
2601 #define FS_BINARY_MOUNTDATA	2
2602 #define FS_HAS_SUBTYPE		4
2603 #define FS_USERNS_MOUNT		8	/* Can be mounted by userns root */
2604 #define FS_DISALLOW_NOTIFY_PERM	16	/* Disable fanotify permission events */
2605 #define FS_ALLOW_IDMAP         32      /* FS has been updated to handle vfs idmappings. */
2606 #define FS_MGTIME		64	/* FS uses multigrain timestamps */
2607 #define FS_RENAME_DOES_D_MOVE	32768	/* FS will handle d_move() during rename() internally. */
2608 	int (*init_fs_context)(struct fs_context *);
2609 	const struct fs_parameter_spec *parameters;
2610 	struct dentry *(*mount) (struct file_system_type *, int,
2611 		       const char *, void *);
2612 	void (*kill_sb) (struct super_block *);
2613 	struct module *owner;
2614 	struct file_system_type * next;
2615 	struct hlist_head fs_supers;
2616 
2617 	struct lock_class_key s_lock_key;
2618 	struct lock_class_key s_umount_key;
2619 	struct lock_class_key s_vfs_rename_key;
2620 	struct lock_class_key s_writers_key[SB_FREEZE_LEVELS];
2621 
2622 	struct lock_class_key i_lock_key;
2623 	struct lock_class_key i_mutex_key;
2624 	struct lock_class_key invalidate_lock_key;
2625 	struct lock_class_key i_mutex_dir_key;
2626 };
2627 
2628 #define MODULE_ALIAS_FS(NAME) MODULE_ALIAS("fs-" NAME)
2629 
2630 /**
2631  * is_mgtime: is this inode using multigrain timestamps
2632  * @inode: inode to test for multigrain timestamps
2633  *
2634  * Return true if the inode uses multigrain timestamps, false otherwise.
2635  */
2636 static inline bool is_mgtime(const struct inode *inode)
2637 {
2638 	return inode->i_opflags & IOP_MGTIME;
2639 }
2640 
2641 extern struct dentry *mount_bdev(struct file_system_type *fs_type,
2642 	int flags, const char *dev_name, void *data,
2643 	int (*fill_super)(struct super_block *, void *, int));
2644 extern struct dentry *mount_single(struct file_system_type *fs_type,
2645 	int flags, void *data,
2646 	int (*fill_super)(struct super_block *, void *, int));
2647 extern struct dentry *mount_nodev(struct file_system_type *fs_type,
2648 	int flags, void *data,
2649 	int (*fill_super)(struct super_block *, void *, int));
2650 extern struct dentry *mount_subtree(struct vfsmount *mnt, const char *path);
2651 void retire_super(struct super_block *sb);
2652 void generic_shutdown_super(struct super_block *sb);
2653 void kill_block_super(struct super_block *sb);
2654 void kill_anon_super(struct super_block *sb);
2655 void kill_litter_super(struct super_block *sb);
2656 void deactivate_super(struct super_block *sb);
2657 void deactivate_locked_super(struct super_block *sb);
2658 int set_anon_super(struct super_block *s, void *data);
2659 int set_anon_super_fc(struct super_block *s, struct fs_context *fc);
2660 int get_anon_bdev(dev_t *);
2661 void free_anon_bdev(dev_t);
2662 struct super_block *sget_fc(struct fs_context *fc,
2663 			    int (*test)(struct super_block *, struct fs_context *),
2664 			    int (*set)(struct super_block *, struct fs_context *));
2665 struct super_block *sget(struct file_system_type *type,
2666 			int (*test)(struct super_block *,void *),
2667 			int (*set)(struct super_block *,void *),
2668 			int flags, void *data);
2669 struct super_block *sget_dev(struct fs_context *fc, dev_t dev);
2670 
2671 /* Alas, no aliases. Too much hassle with bringing module.h everywhere */
2672 #define fops_get(fops) ({						\
2673 	const struct file_operations *_fops = (fops);			\
2674 	(((_fops) && try_module_get((_fops)->owner) ? (_fops) : NULL));	\
2675 })
2676 
2677 #define fops_put(fops) ({						\
2678 	const struct file_operations *_fops = (fops);			\
2679 	if (_fops)							\
2680 		module_put((_fops)->owner);				\
2681 })
2682 
2683 /*
2684  * This one is to be used *ONLY* from ->open() instances.
2685  * fops must be non-NULL, pinned down *and* module dependencies
2686  * should be sufficient to pin the caller down as well.
2687  */
2688 #define replace_fops(f, fops) \
2689 	do {	\
2690 		struct file *__file = (f); \
2691 		fops_put(__file->f_op); \
2692 		BUG_ON(!(__file->f_op = (fops))); \
2693 	} while(0)
2694 
2695 extern int register_filesystem(struct file_system_type *);
2696 extern int unregister_filesystem(struct file_system_type *);
2697 extern int vfs_statfs(const struct path *, struct kstatfs *);
2698 extern int user_statfs(const char __user *, struct kstatfs *);
2699 extern int fd_statfs(int, struct kstatfs *);
2700 int freeze_super(struct super_block *super, enum freeze_holder who);
2701 int thaw_super(struct super_block *super, enum freeze_holder who);
2702 extern __printf(2, 3)
2703 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...);
2704 extern int super_setup_bdi(struct super_block *sb);
2705 
2706 static inline void super_set_uuid(struct super_block *sb, const u8 *uuid, unsigned len)
2707 {
2708 	if (WARN_ON(len > sizeof(sb->s_uuid)))
2709 		len = sizeof(sb->s_uuid);
2710 	sb->s_uuid_len = len;
2711 	memcpy(&sb->s_uuid, uuid, len);
2712 }
2713 
2714 /* set sb sysfs name based on sb->s_bdev */
2715 static inline void super_set_sysfs_name_bdev(struct super_block *sb)
2716 {
2717 	snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pg", sb->s_bdev);
2718 }
2719 
2720 /* set sb sysfs name based on sb->s_uuid */
2721 static inline void super_set_sysfs_name_uuid(struct super_block *sb)
2722 {
2723 	WARN_ON(sb->s_uuid_len != sizeof(sb->s_uuid));
2724 	snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pU", sb->s_uuid.b);
2725 }
2726 
2727 /* set sb sysfs name based on sb->s_id */
2728 static inline void super_set_sysfs_name_id(struct super_block *sb)
2729 {
2730 	strscpy(sb->s_sysfs_name, sb->s_id, sizeof(sb->s_sysfs_name));
2731 }
2732 
2733 /* try to use something standard before you use this */
2734 __printf(2, 3)
2735 static inline void super_set_sysfs_name_generic(struct super_block *sb, const char *fmt, ...)
2736 {
2737 	va_list args;
2738 
2739 	va_start(args, fmt);
2740 	vsnprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), fmt, args);
2741 	va_end(args);
2742 }
2743 
2744 extern int current_umask(void);
2745 
2746 extern void ihold(struct inode * inode);
2747 extern void iput(struct inode *);
2748 int inode_update_timestamps(struct inode *inode, int flags);
2749 int generic_update_time(struct inode *, int);
2750 
2751 /* /sys/fs */
2752 extern struct kobject *fs_kobj;
2753 
2754 #define MAX_RW_COUNT (INT_MAX & PAGE_MASK)
2755 
2756 /* fs/open.c */
2757 struct audit_names;
2758 struct filename {
2759 	const char		*name;	/* pointer to actual string */
2760 	const __user char	*uptr;	/* original userland pointer */
2761 	atomic_t		refcnt;
2762 	struct audit_names	*aname;
2763 	const char		iname[];
2764 };
2765 static_assert(offsetof(struct filename, iname) % sizeof(long) == 0);
2766 
2767 static inline struct mnt_idmap *file_mnt_idmap(const struct file *file)
2768 {
2769 	return mnt_idmap(file->f_path.mnt);
2770 }
2771 
2772 /**
2773  * is_idmapped_mnt - check whether a mount is mapped
2774  * @mnt: the mount to check
2775  *
2776  * If @mnt has an non @nop_mnt_idmap attached to it then @mnt is mapped.
2777  *
2778  * Return: true if mount is mapped, false if not.
2779  */
2780 static inline bool is_idmapped_mnt(const struct vfsmount *mnt)
2781 {
2782 	return mnt_idmap(mnt) != &nop_mnt_idmap;
2783 }
2784 
2785 extern long vfs_truncate(const struct path *, loff_t);
2786 int do_truncate(struct mnt_idmap *, struct dentry *, loff_t start,
2787 		unsigned int time_attrs, struct file *filp);
2788 extern int vfs_fallocate(struct file *file, int mode, loff_t offset,
2789 			loff_t len);
2790 extern long do_sys_open(int dfd, const char __user *filename, int flags,
2791 			umode_t mode);
2792 extern struct file *file_open_name(struct filename *, int, umode_t);
2793 extern struct file *filp_open(const char *, int, umode_t);
2794 extern struct file *file_open_root(const struct path *,
2795 				   const char *, int, umode_t);
2796 static inline struct file *file_open_root_mnt(struct vfsmount *mnt,
2797 				   const char *name, int flags, umode_t mode)
2798 {
2799 	return file_open_root(&(struct path){.mnt = mnt, .dentry = mnt->mnt_root},
2800 			      name, flags, mode);
2801 }
2802 struct file *dentry_open(const struct path *path, int flags,
2803 			 const struct cred *creds);
2804 struct file *dentry_open_nonotify(const struct path *path, int flags,
2805 				  const struct cred *cred);
2806 struct file *dentry_create(const struct path *path, int flags, umode_t mode,
2807 			   const struct cred *cred);
2808 struct path *backing_file_user_path(struct file *f);
2809 
2810 /*
2811  * When mmapping a file on a stackable filesystem (e.g., overlayfs), the file
2812  * stored in ->vm_file is a backing file whose f_inode is on the underlying
2813  * filesystem.  When the mapped file path and inode number are displayed to
2814  * user (e.g. via /proc/<pid>/maps), these helpers should be used to get the
2815  * path and inode number to display to the user, which is the path of the fd
2816  * that user has requested to map and the inode number that would be returned
2817  * by fstat() on that same fd.
2818  */
2819 /* Get the path to display in /proc/<pid>/maps */
2820 static inline const struct path *file_user_path(struct file *f)
2821 {
2822 	if (unlikely(f->f_mode & FMODE_BACKING))
2823 		return backing_file_user_path(f);
2824 	return &f->f_path;
2825 }
2826 /* Get the inode whose inode number to display in /proc/<pid>/maps */
2827 static inline const struct inode *file_user_inode(struct file *f)
2828 {
2829 	if (unlikely(f->f_mode & FMODE_BACKING))
2830 		return d_inode(backing_file_user_path(f)->dentry);
2831 	return file_inode(f);
2832 }
2833 
2834 static inline struct file *file_clone_open(struct file *file)
2835 {
2836 	return dentry_open(&file->f_path, file->f_flags, file->f_cred);
2837 }
2838 extern int filp_close(struct file *, fl_owner_t id);
2839 
2840 extern struct filename *getname_flags(const char __user *, int);
2841 extern struct filename *getname_uflags(const char __user *, int);
2842 extern struct filename *getname(const char __user *);
2843 extern struct filename *getname_kernel(const char *);
2844 extern struct filename *__getname_maybe_null(const char __user *);
2845 static inline struct filename *getname_maybe_null(const char __user *name, int flags)
2846 {
2847 	if (!(flags & AT_EMPTY_PATH))
2848 		return getname(name);
2849 
2850 	if (!name)
2851 		return NULL;
2852 	return __getname_maybe_null(name);
2853 }
2854 extern void putname(struct filename *name);
2855 
2856 extern int finish_open(struct file *file, struct dentry *dentry,
2857 			int (*open)(struct inode *, struct file *));
2858 extern int finish_no_open(struct file *file, struct dentry *dentry);
2859 
2860 /* Helper for the simple case when original dentry is used */
2861 static inline int finish_open_simple(struct file *file, int error)
2862 {
2863 	if (error)
2864 		return error;
2865 
2866 	return finish_open(file, file->f_path.dentry, NULL);
2867 }
2868 
2869 /* fs/dcache.c */
2870 extern void __init vfs_caches_init_early(void);
2871 extern void __init vfs_caches_init(void);
2872 
2873 extern struct kmem_cache *names_cachep;
2874 
2875 #define __getname()		kmem_cache_alloc(names_cachep, GFP_KERNEL)
2876 #define __putname(name)		kmem_cache_free(names_cachep, (void *)(name))
2877 
2878 extern struct super_block *blockdev_superblock;
2879 static inline bool sb_is_blkdev_sb(struct super_block *sb)
2880 {
2881 	return IS_ENABLED(CONFIG_BLOCK) && sb == blockdev_superblock;
2882 }
2883 
2884 void emergency_thaw_all(void);
2885 extern int sync_filesystem(struct super_block *);
2886 extern const struct file_operations def_blk_fops;
2887 extern const struct file_operations def_chr_fops;
2888 
2889 /* fs/char_dev.c */
2890 #define CHRDEV_MAJOR_MAX 512
2891 /* Marks the bottom of the first segment of free char majors */
2892 #define CHRDEV_MAJOR_DYN_END 234
2893 /* Marks the top and bottom of the second segment of free char majors */
2894 #define CHRDEV_MAJOR_DYN_EXT_START 511
2895 #define CHRDEV_MAJOR_DYN_EXT_END 384
2896 
2897 extern int alloc_chrdev_region(dev_t *, unsigned, unsigned, const char *);
2898 extern int register_chrdev_region(dev_t, unsigned, const char *);
2899 extern int __register_chrdev(unsigned int major, unsigned int baseminor,
2900 			     unsigned int count, const char *name,
2901 			     const struct file_operations *fops);
2902 extern void __unregister_chrdev(unsigned int major, unsigned int baseminor,
2903 				unsigned int count, const char *name);
2904 extern void unregister_chrdev_region(dev_t, unsigned);
2905 extern void chrdev_show(struct seq_file *,off_t);
2906 
2907 static inline int register_chrdev(unsigned int major, const char *name,
2908 				  const struct file_operations *fops)
2909 {
2910 	return __register_chrdev(major, 0, 256, name, fops);
2911 }
2912 
2913 static inline void unregister_chrdev(unsigned int major, const char *name)
2914 {
2915 	__unregister_chrdev(major, 0, 256, name);
2916 }
2917 
2918 extern void init_special_inode(struct inode *, umode_t, dev_t);
2919 
2920 /* Invalid inode operations -- fs/bad_inode.c */
2921 extern void make_bad_inode(struct inode *);
2922 extern bool is_bad_inode(struct inode *);
2923 
2924 extern int __must_check file_fdatawait_range(struct file *file, loff_t lstart,
2925 						loff_t lend);
2926 extern int __must_check file_check_and_advance_wb_err(struct file *file);
2927 extern int __must_check file_write_and_wait_range(struct file *file,
2928 						loff_t start, loff_t end);
2929 int filemap_fdatawrite_range_kick(struct address_space *mapping, loff_t start,
2930 		loff_t end);
2931 
2932 static inline int file_write_and_wait(struct file *file)
2933 {
2934 	return file_write_and_wait_range(file, 0, LLONG_MAX);
2935 }
2936 
2937 extern int vfs_fsync_range(struct file *file, loff_t start, loff_t end,
2938 			   int datasync);
2939 extern int vfs_fsync(struct file *file, int datasync);
2940 
2941 extern int sync_file_range(struct file *file, loff_t offset, loff_t nbytes,
2942 				unsigned int flags);
2943 
2944 static inline bool iocb_is_dsync(const struct kiocb *iocb)
2945 {
2946 	return (iocb->ki_flags & IOCB_DSYNC) ||
2947 		IS_SYNC(iocb->ki_filp->f_mapping->host);
2948 }
2949 
2950 /*
2951  * Sync the bytes written if this was a synchronous write.  Expect ki_pos
2952  * to already be updated for the write, and will return either the amount
2953  * of bytes passed in, or an error if syncing the file failed.
2954  */
2955 static inline ssize_t generic_write_sync(struct kiocb *iocb, ssize_t count)
2956 {
2957 	if (iocb_is_dsync(iocb)) {
2958 		int ret = vfs_fsync_range(iocb->ki_filp,
2959 				iocb->ki_pos - count, iocb->ki_pos - 1,
2960 				(iocb->ki_flags & IOCB_SYNC) ? 0 : 1);
2961 		if (ret)
2962 			return ret;
2963 	} else if (iocb->ki_flags & IOCB_DONTCACHE) {
2964 		struct address_space *mapping = iocb->ki_filp->f_mapping;
2965 
2966 		filemap_fdatawrite_range_kick(mapping, iocb->ki_pos,
2967 					      iocb->ki_pos + count);
2968 	}
2969 
2970 	return count;
2971 }
2972 
2973 extern void emergency_sync(void);
2974 extern void emergency_remount(void);
2975 
2976 #ifdef CONFIG_BLOCK
2977 extern int bmap(struct inode *inode, sector_t *block);
2978 #else
2979 static inline int bmap(struct inode *inode,  sector_t *block)
2980 {
2981 	return -EINVAL;
2982 }
2983 #endif
2984 
2985 int notify_change(struct mnt_idmap *, struct dentry *,
2986 		  struct iattr *, struct inode **);
2987 int inode_permission(struct mnt_idmap *, struct inode *, int);
2988 int generic_permission(struct mnt_idmap *, struct inode *, int);
2989 static inline int file_permission(struct file *file, int mask)
2990 {
2991 	return inode_permission(file_mnt_idmap(file),
2992 				file_inode(file), mask);
2993 }
2994 static inline int path_permission(const struct path *path, int mask)
2995 {
2996 	return inode_permission(mnt_idmap(path->mnt),
2997 				d_inode(path->dentry), mask);
2998 }
2999 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
3000 		   struct inode *inode);
3001 
3002 static inline bool execute_ok(struct inode *inode)
3003 {
3004 	return (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode);
3005 }
3006 
3007 static inline bool inode_wrong_type(const struct inode *inode, umode_t mode)
3008 {
3009 	return (inode->i_mode ^ mode) & S_IFMT;
3010 }
3011 
3012 /**
3013  * file_start_write - get write access to a superblock for regular file io
3014  * @file: the file we want to write to
3015  *
3016  * This is a variant of sb_start_write() which is a noop on non-regualr file.
3017  * Should be matched with a call to file_end_write().
3018  */
3019 static inline void file_start_write(struct file *file)
3020 {
3021 	if (!S_ISREG(file_inode(file)->i_mode))
3022 		return;
3023 	sb_start_write(file_inode(file)->i_sb);
3024 }
3025 
3026 static inline bool file_start_write_trylock(struct file *file)
3027 {
3028 	if (!S_ISREG(file_inode(file)->i_mode))
3029 		return true;
3030 	return sb_start_write_trylock(file_inode(file)->i_sb);
3031 }
3032 
3033 /**
3034  * file_end_write - drop write access to a superblock of a regular file
3035  * @file: the file we wrote to
3036  *
3037  * Should be matched with a call to file_start_write().
3038  */
3039 static inline void file_end_write(struct file *file)
3040 {
3041 	if (!S_ISREG(file_inode(file)->i_mode))
3042 		return;
3043 	sb_end_write(file_inode(file)->i_sb);
3044 }
3045 
3046 /**
3047  * kiocb_start_write - get write access to a superblock for async file io
3048  * @iocb: the io context we want to submit the write with
3049  *
3050  * This is a variant of sb_start_write() for async io submission.
3051  * Should be matched with a call to kiocb_end_write().
3052  */
3053 static inline void kiocb_start_write(struct kiocb *iocb)
3054 {
3055 	struct inode *inode = file_inode(iocb->ki_filp);
3056 
3057 	sb_start_write(inode->i_sb);
3058 	/*
3059 	 * Fool lockdep by telling it the lock got released so that it
3060 	 * doesn't complain about the held lock when we return to userspace.
3061 	 */
3062 	__sb_writers_release(inode->i_sb, SB_FREEZE_WRITE);
3063 }
3064 
3065 /**
3066  * kiocb_end_write - drop write access to a superblock after async file io
3067  * @iocb: the io context we sumbitted the write with
3068  *
3069  * Should be matched with a call to kiocb_start_write().
3070  */
3071 static inline void kiocb_end_write(struct kiocb *iocb)
3072 {
3073 	struct inode *inode = file_inode(iocb->ki_filp);
3074 
3075 	/*
3076 	 * Tell lockdep we inherited freeze protection from submission thread.
3077 	 */
3078 	__sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
3079 	sb_end_write(inode->i_sb);
3080 }
3081 
3082 /*
3083  * This is used for regular files where some users -- especially the
3084  * currently executed binary in a process, previously handled via
3085  * VM_DENYWRITE -- cannot handle concurrent write (and maybe mmap
3086  * read-write shared) accesses.
3087  *
3088  * get_write_access() gets write permission for a file.
3089  * put_write_access() releases this write permission.
3090  * deny_write_access() denies write access to a file.
3091  * allow_write_access() re-enables write access to a file.
3092  *
3093  * The i_writecount field of an inode can have the following values:
3094  * 0: no write access, no denied write access
3095  * < 0: (-i_writecount) users that denied write access to the file.
3096  * > 0: (i_writecount) users that have write access to the file.
3097  *
3098  * Normally we operate on that counter with atomic_{inc,dec} and it's safe
3099  * except for the cases where we don't hold i_writecount yet. Then we need to
3100  * use {get,deny}_write_access() - these functions check the sign and refuse
3101  * to do the change if sign is wrong.
3102  */
3103 static inline int get_write_access(struct inode *inode)
3104 {
3105 	return atomic_inc_unless_negative(&inode->i_writecount) ? 0 : -ETXTBSY;
3106 }
3107 static inline int deny_write_access(struct file *file)
3108 {
3109 	struct inode *inode = file_inode(file);
3110 	return atomic_dec_unless_positive(&inode->i_writecount) ? 0 : -ETXTBSY;
3111 }
3112 static inline void put_write_access(struct inode * inode)
3113 {
3114 	atomic_dec(&inode->i_writecount);
3115 }
3116 static inline void allow_write_access(struct file *file)
3117 {
3118 	if (file)
3119 		atomic_inc(&file_inode(file)->i_writecount);
3120 }
3121 
3122 /*
3123  * Do not prevent write to executable file when watched by pre-content events.
3124  *
3125  * Note that FMODE_FSNOTIFY_HSM mode is set depending on pre-content watches at
3126  * the time of file open and remains constant for entire lifetime of the file,
3127  * so if pre-content watches are added post execution or removed before the end
3128  * of the execution, it will not cause i_writecount reference leak.
3129  */
3130 static inline int exe_file_deny_write_access(struct file *exe_file)
3131 {
3132 	if (unlikely(FMODE_FSNOTIFY_HSM(exe_file->f_mode)))
3133 		return 0;
3134 	return deny_write_access(exe_file);
3135 }
3136 static inline void exe_file_allow_write_access(struct file *exe_file)
3137 {
3138 	if (unlikely(!exe_file || FMODE_FSNOTIFY_HSM(exe_file->f_mode)))
3139 		return;
3140 	allow_write_access(exe_file);
3141 }
3142 
3143 static inline bool inode_is_open_for_write(const struct inode *inode)
3144 {
3145 	return atomic_read(&inode->i_writecount) > 0;
3146 }
3147 
3148 #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING)
3149 static inline void i_readcount_dec(struct inode *inode)
3150 {
3151 	BUG_ON(atomic_dec_return(&inode->i_readcount) < 0);
3152 }
3153 static inline void i_readcount_inc(struct inode *inode)
3154 {
3155 	atomic_inc(&inode->i_readcount);
3156 }
3157 #else
3158 static inline void i_readcount_dec(struct inode *inode)
3159 {
3160 	return;
3161 }
3162 static inline void i_readcount_inc(struct inode *inode)
3163 {
3164 	return;
3165 }
3166 #endif
3167 extern int do_pipe_flags(int *, int);
3168 
3169 extern ssize_t kernel_read(struct file *, void *, size_t, loff_t *);
3170 ssize_t __kernel_read(struct file *file, void *buf, size_t count, loff_t *pos);
3171 extern ssize_t kernel_write(struct file *, const void *, size_t, loff_t *);
3172 extern ssize_t __kernel_write(struct file *, const void *, size_t, loff_t *);
3173 extern struct file * open_exec(const char *);
3174 
3175 /* fs/dcache.c -- generic fs support functions */
3176 extern bool is_subdir(struct dentry *, struct dentry *);
3177 extern bool path_is_under(const struct path *, const struct path *);
3178 
3179 extern char *file_path(struct file *, char *, int);
3180 
3181 /**
3182  * is_dot_dotdot - returns true only if @name is "." or ".."
3183  * @name: file name to check
3184  * @len: length of file name, in bytes
3185  */
3186 static inline bool is_dot_dotdot(const char *name, size_t len)
3187 {
3188 	return len && unlikely(name[0] == '.') &&
3189 		(len == 1 || (len == 2 && name[1] == '.'));
3190 }
3191 
3192 #include <linux/err.h>
3193 
3194 /* needed for stackable file system support */
3195 extern loff_t default_llseek(struct file *file, loff_t offset, int whence);
3196 
3197 extern loff_t vfs_llseek(struct file *file, loff_t offset, int whence);
3198 
3199 extern int inode_init_always_gfp(struct super_block *, struct inode *, gfp_t);
3200 static inline int inode_init_always(struct super_block *sb, struct inode *inode)
3201 {
3202 	return inode_init_always_gfp(sb, inode, GFP_NOFS);
3203 }
3204 
3205 extern void inode_init_once(struct inode *);
3206 extern void address_space_init_once(struct address_space *mapping);
3207 extern struct inode * igrab(struct inode *);
3208 extern ino_t iunique(struct super_block *, ino_t);
3209 extern int inode_needs_sync(struct inode *inode);
3210 extern int generic_delete_inode(struct inode *inode);
3211 static inline int generic_drop_inode(struct inode *inode)
3212 {
3213 	return !inode->i_nlink || inode_unhashed(inode);
3214 }
3215 extern void d_mark_dontcache(struct inode *inode);
3216 
3217 extern struct inode *ilookup5_nowait(struct super_block *sb,
3218 		unsigned long hashval, int (*test)(struct inode *, void *),
3219 		void *data);
3220 extern struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
3221 		int (*test)(struct inode *, void *), void *data);
3222 extern struct inode *ilookup(struct super_block *sb, unsigned long ino);
3223 
3224 extern struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
3225 		int (*test)(struct inode *, void *),
3226 		int (*set)(struct inode *, void *),
3227 		void *data);
3228 struct inode *iget5_locked(struct super_block *, unsigned long,
3229 			   int (*test)(struct inode *, void *),
3230 			   int (*set)(struct inode *, void *), void *);
3231 struct inode *iget5_locked_rcu(struct super_block *, unsigned long,
3232 			       int (*test)(struct inode *, void *),
3233 			       int (*set)(struct inode *, void *), void *);
3234 extern struct inode * iget_locked(struct super_block *, unsigned long);
3235 extern struct inode *find_inode_nowait(struct super_block *,
3236 				       unsigned long,
3237 				       int (*match)(struct inode *,
3238 						    unsigned long, void *),
3239 				       void *data);
3240 extern struct inode *find_inode_rcu(struct super_block *, unsigned long,
3241 				    int (*)(struct inode *, void *), void *);
3242 extern struct inode *find_inode_by_ino_rcu(struct super_block *, unsigned long);
3243 extern int insert_inode_locked4(struct inode *, unsigned long, int (*test)(struct inode *, void *), void *);
3244 extern int insert_inode_locked(struct inode *);
3245 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3246 extern void lockdep_annotate_inode_mutex_key(struct inode *inode);
3247 #else
3248 static inline void lockdep_annotate_inode_mutex_key(struct inode *inode) { };
3249 #endif
3250 extern void unlock_new_inode(struct inode *);
3251 extern void discard_new_inode(struct inode *);
3252 extern unsigned int get_next_ino(void);
3253 extern void evict_inodes(struct super_block *sb);
3254 void dump_mapping(const struct address_space *);
3255 
3256 /*
3257  * Userspace may rely on the inode number being non-zero. For example, glibc
3258  * simply ignores files with zero i_ino in unlink() and other places.
3259  *
3260  * As an additional complication, if userspace was compiled with
3261  * _FILE_OFFSET_BITS=32 on a 64-bit kernel we'll only end up reading out the
3262  * lower 32 bits, so we need to check that those aren't zero explicitly. With
3263  * _FILE_OFFSET_BITS=64, this may cause some harmless false-negatives, but
3264  * better safe than sorry.
3265  */
3266 static inline bool is_zero_ino(ino_t ino)
3267 {
3268 	return (u32)ino == 0;
3269 }
3270 
3271 /*
3272  * inode->i_lock must be held
3273  */
3274 static inline void __iget(struct inode *inode)
3275 {
3276 	atomic_inc(&inode->i_count);
3277 }
3278 
3279 extern void iget_failed(struct inode *);
3280 extern void clear_inode(struct inode *);
3281 extern void __destroy_inode(struct inode *);
3282 extern struct inode *new_inode_pseudo(struct super_block *sb);
3283 extern struct inode *new_inode(struct super_block *sb);
3284 extern void free_inode_nonrcu(struct inode *inode);
3285 extern int setattr_should_drop_suidgid(struct mnt_idmap *, struct inode *);
3286 extern int file_remove_privs_flags(struct file *file, unsigned int flags);
3287 extern int file_remove_privs(struct file *);
3288 int setattr_should_drop_sgid(struct mnt_idmap *idmap,
3289 			     const struct inode *inode);
3290 
3291 /*
3292  * This must be used for allocating filesystems specific inodes to set
3293  * up the inode reclaim context correctly.
3294  */
3295 #define alloc_inode_sb(_sb, _cache, _gfp) kmem_cache_alloc_lru(_cache, &_sb->s_inode_lru, _gfp)
3296 
3297 extern void __insert_inode_hash(struct inode *, unsigned long hashval);
3298 static inline void insert_inode_hash(struct inode *inode)
3299 {
3300 	__insert_inode_hash(inode, inode->i_ino);
3301 }
3302 
3303 extern void __remove_inode_hash(struct inode *);
3304 static inline void remove_inode_hash(struct inode *inode)
3305 {
3306 	if (!inode_unhashed(inode) && !hlist_fake(&inode->i_hash))
3307 		__remove_inode_hash(inode);
3308 }
3309 
3310 extern void inode_sb_list_add(struct inode *inode);
3311 extern void inode_add_lru(struct inode *inode);
3312 
3313 extern int sb_set_blocksize(struct super_block *, int);
3314 extern int sb_min_blocksize(struct super_block *, int);
3315 
3316 extern int generic_file_mmap(struct file *, struct vm_area_struct *);
3317 extern int generic_file_readonly_mmap(struct file *, struct vm_area_struct *);
3318 extern ssize_t generic_write_checks(struct kiocb *, struct iov_iter *);
3319 int generic_write_checks_count(struct kiocb *iocb, loff_t *count);
3320 extern int generic_write_check_limits(struct file *file, loff_t pos,
3321 		loff_t *count);
3322 extern int generic_file_rw_checks(struct file *file_in, struct file *file_out);
3323 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *to,
3324 		ssize_t already_read);
3325 extern ssize_t generic_file_read_iter(struct kiocb *, struct iov_iter *);
3326 extern ssize_t __generic_file_write_iter(struct kiocb *, struct iov_iter *);
3327 extern ssize_t generic_file_write_iter(struct kiocb *, struct iov_iter *);
3328 extern ssize_t generic_file_direct_write(struct kiocb *, struct iov_iter *);
3329 ssize_t generic_perform_write(struct kiocb *, struct iov_iter *);
3330 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
3331 		ssize_t direct_written, ssize_t buffered_written);
3332 
3333 ssize_t vfs_iter_read(struct file *file, struct iov_iter *iter, loff_t *ppos,
3334 		rwf_t flags);
3335 ssize_t vfs_iter_write(struct file *file, struct iov_iter *iter, loff_t *ppos,
3336 		rwf_t flags);
3337 ssize_t vfs_iocb_iter_read(struct file *file, struct kiocb *iocb,
3338 			   struct iov_iter *iter);
3339 ssize_t vfs_iocb_iter_write(struct file *file, struct kiocb *iocb,
3340 			    struct iov_iter *iter);
3341 
3342 /* fs/splice.c */
3343 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
3344 			    struct pipe_inode_info *pipe,
3345 			    size_t len, unsigned int flags);
3346 ssize_t copy_splice_read(struct file *in, loff_t *ppos,
3347 			 struct pipe_inode_info *pipe,
3348 			 size_t len, unsigned int flags);
3349 extern ssize_t iter_file_splice_write(struct pipe_inode_info *,
3350 		struct file *, loff_t *, size_t, unsigned int);
3351 
3352 
3353 extern void
3354 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping);
3355 extern loff_t noop_llseek(struct file *file, loff_t offset, int whence);
3356 extern loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize);
3357 extern loff_t generic_file_llseek(struct file *file, loff_t offset, int whence);
3358 extern loff_t generic_file_llseek_size(struct file *file, loff_t offset,
3359 		int whence, loff_t maxsize, loff_t eof);
3360 loff_t generic_llseek_cookie(struct file *file, loff_t offset, int whence,
3361 			     u64 *cookie);
3362 extern loff_t fixed_size_llseek(struct file *file, loff_t offset,
3363 		int whence, loff_t size);
3364 extern loff_t no_seek_end_llseek_size(struct file *, loff_t, int, loff_t);
3365 extern loff_t no_seek_end_llseek(struct file *, loff_t, int);
3366 int rw_verify_area(int, struct file *, const loff_t *, size_t);
3367 extern int generic_file_open(struct inode * inode, struct file * filp);
3368 extern int nonseekable_open(struct inode * inode, struct file * filp);
3369 extern int stream_open(struct inode * inode, struct file * filp);
3370 
3371 #ifdef CONFIG_BLOCK
3372 typedef void (dio_submit_t)(struct bio *bio, struct inode *inode,
3373 			    loff_t file_offset);
3374 
3375 enum {
3376 	/* need locking between buffered and direct access */
3377 	DIO_LOCKING	= 0x01,
3378 
3379 	/* filesystem does not support filling holes */
3380 	DIO_SKIP_HOLES	= 0x02,
3381 };
3382 
3383 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
3384 			     struct block_device *bdev, struct iov_iter *iter,
3385 			     get_block_t get_block,
3386 			     dio_iodone_t end_io,
3387 			     int flags);
3388 
3389 static inline ssize_t blockdev_direct_IO(struct kiocb *iocb,
3390 					 struct inode *inode,
3391 					 struct iov_iter *iter,
3392 					 get_block_t get_block)
3393 {
3394 	return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3395 			get_block, NULL, DIO_LOCKING | DIO_SKIP_HOLES);
3396 }
3397 #endif
3398 
3399 bool inode_dio_finished(const struct inode *inode);
3400 void inode_dio_wait(struct inode *inode);
3401 void inode_dio_wait_interruptible(struct inode *inode);
3402 
3403 /**
3404  * inode_dio_begin - signal start of a direct I/O requests
3405  * @inode: inode the direct I/O happens on
3406  *
3407  * This is called once we've finished processing a direct I/O request,
3408  * and is used to wake up callers waiting for direct I/O to be quiesced.
3409  */
3410 static inline void inode_dio_begin(struct inode *inode)
3411 {
3412 	atomic_inc(&inode->i_dio_count);
3413 }
3414 
3415 /**
3416  * inode_dio_end - signal finish of a direct I/O requests
3417  * @inode: inode the direct I/O happens on
3418  *
3419  * This is called once we've finished processing a direct I/O request,
3420  * and is used to wake up callers waiting for direct I/O to be quiesced.
3421  */
3422 static inline void inode_dio_end(struct inode *inode)
3423 {
3424 	if (atomic_dec_and_test(&inode->i_dio_count))
3425 		wake_up_var(&inode->i_dio_count);
3426 }
3427 
3428 extern void inode_set_flags(struct inode *inode, unsigned int flags,
3429 			    unsigned int mask);
3430 
3431 extern const struct file_operations generic_ro_fops;
3432 
3433 #define special_file(m) (S_ISCHR(m)||S_ISBLK(m)||S_ISFIFO(m)||S_ISSOCK(m))
3434 
3435 extern int readlink_copy(char __user *, int, const char *, int);
3436 extern int page_readlink(struct dentry *, char __user *, int);
3437 extern const char *page_get_link(struct dentry *, struct inode *,
3438 				 struct delayed_call *);
3439 extern void page_put_link(void *);
3440 extern int page_symlink(struct inode *inode, const char *symname, int len);
3441 extern const struct inode_operations page_symlink_inode_operations;
3442 extern void kfree_link(void *);
3443 void fill_mg_cmtime(struct kstat *stat, u32 request_mask, struct inode *inode);
3444 void generic_fillattr(struct mnt_idmap *, u32, struct inode *, struct kstat *);
3445 void generic_fill_statx_attr(struct inode *inode, struct kstat *stat);
3446 void generic_fill_statx_atomic_writes(struct kstat *stat,
3447 				      unsigned int unit_min,
3448 				      unsigned int unit_max);
3449 extern int vfs_getattr_nosec(const struct path *, struct kstat *, u32, unsigned int);
3450 extern int vfs_getattr(const struct path *, struct kstat *, u32, unsigned int);
3451 void __inode_add_bytes(struct inode *inode, loff_t bytes);
3452 void inode_add_bytes(struct inode *inode, loff_t bytes);
3453 void __inode_sub_bytes(struct inode *inode, loff_t bytes);
3454 void inode_sub_bytes(struct inode *inode, loff_t bytes);
3455 static inline loff_t __inode_get_bytes(struct inode *inode)
3456 {
3457 	return (((loff_t)inode->i_blocks) << 9) + inode->i_bytes;
3458 }
3459 loff_t inode_get_bytes(struct inode *inode);
3460 void inode_set_bytes(struct inode *inode, loff_t bytes);
3461 const char *simple_get_link(struct dentry *, struct inode *,
3462 			    struct delayed_call *);
3463 extern const struct inode_operations simple_symlink_inode_operations;
3464 
3465 extern int iterate_dir(struct file *, struct dir_context *);
3466 
3467 int vfs_fstatat(int dfd, const char __user *filename, struct kstat *stat,
3468 		int flags);
3469 int vfs_fstat(int fd, struct kstat *stat);
3470 
3471 static inline int vfs_stat(const char __user *filename, struct kstat *stat)
3472 {
3473 	return vfs_fstatat(AT_FDCWD, filename, stat, 0);
3474 }
3475 static inline int vfs_lstat(const char __user *name, struct kstat *stat)
3476 {
3477 	return vfs_fstatat(AT_FDCWD, name, stat, AT_SYMLINK_NOFOLLOW);
3478 }
3479 
3480 extern const char *vfs_get_link(struct dentry *, struct delayed_call *);
3481 extern int vfs_readlink(struct dentry *, char __user *, int);
3482 
3483 extern struct file_system_type *get_filesystem(struct file_system_type *fs);
3484 extern void put_filesystem(struct file_system_type *fs);
3485 extern struct file_system_type *get_fs_type(const char *name);
3486 extern void drop_super(struct super_block *sb);
3487 extern void drop_super_exclusive(struct super_block *sb);
3488 extern void iterate_supers(void (*)(struct super_block *, void *), void *);
3489 extern void iterate_supers_type(struct file_system_type *,
3490 			        void (*)(struct super_block *, void *), void *);
3491 
3492 extern int dcache_dir_open(struct inode *, struct file *);
3493 extern int dcache_dir_close(struct inode *, struct file *);
3494 extern loff_t dcache_dir_lseek(struct file *, loff_t, int);
3495 extern int dcache_readdir(struct file *, struct dir_context *);
3496 extern int simple_setattr(struct mnt_idmap *, struct dentry *,
3497 			  struct iattr *);
3498 extern int simple_getattr(struct mnt_idmap *, const struct path *,
3499 			  struct kstat *, u32, unsigned int);
3500 extern int simple_statfs(struct dentry *, struct kstatfs *);
3501 extern int simple_open(struct inode *inode, struct file *file);
3502 extern int simple_link(struct dentry *, struct inode *, struct dentry *);
3503 extern int simple_unlink(struct inode *, struct dentry *);
3504 extern int simple_rmdir(struct inode *, struct dentry *);
3505 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
3506 			     struct inode *new_dir, struct dentry *new_dentry);
3507 extern int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
3508 				  struct inode *new_dir, struct dentry *new_dentry);
3509 extern int simple_rename(struct mnt_idmap *, struct inode *,
3510 			 struct dentry *, struct inode *, struct dentry *,
3511 			 unsigned int);
3512 extern void simple_recursive_removal(struct dentry *,
3513                               void (*callback)(struct dentry *));
3514 extern int noop_fsync(struct file *, loff_t, loff_t, int);
3515 extern ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
3516 extern int simple_empty(struct dentry *);
3517 extern int simple_write_begin(struct file *file, struct address_space *mapping,
3518 			loff_t pos, unsigned len,
3519 			struct folio **foliop, void **fsdata);
3520 extern const struct address_space_operations ram_aops;
3521 extern int always_delete_dentry(const struct dentry *);
3522 extern struct inode *alloc_anon_inode(struct super_block *);
3523 extern int simple_nosetlease(struct file *, int, struct file_lease **, void **);
3524 extern const struct dentry_operations simple_dentry_operations;
3525 
3526 extern struct dentry *simple_lookup(struct inode *, struct dentry *, unsigned int flags);
3527 extern ssize_t generic_read_dir(struct file *, char __user *, size_t, loff_t *);
3528 extern const struct file_operations simple_dir_operations;
3529 extern const struct inode_operations simple_dir_inode_operations;
3530 extern void make_empty_dir_inode(struct inode *inode);
3531 extern bool is_empty_dir_inode(struct inode *inode);
3532 struct tree_descr { const char *name; const struct file_operations *ops; int mode; };
3533 struct dentry *d_alloc_name(struct dentry *, const char *);
3534 extern int simple_fill_super(struct super_block *, unsigned long,
3535 			     const struct tree_descr *);
3536 extern int simple_pin_fs(struct file_system_type *, struct vfsmount **mount, int *count);
3537 extern void simple_release_fs(struct vfsmount **mount, int *count);
3538 
3539 extern ssize_t simple_read_from_buffer(void __user *to, size_t count,
3540 			loff_t *ppos, const void *from, size_t available);
3541 extern ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
3542 		const void __user *from, size_t count);
3543 
3544 struct offset_ctx {
3545 	struct maple_tree	mt;
3546 	unsigned long		next_offset;
3547 };
3548 
3549 void simple_offset_init(struct offset_ctx *octx);
3550 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry);
3551 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry);
3552 int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry,
3553 			 struct inode *new_dir, struct dentry *new_dentry);
3554 int simple_offset_rename_exchange(struct inode *old_dir,
3555 				  struct dentry *old_dentry,
3556 				  struct inode *new_dir,
3557 				  struct dentry *new_dentry);
3558 void simple_offset_destroy(struct offset_ctx *octx);
3559 
3560 extern const struct file_operations simple_offset_dir_operations;
3561 
3562 extern int __generic_file_fsync(struct file *, loff_t, loff_t, int);
3563 extern int generic_file_fsync(struct file *, loff_t, loff_t, int);
3564 
3565 extern int generic_check_addressable(unsigned, u64);
3566 
3567 extern void generic_set_sb_d_ops(struct super_block *sb);
3568 extern int generic_ci_match(const struct inode *parent,
3569 			    const struct qstr *name,
3570 			    const struct qstr *folded_name,
3571 			    const u8 *de_name, u32 de_name_len);
3572 
3573 #if IS_ENABLED(CONFIG_UNICODE)
3574 int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str);
3575 int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
3576 			 const char *str, const struct qstr *name);
3577 
3578 /**
3579  * generic_ci_validate_strict_name - Check if a given name is suitable
3580  * for a directory
3581  *
3582  * This functions checks if the proposed filename is valid for the
3583  * parent directory. That means that only valid UTF-8 filenames will be
3584  * accepted for casefold directories from filesystems created with the
3585  * strict encoding flag.  That also means that any name will be
3586  * accepted for directories that doesn't have casefold enabled, or
3587  * aren't being strict with the encoding.
3588  *
3589  * @dir: inode of the directory where the new file will be created
3590  * @name: name of the new file
3591  *
3592  * Return:
3593  * * True: if the filename is suitable for this directory. It can be
3594  *   true if a given name is not suitable for a strict encoding
3595  *   directory, but the directory being used isn't strict
3596  * * False if the filename isn't suitable for this directory. This only
3597  *   happens when a directory is casefolded and the filesystem is strict
3598  *   about its encoding.
3599  */
3600 static inline bool generic_ci_validate_strict_name(struct inode *dir, struct qstr *name)
3601 {
3602 	if (!IS_CASEFOLDED(dir) || !sb_has_strict_encoding(dir->i_sb))
3603 		return true;
3604 
3605 	/*
3606 	 * A casefold dir must have a encoding set, unless the filesystem
3607 	 * is corrupted
3608 	 */
3609 	if (WARN_ON_ONCE(!dir->i_sb->s_encoding))
3610 		return true;
3611 
3612 	return !utf8_validate(dir->i_sb->s_encoding, name);
3613 }
3614 #else
3615 static inline bool generic_ci_validate_strict_name(struct inode *dir, struct qstr *name)
3616 {
3617 	return true;
3618 }
3619 #endif
3620 
3621 static inline bool sb_has_encoding(const struct super_block *sb)
3622 {
3623 #if IS_ENABLED(CONFIG_UNICODE)
3624 	return !!sb->s_encoding;
3625 #else
3626 	return false;
3627 #endif
3628 }
3629 
3630 int may_setattr(struct mnt_idmap *idmap, struct inode *inode,
3631 		unsigned int ia_valid);
3632 int setattr_prepare(struct mnt_idmap *, struct dentry *, struct iattr *);
3633 extern int inode_newsize_ok(const struct inode *, loff_t offset);
3634 void setattr_copy(struct mnt_idmap *, struct inode *inode,
3635 		  const struct iattr *attr);
3636 
3637 extern int file_update_time(struct file *file);
3638 
3639 static inline bool vma_is_dax(const struct vm_area_struct *vma)
3640 {
3641 	return vma->vm_file && IS_DAX(vma->vm_file->f_mapping->host);
3642 }
3643 
3644 static inline bool vma_is_fsdax(struct vm_area_struct *vma)
3645 {
3646 	struct inode *inode;
3647 
3648 	if (!IS_ENABLED(CONFIG_FS_DAX) || !vma->vm_file)
3649 		return false;
3650 	if (!vma_is_dax(vma))
3651 		return false;
3652 	inode = file_inode(vma->vm_file);
3653 	if (S_ISCHR(inode->i_mode))
3654 		return false; /* device-dax */
3655 	return true;
3656 }
3657 
3658 static inline int iocb_flags(struct file *file)
3659 {
3660 	int res = 0;
3661 	if (file->f_flags & O_APPEND)
3662 		res |= IOCB_APPEND;
3663 	if (file->f_flags & O_DIRECT)
3664 		res |= IOCB_DIRECT;
3665 	if (file->f_flags & O_DSYNC)
3666 		res |= IOCB_DSYNC;
3667 	if (file->f_flags & __O_SYNC)
3668 		res |= IOCB_SYNC;
3669 	return res;
3670 }
3671 
3672 static inline int kiocb_set_rw_flags(struct kiocb *ki, rwf_t flags,
3673 				     int rw_type)
3674 {
3675 	int kiocb_flags = 0;
3676 
3677 	/* make sure there's no overlap between RWF and private IOCB flags */
3678 	BUILD_BUG_ON((__force int) RWF_SUPPORTED & IOCB_EVENTFD);
3679 
3680 	if (!flags)
3681 		return 0;
3682 	if (unlikely(flags & ~RWF_SUPPORTED))
3683 		return -EOPNOTSUPP;
3684 	if (unlikely((flags & RWF_APPEND) && (flags & RWF_NOAPPEND)))
3685 		return -EINVAL;
3686 
3687 	if (flags & RWF_NOWAIT) {
3688 		if (!(ki->ki_filp->f_mode & FMODE_NOWAIT))
3689 			return -EOPNOTSUPP;
3690 	}
3691 	if (flags & RWF_ATOMIC) {
3692 		if (rw_type != WRITE)
3693 			return -EOPNOTSUPP;
3694 		if (!(ki->ki_filp->f_mode & FMODE_CAN_ATOMIC_WRITE))
3695 			return -EOPNOTSUPP;
3696 	}
3697 	if (flags & RWF_DONTCACHE) {
3698 		/* file system must support it */
3699 		if (!(ki->ki_filp->f_op->fop_flags & FOP_DONTCACHE))
3700 			return -EOPNOTSUPP;
3701 		/* DAX mappings not supported */
3702 		if (IS_DAX(ki->ki_filp->f_mapping->host))
3703 			return -EOPNOTSUPP;
3704 	}
3705 	kiocb_flags |= (__force int) (flags & RWF_SUPPORTED);
3706 	if (flags & RWF_SYNC)
3707 		kiocb_flags |= IOCB_DSYNC;
3708 
3709 	if ((flags & RWF_NOAPPEND) && (ki->ki_flags & IOCB_APPEND)) {
3710 		if (IS_APPEND(file_inode(ki->ki_filp)))
3711 			return -EPERM;
3712 		ki->ki_flags &= ~IOCB_APPEND;
3713 	}
3714 
3715 	ki->ki_flags |= kiocb_flags;
3716 	return 0;
3717 }
3718 
3719 /* Transaction based IO helpers */
3720 
3721 /*
3722  * An argresp is stored in an allocated page and holds the
3723  * size of the argument or response, along with its content
3724  */
3725 struct simple_transaction_argresp {
3726 	ssize_t size;
3727 	char data[];
3728 };
3729 
3730 #define SIMPLE_TRANSACTION_LIMIT (PAGE_SIZE - sizeof(struct simple_transaction_argresp))
3731 
3732 char *simple_transaction_get(struct file *file, const char __user *buf,
3733 				size_t size);
3734 ssize_t simple_transaction_read(struct file *file, char __user *buf,
3735 				size_t size, loff_t *pos);
3736 int simple_transaction_release(struct inode *inode, struct file *file);
3737 
3738 void simple_transaction_set(struct file *file, size_t n);
3739 
3740 /*
3741  * simple attribute files
3742  *
3743  * These attributes behave similar to those in sysfs:
3744  *
3745  * Writing to an attribute immediately sets a value, an open file can be
3746  * written to multiple times.
3747  *
3748  * Reading from an attribute creates a buffer from the value that might get
3749  * read with multiple read calls. When the attribute has been read
3750  * completely, no further read calls are possible until the file is opened
3751  * again.
3752  *
3753  * All attributes contain a text representation of a numeric value
3754  * that are accessed with the get() and set() functions.
3755  */
3756 #define DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, __is_signed)	\
3757 static int __fops ## _open(struct inode *inode, struct file *file)	\
3758 {									\
3759 	__simple_attr_check_format(__fmt, 0ull);			\
3760 	return simple_attr_open(inode, file, __get, __set, __fmt);	\
3761 }									\
3762 static const struct file_operations __fops = {				\
3763 	.owner	 = THIS_MODULE,						\
3764 	.open	 = __fops ## _open,					\
3765 	.release = simple_attr_release,					\
3766 	.read	 = simple_attr_read,					\
3767 	.write	 = (__is_signed) ? simple_attr_write_signed : simple_attr_write,	\
3768 	.llseek	 = generic_file_llseek,					\
3769 }
3770 
3771 #define DEFINE_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)		\
3772 	DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, false)
3773 
3774 #define DEFINE_SIMPLE_ATTRIBUTE_SIGNED(__fops, __get, __set, __fmt)	\
3775 	DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, true)
3776 
3777 static inline __printf(1, 2)
3778 void __simple_attr_check_format(const char *fmt, ...)
3779 {
3780 	/* don't do anything, just let the compiler check the arguments; */
3781 }
3782 
3783 int simple_attr_open(struct inode *inode, struct file *file,
3784 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
3785 		     const char *fmt);
3786 int simple_attr_release(struct inode *inode, struct file *file);
3787 ssize_t simple_attr_read(struct file *file, char __user *buf,
3788 			 size_t len, loff_t *ppos);
3789 ssize_t simple_attr_write(struct file *file, const char __user *buf,
3790 			  size_t len, loff_t *ppos);
3791 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
3792 				 size_t len, loff_t *ppos);
3793 
3794 struct ctl_table;
3795 int __init list_bdev_fs_names(char *buf, size_t size);
3796 
3797 #define __FMODE_EXEC		((__force int) FMODE_EXEC)
3798 
3799 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
3800 #define OPEN_FMODE(flag) ((__force fmode_t)((flag + 1) & O_ACCMODE))
3801 
3802 static inline bool is_sxid(umode_t mode)
3803 {
3804 	return mode & (S_ISUID | S_ISGID);
3805 }
3806 
3807 static inline int check_sticky(struct mnt_idmap *idmap,
3808 			       struct inode *dir, struct inode *inode)
3809 {
3810 	if (!(dir->i_mode & S_ISVTX))
3811 		return 0;
3812 
3813 	return __check_sticky(idmap, dir, inode);
3814 }
3815 
3816 static inline void inode_has_no_xattr(struct inode *inode)
3817 {
3818 	if (!is_sxid(inode->i_mode) && (inode->i_sb->s_flags & SB_NOSEC))
3819 		inode->i_flags |= S_NOSEC;
3820 }
3821 
3822 static inline bool is_root_inode(struct inode *inode)
3823 {
3824 	return inode == inode->i_sb->s_root->d_inode;
3825 }
3826 
3827 static inline bool dir_emit(struct dir_context *ctx,
3828 			    const char *name, int namelen,
3829 			    u64 ino, unsigned type)
3830 {
3831 	return ctx->actor(ctx, name, namelen, ctx->pos, ino, type);
3832 }
3833 static inline bool dir_emit_dot(struct file *file, struct dir_context *ctx)
3834 {
3835 	return ctx->actor(ctx, ".", 1, ctx->pos,
3836 			  file->f_path.dentry->d_inode->i_ino, DT_DIR);
3837 }
3838 static inline bool dir_emit_dotdot(struct file *file, struct dir_context *ctx)
3839 {
3840 	return ctx->actor(ctx, "..", 2, ctx->pos,
3841 			  d_parent_ino(file->f_path.dentry), DT_DIR);
3842 }
3843 static inline bool dir_emit_dots(struct file *file, struct dir_context *ctx)
3844 {
3845 	if (ctx->pos == 0) {
3846 		if (!dir_emit_dot(file, ctx))
3847 			return false;
3848 		ctx->pos = 1;
3849 	}
3850 	if (ctx->pos == 1) {
3851 		if (!dir_emit_dotdot(file, ctx))
3852 			return false;
3853 		ctx->pos = 2;
3854 	}
3855 	return true;
3856 }
3857 static inline bool dir_relax(struct inode *inode)
3858 {
3859 	inode_unlock(inode);
3860 	inode_lock(inode);
3861 	return !IS_DEADDIR(inode);
3862 }
3863 
3864 static inline bool dir_relax_shared(struct inode *inode)
3865 {
3866 	inode_unlock_shared(inode);
3867 	inode_lock_shared(inode);
3868 	return !IS_DEADDIR(inode);
3869 }
3870 
3871 extern bool path_noexec(const struct path *path);
3872 extern void inode_nohighmem(struct inode *inode);
3873 
3874 /* mm/fadvise.c */
3875 extern int vfs_fadvise(struct file *file, loff_t offset, loff_t len,
3876 		       int advice);
3877 extern int generic_fadvise(struct file *file, loff_t offset, loff_t len,
3878 			   int advice);
3879 
3880 static inline bool vfs_empty_path(int dfd, const char __user *path)
3881 {
3882 	char c;
3883 
3884 	if (dfd < 0)
3885 		return false;
3886 
3887 	/* We now allow NULL to be used for empty path. */
3888 	if (!path)
3889 		return true;
3890 
3891 	if (unlikely(get_user(c, path)))
3892 		return false;
3893 
3894 	return !c;
3895 }
3896 
3897 int generic_atomic_write_valid(struct kiocb *iocb, struct iov_iter *iter);
3898 
3899 #endif /* _LINUX_FS_H */
3900