xref: /linux/fs/btrfs/fs.h (revision f3827213abae9291b7525b05e6fd29b1f0536ce6)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 
3 #ifndef BTRFS_FS_H
4 #define BTRFS_FS_H
5 
6 #include <linux/blkdev.h>
7 #include <linux/sizes.h>
8 #include <linux/time64.h>
9 #include <linux/compiler.h>
10 #include <linux/math.h>
11 #include <linux/atomic.h>
12 #include <linux/percpu_counter.h>
13 #include <linux/completion.h>
14 #include <linux/lockdep.h>
15 #include <linux/spinlock.h>
16 #include <linux/mutex.h>
17 #include <linux/rwsem.h>
18 #include <linux/semaphore.h>
19 #include <linux/list.h>
20 #include <linux/pagemap.h>
21 #include <linux/radix-tree.h>
22 #include <linux/workqueue.h>
23 #include <linux/wait.h>
24 #include <linux/wait_bit.h>
25 #include <linux/sched.h>
26 #include <linux/rbtree.h>
27 #include <uapi/linux/btrfs.h>
28 #include <uapi/linux/btrfs_tree.h>
29 #include "extent-io-tree.h"
30 #include "async-thread.h"
31 #include "block-rsv.h"
32 
33 struct inode;
34 struct super_block;
35 struct kobject;
36 struct reloc_control;
37 struct crypto_shash;
38 struct ulist;
39 struct btrfs_device;
40 struct btrfs_block_group;
41 struct btrfs_root;
42 struct btrfs_fs_devices;
43 struct btrfs_transaction;
44 struct btrfs_delayed_root;
45 struct btrfs_balance_control;
46 struct btrfs_subpage_info;
47 struct btrfs_stripe_hash_table;
48 struct btrfs_space_info;
49 
50 /*
51  * Minimum data and metadata block size.
52  *
53  * Normally it's 4K, but for testing subpage block size on 4K page systems, we
54  * allow DEBUG builds to accept 2K page size.
55  */
56 #ifdef CONFIG_BTRFS_DEBUG
57 #define BTRFS_MIN_BLOCKSIZE	(SZ_2K)
58 #else
59 #define BTRFS_MIN_BLOCKSIZE	(SZ_4K)
60 #endif
61 
62 #define BTRFS_MAX_BLOCKSIZE	(SZ_64K)
63 
64 #define BTRFS_MAX_EXTENT_SIZE SZ_128M
65 
66 #define BTRFS_OLDEST_GENERATION	0ULL
67 
68 #define BTRFS_EMPTY_DIR_SIZE 0
69 
70 #define BTRFS_DIRTY_METADATA_THRESH		SZ_32M
71 
72 #define BTRFS_SUPER_INFO_OFFSET			SZ_64K
73 #define BTRFS_SUPER_INFO_SIZE			4096
74 static_assert(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE);
75 
76 /*
77  * Number of metadata items necessary for an unlink operation:
78  *
79  * 1 for the possible orphan item
80  * 1 for the dir item
81  * 1 for the dir index
82  * 1 for the inode ref
83  * 1 for the inode
84  * 1 for the parent inode
85  */
86 #define BTRFS_UNLINK_METADATA_UNITS		6
87 
88 /*
89  * The reserved space at the beginning of each device.  It covers the primary
90  * super block and leaves space for potential use by other tools like
91  * bootloaders or to lower potential damage of accidental overwrite.
92  */
93 #define BTRFS_DEVICE_RANGE_RESERVED			(SZ_1M)
94 /*
95  * Runtime (in-memory) states of filesystem
96  */
97 enum {
98 	/*
99 	 * Filesystem is being remounted, allow to skip some operations, like
100 	 * defrag
101 	 */
102 	BTRFS_FS_STATE_REMOUNTING,
103 	/* Filesystem in RO mode */
104 	BTRFS_FS_STATE_RO,
105 	/* Track if a transaction abort has been reported on this filesystem */
106 	BTRFS_FS_STATE_TRANS_ABORTED,
107 	/* Track if log replay has failed. */
108 	BTRFS_FS_STATE_LOG_REPLAY_ABORTED,
109 	/*
110 	 * Bio operations should be blocked on this filesystem because a source
111 	 * or target device is being destroyed as part of a device replace
112 	 */
113 	BTRFS_FS_STATE_DEV_REPLACING,
114 	/* The btrfs_fs_info created for self-tests */
115 	BTRFS_FS_STATE_DUMMY_FS_INFO,
116 
117 	/* Checksum errors are ignored. */
118 	BTRFS_FS_STATE_NO_DATA_CSUMS,
119 	BTRFS_FS_STATE_SKIP_META_CSUMS,
120 
121 	/* Indicates there was an error cleaning up a log tree. */
122 	BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
123 
124 	/* No more delayed iput can be queued. */
125 	BTRFS_FS_STATE_NO_DELAYED_IPUT,
126 
127 	BTRFS_FS_STATE_COUNT
128 };
129 
130 enum {
131 	BTRFS_FS_CLOSING_START,
132 	BTRFS_FS_CLOSING_DONE,
133 	BTRFS_FS_LOG_RECOVERING,
134 	BTRFS_FS_OPEN,
135 	BTRFS_FS_QUOTA_ENABLED,
136 	BTRFS_FS_UPDATE_UUID_TREE_GEN,
137 	BTRFS_FS_CREATING_FREE_SPACE_TREE,
138 	BTRFS_FS_BTREE_ERR,
139 	BTRFS_FS_LOG1_ERR,
140 	BTRFS_FS_LOG2_ERR,
141 	BTRFS_FS_QUOTA_OVERRIDE,
142 	/* Used to record internally whether fs has been frozen */
143 	BTRFS_FS_FROZEN,
144 	/*
145 	 * Indicate that balance has been set up from the ioctl and is in the
146 	 * main phase. The fs_info::balance_ctl is initialized.
147 	 */
148 	BTRFS_FS_BALANCE_RUNNING,
149 
150 	/*
151 	 * Indicate that relocation of a chunk has started, it's set per chunk
152 	 * and is toggled between chunks.
153 	 */
154 	BTRFS_FS_RELOC_RUNNING,
155 
156 	/* Indicate that the cleaner thread is awake and doing something. */
157 	BTRFS_FS_CLEANER_RUNNING,
158 
159 	/*
160 	 * The checksumming has an optimized version and is considered fast,
161 	 * so we don't need to offload checksums to workqueues.
162 	 */
163 	BTRFS_FS_CSUM_IMPL_FAST,
164 
165 	/* Indicate that the discard workqueue can service discards. */
166 	BTRFS_FS_DISCARD_RUNNING,
167 
168 	/* Indicate that we need to cleanup space cache v1 */
169 	BTRFS_FS_CLEANUP_SPACE_CACHE_V1,
170 
171 	/* Indicate that we can't trust the free space tree for caching yet */
172 	BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED,
173 
174 	/* Indicate whether there are any tree modification log users */
175 	BTRFS_FS_TREE_MOD_LOG_USERS,
176 
177 	/* Indicate that we want the transaction kthread to commit right now. */
178 	BTRFS_FS_COMMIT_TRANS,
179 
180 	/* Indicate we have half completed snapshot deletions pending. */
181 	BTRFS_FS_UNFINISHED_DROPS,
182 
183 	/* Indicate we have to finish a zone to do next allocation. */
184 	BTRFS_FS_NEED_ZONE_FINISH,
185 
186 	/* Indicate that we want to commit the transaction. */
187 	BTRFS_FS_NEED_TRANS_COMMIT,
188 
189 	/* This is set when active zone tracking is needed. */
190 	BTRFS_FS_ACTIVE_ZONE_TRACKING,
191 
192 	/*
193 	 * Indicate if we have some features changed, this is mostly for
194 	 * cleaner thread to update the sysfs interface.
195 	 */
196 	BTRFS_FS_FEATURE_CHANGED,
197 
198 	/*
199 	 * Indicate that we have found a tree block which is only aligned to
200 	 * sectorsize, but not to nodesize.  This should be rare nowadays.
201 	 */
202 	BTRFS_FS_UNALIGNED_TREE_BLOCK,
203 
204 #if BITS_PER_LONG == 32
205 	/* Indicate if we have error/warn message printed on 32bit systems */
206 	BTRFS_FS_32BIT_ERROR,
207 	BTRFS_FS_32BIT_WARN,
208 #endif
209 };
210 
211 /*
212  * Flags for mount options.
213  *
214  * Note: don't forget to add new options to btrfs_show_options()
215  */
216 enum {
217 	BTRFS_MOUNT_NODATASUM			= (1ULL << 0),
218 	BTRFS_MOUNT_NODATACOW			= (1ULL << 1),
219 	BTRFS_MOUNT_NOBARRIER			= (1ULL << 2),
220 	BTRFS_MOUNT_SSD				= (1ULL << 3),
221 	BTRFS_MOUNT_DEGRADED			= (1ULL << 4),
222 	BTRFS_MOUNT_COMPRESS			= (1ULL << 5),
223 	BTRFS_MOUNT_NOTREELOG			= (1ULL << 6),
224 	BTRFS_MOUNT_FLUSHONCOMMIT		= (1ULL << 7),
225 	BTRFS_MOUNT_SSD_SPREAD			= (1ULL << 8),
226 	BTRFS_MOUNT_NOSSD			= (1ULL << 9),
227 	BTRFS_MOUNT_DISCARD_SYNC		= (1ULL << 10),
228 	BTRFS_MOUNT_FORCE_COMPRESS		= (1ULL << 11),
229 	BTRFS_MOUNT_SPACE_CACHE			= (1ULL << 12),
230 	BTRFS_MOUNT_CLEAR_CACHE			= (1ULL << 13),
231 	BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED	= (1ULL << 14),
232 	BTRFS_MOUNT_ENOSPC_DEBUG		= (1ULL << 15),
233 	BTRFS_MOUNT_AUTO_DEFRAG			= (1ULL << 16),
234 	BTRFS_MOUNT_USEBACKUPROOT		= (1ULL << 17),
235 	BTRFS_MOUNT_SKIP_BALANCE		= (1ULL << 18),
236 	BTRFS_MOUNT_PANIC_ON_FATAL_ERROR	= (1ULL << 19),
237 	BTRFS_MOUNT_RESCAN_UUID_TREE		= (1ULL << 20),
238 	BTRFS_MOUNT_FRAGMENT_DATA		= (1ULL << 21),
239 	BTRFS_MOUNT_FRAGMENT_METADATA		= (1ULL << 22),
240 	BTRFS_MOUNT_FREE_SPACE_TREE		= (1ULL << 23),
241 	BTRFS_MOUNT_NOLOGREPLAY			= (1ULL << 24),
242 	BTRFS_MOUNT_REF_VERIFY			= (1ULL << 25),
243 	BTRFS_MOUNT_DISCARD_ASYNC		= (1ULL << 26),
244 	BTRFS_MOUNT_IGNOREBADROOTS		= (1ULL << 27),
245 	BTRFS_MOUNT_IGNOREDATACSUMS		= (1ULL << 28),
246 	BTRFS_MOUNT_NODISCARD			= (1ULL << 29),
247 	BTRFS_MOUNT_NOSPACECACHE		= (1ULL << 30),
248 	BTRFS_MOUNT_IGNOREMETACSUMS		= (1ULL << 31),
249 	BTRFS_MOUNT_IGNORESUPERFLAGS		= (1ULL << 32),
250 	BTRFS_MOUNT_REF_TRACKER			= (1ULL << 33),
251 };
252 
253 /*
254  * Compat flags that we support.  If any incompat flags are set other than the
255  * ones specified below then we will fail to mount
256  */
257 #define BTRFS_FEATURE_COMPAT_SUPP		0ULL
258 #define BTRFS_FEATURE_COMPAT_SAFE_SET		0ULL
259 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR		0ULL
260 
261 #define BTRFS_FEATURE_COMPAT_RO_SUPP			\
262 	(BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE |	\
263 	 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \
264 	 BTRFS_FEATURE_COMPAT_RO_VERITY |		\
265 	 BTRFS_FEATURE_COMPAT_RO_BLOCK_GROUP_TREE)
266 
267 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET	0ULL
268 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR	0ULL
269 
270 #define BTRFS_FEATURE_INCOMPAT_SUPP_STABLE		\
271 	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
272 	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
273 	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
274 	 BTRFS_FEATURE_INCOMPAT_BIG_METADATA |		\
275 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO |		\
276 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD |		\
277 	 BTRFS_FEATURE_INCOMPAT_RAID56 |		\
278 	 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF |		\
279 	 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA |	\
280 	 BTRFS_FEATURE_INCOMPAT_NO_HOLES	|	\
281 	 BTRFS_FEATURE_INCOMPAT_METADATA_UUID	|	\
282 	 BTRFS_FEATURE_INCOMPAT_RAID1C34	|	\
283 	 BTRFS_FEATURE_INCOMPAT_ZONED		|	\
284 	 BTRFS_FEATURE_INCOMPAT_SIMPLE_QUOTA)
285 
286 #ifdef CONFIG_BTRFS_EXPERIMENTAL
287 	/*
288 	 * Features under development like Extent tree v2 support is enabled
289 	 * only under CONFIG_BTRFS_EXPERIMENTAL
290 	 */
291 #define BTRFS_FEATURE_INCOMPAT_SUPP		\
292 	(BTRFS_FEATURE_INCOMPAT_SUPP_STABLE |	\
293 	 BTRFS_FEATURE_INCOMPAT_RAID_STRIPE_TREE | \
294 	 BTRFS_FEATURE_INCOMPAT_EXTENT_TREE_V2)
295 
296 #else
297 
298 #define BTRFS_FEATURE_INCOMPAT_SUPP		\
299 	(BTRFS_FEATURE_INCOMPAT_SUPP_STABLE)
300 
301 #endif
302 
303 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET			\
304 	(BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
305 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR		0ULL
306 
307 #define BTRFS_DEFAULT_COMMIT_INTERVAL	(30)
308 #define BTRFS_WARNING_COMMIT_INTERVAL	(300)
309 #define BTRFS_DEFAULT_MAX_INLINE	(2048)
310 
311 enum btrfs_compression_type {
312 	BTRFS_COMPRESS_NONE  = 0,
313 	BTRFS_COMPRESS_ZLIB  = 1,
314 	BTRFS_COMPRESS_LZO   = 2,
315 	BTRFS_COMPRESS_ZSTD  = 3,
316 	BTRFS_NR_COMPRESS_TYPES = 4,
317 
318 	BTRFS_DEFRAG_DONT_COMPRESS,
319 };
320 
321 struct btrfs_dev_replace {
322 	/* See #define above */
323 	u64 replace_state;
324 	/* Seconds since 1-Jan-1970 */
325 	time64_t time_started;
326 	/* Seconds since 1-Jan-1970 */
327 	time64_t time_stopped;
328 	atomic64_t num_write_errors;
329 	atomic64_t num_uncorrectable_read_errors;
330 
331 	u64 cursor_left;
332 	u64 committed_cursor_left;
333 	u64 cursor_left_last_write_of_item;
334 	u64 cursor_right;
335 
336 	/* See #define above */
337 	u64 cont_reading_from_srcdev_mode;
338 
339 	int is_valid;
340 	int item_needs_writeback;
341 	struct btrfs_device *srcdev;
342 	struct btrfs_device *tgtdev;
343 
344 	struct mutex lock_finishing_cancel_unmount;
345 	struct rw_semaphore rwsem;
346 
347 	struct btrfs_scrub_progress scrub_progress;
348 
349 	struct percpu_counter bio_counter;
350 	wait_queue_head_t replace_wait;
351 
352 	struct task_struct *replace_task;
353 };
354 
355 /*
356  * Free clusters are used to claim free space in relatively large chunks,
357  * allowing us to do less seeky writes. They are used for all metadata
358  * allocations. In ssd_spread mode they are also used for data allocations.
359  */
360 struct btrfs_free_cluster {
361 	spinlock_t lock;
362 	spinlock_t refill_lock;
363 	struct rb_root root;
364 
365 	/* Largest extent in this cluster */
366 	u64 max_size;
367 
368 	/* First extent starting offset */
369 	u64 window_start;
370 
371 	/* We did a full search and couldn't create a cluster */
372 	bool fragmented;
373 
374 	struct btrfs_block_group *block_group;
375 	/*
376 	 * When a cluster is allocated from a block group, we put the cluster
377 	 * onto a list in the block group so that it can be freed before the
378 	 * block group is freed.
379 	 */
380 	struct list_head block_group_list;
381 };
382 
383 /* Discard control. */
384 /*
385  * Async discard uses multiple lists to differentiate the discard filter
386  * parameters.  Index 0 is for completely free block groups where we need to
387  * ensure the entire block group is trimmed without being lossy.  Indices
388  * afterwards represent monotonically decreasing discard filter sizes to
389  * prioritize what should be discarded next.
390  */
391 #define BTRFS_NR_DISCARD_LISTS		3
392 #define BTRFS_DISCARD_INDEX_UNUSED	0
393 #define BTRFS_DISCARD_INDEX_START	1
394 
395 struct btrfs_discard_ctl {
396 	struct workqueue_struct *discard_workers;
397 	struct delayed_work work;
398 	spinlock_t lock;
399 	struct btrfs_block_group *block_group;
400 	struct list_head discard_list[BTRFS_NR_DISCARD_LISTS];
401 	u64 prev_discard;
402 	u64 prev_discard_time;
403 	atomic_t discardable_extents;
404 	atomic64_t discardable_bytes;
405 	u64 max_discard_size;
406 	u64 delay_ms;
407 	u32 iops_limit;
408 	u32 kbps_limit;
409 	u64 discard_extent_bytes;
410 	u64 discard_bitmap_bytes;
411 	atomic64_t discard_bytes_saved;
412 };
413 
414 /*
415  * Exclusive operations (device replace, resize, device add/remove, balance)
416  */
417 enum btrfs_exclusive_operation {
418 	BTRFS_EXCLOP_NONE,
419 	BTRFS_EXCLOP_BALANCE_PAUSED,
420 	BTRFS_EXCLOP_BALANCE,
421 	BTRFS_EXCLOP_DEV_ADD,
422 	BTRFS_EXCLOP_DEV_REMOVE,
423 	BTRFS_EXCLOP_DEV_REPLACE,
424 	BTRFS_EXCLOP_RESIZE,
425 	BTRFS_EXCLOP_SWAP_ACTIVATE,
426 };
427 
428 /* Store data about transaction commits, exported via sysfs. */
429 struct btrfs_commit_stats {
430 	/* Total number of commits */
431 	u64 commit_count;
432 	/* The maximum commit duration so far in ns */
433 	u64 max_commit_dur;
434 	/* The last commit duration in ns */
435 	u64 last_commit_dur;
436 	/* The total commit duration in ns */
437 	u64 total_commit_dur;
438 	/* Start of the last critical section in ns. */
439 	u64 critical_section_start_time;
440 };
441 
442 struct btrfs_fs_info {
443 	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
444 	unsigned long flags;
445 	struct btrfs_root *tree_root;
446 	struct btrfs_root *chunk_root;
447 	struct btrfs_root *dev_root;
448 	struct btrfs_root *fs_root;
449 	struct btrfs_root *quota_root;
450 	struct btrfs_root *uuid_root;
451 	struct btrfs_root *data_reloc_root;
452 	struct btrfs_root *block_group_root;
453 	struct btrfs_root *stripe_root;
454 
455 	/* The log root tree is a directory of all the other log roots */
456 	struct btrfs_root *log_root_tree;
457 
458 	/* The tree that holds the global roots (csum, extent, etc) */
459 	rwlock_t global_root_lock;
460 	struct rb_root global_root_tree;
461 
462 	spinlock_t fs_roots_radix_lock;
463 	struct radix_tree_root fs_roots_radix;
464 
465 	/* Block group cache stuff */
466 	rwlock_t block_group_cache_lock;
467 	struct rb_root_cached block_group_cache_tree;
468 
469 	/* Keep track of unallocated space */
470 	atomic64_t free_chunk_space;
471 
472 	/* Track ranges which are used by log trees blocks/logged data extents */
473 	struct extent_io_tree excluded_extents;
474 
475 	/* logical->physical extent mapping */
476 	struct rb_root_cached mapping_tree;
477 	rwlock_t mapping_tree_lock;
478 
479 	/*
480 	 * Block reservation for extent, checksum, root tree and delayed dir
481 	 * index item.
482 	 */
483 	struct btrfs_block_rsv global_block_rsv;
484 	/* Block reservation for metadata operations */
485 	struct btrfs_block_rsv trans_block_rsv;
486 	/* Block reservation for chunk tree */
487 	struct btrfs_block_rsv chunk_block_rsv;
488 	/* Block reservation for delayed operations */
489 	struct btrfs_block_rsv delayed_block_rsv;
490 	/* Block reservation for delayed refs */
491 	struct btrfs_block_rsv delayed_refs_rsv;
492 	/* Block reservation for treelog tree */
493 	struct btrfs_block_rsv treelog_rsv;
494 
495 	struct btrfs_block_rsv empty_block_rsv;
496 
497 	/*
498 	 * Updated while holding the lock 'trans_lock'. Due to the life cycle of
499 	 * a transaction, it can be directly read while holding a transaction
500 	 * handle, everywhere else must be read with btrfs_get_fs_generation().
501 	 * Should always be updated using btrfs_set_fs_generation().
502 	 */
503 	u64 generation;
504 	/*
505 	 * Always use btrfs_get_last_trans_committed() and
506 	 * btrfs_set_last_trans_committed() to read and update this field.
507 	 */
508 	u64 last_trans_committed;
509 	/*
510 	 * Generation of the last transaction used for block group relocation
511 	 * since the filesystem was last mounted (or 0 if none happened yet).
512 	 * Must be written and read while holding btrfs_fs_info::commit_root_sem.
513 	 */
514 	u64 last_reloc_trans;
515 
516 	/*
517 	 * This is updated to the current trans every time a full commit is
518 	 * required instead of the faster short fsync log commits
519 	 */
520 	u64 last_trans_log_full_commit;
521 	unsigned long long mount_opt;
522 
523 	/* Compress related structures. */
524 	void *compr_wsm[BTRFS_NR_COMPRESS_TYPES];
525 
526 	int compress_type;
527 	int compress_level;
528 	u32 commit_interval;
529 	/*
530 	 * It is a suggestive number, the read side is safe even it gets a
531 	 * wrong number because we will write out the data into a regular
532 	 * extent. The write side(mount/remount) is under ->s_umount lock,
533 	 * so it is also safe.
534 	 */
535 	u64 max_inline;
536 
537 	struct btrfs_transaction *running_transaction;
538 	wait_queue_head_t transaction_throttle;
539 	wait_queue_head_t transaction_wait;
540 	wait_queue_head_t transaction_blocked_wait;
541 	wait_queue_head_t async_submit_wait;
542 
543 	/*
544 	 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
545 	 * when they are updated.
546 	 *
547 	 * Because we do not clear the flags for ever, so we needn't use
548 	 * the lock on the read side.
549 	 *
550 	 * We also needn't use the lock when we mount the fs, because
551 	 * there is no other task which will update the flag.
552 	 */
553 	spinlock_t super_lock;
554 	struct btrfs_super_block *super_copy;
555 	struct btrfs_super_block *super_for_commit;
556 	struct super_block *sb;
557 	struct inode *btree_inode;
558 	struct mutex tree_log_mutex;
559 	struct mutex transaction_kthread_mutex;
560 	struct mutex cleaner_mutex;
561 	struct mutex chunk_mutex;
562 
563 	/*
564 	 * This is taken to make sure we don't set block groups ro after the
565 	 * free space cache has been allocated on them.
566 	 */
567 	struct mutex ro_block_group_mutex;
568 
569 	/*
570 	 * This is used during read/modify/write to make sure no two ios are
571 	 * trying to mod the same stripe at the same time.
572 	 */
573 	struct btrfs_stripe_hash_table *stripe_hash_table;
574 
575 	/*
576 	 * This protects the ordered operations list only while we are
577 	 * processing all of the entries on it.  This way we make sure the
578 	 * commit code doesn't find the list temporarily empty because another
579 	 * function happens to be doing non-waiting preflush before jumping
580 	 * into the main commit.
581 	 */
582 	struct mutex ordered_operations_mutex;
583 
584 	struct rw_semaphore commit_root_sem;
585 
586 	struct rw_semaphore cleanup_work_sem;
587 
588 	struct rw_semaphore subvol_sem;
589 
590 	spinlock_t trans_lock;
591 	/*
592 	 * The reloc mutex goes with the trans lock, it is taken during commit
593 	 * to protect us from the relocation code.
594 	 */
595 	struct mutex reloc_mutex;
596 
597 	struct list_head trans_list;
598 	struct list_head dead_roots;
599 	struct list_head caching_block_groups;
600 
601 	spinlock_t delayed_iput_lock;
602 	struct list_head delayed_iputs;
603 	atomic_t nr_delayed_iputs;
604 	wait_queue_head_t delayed_iputs_wait;
605 
606 	atomic64_t tree_mod_seq;
607 
608 	/* This protects tree_mod_log and tree_mod_seq_list */
609 	rwlock_t tree_mod_log_lock;
610 	struct rb_root tree_mod_log;
611 	struct list_head tree_mod_seq_list;
612 
613 	atomic_t async_delalloc_pages;
614 
615 	/* This is used to protect the following list -- ordered_roots. */
616 	spinlock_t ordered_root_lock;
617 
618 	/*
619 	 * All fs/file tree roots in which there are data=ordered extents
620 	 * pending writeback are added into this list.
621 	 *
622 	 * These can span multiple transactions and basically include every
623 	 * dirty data page that isn't from nodatacow.
624 	 */
625 	struct list_head ordered_roots;
626 
627 	struct mutex delalloc_root_mutex;
628 	spinlock_t delalloc_root_lock;
629 	/* All fs/file tree roots that have delalloc inodes. */
630 	struct list_head delalloc_roots;
631 
632 	/*
633 	 * There is a pool of worker threads for checksumming during writes and
634 	 * a pool for checksumming after reads.  This is because readers can
635 	 * run with FS locks held, and the writers may be waiting for those
636 	 * locks.  We don't want ordering in the pending list to cause
637 	 * deadlocks, and so the two are serviced separately.
638 	 *
639 	 * A third pool does submit_bio to avoid deadlocking with the other two.
640 	 */
641 	struct btrfs_workqueue *workers;
642 	struct btrfs_workqueue *delalloc_workers;
643 	struct btrfs_workqueue *flush_workers;
644 	struct workqueue_struct *endio_workers;
645 	struct workqueue_struct *endio_meta_workers;
646 	struct workqueue_struct *rmw_workers;
647 	struct workqueue_struct *compressed_write_workers;
648 	struct btrfs_workqueue *endio_write_workers;
649 	struct btrfs_workqueue *endio_freespace_worker;
650 	struct btrfs_workqueue *caching_workers;
651 
652 	/*
653 	 * Fixup workers take dirty pages that didn't properly go through the
654 	 * cow mechanism and make them safe to write.  It happens for the
655 	 * sys_munmap function call path.
656 	 */
657 	struct btrfs_workqueue *fixup_workers;
658 	struct btrfs_workqueue *delayed_workers;
659 
660 	struct task_struct *transaction_kthread;
661 	struct task_struct *cleaner_kthread;
662 	u32 thread_pool_size;
663 
664 	struct kobject *space_info_kobj;
665 	struct kobject *qgroups_kobj;
666 	struct kobject *discard_kobj;
667 
668 	/* Track the number of blocks (sectors) read by the filesystem. */
669 	struct percpu_counter stats_read_blocks;
670 
671 	/* Used to keep from writing metadata until there is a nice batch */
672 	struct percpu_counter dirty_metadata_bytes;
673 	struct percpu_counter delalloc_bytes;
674 	struct percpu_counter ordered_bytes;
675 	s32 dirty_metadata_batch;
676 	s32 delalloc_batch;
677 
678 	struct percpu_counter evictable_extent_maps;
679 	u64 em_shrinker_last_root;
680 	u64 em_shrinker_last_ino;
681 	atomic64_t em_shrinker_nr_to_scan;
682 	struct work_struct em_shrinker_work;
683 
684 	/* Protected by 'trans_lock'. */
685 	struct list_head dirty_cowonly_roots;
686 
687 	struct btrfs_fs_devices *fs_devices;
688 
689 	/*
690 	 * The space_info list is effectively read only after initial setup.
691 	 * It is populated at mount time and cleaned up after all block groups
692 	 * are removed.  RCU is used to protect it.
693 	 */
694 	struct list_head space_info;
695 
696 	struct btrfs_space_info *data_sinfo;
697 
698 	struct reloc_control *reloc_ctl;
699 
700 	/* data_alloc_cluster is only used in ssd_spread mode */
701 	struct btrfs_free_cluster data_alloc_cluster;
702 
703 	/* All metadata allocations go through this cluster. */
704 	struct btrfs_free_cluster meta_alloc_cluster;
705 
706 	/* Auto defrag inodes go here. */
707 	spinlock_t defrag_inodes_lock;
708 	struct rb_root defrag_inodes;
709 	atomic_t defrag_running;
710 
711 	/* Used to protect avail_{data, metadata, system}_alloc_bits */
712 	seqlock_t profiles_lock;
713 	/*
714 	 * These three are in extended format (availability of single chunks is
715 	 * denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other types are denoted
716 	 * by corresponding BTRFS_BLOCK_GROUP_* bits)
717 	 */
718 	u64 avail_data_alloc_bits;
719 	u64 avail_metadata_alloc_bits;
720 	u64 avail_system_alloc_bits;
721 
722 	/* Balance state */
723 	spinlock_t balance_lock;
724 	struct mutex balance_mutex;
725 	atomic_t balance_pause_req;
726 	atomic_t balance_cancel_req;
727 	struct btrfs_balance_control *balance_ctl;
728 	wait_queue_head_t balance_wait_q;
729 
730 	/* Cancellation requests for chunk relocation */
731 	atomic_t reloc_cancel_req;
732 
733 	u32 data_chunk_allocations;
734 	u32 metadata_ratio;
735 
736 	/* Private scrub information */
737 	struct mutex scrub_lock;
738 	atomic_t scrubs_running;
739 	atomic_t scrub_pause_req;
740 	atomic_t scrubs_paused;
741 	atomic_t scrub_cancel_req;
742 	wait_queue_head_t scrub_pause_wait;
743 	/*
744 	 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not
745 	 * running.
746 	 */
747 	refcount_t scrub_workers_refcnt;
748 	struct workqueue_struct *scrub_workers;
749 
750 	struct btrfs_discard_ctl discard_ctl;
751 
752 	/* Is qgroup tracking in a consistent state? */
753 	u64 qgroup_flags;
754 
755 	/* Holds configuration and tracking. Protected by qgroup_lock. */
756 	struct rb_root qgroup_tree;
757 	spinlock_t qgroup_lock;
758 
759 	/*
760 	 * Protect user change for quota operations. If a transaction is needed,
761 	 * it must be started before locking this lock.
762 	 */
763 	struct mutex qgroup_ioctl_lock;
764 
765 	/* List of dirty qgroups to be written at next commit. */
766 	struct list_head dirty_qgroups;
767 
768 	/* Used by qgroup for an efficient tree traversal. */
769 	u64 qgroup_seq;
770 
771 	/* Qgroup rescan items. */
772 	/* Protects the progress item */
773 	struct mutex qgroup_rescan_lock;
774 	struct btrfs_key qgroup_rescan_progress;
775 	struct btrfs_workqueue *qgroup_rescan_workers;
776 	struct completion qgroup_rescan_completion;
777 	struct btrfs_work qgroup_rescan_work;
778 	/* Protected by qgroup_rescan_lock */
779 	bool qgroup_rescan_running;
780 	u8 qgroup_drop_subtree_thres;
781 	u64 qgroup_enable_gen;
782 
783 	/*
784 	 * If this is not 0, then it indicates a serious filesystem error has
785 	 * happened and it contains that error (negative errno value).
786 	 */
787 	int fs_error;
788 
789 	/* Filesystem state */
790 	unsigned long fs_state;
791 
792 	struct btrfs_delayed_root *delayed_root;
793 
794 	/* Entries are eb->start >> nodesize_bits */
795 	struct xarray buffer_tree;
796 
797 	/* Next backup root to be overwritten */
798 	int backup_root_index;
799 
800 	/* Device replace state */
801 	struct btrfs_dev_replace dev_replace;
802 
803 	struct semaphore uuid_tree_rescan_sem;
804 
805 	/* Used to reclaim the metadata space in the background. */
806 	struct work_struct async_reclaim_work;
807 	struct work_struct async_data_reclaim_work;
808 	struct work_struct preempt_reclaim_work;
809 
810 	/* Reclaim partially filled block groups in the background */
811 	struct work_struct reclaim_bgs_work;
812 	/* Protected by unused_bgs_lock. */
813 	struct list_head reclaim_bgs;
814 	int bg_reclaim_threshold;
815 
816 	/* Protects the lists unused_bgs and reclaim_bgs. */
817 	spinlock_t unused_bgs_lock;
818 	/* Protected by unused_bgs_lock. */
819 	struct list_head unused_bgs;
820 	struct mutex unused_bg_unpin_mutex;
821 	/* Protect block groups that are going to be deleted */
822 	struct mutex reclaim_bgs_lock;
823 
824 	/* Cached block sizes */
825 	u32 nodesize;
826 	u32 nodesize_bits;
827 	u32 sectorsize;
828 	/* ilog2 of sectorsize, use to avoid 64bit division */
829 	u32 sectorsize_bits;
830 	u32 block_min_order;
831 	u32 block_max_order;
832 	u32 csum_size;
833 	u32 csums_per_leaf;
834 	u32 stripesize;
835 
836 	/*
837 	 * Maximum size of an extent. BTRFS_MAX_EXTENT_SIZE on regular
838 	 * filesystem, on zoned it depends on the device constraints.
839 	 */
840 	u64 max_extent_size;
841 
842 	/* Block groups and devices containing active swapfiles. */
843 	spinlock_t swapfile_pins_lock;
844 	struct rb_root swapfile_pins;
845 
846 	struct crypto_shash *csum_shash;
847 
848 	/* Type of exclusive operation running, protected by super_lock */
849 	enum btrfs_exclusive_operation exclusive_operation;
850 
851 	/*
852 	 * Zone size > 0 when in ZONED mode, otherwise it's used for a check
853 	 * if the mode is enabled
854 	 */
855 	u64 zone_size;
856 
857 	/* Constraints for ZONE_APPEND commands: */
858 	struct queue_limits limits;
859 	u64 max_zone_append_size;
860 
861 	struct mutex zoned_meta_io_lock;
862 	spinlock_t treelog_bg_lock;
863 	u64 treelog_bg;
864 
865 	/*
866 	 * Start of the dedicated data relocation block group, protected by
867 	 * relocation_bg_lock.
868 	 */
869 	spinlock_t relocation_bg_lock;
870 	u64 data_reloc_bg;
871 	struct mutex zoned_data_reloc_io_lock;
872 
873 	struct btrfs_block_group *active_meta_bg;
874 	struct btrfs_block_group *active_system_bg;
875 
876 	u64 nr_global_roots;
877 
878 	spinlock_t zone_active_bgs_lock;
879 	struct list_head zone_active_bgs;
880 
881 	/* Updates are not protected by any lock */
882 	struct btrfs_commit_stats commit_stats;
883 
884 	/*
885 	 * Last generation where we dropped a non-relocation root.
886 	 * Use btrfs_set_last_root_drop_gen() and btrfs_get_last_root_drop_gen()
887 	 * to change it and to read it, respectively.
888 	 */
889 	u64 last_root_drop_gen;
890 
891 	/*
892 	 * Annotations for transaction events (structures are empty when
893 	 * compiled without lockdep).
894 	 */
895 	struct lockdep_map btrfs_trans_num_writers_map;
896 	struct lockdep_map btrfs_trans_num_extwriters_map;
897 	struct lockdep_map btrfs_state_change_map[4];
898 	struct lockdep_map btrfs_trans_pending_ordered_map;
899 	struct lockdep_map btrfs_ordered_extent_map;
900 
901 #ifdef CONFIG_BTRFS_DEBUG
902 	spinlock_t ref_verify_lock;
903 	struct rb_root block_tree;
904 
905 	struct kobject *debug_kobj;
906 	struct list_head allocated_roots;
907 
908 	spinlock_t eb_leak_lock;
909 	struct list_head allocated_ebs;
910 #endif
911 };
912 
913 #define folio_to_inode(_folio)	(BTRFS_I(_Generic((_folio),			\
914 					  struct folio *: (_folio))->mapping->host))
915 
916 #define folio_to_fs_info(_folio) (folio_to_inode(_folio)->root->fs_info)
917 
918 #define inode_to_fs_info(_inode) (BTRFS_I(_Generic((_inode),			\
919 					   struct inode *: (_inode)))->root->fs_info)
920 
btrfs_alloc_write_mask(struct address_space * mapping)921 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
922 {
923 	return mapping_gfp_constraint(mapping, ~__GFP_FS);
924 }
925 
926 /* Return the minimal folio size of the fs. */
btrfs_min_folio_size(struct btrfs_fs_info * fs_info)927 static inline unsigned int btrfs_min_folio_size(struct btrfs_fs_info *fs_info)
928 {
929 	return 1U << (PAGE_SHIFT + fs_info->block_min_order);
930 }
931 
btrfs_get_fs_generation(const struct btrfs_fs_info * fs_info)932 static inline u64 btrfs_get_fs_generation(const struct btrfs_fs_info *fs_info)
933 {
934 	return READ_ONCE(fs_info->generation);
935 }
936 
btrfs_set_fs_generation(struct btrfs_fs_info * fs_info,u64 gen)937 static inline void btrfs_set_fs_generation(struct btrfs_fs_info *fs_info, u64 gen)
938 {
939 	WRITE_ONCE(fs_info->generation, gen);
940 }
941 
btrfs_get_last_trans_committed(const struct btrfs_fs_info * fs_info)942 static inline u64 btrfs_get_last_trans_committed(const struct btrfs_fs_info *fs_info)
943 {
944 	return READ_ONCE(fs_info->last_trans_committed);
945 }
946 
btrfs_set_last_trans_committed(struct btrfs_fs_info * fs_info,u64 gen)947 static inline void btrfs_set_last_trans_committed(struct btrfs_fs_info *fs_info, u64 gen)
948 {
949 	WRITE_ONCE(fs_info->last_trans_committed, gen);
950 }
951 
btrfs_set_last_root_drop_gen(struct btrfs_fs_info * fs_info,u64 gen)952 static inline void btrfs_set_last_root_drop_gen(struct btrfs_fs_info *fs_info,
953 						u64 gen)
954 {
955 	WRITE_ONCE(fs_info->last_root_drop_gen, gen);
956 }
957 
btrfs_get_last_root_drop_gen(const struct btrfs_fs_info * fs_info)958 static inline u64 btrfs_get_last_root_drop_gen(const struct btrfs_fs_info *fs_info)
959 {
960 	return READ_ONCE(fs_info->last_root_drop_gen);
961 }
962 
963 /*
964  * Take the number of bytes to be checksummed and figure out how many leaves
965  * it would require to store the csums for that many bytes.
966  */
btrfs_csum_bytes_to_leaves(const struct btrfs_fs_info * fs_info,u64 csum_bytes)967 static inline u64 btrfs_csum_bytes_to_leaves(
968 			const struct btrfs_fs_info *fs_info, u64 csum_bytes)
969 {
970 	const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits;
971 
972 	return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf);
973 }
974 
975 /*
976  * Use this if we would be adding new items, as we could split nodes as we cow
977  * down the tree.
978  */
btrfs_calc_insert_metadata_size(const struct btrfs_fs_info * fs_info,unsigned num_items)979 static inline u64 btrfs_calc_insert_metadata_size(const struct btrfs_fs_info *fs_info,
980 						  unsigned num_items)
981 {
982 	return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items;
983 }
984 
985 /*
986  * Doing a truncate or a modification won't result in new nodes or leaves, just
987  * what we need for COW.
988  */
btrfs_calc_metadata_size(const struct btrfs_fs_info * fs_info,unsigned num_items)989 static inline u64 btrfs_calc_metadata_size(const struct btrfs_fs_info *fs_info,
990 						 unsigned num_items)
991 {
992 	return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items;
993 }
994 
995 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \
996 					sizeof(struct btrfs_item))
997 
998 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) ((bytes) >> (fs_info)->sectorsize_bits)
999 
btrfs_is_zoned(const struct btrfs_fs_info * fs_info)1000 static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info)
1001 {
1002 	return IS_ENABLED(CONFIG_BLK_DEV_ZONED) && fs_info->zone_size > 0;
1003 }
1004 
1005 /*
1006  * Count how many fs_info->max_extent_size cover the @size
1007  */
count_max_extents(const struct btrfs_fs_info * fs_info,u64 size)1008 static inline u32 count_max_extents(const struct btrfs_fs_info *fs_info, u64 size)
1009 {
1010 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1011 	if (!fs_info)
1012 		return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE);
1013 #endif
1014 
1015 	return div_u64(size + fs_info->max_extent_size - 1, fs_info->max_extent_size);
1016 }
1017 
btrfs_blocks_per_folio(const struct btrfs_fs_info * fs_info,const struct folio * folio)1018 static inline unsigned int btrfs_blocks_per_folio(const struct btrfs_fs_info *fs_info,
1019 						  const struct folio *folio)
1020 {
1021 	return folio_size(folio) >> fs_info->sectorsize_bits;
1022 }
1023 
1024 bool __attribute_const__ btrfs_supported_blocksize(u32 blocksize);
1025 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
1026 			enum btrfs_exclusive_operation type);
1027 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
1028 				 enum btrfs_exclusive_operation type);
1029 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info);
1030 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info);
1031 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
1032 			  enum btrfs_exclusive_operation op);
1033 
1034 int btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args *vol_args);
1035 
1036 u16 btrfs_csum_type_size(u16 type);
1037 int btrfs_super_csum_size(const struct btrfs_super_block *s);
1038 const char *btrfs_super_csum_name(u16 csum_type);
1039 const char *btrfs_super_csum_driver(u16 csum_type);
1040 size_t __attribute_const__ btrfs_get_num_csums(void);
1041 
btrfs_is_empty_uuid(const u8 * uuid)1042 static inline bool btrfs_is_empty_uuid(const u8 *uuid)
1043 {
1044 	return uuid_is_null((const uuid_t *)uuid);
1045 }
1046 
1047 /* Compatibility and incompatibility defines */
1048 void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag,
1049 			     const char *name);
1050 void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag,
1051 			       const char *name);
1052 void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag,
1053 			      const char *name);
1054 void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag,
1055 				const char *name);
1056 
1057 #define __btrfs_fs_incompat(fs_info, flags)				\
1058 	(!!(btrfs_super_incompat_flags((fs_info)->super_copy) & (flags)))
1059 
1060 #define __btrfs_fs_compat_ro(fs_info, flags)				\
1061 	(!!(btrfs_super_compat_ro_flags((fs_info)->super_copy) & (flags)))
1062 
1063 #define btrfs_set_fs_incompat(__fs_info, opt)				\
1064 	__btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, #opt)
1065 
1066 #define btrfs_clear_fs_incompat(__fs_info, opt)				\
1067 	__btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, #opt)
1068 
1069 #define btrfs_fs_incompat(fs_info, opt)					\
1070 	__btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
1071 
1072 #define btrfs_set_fs_compat_ro(__fs_info, opt)				\
1073 	__btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, #opt)
1074 
1075 #define btrfs_clear_fs_compat_ro(__fs_info, opt)			\
1076 	__btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, #opt)
1077 
1078 #define btrfs_fs_compat_ro(fs_info, opt)				\
1079 	__btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
1080 
1081 #define btrfs_clear_opt(o, opt)		((o) &= ~BTRFS_MOUNT_##opt)
1082 #define btrfs_set_opt(o, opt)		((o) |= BTRFS_MOUNT_##opt)
1083 #define btrfs_raw_test_opt(o, opt)	((o) & BTRFS_MOUNT_##opt)
1084 #define btrfs_test_opt(fs_info, opt)	((fs_info)->mount_opt & \
1085 					 BTRFS_MOUNT_##opt)
1086 
btrfs_fs_closing(const struct btrfs_fs_info * fs_info)1087 static inline int btrfs_fs_closing(const struct btrfs_fs_info *fs_info)
1088 {
1089 	/* Do it this way so we only ever do one test_bit in the normal case. */
1090 	if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) {
1091 		if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags))
1092 			return 2;
1093 		return 1;
1094 	}
1095 	return 0;
1096 }
1097 
1098 /*
1099  * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
1100  * anything except sleeping. This function is used to check the status of
1101  * the fs.
1102  * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount,
1103  * since setting and checking for SB_RDONLY in the superblock's flags is not
1104  * atomic.
1105  */
btrfs_need_cleaner_sleep(const struct btrfs_fs_info * fs_info)1106 static inline int btrfs_need_cleaner_sleep(const struct btrfs_fs_info *fs_info)
1107 {
1108 	return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) ||
1109 		btrfs_fs_closing(fs_info);
1110 }
1111 
btrfs_wake_unfinished_drop(struct btrfs_fs_info * fs_info)1112 static inline void btrfs_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1113 {
1114 	clear_and_wake_up_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags);
1115 }
1116 
1117 #define BTRFS_FS_ERROR(fs_info)	(READ_ONCE((fs_info)->fs_error))
1118 
1119 #define BTRFS_FS_LOG_CLEANUP_ERROR(fs_info)				\
1120 	(unlikely(test_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,		\
1121 			   &(fs_info)->fs_state)))
1122 
1123 /*
1124  * We use folio flag owner_2 to indicate there is an ordered extent with
1125  * unfinished IO.
1126  */
1127 #define folio_test_ordered(folio)	folio_test_owner_2(folio)
1128 #define folio_set_ordered(folio)	folio_set_owner_2(folio)
1129 #define folio_clear_ordered(folio)	folio_clear_owner_2(folio)
1130 
1131 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1132 
1133 #define EXPORT_FOR_TESTS
1134 
btrfs_is_testing(const struct btrfs_fs_info * fs_info)1135 static inline bool btrfs_is_testing(const struct btrfs_fs_info *fs_info)
1136 {
1137 	return unlikely(test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state));
1138 }
1139 
1140 void btrfs_test_destroy_inode(struct inode *inode);
1141 
1142 #else
1143 
1144 #define EXPORT_FOR_TESTS static
1145 
btrfs_is_testing(const struct btrfs_fs_info * fs_info)1146 static inline bool btrfs_is_testing(const struct btrfs_fs_info *fs_info)
1147 {
1148 	return false;
1149 }
1150 #endif
1151 
1152 #endif
1153