1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This header defines architecture specific interfaces, x86 version
6 */
7
8 #ifndef _ASM_X86_KVM_HOST_H
9 #define _ASM_X86_KVM_HOST_H
10
11 #include <linux/types.h>
12 #include <linux/mm.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/tracepoint.h>
15 #include <linux/cpumask.h>
16 #include <linux/irq_work.h>
17 #include <linux/irq.h>
18 #include <linux/workqueue.h>
19
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22 #include <linux/kvm_types.h>
23 #include <linux/perf_event.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/clocksource.h>
26 #include <linux/irqbypass.h>
27 #include <linux/kfifo.h>
28 #include <linux/sched/vhost_task.h>
29 #include <linux/call_once.h>
30 #include <linux/atomic.h>
31
32 #include <asm/apic.h>
33 #include <asm/pvclock-abi.h>
34 #include <asm/debugreg.h>
35 #include <asm/desc.h>
36 #include <asm/mtrr.h>
37 #include <asm/msr-index.h>
38 #include <asm/msr.h>
39 #include <asm/asm.h>
40 #include <asm/irq_remapping.h>
41 #include <asm/kvm_page_track.h>
42 #include <asm/kvm_vcpu_regs.h>
43 #include <asm/reboot.h>
44 #include <hyperv/hvhdk.h>
45
46 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
47
48 /*
49 * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if
50 * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS).
51 */
52 #ifdef CONFIG_KVM_MAX_NR_VCPUS
53 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS
54 #else
55 #define KVM_MAX_VCPUS 1024
56 #endif
57
58 /*
59 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
60 * might be larger than the actual number of VCPUs because the
61 * APIC ID encodes CPU topology information.
62 *
63 * In the worst case, we'll need less than one extra bit for the
64 * Core ID, and less than one extra bit for the Package (Die) ID,
65 * so ratio of 4 should be enough.
66 */
67 #define KVM_VCPU_ID_RATIO 4
68 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
69
70 /* memory slots that are not exposed to userspace */
71 #define KVM_INTERNAL_MEM_SLOTS 3
72
73 #define KVM_HALT_POLL_NS_DEFAULT 200000
74
75 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS
76
77 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
78 KVM_DIRTY_LOG_INITIALLY_SET)
79
80 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \
81 KVM_BUS_LOCK_DETECTION_EXIT)
82
83 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS (KVM_X86_NOTIFY_VMEXIT_ENABLED | \
84 KVM_X86_NOTIFY_VMEXIT_USER)
85
86 /* x86-specific vcpu->requests bit members */
87 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0)
88 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1)
89 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2)
90 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3)
91 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4)
92 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5)
93 #define KVM_REQ_EVENT KVM_ARCH_REQ(6)
94 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7)
95 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8)
96 #define KVM_REQ_NMI KVM_ARCH_REQ(9)
97 #define KVM_REQ_PMU KVM_ARCH_REQ(10)
98 #define KVM_REQ_PMI KVM_ARCH_REQ(11)
99 #ifdef CONFIG_KVM_SMM
100 #define KVM_REQ_SMI KVM_ARCH_REQ(12)
101 #endif
102 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13)
103 #define KVM_REQ_MCLOCK_INPROGRESS \
104 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
105 #define KVM_REQ_SCAN_IOAPIC \
106 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
107 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16)
108 #define KVM_REQ_APIC_PAGE_RELOAD \
109 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
110 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18)
111 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19)
112 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20)
113 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21)
114 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22)
115 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23)
116 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24)
117 #define KVM_REQ_APICV_UPDATE \
118 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
119 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26)
120 #define KVM_REQ_TLB_FLUSH_GUEST \
121 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
122 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28)
123 #define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29)
124 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
125 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
126 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
127 KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
128 #define KVM_REQ_HV_TLB_FLUSH \
129 KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
130 #define KVM_REQ_UPDATE_PROTECTED_GUEST_STATE \
131 KVM_ARCH_REQ_FLAGS(34, KVM_REQUEST_WAIT)
132
133 #define CR0_RESERVED_BITS \
134 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
135 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
136 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
137
138 #define CR4_RESERVED_BITS \
139 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
140 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
141 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
142 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
143 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
144 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \
145 | X86_CR4_LAM_SUP))
146
147 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
148
149
150
151 #define INVALID_PAGE (~(hpa_t)0)
152 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
153
154 /* KVM Hugepage definitions for x86 */
155 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G
156 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
157 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9)
158 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
159 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x))
160 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1))
161 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE)
162
163 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
164 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
165 #define KVM_MMU_HASH_SHIFT 12
166 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
167 #define KVM_MIN_FREE_MMU_PAGES 5
168 #define KVM_REFILL_PAGES 25
169 #define KVM_MAX_CPUID_ENTRIES 256
170 #define KVM_NR_VAR_MTRR 8
171
172 #define ASYNC_PF_PER_VCPU 64
173
174 enum kvm_reg {
175 VCPU_REGS_RAX = __VCPU_REGS_RAX,
176 VCPU_REGS_RCX = __VCPU_REGS_RCX,
177 VCPU_REGS_RDX = __VCPU_REGS_RDX,
178 VCPU_REGS_RBX = __VCPU_REGS_RBX,
179 VCPU_REGS_RSP = __VCPU_REGS_RSP,
180 VCPU_REGS_RBP = __VCPU_REGS_RBP,
181 VCPU_REGS_RSI = __VCPU_REGS_RSI,
182 VCPU_REGS_RDI = __VCPU_REGS_RDI,
183 #ifdef CONFIG_X86_64
184 VCPU_REGS_R8 = __VCPU_REGS_R8,
185 VCPU_REGS_R9 = __VCPU_REGS_R9,
186 VCPU_REGS_R10 = __VCPU_REGS_R10,
187 VCPU_REGS_R11 = __VCPU_REGS_R11,
188 VCPU_REGS_R12 = __VCPU_REGS_R12,
189 VCPU_REGS_R13 = __VCPU_REGS_R13,
190 VCPU_REGS_R14 = __VCPU_REGS_R14,
191 VCPU_REGS_R15 = __VCPU_REGS_R15,
192 #endif
193 VCPU_REGS_RIP,
194 NR_VCPU_REGS,
195
196 VCPU_EXREG_PDPTR = NR_VCPU_REGS,
197 VCPU_EXREG_CR0,
198 VCPU_EXREG_CR3,
199 VCPU_EXREG_CR4,
200 VCPU_EXREG_RFLAGS,
201 VCPU_EXREG_SEGMENTS,
202 VCPU_EXREG_EXIT_INFO_1,
203 VCPU_EXREG_EXIT_INFO_2,
204 };
205
206 enum {
207 VCPU_SREG_ES,
208 VCPU_SREG_CS,
209 VCPU_SREG_SS,
210 VCPU_SREG_DS,
211 VCPU_SREG_FS,
212 VCPU_SREG_GS,
213 VCPU_SREG_TR,
214 VCPU_SREG_LDTR,
215 };
216
217 enum exit_fastpath_completion {
218 EXIT_FASTPATH_NONE,
219 EXIT_FASTPATH_REENTER_GUEST,
220 EXIT_FASTPATH_EXIT_HANDLED,
221 EXIT_FASTPATH_EXIT_USERSPACE,
222 };
223 typedef enum exit_fastpath_completion fastpath_t;
224
225 struct x86_emulate_ctxt;
226 struct x86_exception;
227 union kvm_smram;
228 enum x86_intercept;
229 enum x86_intercept_stage;
230
231 #define KVM_NR_DB_REGS 4
232
233 #define DR6_BUS_LOCK (1 << 11)
234 #define DR6_BD (1 << 13)
235 #define DR6_BS (1 << 14)
236 #define DR6_BT (1 << 15)
237 #define DR6_RTM (1 << 16)
238 /*
239 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
240 * We can regard all the bits in DR6_FIXED_1 as active_low bits;
241 * they will never be 0 for now, but when they are defined
242 * in the future it will require no code change.
243 *
244 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
245 */
246 #define DR6_ACTIVE_LOW 0xffff0ff0
247 #define DR6_VOLATILE 0x0001e80f
248 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE)
249
250 #define DR7_BP_EN_MASK 0x000000ff
251 #define DR7_GE (1 << 9)
252 #define DR7_GD (1 << 13)
253 #define DR7_VOLATILE 0xffff2bff
254
255 #define KVM_GUESTDBG_VALID_MASK \
256 (KVM_GUESTDBG_ENABLE | \
257 KVM_GUESTDBG_SINGLESTEP | \
258 KVM_GUESTDBG_USE_HW_BP | \
259 KVM_GUESTDBG_USE_SW_BP | \
260 KVM_GUESTDBG_INJECT_BP | \
261 KVM_GUESTDBG_INJECT_DB | \
262 KVM_GUESTDBG_BLOCKIRQ)
263
264 #define PFERR_PRESENT_MASK BIT(0)
265 #define PFERR_WRITE_MASK BIT(1)
266 #define PFERR_USER_MASK BIT(2)
267 #define PFERR_RSVD_MASK BIT(3)
268 #define PFERR_FETCH_MASK BIT(4)
269 #define PFERR_PK_MASK BIT(5)
270 #define PFERR_SGX_MASK BIT(15)
271 #define PFERR_GUEST_RMP_MASK BIT_ULL(31)
272 #define PFERR_GUEST_FINAL_MASK BIT_ULL(32)
273 #define PFERR_GUEST_PAGE_MASK BIT_ULL(33)
274 #define PFERR_GUEST_ENC_MASK BIT_ULL(34)
275 #define PFERR_GUEST_SIZEM_MASK BIT_ULL(35)
276 #define PFERR_GUEST_VMPL_MASK BIT_ULL(36)
277
278 /*
279 * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks
280 * when emulating instructions that triggers implicit access.
281 */
282 #define PFERR_IMPLICIT_ACCESS BIT_ULL(48)
283 /*
284 * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred
285 * when the guest was accessing private memory.
286 */
287 #define PFERR_PRIVATE_ACCESS BIT_ULL(49)
288 #define PFERR_SYNTHETIC_MASK (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS)
289
290 /* apic attention bits */
291 #define KVM_APIC_CHECK_VAPIC 0
292 /*
293 * The following bit is set with PV-EOI, unset on EOI.
294 * We detect PV-EOI changes by guest by comparing
295 * this bit with PV-EOI in guest memory.
296 * See the implementation in apic_update_pv_eoi.
297 */
298 #define KVM_APIC_PV_EOI_PENDING 1
299
300 struct kvm_kernel_irq_routing_entry;
301
302 /*
303 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
304 * also includes TDP pages) to determine whether or not a page can be used in
305 * the given MMU context. This is a subset of the overall kvm_cpu_role to
306 * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows
307 * allocating 2 bytes per gfn instead of 4 bytes per gfn.
308 *
309 * Upper-level shadow pages having gptes are tracked for write-protection via
310 * gfn_write_track. As above, gfn_write_track is a 16 bit counter, so KVM must
311 * not create more than 2^16-1 upper-level shadow pages at a single gfn,
312 * otherwise gfn_write_track will overflow and explosions will ensue.
313 *
314 * A unique shadow page (SP) for a gfn is created if and only if an existing SP
315 * cannot be reused. The ability to reuse a SP is tracked by its role, which
316 * incorporates various mode bits and properties of the SP. Roughly speaking,
317 * the number of unique SPs that can theoretically be created is 2^n, where n
318 * is the number of bits that are used to compute the role.
319 *
320 * But, even though there are 20 bits in the mask below, not all combinations
321 * of modes and flags are possible:
322 *
323 * - invalid shadow pages are not accounted, mirror pages are not shadowed,
324 * so the bits are effectively 18.
325 *
326 * - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
327 * execonly and ad_disabled are only used for nested EPT which has
328 * has_4_byte_gpte=0. Therefore, 2 bits are always unused.
329 *
330 * - the 4 bits of level are effectively limited to the values 2/3/4/5,
331 * as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE
332 * paging has exactly one upper level, making level completely redundant
333 * when has_4_byte_gpte=1.
334 *
335 * - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
336 * cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
337 *
338 * Therefore, the maximum number of possible upper-level shadow pages for a
339 * single gfn is a bit less than 2^13.
340 */
341 union kvm_mmu_page_role {
342 u32 word;
343 struct {
344 unsigned level:4;
345 unsigned has_4_byte_gpte:1;
346 unsigned quadrant:2;
347 unsigned direct:1;
348 unsigned access:3;
349 unsigned invalid:1;
350 unsigned efer_nx:1;
351 unsigned cr0_wp:1;
352 unsigned smep_andnot_wp:1;
353 unsigned smap_andnot_wp:1;
354 unsigned ad_disabled:1;
355 unsigned guest_mode:1;
356 unsigned passthrough:1;
357 unsigned is_mirror:1;
358 unsigned :4;
359
360 /*
361 * This is left at the top of the word so that
362 * kvm_memslots_for_spte_role can extract it with a
363 * simple shift. While there is room, give it a whole
364 * byte so it is also faster to load it from memory.
365 */
366 unsigned smm:8;
367 };
368 };
369
370 /*
371 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
372 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER,
373 * including on nested transitions, if nothing in the full role changes then
374 * MMU re-configuration can be skipped. @valid bit is set on first usage so we
375 * don't treat all-zero structure as valid data.
376 *
377 * The properties that are tracked in the extended role but not the page role
378 * are for things that either (a) do not affect the validity of the shadow page
379 * or (b) are indirectly reflected in the shadow page's role. For example,
380 * CR4.PKE only affects permission checks for software walks of the guest page
381 * tables (because KVM doesn't support Protection Keys with shadow paging), and
382 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
383 *
384 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
385 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
386 * SMAP, but the MMU's permission checks for software walks need to be SMEP and
387 * SMAP aware regardless of CR0.WP.
388 */
389 union kvm_mmu_extended_role {
390 u32 word;
391 struct {
392 unsigned int valid:1;
393 unsigned int execonly:1;
394 unsigned int cr4_pse:1;
395 unsigned int cr4_pke:1;
396 unsigned int cr4_smap:1;
397 unsigned int cr4_smep:1;
398 unsigned int cr4_la57:1;
399 unsigned int efer_lma:1;
400 };
401 };
402
403 union kvm_cpu_role {
404 u64 as_u64;
405 struct {
406 union kvm_mmu_page_role base;
407 union kvm_mmu_extended_role ext;
408 };
409 };
410
411 struct kvm_rmap_head {
412 atomic_long_t val;
413 };
414
415 struct kvm_pio_request {
416 unsigned long count;
417 int in;
418 int port;
419 int size;
420 };
421
422 #define PT64_ROOT_MAX_LEVEL 5
423
424 struct rsvd_bits_validate {
425 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
426 u64 bad_mt_xwr;
427 };
428
429 struct kvm_mmu_root_info {
430 gpa_t pgd;
431 hpa_t hpa;
432 };
433
434 #define KVM_MMU_ROOT_INFO_INVALID \
435 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
436
437 #define KVM_MMU_NUM_PREV_ROOTS 3
438
439 #define KVM_MMU_ROOT_CURRENT BIT(0)
440 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i)
441 #define KVM_MMU_ROOTS_ALL (BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1)
442
443 #define KVM_HAVE_MMU_RWLOCK
444
445 struct kvm_mmu_page;
446 struct kvm_page_fault;
447
448 /*
449 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
450 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the
451 * current mmu mode.
452 */
453 struct kvm_mmu {
454 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
455 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
456 int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
457 void (*inject_page_fault)(struct kvm_vcpu *vcpu,
458 struct x86_exception *fault);
459 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
460 gpa_t gva_or_gpa, u64 access,
461 struct x86_exception *exception);
462 int (*sync_spte)(struct kvm_vcpu *vcpu,
463 struct kvm_mmu_page *sp, int i);
464 struct kvm_mmu_root_info root;
465 hpa_t mirror_root_hpa;
466 union kvm_cpu_role cpu_role;
467 union kvm_mmu_page_role root_role;
468
469 /*
470 * The pkru_mask indicates if protection key checks are needed. It
471 * consists of 16 domains indexed by page fault error code bits [4:1],
472 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
473 * Each domain has 2 bits which are ANDed with AD and WD from PKRU.
474 */
475 u32 pkru_mask;
476
477 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
478
479 /*
480 * Bitmap; bit set = permission fault
481 * Byte index: page fault error code [4:1]
482 * Bit index: pte permissions in ACC_* format
483 */
484 u8 permissions[16];
485
486 u64 *pae_root;
487 u64 *pml4_root;
488 u64 *pml5_root;
489
490 /*
491 * check zero bits on shadow page table entries, these
492 * bits include not only hardware reserved bits but also
493 * the bits spte never used.
494 */
495 struct rsvd_bits_validate shadow_zero_check;
496
497 struct rsvd_bits_validate guest_rsvd_check;
498
499 u64 pdptrs[4]; /* pae */
500 };
501
502 enum pmc_type {
503 KVM_PMC_GP = 0,
504 KVM_PMC_FIXED,
505 };
506
507 struct kvm_pmc {
508 enum pmc_type type;
509 u8 idx;
510 bool is_paused;
511 bool intr;
512 /*
513 * Base value of the PMC counter, relative to the *consumed* count in
514 * the associated perf_event. This value includes counter updates from
515 * the perf_event and emulated_count since the last time the counter
516 * was reprogrammed, but it is *not* the current value as seen by the
517 * guest or userspace.
518 *
519 * The count is relative to the associated perf_event so that KVM
520 * doesn't need to reprogram the perf_event every time the guest writes
521 * to the counter.
522 */
523 u64 counter;
524 /*
525 * PMC events triggered by KVM emulation that haven't been fully
526 * processed, i.e. haven't undergone overflow detection.
527 */
528 u64 emulated_counter;
529 u64 eventsel;
530 struct perf_event *perf_event;
531 struct kvm_vcpu *vcpu;
532 /*
533 * only for creating or reusing perf_event,
534 * eventsel value for general purpose counters,
535 * ctrl value for fixed counters.
536 */
537 u64 current_config;
538 };
539
540 /* More counters may conflict with other existing Architectural MSRs */
541 #define KVM_MAX(a, b) ((a) >= (b) ? (a) : (b))
542 #define KVM_MAX_NR_INTEL_GP_COUNTERS 8
543 #define KVM_MAX_NR_AMD_GP_COUNTERS 6
544 #define KVM_MAX_NR_GP_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_GP_COUNTERS, \
545 KVM_MAX_NR_AMD_GP_COUNTERS)
546
547 #define KVM_MAX_NR_INTEL_FIXED_COUTNERS 3
548 #define KVM_MAX_NR_AMD_FIXED_COUTNERS 0
549 #define KVM_MAX_NR_FIXED_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_FIXED_COUTNERS, \
550 KVM_MAX_NR_AMD_FIXED_COUTNERS)
551
552 struct kvm_pmu {
553 u8 version;
554 unsigned nr_arch_gp_counters;
555 unsigned nr_arch_fixed_counters;
556 unsigned available_event_types;
557 u64 fixed_ctr_ctrl;
558 u64 fixed_ctr_ctrl_rsvd;
559 u64 global_ctrl;
560 u64 global_status;
561 u64 counter_bitmask[2];
562 u64 global_ctrl_rsvd;
563 u64 global_status_rsvd;
564 u64 reserved_bits;
565 u64 raw_event_mask;
566 struct kvm_pmc gp_counters[KVM_MAX_NR_GP_COUNTERS];
567 struct kvm_pmc fixed_counters[KVM_MAX_NR_FIXED_COUNTERS];
568
569 /*
570 * Overlay the bitmap with a 64-bit atomic so that all bits can be
571 * set in a single access, e.g. to reprogram all counters when the PMU
572 * filter changes.
573 */
574 union {
575 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
576 atomic64_t __reprogram_pmi;
577 };
578 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
579 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
580
581 u64 ds_area;
582 u64 pebs_enable;
583 u64 pebs_enable_rsvd;
584 u64 pebs_data_cfg;
585 u64 pebs_data_cfg_rsvd;
586
587 /*
588 * If a guest counter is cross-mapped to host counter with different
589 * index, its PEBS capability will be temporarily disabled.
590 *
591 * The user should make sure that this mask is updated
592 * after disabling interrupts and before perf_guest_get_msrs();
593 */
594 u64 host_cross_mapped_mask;
595
596 /*
597 * The gate to release perf_events not marked in
598 * pmc_in_use only once in a vcpu time slice.
599 */
600 bool need_cleanup;
601
602 /*
603 * The total number of programmed perf_events and it helps to avoid
604 * redundant check before cleanup if guest don't use vPMU at all.
605 */
606 u8 event_count;
607 };
608
609 struct kvm_pmu_ops;
610
611 enum {
612 KVM_DEBUGREG_BP_ENABLED = BIT(0),
613 KVM_DEBUGREG_WONT_EXIT = BIT(1),
614 /*
615 * Guest debug registers (DR0-3, DR6 and DR7) are saved/restored by
616 * hardware on exit from or enter to guest. KVM needn't switch them.
617 * DR0-3, DR6 and DR7 are set to their architectural INIT value on VM
618 * exit, host values need to be restored.
619 */
620 KVM_DEBUGREG_AUTO_SWITCH = BIT(2),
621 };
622
623 struct kvm_mtrr {
624 u64 var[KVM_NR_VAR_MTRR * 2];
625 u64 fixed_64k;
626 u64 fixed_16k[2];
627 u64 fixed_4k[8];
628 u64 deftype;
629 };
630
631 /* Hyper-V SynIC timer */
632 struct kvm_vcpu_hv_stimer {
633 struct hrtimer timer;
634 int index;
635 union hv_stimer_config config;
636 u64 count;
637 u64 exp_time;
638 struct hv_message msg;
639 bool msg_pending;
640 };
641
642 /* Hyper-V synthetic interrupt controller (SynIC)*/
643 struct kvm_vcpu_hv_synic {
644 u64 version;
645 u64 control;
646 u64 msg_page;
647 u64 evt_page;
648 atomic64_t sint[HV_SYNIC_SINT_COUNT];
649 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
650 DECLARE_BITMAP(auto_eoi_bitmap, 256);
651 DECLARE_BITMAP(vec_bitmap, 256);
652 bool active;
653 bool dont_zero_synic_pages;
654 };
655
656 /* The maximum number of entries on the TLB flush fifo. */
657 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16)
658 /*
659 * Note: the following 'magic' entry is made up by KVM to avoid putting
660 * anything besides GVA on the TLB flush fifo. It is theoretically possible
661 * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000
662 * which will look identical. KVM's action to 'flush everything' instead of
663 * flushing these particular addresses is, however, fully legitimate as
664 * flushing more than requested is always OK.
665 */
666 #define KVM_HV_TLB_FLUSHALL_ENTRY ((u64)-1)
667
668 enum hv_tlb_flush_fifos {
669 HV_L1_TLB_FLUSH_FIFO,
670 HV_L2_TLB_FLUSH_FIFO,
671 HV_NR_TLB_FLUSH_FIFOS,
672 };
673
674 struct kvm_vcpu_hv_tlb_flush_fifo {
675 spinlock_t write_lock;
676 DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE);
677 };
678
679 /* Hyper-V per vcpu emulation context */
680 struct kvm_vcpu_hv {
681 struct kvm_vcpu *vcpu;
682 u32 vp_index;
683 u64 hv_vapic;
684 s64 runtime_offset;
685 struct kvm_vcpu_hv_synic synic;
686 struct kvm_hyperv_exit exit;
687 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
688 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
689 bool enforce_cpuid;
690 struct {
691 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
692 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
693 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
694 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
695 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
696 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
697 u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */
698 u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */
699 } cpuid_cache;
700
701 struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS];
702
703 /*
704 * Preallocated buffers for handling hypercalls that pass sparse vCPU
705 * sets (for high vCPU counts, they're too large to comfortably fit on
706 * the stack).
707 */
708 u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS];
709 DECLARE_BITMAP(vcpu_mask, KVM_MAX_VCPUS);
710
711 struct hv_vp_assist_page vp_assist_page;
712
713 struct {
714 u64 pa_page_gpa;
715 u64 vm_id;
716 u32 vp_id;
717 } nested;
718 };
719
720 struct kvm_hypervisor_cpuid {
721 u32 base;
722 u32 limit;
723 };
724
725 #ifdef CONFIG_KVM_XEN
726 /* Xen HVM per vcpu emulation context */
727 struct kvm_vcpu_xen {
728 u64 hypercall_rip;
729 u32 current_runstate;
730 u8 upcall_vector;
731 struct gfn_to_pfn_cache vcpu_info_cache;
732 struct gfn_to_pfn_cache vcpu_time_info_cache;
733 struct gfn_to_pfn_cache runstate_cache;
734 struct gfn_to_pfn_cache runstate2_cache;
735 u64 last_steal;
736 u64 runstate_entry_time;
737 u64 runstate_times[4];
738 unsigned long evtchn_pending_sel;
739 u32 vcpu_id; /* The Xen / ACPI vCPU ID */
740 u32 timer_virq;
741 u64 timer_expires; /* In guest epoch */
742 atomic_t timer_pending;
743 struct hrtimer timer;
744 int poll_evtchn;
745 struct timer_list poll_timer;
746 struct kvm_hypervisor_cpuid cpuid;
747 };
748 #endif
749
750 struct kvm_queued_exception {
751 bool pending;
752 bool injected;
753 bool has_error_code;
754 u8 vector;
755 u32 error_code;
756 unsigned long payload;
757 bool has_payload;
758 };
759
760 /*
761 * Hardware-defined CPUID leafs that are either scattered by the kernel or are
762 * unknown to the kernel, but need to be directly used by KVM. Note, these
763 * word values conflict with the kernel's "bug" caps, but KVM doesn't use those.
764 */
765 enum kvm_only_cpuid_leafs {
766 CPUID_12_EAX = NCAPINTS,
767 CPUID_7_1_EDX,
768 CPUID_8000_0007_EDX,
769 CPUID_8000_0022_EAX,
770 CPUID_7_2_EDX,
771 CPUID_24_0_EBX,
772 CPUID_8000_0021_ECX,
773 NR_KVM_CPU_CAPS,
774
775 NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS,
776 };
777
778 struct kvm_vcpu_arch {
779 /*
780 * rip and regs accesses must go through
781 * kvm_{register,rip}_{read,write} functions.
782 */
783 unsigned long regs[NR_VCPU_REGS];
784 u32 regs_avail;
785 u32 regs_dirty;
786
787 unsigned long cr0;
788 unsigned long cr0_guest_owned_bits;
789 unsigned long cr2;
790 unsigned long cr3;
791 unsigned long cr4;
792 unsigned long cr4_guest_owned_bits;
793 unsigned long cr4_guest_rsvd_bits;
794 unsigned long cr8;
795 u32 host_pkru;
796 u32 pkru;
797 u32 hflags;
798 u64 efer;
799 u64 host_debugctl;
800 u64 apic_base;
801 struct kvm_lapic *apic; /* kernel irqchip context */
802 bool load_eoi_exitmap_pending;
803 DECLARE_BITMAP(ioapic_handled_vectors, 256);
804 unsigned long apic_attention;
805 int32_t apic_arb_prio;
806 int mp_state;
807 u64 ia32_misc_enable_msr;
808 u64 smbase;
809 u64 smi_count;
810 bool at_instruction_boundary;
811 bool tpr_access_reporting;
812 bool xfd_no_write_intercept;
813 u64 ia32_xss;
814 u64 microcode_version;
815 u64 arch_capabilities;
816 u64 perf_capabilities;
817
818 /*
819 * Paging state of the vcpu
820 *
821 * If the vcpu runs in guest mode with two level paging this still saves
822 * the paging mode of the l1 guest. This context is always used to
823 * handle faults.
824 */
825 struct kvm_mmu *mmu;
826
827 /* Non-nested MMU for L1 */
828 struct kvm_mmu root_mmu;
829
830 /* L1 MMU when running nested */
831 struct kvm_mmu guest_mmu;
832
833 /*
834 * Paging state of an L2 guest (used for nested npt)
835 *
836 * This context will save all necessary information to walk page tables
837 * of an L2 guest. This context is only initialized for page table
838 * walking and not for faulting since we never handle l2 page faults on
839 * the host.
840 */
841 struct kvm_mmu nested_mmu;
842
843 /*
844 * Pointer to the mmu context currently used for
845 * gva_to_gpa translations.
846 */
847 struct kvm_mmu *walk_mmu;
848
849 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
850 struct kvm_mmu_memory_cache mmu_shadow_page_cache;
851 struct kvm_mmu_memory_cache mmu_shadowed_info_cache;
852 struct kvm_mmu_memory_cache mmu_page_header_cache;
853 /*
854 * This cache is to allocate external page table. E.g. private EPT used
855 * by the TDX module.
856 */
857 struct kvm_mmu_memory_cache mmu_external_spt_cache;
858
859 /*
860 * QEMU userspace and the guest each have their own FPU state.
861 * In vcpu_run, we switch between the user and guest FPU contexts.
862 * While running a VCPU, the VCPU thread will have the guest FPU
863 * context.
864 *
865 * Note that while the PKRU state lives inside the fpu registers,
866 * it is switched out separately at VMENTER and VMEXIT time. The
867 * "guest_fpstate" state here contains the guest FPU context, with the
868 * host PRKU bits.
869 */
870 struct fpu_guest guest_fpu;
871
872 u64 xcr0;
873 u64 guest_supported_xcr0;
874
875 struct kvm_pio_request pio;
876 void *pio_data;
877 void *sev_pio_data;
878 unsigned sev_pio_count;
879
880 u8 event_exit_inst_len;
881
882 bool exception_from_userspace;
883
884 /* Exceptions to be injected to the guest. */
885 struct kvm_queued_exception exception;
886 /* Exception VM-Exits to be synthesized to L1. */
887 struct kvm_queued_exception exception_vmexit;
888
889 struct kvm_queued_interrupt {
890 bool injected;
891 bool soft;
892 u8 nr;
893 } interrupt;
894
895 int halt_request; /* real mode on Intel only */
896
897 int cpuid_nent;
898 struct kvm_cpuid_entry2 *cpuid_entries;
899 bool cpuid_dynamic_bits_dirty;
900 bool is_amd_compatible;
901
902 /*
903 * cpu_caps holds the effective guest capabilities, i.e. the features
904 * the vCPU is allowed to use. Typically, but not always, features can
905 * be used by the guest if and only if both KVM and userspace want to
906 * expose the feature to the guest.
907 *
908 * A common exception is for virtualization holes, i.e. when KVM can't
909 * prevent the guest from using a feature, in which case the vCPU "has"
910 * the feature regardless of what KVM or userspace desires.
911 *
912 * Note, features that don't require KVM involvement in any way are
913 * NOT enforced/sanitized by KVM, i.e. are taken verbatim from the
914 * guest CPUID provided by userspace.
915 */
916 u32 cpu_caps[NR_KVM_CPU_CAPS];
917
918 u64 reserved_gpa_bits;
919 int maxphyaddr;
920
921 /* emulate context */
922
923 struct x86_emulate_ctxt *emulate_ctxt;
924 bool emulate_regs_need_sync_to_vcpu;
925 bool emulate_regs_need_sync_from_vcpu;
926 int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
927 unsigned long cui_linear_rip;
928
929 gpa_t time;
930 s8 pvclock_tsc_shift;
931 u32 pvclock_tsc_mul;
932 unsigned int hw_tsc_khz;
933 struct gfn_to_pfn_cache pv_time;
934 /* set guest stopped flag in pvclock flags field */
935 bool pvclock_set_guest_stopped_request;
936
937 struct {
938 u8 preempted;
939 u64 msr_val;
940 u64 last_steal;
941 struct gfn_to_hva_cache cache;
942 } st;
943
944 u64 l1_tsc_offset;
945 u64 tsc_offset; /* current tsc offset */
946 u64 last_guest_tsc;
947 u64 last_host_tsc;
948 u64 tsc_offset_adjustment;
949 u64 this_tsc_nsec;
950 u64 this_tsc_write;
951 u64 this_tsc_generation;
952 bool tsc_catchup;
953 bool tsc_always_catchup;
954 s8 virtual_tsc_shift;
955 u32 virtual_tsc_mult;
956 u32 virtual_tsc_khz;
957 s64 ia32_tsc_adjust_msr;
958 u64 msr_ia32_power_ctl;
959 u64 l1_tsc_scaling_ratio;
960 u64 tsc_scaling_ratio; /* current scaling ratio */
961
962 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */
963 /* Number of NMIs pending injection, not including hardware vNMIs. */
964 unsigned int nmi_pending;
965 bool nmi_injected; /* Trying to inject an NMI this entry */
966 bool smi_pending; /* SMI queued after currently running handler */
967 u8 handling_intr_from_guest;
968
969 struct kvm_mtrr mtrr_state;
970 u64 pat;
971
972 unsigned switch_db_regs;
973 unsigned long db[KVM_NR_DB_REGS];
974 unsigned long dr6;
975 unsigned long dr7;
976 unsigned long eff_db[KVM_NR_DB_REGS];
977 unsigned long guest_debug_dr7;
978 u64 msr_platform_info;
979 u64 msr_misc_features_enables;
980
981 u64 mcg_cap;
982 u64 mcg_status;
983 u64 mcg_ctl;
984 u64 mcg_ext_ctl;
985 u64 *mce_banks;
986 u64 *mci_ctl2_banks;
987
988 /* Cache MMIO info */
989 u64 mmio_gva;
990 unsigned mmio_access;
991 gfn_t mmio_gfn;
992 u64 mmio_gen;
993
994 struct kvm_pmu pmu;
995
996 /* used for guest single stepping over the given code position */
997 unsigned long singlestep_rip;
998
999 #ifdef CONFIG_KVM_HYPERV
1000 bool hyperv_enabled;
1001 struct kvm_vcpu_hv *hyperv;
1002 #endif
1003 #ifdef CONFIG_KVM_XEN
1004 struct kvm_vcpu_xen xen;
1005 #endif
1006 cpumask_var_t wbinvd_dirty_mask;
1007
1008 unsigned long last_retry_eip;
1009 unsigned long last_retry_addr;
1010
1011 struct {
1012 bool halted;
1013 gfn_t gfns[ASYNC_PF_PER_VCPU];
1014 struct gfn_to_hva_cache data;
1015 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
1016 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
1017 u16 vec;
1018 u32 id;
1019 u32 host_apf_flags;
1020 bool send_always;
1021 bool delivery_as_pf_vmexit;
1022 bool pageready_pending;
1023 } apf;
1024
1025 /* OSVW MSRs (AMD only) */
1026 struct {
1027 u64 length;
1028 u64 status;
1029 } osvw;
1030
1031 struct {
1032 u64 msr_val;
1033 struct gfn_to_hva_cache data;
1034 } pv_eoi;
1035
1036 u64 msr_kvm_poll_control;
1037
1038 /* pv related host specific info */
1039 struct {
1040 bool pv_unhalted;
1041 } pv;
1042
1043 int pending_ioapic_eoi;
1044 int pending_external_vector;
1045 int highest_stale_pending_ioapic_eoi;
1046
1047 /* be preempted when it's in kernel-mode(cpl=0) */
1048 bool preempted_in_kernel;
1049
1050 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */
1051 bool l1tf_flush_l1d;
1052
1053 /* Host CPU on which VM-entry was most recently attempted */
1054 int last_vmentry_cpu;
1055
1056 /* AMD MSRC001_0015 Hardware Configuration */
1057 u64 msr_hwcr;
1058
1059 /* pv related cpuid info */
1060 struct {
1061 /*
1062 * value of the eax register in the KVM_CPUID_FEATURES CPUID
1063 * leaf.
1064 */
1065 u32 features;
1066
1067 /*
1068 * indicates whether pv emulation should be disabled if features
1069 * are not present in the guest's cpuid
1070 */
1071 bool enforce;
1072 } pv_cpuid;
1073
1074 /* Protected Guests */
1075 bool guest_state_protected;
1076 bool guest_tsc_protected;
1077
1078 /*
1079 * Set when PDPTS were loaded directly by the userspace without
1080 * reading the guest memory
1081 */
1082 bool pdptrs_from_userspace;
1083
1084 #if IS_ENABLED(CONFIG_HYPERV)
1085 hpa_t hv_root_tdp;
1086 #endif
1087 };
1088
1089 struct kvm_lpage_info {
1090 int disallow_lpage;
1091 };
1092
1093 struct kvm_arch_memory_slot {
1094 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
1095 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
1096 unsigned short *gfn_write_track;
1097 };
1098
1099 /*
1100 * Track the mode of the optimized logical map, as the rules for decoding the
1101 * destination vary per mode. Enabling the optimized logical map requires all
1102 * software-enabled local APIs to be in the same mode, each addressable APIC to
1103 * be mapped to only one MDA, and each MDA to map to at most one APIC.
1104 */
1105 enum kvm_apic_logical_mode {
1106 /* All local APICs are software disabled. */
1107 KVM_APIC_MODE_SW_DISABLED,
1108 /* All software enabled local APICs in xAPIC cluster addressing mode. */
1109 KVM_APIC_MODE_XAPIC_CLUSTER,
1110 /* All software enabled local APICs in xAPIC flat addressing mode. */
1111 KVM_APIC_MODE_XAPIC_FLAT,
1112 /* All software enabled local APICs in x2APIC mode. */
1113 KVM_APIC_MODE_X2APIC,
1114 /*
1115 * Optimized map disabled, e.g. not all local APICs in the same logical
1116 * mode, same logical ID assigned to multiple APICs, etc.
1117 */
1118 KVM_APIC_MODE_MAP_DISABLED,
1119 };
1120
1121 struct kvm_apic_map {
1122 struct rcu_head rcu;
1123 enum kvm_apic_logical_mode logical_mode;
1124 u32 max_apic_id;
1125 union {
1126 struct kvm_lapic *xapic_flat_map[8];
1127 struct kvm_lapic *xapic_cluster_map[16][4];
1128 };
1129 struct kvm_lapic *phys_map[];
1130 };
1131
1132 /* Hyper-V synthetic debugger (SynDbg)*/
1133 struct kvm_hv_syndbg {
1134 struct {
1135 u64 control;
1136 u64 status;
1137 u64 send_page;
1138 u64 recv_page;
1139 u64 pending_page;
1140 } control;
1141 u64 options;
1142 };
1143
1144 /* Current state of Hyper-V TSC page clocksource */
1145 enum hv_tsc_page_status {
1146 /* TSC page was not set up or disabled */
1147 HV_TSC_PAGE_UNSET = 0,
1148 /* TSC page MSR was written by the guest, update pending */
1149 HV_TSC_PAGE_GUEST_CHANGED,
1150 /* TSC page update was triggered from the host side */
1151 HV_TSC_PAGE_HOST_CHANGED,
1152 /* TSC page was properly set up and is currently active */
1153 HV_TSC_PAGE_SET,
1154 /* TSC page was set up with an inaccessible GPA */
1155 HV_TSC_PAGE_BROKEN,
1156 };
1157
1158 #ifdef CONFIG_KVM_HYPERV
1159 /* Hyper-V emulation context */
1160 struct kvm_hv {
1161 struct mutex hv_lock;
1162 u64 hv_guest_os_id;
1163 u64 hv_hypercall;
1164 u64 hv_tsc_page;
1165 enum hv_tsc_page_status hv_tsc_page_status;
1166
1167 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */
1168 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
1169 u64 hv_crash_ctl;
1170
1171 struct ms_hyperv_tsc_page tsc_ref;
1172
1173 struct idr conn_to_evt;
1174
1175 u64 hv_reenlightenment_control;
1176 u64 hv_tsc_emulation_control;
1177 u64 hv_tsc_emulation_status;
1178 u64 hv_invtsc_control;
1179
1180 /* How many vCPUs have VP index != vCPU index */
1181 atomic_t num_mismatched_vp_indexes;
1182
1183 /*
1184 * How many SynICs use 'AutoEOI' feature
1185 * (protected by arch.apicv_update_lock)
1186 */
1187 unsigned int synic_auto_eoi_used;
1188
1189 struct kvm_hv_syndbg hv_syndbg;
1190
1191 bool xsaves_xsavec_checked;
1192 };
1193 #endif
1194
1195 struct msr_bitmap_range {
1196 u32 flags;
1197 u32 nmsrs;
1198 u32 base;
1199 unsigned long *bitmap;
1200 };
1201
1202 #ifdef CONFIG_KVM_XEN
1203 /* Xen emulation context */
1204 struct kvm_xen {
1205 struct mutex xen_lock;
1206 u32 xen_version;
1207 bool long_mode;
1208 bool runstate_update_flag;
1209 u8 upcall_vector;
1210 struct gfn_to_pfn_cache shinfo_cache;
1211 struct idr evtchn_ports;
1212 unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
1213
1214 struct kvm_xen_hvm_config hvm_config;
1215 };
1216 #endif
1217
1218 enum kvm_irqchip_mode {
1219 KVM_IRQCHIP_NONE,
1220 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */
1221 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */
1222 };
1223
1224 struct kvm_x86_msr_filter {
1225 u8 count;
1226 bool default_allow:1;
1227 struct msr_bitmap_range ranges[16];
1228 };
1229
1230 struct kvm_x86_pmu_event_filter {
1231 __u32 action;
1232 __u32 nevents;
1233 __u32 fixed_counter_bitmap;
1234 __u32 flags;
1235 __u32 nr_includes;
1236 __u32 nr_excludes;
1237 __u64 *includes;
1238 __u64 *excludes;
1239 __u64 events[];
1240 };
1241
1242 enum kvm_apicv_inhibit {
1243
1244 /********************************************************************/
1245 /* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
1246 /********************************************************************/
1247
1248 /*
1249 * APIC acceleration is disabled by a module parameter
1250 * and/or not supported in hardware.
1251 */
1252 APICV_INHIBIT_REASON_DISABLED,
1253
1254 /*
1255 * APIC acceleration is inhibited because AutoEOI feature is
1256 * being used by a HyperV guest.
1257 */
1258 APICV_INHIBIT_REASON_HYPERV,
1259
1260 /*
1261 * APIC acceleration is inhibited because the userspace didn't yet
1262 * enable the kernel/split irqchip.
1263 */
1264 APICV_INHIBIT_REASON_ABSENT,
1265
1266 /* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
1267 * (out of band, debug measure of blocking all interrupts on this vCPU)
1268 * was enabled, to avoid AVIC/APICv bypassing it.
1269 */
1270 APICV_INHIBIT_REASON_BLOCKIRQ,
1271
1272 /*
1273 * APICv is disabled because not all vCPUs have a 1:1 mapping between
1274 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack.
1275 */
1276 APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED,
1277
1278 /*
1279 * For simplicity, the APIC acceleration is inhibited
1280 * first time either APIC ID or APIC base are changed by the guest
1281 * from their reset values.
1282 */
1283 APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
1284 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
1285
1286 /******************************************************/
1287 /* INHIBITs that are relevant only to the AMD's AVIC. */
1288 /******************************************************/
1289
1290 /*
1291 * AVIC is inhibited on a vCPU because it runs a nested guest.
1292 *
1293 * This is needed because unlike APICv, the peers of this vCPU
1294 * cannot use the doorbell mechanism to signal interrupts via AVIC when
1295 * a vCPU runs nested.
1296 */
1297 APICV_INHIBIT_REASON_NESTED,
1298
1299 /*
1300 * On SVM, the wait for the IRQ window is implemented with pending vIRQ,
1301 * which cannot be injected when the AVIC is enabled, thus AVIC
1302 * is inhibited while KVM waits for IRQ window.
1303 */
1304 APICV_INHIBIT_REASON_IRQWIN,
1305
1306 /*
1307 * PIT (i8254) 're-inject' mode, relies on EOI intercept,
1308 * which AVIC doesn't support for edge triggered interrupts.
1309 */
1310 APICV_INHIBIT_REASON_PIT_REINJ,
1311
1312 /*
1313 * AVIC is disabled because SEV doesn't support it.
1314 */
1315 APICV_INHIBIT_REASON_SEV,
1316
1317 /*
1318 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1
1319 * mapping between logical ID and vCPU.
1320 */
1321 APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED,
1322
1323 NR_APICV_INHIBIT_REASONS,
1324 };
1325
1326 #define __APICV_INHIBIT_REASON(reason) \
1327 { BIT(APICV_INHIBIT_REASON_##reason), #reason }
1328
1329 #define APICV_INHIBIT_REASONS \
1330 __APICV_INHIBIT_REASON(DISABLED), \
1331 __APICV_INHIBIT_REASON(HYPERV), \
1332 __APICV_INHIBIT_REASON(ABSENT), \
1333 __APICV_INHIBIT_REASON(BLOCKIRQ), \
1334 __APICV_INHIBIT_REASON(PHYSICAL_ID_ALIASED), \
1335 __APICV_INHIBIT_REASON(APIC_ID_MODIFIED), \
1336 __APICV_INHIBIT_REASON(APIC_BASE_MODIFIED), \
1337 __APICV_INHIBIT_REASON(NESTED), \
1338 __APICV_INHIBIT_REASON(IRQWIN), \
1339 __APICV_INHIBIT_REASON(PIT_REINJ), \
1340 __APICV_INHIBIT_REASON(SEV), \
1341 __APICV_INHIBIT_REASON(LOGICAL_ID_ALIASED)
1342
1343 struct kvm_arch {
1344 unsigned long n_used_mmu_pages;
1345 unsigned long n_requested_mmu_pages;
1346 unsigned long n_max_mmu_pages;
1347 unsigned int indirect_shadow_pages;
1348 u8 mmu_valid_gen;
1349 u8 vm_type;
1350 bool has_private_mem;
1351 bool has_protected_state;
1352 bool pre_fault_allowed;
1353 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
1354 struct list_head active_mmu_pages;
1355 /*
1356 * A list of kvm_mmu_page structs that, if zapped, could possibly be
1357 * replaced by an NX huge page. A shadow page is on this list if its
1358 * existence disallows an NX huge page (nx_huge_page_disallowed is set)
1359 * and there are no other conditions that prevent a huge page, e.g.
1360 * the backing host page is huge, dirtly logging is not enabled for its
1361 * memslot, etc... Note, zapping shadow pages on this list doesn't
1362 * guarantee an NX huge page will be created in its stead, e.g. if the
1363 * guest attempts to execute from the region then KVM obviously can't
1364 * create an NX huge page (without hanging the guest).
1365 */
1366 struct list_head possible_nx_huge_pages;
1367 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1368 struct kvm_page_track_notifier_head track_notifier_head;
1369 #endif
1370 /*
1371 * Protects marking pages unsync during page faults, as TDP MMU page
1372 * faults only take mmu_lock for read. For simplicity, the unsync
1373 * pages lock is always taken when marking pages unsync regardless of
1374 * whether mmu_lock is held for read or write.
1375 */
1376 spinlock_t mmu_unsync_pages_lock;
1377
1378 u64 shadow_mmio_value;
1379
1380 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1381 atomic_t noncoherent_dma_count;
1382 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1383 atomic_t assigned_device_count;
1384 struct kvm_pic *vpic;
1385 struct kvm_ioapic *vioapic;
1386 struct kvm_pit *vpit;
1387 atomic_t vapics_in_nmi_mode;
1388 struct mutex apic_map_lock;
1389 struct kvm_apic_map __rcu *apic_map;
1390 atomic_t apic_map_dirty;
1391
1392 bool apic_access_memslot_enabled;
1393 bool apic_access_memslot_inhibited;
1394
1395 /* Protects apicv_inhibit_reasons */
1396 struct rw_semaphore apicv_update_lock;
1397 unsigned long apicv_inhibit_reasons;
1398
1399 gpa_t wall_clock;
1400
1401 bool mwait_in_guest;
1402 bool hlt_in_guest;
1403 bool pause_in_guest;
1404 bool cstate_in_guest;
1405
1406 unsigned long irq_sources_bitmap;
1407 s64 kvmclock_offset;
1408
1409 /*
1410 * This also protects nr_vcpus_matched_tsc which is read from a
1411 * preemption-disabled region, so it must be a raw spinlock.
1412 */
1413 raw_spinlock_t tsc_write_lock;
1414 u64 last_tsc_nsec;
1415 u64 last_tsc_write;
1416 u32 last_tsc_khz;
1417 u64 last_tsc_offset;
1418 u64 cur_tsc_nsec;
1419 u64 cur_tsc_write;
1420 u64 cur_tsc_offset;
1421 u64 cur_tsc_generation;
1422 int nr_vcpus_matched_tsc;
1423
1424 u32 default_tsc_khz;
1425 bool user_set_tsc;
1426 u64 apic_bus_cycle_ns;
1427
1428 seqcount_raw_spinlock_t pvclock_sc;
1429 bool use_master_clock;
1430 u64 master_kernel_ns;
1431 u64 master_cycle_now;
1432 struct delayed_work kvmclock_update_work;
1433 struct delayed_work kvmclock_sync_work;
1434
1435 /* reads protected by irq_srcu, writes by irq_lock */
1436 struct hlist_head mask_notifier_list;
1437
1438 #ifdef CONFIG_KVM_HYPERV
1439 struct kvm_hv hyperv;
1440 #endif
1441
1442 #ifdef CONFIG_KVM_XEN
1443 struct kvm_xen xen;
1444 #endif
1445
1446 bool backwards_tsc_observed;
1447 bool boot_vcpu_runs_old_kvmclock;
1448 u32 bsp_vcpu_id;
1449
1450 u64 disabled_quirks;
1451
1452 enum kvm_irqchip_mode irqchip_mode;
1453 u8 nr_reserved_ioapic_pins;
1454
1455 bool disabled_lapic_found;
1456
1457 bool x2apic_format;
1458 bool x2apic_broadcast_quirk_disabled;
1459
1460 bool guest_can_read_msr_platform_info;
1461 bool exception_payload_enabled;
1462
1463 bool triple_fault_event;
1464
1465 bool bus_lock_detection_enabled;
1466 bool enable_pmu;
1467
1468 u32 notify_window;
1469 u32 notify_vmexit_flags;
1470 /*
1471 * If exit_on_emulation_error is set, and the in-kernel instruction
1472 * emulator fails to emulate an instruction, allow userspace
1473 * the opportunity to look at it.
1474 */
1475 bool exit_on_emulation_error;
1476
1477 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1478 u32 user_space_msr_mask;
1479 struct kvm_x86_msr_filter __rcu *msr_filter;
1480
1481 u32 hypercall_exit_enabled;
1482
1483 /* Guest can access the SGX PROVISIONKEY. */
1484 bool sgx_provisioning_allowed;
1485
1486 struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter;
1487 struct vhost_task *nx_huge_page_recovery_thread;
1488 u64 nx_huge_page_last;
1489 struct once nx_once;
1490
1491 #ifdef CONFIG_X86_64
1492 #ifdef CONFIG_KVM_PROVE_MMU
1493 /*
1494 * The number of TDP MMU pages across all roots. Used only to sanity
1495 * check that KVM isn't leaking TDP MMU pages.
1496 */
1497 atomic64_t tdp_mmu_pages;
1498 #endif
1499
1500 /*
1501 * List of struct kvm_mmu_pages being used as roots.
1502 * All struct kvm_mmu_pages in the list should have
1503 * tdp_mmu_page set.
1504 *
1505 * For reads, this list is protected by:
1506 * RCU alone or
1507 * the MMU lock in read mode + RCU or
1508 * the MMU lock in write mode
1509 *
1510 * For writes, this list is protected by tdp_mmu_pages_lock; see
1511 * below for the details.
1512 *
1513 * Roots will remain in the list until their tdp_mmu_root_count
1514 * drops to zero, at which point the thread that decremented the
1515 * count to zero should removed the root from the list and clean
1516 * it up, freeing the root after an RCU grace period.
1517 */
1518 struct list_head tdp_mmu_roots;
1519
1520 /*
1521 * Protects accesses to the following fields when the MMU lock
1522 * is held in read mode:
1523 * - tdp_mmu_roots (above)
1524 * - the link field of kvm_mmu_page structs used by the TDP MMU
1525 * - possible_nx_huge_pages;
1526 * - the possible_nx_huge_page_link field of kvm_mmu_page structs used
1527 * by the TDP MMU
1528 * Because the lock is only taken within the MMU lock, strictly
1529 * speaking it is redundant to acquire this lock when the thread
1530 * holds the MMU lock in write mode. However it often simplifies
1531 * the code to do so.
1532 */
1533 spinlock_t tdp_mmu_pages_lock;
1534 #endif /* CONFIG_X86_64 */
1535
1536 /*
1537 * If set, at least one shadow root has been allocated. This flag
1538 * is used as one input when determining whether certain memslot
1539 * related allocations are necessary.
1540 */
1541 bool shadow_root_allocated;
1542
1543 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1544 /*
1545 * If set, the VM has (or had) an external write tracking user, and
1546 * thus all write tracking metadata has been allocated, even if KVM
1547 * itself isn't using write tracking.
1548 */
1549 bool external_write_tracking_enabled;
1550 #endif
1551
1552 #if IS_ENABLED(CONFIG_HYPERV)
1553 hpa_t hv_root_tdp;
1554 spinlock_t hv_root_tdp_lock;
1555 struct hv_partition_assist_pg *hv_pa_pg;
1556 #endif
1557 /*
1558 * VM-scope maximum vCPU ID. Used to determine the size of structures
1559 * that increase along with the maximum vCPU ID, in which case, using
1560 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste.
1561 */
1562 u32 max_vcpu_ids;
1563
1564 bool disable_nx_huge_pages;
1565
1566 /*
1567 * Memory caches used to allocate shadow pages when performing eager
1568 * page splitting. No need for a shadowed_info_cache since eager page
1569 * splitting only allocates direct shadow pages.
1570 *
1571 * Protected by kvm->slots_lock.
1572 */
1573 struct kvm_mmu_memory_cache split_shadow_page_cache;
1574 struct kvm_mmu_memory_cache split_page_header_cache;
1575
1576 /*
1577 * Memory cache used to allocate pte_list_desc structs while splitting
1578 * huge pages. In the worst case, to split one huge page, 512
1579 * pte_list_desc structs are needed to add each lower level leaf sptep
1580 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level
1581 * page table.
1582 *
1583 * Protected by kvm->slots_lock.
1584 */
1585 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1)
1586 struct kvm_mmu_memory_cache split_desc_cache;
1587
1588 gfn_t gfn_direct_bits;
1589
1590 /*
1591 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A Zero
1592 * value indicates CPU dirty logging is unsupported or disabled in
1593 * current VM.
1594 */
1595 int cpu_dirty_log_size;
1596 };
1597
1598 struct kvm_vm_stat {
1599 struct kvm_vm_stat_generic generic;
1600 u64 mmu_shadow_zapped;
1601 u64 mmu_pte_write;
1602 u64 mmu_pde_zapped;
1603 u64 mmu_flooded;
1604 u64 mmu_recycled;
1605 u64 mmu_cache_miss;
1606 u64 mmu_unsync;
1607 union {
1608 struct {
1609 atomic64_t pages_4k;
1610 atomic64_t pages_2m;
1611 atomic64_t pages_1g;
1612 };
1613 atomic64_t pages[KVM_NR_PAGE_SIZES];
1614 };
1615 u64 nx_lpage_splits;
1616 u64 max_mmu_page_hash_collisions;
1617 u64 max_mmu_rmap_size;
1618 };
1619
1620 struct kvm_vcpu_stat {
1621 struct kvm_vcpu_stat_generic generic;
1622 u64 pf_taken;
1623 u64 pf_fixed;
1624 u64 pf_emulate;
1625 u64 pf_spurious;
1626 u64 pf_fast;
1627 u64 pf_mmio_spte_created;
1628 u64 pf_guest;
1629 u64 tlb_flush;
1630 u64 invlpg;
1631
1632 u64 exits;
1633 u64 io_exits;
1634 u64 mmio_exits;
1635 u64 signal_exits;
1636 u64 irq_window_exits;
1637 u64 nmi_window_exits;
1638 u64 l1d_flush;
1639 u64 halt_exits;
1640 u64 request_irq_exits;
1641 u64 irq_exits;
1642 u64 host_state_reload;
1643 u64 fpu_reload;
1644 u64 insn_emulation;
1645 u64 insn_emulation_fail;
1646 u64 hypercalls;
1647 u64 irq_injections;
1648 u64 nmi_injections;
1649 u64 req_event;
1650 u64 nested_run;
1651 u64 directed_yield_attempted;
1652 u64 directed_yield_successful;
1653 u64 preemption_reported;
1654 u64 preemption_other;
1655 u64 guest_mode;
1656 u64 notify_window_exits;
1657 };
1658
1659 struct x86_instruction_info;
1660
1661 struct msr_data {
1662 bool host_initiated;
1663 u32 index;
1664 u64 data;
1665 };
1666
1667 struct kvm_lapic_irq {
1668 u32 vector;
1669 u16 delivery_mode;
1670 u16 dest_mode;
1671 bool level;
1672 u16 trig_mode;
1673 u32 shorthand;
1674 u32 dest_id;
1675 bool msi_redir_hint;
1676 };
1677
kvm_lapic_irq_dest_mode(bool dest_mode_logical)1678 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1679 {
1680 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1681 }
1682
1683 struct kvm_x86_ops {
1684 const char *name;
1685
1686 int (*check_processor_compatibility)(void);
1687
1688 int (*enable_virtualization_cpu)(void);
1689 void (*disable_virtualization_cpu)(void);
1690 cpu_emergency_virt_cb *emergency_disable_virtualization_cpu;
1691
1692 void (*hardware_unsetup)(void);
1693 bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1694 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1695
1696 unsigned int vm_size;
1697 int (*vm_init)(struct kvm *kvm);
1698 void (*vm_destroy)(struct kvm *kvm);
1699 void (*vm_pre_destroy)(struct kvm *kvm);
1700
1701 /* Create, but do not attach this VCPU */
1702 int (*vcpu_precreate)(struct kvm *kvm);
1703 int (*vcpu_create)(struct kvm_vcpu *vcpu);
1704 void (*vcpu_free)(struct kvm_vcpu *vcpu);
1705 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1706
1707 void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
1708 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1709 void (*vcpu_put)(struct kvm_vcpu *vcpu);
1710
1711 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1712 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1713 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1714 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1715 void (*get_segment)(struct kvm_vcpu *vcpu,
1716 struct kvm_segment *var, int seg);
1717 int (*get_cpl)(struct kvm_vcpu *vcpu);
1718 int (*get_cpl_no_cache)(struct kvm_vcpu *vcpu);
1719 void (*set_segment)(struct kvm_vcpu *vcpu,
1720 struct kvm_segment *var, int seg);
1721 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1722 bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1723 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1724 void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1725 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1726 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1727 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1728 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1729 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1730 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1731 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1732 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1733 void (*set_dr6)(struct kvm_vcpu *vcpu, unsigned long value);
1734 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1735 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1736 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1737 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1738 bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1739
1740 void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
1741 void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
1742 #if IS_ENABLED(CONFIG_HYPERV)
1743 int (*flush_remote_tlbs)(struct kvm *kvm);
1744 int (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn,
1745 gfn_t nr_pages);
1746 #endif
1747
1748 /*
1749 * Flush any TLB entries associated with the given GVA.
1750 * Does not need to flush GPA->HPA mappings.
1751 * Can potentially get non-canonical addresses through INVLPGs, which
1752 * the implementation may choose to ignore if appropriate.
1753 */
1754 void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1755
1756 /*
1757 * Flush any TLB entries created by the guest. Like tlb_flush_gva(),
1758 * does not need to flush GPA->HPA mappings.
1759 */
1760 void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
1761
1762 int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
1763 enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu,
1764 bool force_immediate_exit);
1765 int (*handle_exit)(struct kvm_vcpu *vcpu,
1766 enum exit_fastpath_completion exit_fastpath);
1767 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1768 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1769 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1770 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1771 void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1772 unsigned char *hypercall_addr);
1773 void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected);
1774 void (*inject_nmi)(struct kvm_vcpu *vcpu);
1775 void (*inject_exception)(struct kvm_vcpu *vcpu);
1776 void (*cancel_injection)(struct kvm_vcpu *vcpu);
1777 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1778 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1779 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1780 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1781 /* Whether or not a virtual NMI is pending in hardware. */
1782 bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu);
1783 /*
1784 * Attempt to pend a virtual NMI in hardware. Returns %true on success
1785 * to allow using static_call_ret0 as the fallback.
1786 */
1787 bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu);
1788 void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1789 void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1790 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1791
1792 const bool x2apic_icr_is_split;
1793 const unsigned long required_apicv_inhibits;
1794 bool allow_apicv_in_x2apic_without_x2apic_virtualization;
1795 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1796 void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr);
1797 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1798 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1799 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1800 void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
1801 int trig_mode, int vector);
1802 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1803 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1804 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1805 u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1806
1807 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1808 int root_level);
1809
1810 /* Update external mapping with page table link. */
1811 int (*link_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1812 void *external_spt);
1813 /* Update the external page table from spte getting set. */
1814 int (*set_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1815 kvm_pfn_t pfn_for_gfn);
1816
1817 /* Update external page tables for page table about to be freed. */
1818 int (*free_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1819 void *external_spt);
1820
1821 /* Update external page table from spte getting removed, and flush TLB. */
1822 int (*remove_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1823 kvm_pfn_t pfn_for_gfn);
1824
1825 bool (*has_wbinvd_exit)(void);
1826
1827 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1828 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1829 void (*write_tsc_offset)(struct kvm_vcpu *vcpu);
1830 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu);
1831
1832 /*
1833 * Retrieve somewhat arbitrary exit/entry information. Intended to
1834 * be used only from within tracepoints or error paths.
1835 */
1836 void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
1837 u64 *info1, u64 *info2,
1838 u32 *intr_info, u32 *error_code);
1839
1840 void (*get_entry_info)(struct kvm_vcpu *vcpu,
1841 u32 *intr_info, u32 *error_code);
1842
1843 int (*check_intercept)(struct kvm_vcpu *vcpu,
1844 struct x86_instruction_info *info,
1845 enum x86_intercept_stage stage,
1846 struct x86_exception *exception);
1847 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1848
1849 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1850
1851 const struct kvm_x86_nested_ops *nested_ops;
1852
1853 void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1854 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1855
1856 int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq,
1857 uint32_t guest_irq, bool set);
1858 void (*pi_start_assignment)(struct kvm *kvm);
1859 void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu);
1860 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1861 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1862 bool (*protected_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1863
1864 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1865 bool *expired);
1866 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1867
1868 void (*setup_mce)(struct kvm_vcpu *vcpu);
1869
1870 #ifdef CONFIG_KVM_SMM
1871 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1872 int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram);
1873 int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram);
1874 void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1875 #endif
1876
1877 int (*dev_get_attr)(u32 group, u64 attr, u64 *val);
1878 int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
1879 int (*vcpu_mem_enc_ioctl)(struct kvm_vcpu *vcpu, void __user *argp);
1880 int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1881 int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1882 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1883 int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1884 void (*guest_memory_reclaimed)(struct kvm *kvm);
1885
1886 int (*get_feature_msr)(u32 msr, u64 *data);
1887
1888 int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
1889 void *insn, int insn_len);
1890
1891 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1892 int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu);
1893
1894 void (*migrate_timers)(struct kvm_vcpu *vcpu);
1895 void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1896 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1897
1898 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1899
1900 /*
1901 * Returns vCPU specific APICv inhibit reasons
1902 */
1903 unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
1904
1905 gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags);
1906 void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu);
1907 int (*gmem_prepare)(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order);
1908 void (*gmem_invalidate)(kvm_pfn_t start, kvm_pfn_t end);
1909 int (*private_max_mapping_level)(struct kvm *kvm, kvm_pfn_t pfn);
1910 };
1911
1912 struct kvm_x86_nested_ops {
1913 void (*leave_nested)(struct kvm_vcpu *vcpu);
1914 bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector,
1915 u32 error_code);
1916 int (*check_events)(struct kvm_vcpu *vcpu);
1917 bool (*has_events)(struct kvm_vcpu *vcpu, bool for_injection);
1918 void (*triple_fault)(struct kvm_vcpu *vcpu);
1919 int (*get_state)(struct kvm_vcpu *vcpu,
1920 struct kvm_nested_state __user *user_kvm_nested_state,
1921 unsigned user_data_size);
1922 int (*set_state)(struct kvm_vcpu *vcpu,
1923 struct kvm_nested_state __user *user_kvm_nested_state,
1924 struct kvm_nested_state *kvm_state);
1925 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1926 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1927
1928 int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1929 uint16_t *vmcs_version);
1930 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1931 void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu);
1932 };
1933
1934 struct kvm_x86_init_ops {
1935 int (*hardware_setup)(void);
1936 unsigned int (*handle_intel_pt_intr)(void);
1937
1938 struct kvm_x86_ops *runtime_ops;
1939 struct kvm_pmu_ops *pmu_ops;
1940 };
1941
1942 struct kvm_arch_async_pf {
1943 u32 token;
1944 gfn_t gfn;
1945 unsigned long cr3;
1946 bool direct_map;
1947 u64 error_code;
1948 };
1949
1950 extern u32 __read_mostly kvm_nr_uret_msrs;
1951 extern bool __read_mostly allow_smaller_maxphyaddr;
1952 extern bool __read_mostly enable_apicv;
1953 extern bool __read_mostly enable_device_posted_irqs;
1954 extern struct kvm_x86_ops kvm_x86_ops;
1955
1956 #define kvm_x86_call(func) static_call(kvm_x86_##func)
1957 #define kvm_pmu_call(func) static_call(kvm_x86_pmu_##func)
1958
1959 #define KVM_X86_OP(func) \
1960 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1961 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
1962 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
1963 #include <asm/kvm-x86-ops.h>
1964
1965 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops);
1966 void kvm_x86_vendor_exit(void);
1967
1968 #define __KVM_HAVE_ARCH_VM_ALLOC
kvm_arch_alloc_vm(void)1969 static inline struct kvm *kvm_arch_alloc_vm(void)
1970 {
1971 return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1972 }
1973
1974 #define __KVM_HAVE_ARCH_VM_FREE
1975 void kvm_arch_free_vm(struct kvm *kvm);
1976
1977 #if IS_ENABLED(CONFIG_HYPERV)
1978 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
kvm_arch_flush_remote_tlbs(struct kvm * kvm)1979 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1980 {
1981 if (kvm_x86_ops.flush_remote_tlbs &&
1982 !kvm_x86_call(flush_remote_tlbs)(kvm))
1983 return 0;
1984 else
1985 return -ENOTSUPP;
1986 }
1987
1988 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)1989 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn,
1990 u64 nr_pages)
1991 {
1992 if (!kvm_x86_ops.flush_remote_tlbs_range)
1993 return -EOPNOTSUPP;
1994
1995 return kvm_x86_call(flush_remote_tlbs_range)(kvm, gfn, nr_pages);
1996 }
1997 #endif /* CONFIG_HYPERV */
1998
1999 enum kvm_intr_type {
2000 /* Values are arbitrary, but must be non-zero. */
2001 KVM_HANDLING_IRQ = 1,
2002 KVM_HANDLING_NMI,
2003 };
2004
2005 /* Enable perf NMI and timer modes to work, and minimise false positives. */
2006 #define kvm_arch_pmi_in_guest(vcpu) \
2007 ((vcpu) && (vcpu)->arch.handling_intr_from_guest && \
2008 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI)))
2009
2010 void __init kvm_mmu_x86_module_init(void);
2011 int kvm_mmu_vendor_module_init(void);
2012 void kvm_mmu_vendor_module_exit(void);
2013
2014 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
2015 int kvm_mmu_create(struct kvm_vcpu *vcpu);
2016 void kvm_mmu_init_vm(struct kvm *kvm);
2017 void kvm_mmu_uninit_vm(struct kvm *kvm);
2018
2019 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm,
2020 struct kvm_memory_slot *slot);
2021
2022 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
2023 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
2024 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
2025 const struct kvm_memory_slot *memslot,
2026 int start_level);
2027 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
2028 const struct kvm_memory_slot *memslot,
2029 int target_level);
2030 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
2031 const struct kvm_memory_slot *memslot,
2032 u64 start, u64 end,
2033 int target_level);
2034 void kvm_mmu_recover_huge_pages(struct kvm *kvm,
2035 const struct kvm_memory_slot *memslot);
2036 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
2037 const struct kvm_memory_slot *memslot);
2038 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
2039 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
2040 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
2041
2042 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
2043
2044 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2045 const void *val, int bytes);
2046
2047 struct kvm_irq_mask_notifier {
2048 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
2049 int irq;
2050 struct hlist_node link;
2051 };
2052
2053 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
2054 struct kvm_irq_mask_notifier *kimn);
2055 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
2056 struct kvm_irq_mask_notifier *kimn);
2057 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
2058 bool mask);
2059
2060 extern bool tdp_enabled;
2061
2062 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
2063
2064 /*
2065 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
2066 * userspace I/O) to indicate that the emulation context
2067 * should be reused as is, i.e. skip initialization of
2068 * emulation context, instruction fetch and decode.
2069 *
2070 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
2071 * Indicates that only select instructions (tagged with
2072 * EmulateOnUD) should be emulated (to minimize the emulator
2073 * attack surface). See also EMULTYPE_TRAP_UD_FORCED.
2074 *
2075 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
2076 * decode the instruction length. For use *only* by
2077 * kvm_x86_ops.skip_emulated_instruction() implementations if
2078 * EMULTYPE_COMPLETE_USER_EXIT is not set.
2079 *
2080 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
2081 * retry native execution under certain conditions,
2082 * Can only be set in conjunction with EMULTYPE_PF.
2083 *
2084 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
2085 * triggered by KVM's magic "force emulation" prefix,
2086 * which is opt in via module param (off by default).
2087 * Bypasses EmulateOnUD restriction despite emulating
2088 * due to an intercepted #UD (see EMULTYPE_TRAP_UD).
2089 * Used to test the full emulator from userspace.
2090 *
2091 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
2092 * backdoor emulation, which is opt in via module param.
2093 * VMware backdoor emulation handles select instructions
2094 * and reinjects the #GP for all other cases.
2095 *
2096 * EMULTYPE_PF - Set when an intercepted #PF triggers the emulation, in which case
2097 * the CR2/GPA value pass on the stack is valid.
2098 *
2099 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
2100 * state and inject single-step #DBs after skipping
2101 * an instruction (after completing userspace I/O).
2102 *
2103 * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that
2104 * is attempting to write a gfn that contains one or
2105 * more of the PTEs used to translate the write itself,
2106 * and the owning page table is being shadowed by KVM.
2107 * If emulation of the faulting instruction fails and
2108 * this flag is set, KVM will exit to userspace instead
2109 * of retrying emulation as KVM cannot make forward
2110 * progress.
2111 *
2112 * If emulation fails for a write to guest page tables,
2113 * KVM unprotects (zaps) the shadow page for the target
2114 * gfn and resumes the guest to retry the non-emulatable
2115 * instruction (on hardware). Unprotecting the gfn
2116 * doesn't allow forward progress for a self-changing
2117 * access because doing so also zaps the translation for
2118 * the gfn, i.e. retrying the instruction will hit a
2119 * !PRESENT fault, which results in a new shadow page
2120 * and sends KVM back to square one.
2121 */
2122 #define EMULTYPE_NO_DECODE (1 << 0)
2123 #define EMULTYPE_TRAP_UD (1 << 1)
2124 #define EMULTYPE_SKIP (1 << 2)
2125 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3)
2126 #define EMULTYPE_TRAP_UD_FORCED (1 << 4)
2127 #define EMULTYPE_VMWARE_GP (1 << 5)
2128 #define EMULTYPE_PF (1 << 6)
2129 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
2130 #define EMULTYPE_WRITE_PF_TO_SP (1 << 8)
2131
kvm_can_emulate_event_vectoring(int emul_type)2132 static inline bool kvm_can_emulate_event_vectoring(int emul_type)
2133 {
2134 return !(emul_type & EMULTYPE_PF);
2135 }
2136
2137 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
2138 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
2139 void *insn, int insn_len);
2140 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
2141 u64 *data, u8 ndata);
2142 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
2143
2144 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa);
2145
2146 void kvm_enable_efer_bits(u64);
2147 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
2148 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2149 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data);
2150 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
2151 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2152 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
2153 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
2154 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
2155 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
2156 int kvm_emulate_invd(struct kvm_vcpu *vcpu);
2157 int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
2158 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
2159 int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
2160
2161 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
2162 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
2163 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
2164 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
2165 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
2166 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
2167
2168 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2169 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2170 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
2171 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
2172
2173 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
2174 int reason, bool has_error_code, u32 error_code);
2175
2176 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
2177 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
2178 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
2179 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
2180 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2181 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
2182 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
2183 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr);
2184 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
2185 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
2186 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
2187
2188 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2189 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2190
2191 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
2192 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
2193 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
2194
2195 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2196 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2197 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
2198 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr,
2199 bool has_error_code, u32 error_code);
2200 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
2201 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
2202 struct x86_exception *fault);
2203 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
2204 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
2205
__kvm_irq_line_state(unsigned long * irq_state,int irq_source_id,int level)2206 static inline int __kvm_irq_line_state(unsigned long *irq_state,
2207 int irq_source_id, int level)
2208 {
2209 /* Logical OR for level trig interrupt */
2210 if (level)
2211 __set_bit(irq_source_id, irq_state);
2212 else
2213 __clear_bit(irq_source_id, irq_state);
2214
2215 return !!(*irq_state);
2216 }
2217
2218 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
2219 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
2220
2221 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
2222 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu);
2223
2224 void kvm_update_dr7(struct kvm_vcpu *vcpu);
2225
2226 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
2227 bool always_retry);
2228
kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa)2229 static inline bool kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu,
2230 gpa_t cr2_or_gpa)
2231 {
2232 return __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, false);
2233 }
2234
2235 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
2236 ulong roots_to_free);
2237 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
2238 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
2239 struct x86_exception *exception);
2240 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
2241 struct x86_exception *exception);
2242 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
2243 struct x86_exception *exception);
2244
2245 bool kvm_apicv_activated(struct kvm *kvm);
2246 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
2247 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
2248 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2249 enum kvm_apicv_inhibit reason, bool set);
2250 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2251 enum kvm_apicv_inhibit reason, bool set);
2252
kvm_set_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason)2253 static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
2254 enum kvm_apicv_inhibit reason)
2255 {
2256 kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
2257 }
2258
kvm_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason)2259 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
2260 enum kvm_apicv_inhibit reason)
2261 {
2262 kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
2263 }
2264
2265 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
2266 void *insn, int insn_len);
2267 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg);
2268 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
2269 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
2270 u64 addr, unsigned long roots);
2271 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
2272 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
2273
2274 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
2275 int tdp_max_root_level, int tdp_huge_page_level);
2276
2277
2278 #ifdef CONFIG_KVM_PRIVATE_MEM
2279 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem)
2280 #else
2281 #define kvm_arch_has_private_mem(kvm) false
2282 #endif
2283
2284 #define kvm_arch_has_readonly_mem(kvm) (!(kvm)->arch.has_protected_state)
2285
kvm_read_ldt(void)2286 static inline u16 kvm_read_ldt(void)
2287 {
2288 u16 ldt;
2289 asm("sldt %0" : "=g"(ldt));
2290 return ldt;
2291 }
2292
kvm_load_ldt(u16 sel)2293 static inline void kvm_load_ldt(u16 sel)
2294 {
2295 asm("lldt %0" : : "rm"(sel));
2296 }
2297
2298 #ifdef CONFIG_X86_64
read_msr(unsigned long msr)2299 static inline unsigned long read_msr(unsigned long msr)
2300 {
2301 u64 value;
2302
2303 rdmsrq(msr, value);
2304 return value;
2305 }
2306 #endif
2307
kvm_inject_gp(struct kvm_vcpu * vcpu,u32 error_code)2308 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
2309 {
2310 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2311 }
2312
2313 #define TSS_IOPB_BASE_OFFSET 0x66
2314 #define TSS_BASE_SIZE 0x68
2315 #define TSS_IOPB_SIZE (65536 / 8)
2316 #define TSS_REDIRECTION_SIZE (256 / 8)
2317 #define RMODE_TSS_SIZE \
2318 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
2319
2320 enum {
2321 TASK_SWITCH_CALL = 0,
2322 TASK_SWITCH_IRET = 1,
2323 TASK_SWITCH_JMP = 2,
2324 TASK_SWITCH_GATE = 3,
2325 };
2326
2327 #define HF_GUEST_MASK (1 << 0) /* VCPU is in guest-mode */
2328
2329 #ifdef CONFIG_KVM_SMM
2330 #define HF_SMM_MASK (1 << 1)
2331 #define HF_SMM_INSIDE_NMI_MASK (1 << 2)
2332
2333 # define KVM_MAX_NR_ADDRESS_SPACES 2
2334 /* SMM is currently unsupported for guests with private memory. */
2335 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2)
2336 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
2337 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
2338 #else
2339 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0)
2340 #endif
2341
2342 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
2343 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
2344 int kvm_cpu_has_extint(struct kvm_vcpu *v);
2345 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
2346 int kvm_cpu_get_extint(struct kvm_vcpu *v);
2347 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
2348 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
2349
2350 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
2351 unsigned long ipi_bitmap_high, u32 min,
2352 unsigned long icr, int op_64_bit);
2353
2354 int kvm_add_user_return_msr(u32 msr);
2355 int kvm_find_user_return_msr(u32 msr);
2356 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
2357 void kvm_user_return_msr_update_cache(unsigned int index, u64 val);
2358
kvm_is_supported_user_return_msr(u32 msr)2359 static inline bool kvm_is_supported_user_return_msr(u32 msr)
2360 {
2361 return kvm_find_user_return_msr(msr) >= 0;
2362 }
2363
2364 u64 kvm_scale_tsc(u64 tsc, u64 ratio);
2365 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
2366 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
2367 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
2368
2369 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
2370 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
2371
2372 void kvm_make_scan_ioapic_request(struct kvm *kvm);
2373 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
2374 unsigned long *vcpu_bitmap);
2375
2376 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2377 struct kvm_async_pf *work);
2378 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2379 struct kvm_async_pf *work);
2380 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2381 struct kvm_async_pf *work);
2382 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
2383 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
2384 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
2385
2386 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
2387 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
2388
2389 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
2390 u32 size);
2391 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
2392 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
2393
2394 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
2395 struct kvm_vcpu **dest_vcpu);
2396
2397 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
2398 struct kvm_lapic_irq *irq);
2399
kvm_irq_is_postable(struct kvm_lapic_irq * irq)2400 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
2401 {
2402 /* We can only post Fixed and LowPrio IRQs */
2403 return (irq->delivery_mode == APIC_DM_FIXED ||
2404 irq->delivery_mode == APIC_DM_LOWEST);
2405 }
2406
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)2407 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
2408 {
2409 kvm_x86_call(vcpu_blocking)(vcpu);
2410 }
2411
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)2412 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
2413 {
2414 kvm_x86_call(vcpu_unblocking)(vcpu);
2415 }
2416
kvm_cpu_get_apicid(int mps_cpu)2417 static inline int kvm_cpu_get_apicid(int mps_cpu)
2418 {
2419 #ifdef CONFIG_X86_LOCAL_APIC
2420 return default_cpu_present_to_apicid(mps_cpu);
2421 #else
2422 WARN_ON_ONCE(1);
2423 return BAD_APICID;
2424 #endif
2425 }
2426
2427 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
2428
2429 #define KVM_CLOCK_VALID_FLAGS \
2430 (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
2431
2432 #define KVM_X86_VALID_QUIRKS \
2433 (KVM_X86_QUIRK_LINT0_REENABLED | \
2434 KVM_X86_QUIRK_CD_NW_CLEARED | \
2435 KVM_X86_QUIRK_LAPIC_MMIO_HOLE | \
2436 KVM_X86_QUIRK_OUT_7E_INC_RIP | \
2437 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT | \
2438 KVM_X86_QUIRK_FIX_HYPERCALL_INSN | \
2439 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS | \
2440 KVM_X86_QUIRK_SLOT_ZAP_ALL | \
2441 KVM_X86_QUIRK_STUFF_FEATURE_MSRS | \
2442 KVM_X86_QUIRK_IGNORE_GUEST_PAT)
2443
2444 #define KVM_X86_CONDITIONAL_QUIRKS \
2445 (KVM_X86_QUIRK_CD_NW_CLEARED | \
2446 KVM_X86_QUIRK_IGNORE_GUEST_PAT)
2447
2448 /*
2449 * KVM previously used a u32 field in kvm_run to indicate the hypercall was
2450 * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the
2451 * remaining 31 lower bits must be 0 to preserve ABI.
2452 */
2453 #define KVM_EXIT_HYPERCALL_MBZ GENMASK_ULL(31, 1)
2454
kvm_arch_has_irq_bypass(void)2455 static inline bool kvm_arch_has_irq_bypass(void)
2456 {
2457 return enable_device_posted_irqs;
2458 }
2459
2460 #endif /* _ASM_X86_KVM_HOST_H */
2461