1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This header defines architecture specific interfaces, x86 version
6 */
7
8 #ifndef _ASM_X86_KVM_HOST_H
9 #define _ASM_X86_KVM_HOST_H
10
11 #include <linux/types.h>
12 #include <linux/mm.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/tracepoint.h>
15 #include <linux/cpumask.h>
16 #include <linux/irq_work.h>
17 #include <linux/irq.h>
18 #include <linux/workqueue.h>
19
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22 #include <linux/kvm_types.h>
23 #include <linux/perf_event.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/clocksource.h>
26 #include <linux/irqbypass.h>
27 #include <linux/kfifo.h>
28 #include <linux/sched/vhost_task.h>
29 #include <linux/call_once.h>
30 #include <linux/atomic.h>
31
32 #include <asm/apic.h>
33 #include <asm/pvclock-abi.h>
34 #include <asm/debugreg.h>
35 #include <asm/desc.h>
36 #include <asm/mtrr.h>
37 #include <asm/msr-index.h>
38 #include <asm/msr.h>
39 #include <asm/asm.h>
40 #include <asm/irq_remapping.h>
41 #include <asm/kvm_page_track.h>
42 #include <asm/kvm_vcpu_regs.h>
43 #include <asm/reboot.h>
44 #include <hyperv/hvhdk.h>
45
46 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
47
48 /*
49 * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if
50 * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS).
51 */
52 #ifdef CONFIG_KVM_MAX_NR_VCPUS
53 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS
54 #else
55 #define KVM_MAX_VCPUS 1024
56 #endif
57
58 /*
59 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
60 * might be larger than the actual number of VCPUs because the
61 * APIC ID encodes CPU topology information.
62 *
63 * In the worst case, we'll need less than one extra bit for the
64 * Core ID, and less than one extra bit for the Package (Die) ID,
65 * so ratio of 4 should be enough.
66 */
67 #define KVM_VCPU_ID_RATIO 4
68 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
69
70 /* memory slots that are not exposed to userspace */
71 #define KVM_INTERNAL_MEM_SLOTS 3
72
73 #define KVM_HALT_POLL_NS_DEFAULT 200000
74
75 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS
76
77 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
78 KVM_DIRTY_LOG_INITIALLY_SET)
79
80 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \
81 KVM_BUS_LOCK_DETECTION_EXIT)
82
83 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS (KVM_X86_NOTIFY_VMEXIT_ENABLED | \
84 KVM_X86_NOTIFY_VMEXIT_USER)
85
86 /* x86-specific vcpu->requests bit members */
87 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0)
88 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1)
89 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2)
90 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3)
91 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4)
92 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5)
93 #define KVM_REQ_EVENT KVM_ARCH_REQ(6)
94 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7)
95 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8)
96 #define KVM_REQ_NMI KVM_ARCH_REQ(9)
97 #define KVM_REQ_PMU KVM_ARCH_REQ(10)
98 #define KVM_REQ_PMI KVM_ARCH_REQ(11)
99 #ifdef CONFIG_KVM_SMM
100 #define KVM_REQ_SMI KVM_ARCH_REQ(12)
101 #endif
102 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13)
103 #define KVM_REQ_MCLOCK_INPROGRESS \
104 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
105 #define KVM_REQ_SCAN_IOAPIC \
106 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
107 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16)
108 #define KVM_REQ_APIC_PAGE_RELOAD \
109 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
110 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18)
111 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19)
112 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20)
113 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21)
114 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22)
115 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23)
116 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24)
117 #define KVM_REQ_APICV_UPDATE \
118 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
119 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26)
120 #define KVM_REQ_TLB_FLUSH_GUEST \
121 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
122 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28)
123 #define KVM_REQ_RECALC_INTERCEPTS KVM_ARCH_REQ(29)
124 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
125 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
126 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
127 KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
128 #define KVM_REQ_HV_TLB_FLUSH \
129 KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
130 #define KVM_REQ_UPDATE_PROTECTED_GUEST_STATE \
131 KVM_ARCH_REQ_FLAGS(34, KVM_REQUEST_WAIT)
132
133 #define CR0_RESERVED_BITS \
134 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
135 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
136 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
137
138 #define CR4_RESERVED_BITS \
139 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
140 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
141 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
142 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
143 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
144 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \
145 | X86_CR4_LAM_SUP | X86_CR4_CET))
146
147 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
148
149
150
151 #define INVALID_PAGE (~(hpa_t)0)
152 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
153
154 /* KVM Hugepage definitions for x86 */
155 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G
156 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
157 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9)
158 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
159 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x))
160 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1))
161 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE)
162
163 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
164 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
165 #define KVM_MMU_HASH_SHIFT 12
166 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
167 #define KVM_MIN_FREE_MMU_PAGES 5
168 #define KVM_REFILL_PAGES 25
169 #define KVM_MAX_CPUID_ENTRIES 256
170 #define KVM_NR_VAR_MTRR 8
171
172 #define ASYNC_PF_PER_VCPU 64
173
174 enum kvm_reg {
175 VCPU_REGS_RAX = __VCPU_REGS_RAX,
176 VCPU_REGS_RCX = __VCPU_REGS_RCX,
177 VCPU_REGS_RDX = __VCPU_REGS_RDX,
178 VCPU_REGS_RBX = __VCPU_REGS_RBX,
179 VCPU_REGS_RSP = __VCPU_REGS_RSP,
180 VCPU_REGS_RBP = __VCPU_REGS_RBP,
181 VCPU_REGS_RSI = __VCPU_REGS_RSI,
182 VCPU_REGS_RDI = __VCPU_REGS_RDI,
183 #ifdef CONFIG_X86_64
184 VCPU_REGS_R8 = __VCPU_REGS_R8,
185 VCPU_REGS_R9 = __VCPU_REGS_R9,
186 VCPU_REGS_R10 = __VCPU_REGS_R10,
187 VCPU_REGS_R11 = __VCPU_REGS_R11,
188 VCPU_REGS_R12 = __VCPU_REGS_R12,
189 VCPU_REGS_R13 = __VCPU_REGS_R13,
190 VCPU_REGS_R14 = __VCPU_REGS_R14,
191 VCPU_REGS_R15 = __VCPU_REGS_R15,
192 #endif
193 VCPU_REGS_RIP,
194 NR_VCPU_REGS,
195
196 VCPU_EXREG_PDPTR = NR_VCPU_REGS,
197 VCPU_EXREG_CR0,
198 VCPU_EXREG_CR3,
199 VCPU_EXREG_CR4,
200 VCPU_EXREG_RFLAGS,
201 VCPU_EXREG_SEGMENTS,
202 VCPU_EXREG_EXIT_INFO_1,
203 VCPU_EXREG_EXIT_INFO_2,
204 };
205
206 enum {
207 VCPU_SREG_ES,
208 VCPU_SREG_CS,
209 VCPU_SREG_SS,
210 VCPU_SREG_DS,
211 VCPU_SREG_FS,
212 VCPU_SREG_GS,
213 VCPU_SREG_TR,
214 VCPU_SREG_LDTR,
215 };
216
217 enum exit_fastpath_completion {
218 EXIT_FASTPATH_NONE,
219 EXIT_FASTPATH_REENTER_GUEST,
220 EXIT_FASTPATH_EXIT_HANDLED,
221 EXIT_FASTPATH_EXIT_USERSPACE,
222 };
223 typedef enum exit_fastpath_completion fastpath_t;
224
225 struct x86_emulate_ctxt;
226 struct x86_exception;
227 union kvm_smram;
228 enum x86_intercept;
229 enum x86_intercept_stage;
230
231 #define KVM_NR_DB_REGS 4
232
233 #define DR6_BUS_LOCK (1 << 11)
234 #define DR6_BD (1 << 13)
235 #define DR6_BS (1 << 14)
236 #define DR6_BT (1 << 15)
237 #define DR6_RTM (1 << 16)
238 /*
239 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
240 * We can regard all the bits in DR6_FIXED_1 as active_low bits;
241 * they will never be 0 for now, but when they are defined
242 * in the future it will require no code change.
243 *
244 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
245 */
246 #define DR6_ACTIVE_LOW 0xffff0ff0
247 #define DR6_VOLATILE 0x0001e80f
248 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE)
249
250 #define DR7_BP_EN_MASK 0x000000ff
251 #define DR7_GE (1 << 9)
252 #define DR7_GD (1 << 13)
253 #define DR7_VOLATILE 0xffff2bff
254
255 #define KVM_GUESTDBG_VALID_MASK \
256 (KVM_GUESTDBG_ENABLE | \
257 KVM_GUESTDBG_SINGLESTEP | \
258 KVM_GUESTDBG_USE_HW_BP | \
259 KVM_GUESTDBG_USE_SW_BP | \
260 KVM_GUESTDBG_INJECT_BP | \
261 KVM_GUESTDBG_INJECT_DB | \
262 KVM_GUESTDBG_BLOCKIRQ)
263
264 #define PFERR_PRESENT_MASK BIT(0)
265 #define PFERR_WRITE_MASK BIT(1)
266 #define PFERR_USER_MASK BIT(2)
267 #define PFERR_RSVD_MASK BIT(3)
268 #define PFERR_FETCH_MASK BIT(4)
269 #define PFERR_PK_MASK BIT(5)
270 #define PFERR_SS_MASK BIT(6)
271 #define PFERR_SGX_MASK BIT(15)
272 #define PFERR_GUEST_RMP_MASK BIT_ULL(31)
273 #define PFERR_GUEST_FINAL_MASK BIT_ULL(32)
274 #define PFERR_GUEST_PAGE_MASK BIT_ULL(33)
275 #define PFERR_GUEST_ENC_MASK BIT_ULL(34)
276 #define PFERR_GUEST_SIZEM_MASK BIT_ULL(35)
277 #define PFERR_GUEST_VMPL_MASK BIT_ULL(36)
278
279 /*
280 * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks
281 * when emulating instructions that triggers implicit access.
282 */
283 #define PFERR_IMPLICIT_ACCESS BIT_ULL(48)
284 /*
285 * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred
286 * when the guest was accessing private memory.
287 */
288 #define PFERR_PRIVATE_ACCESS BIT_ULL(49)
289 #define PFERR_SYNTHETIC_MASK (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS)
290
291 /* apic attention bits */
292 #define KVM_APIC_CHECK_VAPIC 0
293 /*
294 * The following bit is set with PV-EOI, unset on EOI.
295 * We detect PV-EOI changes by guest by comparing
296 * this bit with PV-EOI in guest memory.
297 * See the implementation in apic_update_pv_eoi.
298 */
299 #define KVM_APIC_PV_EOI_PENDING 1
300
301 struct kvm_kernel_irqfd;
302 struct kvm_kernel_irq_routing_entry;
303
304 /*
305 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
306 * also includes TDP pages) to determine whether or not a page can be used in
307 * the given MMU context. This is a subset of the overall kvm_cpu_role to
308 * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows
309 * allocating 2 bytes per gfn instead of 4 bytes per gfn.
310 *
311 * Upper-level shadow pages having gptes are tracked for write-protection via
312 * gfn_write_track. As above, gfn_write_track is a 16 bit counter, so KVM must
313 * not create more than 2^16-1 upper-level shadow pages at a single gfn,
314 * otherwise gfn_write_track will overflow and explosions will ensue.
315 *
316 * A unique shadow page (SP) for a gfn is created if and only if an existing SP
317 * cannot be reused. The ability to reuse a SP is tracked by its role, which
318 * incorporates various mode bits and properties of the SP. Roughly speaking,
319 * the number of unique SPs that can theoretically be created is 2^n, where n
320 * is the number of bits that are used to compute the role.
321 *
322 * But, even though there are 20 bits in the mask below, not all combinations
323 * of modes and flags are possible:
324 *
325 * - invalid shadow pages are not accounted, mirror pages are not shadowed,
326 * so the bits are effectively 18.
327 *
328 * - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
329 * execonly and ad_disabled are only used for nested EPT which has
330 * has_4_byte_gpte=0. Therefore, 2 bits are always unused.
331 *
332 * - the 4 bits of level are effectively limited to the values 2/3/4/5,
333 * as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE
334 * paging has exactly one upper level, making level completely redundant
335 * when has_4_byte_gpte=1.
336 *
337 * - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
338 * cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
339 *
340 * Therefore, the maximum number of possible upper-level shadow pages for a
341 * single gfn is a bit less than 2^13.
342 */
343 union kvm_mmu_page_role {
344 u32 word;
345 struct {
346 unsigned level:4;
347 unsigned has_4_byte_gpte:1;
348 unsigned quadrant:2;
349 unsigned direct:1;
350 unsigned access:3;
351 unsigned invalid:1;
352 unsigned efer_nx:1;
353 unsigned cr0_wp:1;
354 unsigned smep_andnot_wp:1;
355 unsigned smap_andnot_wp:1;
356 unsigned ad_disabled:1;
357 unsigned guest_mode:1;
358 unsigned passthrough:1;
359 unsigned is_mirror:1;
360 unsigned :4;
361
362 /*
363 * This is left at the top of the word so that
364 * kvm_memslots_for_spte_role can extract it with a
365 * simple shift. While there is room, give it a whole
366 * byte so it is also faster to load it from memory.
367 */
368 unsigned smm:8;
369 };
370 };
371
372 /*
373 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
374 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER,
375 * including on nested transitions, if nothing in the full role changes then
376 * MMU re-configuration can be skipped. @valid bit is set on first usage so we
377 * don't treat all-zero structure as valid data.
378 *
379 * The properties that are tracked in the extended role but not the page role
380 * are for things that either (a) do not affect the validity of the shadow page
381 * or (b) are indirectly reflected in the shadow page's role. For example,
382 * CR4.PKE only affects permission checks for software walks of the guest page
383 * tables (because KVM doesn't support Protection Keys with shadow paging), and
384 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
385 *
386 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
387 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
388 * SMAP, but the MMU's permission checks for software walks need to be SMEP and
389 * SMAP aware regardless of CR0.WP.
390 */
391 union kvm_mmu_extended_role {
392 u32 word;
393 struct {
394 unsigned int valid:1;
395 unsigned int execonly:1;
396 unsigned int cr4_pse:1;
397 unsigned int cr4_pke:1;
398 unsigned int cr4_smap:1;
399 unsigned int cr4_smep:1;
400 unsigned int cr4_la57:1;
401 unsigned int efer_lma:1;
402 };
403 };
404
405 union kvm_cpu_role {
406 u64 as_u64;
407 struct {
408 union kvm_mmu_page_role base;
409 union kvm_mmu_extended_role ext;
410 };
411 };
412
413 struct kvm_rmap_head {
414 atomic_long_t val;
415 };
416
417 struct kvm_pio_request {
418 unsigned long count;
419 int in;
420 int port;
421 int size;
422 };
423
424 #define PT64_ROOT_MAX_LEVEL 5
425
426 struct rsvd_bits_validate {
427 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
428 u64 bad_mt_xwr;
429 };
430
431 struct kvm_mmu_root_info {
432 gpa_t pgd;
433 hpa_t hpa;
434 };
435
436 #define KVM_MMU_ROOT_INFO_INVALID \
437 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
438
439 #define KVM_MMU_NUM_PREV_ROOTS 3
440
441 #define KVM_MMU_ROOT_CURRENT BIT(0)
442 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i)
443 #define KVM_MMU_ROOTS_ALL (BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1)
444
445 #define KVM_HAVE_MMU_RWLOCK
446
447 struct kvm_mmu_page;
448 struct kvm_page_fault;
449
450 /*
451 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
452 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the
453 * current mmu mode.
454 */
455 struct kvm_mmu {
456 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
457 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
458 int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
459 void (*inject_page_fault)(struct kvm_vcpu *vcpu,
460 struct x86_exception *fault);
461 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
462 gpa_t gva_or_gpa, u64 access,
463 struct x86_exception *exception);
464 int (*sync_spte)(struct kvm_vcpu *vcpu,
465 struct kvm_mmu_page *sp, int i);
466 struct kvm_mmu_root_info root;
467 hpa_t mirror_root_hpa;
468 union kvm_cpu_role cpu_role;
469 union kvm_mmu_page_role root_role;
470
471 /*
472 * The pkru_mask indicates if protection key checks are needed. It
473 * consists of 16 domains indexed by page fault error code bits [4:1],
474 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
475 * Each domain has 2 bits which are ANDed with AD and WD from PKRU.
476 */
477 u32 pkru_mask;
478
479 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
480
481 /*
482 * Bitmap; bit set = permission fault
483 * Byte index: page fault error code [4:1]
484 * Bit index: pte permissions in ACC_* format
485 */
486 u8 permissions[16];
487
488 u64 *pae_root;
489 u64 *pml4_root;
490 u64 *pml5_root;
491
492 /*
493 * check zero bits on shadow page table entries, these
494 * bits include not only hardware reserved bits but also
495 * the bits spte never used.
496 */
497 struct rsvd_bits_validate shadow_zero_check;
498
499 struct rsvd_bits_validate guest_rsvd_check;
500
501 u64 pdptrs[4]; /* pae */
502 };
503
504 enum pmc_type {
505 KVM_PMC_GP = 0,
506 KVM_PMC_FIXED,
507 };
508
509 struct kvm_pmc {
510 enum pmc_type type;
511 u8 idx;
512 bool is_paused;
513 bool intr;
514 /*
515 * Base value of the PMC counter, relative to the *consumed* count in
516 * the associated perf_event. This value includes counter updates from
517 * the perf_event and emulated_count since the last time the counter
518 * was reprogrammed, but it is *not* the current value as seen by the
519 * guest or userspace.
520 *
521 * The count is relative to the associated perf_event so that KVM
522 * doesn't need to reprogram the perf_event every time the guest writes
523 * to the counter.
524 */
525 u64 counter;
526 /*
527 * PMC events triggered by KVM emulation that haven't been fully
528 * processed, i.e. haven't undergone overflow detection.
529 */
530 u64 emulated_counter;
531 u64 eventsel;
532 struct perf_event *perf_event;
533 struct kvm_vcpu *vcpu;
534 /*
535 * only for creating or reusing perf_event,
536 * eventsel value for general purpose counters,
537 * ctrl value for fixed counters.
538 */
539 u64 current_config;
540 };
541
542 /* More counters may conflict with other existing Architectural MSRs */
543 #define KVM_MAX(a, b) ((a) >= (b) ? (a) : (b))
544 #define KVM_MAX_NR_INTEL_GP_COUNTERS 8
545 #define KVM_MAX_NR_AMD_GP_COUNTERS 6
546 #define KVM_MAX_NR_GP_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_GP_COUNTERS, \
547 KVM_MAX_NR_AMD_GP_COUNTERS)
548
549 #define KVM_MAX_NR_INTEL_FIXED_COUNTERS 3
550 #define KVM_MAX_NR_AMD_FIXED_COUNTERS 0
551 #define KVM_MAX_NR_FIXED_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_FIXED_COUNTERS, \
552 KVM_MAX_NR_AMD_FIXED_COUNTERS)
553
554 struct kvm_pmu {
555 u8 version;
556 unsigned nr_arch_gp_counters;
557 unsigned nr_arch_fixed_counters;
558 unsigned available_event_types;
559 u64 fixed_ctr_ctrl;
560 u64 fixed_ctr_ctrl_rsvd;
561 u64 global_ctrl;
562 u64 global_status;
563 u64 counter_bitmask[2];
564 u64 global_ctrl_rsvd;
565 u64 global_status_rsvd;
566 u64 reserved_bits;
567 u64 raw_event_mask;
568 struct kvm_pmc gp_counters[KVM_MAX_NR_GP_COUNTERS];
569 struct kvm_pmc fixed_counters[KVM_MAX_NR_FIXED_COUNTERS];
570
571 /*
572 * Overlay the bitmap with a 64-bit atomic so that all bits can be
573 * set in a single access, e.g. to reprogram all counters when the PMU
574 * filter changes.
575 */
576 union {
577 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
578 atomic64_t __reprogram_pmi;
579 };
580 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
581 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
582
583 DECLARE_BITMAP(pmc_counting_instructions, X86_PMC_IDX_MAX);
584 DECLARE_BITMAP(pmc_counting_branches, X86_PMC_IDX_MAX);
585
586 u64 ds_area;
587 u64 pebs_enable;
588 u64 pebs_enable_rsvd;
589 u64 pebs_data_cfg;
590 u64 pebs_data_cfg_rsvd;
591
592 /*
593 * If a guest counter is cross-mapped to host counter with different
594 * index, its PEBS capability will be temporarily disabled.
595 *
596 * The user should make sure that this mask is updated
597 * after disabling interrupts and before perf_guest_get_msrs();
598 */
599 u64 host_cross_mapped_mask;
600
601 /*
602 * The gate to release perf_events not marked in
603 * pmc_in_use only once in a vcpu time slice.
604 */
605 bool need_cleanup;
606
607 /*
608 * The total number of programmed perf_events and it helps to avoid
609 * redundant check before cleanup if guest don't use vPMU at all.
610 */
611 u8 event_count;
612 };
613
614 struct kvm_pmu_ops;
615
616 enum {
617 KVM_DEBUGREG_BP_ENABLED = BIT(0),
618 KVM_DEBUGREG_WONT_EXIT = BIT(1),
619 /*
620 * Guest debug registers (DR0-3, DR6 and DR7) are saved/restored by
621 * hardware on exit from or enter to guest. KVM needn't switch them.
622 * DR0-3, DR6 and DR7 are set to their architectural INIT value on VM
623 * exit, host values need to be restored.
624 */
625 KVM_DEBUGREG_AUTO_SWITCH = BIT(2),
626 };
627
628 struct kvm_mtrr {
629 u64 var[KVM_NR_VAR_MTRR * 2];
630 u64 fixed_64k;
631 u64 fixed_16k[2];
632 u64 fixed_4k[8];
633 u64 deftype;
634 };
635
636 /* Hyper-V SynIC timer */
637 struct kvm_vcpu_hv_stimer {
638 struct hrtimer timer;
639 int index;
640 union hv_stimer_config config;
641 u64 count;
642 u64 exp_time;
643 struct hv_message msg;
644 bool msg_pending;
645 };
646
647 /* Hyper-V synthetic interrupt controller (SynIC)*/
648 struct kvm_vcpu_hv_synic {
649 u64 version;
650 u64 control;
651 u64 msg_page;
652 u64 evt_page;
653 atomic64_t sint[HV_SYNIC_SINT_COUNT];
654 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
655 DECLARE_BITMAP(auto_eoi_bitmap, 256);
656 DECLARE_BITMAP(vec_bitmap, 256);
657 bool active;
658 bool dont_zero_synic_pages;
659 };
660
661 /* The maximum number of entries on the TLB flush fifo. */
662 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16)
663 /*
664 * Note: the following 'magic' entry is made up by KVM to avoid putting
665 * anything besides GVA on the TLB flush fifo. It is theoretically possible
666 * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000
667 * which will look identical. KVM's action to 'flush everything' instead of
668 * flushing these particular addresses is, however, fully legitimate as
669 * flushing more than requested is always OK.
670 */
671 #define KVM_HV_TLB_FLUSHALL_ENTRY ((u64)-1)
672
673 enum hv_tlb_flush_fifos {
674 HV_L1_TLB_FLUSH_FIFO,
675 HV_L2_TLB_FLUSH_FIFO,
676 HV_NR_TLB_FLUSH_FIFOS,
677 };
678
679 struct kvm_vcpu_hv_tlb_flush_fifo {
680 spinlock_t write_lock;
681 DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE);
682 };
683
684 /* Hyper-V per vcpu emulation context */
685 struct kvm_vcpu_hv {
686 struct kvm_vcpu *vcpu;
687 u32 vp_index;
688 u64 hv_vapic;
689 s64 runtime_offset;
690 struct kvm_vcpu_hv_synic synic;
691 struct kvm_hyperv_exit exit;
692 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
693 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
694 bool enforce_cpuid;
695 struct {
696 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
697 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
698 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
699 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
700 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
701 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
702 u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */
703 u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */
704 } cpuid_cache;
705
706 struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS];
707
708 /*
709 * Preallocated buffers for handling hypercalls that pass sparse vCPU
710 * sets (for high vCPU counts, they're too large to comfortably fit on
711 * the stack).
712 */
713 u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS];
714 DECLARE_BITMAP(vcpu_mask, KVM_MAX_VCPUS);
715
716 struct hv_vp_assist_page vp_assist_page;
717
718 struct {
719 u64 pa_page_gpa;
720 u64 vm_id;
721 u32 vp_id;
722 } nested;
723 };
724
725 struct kvm_hypervisor_cpuid {
726 u32 base;
727 u32 limit;
728 };
729
730 #ifdef CONFIG_KVM_XEN
731 /* Xen HVM per vcpu emulation context */
732 struct kvm_vcpu_xen {
733 u64 hypercall_rip;
734 u32 current_runstate;
735 u8 upcall_vector;
736 struct gfn_to_pfn_cache vcpu_info_cache;
737 struct gfn_to_pfn_cache vcpu_time_info_cache;
738 struct gfn_to_pfn_cache runstate_cache;
739 struct gfn_to_pfn_cache runstate2_cache;
740 u64 last_steal;
741 u64 runstate_entry_time;
742 u64 runstate_times[4];
743 unsigned long evtchn_pending_sel;
744 u32 vcpu_id; /* The Xen / ACPI vCPU ID */
745 u32 timer_virq;
746 u64 timer_expires; /* In guest epoch */
747 atomic_t timer_pending;
748 struct hrtimer timer;
749 int poll_evtchn;
750 struct timer_list poll_timer;
751 struct kvm_hypervisor_cpuid cpuid;
752 };
753 #endif
754
755 struct kvm_queued_exception {
756 bool pending;
757 bool injected;
758 bool has_error_code;
759 u8 vector;
760 u32 error_code;
761 unsigned long payload;
762 bool has_payload;
763 };
764
765 /*
766 * Hardware-defined CPUID leafs that are either scattered by the kernel or are
767 * unknown to the kernel, but need to be directly used by KVM. Note, these
768 * word values conflict with the kernel's "bug" caps, but KVM doesn't use those.
769 */
770 enum kvm_only_cpuid_leafs {
771 CPUID_12_EAX = NCAPINTS,
772 CPUID_7_1_EDX,
773 CPUID_8000_0007_EDX,
774 CPUID_8000_0022_EAX,
775 CPUID_7_2_EDX,
776 CPUID_24_0_EBX,
777 CPUID_8000_0021_ECX,
778 CPUID_7_1_ECX,
779 NR_KVM_CPU_CAPS,
780
781 NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS,
782 };
783
784 struct kvm_vcpu_arch {
785 /*
786 * rip and regs accesses must go through
787 * kvm_{register,rip}_{read,write} functions.
788 */
789 unsigned long regs[NR_VCPU_REGS];
790 u32 regs_avail;
791 u32 regs_dirty;
792
793 unsigned long cr0;
794 unsigned long cr0_guest_owned_bits;
795 unsigned long cr2;
796 unsigned long cr3;
797 unsigned long cr4;
798 unsigned long cr4_guest_owned_bits;
799 unsigned long cr4_guest_rsvd_bits;
800 unsigned long cr8;
801 u32 host_pkru;
802 u32 pkru;
803 u32 hflags;
804 u64 efer;
805 u64 host_debugctl;
806 u64 apic_base;
807 struct kvm_lapic *apic; /* kernel irqchip context */
808 bool load_eoi_exitmap_pending;
809 DECLARE_BITMAP(ioapic_handled_vectors, 256);
810 unsigned long apic_attention;
811 int32_t apic_arb_prio;
812 int mp_state;
813 u64 ia32_misc_enable_msr;
814 u64 smbase;
815 u64 smi_count;
816 bool at_instruction_boundary;
817 bool tpr_access_reporting;
818 bool xfd_no_write_intercept;
819 u64 microcode_version;
820 u64 arch_capabilities;
821 u64 perf_capabilities;
822
823 /*
824 * Paging state of the vcpu
825 *
826 * If the vcpu runs in guest mode with two level paging this still saves
827 * the paging mode of the l1 guest. This context is always used to
828 * handle faults.
829 */
830 struct kvm_mmu *mmu;
831
832 /* Non-nested MMU for L1 */
833 struct kvm_mmu root_mmu;
834
835 /* L1 MMU when running nested */
836 struct kvm_mmu guest_mmu;
837
838 /*
839 * Paging state of an L2 guest (used for nested npt)
840 *
841 * This context will save all necessary information to walk page tables
842 * of an L2 guest. This context is only initialized for page table
843 * walking and not for faulting since we never handle l2 page faults on
844 * the host.
845 */
846 struct kvm_mmu nested_mmu;
847
848 /*
849 * Pointer to the mmu context currently used for
850 * gva_to_gpa translations.
851 */
852 struct kvm_mmu *walk_mmu;
853
854 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
855 struct kvm_mmu_memory_cache mmu_shadow_page_cache;
856 struct kvm_mmu_memory_cache mmu_shadowed_info_cache;
857 struct kvm_mmu_memory_cache mmu_page_header_cache;
858 /*
859 * This cache is to allocate external page table. E.g. private EPT used
860 * by the TDX module.
861 */
862 struct kvm_mmu_memory_cache mmu_external_spt_cache;
863
864 /*
865 * QEMU userspace and the guest each have their own FPU state.
866 * In vcpu_run, we switch between the user and guest FPU contexts.
867 * While running a VCPU, the VCPU thread will have the guest FPU
868 * context.
869 *
870 * Note that while the PKRU state lives inside the fpu registers,
871 * it is switched out separately at VMENTER and VMEXIT time. The
872 * "guest_fpstate" state here contains the guest FPU context, with the
873 * host PRKU bits.
874 */
875 struct fpu_guest guest_fpu;
876
877 u64 xcr0;
878 u64 guest_supported_xcr0;
879 u64 ia32_xss;
880 u64 guest_supported_xss;
881
882 struct kvm_pio_request pio;
883 void *pio_data;
884 void *sev_pio_data;
885 unsigned sev_pio_count;
886
887 u8 event_exit_inst_len;
888
889 bool exception_from_userspace;
890
891 /* Exceptions to be injected to the guest. */
892 struct kvm_queued_exception exception;
893 /* Exception VM-Exits to be synthesized to L1. */
894 struct kvm_queued_exception exception_vmexit;
895
896 struct kvm_queued_interrupt {
897 bool injected;
898 bool soft;
899 u8 nr;
900 } interrupt;
901
902 int halt_request; /* real mode on Intel only */
903
904 int cpuid_nent;
905 struct kvm_cpuid_entry2 *cpuid_entries;
906 bool cpuid_dynamic_bits_dirty;
907 bool is_amd_compatible;
908
909 /*
910 * cpu_caps holds the effective guest capabilities, i.e. the features
911 * the vCPU is allowed to use. Typically, but not always, features can
912 * be used by the guest if and only if both KVM and userspace want to
913 * expose the feature to the guest.
914 *
915 * A common exception is for virtualization holes, i.e. when KVM can't
916 * prevent the guest from using a feature, in which case the vCPU "has"
917 * the feature regardless of what KVM or userspace desires.
918 *
919 * Note, features that don't require KVM involvement in any way are
920 * NOT enforced/sanitized by KVM, i.e. are taken verbatim from the
921 * guest CPUID provided by userspace.
922 */
923 u32 cpu_caps[NR_KVM_CPU_CAPS];
924
925 u64 reserved_gpa_bits;
926 int maxphyaddr;
927
928 /* emulate context */
929
930 struct x86_emulate_ctxt *emulate_ctxt;
931 bool emulate_regs_need_sync_to_vcpu;
932 bool emulate_regs_need_sync_from_vcpu;
933 int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
934 unsigned long cui_linear_rip;
935 int cui_rdmsr_imm_reg;
936
937 gpa_t time;
938 s8 pvclock_tsc_shift;
939 u32 pvclock_tsc_mul;
940 unsigned int hw_tsc_khz;
941 struct gfn_to_pfn_cache pv_time;
942 /* set guest stopped flag in pvclock flags field */
943 bool pvclock_set_guest_stopped_request;
944
945 struct {
946 u8 preempted;
947 u64 msr_val;
948 u64 last_steal;
949 struct gfn_to_hva_cache cache;
950 } st;
951
952 u64 l1_tsc_offset;
953 u64 tsc_offset; /* current tsc offset */
954 u64 last_guest_tsc;
955 u64 last_host_tsc;
956 u64 tsc_offset_adjustment;
957 u64 this_tsc_nsec;
958 u64 this_tsc_write;
959 u64 this_tsc_generation;
960 bool tsc_catchup;
961 bool tsc_always_catchup;
962 s8 virtual_tsc_shift;
963 u32 virtual_tsc_mult;
964 u32 virtual_tsc_khz;
965 s64 ia32_tsc_adjust_msr;
966 u64 msr_ia32_power_ctl;
967 u64 l1_tsc_scaling_ratio;
968 u64 tsc_scaling_ratio; /* current scaling ratio */
969
970 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */
971 /* Number of NMIs pending injection, not including hardware vNMIs. */
972 unsigned int nmi_pending;
973 bool nmi_injected; /* Trying to inject an NMI this entry */
974 bool smi_pending; /* SMI queued after currently running handler */
975 u8 handling_intr_from_guest;
976
977 struct kvm_mtrr mtrr_state;
978 u64 pat;
979
980 unsigned switch_db_regs;
981 unsigned long db[KVM_NR_DB_REGS];
982 unsigned long dr6;
983 unsigned long dr7;
984 unsigned long eff_db[KVM_NR_DB_REGS];
985 unsigned long guest_debug_dr7;
986 u64 msr_platform_info;
987 u64 msr_misc_features_enables;
988
989 u64 mcg_cap;
990 u64 mcg_status;
991 u64 mcg_ctl;
992 u64 mcg_ext_ctl;
993 u64 *mce_banks;
994 u64 *mci_ctl2_banks;
995
996 /* Cache MMIO info */
997 u64 mmio_gva;
998 unsigned mmio_access;
999 gfn_t mmio_gfn;
1000 u64 mmio_gen;
1001
1002 struct kvm_pmu pmu;
1003
1004 /* used for guest single stepping over the given code position */
1005 unsigned long singlestep_rip;
1006
1007 #ifdef CONFIG_KVM_HYPERV
1008 bool hyperv_enabled;
1009 struct kvm_vcpu_hv *hyperv;
1010 #endif
1011 #ifdef CONFIG_KVM_XEN
1012 struct kvm_vcpu_xen xen;
1013 #endif
1014 cpumask_var_t wbinvd_dirty_mask;
1015
1016 unsigned long last_retry_eip;
1017 unsigned long last_retry_addr;
1018
1019 struct {
1020 bool halted;
1021 gfn_t gfns[ASYNC_PF_PER_VCPU];
1022 struct gfn_to_hva_cache data;
1023 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
1024 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
1025 u16 vec;
1026 u32 id;
1027 u32 host_apf_flags;
1028 bool send_always;
1029 bool delivery_as_pf_vmexit;
1030 bool pageready_pending;
1031 } apf;
1032
1033 /* OSVW MSRs (AMD only) */
1034 struct {
1035 u64 length;
1036 u64 status;
1037 } osvw;
1038
1039 struct {
1040 u64 msr_val;
1041 struct gfn_to_hva_cache data;
1042 } pv_eoi;
1043
1044 u64 msr_kvm_poll_control;
1045
1046 /* pv related host specific info */
1047 struct {
1048 bool pv_unhalted;
1049 } pv;
1050
1051 int pending_ioapic_eoi;
1052 int pending_external_vector;
1053 int highest_stale_pending_ioapic_eoi;
1054
1055 /* be preempted when it's in kernel-mode(cpl=0) */
1056 bool preempted_in_kernel;
1057
1058 /* Host CPU on which VM-entry was most recently attempted */
1059 int last_vmentry_cpu;
1060
1061 /* AMD MSRC001_0015 Hardware Configuration */
1062 u64 msr_hwcr;
1063
1064 /* pv related cpuid info */
1065 struct {
1066 /*
1067 * value of the eax register in the KVM_CPUID_FEATURES CPUID
1068 * leaf.
1069 */
1070 u32 features;
1071
1072 /*
1073 * indicates whether pv emulation should be disabled if features
1074 * are not present in the guest's cpuid
1075 */
1076 bool enforce;
1077 } pv_cpuid;
1078
1079 /* Protected Guests */
1080 bool guest_state_protected;
1081 bool guest_tsc_protected;
1082
1083 /*
1084 * Set when PDPTS were loaded directly by the userspace without
1085 * reading the guest memory
1086 */
1087 bool pdptrs_from_userspace;
1088
1089 #if IS_ENABLED(CONFIG_HYPERV)
1090 hpa_t hv_root_tdp;
1091 #endif
1092 };
1093
1094 struct kvm_lpage_info {
1095 int disallow_lpage;
1096 };
1097
1098 struct kvm_arch_memory_slot {
1099 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
1100 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
1101 unsigned short *gfn_write_track;
1102 };
1103
1104 /*
1105 * Track the mode of the optimized logical map, as the rules for decoding the
1106 * destination vary per mode. Enabling the optimized logical map requires all
1107 * software-enabled local APIs to be in the same mode, each addressable APIC to
1108 * be mapped to only one MDA, and each MDA to map to at most one APIC.
1109 */
1110 enum kvm_apic_logical_mode {
1111 /* All local APICs are software disabled. */
1112 KVM_APIC_MODE_SW_DISABLED,
1113 /* All software enabled local APICs in xAPIC cluster addressing mode. */
1114 KVM_APIC_MODE_XAPIC_CLUSTER,
1115 /* All software enabled local APICs in xAPIC flat addressing mode. */
1116 KVM_APIC_MODE_XAPIC_FLAT,
1117 /* All software enabled local APICs in x2APIC mode. */
1118 KVM_APIC_MODE_X2APIC,
1119 /*
1120 * Optimized map disabled, e.g. not all local APICs in the same logical
1121 * mode, same logical ID assigned to multiple APICs, etc.
1122 */
1123 KVM_APIC_MODE_MAP_DISABLED,
1124 };
1125
1126 struct kvm_apic_map {
1127 struct rcu_head rcu;
1128 enum kvm_apic_logical_mode logical_mode;
1129 u32 max_apic_id;
1130 union {
1131 struct kvm_lapic *xapic_flat_map[8];
1132 struct kvm_lapic *xapic_cluster_map[16][4];
1133 };
1134 struct kvm_lapic *phys_map[];
1135 };
1136
1137 /* Hyper-V synthetic debugger (SynDbg)*/
1138 struct kvm_hv_syndbg {
1139 struct {
1140 u64 control;
1141 u64 status;
1142 u64 send_page;
1143 u64 recv_page;
1144 u64 pending_page;
1145 } control;
1146 u64 options;
1147 };
1148
1149 /* Current state of Hyper-V TSC page clocksource */
1150 enum hv_tsc_page_status {
1151 /* TSC page was not set up or disabled */
1152 HV_TSC_PAGE_UNSET = 0,
1153 /* TSC page MSR was written by the guest, update pending */
1154 HV_TSC_PAGE_GUEST_CHANGED,
1155 /* TSC page update was triggered from the host side */
1156 HV_TSC_PAGE_HOST_CHANGED,
1157 /* TSC page was properly set up and is currently active */
1158 HV_TSC_PAGE_SET,
1159 /* TSC page was set up with an inaccessible GPA */
1160 HV_TSC_PAGE_BROKEN,
1161 };
1162
1163 #ifdef CONFIG_KVM_HYPERV
1164 /* Hyper-V emulation context */
1165 struct kvm_hv {
1166 struct mutex hv_lock;
1167 u64 hv_guest_os_id;
1168 u64 hv_hypercall;
1169 u64 hv_tsc_page;
1170 enum hv_tsc_page_status hv_tsc_page_status;
1171
1172 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */
1173 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
1174 u64 hv_crash_ctl;
1175
1176 struct ms_hyperv_tsc_page tsc_ref;
1177
1178 struct idr conn_to_evt;
1179
1180 u64 hv_reenlightenment_control;
1181 u64 hv_tsc_emulation_control;
1182 u64 hv_tsc_emulation_status;
1183 u64 hv_invtsc_control;
1184
1185 /* How many vCPUs have VP index != vCPU index */
1186 atomic_t num_mismatched_vp_indexes;
1187
1188 /*
1189 * How many SynICs use 'AutoEOI' feature
1190 * (protected by arch.apicv_update_lock)
1191 */
1192 unsigned int synic_auto_eoi_used;
1193
1194 struct kvm_hv_syndbg hv_syndbg;
1195
1196 bool xsaves_xsavec_checked;
1197 };
1198 #endif
1199
1200 struct msr_bitmap_range {
1201 u32 flags;
1202 u32 nmsrs;
1203 u32 base;
1204 unsigned long *bitmap;
1205 };
1206
1207 #ifdef CONFIG_KVM_XEN
1208 /* Xen emulation context */
1209 struct kvm_xen {
1210 struct mutex xen_lock;
1211 u32 xen_version;
1212 bool long_mode;
1213 bool runstate_update_flag;
1214 u8 upcall_vector;
1215 struct gfn_to_pfn_cache shinfo_cache;
1216 struct idr evtchn_ports;
1217 unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
1218
1219 struct kvm_xen_hvm_config hvm_config;
1220 };
1221 #endif
1222
1223 enum kvm_irqchip_mode {
1224 KVM_IRQCHIP_NONE,
1225 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */
1226 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */
1227 };
1228
1229 struct kvm_x86_msr_filter {
1230 u8 count;
1231 bool default_allow:1;
1232 struct msr_bitmap_range ranges[16];
1233 };
1234
1235 struct kvm_x86_pmu_event_filter {
1236 __u32 action;
1237 __u32 nevents;
1238 __u32 fixed_counter_bitmap;
1239 __u32 flags;
1240 __u32 nr_includes;
1241 __u32 nr_excludes;
1242 __u64 *includes;
1243 __u64 *excludes;
1244 __u64 events[];
1245 };
1246
1247 enum kvm_apicv_inhibit {
1248
1249 /********************************************************************/
1250 /* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
1251 /********************************************************************/
1252
1253 /*
1254 * APIC acceleration is disabled by a module parameter
1255 * and/or not supported in hardware.
1256 */
1257 APICV_INHIBIT_REASON_DISABLED,
1258
1259 /*
1260 * APIC acceleration is inhibited because AutoEOI feature is
1261 * being used by a HyperV guest.
1262 */
1263 APICV_INHIBIT_REASON_HYPERV,
1264
1265 /*
1266 * APIC acceleration is inhibited because the userspace didn't yet
1267 * enable the kernel/split irqchip.
1268 */
1269 APICV_INHIBIT_REASON_ABSENT,
1270
1271 /* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
1272 * (out of band, debug measure of blocking all interrupts on this vCPU)
1273 * was enabled, to avoid AVIC/APICv bypassing it.
1274 */
1275 APICV_INHIBIT_REASON_BLOCKIRQ,
1276
1277 /*
1278 * APICv is disabled because not all vCPUs have a 1:1 mapping between
1279 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack.
1280 */
1281 APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED,
1282
1283 /*
1284 * For simplicity, the APIC acceleration is inhibited
1285 * first time either APIC ID or APIC base are changed by the guest
1286 * from their reset values.
1287 */
1288 APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
1289 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
1290
1291 /******************************************************/
1292 /* INHIBITs that are relevant only to the AMD's AVIC. */
1293 /******************************************************/
1294
1295 /*
1296 * AVIC is inhibited on a vCPU because it runs a nested guest.
1297 *
1298 * This is needed because unlike APICv, the peers of this vCPU
1299 * cannot use the doorbell mechanism to signal interrupts via AVIC when
1300 * a vCPU runs nested.
1301 */
1302 APICV_INHIBIT_REASON_NESTED,
1303
1304 /*
1305 * On SVM, the wait for the IRQ window is implemented with pending vIRQ,
1306 * which cannot be injected when the AVIC is enabled, thus AVIC
1307 * is inhibited while KVM waits for IRQ window.
1308 */
1309 APICV_INHIBIT_REASON_IRQWIN,
1310
1311 /*
1312 * PIT (i8254) 're-inject' mode, relies on EOI intercept,
1313 * which AVIC doesn't support for edge triggered interrupts.
1314 */
1315 APICV_INHIBIT_REASON_PIT_REINJ,
1316
1317 /*
1318 * AVIC is disabled because SEV doesn't support it.
1319 */
1320 APICV_INHIBIT_REASON_SEV,
1321
1322 /*
1323 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1
1324 * mapping between logical ID and vCPU.
1325 */
1326 APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED,
1327
1328 /*
1329 * AVIC is disabled because the vCPU's APIC ID is beyond the max
1330 * supported by AVIC/x2AVIC, i.e. the vCPU is unaddressable.
1331 */
1332 APICV_INHIBIT_REASON_PHYSICAL_ID_TOO_BIG,
1333
1334 NR_APICV_INHIBIT_REASONS,
1335 };
1336
1337 #define __APICV_INHIBIT_REASON(reason) \
1338 { BIT(APICV_INHIBIT_REASON_##reason), #reason }
1339
1340 #define APICV_INHIBIT_REASONS \
1341 __APICV_INHIBIT_REASON(DISABLED), \
1342 __APICV_INHIBIT_REASON(HYPERV), \
1343 __APICV_INHIBIT_REASON(ABSENT), \
1344 __APICV_INHIBIT_REASON(BLOCKIRQ), \
1345 __APICV_INHIBIT_REASON(PHYSICAL_ID_ALIASED), \
1346 __APICV_INHIBIT_REASON(APIC_ID_MODIFIED), \
1347 __APICV_INHIBIT_REASON(APIC_BASE_MODIFIED), \
1348 __APICV_INHIBIT_REASON(NESTED), \
1349 __APICV_INHIBIT_REASON(IRQWIN), \
1350 __APICV_INHIBIT_REASON(PIT_REINJ), \
1351 __APICV_INHIBIT_REASON(SEV), \
1352 __APICV_INHIBIT_REASON(LOGICAL_ID_ALIASED), \
1353 __APICV_INHIBIT_REASON(PHYSICAL_ID_TOO_BIG)
1354
1355 struct kvm_possible_nx_huge_pages {
1356 /*
1357 * A list of kvm_mmu_page structs that, if zapped, could possibly be
1358 * replaced by an NX huge page. A shadow page is on this list if its
1359 * existence disallows an NX huge page (nx_huge_page_disallowed is set)
1360 * and there are no other conditions that prevent a huge page, e.g.
1361 * the backing host page is huge, dirtly logging is not enabled for its
1362 * memslot, etc... Note, zapping shadow pages on this list doesn't
1363 * guarantee an NX huge page will be created in its stead, e.g. if the
1364 * guest attempts to execute from the region then KVM obviously can't
1365 * create an NX huge page (without hanging the guest).
1366 */
1367 struct list_head pages;
1368 u64 nr_pages;
1369 };
1370
1371 enum kvm_mmu_type {
1372 KVM_SHADOW_MMU,
1373 #ifdef CONFIG_X86_64
1374 KVM_TDP_MMU,
1375 #endif
1376 KVM_NR_MMU_TYPES,
1377 };
1378
1379 struct kvm_arch {
1380 unsigned long n_used_mmu_pages;
1381 unsigned long n_requested_mmu_pages;
1382 unsigned long n_max_mmu_pages;
1383 unsigned int indirect_shadow_pages;
1384 u8 mmu_valid_gen;
1385 u8 vm_type;
1386 bool has_private_mem;
1387 bool has_protected_state;
1388 bool has_protected_eoi;
1389 bool pre_fault_allowed;
1390 struct hlist_head *mmu_page_hash;
1391 struct list_head active_mmu_pages;
1392 struct kvm_possible_nx_huge_pages possible_nx_huge_pages[KVM_NR_MMU_TYPES];
1393 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1394 struct kvm_page_track_notifier_head track_notifier_head;
1395 #endif
1396 /*
1397 * Protects marking pages unsync during page faults, as TDP MMU page
1398 * faults only take mmu_lock for read. For simplicity, the unsync
1399 * pages lock is always taken when marking pages unsync regardless of
1400 * whether mmu_lock is held for read or write.
1401 */
1402 spinlock_t mmu_unsync_pages_lock;
1403
1404 u64 shadow_mmio_value;
1405
1406 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1407 atomic_t noncoherent_dma_count;
1408 unsigned long nr_possible_bypass_irqs;
1409
1410 #ifdef CONFIG_KVM_IOAPIC
1411 struct kvm_pic *vpic;
1412 struct kvm_ioapic *vioapic;
1413 struct kvm_pit *vpit;
1414 #endif
1415 atomic_t vapics_in_nmi_mode;
1416 struct mutex apic_map_lock;
1417 struct kvm_apic_map __rcu *apic_map;
1418 atomic_t apic_map_dirty;
1419
1420 bool apic_access_memslot_enabled;
1421 bool apic_access_memslot_inhibited;
1422
1423 /* Protects apicv_inhibit_reasons */
1424 struct rw_semaphore apicv_update_lock;
1425 unsigned long apicv_inhibit_reasons;
1426
1427 gpa_t wall_clock;
1428
1429 u64 disabled_exits;
1430
1431 s64 kvmclock_offset;
1432
1433 /*
1434 * This also protects nr_vcpus_matched_tsc which is read from a
1435 * preemption-disabled region, so it must be a raw spinlock.
1436 */
1437 raw_spinlock_t tsc_write_lock;
1438 u64 last_tsc_nsec;
1439 u64 last_tsc_write;
1440 u32 last_tsc_khz;
1441 u64 last_tsc_offset;
1442 u64 cur_tsc_nsec;
1443 u64 cur_tsc_write;
1444 u64 cur_tsc_offset;
1445 u64 cur_tsc_generation;
1446 int nr_vcpus_matched_tsc;
1447
1448 u32 default_tsc_khz;
1449 bool user_set_tsc;
1450 u64 apic_bus_cycle_ns;
1451
1452 seqcount_raw_spinlock_t pvclock_sc;
1453 bool use_master_clock;
1454 u64 master_kernel_ns;
1455 u64 master_cycle_now;
1456
1457 #ifdef CONFIG_KVM_HYPERV
1458 struct kvm_hv hyperv;
1459 #endif
1460
1461 #ifdef CONFIG_KVM_XEN
1462 struct kvm_xen xen;
1463 #endif
1464
1465 bool backwards_tsc_observed;
1466 bool boot_vcpu_runs_old_kvmclock;
1467 u32 bsp_vcpu_id;
1468
1469 u64 disabled_quirks;
1470
1471 enum kvm_irqchip_mode irqchip_mode;
1472 u8 nr_reserved_ioapic_pins;
1473
1474 bool disabled_lapic_found;
1475
1476 bool x2apic_format;
1477 bool x2apic_broadcast_quirk_disabled;
1478
1479 bool has_mapped_host_mmio;
1480 bool guest_can_read_msr_platform_info;
1481 bool exception_payload_enabled;
1482
1483 bool triple_fault_event;
1484
1485 bool bus_lock_detection_enabled;
1486 bool enable_pmu;
1487
1488 u32 notify_window;
1489 u32 notify_vmexit_flags;
1490 /*
1491 * If exit_on_emulation_error is set, and the in-kernel instruction
1492 * emulator fails to emulate an instruction, allow userspace
1493 * the opportunity to look at it.
1494 */
1495 bool exit_on_emulation_error;
1496
1497 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1498 u32 user_space_msr_mask;
1499 struct kvm_x86_msr_filter __rcu *msr_filter;
1500
1501 u32 hypercall_exit_enabled;
1502
1503 /* Guest can access the SGX PROVISIONKEY. */
1504 bool sgx_provisioning_allowed;
1505
1506 struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter;
1507 struct vhost_task *nx_huge_page_recovery_thread;
1508 u64 nx_huge_page_last;
1509 struct once nx_once;
1510
1511 #ifdef CONFIG_X86_64
1512 #ifdef CONFIG_KVM_PROVE_MMU
1513 /*
1514 * The number of TDP MMU pages across all roots. Used only to sanity
1515 * check that KVM isn't leaking TDP MMU pages.
1516 */
1517 atomic64_t tdp_mmu_pages;
1518 #endif
1519
1520 /*
1521 * List of struct kvm_mmu_pages being used as roots.
1522 * All struct kvm_mmu_pages in the list should have
1523 * tdp_mmu_page set.
1524 *
1525 * For reads, this list is protected by:
1526 * RCU alone or
1527 * the MMU lock in read mode + RCU or
1528 * the MMU lock in write mode
1529 *
1530 * For writes, this list is protected by tdp_mmu_pages_lock; see
1531 * below for the details.
1532 *
1533 * Roots will remain in the list until their tdp_mmu_root_count
1534 * drops to zero, at which point the thread that decremented the
1535 * count to zero should removed the root from the list and clean
1536 * it up, freeing the root after an RCU grace period.
1537 */
1538 struct list_head tdp_mmu_roots;
1539
1540 /*
1541 * Protects accesses to the following fields when the MMU lock
1542 * is held in read mode:
1543 * - tdp_mmu_roots (above)
1544 * - the link field of kvm_mmu_page structs used by the TDP MMU
1545 * - possible_nx_huge_pages[KVM_TDP_MMU];
1546 * - the possible_nx_huge_page_link field of kvm_mmu_page structs used
1547 * by the TDP MMU
1548 * Because the lock is only taken within the MMU lock, strictly
1549 * speaking it is redundant to acquire this lock when the thread
1550 * holds the MMU lock in write mode. However it often simplifies
1551 * the code to do so.
1552 */
1553 spinlock_t tdp_mmu_pages_lock;
1554 #endif /* CONFIG_X86_64 */
1555
1556 /*
1557 * If set, at least one shadow root has been allocated. This flag
1558 * is used as one input when determining whether certain memslot
1559 * related allocations are necessary.
1560 */
1561 bool shadow_root_allocated;
1562
1563 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1564 /*
1565 * If set, the VM has (or had) an external write tracking user, and
1566 * thus all write tracking metadata has been allocated, even if KVM
1567 * itself isn't using write tracking.
1568 */
1569 bool external_write_tracking_enabled;
1570 #endif
1571
1572 #if IS_ENABLED(CONFIG_HYPERV)
1573 hpa_t hv_root_tdp;
1574 spinlock_t hv_root_tdp_lock;
1575 struct hv_partition_assist_pg *hv_pa_pg;
1576 #endif
1577 /*
1578 * VM-scope maximum vCPU ID. Used to determine the size of structures
1579 * that increase along with the maximum vCPU ID, in which case, using
1580 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste.
1581 */
1582 u32 max_vcpu_ids;
1583
1584 bool disable_nx_huge_pages;
1585
1586 /*
1587 * Memory caches used to allocate shadow pages when performing eager
1588 * page splitting. No need for a shadowed_info_cache since eager page
1589 * splitting only allocates direct shadow pages.
1590 *
1591 * Protected by kvm->slots_lock.
1592 */
1593 struct kvm_mmu_memory_cache split_shadow_page_cache;
1594 struct kvm_mmu_memory_cache split_page_header_cache;
1595
1596 /*
1597 * Memory cache used to allocate pte_list_desc structs while splitting
1598 * huge pages. In the worst case, to split one huge page, 512
1599 * pte_list_desc structs are needed to add each lower level leaf sptep
1600 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level
1601 * page table.
1602 *
1603 * Protected by kvm->slots_lock.
1604 */
1605 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1)
1606 struct kvm_mmu_memory_cache split_desc_cache;
1607
1608 gfn_t gfn_direct_bits;
1609
1610 /*
1611 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A Zero
1612 * value indicates CPU dirty logging is unsupported or disabled in
1613 * current VM.
1614 */
1615 int cpu_dirty_log_size;
1616 };
1617
1618 struct kvm_vm_stat {
1619 struct kvm_vm_stat_generic generic;
1620 u64 mmu_shadow_zapped;
1621 u64 mmu_pte_write;
1622 u64 mmu_pde_zapped;
1623 u64 mmu_flooded;
1624 u64 mmu_recycled;
1625 u64 mmu_cache_miss;
1626 u64 mmu_unsync;
1627 union {
1628 struct {
1629 atomic64_t pages_4k;
1630 atomic64_t pages_2m;
1631 atomic64_t pages_1g;
1632 };
1633 atomic64_t pages[KVM_NR_PAGE_SIZES];
1634 };
1635 u64 nx_lpage_splits;
1636 u64 max_mmu_page_hash_collisions;
1637 u64 max_mmu_rmap_size;
1638 };
1639
1640 struct kvm_vcpu_stat {
1641 struct kvm_vcpu_stat_generic generic;
1642 u64 pf_taken;
1643 u64 pf_fixed;
1644 u64 pf_emulate;
1645 u64 pf_spurious;
1646 u64 pf_fast;
1647 u64 pf_mmio_spte_created;
1648 u64 pf_guest;
1649 u64 tlb_flush;
1650 u64 invlpg;
1651
1652 u64 exits;
1653 u64 io_exits;
1654 u64 mmio_exits;
1655 u64 signal_exits;
1656 u64 irq_window_exits;
1657 u64 nmi_window_exits;
1658 u64 l1d_flush;
1659 u64 halt_exits;
1660 u64 request_irq_exits;
1661 u64 irq_exits;
1662 u64 host_state_reload;
1663 u64 fpu_reload;
1664 u64 insn_emulation;
1665 u64 insn_emulation_fail;
1666 u64 hypercalls;
1667 u64 irq_injections;
1668 u64 nmi_injections;
1669 u64 req_event;
1670 u64 nested_run;
1671 u64 directed_yield_attempted;
1672 u64 directed_yield_successful;
1673 u64 preemption_reported;
1674 u64 preemption_other;
1675 u64 guest_mode;
1676 u64 notify_window_exits;
1677 };
1678
1679 struct x86_instruction_info;
1680
1681 struct msr_data {
1682 bool host_initiated;
1683 u32 index;
1684 u64 data;
1685 };
1686
1687 struct kvm_lapic_irq {
1688 u32 vector;
1689 u16 delivery_mode;
1690 u16 dest_mode;
1691 bool level;
1692 u16 trig_mode;
1693 u32 shorthand;
1694 u32 dest_id;
1695 bool msi_redir_hint;
1696 };
1697
kvm_lapic_irq_dest_mode(bool dest_mode_logical)1698 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1699 {
1700 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1701 }
1702
1703 enum kvm_x86_run_flags {
1704 KVM_RUN_FORCE_IMMEDIATE_EXIT = BIT(0),
1705 KVM_RUN_LOAD_GUEST_DR6 = BIT(1),
1706 KVM_RUN_LOAD_DEBUGCTL = BIT(2),
1707 };
1708
1709 struct kvm_x86_ops {
1710 const char *name;
1711
1712 int (*check_processor_compatibility)(void);
1713
1714 int (*enable_virtualization_cpu)(void);
1715 void (*disable_virtualization_cpu)(void);
1716 cpu_emergency_virt_cb *emergency_disable_virtualization_cpu;
1717
1718 void (*hardware_unsetup)(void);
1719 bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1720 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1721
1722 unsigned int vm_size;
1723 int (*vm_init)(struct kvm *kvm);
1724 void (*vm_destroy)(struct kvm *kvm);
1725 void (*vm_pre_destroy)(struct kvm *kvm);
1726
1727 /* Create, but do not attach this VCPU */
1728 int (*vcpu_precreate)(struct kvm *kvm);
1729 int (*vcpu_create)(struct kvm_vcpu *vcpu);
1730 void (*vcpu_free)(struct kvm_vcpu *vcpu);
1731 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1732
1733 void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
1734 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1735 void (*vcpu_put)(struct kvm_vcpu *vcpu);
1736
1737 /*
1738 * Mask of DEBUGCTL bits that are owned by the host, i.e. that need to
1739 * match the host's value even while the guest is active.
1740 */
1741 const u64 HOST_OWNED_DEBUGCTL;
1742
1743 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1744 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1745 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1746 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1747 void (*get_segment)(struct kvm_vcpu *vcpu,
1748 struct kvm_segment *var, int seg);
1749 int (*get_cpl)(struct kvm_vcpu *vcpu);
1750 int (*get_cpl_no_cache)(struct kvm_vcpu *vcpu);
1751 void (*set_segment)(struct kvm_vcpu *vcpu,
1752 struct kvm_segment *var, int seg);
1753 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1754 bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1755 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1756 void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1757 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1758 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1759 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1760 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1761 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1762 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1763 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1764 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1765 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1766 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1767 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1768 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1769 bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1770
1771 void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
1772 void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
1773 #if IS_ENABLED(CONFIG_HYPERV)
1774 int (*flush_remote_tlbs)(struct kvm *kvm);
1775 int (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn,
1776 gfn_t nr_pages);
1777 #endif
1778
1779 /*
1780 * Flush any TLB entries associated with the given GVA.
1781 * Does not need to flush GPA->HPA mappings.
1782 * Can potentially get non-canonical addresses through INVLPGs, which
1783 * the implementation may choose to ignore if appropriate.
1784 */
1785 void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1786
1787 /*
1788 * Flush any TLB entries created by the guest. Like tlb_flush_gva(),
1789 * does not need to flush GPA->HPA mappings.
1790 */
1791 void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
1792
1793 int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
1794 enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu,
1795 u64 run_flags);
1796 int (*handle_exit)(struct kvm_vcpu *vcpu,
1797 enum exit_fastpath_completion exit_fastpath);
1798 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1799 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1800 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1801 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1802 void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1803 unsigned char *hypercall_addr);
1804 void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected);
1805 void (*inject_nmi)(struct kvm_vcpu *vcpu);
1806 void (*inject_exception)(struct kvm_vcpu *vcpu);
1807 void (*cancel_injection)(struct kvm_vcpu *vcpu);
1808 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1809 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1810 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1811 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1812 /* Whether or not a virtual NMI is pending in hardware. */
1813 bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu);
1814 /*
1815 * Attempt to pend a virtual NMI in hardware. Returns %true on success
1816 * to allow using static_call_ret0 as the fallback.
1817 */
1818 bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu);
1819 void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1820 void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1821 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1822
1823 const bool x2apic_icr_is_split;
1824 const unsigned long required_apicv_inhibits;
1825 bool allow_apicv_in_x2apic_without_x2apic_virtualization;
1826 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1827 void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr);
1828 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1829 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1830 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1831 void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
1832 int trig_mode, int vector);
1833 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1834 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1835 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1836 u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1837
1838 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1839 int root_level);
1840
1841 /* Update external mapping with page table link. */
1842 int (*link_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1843 void *external_spt);
1844 /* Update the external page table from spte getting set. */
1845 int (*set_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1846 u64 mirror_spte);
1847
1848 /* Update external page tables for page table about to be freed. */
1849 int (*free_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1850 void *external_spt);
1851
1852 /* Update external page table from spte getting removed, and flush TLB. */
1853 void (*remove_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1854 u64 mirror_spte);
1855
1856 bool (*has_wbinvd_exit)(void);
1857
1858 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1859 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1860 void (*write_tsc_offset)(struct kvm_vcpu *vcpu);
1861 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu);
1862
1863 /*
1864 * Retrieve somewhat arbitrary exit/entry information. Intended to
1865 * be used only from within tracepoints or error paths.
1866 */
1867 void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
1868 u64 *info1, u64 *info2,
1869 u32 *intr_info, u32 *error_code);
1870
1871 void (*get_entry_info)(struct kvm_vcpu *vcpu,
1872 u32 *intr_info, u32 *error_code);
1873
1874 int (*check_intercept)(struct kvm_vcpu *vcpu,
1875 struct x86_instruction_info *info,
1876 enum x86_intercept_stage stage,
1877 struct x86_exception *exception);
1878 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1879
1880 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1881
1882 const struct kvm_x86_nested_ops *nested_ops;
1883
1884 void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1885 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1886
1887 int (*pi_update_irte)(struct kvm_kernel_irqfd *irqfd, struct kvm *kvm,
1888 unsigned int host_irq, uint32_t guest_irq,
1889 struct kvm_vcpu *vcpu, u32 vector);
1890 void (*pi_start_bypass)(struct kvm *kvm);
1891 void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu);
1892 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1893 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1894 bool (*protected_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1895
1896 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1897 bool *expired);
1898 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1899
1900 void (*setup_mce)(struct kvm_vcpu *vcpu);
1901
1902 #ifdef CONFIG_KVM_SMM
1903 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1904 int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram);
1905 int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram);
1906 void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1907 #endif
1908
1909 int (*dev_get_attr)(u32 group, u64 attr, u64 *val);
1910 int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
1911 int (*vcpu_mem_enc_ioctl)(struct kvm_vcpu *vcpu, void __user *argp);
1912 int (*vcpu_mem_enc_unlocked_ioctl)(struct kvm_vcpu *vcpu, void __user *argp);
1913 int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1914 int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1915 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1916 int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1917 void (*guest_memory_reclaimed)(struct kvm *kvm);
1918
1919 int (*get_feature_msr)(u32 msr, u64 *data);
1920
1921 int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
1922 void *insn, int insn_len);
1923
1924 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1925 int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu);
1926
1927 void (*migrate_timers)(struct kvm_vcpu *vcpu);
1928 void (*recalc_intercepts)(struct kvm_vcpu *vcpu);
1929 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1930
1931 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1932
1933 /*
1934 * Returns vCPU specific APICv inhibit reasons
1935 */
1936 unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
1937
1938 gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags);
1939 void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu);
1940 int (*gmem_prepare)(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order);
1941 void (*gmem_invalidate)(kvm_pfn_t start, kvm_pfn_t end);
1942 int (*gmem_max_mapping_level)(struct kvm *kvm, kvm_pfn_t pfn, bool is_private);
1943 };
1944
1945 struct kvm_x86_nested_ops {
1946 void (*leave_nested)(struct kvm_vcpu *vcpu);
1947 bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector,
1948 u32 error_code);
1949 int (*check_events)(struct kvm_vcpu *vcpu);
1950 bool (*has_events)(struct kvm_vcpu *vcpu, bool for_injection);
1951 void (*triple_fault)(struct kvm_vcpu *vcpu);
1952 int (*get_state)(struct kvm_vcpu *vcpu,
1953 struct kvm_nested_state __user *user_kvm_nested_state,
1954 unsigned user_data_size);
1955 int (*set_state)(struct kvm_vcpu *vcpu,
1956 struct kvm_nested_state __user *user_kvm_nested_state,
1957 struct kvm_nested_state *kvm_state);
1958 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1959 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1960
1961 int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1962 uint16_t *vmcs_version);
1963 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1964 void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu);
1965 };
1966
1967 struct kvm_x86_init_ops {
1968 int (*hardware_setup)(void);
1969 unsigned int (*handle_intel_pt_intr)(void);
1970
1971 struct kvm_x86_ops *runtime_ops;
1972 struct kvm_pmu_ops *pmu_ops;
1973 };
1974
1975 struct kvm_arch_async_pf {
1976 u32 token;
1977 gfn_t gfn;
1978 unsigned long cr3;
1979 bool direct_map;
1980 u64 error_code;
1981 };
1982
1983 extern u32 __read_mostly kvm_nr_uret_msrs;
1984 extern bool __read_mostly allow_smaller_maxphyaddr;
1985 extern bool __read_mostly enable_apicv;
1986 extern bool __read_mostly enable_ipiv;
1987 extern bool __read_mostly enable_device_posted_irqs;
1988 extern struct kvm_x86_ops kvm_x86_ops;
1989
1990 #define kvm_x86_call(func) static_call(kvm_x86_##func)
1991 #define kvm_pmu_call(func) static_call(kvm_x86_pmu_##func)
1992
1993 #define KVM_X86_OP(func) \
1994 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1995 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
1996 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
1997 #include <asm/kvm-x86-ops.h>
1998
1999 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops);
2000 void kvm_x86_vendor_exit(void);
2001
2002 #define __KVM_HAVE_ARCH_VM_ALLOC
kvm_arch_alloc_vm(void)2003 static inline struct kvm *kvm_arch_alloc_vm(void)
2004 {
2005 return kvzalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT);
2006 }
2007
2008 #define __KVM_HAVE_ARCH_VM_FREE
2009 void kvm_arch_free_vm(struct kvm *kvm);
2010
2011 #if IS_ENABLED(CONFIG_HYPERV)
2012 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
kvm_arch_flush_remote_tlbs(struct kvm * kvm)2013 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
2014 {
2015 if (kvm_x86_ops.flush_remote_tlbs &&
2016 !kvm_x86_call(flush_remote_tlbs)(kvm))
2017 return 0;
2018 else
2019 return -ENOTSUPP;
2020 }
2021
2022 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)2023 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn,
2024 u64 nr_pages)
2025 {
2026 if (!kvm_x86_ops.flush_remote_tlbs_range)
2027 return -EOPNOTSUPP;
2028
2029 return kvm_x86_call(flush_remote_tlbs_range)(kvm, gfn, nr_pages);
2030 }
2031 #endif /* CONFIG_HYPERV */
2032
2033 enum kvm_intr_type {
2034 /* Values are arbitrary, but must be non-zero. */
2035 KVM_HANDLING_IRQ = 1,
2036 KVM_HANDLING_NMI,
2037 };
2038
2039 /* Enable perf NMI and timer modes to work, and minimise false positives. */
2040 #define kvm_arch_pmi_in_guest(vcpu) \
2041 ((vcpu) && (vcpu)->arch.handling_intr_from_guest && \
2042 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI)))
2043
2044 void __init kvm_mmu_x86_module_init(void);
2045 int kvm_mmu_vendor_module_init(void);
2046 void kvm_mmu_vendor_module_exit(void);
2047
2048 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
2049 int kvm_mmu_create(struct kvm_vcpu *vcpu);
2050 int kvm_mmu_init_vm(struct kvm *kvm);
2051 void kvm_mmu_uninit_vm(struct kvm *kvm);
2052
2053 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm,
2054 struct kvm_memory_slot *slot);
2055
2056 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
2057 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
2058 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
2059 const struct kvm_memory_slot *memslot,
2060 int start_level);
2061 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
2062 const struct kvm_memory_slot *memslot,
2063 int target_level);
2064 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
2065 const struct kvm_memory_slot *memslot,
2066 u64 start, u64 end,
2067 int target_level);
2068 void kvm_mmu_recover_huge_pages(struct kvm *kvm,
2069 const struct kvm_memory_slot *memslot);
2070 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
2071 const struct kvm_memory_slot *memslot);
2072 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
2073 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
2074 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
2075
2076 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
2077
2078 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2079 const void *val, int bytes);
2080
2081 extern bool tdp_enabled;
2082
2083 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
2084
2085 /*
2086 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
2087 * userspace I/O) to indicate that the emulation context
2088 * should be reused as is, i.e. skip initialization of
2089 * emulation context, instruction fetch and decode.
2090 *
2091 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
2092 * Indicates that only select instructions (tagged with
2093 * EmulateOnUD) should be emulated (to minimize the emulator
2094 * attack surface). See also EMULTYPE_TRAP_UD_FORCED.
2095 *
2096 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
2097 * decode the instruction length. For use *only* by
2098 * kvm_x86_ops.skip_emulated_instruction() implementations if
2099 * EMULTYPE_COMPLETE_USER_EXIT is not set.
2100 *
2101 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
2102 * retry native execution under certain conditions,
2103 * Can only be set in conjunction with EMULTYPE_PF.
2104 *
2105 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
2106 * triggered by KVM's magic "force emulation" prefix,
2107 * which is opt in via module param (off by default).
2108 * Bypasses EmulateOnUD restriction despite emulating
2109 * due to an intercepted #UD (see EMULTYPE_TRAP_UD).
2110 * Used to test the full emulator from userspace.
2111 *
2112 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
2113 * backdoor emulation, which is opt in via module param.
2114 * VMware backdoor emulation handles select instructions
2115 * and reinjects the #GP for all other cases.
2116 *
2117 * EMULTYPE_PF - Set when an intercepted #PF triggers the emulation, in which case
2118 * the CR2/GPA value pass on the stack is valid.
2119 *
2120 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
2121 * state and inject single-step #DBs after skipping
2122 * an instruction (after completing userspace I/O).
2123 *
2124 * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that
2125 * is attempting to write a gfn that contains one or
2126 * more of the PTEs used to translate the write itself,
2127 * and the owning page table is being shadowed by KVM.
2128 * If emulation of the faulting instruction fails and
2129 * this flag is set, KVM will exit to userspace instead
2130 * of retrying emulation as KVM cannot make forward
2131 * progress.
2132 *
2133 * If emulation fails for a write to guest page tables,
2134 * KVM unprotects (zaps) the shadow page for the target
2135 * gfn and resumes the guest to retry the non-emulatable
2136 * instruction (on hardware). Unprotecting the gfn
2137 * doesn't allow forward progress for a self-changing
2138 * access because doing so also zaps the translation for
2139 * the gfn, i.e. retrying the instruction will hit a
2140 * !PRESENT fault, which results in a new shadow page
2141 * and sends KVM back to square one.
2142 *
2143 * EMULTYPE_SKIP_SOFT_INT - Set in combination with EMULTYPE_SKIP to only skip
2144 * an instruction if it could generate a given software
2145 * interrupt, which must be encoded via
2146 * EMULTYPE_SET_SOFT_INT_VECTOR().
2147 */
2148 #define EMULTYPE_NO_DECODE (1 << 0)
2149 #define EMULTYPE_TRAP_UD (1 << 1)
2150 #define EMULTYPE_SKIP (1 << 2)
2151 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3)
2152 #define EMULTYPE_TRAP_UD_FORCED (1 << 4)
2153 #define EMULTYPE_VMWARE_GP (1 << 5)
2154 #define EMULTYPE_PF (1 << 6)
2155 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
2156 #define EMULTYPE_WRITE_PF_TO_SP (1 << 8)
2157 #define EMULTYPE_SKIP_SOFT_INT (1 << 9)
2158
2159 #define EMULTYPE_SET_SOFT_INT_VECTOR(v) ((u32)((v) & 0xff) << 16)
2160 #define EMULTYPE_GET_SOFT_INT_VECTOR(e) (((e) >> 16) & 0xff)
2161
kvm_can_emulate_event_vectoring(int emul_type)2162 static inline bool kvm_can_emulate_event_vectoring(int emul_type)
2163 {
2164 return !(emul_type & EMULTYPE_PF);
2165 }
2166
2167 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
2168 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
2169 void *insn, int insn_len);
2170 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
2171 u64 *data, u8 ndata);
2172 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
2173
2174 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa);
2175 void kvm_prepare_unexpected_reason_exit(struct kvm_vcpu *vcpu, u64 exit_reason);
2176
2177 void kvm_enable_efer_bits(u64);
2178 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
2179 int kvm_emulate_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2180 int kvm_emulate_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data);
2181 int __kvm_emulate_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2182 int __kvm_emulate_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data);
2183 int kvm_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2184 int kvm_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data);
2185 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
2186 int kvm_emulate_rdmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg);
2187 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
2188 int kvm_emulate_wrmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg);
2189 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
2190 int kvm_emulate_invd(struct kvm_vcpu *vcpu);
2191 int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
2192 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
2193 int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
2194
2195 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
2196 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
2197 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
2198 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
2199 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
2200 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
2201
2202 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2203 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2204 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
2205 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
2206
2207 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
2208 int reason, bool has_error_code, u32 error_code);
2209
2210 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
2211 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
2212 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
2213 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
2214 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2215 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
2216 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
2217 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr);
2218 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
2219 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
2220 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr);
2221 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
2222
2223 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2224 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2225
2226 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
2227 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
2228 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
2229
2230 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2231 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2232 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
2233 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr,
2234 bool has_error_code, u32 error_code);
2235 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
2236 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
2237 struct x86_exception *fault);
2238 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
2239 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
2240
__kvm_irq_line_state(unsigned long * irq_state,int irq_source_id,int level)2241 static inline int __kvm_irq_line_state(unsigned long *irq_state,
2242 int irq_source_id, int level)
2243 {
2244 /* Logical OR for level trig interrupt */
2245 if (level)
2246 __set_bit(irq_source_id, irq_state);
2247 else
2248 __clear_bit(irq_source_id, irq_state);
2249
2250 return !!(*irq_state);
2251 }
2252
2253 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
2254 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu);
2255
2256 void kvm_update_dr7(struct kvm_vcpu *vcpu);
2257
2258 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
2259 bool always_retry);
2260
kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa)2261 static inline bool kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu,
2262 gpa_t cr2_or_gpa)
2263 {
2264 return __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, false);
2265 }
2266
2267 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
2268 ulong roots_to_free);
2269 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
2270 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
2271 struct x86_exception *exception);
2272 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
2273 struct x86_exception *exception);
2274 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
2275 struct x86_exception *exception);
2276
2277 bool kvm_apicv_activated(struct kvm *kvm);
2278 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
2279 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
2280 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2281 enum kvm_apicv_inhibit reason, bool set);
2282 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2283 enum kvm_apicv_inhibit reason, bool set);
2284
kvm_set_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason)2285 static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
2286 enum kvm_apicv_inhibit reason)
2287 {
2288 kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
2289 }
2290
kvm_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason)2291 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
2292 enum kvm_apicv_inhibit reason)
2293 {
2294 kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
2295 }
2296
2297 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
2298 void *insn, int insn_len);
2299 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg);
2300 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
2301 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
2302 u64 addr, unsigned long roots);
2303 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
2304 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
2305
2306 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
2307 int tdp_max_root_level, int tdp_huge_page_level);
2308
2309
2310 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2311 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem)
2312 #endif
2313
2314 #define kvm_arch_has_readonly_mem(kvm) (!(kvm)->arch.has_protected_state)
2315
kvm_read_ldt(void)2316 static inline u16 kvm_read_ldt(void)
2317 {
2318 u16 ldt;
2319 asm("sldt %0" : "=g"(ldt));
2320 return ldt;
2321 }
2322
kvm_load_ldt(u16 sel)2323 static inline void kvm_load_ldt(u16 sel)
2324 {
2325 asm("lldt %0" : : "rm"(sel));
2326 }
2327
2328 #ifdef CONFIG_X86_64
read_msr(unsigned long msr)2329 static inline unsigned long read_msr(unsigned long msr)
2330 {
2331 u64 value;
2332
2333 rdmsrq(msr, value);
2334 return value;
2335 }
2336 #endif
2337
kvm_inject_gp(struct kvm_vcpu * vcpu,u32 error_code)2338 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
2339 {
2340 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2341 }
2342
2343 #define TSS_IOPB_BASE_OFFSET 0x66
2344 #define TSS_BASE_SIZE 0x68
2345 #define TSS_IOPB_SIZE (65536 / 8)
2346 #define TSS_REDIRECTION_SIZE (256 / 8)
2347 #define RMODE_TSS_SIZE \
2348 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
2349
2350 enum {
2351 TASK_SWITCH_CALL = 0,
2352 TASK_SWITCH_IRET = 1,
2353 TASK_SWITCH_JMP = 2,
2354 TASK_SWITCH_GATE = 3,
2355 };
2356
2357 #define HF_GUEST_MASK (1 << 0) /* VCPU is in guest-mode */
2358
2359 #ifdef CONFIG_KVM_SMM
2360 #define HF_SMM_MASK (1 << 1)
2361 #define HF_SMM_INSIDE_NMI_MASK (1 << 2)
2362
2363 # define KVM_MAX_NR_ADDRESS_SPACES 2
2364 /* SMM is currently unsupported for guests with private memory. */
2365 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2)
2366 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
2367 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
2368 #else
2369 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0)
2370 #endif
2371
2372 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
2373 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
2374 int kvm_cpu_has_extint(struct kvm_vcpu *v);
2375 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
2376 int kvm_cpu_get_extint(struct kvm_vcpu *v);
2377 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
2378 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
2379
2380 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
2381 unsigned long ipi_bitmap_high, u32 min,
2382 unsigned long icr, int op_64_bit);
2383
2384 int kvm_add_user_return_msr(u32 msr);
2385 int kvm_find_user_return_msr(u32 msr);
2386 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
2387 u64 kvm_get_user_return_msr(unsigned int slot);
2388
kvm_is_supported_user_return_msr(u32 msr)2389 static inline bool kvm_is_supported_user_return_msr(u32 msr)
2390 {
2391 return kvm_find_user_return_msr(msr) >= 0;
2392 }
2393
2394 u64 kvm_scale_tsc(u64 tsc, u64 ratio);
2395 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
2396 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
2397 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
2398
2399 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
2400 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
2401
2402 void kvm_make_scan_ioapic_request(struct kvm *kvm);
2403 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
2404 unsigned long *vcpu_bitmap);
2405
2406 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2407 struct kvm_async_pf *work);
2408 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2409 struct kvm_async_pf *work);
2410 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2411 struct kvm_async_pf *work);
2412 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
2413 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
2414 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
2415
2416 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
2417 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
2418
2419 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
2420 u32 size);
2421 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
2422 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
2423
kvm_irq_is_postable(struct kvm_lapic_irq * irq)2424 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
2425 {
2426 /* We can only post Fixed and LowPrio IRQs */
2427 return (irq->delivery_mode == APIC_DM_FIXED ||
2428 irq->delivery_mode == APIC_DM_LOWEST);
2429 }
2430
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)2431 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
2432 {
2433 kvm_x86_call(vcpu_blocking)(vcpu);
2434 }
2435
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)2436 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
2437 {
2438 kvm_x86_call(vcpu_unblocking)(vcpu);
2439 }
2440
kvm_cpu_get_apicid(int mps_cpu)2441 static inline int kvm_cpu_get_apicid(int mps_cpu)
2442 {
2443 #ifdef CONFIG_X86_LOCAL_APIC
2444 return default_cpu_present_to_apicid(mps_cpu);
2445 #else
2446 WARN_ON_ONCE(1);
2447 return BAD_APICID;
2448 #endif
2449 }
2450
2451 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
2452
2453 #define KVM_CLOCK_VALID_FLAGS \
2454 (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
2455
2456 #define KVM_X86_VALID_QUIRKS \
2457 (KVM_X86_QUIRK_LINT0_REENABLED | \
2458 KVM_X86_QUIRK_CD_NW_CLEARED | \
2459 KVM_X86_QUIRK_LAPIC_MMIO_HOLE | \
2460 KVM_X86_QUIRK_OUT_7E_INC_RIP | \
2461 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT | \
2462 KVM_X86_QUIRK_FIX_HYPERCALL_INSN | \
2463 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS | \
2464 KVM_X86_QUIRK_SLOT_ZAP_ALL | \
2465 KVM_X86_QUIRK_STUFF_FEATURE_MSRS | \
2466 KVM_X86_QUIRK_IGNORE_GUEST_PAT)
2467
2468 #define KVM_X86_CONDITIONAL_QUIRKS \
2469 (KVM_X86_QUIRK_CD_NW_CLEARED | \
2470 KVM_X86_QUIRK_IGNORE_GUEST_PAT)
2471
2472 /*
2473 * KVM previously used a u32 field in kvm_run to indicate the hypercall was
2474 * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the
2475 * remaining 31 lower bits must be 0 to preserve ABI.
2476 */
2477 #define KVM_EXIT_HYPERCALL_MBZ GENMASK_ULL(31, 1)
2478
kvm_arch_has_irq_bypass(void)2479 static inline bool kvm_arch_has_irq_bypass(void)
2480 {
2481 return enable_device_posted_irqs;
2482 }
2483
2484 #endif /* _ASM_X86_KVM_HOST_H */
2485