1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Machine check handler.
4 *
5 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6 * Rest from unknown author(s).
7 * 2004 Andi Kleen. Rewrote most of it.
8 * Copyright 2008 Intel Corporation
9 * Author: Andi Kleen
10 */
11
12 #include <linux/thread_info.h>
13 #include <linux/capability.h>
14 #include <linux/miscdevice.h>
15 #include <linux/ratelimit.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/device.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/ras.h>
37 #include <linux/smp.h>
38 #include <linux/fs.h>
39 #include <linux/mm.h>
40 #include <linux/debugfs.h>
41 #include <linux/irq_work.h>
42 #include <linux/export.h>
43 #include <linux/set_memory.h>
44 #include <linux/sync_core.h>
45 #include <linux/task_work.h>
46 #include <linux/hardirq.h>
47 #include <linux/kexec.h>
48
49 #include <asm/fred.h>
50 #include <asm/cpu_device_id.h>
51 #include <asm/processor.h>
52 #include <asm/traps.h>
53 #include <asm/tlbflush.h>
54 #include <asm/mce.h>
55 #include <asm/msr.h>
56 #include <asm/reboot.h>
57 #include <asm/tdx.h>
58
59 #include "internal.h"
60
61 /* sysfs synchronization */
62 static DEFINE_MUTEX(mce_sysfs_mutex);
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/mce.h>
66
67 #define SPINUNIT 100 /* 100ns */
68
69 DEFINE_PER_CPU(unsigned, mce_exception_count);
70
71 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
72
73 DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
74
75 #define ATTR_LEN 16
76 /* One object for each MCE bank, shared by all CPUs */
77 struct mce_bank_dev {
78 struct device_attribute attr; /* device attribute */
79 char attrname[ATTR_LEN]; /* attribute name */
80 u8 bank; /* bank number */
81 };
82 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
83
84 struct mce_vendor_flags mce_flags __read_mostly;
85
86 struct mca_config mca_cfg __read_mostly = {
87 .bootlog = -1,
88 .monarch_timeout = -1
89 };
90
91 static DEFINE_PER_CPU(struct mce_hw_err, hw_errs_seen);
92 static unsigned long mce_need_notify;
93
94 /*
95 * MCA banks polled by the period polling timer for corrected events.
96 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
97 */
98 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
99 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
100 };
101
102 /*
103 * MCA banks controlled through firmware first for corrected errors.
104 * This is a global list of banks for which we won't enable CMCI and we
105 * won't poll. Firmware controls these banks and is responsible for
106 * reporting corrected errors through GHES. Uncorrected/recoverable
107 * errors are still notified through a machine check.
108 */
109 mce_banks_t mce_banks_ce_disabled;
110
111 static struct work_struct mce_work;
112 static struct irq_work mce_irq_work;
113
114 /*
115 * CPU/chipset specific EDAC code can register a notifier call here to print
116 * MCE errors in a human-readable form.
117 */
118 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
119
mce_prep_record_common(struct mce * m)120 void mce_prep_record_common(struct mce *m)
121 {
122 m->cpuid = cpuid_eax(1);
123 m->cpuvendor = boot_cpu_data.x86_vendor;
124 m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP);
125 /* need the internal __ version to avoid deadlocks */
126 m->time = __ktime_get_real_seconds();
127 }
128
mce_prep_record_per_cpu(unsigned int cpu,struct mce * m)129 void mce_prep_record_per_cpu(unsigned int cpu, struct mce *m)
130 {
131 m->cpu = cpu;
132 m->extcpu = cpu;
133 m->apicid = cpu_data(cpu).topo.initial_apicid;
134 m->microcode = cpu_data(cpu).microcode;
135 m->ppin = topology_ppin(cpu);
136 m->socketid = topology_physical_package_id(cpu);
137 }
138
139 /* Do initial initialization of struct mce_hw_err */
mce_prep_record(struct mce_hw_err * err)140 void mce_prep_record(struct mce_hw_err *err)
141 {
142 struct mce *m = &err->m;
143
144 memset(err, 0, sizeof(struct mce_hw_err));
145 mce_prep_record_common(m);
146 mce_prep_record_per_cpu(smp_processor_id(), m);
147 }
148
149 DEFINE_PER_CPU(struct mce, injectm);
150 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
151
mce_log(struct mce_hw_err * err)152 void mce_log(struct mce_hw_err *err)
153 {
154 if (!mce_gen_pool_add(err))
155 irq_work_queue(&mce_irq_work);
156 }
157 EXPORT_SYMBOL_GPL(mce_log);
158
mce_register_decode_chain(struct notifier_block * nb)159 void mce_register_decode_chain(struct notifier_block *nb)
160 {
161 if (WARN_ON(nb->priority < MCE_PRIO_LOWEST ||
162 nb->priority > MCE_PRIO_HIGHEST))
163 return;
164
165 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
166 }
167 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
168
mce_unregister_decode_chain(struct notifier_block * nb)169 void mce_unregister_decode_chain(struct notifier_block *nb)
170 {
171 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
172 }
173 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
174
__print_mce(struct mce_hw_err * err)175 static void __print_mce(struct mce_hw_err *err)
176 {
177 struct mce *m = &err->m;
178
179 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
180 m->extcpu,
181 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
182 m->mcgstatus, m->bank, m->status);
183
184 if (m->ip) {
185 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
186 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
187 m->cs, m->ip);
188
189 if (m->cs == __KERNEL_CS)
190 pr_cont("{%pS}", (void *)(unsigned long)m->ip);
191 pr_cont("\n");
192 }
193
194 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
195 if (m->addr)
196 pr_cont("ADDR %llx ", m->addr);
197 if (m->misc)
198 pr_cont("MISC %llx ", m->misc);
199 if (m->ppin)
200 pr_cont("PPIN %llx ", m->ppin);
201
202 if (mce_flags.smca) {
203 if (m->synd)
204 pr_cont("SYND %llx ", m->synd);
205 if (err->vendor.amd.synd1)
206 pr_cont("SYND1 %llx ", err->vendor.amd.synd1);
207 if (err->vendor.amd.synd2)
208 pr_cont("SYND2 %llx ", err->vendor.amd.synd2);
209 if (m->ipid)
210 pr_cont("IPID %llx ", m->ipid);
211 }
212
213 pr_cont("\n");
214
215 /*
216 * Note this output is parsed by external tools and old fields
217 * should not be changed.
218 */
219 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
220 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
221 m->microcode);
222 }
223
print_mce(struct mce_hw_err * err)224 static void print_mce(struct mce_hw_err *err)
225 {
226 struct mce *m = &err->m;
227
228 __print_mce(err);
229
230 if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
231 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
232 }
233
234 #define PANIC_TIMEOUT 5 /* 5 seconds */
235
236 static atomic_t mce_panicked;
237
238 static int fake_panic;
239 static atomic_t mce_fake_panicked;
240
241 /* Panic in progress. Enable interrupts and wait for final IPI */
wait_for_panic(void)242 static void wait_for_panic(void)
243 {
244 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
245
246 preempt_disable();
247 local_irq_enable();
248 while (timeout-- > 0)
249 udelay(1);
250 if (panic_timeout == 0)
251 panic_timeout = mca_cfg.panic_timeout;
252 panic("Panicing machine check CPU died");
253 }
254
mce_dump_aux_info(struct mce * m)255 static const char *mce_dump_aux_info(struct mce *m)
256 {
257 if (boot_cpu_has_bug(X86_BUG_TDX_PW_MCE))
258 return tdx_dump_mce_info(m);
259
260 return NULL;
261 }
262
mce_panic(const char * msg,struct mce_hw_err * final,char * exp)263 static noinstr void mce_panic(const char *msg, struct mce_hw_err *final, char *exp)
264 {
265 struct llist_node *pending;
266 struct mce_evt_llist *l;
267 int apei_err = 0;
268 const char *memmsg;
269
270 /*
271 * Allow instrumentation around external facilities usage. Not that it
272 * matters a whole lot since the machine is going to panic anyway.
273 */
274 instrumentation_begin();
275
276 if (!fake_panic) {
277 /*
278 * Make sure only one CPU runs in machine check panic
279 */
280 if (atomic_inc_return(&mce_panicked) > 1)
281 wait_for_panic();
282 barrier();
283
284 bust_spinlocks(1);
285 console_verbose();
286 } else {
287 /* Don't log too much for fake panic */
288 if (atomic_inc_return(&mce_fake_panicked) > 1)
289 goto out;
290 }
291 pending = mce_gen_pool_prepare_records();
292 /* First print corrected ones that are still unlogged */
293 llist_for_each_entry(l, pending, llnode) {
294 struct mce_hw_err *err = &l->err;
295 struct mce *m = &err->m;
296 if (!(m->status & MCI_STATUS_UC)) {
297 print_mce(err);
298 if (!apei_err)
299 apei_err = apei_write_mce(m);
300 }
301 }
302 /* Now print uncorrected but with the final one last */
303 llist_for_each_entry(l, pending, llnode) {
304 struct mce_hw_err *err = &l->err;
305 struct mce *m = &err->m;
306 if (!(m->status & MCI_STATUS_UC))
307 continue;
308 if (!final || mce_cmp(m, &final->m)) {
309 print_mce(err);
310 if (!apei_err)
311 apei_err = apei_write_mce(m);
312 }
313 }
314 if (final) {
315 print_mce(final);
316 if (!apei_err)
317 apei_err = apei_write_mce(&final->m);
318 }
319 if (exp)
320 pr_emerg(HW_ERR "Machine check: %s\n", exp);
321
322 memmsg = mce_dump_aux_info(&final->m);
323 if (memmsg)
324 pr_emerg(HW_ERR "Machine check: %s\n", memmsg);
325
326 if (!fake_panic) {
327 if (panic_timeout == 0)
328 panic_timeout = mca_cfg.panic_timeout;
329
330 /*
331 * Kdump skips the poisoned page in order to avoid
332 * touching the error bits again. Poison the page even
333 * if the error is fatal and the machine is about to
334 * panic.
335 */
336 if (kexec_crash_loaded()) {
337 if (final && (final->m.status & MCI_STATUS_ADDRV)) {
338 struct page *p;
339 p = pfn_to_online_page(final->m.addr >> PAGE_SHIFT);
340 if (p)
341 SetPageHWPoison(p);
342 }
343 }
344 panic(msg);
345 } else
346 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
347
348 out:
349 instrumentation_end();
350 }
351
352 /* Support code for software error injection */
353
msr_to_offset(u32 msr)354 static int msr_to_offset(u32 msr)
355 {
356 unsigned bank = __this_cpu_read(injectm.bank);
357
358 if (msr == mca_cfg.rip_msr)
359 return offsetof(struct mce, ip);
360 if (msr == mca_msr_reg(bank, MCA_STATUS))
361 return offsetof(struct mce, status);
362 if (msr == mca_msr_reg(bank, MCA_ADDR))
363 return offsetof(struct mce, addr);
364 if (msr == mca_msr_reg(bank, MCA_MISC))
365 return offsetof(struct mce, misc);
366 if (msr == MSR_IA32_MCG_STATUS)
367 return offsetof(struct mce, mcgstatus);
368 return -1;
369 }
370
ex_handler_msr_mce(struct pt_regs * regs,bool wrmsr)371 void ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr)
372 {
373 if (wrmsr) {
374 pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
375 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax,
376 regs->ip, (void *)regs->ip);
377 } else {
378 pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
379 (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
380 }
381
382 show_stack_regs(regs);
383
384 panic("MCA architectural violation!\n");
385
386 while (true)
387 cpu_relax();
388 }
389
390 /* MSR access wrappers used for error injection */
mce_rdmsrl(u32 msr)391 noinstr u64 mce_rdmsrl(u32 msr)
392 {
393 DECLARE_ARGS(val, low, high);
394
395 if (__this_cpu_read(injectm.finished)) {
396 int offset;
397 u64 ret;
398
399 instrumentation_begin();
400
401 offset = msr_to_offset(msr);
402 if (offset < 0)
403 ret = 0;
404 else
405 ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
406
407 instrumentation_end();
408
409 return ret;
410 }
411
412 /*
413 * RDMSR on MCA MSRs should not fault. If they do, this is very much an
414 * architectural violation and needs to be reported to hw vendor. Panic
415 * the box to not allow any further progress.
416 */
417 asm volatile("1: rdmsr\n"
418 "2:\n"
419 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_RDMSR_IN_MCE)
420 : EAX_EDX_RET(val, low, high) : "c" (msr));
421
422
423 return EAX_EDX_VAL(val, low, high);
424 }
425
mce_wrmsrl(u32 msr,u64 v)426 static noinstr void mce_wrmsrl(u32 msr, u64 v)
427 {
428 u32 low, high;
429
430 if (__this_cpu_read(injectm.finished)) {
431 int offset;
432
433 instrumentation_begin();
434
435 offset = msr_to_offset(msr);
436 if (offset >= 0)
437 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
438
439 instrumentation_end();
440
441 return;
442 }
443
444 low = (u32)v;
445 high = (u32)(v >> 32);
446
447 /* See comment in mce_rdmsrl() */
448 asm volatile("1: wrmsr\n"
449 "2:\n"
450 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_WRMSR_IN_MCE)
451 : : "c" (msr), "a"(low), "d" (high) : "memory");
452 }
453
454 /*
455 * Collect all global (w.r.t. this processor) status about this machine
456 * check into our "mce" struct so that we can use it later to assess
457 * the severity of the problem as we read per-bank specific details.
458 */
mce_gather_info(struct mce_hw_err * err,struct pt_regs * regs)459 static noinstr void mce_gather_info(struct mce_hw_err *err, struct pt_regs *regs)
460 {
461 struct mce *m;
462 /*
463 * Enable instrumentation around mce_prep_record() which calls external
464 * facilities.
465 */
466 instrumentation_begin();
467 mce_prep_record(err);
468 instrumentation_end();
469
470 m = &err->m;
471 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
472 if (regs) {
473 /*
474 * Get the address of the instruction at the time of
475 * the machine check error.
476 */
477 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
478 m->ip = regs->ip;
479 m->cs = regs->cs;
480
481 /*
482 * When in VM86 mode make the cs look like ring 3
483 * always. This is a lie, but it's better than passing
484 * the additional vm86 bit around everywhere.
485 */
486 if (v8086_mode(regs))
487 m->cs |= 3;
488 }
489 /* Use accurate RIP reporting if available. */
490 if (mca_cfg.rip_msr)
491 m->ip = mce_rdmsrl(mca_cfg.rip_msr);
492 }
493 }
494
mce_available(struct cpuinfo_x86 * c)495 int mce_available(struct cpuinfo_x86 *c)
496 {
497 if (mca_cfg.disabled)
498 return 0;
499 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
500 }
501
mce_schedule_work(void)502 static void mce_schedule_work(void)
503 {
504 if (!mce_gen_pool_empty())
505 schedule_work(&mce_work);
506 }
507
mce_irq_work_cb(struct irq_work * entry)508 static void mce_irq_work_cb(struct irq_work *entry)
509 {
510 mce_schedule_work();
511 }
512
mce_usable_address(struct mce * m)513 bool mce_usable_address(struct mce *m)
514 {
515 if (!(m->status & MCI_STATUS_ADDRV))
516 return false;
517
518 switch (m->cpuvendor) {
519 case X86_VENDOR_AMD:
520 return amd_mce_usable_address(m);
521
522 case X86_VENDOR_INTEL:
523 case X86_VENDOR_ZHAOXIN:
524 return intel_mce_usable_address(m);
525
526 default:
527 return true;
528 }
529 }
530 EXPORT_SYMBOL_GPL(mce_usable_address);
531
mce_is_memory_error(struct mce * m)532 bool mce_is_memory_error(struct mce *m)
533 {
534 switch (m->cpuvendor) {
535 case X86_VENDOR_AMD:
536 case X86_VENDOR_HYGON:
537 return amd_mce_is_memory_error(m);
538
539 case X86_VENDOR_INTEL:
540 case X86_VENDOR_ZHAOXIN:
541 /*
542 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
543 *
544 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
545 * indicating a memory error. Bit 8 is used for indicating a
546 * cache hierarchy error. The combination of bit 2 and bit 3
547 * is used for indicating a `generic' cache hierarchy error
548 * But we can't just blindly check the above bits, because if
549 * bit 11 is set, then it is a bus/interconnect error - and
550 * either way the above bits just gives more detail on what
551 * bus/interconnect error happened. Note that bit 12 can be
552 * ignored, as it's the "filter" bit.
553 */
554 return (m->status & 0xef80) == BIT(7) ||
555 (m->status & 0xef00) == BIT(8) ||
556 (m->status & 0xeffc) == 0xc;
557
558 default:
559 return false;
560 }
561 }
562 EXPORT_SYMBOL_GPL(mce_is_memory_error);
563
whole_page(struct mce * m)564 static bool whole_page(struct mce *m)
565 {
566 if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
567 return true;
568
569 return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
570 }
571
mce_is_correctable(struct mce * m)572 bool mce_is_correctable(struct mce *m)
573 {
574 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
575 return false;
576
577 if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
578 return false;
579
580 if (m->status & MCI_STATUS_UC)
581 return false;
582
583 return true;
584 }
585 EXPORT_SYMBOL_GPL(mce_is_correctable);
586
mce_early_notifier(struct notifier_block * nb,unsigned long val,void * data)587 static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
588 void *data)
589 {
590 struct mce_hw_err *err = to_mce_hw_err(data);
591
592 if (!err)
593 return NOTIFY_DONE;
594
595 /* Emit the trace record: */
596 trace_mce_record(err);
597
598 set_bit(0, &mce_need_notify);
599
600 mce_notify_irq();
601
602 return NOTIFY_DONE;
603 }
604
605 static struct notifier_block early_nb = {
606 .notifier_call = mce_early_notifier,
607 .priority = MCE_PRIO_EARLY,
608 };
609
uc_decode_notifier(struct notifier_block * nb,unsigned long val,void * data)610 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
611 void *data)
612 {
613 struct mce *mce = (struct mce *)data;
614 unsigned long pfn;
615
616 if (!mce || !mce_usable_address(mce))
617 return NOTIFY_DONE;
618
619 if (mce->severity != MCE_AO_SEVERITY &&
620 mce->severity != MCE_DEFERRED_SEVERITY)
621 return NOTIFY_DONE;
622
623 pfn = (mce->addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
624 if (!memory_failure(pfn, 0)) {
625 set_mce_nospec(pfn);
626 mce->kflags |= MCE_HANDLED_UC;
627 }
628
629 return NOTIFY_OK;
630 }
631
632 static struct notifier_block mce_uc_nb = {
633 .notifier_call = uc_decode_notifier,
634 .priority = MCE_PRIO_UC,
635 };
636
mce_default_notifier(struct notifier_block * nb,unsigned long val,void * data)637 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
638 void *data)
639 {
640 struct mce_hw_err *err = to_mce_hw_err(data);
641
642 if (!err)
643 return NOTIFY_DONE;
644
645 if (mca_cfg.print_all || !(err->m.kflags))
646 __print_mce(err);
647
648 return NOTIFY_DONE;
649 }
650
651 static struct notifier_block mce_default_nb = {
652 .notifier_call = mce_default_notifier,
653 /* lowest prio, we want it to run last. */
654 .priority = MCE_PRIO_LOWEST,
655 };
656
657 /*
658 * Read ADDR and MISC registers.
659 */
mce_read_aux(struct mce_hw_err * err,int i)660 static noinstr void mce_read_aux(struct mce_hw_err *err, int i)
661 {
662 struct mce *m = &err->m;
663
664 if (m->status & MCI_STATUS_MISCV)
665 m->misc = mce_rdmsrl(mca_msr_reg(i, MCA_MISC));
666
667 if (m->status & MCI_STATUS_ADDRV) {
668 m->addr = mce_rdmsrl(mca_msr_reg(i, MCA_ADDR));
669
670 /*
671 * Mask the reported address by the reported granularity.
672 */
673 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
674 u8 shift = MCI_MISC_ADDR_LSB(m->misc);
675 m->addr >>= shift;
676 m->addr <<= shift;
677 }
678
679 smca_extract_err_addr(m);
680 }
681
682 if (mce_flags.smca) {
683 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
684
685 if (m->status & MCI_STATUS_SYNDV) {
686 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
687 err->vendor.amd.synd1 = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND1(i));
688 err->vendor.amd.synd2 = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND2(i));
689 }
690 }
691 }
692
693 DEFINE_PER_CPU(unsigned, mce_poll_count);
694
695 /*
696 * Poll for corrected events or events that happened before reset.
697 * Those are just logged through /dev/mcelog.
698 *
699 * This is executed in standard interrupt context.
700 *
701 * Note: spec recommends to panic for fatal unsignalled
702 * errors here. However this would be quite problematic --
703 * we would need to reimplement the Monarch handling and
704 * it would mess up the exclusion between exception handler
705 * and poll handler -- * so we skip this for now.
706 * These cases should not happen anyways, or only when the CPU
707 * is already totally * confused. In this case it's likely it will
708 * not fully execute the machine check handler either.
709 */
machine_check_poll(enum mcp_flags flags,mce_banks_t * b)710 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
711 {
712 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
713 struct mce_hw_err err;
714 struct mce *m;
715 int i;
716
717 this_cpu_inc(mce_poll_count);
718
719 mce_gather_info(&err, NULL);
720 m = &err.m;
721
722 if (flags & MCP_TIMESTAMP)
723 m->tsc = rdtsc();
724
725 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
726 if (!mce_banks[i].ctl || !test_bit(i, *b))
727 continue;
728
729 m->misc = 0;
730 m->addr = 0;
731 m->bank = i;
732
733 barrier();
734 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
735
736 /*
737 * Update storm tracking here, before checking for the
738 * MCI_STATUS_VAL bit. Valid corrected errors count
739 * towards declaring, or maintaining, storm status. No
740 * error in a bank counts towards avoiding, or ending,
741 * storm status.
742 */
743 if (!mca_cfg.cmci_disabled)
744 mce_track_storm(m);
745
746 /* If this entry is not valid, ignore it */
747 if (!(m->status & MCI_STATUS_VAL))
748 continue;
749
750 /*
751 * If we are logging everything (at CPU online) or this
752 * is a corrected error, then we must log it.
753 */
754 if ((flags & MCP_UC) || !(m->status & MCI_STATUS_UC))
755 goto log_it;
756
757 /*
758 * Newer Intel systems that support software error
759 * recovery need to make additional checks. Other
760 * CPUs should skip over uncorrected errors, but log
761 * everything else.
762 */
763 if (!mca_cfg.ser) {
764 if (m->status & MCI_STATUS_UC)
765 continue;
766 goto log_it;
767 }
768
769 /* Log "not enabled" (speculative) errors */
770 if (!(m->status & MCI_STATUS_EN))
771 goto log_it;
772
773 /*
774 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
775 * UC == 1 && PCC == 0 && S == 0
776 */
777 if (!(m->status & MCI_STATUS_PCC) && !(m->status & MCI_STATUS_S))
778 goto log_it;
779
780 /*
781 * Skip anything else. Presumption is that our read of this
782 * bank is racing with a machine check. Leave the log alone
783 * for do_machine_check() to deal with it.
784 */
785 continue;
786
787 log_it:
788 if (flags & MCP_DONTLOG)
789 goto clear_it;
790
791 mce_read_aux(&err, i);
792 m->severity = mce_severity(m, NULL, NULL, false);
793 /*
794 * Don't get the IP here because it's unlikely to
795 * have anything to do with the actual error location.
796 */
797
798 if (mca_cfg.dont_log_ce && !mce_usable_address(m))
799 goto clear_it;
800
801 if (flags & MCP_QUEUE_LOG)
802 mce_gen_pool_add(&err);
803 else
804 mce_log(&err);
805
806 clear_it:
807 /*
808 * Clear state for this bank.
809 */
810 mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
811 }
812
813 /*
814 * Don't clear MCG_STATUS here because it's only defined for
815 * exceptions.
816 */
817
818 sync_core();
819 }
820 EXPORT_SYMBOL_GPL(machine_check_poll);
821
822 /*
823 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
824 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
825 * Vol 3B Table 15-20). But this confuses both the code that determines
826 * whether the machine check occurred in kernel or user mode, and also
827 * the severity assessment code. Pretend that EIPV was set, and take the
828 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
829 */
830 static __always_inline void
quirk_sandybridge_ifu(int bank,struct mce * m,struct pt_regs * regs)831 quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
832 {
833 if (bank != 0)
834 return;
835 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
836 return;
837 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
838 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
839 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
840 MCACOD)) !=
841 (MCI_STATUS_UC|MCI_STATUS_EN|
842 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
843 MCI_STATUS_AR|MCACOD_INSTR))
844 return;
845
846 m->mcgstatus |= MCG_STATUS_EIPV;
847 m->ip = regs->ip;
848 m->cs = regs->cs;
849 }
850
851 /*
852 * Disable fast string copy and return from the MCE handler upon the first SRAR
853 * MCE on bank 1 due to a CPU erratum on Intel Skylake/Cascade Lake/Cooper Lake
854 * CPUs.
855 * The fast string copy instructions ("REP; MOVS*") could consume an
856 * uncorrectable memory error in the cache line _right after_ the desired region
857 * to copy and raise an MCE with RIP pointing to the instruction _after_ the
858 * "REP; MOVS*".
859 * This mitigation addresses the issue completely with the caveat of performance
860 * degradation on the CPU affected. This is still better than the OS crashing on
861 * MCEs raised on an irrelevant process due to "REP; MOVS*" accesses from a
862 * kernel context (e.g., copy_page).
863 *
864 * Returns true when fast string copy on CPU has been disabled.
865 */
quirk_skylake_repmov(void)866 static noinstr bool quirk_skylake_repmov(void)
867 {
868 u64 mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
869 u64 misc_enable = mce_rdmsrl(MSR_IA32_MISC_ENABLE);
870 u64 mc1_status;
871
872 /*
873 * Apply the quirk only to local machine checks, i.e., no broadcast
874 * sync is needed.
875 */
876 if (!(mcgstatus & MCG_STATUS_LMCES) ||
877 !(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING))
878 return false;
879
880 mc1_status = mce_rdmsrl(MSR_IA32_MCx_STATUS(1));
881
882 /* Check for a software-recoverable data fetch error. */
883 if ((mc1_status &
884 (MCI_STATUS_VAL | MCI_STATUS_OVER | MCI_STATUS_UC | MCI_STATUS_EN |
885 MCI_STATUS_ADDRV | MCI_STATUS_MISCV | MCI_STATUS_PCC |
886 MCI_STATUS_AR | MCI_STATUS_S)) ==
887 (MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
888 MCI_STATUS_ADDRV | MCI_STATUS_MISCV |
889 MCI_STATUS_AR | MCI_STATUS_S)) {
890 misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING;
891 mce_wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
892 mce_wrmsrl(MSR_IA32_MCx_STATUS(1), 0);
893
894 instrumentation_begin();
895 pr_err_once("Erratum detected, disable fast string copy instructions.\n");
896 instrumentation_end();
897
898 return true;
899 }
900
901 return false;
902 }
903
904 /*
905 * Some Zen-based Instruction Fetch Units set EIPV=RIPV=0 on poison consumption
906 * errors. This means mce_gather_info() will not save the "ip" and "cs" registers.
907 *
908 * However, the context is still valid, so save the "cs" register for later use.
909 *
910 * The "ip" register is truly unknown, so don't save it or fixup EIPV/RIPV.
911 *
912 * The Instruction Fetch Unit is at MCA bank 1 for all affected systems.
913 */
quirk_zen_ifu(int bank,struct mce * m,struct pt_regs * regs)914 static __always_inline void quirk_zen_ifu(int bank, struct mce *m, struct pt_regs *regs)
915 {
916 if (bank != 1)
917 return;
918 if (!(m->status & MCI_STATUS_POISON))
919 return;
920
921 m->cs = regs->cs;
922 }
923
924 /*
925 * Do a quick check if any of the events requires a panic.
926 * This decides if we keep the events around or clear them.
927 */
mce_no_way_out(struct mce_hw_err * err,char ** msg,unsigned long * validp,struct pt_regs * regs)928 static __always_inline int mce_no_way_out(struct mce_hw_err *err, char **msg, unsigned long *validp,
929 struct pt_regs *regs)
930 {
931 struct mce *m = &err->m;
932 char *tmp = *msg;
933 int i;
934
935 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
936 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
937 if (!(m->status & MCI_STATUS_VAL))
938 continue;
939
940 arch___set_bit(i, validp);
941 if (mce_flags.snb_ifu_quirk)
942 quirk_sandybridge_ifu(i, m, regs);
943
944 if (mce_flags.zen_ifu_quirk)
945 quirk_zen_ifu(i, m, regs);
946
947 m->bank = i;
948 if (mce_severity(m, regs, &tmp, true) >= MCE_PANIC_SEVERITY) {
949 mce_read_aux(err, i);
950 *msg = tmp;
951 return 1;
952 }
953 }
954 return 0;
955 }
956
957 /*
958 * Variable to establish order between CPUs while scanning.
959 * Each CPU spins initially until executing is equal its number.
960 */
961 static atomic_t mce_executing;
962
963 /*
964 * Defines order of CPUs on entry. First CPU becomes Monarch.
965 */
966 static atomic_t mce_callin;
967
968 /*
969 * Track which CPUs entered the MCA broadcast synchronization and which not in
970 * order to print holdouts.
971 */
972 static cpumask_t mce_missing_cpus = CPU_MASK_ALL;
973
974 /*
975 * Check if a timeout waiting for other CPUs happened.
976 */
mce_timed_out(u64 * t,const char * msg)977 static noinstr int mce_timed_out(u64 *t, const char *msg)
978 {
979 int ret = 0;
980
981 /* Enable instrumentation around calls to external facilities */
982 instrumentation_begin();
983
984 /*
985 * The others already did panic for some reason.
986 * Bail out like in a timeout.
987 * rmb() to tell the compiler that system_state
988 * might have been modified by someone else.
989 */
990 rmb();
991 if (atomic_read(&mce_panicked))
992 wait_for_panic();
993 if (!mca_cfg.monarch_timeout)
994 goto out;
995 if ((s64)*t < SPINUNIT) {
996 if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus))
997 pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n",
998 cpumask_pr_args(&mce_missing_cpus));
999 mce_panic(msg, NULL, NULL);
1000
1001 ret = 1;
1002 goto out;
1003 }
1004 *t -= SPINUNIT;
1005
1006 out:
1007 touch_nmi_watchdog();
1008
1009 instrumentation_end();
1010
1011 return ret;
1012 }
1013
1014 /*
1015 * The Monarch's reign. The Monarch is the CPU who entered
1016 * the machine check handler first. It waits for the others to
1017 * raise the exception too and then grades them. When any
1018 * error is fatal panic. Only then let the others continue.
1019 *
1020 * The other CPUs entering the MCE handler will be controlled by the
1021 * Monarch. They are called Subjects.
1022 *
1023 * This way we prevent any potential data corruption in a unrecoverable case
1024 * and also makes sure always all CPU's errors are examined.
1025 *
1026 * Also this detects the case of a machine check event coming from outer
1027 * space (not detected by any CPUs) In this case some external agent wants
1028 * us to shut down, so panic too.
1029 *
1030 * The other CPUs might still decide to panic if the handler happens
1031 * in a unrecoverable place, but in this case the system is in a semi-stable
1032 * state and won't corrupt anything by itself. It's ok to let the others
1033 * continue for a bit first.
1034 *
1035 * All the spin loops have timeouts; when a timeout happens a CPU
1036 * typically elects itself to be Monarch.
1037 */
mce_reign(void)1038 static void mce_reign(void)
1039 {
1040 struct mce_hw_err *err = NULL;
1041 struct mce *m = NULL;
1042 int global_worst = 0;
1043 char *msg = NULL;
1044 int cpu;
1045
1046 /*
1047 * This CPU is the Monarch and the other CPUs have run
1048 * through their handlers.
1049 * Grade the severity of the errors of all the CPUs.
1050 */
1051 for_each_possible_cpu(cpu) {
1052 struct mce_hw_err *etmp = &per_cpu(hw_errs_seen, cpu);
1053 struct mce *mtmp = &etmp->m;
1054
1055 if (mtmp->severity > global_worst) {
1056 global_worst = mtmp->severity;
1057 err = &per_cpu(hw_errs_seen, cpu);
1058 m = &err->m;
1059 }
1060 }
1061
1062 /*
1063 * Cannot recover? Panic here then.
1064 * This dumps all the mces in the log buffer and stops the
1065 * other CPUs.
1066 */
1067 if (m && global_worst >= MCE_PANIC_SEVERITY) {
1068 /* call mce_severity() to get "msg" for panic */
1069 mce_severity(m, NULL, &msg, true);
1070 mce_panic("Fatal machine check", err, msg);
1071 }
1072
1073 /*
1074 * For UC somewhere we let the CPU who detects it handle it.
1075 * Also must let continue the others, otherwise the handling
1076 * CPU could deadlock on a lock.
1077 */
1078
1079 /*
1080 * No machine check event found. Must be some external
1081 * source or one CPU is hung. Panic.
1082 */
1083 if (global_worst <= MCE_KEEP_SEVERITY)
1084 mce_panic("Fatal machine check from unknown source", NULL, NULL);
1085
1086 /*
1087 * Now clear all the hw_errs_seen so that they don't reappear on
1088 * the next mce.
1089 */
1090 for_each_possible_cpu(cpu)
1091 memset(&per_cpu(hw_errs_seen, cpu), 0, sizeof(struct mce_hw_err));
1092 }
1093
1094 static atomic_t global_nwo;
1095
1096 /*
1097 * Start of Monarch synchronization. This waits until all CPUs have
1098 * entered the exception handler and then determines if any of them
1099 * saw a fatal event that requires panic. Then it executes them
1100 * in the entry order.
1101 * TBD double check parallel CPU hotunplug
1102 */
mce_start(int * no_way_out)1103 static noinstr int mce_start(int *no_way_out)
1104 {
1105 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1106 int order, ret = -1;
1107
1108 if (!timeout)
1109 return ret;
1110
1111 raw_atomic_add(*no_way_out, &global_nwo);
1112 /*
1113 * Rely on the implied barrier below, such that global_nwo
1114 * is updated before mce_callin.
1115 */
1116 order = raw_atomic_inc_return(&mce_callin);
1117 arch_cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus);
1118
1119 /* Enable instrumentation around calls to external facilities */
1120 instrumentation_begin();
1121
1122 /*
1123 * Wait for everyone.
1124 */
1125 while (raw_atomic_read(&mce_callin) != num_online_cpus()) {
1126 if (mce_timed_out(&timeout,
1127 "Timeout: Not all CPUs entered broadcast exception handler")) {
1128 raw_atomic_set(&global_nwo, 0);
1129 goto out;
1130 }
1131 ndelay(SPINUNIT);
1132 }
1133
1134 /*
1135 * mce_callin should be read before global_nwo
1136 */
1137 smp_rmb();
1138
1139 if (order == 1) {
1140 /*
1141 * Monarch: Starts executing now, the others wait.
1142 */
1143 raw_atomic_set(&mce_executing, 1);
1144 } else {
1145 /*
1146 * Subject: Now start the scanning loop one by one in
1147 * the original callin order.
1148 * This way when there are any shared banks it will be
1149 * only seen by one CPU before cleared, avoiding duplicates.
1150 */
1151 while (raw_atomic_read(&mce_executing) < order) {
1152 if (mce_timed_out(&timeout,
1153 "Timeout: Subject CPUs unable to finish machine check processing")) {
1154 raw_atomic_set(&global_nwo, 0);
1155 goto out;
1156 }
1157 ndelay(SPINUNIT);
1158 }
1159 }
1160
1161 /*
1162 * Cache the global no_way_out state.
1163 */
1164 *no_way_out = raw_atomic_read(&global_nwo);
1165
1166 ret = order;
1167
1168 out:
1169 instrumentation_end();
1170
1171 return ret;
1172 }
1173
1174 /*
1175 * Synchronize between CPUs after main scanning loop.
1176 * This invokes the bulk of the Monarch processing.
1177 */
mce_end(int order)1178 static noinstr int mce_end(int order)
1179 {
1180 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1181 int ret = -1;
1182
1183 /* Allow instrumentation around external facilities. */
1184 instrumentation_begin();
1185
1186 if (!timeout)
1187 goto reset;
1188 if (order < 0)
1189 goto reset;
1190
1191 /*
1192 * Allow others to run.
1193 */
1194 atomic_inc(&mce_executing);
1195
1196 if (order == 1) {
1197 /*
1198 * Monarch: Wait for everyone to go through their scanning
1199 * loops.
1200 */
1201 while (atomic_read(&mce_executing) <= num_online_cpus()) {
1202 if (mce_timed_out(&timeout,
1203 "Timeout: Monarch CPU unable to finish machine check processing"))
1204 goto reset;
1205 ndelay(SPINUNIT);
1206 }
1207
1208 mce_reign();
1209 barrier();
1210 ret = 0;
1211 } else {
1212 /*
1213 * Subject: Wait for Monarch to finish.
1214 */
1215 while (atomic_read(&mce_executing) != 0) {
1216 if (mce_timed_out(&timeout,
1217 "Timeout: Monarch CPU did not finish machine check processing"))
1218 goto reset;
1219 ndelay(SPINUNIT);
1220 }
1221
1222 /*
1223 * Don't reset anything. That's done by the Monarch.
1224 */
1225 ret = 0;
1226 goto out;
1227 }
1228
1229 /*
1230 * Reset all global state.
1231 */
1232 reset:
1233 atomic_set(&global_nwo, 0);
1234 atomic_set(&mce_callin, 0);
1235 cpumask_setall(&mce_missing_cpus);
1236 barrier();
1237
1238 /*
1239 * Let others run again.
1240 */
1241 atomic_set(&mce_executing, 0);
1242
1243 out:
1244 instrumentation_end();
1245
1246 return ret;
1247 }
1248
mce_clear_state(unsigned long * toclear)1249 static __always_inline void mce_clear_state(unsigned long *toclear)
1250 {
1251 int i;
1252
1253 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1254 if (arch_test_bit(i, toclear))
1255 mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1256 }
1257 }
1258
1259 /*
1260 * Cases where we avoid rendezvous handler timeout:
1261 * 1) If this CPU is offline.
1262 *
1263 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1264 * skip those CPUs which remain looping in the 1st kernel - see
1265 * crash_nmi_callback().
1266 *
1267 * Note: there still is a small window between kexec-ing and the new,
1268 * kdump kernel establishing a new #MC handler where a broadcasted MCE
1269 * might not get handled properly.
1270 */
mce_check_crashing_cpu(void)1271 static noinstr bool mce_check_crashing_cpu(void)
1272 {
1273 unsigned int cpu = smp_processor_id();
1274
1275 if (arch_cpu_is_offline(cpu) ||
1276 (crashing_cpu != -1 && crashing_cpu != cpu)) {
1277 u64 mcgstatus;
1278
1279 mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS);
1280
1281 if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
1282 if (mcgstatus & MCG_STATUS_LMCES)
1283 return false;
1284 }
1285
1286 if (mcgstatus & MCG_STATUS_RIPV) {
1287 __wrmsr(MSR_IA32_MCG_STATUS, 0, 0);
1288 return true;
1289 }
1290 }
1291 return false;
1292 }
1293
1294 static __always_inline int
__mc_scan_banks(struct mce_hw_err * err,struct pt_regs * regs,struct mce_hw_err * final,unsigned long * toclear,unsigned long * valid_banks,int no_way_out,int * worst)1295 __mc_scan_banks(struct mce_hw_err *err, struct pt_regs *regs,
1296 struct mce_hw_err *final, unsigned long *toclear,
1297 unsigned long *valid_banks, int no_way_out, int *worst)
1298 {
1299 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1300 struct mca_config *cfg = &mca_cfg;
1301 int severity, i, taint = 0;
1302 struct mce *m = &err->m;
1303
1304 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1305 arch___clear_bit(i, toclear);
1306 if (!arch_test_bit(i, valid_banks))
1307 continue;
1308
1309 if (!mce_banks[i].ctl)
1310 continue;
1311
1312 m->misc = 0;
1313 m->addr = 0;
1314 m->bank = i;
1315
1316 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
1317 if (!(m->status & MCI_STATUS_VAL))
1318 continue;
1319
1320 /*
1321 * Corrected or non-signaled errors are handled by
1322 * machine_check_poll(). Leave them alone, unless this panics.
1323 */
1324 if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1325 !no_way_out)
1326 continue;
1327
1328 /* Set taint even when machine check was not enabled. */
1329 taint++;
1330
1331 severity = mce_severity(m, regs, NULL, true);
1332
1333 /*
1334 * When machine check was for corrected/deferred handler don't
1335 * touch, unless we're panicking.
1336 */
1337 if ((severity == MCE_KEEP_SEVERITY ||
1338 severity == MCE_UCNA_SEVERITY) && !no_way_out)
1339 continue;
1340
1341 arch___set_bit(i, toclear);
1342
1343 /* Machine check event was not enabled. Clear, but ignore. */
1344 if (severity == MCE_NO_SEVERITY)
1345 continue;
1346
1347 mce_read_aux(err, i);
1348
1349 /* assuming valid severity level != 0 */
1350 m->severity = severity;
1351
1352 /*
1353 * Enable instrumentation around the mce_log() call which is
1354 * done in #MC context, where instrumentation is disabled.
1355 */
1356 instrumentation_begin();
1357 mce_log(err);
1358 instrumentation_end();
1359
1360 if (severity > *worst) {
1361 *final = *err;
1362 *worst = severity;
1363 }
1364 }
1365
1366 /* mce_clear_state will clear *final, save locally for use later */
1367 *err = *final;
1368
1369 return taint;
1370 }
1371
kill_me_now(struct callback_head * ch)1372 static void kill_me_now(struct callback_head *ch)
1373 {
1374 struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me);
1375
1376 p->mce_count = 0;
1377 force_sig(SIGBUS);
1378 }
1379
kill_me_maybe(struct callback_head * cb)1380 static void kill_me_maybe(struct callback_head *cb)
1381 {
1382 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1383 int flags = MF_ACTION_REQUIRED;
1384 unsigned long pfn;
1385 int ret;
1386
1387 p->mce_count = 0;
1388 pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
1389
1390 if (!p->mce_ripv)
1391 flags |= MF_MUST_KILL;
1392
1393 pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
1394 ret = memory_failure(pfn, flags);
1395 if (!ret) {
1396 set_mce_nospec(pfn);
1397 sync_core();
1398 return;
1399 }
1400
1401 /*
1402 * -EHWPOISON from memory_failure() means that it already sent SIGBUS
1403 * to the current process with the proper error info,
1404 * -EOPNOTSUPP means hwpoison_filter() filtered the error event,
1405 *
1406 * In both cases, no further processing is required.
1407 */
1408 if (ret == -EHWPOISON || ret == -EOPNOTSUPP)
1409 return;
1410
1411 pr_err("Memory error not recovered");
1412 kill_me_now(cb);
1413 }
1414
kill_me_never(struct callback_head * cb)1415 static void kill_me_never(struct callback_head *cb)
1416 {
1417 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1418 unsigned long pfn;
1419
1420 p->mce_count = 0;
1421 pr_err("Kernel accessed poison in user space at %llx\n", p->mce_addr);
1422 pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
1423 if (!memory_failure(pfn, 0))
1424 set_mce_nospec(pfn);
1425 }
1426
queue_task_work(struct mce_hw_err * err,char * msg,void (* func)(struct callback_head *))1427 static void queue_task_work(struct mce_hw_err *err, char *msg, void (*func)(struct callback_head *))
1428 {
1429 int count = ++current->mce_count;
1430 struct mce *m = &err->m;
1431
1432 /* First call, save all the details */
1433 if (count == 1) {
1434 current->mce_addr = m->addr;
1435 current->mce_kflags = m->kflags;
1436 current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV);
1437 current->mce_whole_page = whole_page(m);
1438 current->mce_kill_me.func = func;
1439 }
1440
1441 /* Ten is likely overkill. Don't expect more than two faults before task_work() */
1442 if (count > 10)
1443 mce_panic("Too many consecutive machine checks while accessing user data",
1444 err, msg);
1445
1446 /* Second or later call, make sure page address matches the one from first call */
1447 if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT))
1448 mce_panic("Consecutive machine checks to different user pages", err, msg);
1449
1450 /* Do not call task_work_add() more than once */
1451 if (count > 1)
1452 return;
1453
1454 task_work_add(current, ¤t->mce_kill_me, TWA_RESUME);
1455 }
1456
1457 /* Handle unconfigured int18 (should never happen) */
unexpected_machine_check(struct pt_regs * regs)1458 static noinstr void unexpected_machine_check(struct pt_regs *regs)
1459 {
1460 instrumentation_begin();
1461 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1462 smp_processor_id());
1463 instrumentation_end();
1464 }
1465
1466 /*
1467 * The actual machine check handler. This only handles real exceptions when
1468 * something got corrupted coming in through int 18.
1469 *
1470 * This is executed in #MC context not subject to normal locking rules.
1471 * This implies that most kernel services cannot be safely used. Don't even
1472 * think about putting a printk in there!
1473 *
1474 * On Intel systems this is entered on all CPUs in parallel through
1475 * MCE broadcast. However some CPUs might be broken beyond repair,
1476 * so be always careful when synchronizing with others.
1477 *
1478 * Tracing and kprobes are disabled: if we interrupted a kernel context
1479 * with IF=1, we need to minimize stack usage. There are also recursion
1480 * issues: if the machine check was due to a failure of the memory
1481 * backing the user stack, tracing that reads the user stack will cause
1482 * potentially infinite recursion.
1483 *
1484 * Currently, the #MC handler calls out to a number of external facilities
1485 * and, therefore, allows instrumentation around them. The optimal thing to
1486 * have would be to do the absolutely minimal work required in #MC context
1487 * and have instrumentation disabled only around that. Further processing can
1488 * then happen in process context where instrumentation is allowed. Achieving
1489 * that requires careful auditing and modifications. Until then, the code
1490 * allows instrumentation temporarily, where required. *
1491 */
do_machine_check(struct pt_regs * regs)1492 noinstr void do_machine_check(struct pt_regs *regs)
1493 {
1494 int worst = 0, order, no_way_out, kill_current_task, lmce, taint = 0;
1495 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS) = { 0 };
1496 DECLARE_BITMAP(toclear, MAX_NR_BANKS) = { 0 };
1497 struct mce_hw_err *final;
1498 struct mce_hw_err err;
1499 char *msg = NULL;
1500 struct mce *m;
1501
1502 if (unlikely(mce_flags.p5))
1503 return pentium_machine_check(regs);
1504 else if (unlikely(mce_flags.winchip))
1505 return winchip_machine_check(regs);
1506 else if (unlikely(!mca_cfg.initialized))
1507 return unexpected_machine_check(regs);
1508
1509 if (mce_flags.skx_repmov_quirk && quirk_skylake_repmov())
1510 goto clear;
1511
1512 /*
1513 * Establish sequential order between the CPUs entering the machine
1514 * check handler.
1515 */
1516 order = -1;
1517
1518 /*
1519 * If no_way_out gets set, there is no safe way to recover from this
1520 * MCE.
1521 */
1522 no_way_out = 0;
1523
1524 /*
1525 * If kill_current_task is not set, there might be a way to recover from this
1526 * error.
1527 */
1528 kill_current_task = 0;
1529
1530 /*
1531 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1532 * on Intel.
1533 */
1534 lmce = 1;
1535
1536 this_cpu_inc(mce_exception_count);
1537
1538 mce_gather_info(&err, regs);
1539 m = &err.m;
1540 m->tsc = rdtsc();
1541
1542 final = this_cpu_ptr(&hw_errs_seen);
1543 *final = err;
1544
1545 no_way_out = mce_no_way_out(&err, &msg, valid_banks, regs);
1546
1547 barrier();
1548
1549 /*
1550 * When no restart IP might need to kill or panic.
1551 * Assume the worst for now, but if we find the
1552 * severity is MCE_AR_SEVERITY we have other options.
1553 */
1554 if (!(m->mcgstatus & MCG_STATUS_RIPV))
1555 kill_current_task = 1;
1556 /*
1557 * Check if this MCE is signaled to only this logical processor,
1558 * on Intel, Zhaoxin only.
1559 */
1560 if (m->cpuvendor == X86_VENDOR_INTEL ||
1561 m->cpuvendor == X86_VENDOR_ZHAOXIN)
1562 lmce = m->mcgstatus & MCG_STATUS_LMCES;
1563
1564 /*
1565 * Local machine check may already know that we have to panic.
1566 * Broadcast machine check begins rendezvous in mce_start()
1567 * Go through all banks in exclusion of the other CPUs. This way we
1568 * don't report duplicated events on shared banks because the first one
1569 * to see it will clear it.
1570 */
1571 if (lmce) {
1572 if (no_way_out)
1573 mce_panic("Fatal local machine check", &err, msg);
1574 } else {
1575 order = mce_start(&no_way_out);
1576 }
1577
1578 taint = __mc_scan_banks(&err, regs, final, toclear, valid_banks, no_way_out, &worst);
1579
1580 if (!no_way_out)
1581 mce_clear_state(toclear);
1582
1583 /*
1584 * Do most of the synchronization with other CPUs.
1585 * When there's any problem use only local no_way_out state.
1586 */
1587 if (!lmce) {
1588 if (mce_end(order) < 0) {
1589 if (!no_way_out)
1590 no_way_out = worst >= MCE_PANIC_SEVERITY;
1591
1592 if (no_way_out)
1593 mce_panic("Fatal machine check on current CPU", &err, msg);
1594 }
1595 } else {
1596 /*
1597 * If there was a fatal machine check we should have
1598 * already called mce_panic earlier in this function.
1599 * Since we re-read the banks, we might have found
1600 * something new. Check again to see if we found a
1601 * fatal error. We call "mce_severity()" again to
1602 * make sure we have the right "msg".
1603 */
1604 if (worst >= MCE_PANIC_SEVERITY) {
1605 mce_severity(m, regs, &msg, true);
1606 mce_panic("Local fatal machine check!", &err, msg);
1607 }
1608 }
1609
1610 /*
1611 * Enable instrumentation around the external facilities like task_work_add()
1612 * (via queue_task_work()), fixup_exception() etc. For now, that is. Fixing this
1613 * properly would need a lot more involved reorganization.
1614 */
1615 instrumentation_begin();
1616
1617 if (taint)
1618 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1619
1620 if (worst != MCE_AR_SEVERITY && !kill_current_task)
1621 goto out;
1622
1623 /* Fault was in user mode and we need to take some action */
1624 if ((m->cs & 3) == 3) {
1625 /* If this triggers there is no way to recover. Die hard. */
1626 BUG_ON(!on_thread_stack() || !user_mode(regs));
1627
1628 if (!mce_usable_address(m))
1629 queue_task_work(&err, msg, kill_me_now);
1630 else
1631 queue_task_work(&err, msg, kill_me_maybe);
1632
1633 } else if (m->mcgstatus & MCG_STATUS_SEAM_NR) {
1634 /*
1635 * Saved RIP on stack makes it look like the machine check
1636 * was taken in the kernel on the instruction following
1637 * the entry to SEAM mode. But MCG_STATUS_SEAM_NR indicates
1638 * that the machine check was taken inside SEAM non-root
1639 * mode. CPU core has already marked that guest as dead.
1640 * It is OK for the kernel to resume execution at the
1641 * apparent point of the machine check as the fault did
1642 * not occur there. Mark the page as poisoned so it won't
1643 * be added to free list when the guest is terminated.
1644 */
1645 if (mce_usable_address(m)) {
1646 struct page *p = pfn_to_online_page(m->addr >> PAGE_SHIFT);
1647
1648 if (p)
1649 SetPageHWPoison(p);
1650 }
1651 } else {
1652 /*
1653 * Handle an MCE which has happened in kernel space but from
1654 * which the kernel can recover: ex_has_fault_handler() has
1655 * already verified that the rIP at which the error happened is
1656 * a rIP from which the kernel can recover (by jumping to
1657 * recovery code specified in _ASM_EXTABLE_FAULT()) and the
1658 * corresponding exception handler which would do that is the
1659 * proper one.
1660 */
1661 if (m->kflags & MCE_IN_KERNEL_RECOV) {
1662 if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
1663 mce_panic("Failed kernel mode recovery", &err, msg);
1664 }
1665
1666 if (m->kflags & MCE_IN_KERNEL_COPYIN)
1667 queue_task_work(&err, msg, kill_me_never);
1668 }
1669
1670 out:
1671 instrumentation_end();
1672
1673 clear:
1674 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1675 }
1676 EXPORT_SYMBOL_GPL(do_machine_check);
1677
1678 #ifndef CONFIG_MEMORY_FAILURE
memory_failure(unsigned long pfn,int flags)1679 int memory_failure(unsigned long pfn, int flags)
1680 {
1681 /* mce_severity() should not hand us an ACTION_REQUIRED error */
1682 BUG_ON(flags & MF_ACTION_REQUIRED);
1683 pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1684 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1685 pfn);
1686
1687 return 0;
1688 }
1689 #endif
1690
1691 /*
1692 * Periodic polling timer for "silent" machine check errors. If the
1693 * poller finds an MCE, poll 2x faster. When the poller finds no more
1694 * errors, poll 2x slower (up to check_interval seconds).
1695 */
1696 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1697
1698 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1699 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1700
__start_timer(struct timer_list * t,unsigned long interval)1701 static void __start_timer(struct timer_list *t, unsigned long interval)
1702 {
1703 unsigned long when = jiffies + interval;
1704 unsigned long flags;
1705
1706 local_irq_save(flags);
1707
1708 if (!timer_pending(t) || time_before(when, t->expires))
1709 mod_timer(t, round_jiffies(when));
1710
1711 local_irq_restore(flags);
1712 }
1713
mc_poll_banks_default(void)1714 static void mc_poll_banks_default(void)
1715 {
1716 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1717 }
1718
1719 void (*mc_poll_banks)(void) = mc_poll_banks_default;
1720
mce_timer_fn(struct timer_list * t)1721 static void mce_timer_fn(struct timer_list *t)
1722 {
1723 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1724 unsigned long iv;
1725
1726 WARN_ON(cpu_t != t);
1727
1728 iv = __this_cpu_read(mce_next_interval);
1729
1730 if (mce_available(this_cpu_ptr(&cpu_info)))
1731 mc_poll_banks();
1732
1733 /*
1734 * Alert userspace if needed. If we logged an MCE, reduce the polling
1735 * interval, otherwise increase the polling interval.
1736 */
1737 if (mce_notify_irq())
1738 iv = max(iv / 2, (unsigned long) HZ/100);
1739 else
1740 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1741
1742 if (mce_get_storm_mode()) {
1743 __start_timer(t, HZ);
1744 } else {
1745 __this_cpu_write(mce_next_interval, iv);
1746 __start_timer(t, iv);
1747 }
1748 }
1749
1750 /*
1751 * When a storm starts on any bank on this CPU, switch to polling
1752 * once per second. When the storm ends, revert to the default
1753 * polling interval.
1754 */
mce_timer_kick(bool storm)1755 void mce_timer_kick(bool storm)
1756 {
1757 struct timer_list *t = this_cpu_ptr(&mce_timer);
1758
1759 mce_set_storm_mode(storm);
1760
1761 if (storm)
1762 __start_timer(t, HZ);
1763 else
1764 __this_cpu_write(mce_next_interval, check_interval * HZ);
1765 }
1766
1767 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
mce_timer_delete_all(void)1768 static void mce_timer_delete_all(void)
1769 {
1770 int cpu;
1771
1772 for_each_online_cpu(cpu)
1773 del_timer_sync(&per_cpu(mce_timer, cpu));
1774 }
1775
1776 /*
1777 * Notify the user(s) about new machine check events.
1778 * Can be called from interrupt context, but not from machine check/NMI
1779 * context.
1780 */
mce_notify_irq(void)1781 int mce_notify_irq(void)
1782 {
1783 /* Not more than two messages every minute */
1784 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1785
1786 if (test_and_clear_bit(0, &mce_need_notify)) {
1787 mce_work_trigger();
1788
1789 if (__ratelimit(&ratelimit))
1790 pr_info(HW_ERR "Machine check events logged\n");
1791
1792 return 1;
1793 }
1794 return 0;
1795 }
1796 EXPORT_SYMBOL_GPL(mce_notify_irq);
1797
__mcheck_cpu_mce_banks_init(void)1798 static void __mcheck_cpu_mce_banks_init(void)
1799 {
1800 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1801 u8 n_banks = this_cpu_read(mce_num_banks);
1802 int i;
1803
1804 for (i = 0; i < n_banks; i++) {
1805 struct mce_bank *b = &mce_banks[i];
1806
1807 /*
1808 * Init them all, __mcheck_cpu_apply_quirks() is going to apply
1809 * the required vendor quirks before
1810 * __mcheck_cpu_init_clear_banks() does the final bank setup.
1811 */
1812 b->ctl = -1ULL;
1813 b->init = true;
1814 }
1815 }
1816
1817 /*
1818 * Initialize Machine Checks for a CPU.
1819 */
__mcheck_cpu_cap_init(void)1820 static void __mcheck_cpu_cap_init(void)
1821 {
1822 u64 cap;
1823 u8 b;
1824
1825 rdmsrl(MSR_IA32_MCG_CAP, cap);
1826
1827 b = cap & MCG_BANKCNT_MASK;
1828
1829 if (b > MAX_NR_BANKS) {
1830 pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1831 smp_processor_id(), MAX_NR_BANKS, b);
1832 b = MAX_NR_BANKS;
1833 }
1834
1835 this_cpu_write(mce_num_banks, b);
1836
1837 __mcheck_cpu_mce_banks_init();
1838
1839 /* Use accurate RIP reporting if available. */
1840 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1841 mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1842
1843 if (cap & MCG_SER_P)
1844 mca_cfg.ser = 1;
1845 }
1846
__mcheck_cpu_init_generic(void)1847 static void __mcheck_cpu_init_generic(void)
1848 {
1849 enum mcp_flags m_fl = 0;
1850 mce_banks_t all_banks;
1851 u64 cap;
1852
1853 if (!mca_cfg.bootlog)
1854 m_fl = MCP_DONTLOG;
1855
1856 /*
1857 * Log the machine checks left over from the previous reset. Log them
1858 * only, do not start processing them. That will happen in mcheck_late_init()
1859 * when all consumers have been registered on the notifier chain.
1860 */
1861 bitmap_fill(all_banks, MAX_NR_BANKS);
1862 machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks);
1863
1864 cr4_set_bits(X86_CR4_MCE);
1865
1866 rdmsrl(MSR_IA32_MCG_CAP, cap);
1867 if (cap & MCG_CTL_P)
1868 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1869 }
1870
__mcheck_cpu_init_clear_banks(void)1871 static void __mcheck_cpu_init_clear_banks(void)
1872 {
1873 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1874 int i;
1875
1876 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1877 struct mce_bank *b = &mce_banks[i];
1878
1879 if (!b->init)
1880 continue;
1881 wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
1882 wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1883 }
1884 }
1885
1886 /*
1887 * Do a final check to see if there are any unused/RAZ banks.
1888 *
1889 * This must be done after the banks have been initialized and any quirks have
1890 * been applied.
1891 *
1892 * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs.
1893 * Otherwise, a user who disables a bank will not be able to re-enable it
1894 * without a system reboot.
1895 */
__mcheck_cpu_check_banks(void)1896 static void __mcheck_cpu_check_banks(void)
1897 {
1898 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1899 u64 msrval;
1900 int i;
1901
1902 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1903 struct mce_bank *b = &mce_banks[i];
1904
1905 if (!b->init)
1906 continue;
1907
1908 rdmsrl(mca_msr_reg(i, MCA_CTL), msrval);
1909 b->init = !!msrval;
1910 }
1911 }
1912
1913 /* Add per CPU specific workarounds here */
__mcheck_cpu_apply_quirks(struct cpuinfo_x86 * c)1914 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1915 {
1916 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1917 struct mca_config *cfg = &mca_cfg;
1918
1919 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1920 pr_info("unknown CPU type - not enabling MCE support\n");
1921 return -EOPNOTSUPP;
1922 }
1923
1924 /* This should be disabled by the BIOS, but isn't always */
1925 if (c->x86_vendor == X86_VENDOR_AMD) {
1926 if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) {
1927 /*
1928 * disable GART TBL walk error reporting, which
1929 * trips off incorrectly with the IOMMU & 3ware
1930 * & Cerberus:
1931 */
1932 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1933 }
1934 if (c->x86 < 0x11 && cfg->bootlog < 0) {
1935 /*
1936 * Lots of broken BIOS around that don't clear them
1937 * by default and leave crap in there. Don't log:
1938 */
1939 cfg->bootlog = 0;
1940 }
1941 /*
1942 * Various K7s with broken bank 0 around. Always disable
1943 * by default.
1944 */
1945 if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0)
1946 mce_banks[0].ctl = 0;
1947
1948 /*
1949 * overflow_recov is supported for F15h Models 00h-0fh
1950 * even though we don't have a CPUID bit for it.
1951 */
1952 if (c->x86 == 0x15 && c->x86_model <= 0xf)
1953 mce_flags.overflow_recov = 1;
1954
1955 if (c->x86 >= 0x17 && c->x86 <= 0x1A)
1956 mce_flags.zen_ifu_quirk = 1;
1957
1958 }
1959
1960 if (c->x86_vendor == X86_VENDOR_INTEL) {
1961 /*
1962 * SDM documents that on family 6 bank 0 should not be written
1963 * because it aliases to another special BIOS controlled
1964 * register.
1965 * But it's not aliased anymore on model 0x1a+
1966 * Don't ignore bank 0 completely because there could be a
1967 * valid event later, merely don't write CTL0.
1968 */
1969
1970 if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0)
1971 mce_banks[0].init = false;
1972
1973 /*
1974 * All newer Intel systems support MCE broadcasting. Enable
1975 * synchronization with a one second timeout.
1976 */
1977 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1978 cfg->monarch_timeout < 0)
1979 cfg->monarch_timeout = USEC_PER_SEC;
1980
1981 /*
1982 * There are also broken BIOSes on some Pentium M and
1983 * earlier systems:
1984 */
1985 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1986 cfg->bootlog = 0;
1987
1988 if (c->x86_vfm == INTEL_SANDYBRIDGE_X)
1989 mce_flags.snb_ifu_quirk = 1;
1990
1991 /*
1992 * Skylake, Cascacde Lake and Cooper Lake require a quirk on
1993 * rep movs.
1994 */
1995 if (c->x86_vfm == INTEL_SKYLAKE_X)
1996 mce_flags.skx_repmov_quirk = 1;
1997 }
1998
1999 if (c->x86_vendor == X86_VENDOR_ZHAOXIN) {
2000 /*
2001 * All newer Zhaoxin CPUs support MCE broadcasting. Enable
2002 * synchronization with a one second timeout.
2003 */
2004 if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
2005 if (cfg->monarch_timeout < 0)
2006 cfg->monarch_timeout = USEC_PER_SEC;
2007 }
2008 }
2009
2010 if (cfg->monarch_timeout < 0)
2011 cfg->monarch_timeout = 0;
2012 if (cfg->bootlog != 0)
2013 cfg->panic_timeout = 30;
2014
2015 return 0;
2016 }
2017
__mcheck_cpu_ancient_init(struct cpuinfo_x86 * c)2018 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
2019 {
2020 if (c->x86 != 5)
2021 return 0;
2022
2023 switch (c->x86_vendor) {
2024 case X86_VENDOR_INTEL:
2025 intel_p5_mcheck_init(c);
2026 mce_flags.p5 = 1;
2027 return 1;
2028 case X86_VENDOR_CENTAUR:
2029 winchip_mcheck_init(c);
2030 mce_flags.winchip = 1;
2031 return 1;
2032 default:
2033 return 0;
2034 }
2035
2036 return 0;
2037 }
2038
2039 /*
2040 * Init basic CPU features needed for early decoding of MCEs.
2041 */
__mcheck_cpu_init_early(struct cpuinfo_x86 * c)2042 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
2043 {
2044 if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
2045 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
2046 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR);
2047 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA);
2048 mce_flags.amd_threshold = 1;
2049 }
2050 }
2051
mce_centaur_feature_init(struct cpuinfo_x86 * c)2052 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
2053 {
2054 struct mca_config *cfg = &mca_cfg;
2055
2056 /*
2057 * All newer Centaur CPUs support MCE broadcasting. Enable
2058 * synchronization with a one second timeout.
2059 */
2060 if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
2061 c->x86 > 6) {
2062 if (cfg->monarch_timeout < 0)
2063 cfg->monarch_timeout = USEC_PER_SEC;
2064 }
2065 }
2066
mce_zhaoxin_feature_init(struct cpuinfo_x86 * c)2067 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
2068 {
2069 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2070
2071 /*
2072 * These CPUs have MCA bank 8 which reports only one error type called
2073 * SVAD (System View Address Decoder). The reporting of that error is
2074 * controlled by IA32_MC8.CTL.0.
2075 *
2076 * If enabled, prefetching on these CPUs will cause SVAD MCE when
2077 * virtual machines start and result in a system panic. Always disable
2078 * bank 8 SVAD error by default.
2079 */
2080 if ((c->x86 == 7 && c->x86_model == 0x1b) ||
2081 (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
2082 if (this_cpu_read(mce_num_banks) > 8)
2083 mce_banks[8].ctl = 0;
2084 }
2085
2086 intel_init_cmci();
2087 intel_init_lmce();
2088 }
2089
mce_zhaoxin_feature_clear(struct cpuinfo_x86 * c)2090 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
2091 {
2092 intel_clear_lmce();
2093 }
2094
__mcheck_cpu_init_vendor(struct cpuinfo_x86 * c)2095 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
2096 {
2097 switch (c->x86_vendor) {
2098 case X86_VENDOR_INTEL:
2099 mce_intel_feature_init(c);
2100 break;
2101
2102 case X86_VENDOR_AMD: {
2103 mce_amd_feature_init(c);
2104 break;
2105 }
2106
2107 case X86_VENDOR_HYGON:
2108 mce_hygon_feature_init(c);
2109 break;
2110
2111 case X86_VENDOR_CENTAUR:
2112 mce_centaur_feature_init(c);
2113 break;
2114
2115 case X86_VENDOR_ZHAOXIN:
2116 mce_zhaoxin_feature_init(c);
2117 break;
2118
2119 default:
2120 break;
2121 }
2122 }
2123
__mcheck_cpu_clear_vendor(struct cpuinfo_x86 * c)2124 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
2125 {
2126 switch (c->x86_vendor) {
2127 case X86_VENDOR_INTEL:
2128 mce_intel_feature_clear(c);
2129 break;
2130
2131 case X86_VENDOR_ZHAOXIN:
2132 mce_zhaoxin_feature_clear(c);
2133 break;
2134
2135 default:
2136 break;
2137 }
2138 }
2139
mce_start_timer(struct timer_list * t)2140 static void mce_start_timer(struct timer_list *t)
2141 {
2142 unsigned long iv = check_interval * HZ;
2143
2144 if (mca_cfg.ignore_ce || !iv)
2145 return;
2146
2147 this_cpu_write(mce_next_interval, iv);
2148 __start_timer(t, iv);
2149 }
2150
__mcheck_cpu_setup_timer(void)2151 static void __mcheck_cpu_setup_timer(void)
2152 {
2153 struct timer_list *t = this_cpu_ptr(&mce_timer);
2154
2155 timer_setup(t, mce_timer_fn, TIMER_PINNED);
2156 }
2157
__mcheck_cpu_init_timer(void)2158 static void __mcheck_cpu_init_timer(void)
2159 {
2160 struct timer_list *t = this_cpu_ptr(&mce_timer);
2161
2162 timer_setup(t, mce_timer_fn, TIMER_PINNED);
2163 mce_start_timer(t);
2164 }
2165
filter_mce(struct mce * m)2166 bool filter_mce(struct mce *m)
2167 {
2168 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
2169 return amd_filter_mce(m);
2170 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2171 return intel_filter_mce(m);
2172
2173 return false;
2174 }
2175
exc_machine_check_kernel(struct pt_regs * regs)2176 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
2177 {
2178 irqentry_state_t irq_state;
2179
2180 WARN_ON_ONCE(user_mode(regs));
2181
2182 /*
2183 * Only required when from kernel mode. See
2184 * mce_check_crashing_cpu() for details.
2185 */
2186 if (mca_cfg.initialized && mce_check_crashing_cpu())
2187 return;
2188
2189 irq_state = irqentry_nmi_enter(regs);
2190
2191 do_machine_check(regs);
2192
2193 irqentry_nmi_exit(regs, irq_state);
2194 }
2195
exc_machine_check_user(struct pt_regs * regs)2196 static __always_inline void exc_machine_check_user(struct pt_regs *regs)
2197 {
2198 irqentry_enter_from_user_mode(regs);
2199
2200 do_machine_check(regs);
2201
2202 irqentry_exit_to_user_mode(regs);
2203 }
2204
2205 #ifdef CONFIG_X86_64
2206 /* MCE hit kernel mode */
DEFINE_IDTENTRY_MCE(exc_machine_check)2207 DEFINE_IDTENTRY_MCE(exc_machine_check)
2208 {
2209 unsigned long dr7;
2210
2211 dr7 = local_db_save();
2212 exc_machine_check_kernel(regs);
2213 local_db_restore(dr7);
2214 }
2215
2216 /* The user mode variant. */
DEFINE_IDTENTRY_MCE_USER(exc_machine_check)2217 DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
2218 {
2219 unsigned long dr7;
2220
2221 dr7 = local_db_save();
2222 exc_machine_check_user(regs);
2223 local_db_restore(dr7);
2224 }
2225
2226 #ifdef CONFIG_X86_FRED
2227 /*
2228 * When occurred on different ring level, i.e., from user or kernel
2229 * context, #MCE needs to be handled on different stack: User #MCE
2230 * on current task stack, while kernel #MCE on a dedicated stack.
2231 *
2232 * This is exactly how FRED event delivery invokes an exception
2233 * handler: ring 3 event on level 0 stack, i.e., current task stack;
2234 * ring 0 event on the #MCE dedicated stack specified in the
2235 * IA32_FRED_STKLVLS MSR. So unlike IDT, the FRED machine check entry
2236 * stub doesn't do stack switch.
2237 */
DEFINE_FREDENTRY_MCE(exc_machine_check)2238 DEFINE_FREDENTRY_MCE(exc_machine_check)
2239 {
2240 unsigned long dr7;
2241
2242 dr7 = local_db_save();
2243 if (user_mode(regs))
2244 exc_machine_check_user(regs);
2245 else
2246 exc_machine_check_kernel(regs);
2247 local_db_restore(dr7);
2248 }
2249 #endif
2250 #else
2251 /* 32bit unified entry point */
DEFINE_IDTENTRY_RAW(exc_machine_check)2252 DEFINE_IDTENTRY_RAW(exc_machine_check)
2253 {
2254 unsigned long dr7;
2255
2256 dr7 = local_db_save();
2257 if (user_mode(regs))
2258 exc_machine_check_user(regs);
2259 else
2260 exc_machine_check_kernel(regs);
2261 local_db_restore(dr7);
2262 }
2263 #endif
2264
2265 /*
2266 * Called for each booted CPU to set up machine checks.
2267 * Must be called with preempt off:
2268 */
mcheck_cpu_init(struct cpuinfo_x86 * c)2269 void mcheck_cpu_init(struct cpuinfo_x86 *c)
2270 {
2271 if (mca_cfg.disabled)
2272 return;
2273
2274 if (__mcheck_cpu_ancient_init(c))
2275 return;
2276
2277 if (!mce_available(c))
2278 return;
2279
2280 __mcheck_cpu_cap_init();
2281
2282 if (__mcheck_cpu_apply_quirks(c) < 0) {
2283 mca_cfg.disabled = 1;
2284 return;
2285 }
2286
2287 if (mce_gen_pool_init()) {
2288 mca_cfg.disabled = 1;
2289 pr_emerg("Couldn't allocate MCE records pool!\n");
2290 return;
2291 }
2292
2293 mca_cfg.initialized = 1;
2294
2295 __mcheck_cpu_init_early(c);
2296 __mcheck_cpu_init_generic();
2297 __mcheck_cpu_init_vendor(c);
2298 __mcheck_cpu_init_clear_banks();
2299 __mcheck_cpu_check_banks();
2300 __mcheck_cpu_setup_timer();
2301 }
2302
2303 /*
2304 * Called for each booted CPU to clear some machine checks opt-ins
2305 */
mcheck_cpu_clear(struct cpuinfo_x86 * c)2306 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
2307 {
2308 if (mca_cfg.disabled)
2309 return;
2310
2311 if (!mce_available(c))
2312 return;
2313
2314 /*
2315 * Possibly to clear general settings generic to x86
2316 * __mcheck_cpu_clear_generic(c);
2317 */
2318 __mcheck_cpu_clear_vendor(c);
2319
2320 }
2321
__mce_disable_bank(void * arg)2322 static void __mce_disable_bank(void *arg)
2323 {
2324 int bank = *((int *)arg);
2325 __clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2326 cmci_disable_bank(bank);
2327 }
2328
mce_disable_bank(int bank)2329 void mce_disable_bank(int bank)
2330 {
2331 if (bank >= this_cpu_read(mce_num_banks)) {
2332 pr_warn(FW_BUG
2333 "Ignoring request to disable invalid MCA bank %d.\n",
2334 bank);
2335 return;
2336 }
2337 set_bit(bank, mce_banks_ce_disabled);
2338 on_each_cpu(__mce_disable_bank, &bank, 1);
2339 }
2340
2341 /*
2342 * mce=off Disables machine check
2343 * mce=no_cmci Disables CMCI
2344 * mce=no_lmce Disables LMCE
2345 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2346 * mce=print_all Print all machine check logs to console
2347 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2348 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2349 * monarchtimeout is how long to wait for other CPUs on machine
2350 * check, or 0 to not wait
2351 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
2352 and older.
2353 * mce=nobootlog Don't log MCEs from before booting.
2354 * mce=bios_cmci_threshold Don't program the CMCI threshold
2355 * mce=recovery force enable copy_mc_fragile()
2356 */
mcheck_enable(char * str)2357 static int __init mcheck_enable(char *str)
2358 {
2359 struct mca_config *cfg = &mca_cfg;
2360
2361 if (*str == 0) {
2362 enable_p5_mce();
2363 return 1;
2364 }
2365 if (*str == '=')
2366 str++;
2367 if (!strcmp(str, "off"))
2368 cfg->disabled = 1;
2369 else if (!strcmp(str, "no_cmci"))
2370 cfg->cmci_disabled = true;
2371 else if (!strcmp(str, "no_lmce"))
2372 cfg->lmce_disabled = 1;
2373 else if (!strcmp(str, "dont_log_ce"))
2374 cfg->dont_log_ce = true;
2375 else if (!strcmp(str, "print_all"))
2376 cfg->print_all = true;
2377 else if (!strcmp(str, "ignore_ce"))
2378 cfg->ignore_ce = true;
2379 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2380 cfg->bootlog = (str[0] == 'b');
2381 else if (!strcmp(str, "bios_cmci_threshold"))
2382 cfg->bios_cmci_threshold = 1;
2383 else if (!strcmp(str, "recovery"))
2384 cfg->recovery = 1;
2385 else if (isdigit(str[0]))
2386 get_option(&str, &(cfg->monarch_timeout));
2387 else {
2388 pr_info("mce argument %s ignored. Please use /sys\n", str);
2389 return 0;
2390 }
2391 return 1;
2392 }
2393 __setup("mce", mcheck_enable);
2394
mcheck_init(void)2395 int __init mcheck_init(void)
2396 {
2397 mce_register_decode_chain(&early_nb);
2398 mce_register_decode_chain(&mce_uc_nb);
2399 mce_register_decode_chain(&mce_default_nb);
2400
2401 INIT_WORK(&mce_work, mce_gen_pool_process);
2402 init_irq_work(&mce_irq_work, mce_irq_work_cb);
2403
2404 return 0;
2405 }
2406
2407 /*
2408 * mce_syscore: PM support
2409 */
2410
2411 /*
2412 * Disable machine checks on suspend and shutdown. We can't really handle
2413 * them later.
2414 */
mce_disable_error_reporting(void)2415 static void mce_disable_error_reporting(void)
2416 {
2417 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2418 int i;
2419
2420 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2421 struct mce_bank *b = &mce_banks[i];
2422
2423 if (b->init)
2424 wrmsrl(mca_msr_reg(i, MCA_CTL), 0);
2425 }
2426 return;
2427 }
2428
vendor_disable_error_reporting(void)2429 static void vendor_disable_error_reporting(void)
2430 {
2431 /*
2432 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
2433 * MSRs are socket-wide. Disabling them for just a single offlined CPU
2434 * is bad, since it will inhibit reporting for all shared resources on
2435 * the socket like the last level cache (LLC), the integrated memory
2436 * controller (iMC), etc.
2437 */
2438 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2439 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2440 boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2441 boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
2442 return;
2443
2444 mce_disable_error_reporting();
2445 }
2446
mce_syscore_suspend(void)2447 static int mce_syscore_suspend(void)
2448 {
2449 vendor_disable_error_reporting();
2450 return 0;
2451 }
2452
mce_syscore_shutdown(void)2453 static void mce_syscore_shutdown(void)
2454 {
2455 vendor_disable_error_reporting();
2456 }
2457
2458 /*
2459 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2460 * Only one CPU is active at this time, the others get re-added later using
2461 * CPU hotplug:
2462 */
mce_syscore_resume(void)2463 static void mce_syscore_resume(void)
2464 {
2465 __mcheck_cpu_init_generic();
2466 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2467 __mcheck_cpu_init_clear_banks();
2468 }
2469
2470 static struct syscore_ops mce_syscore_ops = {
2471 .suspend = mce_syscore_suspend,
2472 .shutdown = mce_syscore_shutdown,
2473 .resume = mce_syscore_resume,
2474 };
2475
2476 /*
2477 * mce_device: Sysfs support
2478 */
2479
mce_cpu_restart(void * data)2480 static void mce_cpu_restart(void *data)
2481 {
2482 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2483 return;
2484 __mcheck_cpu_init_generic();
2485 __mcheck_cpu_init_clear_banks();
2486 __mcheck_cpu_init_timer();
2487 }
2488
2489 /* Reinit MCEs after user configuration changes */
mce_restart(void)2490 static void mce_restart(void)
2491 {
2492 mce_timer_delete_all();
2493 on_each_cpu(mce_cpu_restart, NULL, 1);
2494 mce_schedule_work();
2495 }
2496
2497 /* Toggle features for corrected errors */
mce_disable_cmci(void * data)2498 static void mce_disable_cmci(void *data)
2499 {
2500 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2501 return;
2502 cmci_clear();
2503 }
2504
mce_enable_ce(void * all)2505 static void mce_enable_ce(void *all)
2506 {
2507 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2508 return;
2509 cmci_reenable();
2510 cmci_recheck();
2511 if (all)
2512 __mcheck_cpu_init_timer();
2513 }
2514
2515 static const struct bus_type mce_subsys = {
2516 .name = "machinecheck",
2517 .dev_name = "machinecheck",
2518 };
2519
2520 DEFINE_PER_CPU(struct device *, mce_device);
2521
attr_to_bank(struct device_attribute * attr)2522 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2523 {
2524 return container_of(attr, struct mce_bank_dev, attr);
2525 }
2526
show_bank(struct device * s,struct device_attribute * attr,char * buf)2527 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2528 char *buf)
2529 {
2530 u8 bank = attr_to_bank(attr)->bank;
2531 struct mce_bank *b;
2532
2533 if (bank >= per_cpu(mce_num_banks, s->id))
2534 return -EINVAL;
2535
2536 b = &per_cpu(mce_banks_array, s->id)[bank];
2537
2538 if (!b->init)
2539 return -ENODEV;
2540
2541 return sprintf(buf, "%llx\n", b->ctl);
2542 }
2543
set_bank(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2544 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2545 const char *buf, size_t size)
2546 {
2547 u8 bank = attr_to_bank(attr)->bank;
2548 struct mce_bank *b;
2549 u64 new;
2550
2551 if (kstrtou64(buf, 0, &new) < 0)
2552 return -EINVAL;
2553
2554 if (bank >= per_cpu(mce_num_banks, s->id))
2555 return -EINVAL;
2556
2557 b = &per_cpu(mce_banks_array, s->id)[bank];
2558 if (!b->init)
2559 return -ENODEV;
2560
2561 b->ctl = new;
2562
2563 mutex_lock(&mce_sysfs_mutex);
2564 mce_restart();
2565 mutex_unlock(&mce_sysfs_mutex);
2566
2567 return size;
2568 }
2569
set_ignore_ce(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2570 static ssize_t set_ignore_ce(struct device *s,
2571 struct device_attribute *attr,
2572 const char *buf, size_t size)
2573 {
2574 u64 new;
2575
2576 if (kstrtou64(buf, 0, &new) < 0)
2577 return -EINVAL;
2578
2579 mutex_lock(&mce_sysfs_mutex);
2580 if (mca_cfg.ignore_ce ^ !!new) {
2581 if (new) {
2582 /* disable ce features */
2583 mce_timer_delete_all();
2584 on_each_cpu(mce_disable_cmci, NULL, 1);
2585 mca_cfg.ignore_ce = true;
2586 } else {
2587 /* enable ce features */
2588 mca_cfg.ignore_ce = false;
2589 on_each_cpu(mce_enable_ce, (void *)1, 1);
2590 }
2591 }
2592 mutex_unlock(&mce_sysfs_mutex);
2593
2594 return size;
2595 }
2596
set_cmci_disabled(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2597 static ssize_t set_cmci_disabled(struct device *s,
2598 struct device_attribute *attr,
2599 const char *buf, size_t size)
2600 {
2601 u64 new;
2602
2603 if (kstrtou64(buf, 0, &new) < 0)
2604 return -EINVAL;
2605
2606 mutex_lock(&mce_sysfs_mutex);
2607 if (mca_cfg.cmci_disabled ^ !!new) {
2608 if (new) {
2609 /* disable cmci */
2610 on_each_cpu(mce_disable_cmci, NULL, 1);
2611 mca_cfg.cmci_disabled = true;
2612 } else {
2613 /* enable cmci */
2614 mca_cfg.cmci_disabled = false;
2615 on_each_cpu(mce_enable_ce, NULL, 1);
2616 }
2617 }
2618 mutex_unlock(&mce_sysfs_mutex);
2619
2620 return size;
2621 }
2622
store_int_with_restart(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2623 static ssize_t store_int_with_restart(struct device *s,
2624 struct device_attribute *attr,
2625 const char *buf, size_t size)
2626 {
2627 unsigned long old_check_interval = check_interval;
2628 ssize_t ret = device_store_ulong(s, attr, buf, size);
2629
2630 if (check_interval == old_check_interval)
2631 return ret;
2632
2633 mutex_lock(&mce_sysfs_mutex);
2634 mce_restart();
2635 mutex_unlock(&mce_sysfs_mutex);
2636
2637 return ret;
2638 }
2639
2640 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2641 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2642 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
2643
2644 static struct dev_ext_attribute dev_attr_check_interval = {
2645 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2646 &check_interval
2647 };
2648
2649 static struct dev_ext_attribute dev_attr_ignore_ce = {
2650 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2651 &mca_cfg.ignore_ce
2652 };
2653
2654 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2655 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2656 &mca_cfg.cmci_disabled
2657 };
2658
2659 static struct device_attribute *mce_device_attrs[] = {
2660 &dev_attr_check_interval.attr,
2661 #ifdef CONFIG_X86_MCELOG_LEGACY
2662 &dev_attr_trigger,
2663 #endif
2664 &dev_attr_monarch_timeout.attr,
2665 &dev_attr_dont_log_ce.attr,
2666 &dev_attr_print_all.attr,
2667 &dev_attr_ignore_ce.attr,
2668 &dev_attr_cmci_disabled.attr,
2669 NULL
2670 };
2671
2672 static cpumask_var_t mce_device_initialized;
2673
mce_device_release(struct device * dev)2674 static void mce_device_release(struct device *dev)
2675 {
2676 kfree(dev);
2677 }
2678
2679 /* Per CPU device init. All of the CPUs still share the same bank device: */
mce_device_create(unsigned int cpu)2680 static int mce_device_create(unsigned int cpu)
2681 {
2682 struct device *dev;
2683 int err;
2684 int i, j;
2685
2686 dev = per_cpu(mce_device, cpu);
2687 if (dev)
2688 return 0;
2689
2690 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2691 if (!dev)
2692 return -ENOMEM;
2693 dev->id = cpu;
2694 dev->bus = &mce_subsys;
2695 dev->release = &mce_device_release;
2696
2697 err = device_register(dev);
2698 if (err) {
2699 put_device(dev);
2700 return err;
2701 }
2702
2703 for (i = 0; mce_device_attrs[i]; i++) {
2704 err = device_create_file(dev, mce_device_attrs[i]);
2705 if (err)
2706 goto error;
2707 }
2708 for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2709 err = device_create_file(dev, &mce_bank_devs[j].attr);
2710 if (err)
2711 goto error2;
2712 }
2713 cpumask_set_cpu(cpu, mce_device_initialized);
2714 per_cpu(mce_device, cpu) = dev;
2715
2716 return 0;
2717 error2:
2718 while (--j >= 0)
2719 device_remove_file(dev, &mce_bank_devs[j].attr);
2720 error:
2721 while (--i >= 0)
2722 device_remove_file(dev, mce_device_attrs[i]);
2723
2724 device_unregister(dev);
2725
2726 return err;
2727 }
2728
mce_device_remove(unsigned int cpu)2729 static void mce_device_remove(unsigned int cpu)
2730 {
2731 struct device *dev = per_cpu(mce_device, cpu);
2732 int i;
2733
2734 if (!cpumask_test_cpu(cpu, mce_device_initialized))
2735 return;
2736
2737 for (i = 0; mce_device_attrs[i]; i++)
2738 device_remove_file(dev, mce_device_attrs[i]);
2739
2740 for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2741 device_remove_file(dev, &mce_bank_devs[i].attr);
2742
2743 device_unregister(dev);
2744 cpumask_clear_cpu(cpu, mce_device_initialized);
2745 per_cpu(mce_device, cpu) = NULL;
2746 }
2747
2748 /* Make sure there are no machine checks on offlined CPUs. */
mce_disable_cpu(void)2749 static void mce_disable_cpu(void)
2750 {
2751 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2752 return;
2753
2754 if (!cpuhp_tasks_frozen)
2755 cmci_clear();
2756
2757 vendor_disable_error_reporting();
2758 }
2759
mce_reenable_cpu(void)2760 static void mce_reenable_cpu(void)
2761 {
2762 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2763 int i;
2764
2765 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2766 return;
2767
2768 if (!cpuhp_tasks_frozen)
2769 cmci_reenable();
2770 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2771 struct mce_bank *b = &mce_banks[i];
2772
2773 if (b->init)
2774 wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
2775 }
2776 }
2777
mce_cpu_dead(unsigned int cpu)2778 static int mce_cpu_dead(unsigned int cpu)
2779 {
2780 /* intentionally ignoring frozen here */
2781 if (!cpuhp_tasks_frozen)
2782 cmci_rediscover();
2783 return 0;
2784 }
2785
mce_cpu_online(unsigned int cpu)2786 static int mce_cpu_online(unsigned int cpu)
2787 {
2788 struct timer_list *t = this_cpu_ptr(&mce_timer);
2789 int ret;
2790
2791 mce_device_create(cpu);
2792
2793 ret = mce_threshold_create_device(cpu);
2794 if (ret) {
2795 mce_device_remove(cpu);
2796 return ret;
2797 }
2798 mce_reenable_cpu();
2799 mce_start_timer(t);
2800 return 0;
2801 }
2802
mce_cpu_pre_down(unsigned int cpu)2803 static int mce_cpu_pre_down(unsigned int cpu)
2804 {
2805 struct timer_list *t = this_cpu_ptr(&mce_timer);
2806
2807 mce_disable_cpu();
2808 del_timer_sync(t);
2809 mce_threshold_remove_device(cpu);
2810 mce_device_remove(cpu);
2811 return 0;
2812 }
2813
mce_init_banks(void)2814 static __init void mce_init_banks(void)
2815 {
2816 int i;
2817
2818 for (i = 0; i < MAX_NR_BANKS; i++) {
2819 struct mce_bank_dev *b = &mce_bank_devs[i];
2820 struct device_attribute *a = &b->attr;
2821
2822 b->bank = i;
2823
2824 sysfs_attr_init(&a->attr);
2825 a->attr.name = b->attrname;
2826 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2827
2828 a->attr.mode = 0644;
2829 a->show = show_bank;
2830 a->store = set_bank;
2831 }
2832 }
2833
2834 /*
2835 * When running on XEN, this initcall is ordered against the XEN mcelog
2836 * initcall:
2837 *
2838 * device_initcall(xen_late_init_mcelog);
2839 * device_initcall_sync(mcheck_init_device);
2840 */
mcheck_init_device(void)2841 static __init int mcheck_init_device(void)
2842 {
2843 int err;
2844
2845 /*
2846 * Check if we have a spare virtual bit. This will only become
2847 * a problem if/when we move beyond 5-level page tables.
2848 */
2849 MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2850
2851 if (!mce_available(&boot_cpu_data)) {
2852 err = -EIO;
2853 goto err_out;
2854 }
2855
2856 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2857 err = -ENOMEM;
2858 goto err_out;
2859 }
2860
2861 mce_init_banks();
2862
2863 err = subsys_system_register(&mce_subsys, NULL);
2864 if (err)
2865 goto err_out_mem;
2866
2867 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2868 mce_cpu_dead);
2869 if (err)
2870 goto err_out_mem;
2871
2872 /*
2873 * Invokes mce_cpu_online() on all CPUs which are online when
2874 * the state is installed.
2875 */
2876 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2877 mce_cpu_online, mce_cpu_pre_down);
2878 if (err < 0)
2879 goto err_out_online;
2880
2881 register_syscore_ops(&mce_syscore_ops);
2882
2883 return 0;
2884
2885 err_out_online:
2886 cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2887
2888 err_out_mem:
2889 free_cpumask_var(mce_device_initialized);
2890
2891 err_out:
2892 pr_err("Unable to init MCE device (rc: %d)\n", err);
2893
2894 return err;
2895 }
2896 device_initcall_sync(mcheck_init_device);
2897
2898 /*
2899 * Old style boot options parsing. Only for compatibility.
2900 */
mcheck_disable(char * str)2901 static int __init mcheck_disable(char *str)
2902 {
2903 mca_cfg.disabled = 1;
2904 return 1;
2905 }
2906 __setup("nomce", mcheck_disable);
2907
2908 #ifdef CONFIG_DEBUG_FS
mce_get_debugfs_dir(void)2909 struct dentry *mce_get_debugfs_dir(void)
2910 {
2911 static struct dentry *dmce;
2912
2913 if (!dmce)
2914 dmce = debugfs_create_dir("mce", NULL);
2915
2916 return dmce;
2917 }
2918
mce_reset(void)2919 static void mce_reset(void)
2920 {
2921 atomic_set(&mce_fake_panicked, 0);
2922 atomic_set(&mce_executing, 0);
2923 atomic_set(&mce_callin, 0);
2924 atomic_set(&global_nwo, 0);
2925 cpumask_setall(&mce_missing_cpus);
2926 }
2927
fake_panic_get(void * data,u64 * val)2928 static int fake_panic_get(void *data, u64 *val)
2929 {
2930 *val = fake_panic;
2931 return 0;
2932 }
2933
fake_panic_set(void * data,u64 val)2934 static int fake_panic_set(void *data, u64 val)
2935 {
2936 mce_reset();
2937 fake_panic = val;
2938 return 0;
2939 }
2940
2941 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2942 "%llu\n");
2943
mcheck_debugfs_init(void)2944 static void __init mcheck_debugfs_init(void)
2945 {
2946 struct dentry *dmce;
2947
2948 dmce = mce_get_debugfs_dir();
2949 debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2950 &fake_panic_fops);
2951 }
2952 #else
mcheck_debugfs_init(void)2953 static void __init mcheck_debugfs_init(void) { }
2954 #endif
2955
mcheck_late_init(void)2956 static int __init mcheck_late_init(void)
2957 {
2958 if (mca_cfg.recovery)
2959 enable_copy_mc_fragile();
2960
2961 mcheck_debugfs_init();
2962
2963 /*
2964 * Flush out everything that has been logged during early boot, now that
2965 * everything has been initialized (workqueues, decoders, ...).
2966 */
2967 mce_schedule_work();
2968
2969 return 0;
2970 }
2971 late_initcall(mcheck_late_init);
2972