1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * IOMMU API for ARM architected SMMUv3 implementations.
4 *
5 * Copyright (C) 2015 ARM Limited
6 *
7 * Author: Will Deacon <will.deacon@arm.com>
8 *
9 * This driver is powered by bad coffee and bombay mix.
10 */
11
12 #include <linux/acpi.h>
13 #include <linux/acpi_iort.h>
14 #include <linux/bitops.h>
15 #include <linux/crash_dump.h>
16 #include <linux/delay.h>
17 #include <linux/err.h>
18 #include <linux/interrupt.h>
19 #include <linux/io-pgtable.h>
20 #include <linux/iopoll.h>
21 #include <linux/module.h>
22 #include <linux/msi.h>
23 #include <linux/of.h>
24 #include <linux/of_address.h>
25 #include <linux/of_platform.h>
26 #include <linux/pci.h>
27 #include <linux/pci-ats.h>
28 #include <linux/platform_device.h>
29 #include <linux/string_choices.h>
30 #include <kunit/visibility.h>
31 #include <uapi/linux/iommufd.h>
32
33 #include "arm-smmu-v3.h"
34 #include "../../dma-iommu.h"
35
36 static bool disable_msipolling;
37 module_param(disable_msipolling, bool, 0444);
38 MODULE_PARM_DESC(disable_msipolling,
39 "Disable MSI-based polling for CMD_SYNC completion.");
40
41 static struct iommu_ops arm_smmu_ops;
42 static struct iommu_dirty_ops arm_smmu_dirty_ops;
43
44 enum arm_smmu_msi_index {
45 EVTQ_MSI_INDEX,
46 GERROR_MSI_INDEX,
47 PRIQ_MSI_INDEX,
48 ARM_SMMU_MAX_MSIS,
49 };
50
51 #define NUM_ENTRY_QWORDS 8
52 static_assert(sizeof(struct arm_smmu_ste) == NUM_ENTRY_QWORDS * sizeof(u64));
53 static_assert(sizeof(struct arm_smmu_cd) == NUM_ENTRY_QWORDS * sizeof(u64));
54
55 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
56 [EVTQ_MSI_INDEX] = {
57 ARM_SMMU_EVTQ_IRQ_CFG0,
58 ARM_SMMU_EVTQ_IRQ_CFG1,
59 ARM_SMMU_EVTQ_IRQ_CFG2,
60 },
61 [GERROR_MSI_INDEX] = {
62 ARM_SMMU_GERROR_IRQ_CFG0,
63 ARM_SMMU_GERROR_IRQ_CFG1,
64 ARM_SMMU_GERROR_IRQ_CFG2,
65 },
66 [PRIQ_MSI_INDEX] = {
67 ARM_SMMU_PRIQ_IRQ_CFG0,
68 ARM_SMMU_PRIQ_IRQ_CFG1,
69 ARM_SMMU_PRIQ_IRQ_CFG2,
70 },
71 };
72
73 struct arm_smmu_option_prop {
74 u32 opt;
75 const char *prop;
76 };
77
78 DEFINE_XARRAY_ALLOC1(arm_smmu_asid_xa);
79 DEFINE_MUTEX(arm_smmu_asid_lock);
80
81 static struct arm_smmu_option_prop arm_smmu_options[] = {
82 { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
83 { ARM_SMMU_OPT_PAGE0_REGS_ONLY, "cavium,cn9900-broken-page1-regspace"},
84 { 0, NULL},
85 };
86
87 static const char * const event_str[] = {
88 [EVT_ID_BAD_STREAMID_CONFIG] = "C_BAD_STREAMID",
89 [EVT_ID_STE_FETCH_FAULT] = "F_STE_FETCH",
90 [EVT_ID_BAD_STE_CONFIG] = "C_BAD_STE",
91 [EVT_ID_STREAM_DISABLED_FAULT] = "F_STREAM_DISABLED",
92 [EVT_ID_BAD_SUBSTREAMID_CONFIG] = "C_BAD_SUBSTREAMID",
93 [EVT_ID_CD_FETCH_FAULT] = "F_CD_FETCH",
94 [EVT_ID_BAD_CD_CONFIG] = "C_BAD_CD",
95 [EVT_ID_TRANSLATION_FAULT] = "F_TRANSLATION",
96 [EVT_ID_ADDR_SIZE_FAULT] = "F_ADDR_SIZE",
97 [EVT_ID_ACCESS_FAULT] = "F_ACCESS",
98 [EVT_ID_PERMISSION_FAULT] = "F_PERMISSION",
99 [EVT_ID_VMS_FETCH_FAULT] = "F_VMS_FETCH",
100 };
101
102 static const char * const event_class_str[] = {
103 [0] = "CD fetch",
104 [1] = "Stage 1 translation table fetch",
105 [2] = "Input address caused fault",
106 [3] = "Reserved",
107 };
108
109 static int arm_smmu_alloc_cd_tables(struct arm_smmu_master *master);
110
parse_driver_options(struct arm_smmu_device * smmu)111 static void parse_driver_options(struct arm_smmu_device *smmu)
112 {
113 int i = 0;
114
115 do {
116 if (of_property_read_bool(smmu->dev->of_node,
117 arm_smmu_options[i].prop)) {
118 smmu->options |= arm_smmu_options[i].opt;
119 dev_notice(smmu->dev, "option %s\n",
120 arm_smmu_options[i].prop);
121 }
122 } while (arm_smmu_options[++i].opt);
123 }
124
125 /* Low-level queue manipulation functions */
queue_has_space(struct arm_smmu_ll_queue * q,u32 n)126 static bool queue_has_space(struct arm_smmu_ll_queue *q, u32 n)
127 {
128 u32 space, prod, cons;
129
130 prod = Q_IDX(q, q->prod);
131 cons = Q_IDX(q, q->cons);
132
133 if (Q_WRP(q, q->prod) == Q_WRP(q, q->cons))
134 space = (1 << q->max_n_shift) - (prod - cons);
135 else
136 space = cons - prod;
137
138 return space >= n;
139 }
140
queue_full(struct arm_smmu_ll_queue * q)141 static bool queue_full(struct arm_smmu_ll_queue *q)
142 {
143 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
144 Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
145 }
146
queue_empty(struct arm_smmu_ll_queue * q)147 static bool queue_empty(struct arm_smmu_ll_queue *q)
148 {
149 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
150 Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
151 }
152
queue_consumed(struct arm_smmu_ll_queue * q,u32 prod)153 static bool queue_consumed(struct arm_smmu_ll_queue *q, u32 prod)
154 {
155 return ((Q_WRP(q, q->cons) == Q_WRP(q, prod)) &&
156 (Q_IDX(q, q->cons) > Q_IDX(q, prod))) ||
157 ((Q_WRP(q, q->cons) != Q_WRP(q, prod)) &&
158 (Q_IDX(q, q->cons) <= Q_IDX(q, prod)));
159 }
160
queue_sync_cons_out(struct arm_smmu_queue * q)161 static void queue_sync_cons_out(struct arm_smmu_queue *q)
162 {
163 /*
164 * Ensure that all CPU accesses (reads and writes) to the queue
165 * are complete before we update the cons pointer.
166 */
167 __iomb();
168 writel_relaxed(q->llq.cons, q->cons_reg);
169 }
170
queue_inc_cons(struct arm_smmu_ll_queue * q)171 static void queue_inc_cons(struct arm_smmu_ll_queue *q)
172 {
173 u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
174 q->cons = Q_OVF(q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
175 }
176
queue_sync_cons_ovf(struct arm_smmu_queue * q)177 static void queue_sync_cons_ovf(struct arm_smmu_queue *q)
178 {
179 struct arm_smmu_ll_queue *llq = &q->llq;
180
181 if (likely(Q_OVF(llq->prod) == Q_OVF(llq->cons)))
182 return;
183
184 llq->cons = Q_OVF(llq->prod) | Q_WRP(llq, llq->cons) |
185 Q_IDX(llq, llq->cons);
186 queue_sync_cons_out(q);
187 }
188
queue_sync_prod_in(struct arm_smmu_queue * q)189 static int queue_sync_prod_in(struct arm_smmu_queue *q)
190 {
191 u32 prod;
192 int ret = 0;
193
194 /*
195 * We can't use the _relaxed() variant here, as we must prevent
196 * speculative reads of the queue before we have determined that
197 * prod has indeed moved.
198 */
199 prod = readl(q->prod_reg);
200
201 if (Q_OVF(prod) != Q_OVF(q->llq.prod))
202 ret = -EOVERFLOW;
203
204 q->llq.prod = prod;
205 return ret;
206 }
207
queue_inc_prod_n(struct arm_smmu_ll_queue * q,int n)208 static u32 queue_inc_prod_n(struct arm_smmu_ll_queue *q, int n)
209 {
210 u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + n;
211 return Q_OVF(q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
212 }
213
queue_poll_init(struct arm_smmu_device * smmu,struct arm_smmu_queue_poll * qp)214 static void queue_poll_init(struct arm_smmu_device *smmu,
215 struct arm_smmu_queue_poll *qp)
216 {
217 qp->delay = 1;
218 qp->spin_cnt = 0;
219 qp->wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
220 qp->timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
221 }
222
queue_poll(struct arm_smmu_queue_poll * qp)223 static int queue_poll(struct arm_smmu_queue_poll *qp)
224 {
225 if (ktime_compare(ktime_get(), qp->timeout) > 0)
226 return -ETIMEDOUT;
227
228 if (qp->wfe) {
229 wfe();
230 } else if (++qp->spin_cnt < ARM_SMMU_POLL_SPIN_COUNT) {
231 cpu_relax();
232 } else {
233 udelay(qp->delay);
234 qp->delay *= 2;
235 qp->spin_cnt = 0;
236 }
237
238 return 0;
239 }
240
queue_write(__le64 * dst,u64 * src,size_t n_dwords)241 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
242 {
243 int i;
244
245 for (i = 0; i < n_dwords; ++i)
246 *dst++ = cpu_to_le64(*src++);
247 }
248
queue_read(u64 * dst,__le64 * src,size_t n_dwords)249 static void queue_read(u64 *dst, __le64 *src, size_t n_dwords)
250 {
251 int i;
252
253 for (i = 0; i < n_dwords; ++i)
254 *dst++ = le64_to_cpu(*src++);
255 }
256
queue_remove_raw(struct arm_smmu_queue * q,u64 * ent)257 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
258 {
259 if (queue_empty(&q->llq))
260 return -EAGAIN;
261
262 queue_read(ent, Q_ENT(q, q->llq.cons), q->ent_dwords);
263 queue_inc_cons(&q->llq);
264 queue_sync_cons_out(q);
265 return 0;
266 }
267
268 /* High-level queue accessors */
arm_smmu_cmdq_build_cmd(u64 * cmd,struct arm_smmu_cmdq_ent * ent)269 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
270 {
271 memset(cmd, 0, 1 << CMDQ_ENT_SZ_SHIFT);
272 cmd[0] |= FIELD_PREP(CMDQ_0_OP, ent->opcode);
273
274 switch (ent->opcode) {
275 case CMDQ_OP_TLBI_EL2_ALL:
276 case CMDQ_OP_TLBI_NSNH_ALL:
277 break;
278 case CMDQ_OP_PREFETCH_CFG:
279 cmd[0] |= FIELD_PREP(CMDQ_PREFETCH_0_SID, ent->prefetch.sid);
280 break;
281 case CMDQ_OP_CFGI_CD:
282 cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SSID, ent->cfgi.ssid);
283 fallthrough;
284 case CMDQ_OP_CFGI_STE:
285 cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SID, ent->cfgi.sid);
286 cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_LEAF, ent->cfgi.leaf);
287 break;
288 case CMDQ_OP_CFGI_CD_ALL:
289 cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SID, ent->cfgi.sid);
290 break;
291 case CMDQ_OP_CFGI_ALL:
292 /* Cover the entire SID range */
293 cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_RANGE, 31);
294 break;
295 case CMDQ_OP_TLBI_NH_VA:
296 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
297 fallthrough;
298 case CMDQ_OP_TLBI_EL2_VA:
299 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_NUM, ent->tlbi.num);
300 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_SCALE, ent->tlbi.scale);
301 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
302 cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf);
303 cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TTL, ent->tlbi.ttl);
304 cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TG, ent->tlbi.tg);
305 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
306 break;
307 case CMDQ_OP_TLBI_S2_IPA:
308 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_NUM, ent->tlbi.num);
309 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_SCALE, ent->tlbi.scale);
310 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
311 cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf);
312 cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TTL, ent->tlbi.ttl);
313 cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TG, ent->tlbi.tg);
314 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
315 break;
316 case CMDQ_OP_TLBI_NH_ASID:
317 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
318 fallthrough;
319 case CMDQ_OP_TLBI_NH_ALL:
320 case CMDQ_OP_TLBI_S12_VMALL:
321 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
322 break;
323 case CMDQ_OP_TLBI_EL2_ASID:
324 cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
325 break;
326 case CMDQ_OP_ATC_INV:
327 cmd[0] |= FIELD_PREP(CMDQ_0_SSV, ent->substream_valid);
328 cmd[0] |= FIELD_PREP(CMDQ_ATC_0_GLOBAL, ent->atc.global);
329 cmd[0] |= FIELD_PREP(CMDQ_ATC_0_SSID, ent->atc.ssid);
330 cmd[0] |= FIELD_PREP(CMDQ_ATC_0_SID, ent->atc.sid);
331 cmd[1] |= FIELD_PREP(CMDQ_ATC_1_SIZE, ent->atc.size);
332 cmd[1] |= ent->atc.addr & CMDQ_ATC_1_ADDR_MASK;
333 break;
334 case CMDQ_OP_PRI_RESP:
335 cmd[0] |= FIELD_PREP(CMDQ_0_SSV, ent->substream_valid);
336 cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SSID, ent->pri.ssid);
337 cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SID, ent->pri.sid);
338 cmd[1] |= FIELD_PREP(CMDQ_PRI_1_GRPID, ent->pri.grpid);
339 switch (ent->pri.resp) {
340 case PRI_RESP_DENY:
341 case PRI_RESP_FAIL:
342 case PRI_RESP_SUCC:
343 break;
344 default:
345 return -EINVAL;
346 }
347 cmd[1] |= FIELD_PREP(CMDQ_PRI_1_RESP, ent->pri.resp);
348 break;
349 case CMDQ_OP_RESUME:
350 cmd[0] |= FIELD_PREP(CMDQ_RESUME_0_SID, ent->resume.sid);
351 cmd[0] |= FIELD_PREP(CMDQ_RESUME_0_RESP, ent->resume.resp);
352 cmd[1] |= FIELD_PREP(CMDQ_RESUME_1_STAG, ent->resume.stag);
353 break;
354 case CMDQ_OP_CMD_SYNC:
355 if (ent->sync.msiaddr) {
356 cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_IRQ);
357 cmd[1] |= ent->sync.msiaddr & CMDQ_SYNC_1_MSIADDR_MASK;
358 } else {
359 cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_SEV);
360 }
361 cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSH, ARM_SMMU_SH_ISH);
362 cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSIATTR, ARM_SMMU_MEMATTR_OIWB);
363 break;
364 default:
365 return -ENOENT;
366 }
367
368 return 0;
369 }
370
arm_smmu_get_cmdq(struct arm_smmu_device * smmu,struct arm_smmu_cmdq_ent * ent)371 static struct arm_smmu_cmdq *arm_smmu_get_cmdq(struct arm_smmu_device *smmu,
372 struct arm_smmu_cmdq_ent *ent)
373 {
374 struct arm_smmu_cmdq *cmdq = NULL;
375
376 if (smmu->impl_ops && smmu->impl_ops->get_secondary_cmdq)
377 cmdq = smmu->impl_ops->get_secondary_cmdq(smmu, ent);
378
379 return cmdq ?: &smmu->cmdq;
380 }
381
arm_smmu_cmdq_needs_busy_polling(struct arm_smmu_device * smmu,struct arm_smmu_cmdq * cmdq)382 static bool arm_smmu_cmdq_needs_busy_polling(struct arm_smmu_device *smmu,
383 struct arm_smmu_cmdq *cmdq)
384 {
385 if (cmdq == &smmu->cmdq)
386 return false;
387
388 return smmu->options & ARM_SMMU_OPT_TEGRA241_CMDQV;
389 }
390
arm_smmu_cmdq_build_sync_cmd(u64 * cmd,struct arm_smmu_device * smmu,struct arm_smmu_cmdq * cmdq,u32 prod)391 static void arm_smmu_cmdq_build_sync_cmd(u64 *cmd, struct arm_smmu_device *smmu,
392 struct arm_smmu_cmdq *cmdq, u32 prod)
393 {
394 struct arm_smmu_queue *q = &cmdq->q;
395 struct arm_smmu_cmdq_ent ent = {
396 .opcode = CMDQ_OP_CMD_SYNC,
397 };
398
399 /*
400 * Beware that Hi16xx adds an extra 32 bits of goodness to its MSI
401 * payload, so the write will zero the entire command on that platform.
402 */
403 if (smmu->options & ARM_SMMU_OPT_MSIPOLL) {
404 ent.sync.msiaddr = q->base_dma + Q_IDX(&q->llq, prod) *
405 q->ent_dwords * 8;
406 }
407
408 arm_smmu_cmdq_build_cmd(cmd, &ent);
409 if (arm_smmu_cmdq_needs_busy_polling(smmu, cmdq))
410 u64p_replace_bits(cmd, CMDQ_SYNC_0_CS_NONE, CMDQ_SYNC_0_CS);
411 }
412
__arm_smmu_cmdq_skip_err(struct arm_smmu_device * smmu,struct arm_smmu_cmdq * cmdq)413 void __arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu,
414 struct arm_smmu_cmdq *cmdq)
415 {
416 static const char * const cerror_str[] = {
417 [CMDQ_ERR_CERROR_NONE_IDX] = "No error",
418 [CMDQ_ERR_CERROR_ILL_IDX] = "Illegal command",
419 [CMDQ_ERR_CERROR_ABT_IDX] = "Abort on command fetch",
420 [CMDQ_ERR_CERROR_ATC_INV_IDX] = "ATC invalidate timeout",
421 };
422 struct arm_smmu_queue *q = &cmdq->q;
423
424 int i;
425 u64 cmd[CMDQ_ENT_DWORDS];
426 u32 cons = readl_relaxed(q->cons_reg);
427 u32 idx = FIELD_GET(CMDQ_CONS_ERR, cons);
428 struct arm_smmu_cmdq_ent cmd_sync = {
429 .opcode = CMDQ_OP_CMD_SYNC,
430 };
431
432 dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
433 idx < ARRAY_SIZE(cerror_str) ? cerror_str[idx] : "Unknown");
434
435 switch (idx) {
436 case CMDQ_ERR_CERROR_ABT_IDX:
437 dev_err(smmu->dev, "retrying command fetch\n");
438 return;
439 case CMDQ_ERR_CERROR_NONE_IDX:
440 return;
441 case CMDQ_ERR_CERROR_ATC_INV_IDX:
442 /*
443 * ATC Invalidation Completion timeout. CONS is still pointing
444 * at the CMD_SYNC. Attempt to complete other pending commands
445 * by repeating the CMD_SYNC, though we might well end up back
446 * here since the ATC invalidation may still be pending.
447 */
448 return;
449 case CMDQ_ERR_CERROR_ILL_IDX:
450 default:
451 break;
452 }
453
454 /*
455 * We may have concurrent producers, so we need to be careful
456 * not to touch any of the shadow cmdq state.
457 */
458 queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
459 dev_err(smmu->dev, "skipping command in error state:\n");
460 for (i = 0; i < ARRAY_SIZE(cmd); ++i)
461 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
462
463 /* Convert the erroneous command into a CMD_SYNC */
464 arm_smmu_cmdq_build_cmd(cmd, &cmd_sync);
465 if (arm_smmu_cmdq_needs_busy_polling(smmu, cmdq))
466 u64p_replace_bits(cmd, CMDQ_SYNC_0_CS_NONE, CMDQ_SYNC_0_CS);
467
468 queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
469 }
470
arm_smmu_cmdq_skip_err(struct arm_smmu_device * smmu)471 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
472 {
473 __arm_smmu_cmdq_skip_err(smmu, &smmu->cmdq);
474 }
475
476 /*
477 * Command queue locking.
478 * This is a form of bastardised rwlock with the following major changes:
479 *
480 * - The only LOCK routines are exclusive_trylock() and shared_lock().
481 * Neither have barrier semantics, and instead provide only a control
482 * dependency.
483 *
484 * - The UNLOCK routines are supplemented with shared_tryunlock(), which
485 * fails if the caller appears to be the last lock holder (yes, this is
486 * racy). All successful UNLOCK routines have RELEASE semantics.
487 */
arm_smmu_cmdq_shared_lock(struct arm_smmu_cmdq * cmdq)488 static void arm_smmu_cmdq_shared_lock(struct arm_smmu_cmdq *cmdq)
489 {
490 int val;
491
492 /*
493 * We can try to avoid the cmpxchg() loop by simply incrementing the
494 * lock counter. When held in exclusive state, the lock counter is set
495 * to INT_MIN so these increments won't hurt as the value will remain
496 * negative.
497 */
498 if (atomic_fetch_inc_relaxed(&cmdq->lock) >= 0)
499 return;
500
501 do {
502 val = atomic_cond_read_relaxed(&cmdq->lock, VAL >= 0);
503 } while (atomic_cmpxchg_relaxed(&cmdq->lock, val, val + 1) != val);
504 }
505
arm_smmu_cmdq_shared_unlock(struct arm_smmu_cmdq * cmdq)506 static void arm_smmu_cmdq_shared_unlock(struct arm_smmu_cmdq *cmdq)
507 {
508 (void)atomic_dec_return_release(&cmdq->lock);
509 }
510
arm_smmu_cmdq_shared_tryunlock(struct arm_smmu_cmdq * cmdq)511 static bool arm_smmu_cmdq_shared_tryunlock(struct arm_smmu_cmdq *cmdq)
512 {
513 if (atomic_read(&cmdq->lock) == 1)
514 return false;
515
516 arm_smmu_cmdq_shared_unlock(cmdq);
517 return true;
518 }
519
520 #define arm_smmu_cmdq_exclusive_trylock_irqsave(cmdq, flags) \
521 ({ \
522 bool __ret; \
523 local_irq_save(flags); \
524 __ret = !atomic_cmpxchg_relaxed(&cmdq->lock, 0, INT_MIN); \
525 if (!__ret) \
526 local_irq_restore(flags); \
527 __ret; \
528 })
529
530 #define arm_smmu_cmdq_exclusive_unlock_irqrestore(cmdq, flags) \
531 ({ \
532 atomic_set_release(&cmdq->lock, 0); \
533 local_irq_restore(flags); \
534 })
535
536
537 /*
538 * Command queue insertion.
539 * This is made fiddly by our attempts to achieve some sort of scalability
540 * since there is one queue shared amongst all of the CPUs in the system. If
541 * you like mixed-size concurrency, dependency ordering and relaxed atomics,
542 * then you'll *love* this monstrosity.
543 *
544 * The basic idea is to split the queue up into ranges of commands that are
545 * owned by a given CPU; the owner may not have written all of the commands
546 * itself, but is responsible for advancing the hardware prod pointer when
547 * the time comes. The algorithm is roughly:
548 *
549 * 1. Allocate some space in the queue. At this point we also discover
550 * whether the head of the queue is currently owned by another CPU,
551 * or whether we are the owner.
552 *
553 * 2. Write our commands into our allocated slots in the queue.
554 *
555 * 3. Mark our slots as valid in arm_smmu_cmdq.valid_map.
556 *
557 * 4. If we are an owner:
558 * a. Wait for the previous owner to finish.
559 * b. Mark the queue head as unowned, which tells us the range
560 * that we are responsible for publishing.
561 * c. Wait for all commands in our owned range to become valid.
562 * d. Advance the hardware prod pointer.
563 * e. Tell the next owner we've finished.
564 *
565 * 5. If we are inserting a CMD_SYNC (we may or may not have been an
566 * owner), then we need to stick around until it has completed:
567 * a. If we have MSIs, the SMMU can write back into the CMD_SYNC
568 * to clear the first 4 bytes.
569 * b. Otherwise, we spin waiting for the hardware cons pointer to
570 * advance past our command.
571 *
572 * The devil is in the details, particularly the use of locking for handling
573 * SYNC completion and freeing up space in the queue before we think that it is
574 * full.
575 */
__arm_smmu_cmdq_poll_set_valid_map(struct arm_smmu_cmdq * cmdq,u32 sprod,u32 eprod,bool set)576 static void __arm_smmu_cmdq_poll_set_valid_map(struct arm_smmu_cmdq *cmdq,
577 u32 sprod, u32 eprod, bool set)
578 {
579 u32 swidx, sbidx, ewidx, ebidx;
580 struct arm_smmu_ll_queue llq = {
581 .max_n_shift = cmdq->q.llq.max_n_shift,
582 .prod = sprod,
583 };
584
585 ewidx = BIT_WORD(Q_IDX(&llq, eprod));
586 ebidx = Q_IDX(&llq, eprod) % BITS_PER_LONG;
587
588 while (llq.prod != eprod) {
589 unsigned long mask;
590 atomic_long_t *ptr;
591 u32 limit = BITS_PER_LONG;
592
593 swidx = BIT_WORD(Q_IDX(&llq, llq.prod));
594 sbidx = Q_IDX(&llq, llq.prod) % BITS_PER_LONG;
595
596 ptr = &cmdq->valid_map[swidx];
597
598 if ((swidx == ewidx) && (sbidx < ebidx))
599 limit = ebidx;
600
601 mask = GENMASK(limit - 1, sbidx);
602
603 /*
604 * The valid bit is the inverse of the wrap bit. This means
605 * that a zero-initialised queue is invalid and, after marking
606 * all entries as valid, they become invalid again when we
607 * wrap.
608 */
609 if (set) {
610 atomic_long_xor(mask, ptr);
611 } else { /* Poll */
612 unsigned long valid;
613
614 valid = (ULONG_MAX + !!Q_WRP(&llq, llq.prod)) & mask;
615 atomic_long_cond_read_relaxed(ptr, (VAL & mask) == valid);
616 }
617
618 llq.prod = queue_inc_prod_n(&llq, limit - sbidx);
619 }
620 }
621
622 /* Mark all entries in the range [sprod, eprod) as valid */
arm_smmu_cmdq_set_valid_map(struct arm_smmu_cmdq * cmdq,u32 sprod,u32 eprod)623 static void arm_smmu_cmdq_set_valid_map(struct arm_smmu_cmdq *cmdq,
624 u32 sprod, u32 eprod)
625 {
626 __arm_smmu_cmdq_poll_set_valid_map(cmdq, sprod, eprod, true);
627 }
628
629 /* Wait for all entries in the range [sprod, eprod) to become valid */
arm_smmu_cmdq_poll_valid_map(struct arm_smmu_cmdq * cmdq,u32 sprod,u32 eprod)630 static void arm_smmu_cmdq_poll_valid_map(struct arm_smmu_cmdq *cmdq,
631 u32 sprod, u32 eprod)
632 {
633 __arm_smmu_cmdq_poll_set_valid_map(cmdq, sprod, eprod, false);
634 }
635
636 /* Wait for the command queue to become non-full */
arm_smmu_cmdq_poll_until_not_full(struct arm_smmu_device * smmu,struct arm_smmu_cmdq * cmdq,struct arm_smmu_ll_queue * llq)637 static int arm_smmu_cmdq_poll_until_not_full(struct arm_smmu_device *smmu,
638 struct arm_smmu_cmdq *cmdq,
639 struct arm_smmu_ll_queue *llq)
640 {
641 unsigned long flags;
642 struct arm_smmu_queue_poll qp;
643 int ret = 0;
644
645 /*
646 * Try to update our copy of cons by grabbing exclusive cmdq access. If
647 * that fails, spin until somebody else updates it for us.
648 */
649 if (arm_smmu_cmdq_exclusive_trylock_irqsave(cmdq, flags)) {
650 WRITE_ONCE(cmdq->q.llq.cons, readl_relaxed(cmdq->q.cons_reg));
651 arm_smmu_cmdq_exclusive_unlock_irqrestore(cmdq, flags);
652 llq->val = READ_ONCE(cmdq->q.llq.val);
653 return 0;
654 }
655
656 queue_poll_init(smmu, &qp);
657 do {
658 llq->val = READ_ONCE(cmdq->q.llq.val);
659 if (!queue_full(llq))
660 break;
661
662 ret = queue_poll(&qp);
663 } while (!ret);
664
665 return ret;
666 }
667
668 /*
669 * Wait until the SMMU signals a CMD_SYNC completion MSI.
670 * Must be called with the cmdq lock held in some capacity.
671 */
__arm_smmu_cmdq_poll_until_msi(struct arm_smmu_device * smmu,struct arm_smmu_cmdq * cmdq,struct arm_smmu_ll_queue * llq)672 static int __arm_smmu_cmdq_poll_until_msi(struct arm_smmu_device *smmu,
673 struct arm_smmu_cmdq *cmdq,
674 struct arm_smmu_ll_queue *llq)
675 {
676 int ret = 0;
677 struct arm_smmu_queue_poll qp;
678 u32 *cmd = (u32 *)(Q_ENT(&cmdq->q, llq->prod));
679
680 queue_poll_init(smmu, &qp);
681
682 /*
683 * The MSI won't generate an event, since it's being written back
684 * into the command queue.
685 */
686 qp.wfe = false;
687 smp_cond_load_relaxed(cmd, !VAL || (ret = queue_poll(&qp)));
688 llq->cons = ret ? llq->prod : queue_inc_prod_n(llq, 1);
689 return ret;
690 }
691
692 /*
693 * Wait until the SMMU cons index passes llq->prod.
694 * Must be called with the cmdq lock held in some capacity.
695 */
__arm_smmu_cmdq_poll_until_consumed(struct arm_smmu_device * smmu,struct arm_smmu_cmdq * cmdq,struct arm_smmu_ll_queue * llq)696 static int __arm_smmu_cmdq_poll_until_consumed(struct arm_smmu_device *smmu,
697 struct arm_smmu_cmdq *cmdq,
698 struct arm_smmu_ll_queue *llq)
699 {
700 struct arm_smmu_queue_poll qp;
701 u32 prod = llq->prod;
702 int ret = 0;
703
704 queue_poll_init(smmu, &qp);
705 llq->val = READ_ONCE(cmdq->q.llq.val);
706 do {
707 if (queue_consumed(llq, prod))
708 break;
709
710 ret = queue_poll(&qp);
711
712 /*
713 * This needs to be a readl() so that our subsequent call
714 * to arm_smmu_cmdq_shared_tryunlock() can fail accurately.
715 *
716 * Specifically, we need to ensure that we observe all
717 * shared_lock()s by other CMD_SYNCs that share our owner,
718 * so that a failing call to tryunlock() means that we're
719 * the last one out and therefore we can safely advance
720 * cmdq->q.llq.cons. Roughly speaking:
721 *
722 * CPU 0 CPU1 CPU2 (us)
723 *
724 * if (sync)
725 * shared_lock();
726 *
727 * dma_wmb();
728 * set_valid_map();
729 *
730 * if (owner) {
731 * poll_valid_map();
732 * <control dependency>
733 * writel(prod_reg);
734 *
735 * readl(cons_reg);
736 * tryunlock();
737 *
738 * Requires us to see CPU 0's shared_lock() acquisition.
739 */
740 llq->cons = readl(cmdq->q.cons_reg);
741 } while (!ret);
742
743 return ret;
744 }
745
arm_smmu_cmdq_poll_until_sync(struct arm_smmu_device * smmu,struct arm_smmu_cmdq * cmdq,struct arm_smmu_ll_queue * llq)746 static int arm_smmu_cmdq_poll_until_sync(struct arm_smmu_device *smmu,
747 struct arm_smmu_cmdq *cmdq,
748 struct arm_smmu_ll_queue *llq)
749 {
750 if (smmu->options & ARM_SMMU_OPT_MSIPOLL &&
751 !arm_smmu_cmdq_needs_busy_polling(smmu, cmdq))
752 return __arm_smmu_cmdq_poll_until_msi(smmu, cmdq, llq);
753
754 return __arm_smmu_cmdq_poll_until_consumed(smmu, cmdq, llq);
755 }
756
arm_smmu_cmdq_write_entries(struct arm_smmu_cmdq * cmdq,u64 * cmds,u32 prod,int n)757 static void arm_smmu_cmdq_write_entries(struct arm_smmu_cmdq *cmdq, u64 *cmds,
758 u32 prod, int n)
759 {
760 int i;
761 struct arm_smmu_ll_queue llq = {
762 .max_n_shift = cmdq->q.llq.max_n_shift,
763 .prod = prod,
764 };
765
766 for (i = 0; i < n; ++i) {
767 u64 *cmd = &cmds[i * CMDQ_ENT_DWORDS];
768
769 prod = queue_inc_prod_n(&llq, i);
770 queue_write(Q_ENT(&cmdq->q, prod), cmd, CMDQ_ENT_DWORDS);
771 }
772 }
773
774 /*
775 * This is the actual insertion function, and provides the following
776 * ordering guarantees to callers:
777 *
778 * - There is a dma_wmb() before publishing any commands to the queue.
779 * This can be relied upon to order prior writes to data structures
780 * in memory (such as a CD or an STE) before the command.
781 *
782 * - On completion of a CMD_SYNC, there is a control dependency.
783 * This can be relied upon to order subsequent writes to memory (e.g.
784 * freeing an IOVA) after completion of the CMD_SYNC.
785 *
786 * - Command insertion is totally ordered, so if two CPUs each race to
787 * insert their own list of commands then all of the commands from one
788 * CPU will appear before any of the commands from the other CPU.
789 */
arm_smmu_cmdq_issue_cmdlist(struct arm_smmu_device * smmu,struct arm_smmu_cmdq * cmdq,u64 * cmds,int n,bool sync)790 int arm_smmu_cmdq_issue_cmdlist(struct arm_smmu_device *smmu,
791 struct arm_smmu_cmdq *cmdq, u64 *cmds, int n,
792 bool sync)
793 {
794 u64 cmd_sync[CMDQ_ENT_DWORDS];
795 u32 prod;
796 unsigned long flags;
797 bool owner;
798 struct arm_smmu_ll_queue llq, head;
799 int ret = 0;
800
801 llq.max_n_shift = cmdq->q.llq.max_n_shift;
802
803 /* 1. Allocate some space in the queue */
804 local_irq_save(flags);
805 llq.val = READ_ONCE(cmdq->q.llq.val);
806 do {
807 u64 old;
808
809 while (!queue_has_space(&llq, n + sync)) {
810 local_irq_restore(flags);
811 if (arm_smmu_cmdq_poll_until_not_full(smmu, cmdq, &llq))
812 dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
813 local_irq_save(flags);
814 }
815
816 head.cons = llq.cons;
817 head.prod = queue_inc_prod_n(&llq, n + sync) |
818 CMDQ_PROD_OWNED_FLAG;
819
820 old = cmpxchg_relaxed(&cmdq->q.llq.val, llq.val, head.val);
821 if (old == llq.val)
822 break;
823
824 llq.val = old;
825 } while (1);
826 owner = !(llq.prod & CMDQ_PROD_OWNED_FLAG);
827 head.prod &= ~CMDQ_PROD_OWNED_FLAG;
828 llq.prod &= ~CMDQ_PROD_OWNED_FLAG;
829
830 /*
831 * 2. Write our commands into the queue
832 * Dependency ordering from the cmpxchg() loop above.
833 */
834 arm_smmu_cmdq_write_entries(cmdq, cmds, llq.prod, n);
835 if (sync) {
836 prod = queue_inc_prod_n(&llq, n);
837 arm_smmu_cmdq_build_sync_cmd(cmd_sync, smmu, cmdq, prod);
838 queue_write(Q_ENT(&cmdq->q, prod), cmd_sync, CMDQ_ENT_DWORDS);
839
840 /*
841 * In order to determine completion of our CMD_SYNC, we must
842 * ensure that the queue can't wrap twice without us noticing.
843 * We achieve that by taking the cmdq lock as shared before
844 * marking our slot as valid.
845 */
846 arm_smmu_cmdq_shared_lock(cmdq);
847 }
848
849 /* 3. Mark our slots as valid, ensuring commands are visible first */
850 dma_wmb();
851 arm_smmu_cmdq_set_valid_map(cmdq, llq.prod, head.prod);
852
853 /* 4. If we are the owner, take control of the SMMU hardware */
854 if (owner) {
855 /* a. Wait for previous owner to finish */
856 atomic_cond_read_relaxed(&cmdq->owner_prod, VAL == llq.prod);
857
858 /* b. Stop gathering work by clearing the owned flag */
859 prod = atomic_fetch_andnot_relaxed(CMDQ_PROD_OWNED_FLAG,
860 &cmdq->q.llq.atomic.prod);
861 prod &= ~CMDQ_PROD_OWNED_FLAG;
862
863 /*
864 * c. Wait for any gathered work to be written to the queue.
865 * Note that we read our own entries so that we have the control
866 * dependency required by (d).
867 */
868 arm_smmu_cmdq_poll_valid_map(cmdq, llq.prod, prod);
869
870 /*
871 * d. Advance the hardware prod pointer
872 * Control dependency ordering from the entries becoming valid.
873 */
874 writel_relaxed(prod, cmdq->q.prod_reg);
875
876 /*
877 * e. Tell the next owner we're done
878 * Make sure we've updated the hardware first, so that we don't
879 * race to update prod and potentially move it backwards.
880 */
881 atomic_set_release(&cmdq->owner_prod, prod);
882 }
883
884 /* 5. If we are inserting a CMD_SYNC, we must wait for it to complete */
885 if (sync) {
886 llq.prod = queue_inc_prod_n(&llq, n);
887 ret = arm_smmu_cmdq_poll_until_sync(smmu, cmdq, &llq);
888 if (ret) {
889 dev_err_ratelimited(smmu->dev,
890 "CMD_SYNC timeout at 0x%08x [hwprod 0x%08x, hwcons 0x%08x]\n",
891 llq.prod,
892 readl_relaxed(cmdq->q.prod_reg),
893 readl_relaxed(cmdq->q.cons_reg));
894 }
895
896 /*
897 * Try to unlock the cmdq lock. This will fail if we're the last
898 * reader, in which case we can safely update cmdq->q.llq.cons
899 */
900 if (!arm_smmu_cmdq_shared_tryunlock(cmdq)) {
901 WRITE_ONCE(cmdq->q.llq.cons, llq.cons);
902 arm_smmu_cmdq_shared_unlock(cmdq);
903 }
904 }
905
906 local_irq_restore(flags);
907 return ret;
908 }
909
__arm_smmu_cmdq_issue_cmd(struct arm_smmu_device * smmu,struct arm_smmu_cmdq_ent * ent,bool sync)910 static int __arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
911 struct arm_smmu_cmdq_ent *ent,
912 bool sync)
913 {
914 u64 cmd[CMDQ_ENT_DWORDS];
915
916 if (unlikely(arm_smmu_cmdq_build_cmd(cmd, ent))) {
917 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
918 ent->opcode);
919 return -EINVAL;
920 }
921
922 return arm_smmu_cmdq_issue_cmdlist(
923 smmu, arm_smmu_get_cmdq(smmu, ent), cmd, 1, sync);
924 }
925
arm_smmu_cmdq_issue_cmd(struct arm_smmu_device * smmu,struct arm_smmu_cmdq_ent * ent)926 static int arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
927 struct arm_smmu_cmdq_ent *ent)
928 {
929 return __arm_smmu_cmdq_issue_cmd(smmu, ent, false);
930 }
931
arm_smmu_cmdq_issue_cmd_with_sync(struct arm_smmu_device * smmu,struct arm_smmu_cmdq_ent * ent)932 static int arm_smmu_cmdq_issue_cmd_with_sync(struct arm_smmu_device *smmu,
933 struct arm_smmu_cmdq_ent *ent)
934 {
935 return __arm_smmu_cmdq_issue_cmd(smmu, ent, true);
936 }
937
arm_smmu_cmdq_batch_init(struct arm_smmu_device * smmu,struct arm_smmu_cmdq_batch * cmds,struct arm_smmu_cmdq_ent * ent)938 static void arm_smmu_cmdq_batch_init(struct arm_smmu_device *smmu,
939 struct arm_smmu_cmdq_batch *cmds,
940 struct arm_smmu_cmdq_ent *ent)
941 {
942 cmds->num = 0;
943 cmds->cmdq = arm_smmu_get_cmdq(smmu, ent);
944 }
945
arm_smmu_cmdq_batch_add(struct arm_smmu_device * smmu,struct arm_smmu_cmdq_batch * cmds,struct arm_smmu_cmdq_ent * cmd)946 static void arm_smmu_cmdq_batch_add(struct arm_smmu_device *smmu,
947 struct arm_smmu_cmdq_batch *cmds,
948 struct arm_smmu_cmdq_ent *cmd)
949 {
950 bool unsupported_cmd = !arm_smmu_cmdq_supports_cmd(cmds->cmdq, cmd);
951 bool force_sync = (cmds->num == CMDQ_BATCH_ENTRIES - 1) &&
952 (smmu->options & ARM_SMMU_OPT_CMDQ_FORCE_SYNC);
953 int index;
954
955 if (force_sync || unsupported_cmd) {
956 arm_smmu_cmdq_issue_cmdlist(smmu, cmds->cmdq, cmds->cmds,
957 cmds->num, true);
958 arm_smmu_cmdq_batch_init(smmu, cmds, cmd);
959 }
960
961 if (cmds->num == CMDQ_BATCH_ENTRIES) {
962 arm_smmu_cmdq_issue_cmdlist(smmu, cmds->cmdq, cmds->cmds,
963 cmds->num, false);
964 arm_smmu_cmdq_batch_init(smmu, cmds, cmd);
965 }
966
967 index = cmds->num * CMDQ_ENT_DWORDS;
968 if (unlikely(arm_smmu_cmdq_build_cmd(&cmds->cmds[index], cmd))) {
969 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
970 cmd->opcode);
971 return;
972 }
973
974 cmds->num++;
975 }
976
arm_smmu_cmdq_batch_submit(struct arm_smmu_device * smmu,struct arm_smmu_cmdq_batch * cmds)977 static int arm_smmu_cmdq_batch_submit(struct arm_smmu_device *smmu,
978 struct arm_smmu_cmdq_batch *cmds)
979 {
980 return arm_smmu_cmdq_issue_cmdlist(smmu, cmds->cmdq, cmds->cmds,
981 cmds->num, true);
982 }
983
arm_smmu_page_response(struct device * dev,struct iopf_fault * unused,struct iommu_page_response * resp)984 static void arm_smmu_page_response(struct device *dev, struct iopf_fault *unused,
985 struct iommu_page_response *resp)
986 {
987 struct arm_smmu_cmdq_ent cmd = {0};
988 struct arm_smmu_master *master = dev_iommu_priv_get(dev);
989 int sid = master->streams[0].id;
990
991 if (WARN_ON(!master->stall_enabled))
992 return;
993
994 cmd.opcode = CMDQ_OP_RESUME;
995 cmd.resume.sid = sid;
996 cmd.resume.stag = resp->grpid;
997 switch (resp->code) {
998 case IOMMU_PAGE_RESP_INVALID:
999 case IOMMU_PAGE_RESP_FAILURE:
1000 cmd.resume.resp = CMDQ_RESUME_0_RESP_ABORT;
1001 break;
1002 case IOMMU_PAGE_RESP_SUCCESS:
1003 cmd.resume.resp = CMDQ_RESUME_0_RESP_RETRY;
1004 break;
1005 default:
1006 break;
1007 }
1008
1009 arm_smmu_cmdq_issue_cmd(master->smmu, &cmd);
1010 /*
1011 * Don't send a SYNC, it doesn't do anything for RESUME or PRI_RESP.
1012 * RESUME consumption guarantees that the stalled transaction will be
1013 * terminated... at some point in the future. PRI_RESP is fire and
1014 * forget.
1015 */
1016 }
1017
1018 /* Context descriptor manipulation functions */
arm_smmu_tlb_inv_asid(struct arm_smmu_device * smmu,u16 asid)1019 void arm_smmu_tlb_inv_asid(struct arm_smmu_device *smmu, u16 asid)
1020 {
1021 struct arm_smmu_cmdq_ent cmd = {
1022 .opcode = smmu->features & ARM_SMMU_FEAT_E2H ?
1023 CMDQ_OP_TLBI_EL2_ASID : CMDQ_OP_TLBI_NH_ASID,
1024 .tlbi.asid = asid,
1025 };
1026
1027 arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd);
1028 }
1029
1030 /*
1031 * Based on the value of ent report which bits of the STE the HW will access. It
1032 * would be nice if this was complete according to the spec, but minimally it
1033 * has to capture the bits this driver uses.
1034 */
1035 VISIBLE_IF_KUNIT
arm_smmu_get_ste_used(const __le64 * ent,__le64 * used_bits)1036 void arm_smmu_get_ste_used(const __le64 *ent, __le64 *used_bits)
1037 {
1038 unsigned int cfg = FIELD_GET(STRTAB_STE_0_CFG, le64_to_cpu(ent[0]));
1039
1040 used_bits[0] = cpu_to_le64(STRTAB_STE_0_V);
1041 if (!(ent[0] & cpu_to_le64(STRTAB_STE_0_V)))
1042 return;
1043
1044 used_bits[0] |= cpu_to_le64(STRTAB_STE_0_CFG);
1045
1046 /* S1 translates */
1047 if (cfg & BIT(0)) {
1048 used_bits[0] |= cpu_to_le64(STRTAB_STE_0_S1FMT |
1049 STRTAB_STE_0_S1CTXPTR_MASK |
1050 STRTAB_STE_0_S1CDMAX);
1051 used_bits[1] |=
1052 cpu_to_le64(STRTAB_STE_1_S1DSS | STRTAB_STE_1_S1CIR |
1053 STRTAB_STE_1_S1COR | STRTAB_STE_1_S1CSH |
1054 STRTAB_STE_1_S1STALLD | STRTAB_STE_1_STRW |
1055 STRTAB_STE_1_EATS);
1056 used_bits[2] |= cpu_to_le64(STRTAB_STE_2_S2VMID);
1057
1058 /*
1059 * See 13.5 Summary of attribute/permission configuration fields
1060 * for the SHCFG behavior.
1061 */
1062 if (FIELD_GET(STRTAB_STE_1_S1DSS, le64_to_cpu(ent[1])) ==
1063 STRTAB_STE_1_S1DSS_BYPASS)
1064 used_bits[1] |= cpu_to_le64(STRTAB_STE_1_SHCFG);
1065 }
1066
1067 /* S2 translates */
1068 if (cfg & BIT(1)) {
1069 used_bits[1] |=
1070 cpu_to_le64(STRTAB_STE_1_S2FWB | STRTAB_STE_1_EATS |
1071 STRTAB_STE_1_SHCFG);
1072 used_bits[2] |=
1073 cpu_to_le64(STRTAB_STE_2_S2VMID | STRTAB_STE_2_VTCR |
1074 STRTAB_STE_2_S2AA64 | STRTAB_STE_2_S2ENDI |
1075 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2S |
1076 STRTAB_STE_2_S2R);
1077 used_bits[3] |= cpu_to_le64(STRTAB_STE_3_S2TTB_MASK);
1078 }
1079
1080 if (cfg == STRTAB_STE_0_CFG_BYPASS)
1081 used_bits[1] |= cpu_to_le64(STRTAB_STE_1_SHCFG);
1082 }
1083 EXPORT_SYMBOL_IF_KUNIT(arm_smmu_get_ste_used);
1084
1085 /*
1086 * Figure out if we can do a hitless update of entry to become target. Returns a
1087 * bit mask where 1 indicates that qword needs to be set disruptively.
1088 * unused_update is an intermediate value of entry that has unused bits set to
1089 * their new values.
1090 */
arm_smmu_entry_qword_diff(struct arm_smmu_entry_writer * writer,const __le64 * entry,const __le64 * target,__le64 * unused_update)1091 static u8 arm_smmu_entry_qword_diff(struct arm_smmu_entry_writer *writer,
1092 const __le64 *entry, const __le64 *target,
1093 __le64 *unused_update)
1094 {
1095 __le64 target_used[NUM_ENTRY_QWORDS] = {};
1096 __le64 cur_used[NUM_ENTRY_QWORDS] = {};
1097 u8 used_qword_diff = 0;
1098 unsigned int i;
1099
1100 writer->ops->get_used(entry, cur_used);
1101 writer->ops->get_used(target, target_used);
1102
1103 for (i = 0; i != NUM_ENTRY_QWORDS; i++) {
1104 /*
1105 * Check that masks are up to date, the make functions are not
1106 * allowed to set a bit to 1 if the used function doesn't say it
1107 * is used.
1108 */
1109 WARN_ON_ONCE(target[i] & ~target_used[i]);
1110
1111 /* Bits can change because they are not currently being used */
1112 unused_update[i] = (entry[i] & cur_used[i]) |
1113 (target[i] & ~cur_used[i]);
1114 /*
1115 * Each bit indicates that a used bit in a qword needs to be
1116 * changed after unused_update is applied.
1117 */
1118 if ((unused_update[i] & target_used[i]) != target[i])
1119 used_qword_diff |= 1 << i;
1120 }
1121 return used_qword_diff;
1122 }
1123
entry_set(struct arm_smmu_entry_writer * writer,__le64 * entry,const __le64 * target,unsigned int start,unsigned int len)1124 static bool entry_set(struct arm_smmu_entry_writer *writer, __le64 *entry,
1125 const __le64 *target, unsigned int start,
1126 unsigned int len)
1127 {
1128 bool changed = false;
1129 unsigned int i;
1130
1131 for (i = start; len != 0; len--, i++) {
1132 if (entry[i] != target[i]) {
1133 WRITE_ONCE(entry[i], target[i]);
1134 changed = true;
1135 }
1136 }
1137
1138 if (changed)
1139 writer->ops->sync(writer);
1140 return changed;
1141 }
1142
1143 /*
1144 * Update the STE/CD to the target configuration. The transition from the
1145 * current entry to the target entry takes place over multiple steps that
1146 * attempts to make the transition hitless if possible. This function takes care
1147 * not to create a situation where the HW can perceive a corrupted entry. HW is
1148 * only required to have a 64 bit atomicity with stores from the CPU, while
1149 * entries are many 64 bit values big.
1150 *
1151 * The difference between the current value and the target value is analyzed to
1152 * determine which of three updates are required - disruptive, hitless or no
1153 * change.
1154 *
1155 * In the most general disruptive case we can make any update in three steps:
1156 * - Disrupting the entry (V=0)
1157 * - Fill now unused qwords, execpt qword 0 which contains V
1158 * - Make qword 0 have the final value and valid (V=1) with a single 64
1159 * bit store
1160 *
1161 * However this disrupts the HW while it is happening. There are several
1162 * interesting cases where a STE/CD can be updated without disturbing the HW
1163 * because only a small number of bits are changing (S1DSS, CONFIG, etc) or
1164 * because the used bits don't intersect. We can detect this by calculating how
1165 * many 64 bit values need update after adjusting the unused bits and skip the
1166 * V=0 process. This relies on the IGNORED behavior described in the
1167 * specification.
1168 */
1169 VISIBLE_IF_KUNIT
arm_smmu_write_entry(struct arm_smmu_entry_writer * writer,__le64 * entry,const __le64 * target)1170 void arm_smmu_write_entry(struct arm_smmu_entry_writer *writer, __le64 *entry,
1171 const __le64 *target)
1172 {
1173 __le64 unused_update[NUM_ENTRY_QWORDS];
1174 u8 used_qword_diff;
1175
1176 used_qword_diff =
1177 arm_smmu_entry_qword_diff(writer, entry, target, unused_update);
1178 if (hweight8(used_qword_diff) == 1) {
1179 /*
1180 * Only one qword needs its used bits to be changed. This is a
1181 * hitless update, update all bits the current STE/CD is
1182 * ignoring to their new values, then update a single "critical
1183 * qword" to change the STE/CD and finally 0 out any bits that
1184 * are now unused in the target configuration.
1185 */
1186 unsigned int critical_qword_index = ffs(used_qword_diff) - 1;
1187
1188 /*
1189 * Skip writing unused bits in the critical qword since we'll be
1190 * writing it in the next step anyways. This can save a sync
1191 * when the only change is in that qword.
1192 */
1193 unused_update[critical_qword_index] =
1194 entry[critical_qword_index];
1195 entry_set(writer, entry, unused_update, 0, NUM_ENTRY_QWORDS);
1196 entry_set(writer, entry, target, critical_qword_index, 1);
1197 entry_set(writer, entry, target, 0, NUM_ENTRY_QWORDS);
1198 } else if (used_qword_diff) {
1199 /*
1200 * At least two qwords need their inuse bits to be changed. This
1201 * requires a breaking update, zero the V bit, write all qwords
1202 * but 0, then set qword 0
1203 */
1204 unused_update[0] = 0;
1205 entry_set(writer, entry, unused_update, 0, 1);
1206 entry_set(writer, entry, target, 1, NUM_ENTRY_QWORDS - 1);
1207 entry_set(writer, entry, target, 0, 1);
1208 } else {
1209 /*
1210 * No inuse bit changed. Sanity check that all unused bits are 0
1211 * in the entry. The target was already sanity checked by
1212 * compute_qword_diff().
1213 */
1214 WARN_ON_ONCE(
1215 entry_set(writer, entry, target, 0, NUM_ENTRY_QWORDS));
1216 }
1217 }
1218 EXPORT_SYMBOL_IF_KUNIT(arm_smmu_write_entry);
1219
arm_smmu_sync_cd(struct arm_smmu_master * master,int ssid,bool leaf)1220 static void arm_smmu_sync_cd(struct arm_smmu_master *master,
1221 int ssid, bool leaf)
1222 {
1223 size_t i;
1224 struct arm_smmu_cmdq_batch cmds;
1225 struct arm_smmu_device *smmu = master->smmu;
1226 struct arm_smmu_cmdq_ent cmd = {
1227 .opcode = CMDQ_OP_CFGI_CD,
1228 .cfgi = {
1229 .ssid = ssid,
1230 .leaf = leaf,
1231 },
1232 };
1233
1234 arm_smmu_cmdq_batch_init(smmu, &cmds, &cmd);
1235 for (i = 0; i < master->num_streams; i++) {
1236 cmd.cfgi.sid = master->streams[i].id;
1237 arm_smmu_cmdq_batch_add(smmu, &cmds, &cmd);
1238 }
1239
1240 arm_smmu_cmdq_batch_submit(smmu, &cmds);
1241 }
1242
arm_smmu_write_cd_l1_desc(struct arm_smmu_cdtab_l1 * dst,dma_addr_t l2ptr_dma)1243 static void arm_smmu_write_cd_l1_desc(struct arm_smmu_cdtab_l1 *dst,
1244 dma_addr_t l2ptr_dma)
1245 {
1246 u64 val = (l2ptr_dma & CTXDESC_L1_DESC_L2PTR_MASK) | CTXDESC_L1_DESC_V;
1247
1248 /* The HW has 64 bit atomicity with stores to the L2 CD table */
1249 WRITE_ONCE(dst->l2ptr, cpu_to_le64(val));
1250 }
1251
arm_smmu_cd_l1_get_desc(const struct arm_smmu_cdtab_l1 * src)1252 static dma_addr_t arm_smmu_cd_l1_get_desc(const struct arm_smmu_cdtab_l1 *src)
1253 {
1254 return le64_to_cpu(src->l2ptr) & CTXDESC_L1_DESC_L2PTR_MASK;
1255 }
1256
arm_smmu_get_cd_ptr(struct arm_smmu_master * master,u32 ssid)1257 struct arm_smmu_cd *arm_smmu_get_cd_ptr(struct arm_smmu_master *master,
1258 u32 ssid)
1259 {
1260 struct arm_smmu_cdtab_l2 *l2;
1261 struct arm_smmu_ctx_desc_cfg *cd_table = &master->cd_table;
1262
1263 if (!arm_smmu_cdtab_allocated(cd_table))
1264 return NULL;
1265
1266 if (cd_table->s1fmt == STRTAB_STE_0_S1FMT_LINEAR)
1267 return &cd_table->linear.table[ssid];
1268
1269 l2 = cd_table->l2.l2ptrs[arm_smmu_cdtab_l1_idx(ssid)];
1270 if (!l2)
1271 return NULL;
1272 return &l2->cds[arm_smmu_cdtab_l2_idx(ssid)];
1273 }
1274
arm_smmu_alloc_cd_ptr(struct arm_smmu_master * master,u32 ssid)1275 static struct arm_smmu_cd *arm_smmu_alloc_cd_ptr(struct arm_smmu_master *master,
1276 u32 ssid)
1277 {
1278 struct arm_smmu_ctx_desc_cfg *cd_table = &master->cd_table;
1279 struct arm_smmu_device *smmu = master->smmu;
1280
1281 might_sleep();
1282 iommu_group_mutex_assert(master->dev);
1283
1284 if (!arm_smmu_cdtab_allocated(cd_table)) {
1285 if (arm_smmu_alloc_cd_tables(master))
1286 return NULL;
1287 }
1288
1289 if (cd_table->s1fmt == STRTAB_STE_0_S1FMT_64K_L2) {
1290 unsigned int idx = arm_smmu_cdtab_l1_idx(ssid);
1291 struct arm_smmu_cdtab_l2 **l2ptr = &cd_table->l2.l2ptrs[idx];
1292
1293 if (!*l2ptr) {
1294 dma_addr_t l2ptr_dma;
1295
1296 *l2ptr = dma_alloc_coherent(smmu->dev, sizeof(**l2ptr),
1297 &l2ptr_dma, GFP_KERNEL);
1298 if (!*l2ptr)
1299 return NULL;
1300
1301 arm_smmu_write_cd_l1_desc(&cd_table->l2.l1tab[idx],
1302 l2ptr_dma);
1303 /* An invalid L1CD can be cached */
1304 arm_smmu_sync_cd(master, ssid, false);
1305 }
1306 }
1307 return arm_smmu_get_cd_ptr(master, ssid);
1308 }
1309
1310 struct arm_smmu_cd_writer {
1311 struct arm_smmu_entry_writer writer;
1312 unsigned int ssid;
1313 };
1314
1315 VISIBLE_IF_KUNIT
arm_smmu_get_cd_used(const __le64 * ent,__le64 * used_bits)1316 void arm_smmu_get_cd_used(const __le64 *ent, __le64 *used_bits)
1317 {
1318 used_bits[0] = cpu_to_le64(CTXDESC_CD_0_V);
1319 if (!(ent[0] & cpu_to_le64(CTXDESC_CD_0_V)))
1320 return;
1321 memset(used_bits, 0xFF, sizeof(struct arm_smmu_cd));
1322
1323 /*
1324 * If EPD0 is set by the make function it means
1325 * T0SZ/TG0/IR0/OR0/SH0/TTB0 are IGNORED
1326 */
1327 if (ent[0] & cpu_to_le64(CTXDESC_CD_0_TCR_EPD0)) {
1328 used_bits[0] &= ~cpu_to_le64(
1329 CTXDESC_CD_0_TCR_T0SZ | CTXDESC_CD_0_TCR_TG0 |
1330 CTXDESC_CD_0_TCR_IRGN0 | CTXDESC_CD_0_TCR_ORGN0 |
1331 CTXDESC_CD_0_TCR_SH0);
1332 used_bits[1] &= ~cpu_to_le64(CTXDESC_CD_1_TTB0_MASK);
1333 }
1334 }
1335 EXPORT_SYMBOL_IF_KUNIT(arm_smmu_get_cd_used);
1336
arm_smmu_cd_writer_sync_entry(struct arm_smmu_entry_writer * writer)1337 static void arm_smmu_cd_writer_sync_entry(struct arm_smmu_entry_writer *writer)
1338 {
1339 struct arm_smmu_cd_writer *cd_writer =
1340 container_of(writer, struct arm_smmu_cd_writer, writer);
1341
1342 arm_smmu_sync_cd(writer->master, cd_writer->ssid, true);
1343 }
1344
1345 static const struct arm_smmu_entry_writer_ops arm_smmu_cd_writer_ops = {
1346 .sync = arm_smmu_cd_writer_sync_entry,
1347 .get_used = arm_smmu_get_cd_used,
1348 };
1349
arm_smmu_write_cd_entry(struct arm_smmu_master * master,int ssid,struct arm_smmu_cd * cdptr,const struct arm_smmu_cd * target)1350 void arm_smmu_write_cd_entry(struct arm_smmu_master *master, int ssid,
1351 struct arm_smmu_cd *cdptr,
1352 const struct arm_smmu_cd *target)
1353 {
1354 bool target_valid = target->data[0] & cpu_to_le64(CTXDESC_CD_0_V);
1355 bool cur_valid = cdptr->data[0] & cpu_to_le64(CTXDESC_CD_0_V);
1356 struct arm_smmu_cd_writer cd_writer = {
1357 .writer = {
1358 .ops = &arm_smmu_cd_writer_ops,
1359 .master = master,
1360 },
1361 .ssid = ssid,
1362 };
1363
1364 if (ssid != IOMMU_NO_PASID && cur_valid != target_valid) {
1365 if (cur_valid)
1366 master->cd_table.used_ssids--;
1367 else
1368 master->cd_table.used_ssids++;
1369 }
1370
1371 arm_smmu_write_entry(&cd_writer.writer, cdptr->data, target->data);
1372 }
1373
arm_smmu_make_s1_cd(struct arm_smmu_cd * target,struct arm_smmu_master * master,struct arm_smmu_domain * smmu_domain)1374 void arm_smmu_make_s1_cd(struct arm_smmu_cd *target,
1375 struct arm_smmu_master *master,
1376 struct arm_smmu_domain *smmu_domain)
1377 {
1378 struct arm_smmu_ctx_desc *cd = &smmu_domain->cd;
1379 const struct io_pgtable_cfg *pgtbl_cfg =
1380 &io_pgtable_ops_to_pgtable(smmu_domain->pgtbl_ops)->cfg;
1381 typeof(&pgtbl_cfg->arm_lpae_s1_cfg.tcr) tcr =
1382 &pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1383
1384 memset(target, 0, sizeof(*target));
1385
1386 target->data[0] = cpu_to_le64(
1387 FIELD_PREP(CTXDESC_CD_0_TCR_T0SZ, tcr->tsz) |
1388 FIELD_PREP(CTXDESC_CD_0_TCR_TG0, tcr->tg) |
1389 FIELD_PREP(CTXDESC_CD_0_TCR_IRGN0, tcr->irgn) |
1390 FIELD_PREP(CTXDESC_CD_0_TCR_ORGN0, tcr->orgn) |
1391 FIELD_PREP(CTXDESC_CD_0_TCR_SH0, tcr->sh) |
1392 #ifdef __BIG_ENDIAN
1393 CTXDESC_CD_0_ENDI |
1394 #endif
1395 CTXDESC_CD_0_TCR_EPD1 |
1396 CTXDESC_CD_0_V |
1397 FIELD_PREP(CTXDESC_CD_0_TCR_IPS, tcr->ips) |
1398 CTXDESC_CD_0_AA64 |
1399 (master->stall_enabled ? CTXDESC_CD_0_S : 0) |
1400 CTXDESC_CD_0_R |
1401 CTXDESC_CD_0_A |
1402 CTXDESC_CD_0_ASET |
1403 FIELD_PREP(CTXDESC_CD_0_ASID, cd->asid)
1404 );
1405
1406 /* To enable dirty flag update, set both Access flag and dirty state update */
1407 if (pgtbl_cfg->quirks & IO_PGTABLE_QUIRK_ARM_HD)
1408 target->data[0] |= cpu_to_le64(CTXDESC_CD_0_TCR_HA |
1409 CTXDESC_CD_0_TCR_HD);
1410
1411 target->data[1] = cpu_to_le64(pgtbl_cfg->arm_lpae_s1_cfg.ttbr &
1412 CTXDESC_CD_1_TTB0_MASK);
1413 target->data[3] = cpu_to_le64(pgtbl_cfg->arm_lpae_s1_cfg.mair);
1414 }
1415 EXPORT_SYMBOL_IF_KUNIT(arm_smmu_make_s1_cd);
1416
arm_smmu_clear_cd(struct arm_smmu_master * master,ioasid_t ssid)1417 void arm_smmu_clear_cd(struct arm_smmu_master *master, ioasid_t ssid)
1418 {
1419 struct arm_smmu_cd target = {};
1420 struct arm_smmu_cd *cdptr;
1421
1422 if (!arm_smmu_cdtab_allocated(&master->cd_table))
1423 return;
1424 cdptr = arm_smmu_get_cd_ptr(master, ssid);
1425 if (WARN_ON(!cdptr))
1426 return;
1427 arm_smmu_write_cd_entry(master, ssid, cdptr, &target);
1428 }
1429
arm_smmu_alloc_cd_tables(struct arm_smmu_master * master)1430 static int arm_smmu_alloc_cd_tables(struct arm_smmu_master *master)
1431 {
1432 int ret;
1433 size_t l1size;
1434 size_t max_contexts;
1435 struct arm_smmu_device *smmu = master->smmu;
1436 struct arm_smmu_ctx_desc_cfg *cd_table = &master->cd_table;
1437
1438 cd_table->s1cdmax = master->ssid_bits;
1439 max_contexts = 1 << cd_table->s1cdmax;
1440
1441 if (!(smmu->features & ARM_SMMU_FEAT_2_LVL_CDTAB) ||
1442 max_contexts <= CTXDESC_L2_ENTRIES) {
1443 cd_table->s1fmt = STRTAB_STE_0_S1FMT_LINEAR;
1444 cd_table->linear.num_ents = max_contexts;
1445
1446 l1size = max_contexts * sizeof(struct arm_smmu_cd);
1447 cd_table->linear.table = dma_alloc_coherent(smmu->dev, l1size,
1448 &cd_table->cdtab_dma,
1449 GFP_KERNEL);
1450 if (!cd_table->linear.table)
1451 return -ENOMEM;
1452 } else {
1453 cd_table->s1fmt = STRTAB_STE_0_S1FMT_64K_L2;
1454 cd_table->l2.num_l1_ents =
1455 DIV_ROUND_UP(max_contexts, CTXDESC_L2_ENTRIES);
1456
1457 cd_table->l2.l2ptrs = kcalloc(cd_table->l2.num_l1_ents,
1458 sizeof(*cd_table->l2.l2ptrs),
1459 GFP_KERNEL);
1460 if (!cd_table->l2.l2ptrs)
1461 return -ENOMEM;
1462
1463 l1size = cd_table->l2.num_l1_ents * sizeof(struct arm_smmu_cdtab_l1);
1464 cd_table->l2.l1tab = dma_alloc_coherent(smmu->dev, l1size,
1465 &cd_table->cdtab_dma,
1466 GFP_KERNEL);
1467 if (!cd_table->l2.l2ptrs) {
1468 ret = -ENOMEM;
1469 goto err_free_l2ptrs;
1470 }
1471 }
1472 return 0;
1473
1474 err_free_l2ptrs:
1475 kfree(cd_table->l2.l2ptrs);
1476 cd_table->l2.l2ptrs = NULL;
1477 return ret;
1478 }
1479
arm_smmu_free_cd_tables(struct arm_smmu_master * master)1480 static void arm_smmu_free_cd_tables(struct arm_smmu_master *master)
1481 {
1482 int i;
1483 struct arm_smmu_device *smmu = master->smmu;
1484 struct arm_smmu_ctx_desc_cfg *cd_table = &master->cd_table;
1485
1486 if (cd_table->s1fmt != STRTAB_STE_0_S1FMT_LINEAR) {
1487 for (i = 0; i < cd_table->l2.num_l1_ents; i++) {
1488 if (!cd_table->l2.l2ptrs[i])
1489 continue;
1490
1491 dma_free_coherent(smmu->dev,
1492 sizeof(*cd_table->l2.l2ptrs[i]),
1493 cd_table->l2.l2ptrs[i],
1494 arm_smmu_cd_l1_get_desc(&cd_table->l2.l1tab[i]));
1495 }
1496 kfree(cd_table->l2.l2ptrs);
1497
1498 dma_free_coherent(smmu->dev,
1499 cd_table->l2.num_l1_ents *
1500 sizeof(struct arm_smmu_cdtab_l1),
1501 cd_table->l2.l1tab, cd_table->cdtab_dma);
1502 } else {
1503 dma_free_coherent(smmu->dev,
1504 cd_table->linear.num_ents *
1505 sizeof(struct arm_smmu_cd),
1506 cd_table->linear.table, cd_table->cdtab_dma);
1507 }
1508 }
1509
1510 /* Stream table manipulation functions */
arm_smmu_write_strtab_l1_desc(struct arm_smmu_strtab_l1 * dst,dma_addr_t l2ptr_dma)1511 static void arm_smmu_write_strtab_l1_desc(struct arm_smmu_strtab_l1 *dst,
1512 dma_addr_t l2ptr_dma)
1513 {
1514 u64 val = 0;
1515
1516 val |= FIELD_PREP(STRTAB_L1_DESC_SPAN, STRTAB_SPLIT + 1);
1517 val |= l2ptr_dma & STRTAB_L1_DESC_L2PTR_MASK;
1518
1519 /* The HW has 64 bit atomicity with stores to the L2 STE table */
1520 WRITE_ONCE(dst->l2ptr, cpu_to_le64(val));
1521 }
1522
1523 struct arm_smmu_ste_writer {
1524 struct arm_smmu_entry_writer writer;
1525 u32 sid;
1526 };
1527
arm_smmu_ste_writer_sync_entry(struct arm_smmu_entry_writer * writer)1528 static void arm_smmu_ste_writer_sync_entry(struct arm_smmu_entry_writer *writer)
1529 {
1530 struct arm_smmu_ste_writer *ste_writer =
1531 container_of(writer, struct arm_smmu_ste_writer, writer);
1532 struct arm_smmu_cmdq_ent cmd = {
1533 .opcode = CMDQ_OP_CFGI_STE,
1534 .cfgi = {
1535 .sid = ste_writer->sid,
1536 .leaf = true,
1537 },
1538 };
1539
1540 arm_smmu_cmdq_issue_cmd_with_sync(writer->master->smmu, &cmd);
1541 }
1542
1543 static const struct arm_smmu_entry_writer_ops arm_smmu_ste_writer_ops = {
1544 .sync = arm_smmu_ste_writer_sync_entry,
1545 .get_used = arm_smmu_get_ste_used,
1546 };
1547
arm_smmu_write_ste(struct arm_smmu_master * master,u32 sid,struct arm_smmu_ste * ste,const struct arm_smmu_ste * target)1548 static void arm_smmu_write_ste(struct arm_smmu_master *master, u32 sid,
1549 struct arm_smmu_ste *ste,
1550 const struct arm_smmu_ste *target)
1551 {
1552 struct arm_smmu_device *smmu = master->smmu;
1553 struct arm_smmu_ste_writer ste_writer = {
1554 .writer = {
1555 .ops = &arm_smmu_ste_writer_ops,
1556 .master = master,
1557 },
1558 .sid = sid,
1559 };
1560
1561 arm_smmu_write_entry(&ste_writer.writer, ste->data, target->data);
1562
1563 /* It's likely that we'll want to use the new STE soon */
1564 if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH)) {
1565 struct arm_smmu_cmdq_ent
1566 prefetch_cmd = { .opcode = CMDQ_OP_PREFETCH_CFG,
1567 .prefetch = {
1568 .sid = sid,
1569 } };
1570
1571 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1572 }
1573 }
1574
arm_smmu_make_abort_ste(struct arm_smmu_ste * target)1575 void arm_smmu_make_abort_ste(struct arm_smmu_ste *target)
1576 {
1577 memset(target, 0, sizeof(*target));
1578 target->data[0] = cpu_to_le64(
1579 STRTAB_STE_0_V |
1580 FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_ABORT));
1581 }
1582 EXPORT_SYMBOL_IF_KUNIT(arm_smmu_make_abort_ste);
1583
1584 VISIBLE_IF_KUNIT
arm_smmu_make_bypass_ste(struct arm_smmu_device * smmu,struct arm_smmu_ste * target)1585 void arm_smmu_make_bypass_ste(struct arm_smmu_device *smmu,
1586 struct arm_smmu_ste *target)
1587 {
1588 memset(target, 0, sizeof(*target));
1589 target->data[0] = cpu_to_le64(
1590 STRTAB_STE_0_V |
1591 FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_BYPASS));
1592
1593 if (smmu->features & ARM_SMMU_FEAT_ATTR_TYPES_OVR)
1594 target->data[1] = cpu_to_le64(FIELD_PREP(STRTAB_STE_1_SHCFG,
1595 STRTAB_STE_1_SHCFG_INCOMING));
1596 }
1597 EXPORT_SYMBOL_IF_KUNIT(arm_smmu_make_bypass_ste);
1598
1599 VISIBLE_IF_KUNIT
arm_smmu_make_cdtable_ste(struct arm_smmu_ste * target,struct arm_smmu_master * master,bool ats_enabled,unsigned int s1dss)1600 void arm_smmu_make_cdtable_ste(struct arm_smmu_ste *target,
1601 struct arm_smmu_master *master, bool ats_enabled,
1602 unsigned int s1dss)
1603 {
1604 struct arm_smmu_ctx_desc_cfg *cd_table = &master->cd_table;
1605 struct arm_smmu_device *smmu = master->smmu;
1606
1607 memset(target, 0, sizeof(*target));
1608 target->data[0] = cpu_to_le64(
1609 STRTAB_STE_0_V |
1610 FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S1_TRANS) |
1611 FIELD_PREP(STRTAB_STE_0_S1FMT, cd_table->s1fmt) |
1612 (cd_table->cdtab_dma & STRTAB_STE_0_S1CTXPTR_MASK) |
1613 FIELD_PREP(STRTAB_STE_0_S1CDMAX, cd_table->s1cdmax));
1614
1615 target->data[1] = cpu_to_le64(
1616 FIELD_PREP(STRTAB_STE_1_S1DSS, s1dss) |
1617 FIELD_PREP(STRTAB_STE_1_S1CIR, STRTAB_STE_1_S1C_CACHE_WBRA) |
1618 FIELD_PREP(STRTAB_STE_1_S1COR, STRTAB_STE_1_S1C_CACHE_WBRA) |
1619 FIELD_PREP(STRTAB_STE_1_S1CSH, ARM_SMMU_SH_ISH) |
1620 ((smmu->features & ARM_SMMU_FEAT_STALLS &&
1621 !master->stall_enabled) ?
1622 STRTAB_STE_1_S1STALLD :
1623 0) |
1624 FIELD_PREP(STRTAB_STE_1_EATS,
1625 ats_enabled ? STRTAB_STE_1_EATS_TRANS : 0));
1626
1627 if ((smmu->features & ARM_SMMU_FEAT_ATTR_TYPES_OVR) &&
1628 s1dss == STRTAB_STE_1_S1DSS_BYPASS)
1629 target->data[1] |= cpu_to_le64(FIELD_PREP(
1630 STRTAB_STE_1_SHCFG, STRTAB_STE_1_SHCFG_INCOMING));
1631
1632 if (smmu->features & ARM_SMMU_FEAT_E2H) {
1633 /*
1634 * To support BTM the streamworld needs to match the
1635 * configuration of the CPU so that the ASID broadcasts are
1636 * properly matched. This means either S/NS-EL2-E2H (hypervisor)
1637 * or NS-EL1 (guest). Since an SVA domain can be installed in a
1638 * PASID this should always use a BTM compatible configuration
1639 * if the HW supports it.
1640 */
1641 target->data[1] |= cpu_to_le64(
1642 FIELD_PREP(STRTAB_STE_1_STRW, STRTAB_STE_1_STRW_EL2));
1643 } else {
1644 target->data[1] |= cpu_to_le64(
1645 FIELD_PREP(STRTAB_STE_1_STRW, STRTAB_STE_1_STRW_NSEL1));
1646
1647 /*
1648 * VMID 0 is reserved for stage-2 bypass EL1 STEs, see
1649 * arm_smmu_domain_alloc_id()
1650 */
1651 target->data[2] =
1652 cpu_to_le64(FIELD_PREP(STRTAB_STE_2_S2VMID, 0));
1653 }
1654 }
1655 EXPORT_SYMBOL_IF_KUNIT(arm_smmu_make_cdtable_ste);
1656
arm_smmu_make_s2_domain_ste(struct arm_smmu_ste * target,struct arm_smmu_master * master,struct arm_smmu_domain * smmu_domain,bool ats_enabled)1657 void arm_smmu_make_s2_domain_ste(struct arm_smmu_ste *target,
1658 struct arm_smmu_master *master,
1659 struct arm_smmu_domain *smmu_domain,
1660 bool ats_enabled)
1661 {
1662 struct arm_smmu_s2_cfg *s2_cfg = &smmu_domain->s2_cfg;
1663 const struct io_pgtable_cfg *pgtbl_cfg =
1664 &io_pgtable_ops_to_pgtable(smmu_domain->pgtbl_ops)->cfg;
1665 typeof(&pgtbl_cfg->arm_lpae_s2_cfg.vtcr) vtcr =
1666 &pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1667 u64 vtcr_val;
1668 struct arm_smmu_device *smmu = master->smmu;
1669
1670 memset(target, 0, sizeof(*target));
1671 target->data[0] = cpu_to_le64(
1672 STRTAB_STE_0_V |
1673 FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S2_TRANS));
1674
1675 target->data[1] = cpu_to_le64(
1676 FIELD_PREP(STRTAB_STE_1_EATS,
1677 ats_enabled ? STRTAB_STE_1_EATS_TRANS : 0));
1678
1679 if (pgtbl_cfg->quirks & IO_PGTABLE_QUIRK_ARM_S2FWB)
1680 target->data[1] |= cpu_to_le64(STRTAB_STE_1_S2FWB);
1681 if (smmu->features & ARM_SMMU_FEAT_ATTR_TYPES_OVR)
1682 target->data[1] |= cpu_to_le64(FIELD_PREP(STRTAB_STE_1_SHCFG,
1683 STRTAB_STE_1_SHCFG_INCOMING));
1684
1685 vtcr_val = FIELD_PREP(STRTAB_STE_2_VTCR_S2T0SZ, vtcr->tsz) |
1686 FIELD_PREP(STRTAB_STE_2_VTCR_S2SL0, vtcr->sl) |
1687 FIELD_PREP(STRTAB_STE_2_VTCR_S2IR0, vtcr->irgn) |
1688 FIELD_PREP(STRTAB_STE_2_VTCR_S2OR0, vtcr->orgn) |
1689 FIELD_PREP(STRTAB_STE_2_VTCR_S2SH0, vtcr->sh) |
1690 FIELD_PREP(STRTAB_STE_2_VTCR_S2TG, vtcr->tg) |
1691 FIELD_PREP(STRTAB_STE_2_VTCR_S2PS, vtcr->ps);
1692 target->data[2] = cpu_to_le64(
1693 FIELD_PREP(STRTAB_STE_2_S2VMID, s2_cfg->vmid) |
1694 FIELD_PREP(STRTAB_STE_2_VTCR, vtcr_val) |
1695 STRTAB_STE_2_S2AA64 |
1696 #ifdef __BIG_ENDIAN
1697 STRTAB_STE_2_S2ENDI |
1698 #endif
1699 STRTAB_STE_2_S2PTW |
1700 (master->stall_enabled ? STRTAB_STE_2_S2S : 0) |
1701 STRTAB_STE_2_S2R);
1702
1703 target->data[3] = cpu_to_le64(pgtbl_cfg->arm_lpae_s2_cfg.vttbr &
1704 STRTAB_STE_3_S2TTB_MASK);
1705 }
1706 EXPORT_SYMBOL_IF_KUNIT(arm_smmu_make_s2_domain_ste);
1707
1708 /*
1709 * This can safely directly manipulate the STE memory without a sync sequence
1710 * because the STE table has not been installed in the SMMU yet.
1711 */
arm_smmu_init_initial_stes(struct arm_smmu_ste * strtab,unsigned int nent)1712 static void arm_smmu_init_initial_stes(struct arm_smmu_ste *strtab,
1713 unsigned int nent)
1714 {
1715 unsigned int i;
1716
1717 for (i = 0; i < nent; ++i) {
1718 arm_smmu_make_abort_ste(strtab);
1719 strtab++;
1720 }
1721 }
1722
arm_smmu_init_l2_strtab(struct arm_smmu_device * smmu,u32 sid)1723 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1724 {
1725 dma_addr_t l2ptr_dma;
1726 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1727 struct arm_smmu_strtab_l2 **l2table;
1728
1729 l2table = &cfg->l2.l2ptrs[arm_smmu_strtab_l1_idx(sid)];
1730 if (*l2table)
1731 return 0;
1732
1733 *l2table = dmam_alloc_coherent(smmu->dev, sizeof(**l2table),
1734 &l2ptr_dma, GFP_KERNEL);
1735 if (!*l2table) {
1736 dev_err(smmu->dev,
1737 "failed to allocate l2 stream table for SID %u\n",
1738 sid);
1739 return -ENOMEM;
1740 }
1741
1742 arm_smmu_init_initial_stes((*l2table)->stes,
1743 ARRAY_SIZE((*l2table)->stes));
1744 arm_smmu_write_strtab_l1_desc(&cfg->l2.l1tab[arm_smmu_strtab_l1_idx(sid)],
1745 l2ptr_dma);
1746 return 0;
1747 }
1748
arm_smmu_streams_cmp_key(const void * lhs,const struct rb_node * rhs)1749 static int arm_smmu_streams_cmp_key(const void *lhs, const struct rb_node *rhs)
1750 {
1751 struct arm_smmu_stream *stream_rhs =
1752 rb_entry(rhs, struct arm_smmu_stream, node);
1753 const u32 *sid_lhs = lhs;
1754
1755 if (*sid_lhs < stream_rhs->id)
1756 return -1;
1757 if (*sid_lhs > stream_rhs->id)
1758 return 1;
1759 return 0;
1760 }
1761
arm_smmu_streams_cmp_node(struct rb_node * lhs,const struct rb_node * rhs)1762 static int arm_smmu_streams_cmp_node(struct rb_node *lhs,
1763 const struct rb_node *rhs)
1764 {
1765 return arm_smmu_streams_cmp_key(
1766 &rb_entry(lhs, struct arm_smmu_stream, node)->id, rhs);
1767 }
1768
1769 static struct arm_smmu_master *
arm_smmu_find_master(struct arm_smmu_device * smmu,u32 sid)1770 arm_smmu_find_master(struct arm_smmu_device *smmu, u32 sid)
1771 {
1772 struct rb_node *node;
1773
1774 lockdep_assert_held(&smmu->streams_mutex);
1775
1776 node = rb_find(&sid, &smmu->streams, arm_smmu_streams_cmp_key);
1777 if (!node)
1778 return NULL;
1779 return rb_entry(node, struct arm_smmu_stream, node)->master;
1780 }
1781
1782 /* IRQ and event handlers */
arm_smmu_decode_event(struct arm_smmu_device * smmu,u64 * raw,struct arm_smmu_event * event)1783 static void arm_smmu_decode_event(struct arm_smmu_device *smmu, u64 *raw,
1784 struct arm_smmu_event *event)
1785 {
1786 struct arm_smmu_master *master;
1787
1788 event->id = FIELD_GET(EVTQ_0_ID, raw[0]);
1789 event->sid = FIELD_GET(EVTQ_0_SID, raw[0]);
1790 event->ssv = FIELD_GET(EVTQ_0_SSV, raw[0]);
1791 event->ssid = event->ssv ? FIELD_GET(EVTQ_0_SSID, raw[0]) : IOMMU_NO_PASID;
1792 event->privileged = FIELD_GET(EVTQ_1_PnU, raw[1]);
1793 event->instruction = FIELD_GET(EVTQ_1_InD, raw[1]);
1794 event->s2 = FIELD_GET(EVTQ_1_S2, raw[1]);
1795 event->read = FIELD_GET(EVTQ_1_RnW, raw[1]);
1796 event->stag = FIELD_GET(EVTQ_1_STAG, raw[1]);
1797 event->stall = FIELD_GET(EVTQ_1_STALL, raw[1]);
1798 event->class = FIELD_GET(EVTQ_1_CLASS, raw[1]);
1799 event->iova = FIELD_GET(EVTQ_2_ADDR, raw[2]);
1800 event->ipa = raw[3] & EVTQ_3_IPA;
1801 event->fetch_addr = raw[3] & EVTQ_3_FETCH_ADDR;
1802 event->ttrnw = FIELD_GET(EVTQ_1_TT_READ, raw[1]);
1803 event->class_tt = false;
1804 event->dev = NULL;
1805
1806 if (event->id == EVT_ID_PERMISSION_FAULT)
1807 event->class_tt = (event->class == EVTQ_1_CLASS_TT);
1808
1809 mutex_lock(&smmu->streams_mutex);
1810 master = arm_smmu_find_master(smmu, event->sid);
1811 if (master)
1812 event->dev = get_device(master->dev);
1813 mutex_unlock(&smmu->streams_mutex);
1814 }
1815
arm_smmu_handle_event(struct arm_smmu_device * smmu,struct arm_smmu_event * event)1816 static int arm_smmu_handle_event(struct arm_smmu_device *smmu,
1817 struct arm_smmu_event *event)
1818 {
1819 int ret = 0;
1820 u32 perm = 0;
1821 struct arm_smmu_master *master;
1822 struct iopf_fault fault_evt = { };
1823 struct iommu_fault *flt = &fault_evt.fault;
1824
1825 switch (event->id) {
1826 case EVT_ID_TRANSLATION_FAULT:
1827 case EVT_ID_ADDR_SIZE_FAULT:
1828 case EVT_ID_ACCESS_FAULT:
1829 case EVT_ID_PERMISSION_FAULT:
1830 break;
1831 default:
1832 return -EOPNOTSUPP;
1833 }
1834
1835 if (!event->stall)
1836 return -EOPNOTSUPP;
1837
1838 if (event->read)
1839 perm |= IOMMU_FAULT_PERM_READ;
1840 else
1841 perm |= IOMMU_FAULT_PERM_WRITE;
1842
1843 if (event->instruction)
1844 perm |= IOMMU_FAULT_PERM_EXEC;
1845
1846 if (event->privileged)
1847 perm |= IOMMU_FAULT_PERM_PRIV;
1848
1849 flt->type = IOMMU_FAULT_PAGE_REQ;
1850 flt->prm = (struct iommu_fault_page_request) {
1851 .flags = IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE,
1852 .grpid = event->stag,
1853 .perm = perm,
1854 .addr = event->iova,
1855 };
1856
1857 if (event->ssv) {
1858 flt->prm.flags |= IOMMU_FAULT_PAGE_REQUEST_PASID_VALID;
1859 flt->prm.pasid = event->ssid;
1860 }
1861
1862 mutex_lock(&smmu->streams_mutex);
1863 master = arm_smmu_find_master(smmu, event->sid);
1864 if (!master) {
1865 ret = -EINVAL;
1866 goto out_unlock;
1867 }
1868
1869 ret = iommu_report_device_fault(master->dev, &fault_evt);
1870 out_unlock:
1871 mutex_unlock(&smmu->streams_mutex);
1872 return ret;
1873 }
1874
arm_smmu_dump_raw_event(struct arm_smmu_device * smmu,u64 * raw,struct arm_smmu_event * event)1875 static void arm_smmu_dump_raw_event(struct arm_smmu_device *smmu, u64 *raw,
1876 struct arm_smmu_event *event)
1877 {
1878 int i;
1879
1880 dev_err(smmu->dev, "event 0x%02x received:\n", event->id);
1881
1882 for (i = 0; i < EVTQ_ENT_DWORDS; ++i)
1883 dev_err(smmu->dev, "\t0x%016llx\n", raw[i]);
1884 }
1885
1886 #define ARM_SMMU_EVT_KNOWN(e) ((e)->id < ARRAY_SIZE(event_str) && event_str[(e)->id])
1887 #define ARM_SMMU_LOG_EVT_STR(e) ARM_SMMU_EVT_KNOWN(e) ? event_str[(e)->id] : "UNKNOWN"
1888 #define ARM_SMMU_LOG_CLIENT(e) (e)->dev ? dev_name((e)->dev) : "(unassigned sid)"
1889
arm_smmu_dump_event(struct arm_smmu_device * smmu,u64 * raw,struct arm_smmu_event * evt,struct ratelimit_state * rs)1890 static void arm_smmu_dump_event(struct arm_smmu_device *smmu, u64 *raw,
1891 struct arm_smmu_event *evt,
1892 struct ratelimit_state *rs)
1893 {
1894 if (!__ratelimit(rs))
1895 return;
1896
1897 arm_smmu_dump_raw_event(smmu, raw, evt);
1898
1899 switch (evt->id) {
1900 case EVT_ID_TRANSLATION_FAULT:
1901 case EVT_ID_ADDR_SIZE_FAULT:
1902 case EVT_ID_ACCESS_FAULT:
1903 case EVT_ID_PERMISSION_FAULT:
1904 dev_err(smmu->dev, "event: %s client: %s sid: %#x ssid: %#x iova: %#llx ipa: %#llx",
1905 ARM_SMMU_LOG_EVT_STR(evt), ARM_SMMU_LOG_CLIENT(evt),
1906 evt->sid, evt->ssid, evt->iova, evt->ipa);
1907
1908 dev_err(smmu->dev, "%s %s %s %s \"%s\"%s%s stag: %#x",
1909 evt->privileged ? "priv" : "unpriv",
1910 evt->instruction ? "inst" : "data",
1911 str_read_write(evt->read),
1912 evt->s2 ? "s2" : "s1", event_class_str[evt->class],
1913 evt->class_tt ? (evt->ttrnw ? " ttd_read" : " ttd_write") : "",
1914 evt->stall ? " stall" : "", evt->stag);
1915
1916 break;
1917
1918 case EVT_ID_STE_FETCH_FAULT:
1919 case EVT_ID_CD_FETCH_FAULT:
1920 case EVT_ID_VMS_FETCH_FAULT:
1921 dev_err(smmu->dev, "event: %s client: %s sid: %#x ssid: %#x fetch_addr: %#llx",
1922 ARM_SMMU_LOG_EVT_STR(evt), ARM_SMMU_LOG_CLIENT(evt),
1923 evt->sid, evt->ssid, evt->fetch_addr);
1924
1925 break;
1926
1927 default:
1928 dev_err(smmu->dev, "event: %s client: %s sid: %#x ssid: %#x",
1929 ARM_SMMU_LOG_EVT_STR(evt), ARM_SMMU_LOG_CLIENT(evt),
1930 evt->sid, evt->ssid);
1931 }
1932 }
1933
arm_smmu_evtq_thread(int irq,void * dev)1934 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1935 {
1936 u64 evt[EVTQ_ENT_DWORDS];
1937 struct arm_smmu_event event = {0};
1938 struct arm_smmu_device *smmu = dev;
1939 struct arm_smmu_queue *q = &smmu->evtq.q;
1940 struct arm_smmu_ll_queue *llq = &q->llq;
1941 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1942 DEFAULT_RATELIMIT_BURST);
1943
1944 do {
1945 while (!queue_remove_raw(q, evt)) {
1946 arm_smmu_decode_event(smmu, evt, &event);
1947 if (arm_smmu_handle_event(smmu, &event))
1948 arm_smmu_dump_event(smmu, evt, &event, &rs);
1949
1950 put_device(event.dev);
1951 cond_resched();
1952 }
1953
1954 /*
1955 * Not much we can do on overflow, so scream and pretend we're
1956 * trying harder.
1957 */
1958 if (queue_sync_prod_in(q) == -EOVERFLOW)
1959 dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1960 } while (!queue_empty(llq));
1961
1962 /* Sync our overflow flag, as we believe we're up to speed */
1963 queue_sync_cons_ovf(q);
1964 return IRQ_HANDLED;
1965 }
1966
arm_smmu_handle_ppr(struct arm_smmu_device * smmu,u64 * evt)1967 static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
1968 {
1969 u32 sid, ssid;
1970 u16 grpid;
1971 bool ssv, last;
1972
1973 sid = FIELD_GET(PRIQ_0_SID, evt[0]);
1974 ssv = FIELD_GET(PRIQ_0_SSID_V, evt[0]);
1975 ssid = ssv ? FIELD_GET(PRIQ_0_SSID, evt[0]) : IOMMU_NO_PASID;
1976 last = FIELD_GET(PRIQ_0_PRG_LAST, evt[0]);
1977 grpid = FIELD_GET(PRIQ_1_PRG_IDX, evt[1]);
1978
1979 dev_info(smmu->dev, "unexpected PRI request received:\n");
1980 dev_info(smmu->dev,
1981 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1982 sid, ssid, grpid, last ? "L" : "",
1983 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1984 evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1985 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1986 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1987 evt[1] & PRIQ_1_ADDR_MASK);
1988
1989 if (last) {
1990 struct arm_smmu_cmdq_ent cmd = {
1991 .opcode = CMDQ_OP_PRI_RESP,
1992 .substream_valid = ssv,
1993 .pri = {
1994 .sid = sid,
1995 .ssid = ssid,
1996 .grpid = grpid,
1997 .resp = PRI_RESP_DENY,
1998 },
1999 };
2000
2001 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2002 }
2003 }
2004
arm_smmu_priq_thread(int irq,void * dev)2005 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
2006 {
2007 struct arm_smmu_device *smmu = dev;
2008 struct arm_smmu_queue *q = &smmu->priq.q;
2009 struct arm_smmu_ll_queue *llq = &q->llq;
2010 u64 evt[PRIQ_ENT_DWORDS];
2011
2012 do {
2013 while (!queue_remove_raw(q, evt))
2014 arm_smmu_handle_ppr(smmu, evt);
2015
2016 if (queue_sync_prod_in(q) == -EOVERFLOW)
2017 dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
2018 } while (!queue_empty(llq));
2019
2020 /* Sync our overflow flag, as we believe we're up to speed */
2021 queue_sync_cons_ovf(q);
2022 return IRQ_HANDLED;
2023 }
2024
2025 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
2026
arm_smmu_gerror_handler(int irq,void * dev)2027 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
2028 {
2029 u32 gerror, gerrorn, active;
2030 struct arm_smmu_device *smmu = dev;
2031
2032 gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
2033 gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
2034
2035 active = gerror ^ gerrorn;
2036 if (!(active & GERROR_ERR_MASK))
2037 return IRQ_NONE; /* No errors pending */
2038
2039 dev_warn(smmu->dev,
2040 "unexpected global error reported (0x%08x), this could be serious\n",
2041 active);
2042
2043 if (active & GERROR_SFM_ERR) {
2044 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
2045 arm_smmu_device_disable(smmu);
2046 }
2047
2048 if (active & GERROR_MSI_GERROR_ABT_ERR)
2049 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
2050
2051 if (active & GERROR_MSI_PRIQ_ABT_ERR)
2052 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
2053
2054 if (active & GERROR_MSI_EVTQ_ABT_ERR)
2055 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
2056
2057 if (active & GERROR_MSI_CMDQ_ABT_ERR)
2058 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
2059
2060 if (active & GERROR_PRIQ_ABT_ERR)
2061 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
2062
2063 if (active & GERROR_EVTQ_ABT_ERR)
2064 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
2065
2066 if (active & GERROR_CMDQ_ERR)
2067 arm_smmu_cmdq_skip_err(smmu);
2068
2069 writel(gerror, smmu->base + ARM_SMMU_GERRORN);
2070 return IRQ_HANDLED;
2071 }
2072
arm_smmu_combined_irq_thread(int irq,void * dev)2073 static irqreturn_t arm_smmu_combined_irq_thread(int irq, void *dev)
2074 {
2075 struct arm_smmu_device *smmu = dev;
2076
2077 arm_smmu_evtq_thread(irq, dev);
2078 if (smmu->features & ARM_SMMU_FEAT_PRI)
2079 arm_smmu_priq_thread(irq, dev);
2080
2081 return IRQ_HANDLED;
2082 }
2083
arm_smmu_combined_irq_handler(int irq,void * dev)2084 static irqreturn_t arm_smmu_combined_irq_handler(int irq, void *dev)
2085 {
2086 arm_smmu_gerror_handler(irq, dev);
2087 return IRQ_WAKE_THREAD;
2088 }
2089
2090 static void
arm_smmu_atc_inv_to_cmd(int ssid,unsigned long iova,size_t size,struct arm_smmu_cmdq_ent * cmd)2091 arm_smmu_atc_inv_to_cmd(int ssid, unsigned long iova, size_t size,
2092 struct arm_smmu_cmdq_ent *cmd)
2093 {
2094 size_t log2_span;
2095 size_t span_mask;
2096 /* ATC invalidates are always on 4096-bytes pages */
2097 size_t inval_grain_shift = 12;
2098 unsigned long page_start, page_end;
2099
2100 /*
2101 * ATS and PASID:
2102 *
2103 * If substream_valid is clear, the PCIe TLP is sent without a PASID
2104 * prefix. In that case all ATC entries within the address range are
2105 * invalidated, including those that were requested with a PASID! There
2106 * is no way to invalidate only entries without PASID.
2107 *
2108 * When using STRTAB_STE_1_S1DSS_SSID0 (reserving CD 0 for non-PASID
2109 * traffic), translation requests without PASID create ATC entries
2110 * without PASID, which must be invalidated with substream_valid clear.
2111 * This has the unpleasant side-effect of invalidating all PASID-tagged
2112 * ATC entries within the address range.
2113 */
2114 *cmd = (struct arm_smmu_cmdq_ent) {
2115 .opcode = CMDQ_OP_ATC_INV,
2116 .substream_valid = (ssid != IOMMU_NO_PASID),
2117 .atc.ssid = ssid,
2118 };
2119
2120 if (!size) {
2121 cmd->atc.size = ATC_INV_SIZE_ALL;
2122 return;
2123 }
2124
2125 page_start = iova >> inval_grain_shift;
2126 page_end = (iova + size - 1) >> inval_grain_shift;
2127
2128 /*
2129 * In an ATS Invalidate Request, the address must be aligned on the
2130 * range size, which must be a power of two number of page sizes. We
2131 * thus have to choose between grossly over-invalidating the region, or
2132 * splitting the invalidation into multiple commands. For simplicity
2133 * we'll go with the first solution, but should refine it in the future
2134 * if multiple commands are shown to be more efficient.
2135 *
2136 * Find the smallest power of two that covers the range. The most
2137 * significant differing bit between the start and end addresses,
2138 * fls(start ^ end), indicates the required span. For example:
2139 *
2140 * We want to invalidate pages [8; 11]. This is already the ideal range:
2141 * x = 0b1000 ^ 0b1011 = 0b11
2142 * span = 1 << fls(x) = 4
2143 *
2144 * To invalidate pages [7; 10], we need to invalidate [0; 15]:
2145 * x = 0b0111 ^ 0b1010 = 0b1101
2146 * span = 1 << fls(x) = 16
2147 */
2148 log2_span = fls_long(page_start ^ page_end);
2149 span_mask = (1ULL << log2_span) - 1;
2150
2151 page_start &= ~span_mask;
2152
2153 cmd->atc.addr = page_start << inval_grain_shift;
2154 cmd->atc.size = log2_span;
2155 }
2156
arm_smmu_atc_inv_master(struct arm_smmu_master * master,ioasid_t ssid)2157 static int arm_smmu_atc_inv_master(struct arm_smmu_master *master,
2158 ioasid_t ssid)
2159 {
2160 int i;
2161 struct arm_smmu_cmdq_ent cmd;
2162 struct arm_smmu_cmdq_batch cmds;
2163
2164 arm_smmu_atc_inv_to_cmd(ssid, 0, 0, &cmd);
2165
2166 arm_smmu_cmdq_batch_init(master->smmu, &cmds, &cmd);
2167 for (i = 0; i < master->num_streams; i++) {
2168 cmd.atc.sid = master->streams[i].id;
2169 arm_smmu_cmdq_batch_add(master->smmu, &cmds, &cmd);
2170 }
2171
2172 return arm_smmu_cmdq_batch_submit(master->smmu, &cmds);
2173 }
2174
arm_smmu_atc_inv_domain(struct arm_smmu_domain * smmu_domain,unsigned long iova,size_t size)2175 int arm_smmu_atc_inv_domain(struct arm_smmu_domain *smmu_domain,
2176 unsigned long iova, size_t size)
2177 {
2178 struct arm_smmu_master_domain *master_domain;
2179 int i;
2180 unsigned long flags;
2181 struct arm_smmu_cmdq_ent cmd = {
2182 .opcode = CMDQ_OP_ATC_INV,
2183 };
2184 struct arm_smmu_cmdq_batch cmds;
2185
2186 if (!(smmu_domain->smmu->features & ARM_SMMU_FEAT_ATS))
2187 return 0;
2188
2189 /*
2190 * Ensure that we've completed prior invalidation of the main TLBs
2191 * before we read 'nr_ats_masters' in case of a concurrent call to
2192 * arm_smmu_enable_ats():
2193 *
2194 * // unmap() // arm_smmu_enable_ats()
2195 * TLBI+SYNC atomic_inc(&nr_ats_masters);
2196 * smp_mb(); [...]
2197 * atomic_read(&nr_ats_masters); pci_enable_ats() // writel()
2198 *
2199 * Ensures that we always see the incremented 'nr_ats_masters' count if
2200 * ATS was enabled at the PCI device before completion of the TLBI.
2201 */
2202 smp_mb();
2203 if (!atomic_read(&smmu_domain->nr_ats_masters))
2204 return 0;
2205
2206 arm_smmu_cmdq_batch_init(smmu_domain->smmu, &cmds, &cmd);
2207
2208 spin_lock_irqsave(&smmu_domain->devices_lock, flags);
2209 list_for_each_entry(master_domain, &smmu_domain->devices,
2210 devices_elm) {
2211 struct arm_smmu_master *master = master_domain->master;
2212
2213 if (!master->ats_enabled)
2214 continue;
2215
2216 if (master_domain->nested_ats_flush) {
2217 /*
2218 * If a S2 used as a nesting parent is changed we have
2219 * no option but to completely flush the ATC.
2220 */
2221 arm_smmu_atc_inv_to_cmd(IOMMU_NO_PASID, 0, 0, &cmd);
2222 } else {
2223 arm_smmu_atc_inv_to_cmd(master_domain->ssid, iova, size,
2224 &cmd);
2225 }
2226
2227 for (i = 0; i < master->num_streams; i++) {
2228 cmd.atc.sid = master->streams[i].id;
2229 arm_smmu_cmdq_batch_add(smmu_domain->smmu, &cmds, &cmd);
2230 }
2231 }
2232 spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);
2233
2234 return arm_smmu_cmdq_batch_submit(smmu_domain->smmu, &cmds);
2235 }
2236
2237 /* IO_PGTABLE API */
arm_smmu_tlb_inv_context(void * cookie)2238 static void arm_smmu_tlb_inv_context(void *cookie)
2239 {
2240 struct arm_smmu_domain *smmu_domain = cookie;
2241 struct arm_smmu_device *smmu = smmu_domain->smmu;
2242 struct arm_smmu_cmdq_ent cmd;
2243
2244 /*
2245 * NOTE: when io-pgtable is in non-strict mode, we may get here with
2246 * PTEs previously cleared by unmaps on the current CPU not yet visible
2247 * to the SMMU. We are relying on the dma_wmb() implicit during cmd
2248 * insertion to guarantee those are observed before the TLBI. Do be
2249 * careful, 007.
2250 */
2251 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
2252 arm_smmu_tlb_inv_asid(smmu, smmu_domain->cd.asid);
2253 } else {
2254 cmd.opcode = CMDQ_OP_TLBI_S12_VMALL;
2255 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
2256 arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd);
2257 }
2258 arm_smmu_atc_inv_domain(smmu_domain, 0, 0);
2259 }
2260
__arm_smmu_tlb_inv_range(struct arm_smmu_cmdq_ent * cmd,unsigned long iova,size_t size,size_t granule,struct arm_smmu_domain * smmu_domain)2261 static void __arm_smmu_tlb_inv_range(struct arm_smmu_cmdq_ent *cmd,
2262 unsigned long iova, size_t size,
2263 size_t granule,
2264 struct arm_smmu_domain *smmu_domain)
2265 {
2266 struct arm_smmu_device *smmu = smmu_domain->smmu;
2267 unsigned long end = iova + size, num_pages = 0, tg = 0;
2268 size_t inv_range = granule;
2269 struct arm_smmu_cmdq_batch cmds;
2270
2271 if (!size)
2272 return;
2273
2274 if (smmu->features & ARM_SMMU_FEAT_RANGE_INV) {
2275 /* Get the leaf page size */
2276 tg = __ffs(smmu_domain->domain.pgsize_bitmap);
2277
2278 num_pages = size >> tg;
2279
2280 /* Convert page size of 12,14,16 (log2) to 1,2,3 */
2281 cmd->tlbi.tg = (tg - 10) / 2;
2282
2283 /*
2284 * Determine what level the granule is at. For non-leaf, both
2285 * io-pgtable and SVA pass a nominal last-level granule because
2286 * they don't know what level(s) actually apply, so ignore that
2287 * and leave TTL=0. However for various errata reasons we still
2288 * want to use a range command, so avoid the SVA corner case
2289 * where both scale and num could be 0 as well.
2290 */
2291 if (cmd->tlbi.leaf)
2292 cmd->tlbi.ttl = 4 - ((ilog2(granule) - 3) / (tg - 3));
2293 else if ((num_pages & CMDQ_TLBI_RANGE_NUM_MAX) == 1)
2294 num_pages++;
2295 }
2296
2297 arm_smmu_cmdq_batch_init(smmu, &cmds, cmd);
2298
2299 while (iova < end) {
2300 if (smmu->features & ARM_SMMU_FEAT_RANGE_INV) {
2301 /*
2302 * On each iteration of the loop, the range is 5 bits
2303 * worth of the aligned size remaining.
2304 * The range in pages is:
2305 *
2306 * range = (num_pages & (0x1f << __ffs(num_pages)))
2307 */
2308 unsigned long scale, num;
2309
2310 /* Determine the power of 2 multiple number of pages */
2311 scale = __ffs(num_pages);
2312 cmd->tlbi.scale = scale;
2313
2314 /* Determine how many chunks of 2^scale size we have */
2315 num = (num_pages >> scale) & CMDQ_TLBI_RANGE_NUM_MAX;
2316 cmd->tlbi.num = num - 1;
2317
2318 /* range is num * 2^scale * pgsize */
2319 inv_range = num << (scale + tg);
2320
2321 /* Clear out the lower order bits for the next iteration */
2322 num_pages -= num << scale;
2323 }
2324
2325 cmd->tlbi.addr = iova;
2326 arm_smmu_cmdq_batch_add(smmu, &cmds, cmd);
2327 iova += inv_range;
2328 }
2329 arm_smmu_cmdq_batch_submit(smmu, &cmds);
2330 }
2331
arm_smmu_tlb_inv_range_domain(unsigned long iova,size_t size,size_t granule,bool leaf,struct arm_smmu_domain * smmu_domain)2332 static void arm_smmu_tlb_inv_range_domain(unsigned long iova, size_t size,
2333 size_t granule, bool leaf,
2334 struct arm_smmu_domain *smmu_domain)
2335 {
2336 struct arm_smmu_cmdq_ent cmd = {
2337 .tlbi = {
2338 .leaf = leaf,
2339 },
2340 };
2341
2342 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
2343 cmd.opcode = smmu_domain->smmu->features & ARM_SMMU_FEAT_E2H ?
2344 CMDQ_OP_TLBI_EL2_VA : CMDQ_OP_TLBI_NH_VA;
2345 cmd.tlbi.asid = smmu_domain->cd.asid;
2346 } else {
2347 cmd.opcode = CMDQ_OP_TLBI_S2_IPA;
2348 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
2349 }
2350 __arm_smmu_tlb_inv_range(&cmd, iova, size, granule, smmu_domain);
2351
2352 if (smmu_domain->nest_parent) {
2353 /*
2354 * When the S2 domain changes all the nested S1 ASIDs have to be
2355 * flushed too.
2356 */
2357 cmd.opcode = CMDQ_OP_TLBI_NH_ALL;
2358 arm_smmu_cmdq_issue_cmd_with_sync(smmu_domain->smmu, &cmd);
2359 }
2360
2361 /*
2362 * Unfortunately, this can't be leaf-only since we may have
2363 * zapped an entire table.
2364 */
2365 arm_smmu_atc_inv_domain(smmu_domain, iova, size);
2366 }
2367
arm_smmu_tlb_inv_range_asid(unsigned long iova,size_t size,int asid,size_t granule,bool leaf,struct arm_smmu_domain * smmu_domain)2368 void arm_smmu_tlb_inv_range_asid(unsigned long iova, size_t size, int asid,
2369 size_t granule, bool leaf,
2370 struct arm_smmu_domain *smmu_domain)
2371 {
2372 struct arm_smmu_cmdq_ent cmd = {
2373 .opcode = smmu_domain->smmu->features & ARM_SMMU_FEAT_E2H ?
2374 CMDQ_OP_TLBI_EL2_VA : CMDQ_OP_TLBI_NH_VA,
2375 .tlbi = {
2376 .asid = asid,
2377 .leaf = leaf,
2378 },
2379 };
2380
2381 __arm_smmu_tlb_inv_range(&cmd, iova, size, granule, smmu_domain);
2382 }
2383
arm_smmu_tlb_inv_page_nosync(struct iommu_iotlb_gather * gather,unsigned long iova,size_t granule,void * cookie)2384 static void arm_smmu_tlb_inv_page_nosync(struct iommu_iotlb_gather *gather,
2385 unsigned long iova, size_t granule,
2386 void *cookie)
2387 {
2388 struct arm_smmu_domain *smmu_domain = cookie;
2389 struct iommu_domain *domain = &smmu_domain->domain;
2390
2391 iommu_iotlb_gather_add_page(domain, gather, iova, granule);
2392 }
2393
arm_smmu_tlb_inv_walk(unsigned long iova,size_t size,size_t granule,void * cookie)2394 static void arm_smmu_tlb_inv_walk(unsigned long iova, size_t size,
2395 size_t granule, void *cookie)
2396 {
2397 arm_smmu_tlb_inv_range_domain(iova, size, granule, false, cookie);
2398 }
2399
2400 static const struct iommu_flush_ops arm_smmu_flush_ops = {
2401 .tlb_flush_all = arm_smmu_tlb_inv_context,
2402 .tlb_flush_walk = arm_smmu_tlb_inv_walk,
2403 .tlb_add_page = arm_smmu_tlb_inv_page_nosync,
2404 };
2405
arm_smmu_dbm_capable(struct arm_smmu_device * smmu)2406 static bool arm_smmu_dbm_capable(struct arm_smmu_device *smmu)
2407 {
2408 u32 features = (ARM_SMMU_FEAT_HD | ARM_SMMU_FEAT_COHERENCY);
2409
2410 return (smmu->features & features) == features;
2411 }
2412
2413 /* IOMMU API */
arm_smmu_capable(struct device * dev,enum iommu_cap cap)2414 static bool arm_smmu_capable(struct device *dev, enum iommu_cap cap)
2415 {
2416 struct arm_smmu_master *master = dev_iommu_priv_get(dev);
2417
2418 switch (cap) {
2419 case IOMMU_CAP_CACHE_COHERENCY:
2420 /* Assume that a coherent TCU implies coherent TBUs */
2421 return master->smmu->features & ARM_SMMU_FEAT_COHERENCY;
2422 case IOMMU_CAP_ENFORCE_CACHE_COHERENCY:
2423 return arm_smmu_master_canwbs(master);
2424 case IOMMU_CAP_NOEXEC:
2425 case IOMMU_CAP_DEFERRED_FLUSH:
2426 return true;
2427 case IOMMU_CAP_DIRTY_TRACKING:
2428 return arm_smmu_dbm_capable(master->smmu);
2429 default:
2430 return false;
2431 }
2432 }
2433
arm_smmu_enforce_cache_coherency(struct iommu_domain * domain)2434 static bool arm_smmu_enforce_cache_coherency(struct iommu_domain *domain)
2435 {
2436 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2437 struct arm_smmu_master_domain *master_domain;
2438 unsigned long flags;
2439 bool ret = true;
2440
2441 spin_lock_irqsave(&smmu_domain->devices_lock, flags);
2442 list_for_each_entry(master_domain, &smmu_domain->devices,
2443 devices_elm) {
2444 if (!arm_smmu_master_canwbs(master_domain->master)) {
2445 ret = false;
2446 break;
2447 }
2448 }
2449 smmu_domain->enforce_cache_coherency = ret;
2450 spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);
2451 return ret;
2452 }
2453
arm_smmu_domain_alloc(void)2454 struct arm_smmu_domain *arm_smmu_domain_alloc(void)
2455 {
2456 struct arm_smmu_domain *smmu_domain;
2457
2458 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
2459 if (!smmu_domain)
2460 return ERR_PTR(-ENOMEM);
2461
2462 INIT_LIST_HEAD(&smmu_domain->devices);
2463 spin_lock_init(&smmu_domain->devices_lock);
2464
2465 return smmu_domain;
2466 }
2467
arm_smmu_domain_free_paging(struct iommu_domain * domain)2468 static void arm_smmu_domain_free_paging(struct iommu_domain *domain)
2469 {
2470 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2471 struct arm_smmu_device *smmu = smmu_domain->smmu;
2472
2473 free_io_pgtable_ops(smmu_domain->pgtbl_ops);
2474
2475 /* Free the ASID or VMID */
2476 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
2477 /* Prevent SVA from touching the CD while we're freeing it */
2478 mutex_lock(&arm_smmu_asid_lock);
2479 xa_erase(&arm_smmu_asid_xa, smmu_domain->cd.asid);
2480 mutex_unlock(&arm_smmu_asid_lock);
2481 } else {
2482 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
2483 if (cfg->vmid)
2484 ida_free(&smmu->vmid_map, cfg->vmid);
2485 }
2486
2487 kfree(smmu_domain);
2488 }
2489
arm_smmu_domain_finalise_s1(struct arm_smmu_device * smmu,struct arm_smmu_domain * smmu_domain)2490 static int arm_smmu_domain_finalise_s1(struct arm_smmu_device *smmu,
2491 struct arm_smmu_domain *smmu_domain)
2492 {
2493 int ret;
2494 u32 asid = 0;
2495 struct arm_smmu_ctx_desc *cd = &smmu_domain->cd;
2496
2497 /* Prevent SVA from modifying the ASID until it is written to the CD */
2498 mutex_lock(&arm_smmu_asid_lock);
2499 ret = xa_alloc(&arm_smmu_asid_xa, &asid, smmu_domain,
2500 XA_LIMIT(1, (1 << smmu->asid_bits) - 1), GFP_KERNEL);
2501 cd->asid = (u16)asid;
2502 mutex_unlock(&arm_smmu_asid_lock);
2503 return ret;
2504 }
2505
arm_smmu_domain_finalise_s2(struct arm_smmu_device * smmu,struct arm_smmu_domain * smmu_domain)2506 static int arm_smmu_domain_finalise_s2(struct arm_smmu_device *smmu,
2507 struct arm_smmu_domain *smmu_domain)
2508 {
2509 int vmid;
2510 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
2511
2512 /* Reserve VMID 0 for stage-2 bypass STEs */
2513 vmid = ida_alloc_range(&smmu->vmid_map, 1, (1 << smmu->vmid_bits) - 1,
2514 GFP_KERNEL);
2515 if (vmid < 0)
2516 return vmid;
2517
2518 cfg->vmid = (u16)vmid;
2519 return 0;
2520 }
2521
arm_smmu_domain_finalise(struct arm_smmu_domain * smmu_domain,struct arm_smmu_device * smmu,u32 flags)2522 static int arm_smmu_domain_finalise(struct arm_smmu_domain *smmu_domain,
2523 struct arm_smmu_device *smmu, u32 flags)
2524 {
2525 int ret;
2526 enum io_pgtable_fmt fmt;
2527 struct io_pgtable_cfg pgtbl_cfg;
2528 struct io_pgtable_ops *pgtbl_ops;
2529 int (*finalise_stage_fn)(struct arm_smmu_device *smmu,
2530 struct arm_smmu_domain *smmu_domain);
2531 bool enable_dirty = flags & IOMMU_HWPT_ALLOC_DIRTY_TRACKING;
2532
2533 pgtbl_cfg = (struct io_pgtable_cfg) {
2534 .pgsize_bitmap = smmu->pgsize_bitmap,
2535 .coherent_walk = smmu->features & ARM_SMMU_FEAT_COHERENCY,
2536 .tlb = &arm_smmu_flush_ops,
2537 .iommu_dev = smmu->dev,
2538 };
2539
2540 switch (smmu_domain->stage) {
2541 case ARM_SMMU_DOMAIN_S1: {
2542 unsigned long ias = (smmu->features &
2543 ARM_SMMU_FEAT_VAX) ? 52 : 48;
2544
2545 pgtbl_cfg.ias = min_t(unsigned long, ias, VA_BITS);
2546 pgtbl_cfg.oas = smmu->ias;
2547 if (enable_dirty)
2548 pgtbl_cfg.quirks |= IO_PGTABLE_QUIRK_ARM_HD;
2549 fmt = ARM_64_LPAE_S1;
2550 finalise_stage_fn = arm_smmu_domain_finalise_s1;
2551 break;
2552 }
2553 case ARM_SMMU_DOMAIN_S2:
2554 if (enable_dirty)
2555 return -EOPNOTSUPP;
2556 pgtbl_cfg.ias = smmu->ias;
2557 pgtbl_cfg.oas = smmu->oas;
2558 fmt = ARM_64_LPAE_S2;
2559 finalise_stage_fn = arm_smmu_domain_finalise_s2;
2560 if ((smmu->features & ARM_SMMU_FEAT_S2FWB) &&
2561 (flags & IOMMU_HWPT_ALLOC_NEST_PARENT))
2562 pgtbl_cfg.quirks |= IO_PGTABLE_QUIRK_ARM_S2FWB;
2563 break;
2564 default:
2565 return -EINVAL;
2566 }
2567
2568 pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
2569 if (!pgtbl_ops)
2570 return -ENOMEM;
2571
2572 smmu_domain->domain.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
2573 smmu_domain->domain.geometry.aperture_end = (1UL << pgtbl_cfg.ias) - 1;
2574 smmu_domain->domain.geometry.force_aperture = true;
2575 if (enable_dirty && smmu_domain->stage == ARM_SMMU_DOMAIN_S1)
2576 smmu_domain->domain.dirty_ops = &arm_smmu_dirty_ops;
2577
2578 ret = finalise_stage_fn(smmu, smmu_domain);
2579 if (ret < 0) {
2580 free_io_pgtable_ops(pgtbl_ops);
2581 return ret;
2582 }
2583
2584 smmu_domain->pgtbl_ops = pgtbl_ops;
2585 smmu_domain->smmu = smmu;
2586 return 0;
2587 }
2588
2589 static struct arm_smmu_ste *
arm_smmu_get_step_for_sid(struct arm_smmu_device * smmu,u32 sid)2590 arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
2591 {
2592 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2593
2594 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
2595 /* Two-level walk */
2596 return &cfg->l2.l2ptrs[arm_smmu_strtab_l1_idx(sid)]
2597 ->stes[arm_smmu_strtab_l2_idx(sid)];
2598 } else {
2599 /* Simple linear lookup */
2600 return &cfg->linear.table[sid];
2601 }
2602 }
2603
arm_smmu_install_ste_for_dev(struct arm_smmu_master * master,const struct arm_smmu_ste * target)2604 void arm_smmu_install_ste_for_dev(struct arm_smmu_master *master,
2605 const struct arm_smmu_ste *target)
2606 {
2607 int i, j;
2608 struct arm_smmu_device *smmu = master->smmu;
2609
2610 master->cd_table.in_ste =
2611 FIELD_GET(STRTAB_STE_0_CFG, le64_to_cpu(target->data[0])) ==
2612 STRTAB_STE_0_CFG_S1_TRANS;
2613 master->ste_ats_enabled =
2614 FIELD_GET(STRTAB_STE_1_EATS, le64_to_cpu(target->data[1])) ==
2615 STRTAB_STE_1_EATS_TRANS;
2616
2617 for (i = 0; i < master->num_streams; ++i) {
2618 u32 sid = master->streams[i].id;
2619 struct arm_smmu_ste *step =
2620 arm_smmu_get_step_for_sid(smmu, sid);
2621
2622 /* Bridged PCI devices may end up with duplicated IDs */
2623 for (j = 0; j < i; j++)
2624 if (master->streams[j].id == sid)
2625 break;
2626 if (j < i)
2627 continue;
2628
2629 arm_smmu_write_ste(master, sid, step, target);
2630 }
2631 }
2632
arm_smmu_ats_supported(struct arm_smmu_master * master)2633 static bool arm_smmu_ats_supported(struct arm_smmu_master *master)
2634 {
2635 struct device *dev = master->dev;
2636 struct arm_smmu_device *smmu = master->smmu;
2637 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2638
2639 if (!(smmu->features & ARM_SMMU_FEAT_ATS))
2640 return false;
2641
2642 if (!(fwspec->flags & IOMMU_FWSPEC_PCI_RC_ATS))
2643 return false;
2644
2645 return dev_is_pci(dev) && pci_ats_supported(to_pci_dev(dev));
2646 }
2647
arm_smmu_enable_ats(struct arm_smmu_master * master)2648 static void arm_smmu_enable_ats(struct arm_smmu_master *master)
2649 {
2650 size_t stu;
2651 struct pci_dev *pdev;
2652 struct arm_smmu_device *smmu = master->smmu;
2653
2654 /* Smallest Translation Unit: log2 of the smallest supported granule */
2655 stu = __ffs(smmu->pgsize_bitmap);
2656 pdev = to_pci_dev(master->dev);
2657
2658 /*
2659 * ATC invalidation of PASID 0 causes the entire ATC to be flushed.
2660 */
2661 arm_smmu_atc_inv_master(master, IOMMU_NO_PASID);
2662 if (pci_enable_ats(pdev, stu))
2663 dev_err(master->dev, "Failed to enable ATS (STU %zu)\n", stu);
2664 }
2665
arm_smmu_enable_pasid(struct arm_smmu_master * master)2666 static int arm_smmu_enable_pasid(struct arm_smmu_master *master)
2667 {
2668 int ret;
2669 int features;
2670 int num_pasids;
2671 struct pci_dev *pdev;
2672
2673 if (!dev_is_pci(master->dev))
2674 return -ENODEV;
2675
2676 pdev = to_pci_dev(master->dev);
2677
2678 features = pci_pasid_features(pdev);
2679 if (features < 0)
2680 return features;
2681
2682 num_pasids = pci_max_pasids(pdev);
2683 if (num_pasids <= 0)
2684 return num_pasids;
2685
2686 ret = pci_enable_pasid(pdev, features);
2687 if (ret) {
2688 dev_err(&pdev->dev, "Failed to enable PASID\n");
2689 return ret;
2690 }
2691
2692 master->ssid_bits = min_t(u8, ilog2(num_pasids),
2693 master->smmu->ssid_bits);
2694 return 0;
2695 }
2696
arm_smmu_disable_pasid(struct arm_smmu_master * master)2697 static void arm_smmu_disable_pasid(struct arm_smmu_master *master)
2698 {
2699 struct pci_dev *pdev;
2700
2701 if (!dev_is_pci(master->dev))
2702 return;
2703
2704 pdev = to_pci_dev(master->dev);
2705
2706 if (!pdev->pasid_enabled)
2707 return;
2708
2709 master->ssid_bits = 0;
2710 pci_disable_pasid(pdev);
2711 }
2712
2713 static struct arm_smmu_master_domain *
arm_smmu_find_master_domain(struct arm_smmu_domain * smmu_domain,struct arm_smmu_master * master,ioasid_t ssid,bool nested_ats_flush)2714 arm_smmu_find_master_domain(struct arm_smmu_domain *smmu_domain,
2715 struct arm_smmu_master *master,
2716 ioasid_t ssid, bool nested_ats_flush)
2717 {
2718 struct arm_smmu_master_domain *master_domain;
2719
2720 lockdep_assert_held(&smmu_domain->devices_lock);
2721
2722 list_for_each_entry(master_domain, &smmu_domain->devices,
2723 devices_elm) {
2724 if (master_domain->master == master &&
2725 master_domain->ssid == ssid &&
2726 master_domain->nested_ats_flush == nested_ats_flush)
2727 return master_domain;
2728 }
2729 return NULL;
2730 }
2731
2732 /*
2733 * If the domain uses the smmu_domain->devices list return the arm_smmu_domain
2734 * structure, otherwise NULL. These domains track attached devices so they can
2735 * issue invalidations.
2736 */
2737 static struct arm_smmu_domain *
to_smmu_domain_devices(struct iommu_domain * domain)2738 to_smmu_domain_devices(struct iommu_domain *domain)
2739 {
2740 /* The domain can be NULL only when processing the first attach */
2741 if (!domain)
2742 return NULL;
2743 if ((domain->type & __IOMMU_DOMAIN_PAGING) ||
2744 domain->type == IOMMU_DOMAIN_SVA)
2745 return to_smmu_domain(domain);
2746 if (domain->type == IOMMU_DOMAIN_NESTED)
2747 return to_smmu_nested_domain(domain)->vsmmu->s2_parent;
2748 return NULL;
2749 }
2750
arm_smmu_remove_master_domain(struct arm_smmu_master * master,struct iommu_domain * domain,ioasid_t ssid)2751 static void arm_smmu_remove_master_domain(struct arm_smmu_master *master,
2752 struct iommu_domain *domain,
2753 ioasid_t ssid)
2754 {
2755 struct arm_smmu_domain *smmu_domain = to_smmu_domain_devices(domain);
2756 struct arm_smmu_master_domain *master_domain;
2757 bool nested_ats_flush = false;
2758 unsigned long flags;
2759
2760 if (!smmu_domain)
2761 return;
2762
2763 if (domain->type == IOMMU_DOMAIN_NESTED)
2764 nested_ats_flush = to_smmu_nested_domain(domain)->enable_ats;
2765
2766 spin_lock_irqsave(&smmu_domain->devices_lock, flags);
2767 master_domain = arm_smmu_find_master_domain(smmu_domain, master, ssid,
2768 nested_ats_flush);
2769 if (master_domain) {
2770 list_del(&master_domain->devices_elm);
2771 kfree(master_domain);
2772 if (master->ats_enabled)
2773 atomic_dec(&smmu_domain->nr_ats_masters);
2774 }
2775 spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);
2776 }
2777
2778 /*
2779 * Start the sequence to attach a domain to a master. The sequence contains three
2780 * steps:
2781 * arm_smmu_attach_prepare()
2782 * arm_smmu_install_ste_for_dev()
2783 * arm_smmu_attach_commit()
2784 *
2785 * If prepare succeeds then the sequence must be completed. The STE installed
2786 * must set the STE.EATS field according to state.ats_enabled.
2787 *
2788 * If the device supports ATS then this determines if EATS should be enabled
2789 * in the STE, and starts sequencing EATS disable if required.
2790 *
2791 * The change of the EATS in the STE and the PCI ATS config space is managed by
2792 * this sequence to be in the right order so that if PCI ATS is enabled then
2793 * STE.ETAS is enabled.
2794 *
2795 * new_domain can be a non-paging domain. In this case ATS will not be enabled,
2796 * and invalidations won't be tracked.
2797 */
arm_smmu_attach_prepare(struct arm_smmu_attach_state * state,struct iommu_domain * new_domain)2798 int arm_smmu_attach_prepare(struct arm_smmu_attach_state *state,
2799 struct iommu_domain *new_domain)
2800 {
2801 struct arm_smmu_master *master = state->master;
2802 struct arm_smmu_master_domain *master_domain;
2803 struct arm_smmu_domain *smmu_domain =
2804 to_smmu_domain_devices(new_domain);
2805 unsigned long flags;
2806
2807 /*
2808 * arm_smmu_share_asid() must not see two domains pointing to the same
2809 * arm_smmu_master_domain contents otherwise it could randomly write one
2810 * or the other to the CD.
2811 */
2812 lockdep_assert_held(&arm_smmu_asid_lock);
2813
2814 if (smmu_domain || state->cd_needs_ats) {
2815 /*
2816 * The SMMU does not support enabling ATS with bypass/abort.
2817 * When the STE is in bypass (STE.Config[2:0] == 0b100), ATS
2818 * Translation Requests and Translated transactions are denied
2819 * as though ATS is disabled for the stream (STE.EATS == 0b00),
2820 * causing F_BAD_ATS_TREQ and F_TRANSL_FORBIDDEN events
2821 * (IHI0070Ea 5.2 Stream Table Entry).
2822 *
2823 * However, if we have installed a CD table and are using S1DSS
2824 * then ATS will work in S1DSS bypass. See "13.6.4 Full ATS
2825 * skipping stage 1".
2826 *
2827 * Disable ATS if we are going to create a normal 0b100 bypass
2828 * STE.
2829 */
2830 state->ats_enabled = !state->disable_ats &&
2831 arm_smmu_ats_supported(master);
2832 }
2833
2834 if (smmu_domain) {
2835 master_domain = kzalloc(sizeof(*master_domain), GFP_KERNEL);
2836 if (!master_domain)
2837 return -ENOMEM;
2838 master_domain->master = master;
2839 master_domain->ssid = state->ssid;
2840 if (new_domain->type == IOMMU_DOMAIN_NESTED)
2841 master_domain->nested_ats_flush =
2842 to_smmu_nested_domain(new_domain)->enable_ats;
2843
2844 /*
2845 * During prepare we want the current smmu_domain and new
2846 * smmu_domain to be in the devices list before we change any
2847 * HW. This ensures that both domains will send ATS
2848 * invalidations to the master until we are done.
2849 *
2850 * It is tempting to make this list only track masters that are
2851 * using ATS, but arm_smmu_share_asid() also uses this to change
2852 * the ASID of a domain, unrelated to ATS.
2853 *
2854 * Notice if we are re-attaching the same domain then the list
2855 * will have two identical entries and commit will remove only
2856 * one of them.
2857 */
2858 spin_lock_irqsave(&smmu_domain->devices_lock, flags);
2859 if (smmu_domain->enforce_cache_coherency &&
2860 !arm_smmu_master_canwbs(master)) {
2861 spin_unlock_irqrestore(&smmu_domain->devices_lock,
2862 flags);
2863 kfree(master_domain);
2864 return -EINVAL;
2865 }
2866
2867 if (state->ats_enabled)
2868 atomic_inc(&smmu_domain->nr_ats_masters);
2869 list_add(&master_domain->devices_elm, &smmu_domain->devices);
2870 spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);
2871 }
2872
2873 if (!state->ats_enabled && master->ats_enabled) {
2874 pci_disable_ats(to_pci_dev(master->dev));
2875 /*
2876 * This is probably overkill, but the config write for disabling
2877 * ATS should complete before the STE is configured to generate
2878 * UR to avoid AER noise.
2879 */
2880 wmb();
2881 }
2882 return 0;
2883 }
2884
2885 /*
2886 * Commit is done after the STE/CD are configured with the EATS setting. It
2887 * completes synchronizing the PCI device's ATC and finishes manipulating the
2888 * smmu_domain->devices list.
2889 */
arm_smmu_attach_commit(struct arm_smmu_attach_state * state)2890 void arm_smmu_attach_commit(struct arm_smmu_attach_state *state)
2891 {
2892 struct arm_smmu_master *master = state->master;
2893
2894 lockdep_assert_held(&arm_smmu_asid_lock);
2895
2896 if (state->ats_enabled && !master->ats_enabled) {
2897 arm_smmu_enable_ats(master);
2898 } else if (state->ats_enabled && master->ats_enabled) {
2899 /*
2900 * The translation has changed, flush the ATC. At this point the
2901 * SMMU is translating for the new domain and both the old&new
2902 * domain will issue invalidations.
2903 */
2904 arm_smmu_atc_inv_master(master, state->ssid);
2905 } else if (!state->ats_enabled && master->ats_enabled) {
2906 /* ATS is being switched off, invalidate the entire ATC */
2907 arm_smmu_atc_inv_master(master, IOMMU_NO_PASID);
2908 }
2909 master->ats_enabled = state->ats_enabled;
2910
2911 arm_smmu_remove_master_domain(master, state->old_domain, state->ssid);
2912 }
2913
arm_smmu_attach_dev(struct iommu_domain * domain,struct device * dev)2914 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
2915 {
2916 int ret = 0;
2917 struct arm_smmu_ste target;
2918 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2919 struct arm_smmu_device *smmu;
2920 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2921 struct arm_smmu_attach_state state = {
2922 .old_domain = iommu_get_domain_for_dev(dev),
2923 .ssid = IOMMU_NO_PASID,
2924 };
2925 struct arm_smmu_master *master;
2926 struct arm_smmu_cd *cdptr;
2927
2928 if (!fwspec)
2929 return -ENOENT;
2930
2931 state.master = master = dev_iommu_priv_get(dev);
2932 smmu = master->smmu;
2933
2934 if (smmu_domain->smmu != smmu)
2935 return ret;
2936
2937 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
2938 cdptr = arm_smmu_alloc_cd_ptr(master, IOMMU_NO_PASID);
2939 if (!cdptr)
2940 return -ENOMEM;
2941 } else if (arm_smmu_ssids_in_use(&master->cd_table))
2942 return -EBUSY;
2943
2944 /*
2945 * Prevent arm_smmu_share_asid() from trying to change the ASID
2946 * of either the old or new domain while we are working on it.
2947 * This allows the STE and the smmu_domain->devices list to
2948 * be inconsistent during this routine.
2949 */
2950 mutex_lock(&arm_smmu_asid_lock);
2951
2952 ret = arm_smmu_attach_prepare(&state, domain);
2953 if (ret) {
2954 mutex_unlock(&arm_smmu_asid_lock);
2955 return ret;
2956 }
2957
2958 switch (smmu_domain->stage) {
2959 case ARM_SMMU_DOMAIN_S1: {
2960 struct arm_smmu_cd target_cd;
2961
2962 arm_smmu_make_s1_cd(&target_cd, master, smmu_domain);
2963 arm_smmu_write_cd_entry(master, IOMMU_NO_PASID, cdptr,
2964 &target_cd);
2965 arm_smmu_make_cdtable_ste(&target, master, state.ats_enabled,
2966 STRTAB_STE_1_S1DSS_SSID0);
2967 arm_smmu_install_ste_for_dev(master, &target);
2968 break;
2969 }
2970 case ARM_SMMU_DOMAIN_S2:
2971 arm_smmu_make_s2_domain_ste(&target, master, smmu_domain,
2972 state.ats_enabled);
2973 arm_smmu_install_ste_for_dev(master, &target);
2974 arm_smmu_clear_cd(master, IOMMU_NO_PASID);
2975 break;
2976 }
2977
2978 arm_smmu_attach_commit(&state);
2979 mutex_unlock(&arm_smmu_asid_lock);
2980 return 0;
2981 }
2982
arm_smmu_s1_set_dev_pasid(struct iommu_domain * domain,struct device * dev,ioasid_t id,struct iommu_domain * old)2983 static int arm_smmu_s1_set_dev_pasid(struct iommu_domain *domain,
2984 struct device *dev, ioasid_t id,
2985 struct iommu_domain *old)
2986 {
2987 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2988 struct arm_smmu_master *master = dev_iommu_priv_get(dev);
2989 struct arm_smmu_device *smmu = master->smmu;
2990 struct arm_smmu_cd target_cd;
2991
2992 if (smmu_domain->smmu != smmu)
2993 return -EINVAL;
2994
2995 if (smmu_domain->stage != ARM_SMMU_DOMAIN_S1)
2996 return -EINVAL;
2997
2998 /*
2999 * We can read cd.asid outside the lock because arm_smmu_set_pasid()
3000 * will fix it
3001 */
3002 arm_smmu_make_s1_cd(&target_cd, master, smmu_domain);
3003 return arm_smmu_set_pasid(master, to_smmu_domain(domain), id,
3004 &target_cd, old);
3005 }
3006
arm_smmu_update_ste(struct arm_smmu_master * master,struct iommu_domain * sid_domain,bool ats_enabled)3007 static void arm_smmu_update_ste(struct arm_smmu_master *master,
3008 struct iommu_domain *sid_domain,
3009 bool ats_enabled)
3010 {
3011 unsigned int s1dss = STRTAB_STE_1_S1DSS_TERMINATE;
3012 struct arm_smmu_ste ste;
3013
3014 if (master->cd_table.in_ste && master->ste_ats_enabled == ats_enabled)
3015 return;
3016
3017 if (sid_domain->type == IOMMU_DOMAIN_IDENTITY)
3018 s1dss = STRTAB_STE_1_S1DSS_BYPASS;
3019 else
3020 WARN_ON(sid_domain->type != IOMMU_DOMAIN_BLOCKED);
3021
3022 /*
3023 * Change the STE into a cdtable one with SID IDENTITY/BLOCKED behavior
3024 * using s1dss if necessary. If the cd_table is already installed then
3025 * the S1DSS is correct and this will just update the EATS. Otherwise it
3026 * installs the entire thing. This will be hitless.
3027 */
3028 arm_smmu_make_cdtable_ste(&ste, master, ats_enabled, s1dss);
3029 arm_smmu_install_ste_for_dev(master, &ste);
3030 }
3031
arm_smmu_set_pasid(struct arm_smmu_master * master,struct arm_smmu_domain * smmu_domain,ioasid_t pasid,struct arm_smmu_cd * cd,struct iommu_domain * old)3032 int arm_smmu_set_pasid(struct arm_smmu_master *master,
3033 struct arm_smmu_domain *smmu_domain, ioasid_t pasid,
3034 struct arm_smmu_cd *cd, struct iommu_domain *old)
3035 {
3036 struct iommu_domain *sid_domain = iommu_get_domain_for_dev(master->dev);
3037 struct arm_smmu_attach_state state = {
3038 .master = master,
3039 .ssid = pasid,
3040 .old_domain = old,
3041 };
3042 struct arm_smmu_cd *cdptr;
3043 int ret;
3044
3045 /* The core code validates pasid */
3046
3047 if (smmu_domain->smmu != master->smmu)
3048 return -EINVAL;
3049
3050 if (!master->cd_table.in_ste &&
3051 sid_domain->type != IOMMU_DOMAIN_IDENTITY &&
3052 sid_domain->type != IOMMU_DOMAIN_BLOCKED)
3053 return -EINVAL;
3054
3055 cdptr = arm_smmu_alloc_cd_ptr(master, pasid);
3056 if (!cdptr)
3057 return -ENOMEM;
3058
3059 mutex_lock(&arm_smmu_asid_lock);
3060 ret = arm_smmu_attach_prepare(&state, &smmu_domain->domain);
3061 if (ret)
3062 goto out_unlock;
3063
3064 /*
3065 * We don't want to obtain to the asid_lock too early, so fix up the
3066 * caller set ASID under the lock in case it changed.
3067 */
3068 cd->data[0] &= ~cpu_to_le64(CTXDESC_CD_0_ASID);
3069 cd->data[0] |= cpu_to_le64(
3070 FIELD_PREP(CTXDESC_CD_0_ASID, smmu_domain->cd.asid));
3071
3072 arm_smmu_write_cd_entry(master, pasid, cdptr, cd);
3073 arm_smmu_update_ste(master, sid_domain, state.ats_enabled);
3074
3075 arm_smmu_attach_commit(&state);
3076
3077 out_unlock:
3078 mutex_unlock(&arm_smmu_asid_lock);
3079 return ret;
3080 }
3081
arm_smmu_blocking_set_dev_pasid(struct iommu_domain * new_domain,struct device * dev,ioasid_t pasid,struct iommu_domain * old_domain)3082 static int arm_smmu_blocking_set_dev_pasid(struct iommu_domain *new_domain,
3083 struct device *dev, ioasid_t pasid,
3084 struct iommu_domain *old_domain)
3085 {
3086 struct arm_smmu_domain *smmu_domain = to_smmu_domain(old_domain);
3087 struct arm_smmu_master *master = dev_iommu_priv_get(dev);
3088
3089 mutex_lock(&arm_smmu_asid_lock);
3090 arm_smmu_clear_cd(master, pasid);
3091 if (master->ats_enabled)
3092 arm_smmu_atc_inv_master(master, pasid);
3093 arm_smmu_remove_master_domain(master, &smmu_domain->domain, pasid);
3094 mutex_unlock(&arm_smmu_asid_lock);
3095
3096 /*
3097 * When the last user of the CD table goes away downgrade the STE back
3098 * to a non-cd_table one.
3099 */
3100 if (!arm_smmu_ssids_in_use(&master->cd_table)) {
3101 struct iommu_domain *sid_domain =
3102 iommu_get_domain_for_dev(master->dev);
3103
3104 if (sid_domain->type == IOMMU_DOMAIN_IDENTITY ||
3105 sid_domain->type == IOMMU_DOMAIN_BLOCKED)
3106 sid_domain->ops->attach_dev(sid_domain, dev);
3107 }
3108 return 0;
3109 }
3110
arm_smmu_attach_dev_ste(struct iommu_domain * domain,struct device * dev,struct arm_smmu_ste * ste,unsigned int s1dss)3111 static void arm_smmu_attach_dev_ste(struct iommu_domain *domain,
3112 struct device *dev,
3113 struct arm_smmu_ste *ste,
3114 unsigned int s1dss)
3115 {
3116 struct arm_smmu_master *master = dev_iommu_priv_get(dev);
3117 struct arm_smmu_attach_state state = {
3118 .master = master,
3119 .old_domain = iommu_get_domain_for_dev(dev),
3120 .ssid = IOMMU_NO_PASID,
3121 };
3122
3123 /*
3124 * Do not allow any ASID to be changed while are working on the STE,
3125 * otherwise we could miss invalidations.
3126 */
3127 mutex_lock(&arm_smmu_asid_lock);
3128
3129 /*
3130 * If the CD table is not in use we can use the provided STE, otherwise
3131 * we use a cdtable STE with the provided S1DSS.
3132 */
3133 if (arm_smmu_ssids_in_use(&master->cd_table)) {
3134 /*
3135 * If a CD table has to be present then we need to run with ATS
3136 * on because we have to assume a PASID is using ATS. For
3137 * IDENTITY this will setup things so that S1DSS=bypass which
3138 * follows the explanation in "13.6.4 Full ATS skipping stage 1"
3139 * and allows for ATS on the RID to work.
3140 */
3141 state.cd_needs_ats = true;
3142 arm_smmu_attach_prepare(&state, domain);
3143 arm_smmu_make_cdtable_ste(ste, master, state.ats_enabled, s1dss);
3144 } else {
3145 arm_smmu_attach_prepare(&state, domain);
3146 }
3147 arm_smmu_install_ste_for_dev(master, ste);
3148 arm_smmu_attach_commit(&state);
3149 mutex_unlock(&arm_smmu_asid_lock);
3150
3151 /*
3152 * This has to be done after removing the master from the
3153 * arm_smmu_domain->devices to avoid races updating the same context
3154 * descriptor from arm_smmu_share_asid().
3155 */
3156 arm_smmu_clear_cd(master, IOMMU_NO_PASID);
3157 }
3158
arm_smmu_attach_dev_identity(struct iommu_domain * domain,struct device * dev)3159 static int arm_smmu_attach_dev_identity(struct iommu_domain *domain,
3160 struct device *dev)
3161 {
3162 struct arm_smmu_ste ste;
3163 struct arm_smmu_master *master = dev_iommu_priv_get(dev);
3164
3165 arm_smmu_make_bypass_ste(master->smmu, &ste);
3166 arm_smmu_attach_dev_ste(domain, dev, &ste, STRTAB_STE_1_S1DSS_BYPASS);
3167 return 0;
3168 }
3169
3170 static const struct iommu_domain_ops arm_smmu_identity_ops = {
3171 .attach_dev = arm_smmu_attach_dev_identity,
3172 };
3173
3174 static struct iommu_domain arm_smmu_identity_domain = {
3175 .type = IOMMU_DOMAIN_IDENTITY,
3176 .ops = &arm_smmu_identity_ops,
3177 };
3178
arm_smmu_attach_dev_blocked(struct iommu_domain * domain,struct device * dev)3179 static int arm_smmu_attach_dev_blocked(struct iommu_domain *domain,
3180 struct device *dev)
3181 {
3182 struct arm_smmu_ste ste;
3183
3184 arm_smmu_make_abort_ste(&ste);
3185 arm_smmu_attach_dev_ste(domain, dev, &ste,
3186 STRTAB_STE_1_S1DSS_TERMINATE);
3187 return 0;
3188 }
3189
3190 static const struct iommu_domain_ops arm_smmu_blocked_ops = {
3191 .attach_dev = arm_smmu_attach_dev_blocked,
3192 .set_dev_pasid = arm_smmu_blocking_set_dev_pasid,
3193 };
3194
3195 static struct iommu_domain arm_smmu_blocked_domain = {
3196 .type = IOMMU_DOMAIN_BLOCKED,
3197 .ops = &arm_smmu_blocked_ops,
3198 };
3199
3200 static struct iommu_domain *
arm_smmu_domain_alloc_paging_flags(struct device * dev,u32 flags,const struct iommu_user_data * user_data)3201 arm_smmu_domain_alloc_paging_flags(struct device *dev, u32 flags,
3202 const struct iommu_user_data *user_data)
3203 {
3204 struct arm_smmu_master *master = dev_iommu_priv_get(dev);
3205 struct arm_smmu_device *smmu = master->smmu;
3206 const u32 PAGING_FLAGS = IOMMU_HWPT_ALLOC_DIRTY_TRACKING |
3207 IOMMU_HWPT_ALLOC_PASID |
3208 IOMMU_HWPT_ALLOC_NEST_PARENT;
3209 struct arm_smmu_domain *smmu_domain;
3210 int ret;
3211
3212 if (flags & ~PAGING_FLAGS)
3213 return ERR_PTR(-EOPNOTSUPP);
3214 if (user_data)
3215 return ERR_PTR(-EOPNOTSUPP);
3216
3217 smmu_domain = arm_smmu_domain_alloc();
3218 if (IS_ERR(smmu_domain))
3219 return ERR_CAST(smmu_domain);
3220
3221 switch (flags) {
3222 case 0:
3223 /* Prefer S1 if available */
3224 if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
3225 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
3226 else
3227 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
3228 break;
3229 case IOMMU_HWPT_ALLOC_NEST_PARENT:
3230 if (!(smmu->features & ARM_SMMU_FEAT_NESTING)) {
3231 ret = -EOPNOTSUPP;
3232 goto err_free;
3233 }
3234 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
3235 smmu_domain->nest_parent = true;
3236 break;
3237 case IOMMU_HWPT_ALLOC_DIRTY_TRACKING:
3238 case IOMMU_HWPT_ALLOC_DIRTY_TRACKING | IOMMU_HWPT_ALLOC_PASID:
3239 case IOMMU_HWPT_ALLOC_PASID:
3240 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1)) {
3241 ret = -EOPNOTSUPP;
3242 goto err_free;
3243 }
3244 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
3245 break;
3246 default:
3247 ret = -EOPNOTSUPP;
3248 goto err_free;
3249 }
3250
3251 smmu_domain->domain.type = IOMMU_DOMAIN_UNMANAGED;
3252 smmu_domain->domain.ops = arm_smmu_ops.default_domain_ops;
3253 ret = arm_smmu_domain_finalise(smmu_domain, smmu, flags);
3254 if (ret)
3255 goto err_free;
3256 return &smmu_domain->domain;
3257
3258 err_free:
3259 kfree(smmu_domain);
3260 return ERR_PTR(ret);
3261 }
3262
arm_smmu_map_pages(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t pgsize,size_t pgcount,int prot,gfp_t gfp,size_t * mapped)3263 static int arm_smmu_map_pages(struct iommu_domain *domain, unsigned long iova,
3264 phys_addr_t paddr, size_t pgsize, size_t pgcount,
3265 int prot, gfp_t gfp, size_t *mapped)
3266 {
3267 struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
3268
3269 if (!ops)
3270 return -ENODEV;
3271
3272 return ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot, gfp, mapped);
3273 }
3274
arm_smmu_unmap_pages(struct iommu_domain * domain,unsigned long iova,size_t pgsize,size_t pgcount,struct iommu_iotlb_gather * gather)3275 static size_t arm_smmu_unmap_pages(struct iommu_domain *domain, unsigned long iova,
3276 size_t pgsize, size_t pgcount,
3277 struct iommu_iotlb_gather *gather)
3278 {
3279 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
3280 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
3281
3282 if (!ops)
3283 return 0;
3284
3285 return ops->unmap_pages(ops, iova, pgsize, pgcount, gather);
3286 }
3287
arm_smmu_flush_iotlb_all(struct iommu_domain * domain)3288 static void arm_smmu_flush_iotlb_all(struct iommu_domain *domain)
3289 {
3290 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
3291
3292 if (smmu_domain->smmu)
3293 arm_smmu_tlb_inv_context(smmu_domain);
3294 }
3295
arm_smmu_iotlb_sync(struct iommu_domain * domain,struct iommu_iotlb_gather * gather)3296 static void arm_smmu_iotlb_sync(struct iommu_domain *domain,
3297 struct iommu_iotlb_gather *gather)
3298 {
3299 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
3300
3301 if (!gather->pgsize)
3302 return;
3303
3304 arm_smmu_tlb_inv_range_domain(gather->start,
3305 gather->end - gather->start + 1,
3306 gather->pgsize, true, smmu_domain);
3307 }
3308
3309 static phys_addr_t
arm_smmu_iova_to_phys(struct iommu_domain * domain,dma_addr_t iova)3310 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
3311 {
3312 struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
3313
3314 if (!ops)
3315 return 0;
3316
3317 return ops->iova_to_phys(ops, iova);
3318 }
3319
3320 static struct platform_driver arm_smmu_driver;
3321
3322 static
arm_smmu_get_by_fwnode(struct fwnode_handle * fwnode)3323 struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
3324 {
3325 struct device *dev = bus_find_device_by_fwnode(&platform_bus_type, fwnode);
3326
3327 put_device(dev);
3328 return dev ? dev_get_drvdata(dev) : NULL;
3329 }
3330
arm_smmu_sid_in_range(struct arm_smmu_device * smmu,u32 sid)3331 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
3332 {
3333 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
3334 return arm_smmu_strtab_l1_idx(sid) < smmu->strtab_cfg.l2.num_l1_ents;
3335 return sid < smmu->strtab_cfg.linear.num_ents;
3336 }
3337
arm_smmu_init_sid_strtab(struct arm_smmu_device * smmu,u32 sid)3338 static int arm_smmu_init_sid_strtab(struct arm_smmu_device *smmu, u32 sid)
3339 {
3340 /* Check the SIDs are in range of the SMMU and our stream table */
3341 if (!arm_smmu_sid_in_range(smmu, sid))
3342 return -ERANGE;
3343
3344 /* Ensure l2 strtab is initialised */
3345 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
3346 return arm_smmu_init_l2_strtab(smmu, sid);
3347
3348 return 0;
3349 }
3350
arm_smmu_insert_master(struct arm_smmu_device * smmu,struct arm_smmu_master * master)3351 static int arm_smmu_insert_master(struct arm_smmu_device *smmu,
3352 struct arm_smmu_master *master)
3353 {
3354 int i;
3355 int ret = 0;
3356 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(master->dev);
3357
3358 master->streams = kcalloc(fwspec->num_ids, sizeof(*master->streams),
3359 GFP_KERNEL);
3360 if (!master->streams)
3361 return -ENOMEM;
3362 master->num_streams = fwspec->num_ids;
3363
3364 mutex_lock(&smmu->streams_mutex);
3365 for (i = 0; i < fwspec->num_ids; i++) {
3366 struct arm_smmu_stream *new_stream = &master->streams[i];
3367 u32 sid = fwspec->ids[i];
3368
3369 new_stream->id = sid;
3370 new_stream->master = master;
3371
3372 ret = arm_smmu_init_sid_strtab(smmu, sid);
3373 if (ret)
3374 break;
3375
3376 /* Insert into SID tree */
3377 if (rb_find_add(&new_stream->node, &smmu->streams,
3378 arm_smmu_streams_cmp_node)) {
3379 dev_warn(master->dev, "stream %u already in tree\n",
3380 sid);
3381 ret = -EINVAL;
3382 break;
3383 }
3384 }
3385
3386 if (ret) {
3387 for (i--; i >= 0; i--)
3388 rb_erase(&master->streams[i].node, &smmu->streams);
3389 kfree(master->streams);
3390 }
3391 mutex_unlock(&smmu->streams_mutex);
3392
3393 return ret;
3394 }
3395
arm_smmu_remove_master(struct arm_smmu_master * master)3396 static void arm_smmu_remove_master(struct arm_smmu_master *master)
3397 {
3398 int i;
3399 struct arm_smmu_device *smmu = master->smmu;
3400 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(master->dev);
3401
3402 if (!smmu || !master->streams)
3403 return;
3404
3405 mutex_lock(&smmu->streams_mutex);
3406 for (i = 0; i < fwspec->num_ids; i++)
3407 rb_erase(&master->streams[i].node, &smmu->streams);
3408 mutex_unlock(&smmu->streams_mutex);
3409
3410 kfree(master->streams);
3411 }
3412
arm_smmu_probe_device(struct device * dev)3413 static struct iommu_device *arm_smmu_probe_device(struct device *dev)
3414 {
3415 int ret;
3416 struct arm_smmu_device *smmu;
3417 struct arm_smmu_master *master;
3418 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
3419
3420 if (WARN_ON_ONCE(dev_iommu_priv_get(dev)))
3421 return ERR_PTR(-EBUSY);
3422
3423 smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
3424 if (!smmu)
3425 return ERR_PTR(-ENODEV);
3426
3427 master = kzalloc(sizeof(*master), GFP_KERNEL);
3428 if (!master)
3429 return ERR_PTR(-ENOMEM);
3430
3431 master->dev = dev;
3432 master->smmu = smmu;
3433 dev_iommu_priv_set(dev, master);
3434
3435 ret = arm_smmu_insert_master(smmu, master);
3436 if (ret)
3437 goto err_free_master;
3438
3439 device_property_read_u32(dev, "pasid-num-bits", &master->ssid_bits);
3440 master->ssid_bits = min(smmu->ssid_bits, master->ssid_bits);
3441
3442 /*
3443 * Note that PASID must be enabled before, and disabled after ATS:
3444 * PCI Express Base 4.0r1.0 - 10.5.1.3 ATS Control Register
3445 *
3446 * Behavior is undefined if this bit is Set and the value of the PASID
3447 * Enable, Execute Requested Enable, or Privileged Mode Requested bits
3448 * are changed.
3449 */
3450 arm_smmu_enable_pasid(master);
3451
3452 if (!(smmu->features & ARM_SMMU_FEAT_2_LVL_CDTAB))
3453 master->ssid_bits = min_t(u8, master->ssid_bits,
3454 CTXDESC_LINEAR_CDMAX);
3455
3456 if ((smmu->features & ARM_SMMU_FEAT_STALLS &&
3457 device_property_read_bool(dev, "dma-can-stall")) ||
3458 smmu->features & ARM_SMMU_FEAT_STALL_FORCE)
3459 master->stall_enabled = true;
3460
3461 if (dev_is_pci(dev)) {
3462 unsigned int stu = __ffs(smmu->pgsize_bitmap);
3463
3464 pci_prepare_ats(to_pci_dev(dev), stu);
3465 }
3466
3467 return &smmu->iommu;
3468
3469 err_free_master:
3470 kfree(master);
3471 return ERR_PTR(ret);
3472 }
3473
arm_smmu_release_device(struct device * dev)3474 static void arm_smmu_release_device(struct device *dev)
3475 {
3476 struct arm_smmu_master *master = dev_iommu_priv_get(dev);
3477
3478 if (WARN_ON(arm_smmu_master_sva_enabled(master)))
3479 iopf_queue_remove_device(master->smmu->evtq.iopf, dev);
3480
3481 /* Put the STE back to what arm_smmu_init_strtab() sets */
3482 if (dev->iommu->require_direct)
3483 arm_smmu_attach_dev_identity(&arm_smmu_identity_domain, dev);
3484 else
3485 arm_smmu_attach_dev_blocked(&arm_smmu_blocked_domain, dev);
3486
3487 arm_smmu_disable_pasid(master);
3488 arm_smmu_remove_master(master);
3489 if (arm_smmu_cdtab_allocated(&master->cd_table))
3490 arm_smmu_free_cd_tables(master);
3491 kfree(master);
3492 }
3493
arm_smmu_read_and_clear_dirty(struct iommu_domain * domain,unsigned long iova,size_t size,unsigned long flags,struct iommu_dirty_bitmap * dirty)3494 static int arm_smmu_read_and_clear_dirty(struct iommu_domain *domain,
3495 unsigned long iova, size_t size,
3496 unsigned long flags,
3497 struct iommu_dirty_bitmap *dirty)
3498 {
3499 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
3500 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
3501
3502 return ops->read_and_clear_dirty(ops, iova, size, flags, dirty);
3503 }
3504
arm_smmu_set_dirty_tracking(struct iommu_domain * domain,bool enabled)3505 static int arm_smmu_set_dirty_tracking(struct iommu_domain *domain,
3506 bool enabled)
3507 {
3508 /*
3509 * Always enabled and the dirty bitmap is cleared prior to
3510 * set_dirty_tracking().
3511 */
3512 return 0;
3513 }
3514
arm_smmu_device_group(struct device * dev)3515 static struct iommu_group *arm_smmu_device_group(struct device *dev)
3516 {
3517 struct iommu_group *group;
3518
3519 /*
3520 * We don't support devices sharing stream IDs other than PCI RID
3521 * aliases, since the necessary ID-to-device lookup becomes rather
3522 * impractical given a potential sparse 32-bit stream ID space.
3523 */
3524 if (dev_is_pci(dev))
3525 group = pci_device_group(dev);
3526 else
3527 group = generic_device_group(dev);
3528
3529 return group;
3530 }
3531
arm_smmu_of_xlate(struct device * dev,const struct of_phandle_args * args)3532 static int arm_smmu_of_xlate(struct device *dev,
3533 const struct of_phandle_args *args)
3534 {
3535 return iommu_fwspec_add_ids(dev, args->args, 1);
3536 }
3537
arm_smmu_get_resv_regions(struct device * dev,struct list_head * head)3538 static void arm_smmu_get_resv_regions(struct device *dev,
3539 struct list_head *head)
3540 {
3541 struct iommu_resv_region *region;
3542 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
3543
3544 region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
3545 prot, IOMMU_RESV_SW_MSI, GFP_KERNEL);
3546 if (!region)
3547 return;
3548
3549 list_add_tail(®ion->list, head);
3550
3551 iommu_dma_get_resv_regions(dev, head);
3552 }
3553
arm_smmu_dev_enable_feature(struct device * dev,enum iommu_dev_features feat)3554 static int arm_smmu_dev_enable_feature(struct device *dev,
3555 enum iommu_dev_features feat)
3556 {
3557 struct arm_smmu_master *master = dev_iommu_priv_get(dev);
3558
3559 if (!master)
3560 return -ENODEV;
3561
3562 switch (feat) {
3563 case IOMMU_DEV_FEAT_IOPF:
3564 if (!arm_smmu_master_iopf_supported(master))
3565 return -EINVAL;
3566 if (master->iopf_enabled)
3567 return -EBUSY;
3568 master->iopf_enabled = true;
3569 return 0;
3570 case IOMMU_DEV_FEAT_SVA:
3571 if (!arm_smmu_master_sva_supported(master))
3572 return -EINVAL;
3573 if (arm_smmu_master_sva_enabled(master))
3574 return -EBUSY;
3575 return arm_smmu_master_enable_sva(master);
3576 default:
3577 return -EINVAL;
3578 }
3579 }
3580
arm_smmu_dev_disable_feature(struct device * dev,enum iommu_dev_features feat)3581 static int arm_smmu_dev_disable_feature(struct device *dev,
3582 enum iommu_dev_features feat)
3583 {
3584 struct arm_smmu_master *master = dev_iommu_priv_get(dev);
3585
3586 if (!master)
3587 return -EINVAL;
3588
3589 switch (feat) {
3590 case IOMMU_DEV_FEAT_IOPF:
3591 if (!master->iopf_enabled)
3592 return -EINVAL;
3593 if (master->sva_enabled)
3594 return -EBUSY;
3595 master->iopf_enabled = false;
3596 return 0;
3597 case IOMMU_DEV_FEAT_SVA:
3598 if (!arm_smmu_master_sva_enabled(master))
3599 return -EINVAL;
3600 return arm_smmu_master_disable_sva(master);
3601 default:
3602 return -EINVAL;
3603 }
3604 }
3605
3606 /*
3607 * HiSilicon PCIe tune and trace device can be used to trace TLP headers on the
3608 * PCIe link and save the data to memory by DMA. The hardware is restricted to
3609 * use identity mapping only.
3610 */
3611 #define IS_HISI_PTT_DEVICE(pdev) ((pdev)->vendor == PCI_VENDOR_ID_HUAWEI && \
3612 (pdev)->device == 0xa12e)
3613
arm_smmu_def_domain_type(struct device * dev)3614 static int arm_smmu_def_domain_type(struct device *dev)
3615 {
3616 if (dev_is_pci(dev)) {
3617 struct pci_dev *pdev = to_pci_dev(dev);
3618
3619 if (IS_HISI_PTT_DEVICE(pdev))
3620 return IOMMU_DOMAIN_IDENTITY;
3621 }
3622
3623 return 0;
3624 }
3625
3626 static struct iommu_ops arm_smmu_ops = {
3627 .identity_domain = &arm_smmu_identity_domain,
3628 .blocked_domain = &arm_smmu_blocked_domain,
3629 .capable = arm_smmu_capable,
3630 .hw_info = arm_smmu_hw_info,
3631 .domain_alloc_sva = arm_smmu_sva_domain_alloc,
3632 .domain_alloc_paging_flags = arm_smmu_domain_alloc_paging_flags,
3633 .probe_device = arm_smmu_probe_device,
3634 .release_device = arm_smmu_release_device,
3635 .device_group = arm_smmu_device_group,
3636 .of_xlate = arm_smmu_of_xlate,
3637 .get_resv_regions = arm_smmu_get_resv_regions,
3638 .dev_enable_feat = arm_smmu_dev_enable_feature,
3639 .dev_disable_feat = arm_smmu_dev_disable_feature,
3640 .page_response = arm_smmu_page_response,
3641 .def_domain_type = arm_smmu_def_domain_type,
3642 .viommu_alloc = arm_vsmmu_alloc,
3643 .user_pasid_table = 1,
3644 .pgsize_bitmap = -1UL, /* Restricted during device attach */
3645 .owner = THIS_MODULE,
3646 .default_domain_ops = &(const struct iommu_domain_ops) {
3647 .attach_dev = arm_smmu_attach_dev,
3648 .enforce_cache_coherency = arm_smmu_enforce_cache_coherency,
3649 .set_dev_pasid = arm_smmu_s1_set_dev_pasid,
3650 .map_pages = arm_smmu_map_pages,
3651 .unmap_pages = arm_smmu_unmap_pages,
3652 .flush_iotlb_all = arm_smmu_flush_iotlb_all,
3653 .iotlb_sync = arm_smmu_iotlb_sync,
3654 .iova_to_phys = arm_smmu_iova_to_phys,
3655 .free = arm_smmu_domain_free_paging,
3656 }
3657 };
3658
3659 static struct iommu_dirty_ops arm_smmu_dirty_ops = {
3660 .read_and_clear_dirty = arm_smmu_read_and_clear_dirty,
3661 .set_dirty_tracking = arm_smmu_set_dirty_tracking,
3662 };
3663
3664 /* Probing and initialisation functions */
arm_smmu_init_one_queue(struct arm_smmu_device * smmu,struct arm_smmu_queue * q,void __iomem * page,unsigned long prod_off,unsigned long cons_off,size_t dwords,const char * name)3665 int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
3666 struct arm_smmu_queue *q, void __iomem *page,
3667 unsigned long prod_off, unsigned long cons_off,
3668 size_t dwords, const char *name)
3669 {
3670 size_t qsz;
3671
3672 do {
3673 qsz = ((1 << q->llq.max_n_shift) * dwords) << 3;
3674 q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma,
3675 GFP_KERNEL);
3676 if (q->base || qsz < PAGE_SIZE)
3677 break;
3678
3679 q->llq.max_n_shift--;
3680 } while (1);
3681
3682 if (!q->base) {
3683 dev_err(smmu->dev,
3684 "failed to allocate queue (0x%zx bytes) for %s\n",
3685 qsz, name);
3686 return -ENOMEM;
3687 }
3688
3689 if (!WARN_ON(q->base_dma & (qsz - 1))) {
3690 dev_info(smmu->dev, "allocated %u entries for %s\n",
3691 1 << q->llq.max_n_shift, name);
3692 }
3693
3694 q->prod_reg = page + prod_off;
3695 q->cons_reg = page + cons_off;
3696 q->ent_dwords = dwords;
3697
3698 q->q_base = Q_BASE_RWA;
3699 q->q_base |= q->base_dma & Q_BASE_ADDR_MASK;
3700 q->q_base |= FIELD_PREP(Q_BASE_LOG2SIZE, q->llq.max_n_shift);
3701
3702 q->llq.prod = q->llq.cons = 0;
3703 return 0;
3704 }
3705
arm_smmu_cmdq_init(struct arm_smmu_device * smmu,struct arm_smmu_cmdq * cmdq)3706 int arm_smmu_cmdq_init(struct arm_smmu_device *smmu,
3707 struct arm_smmu_cmdq *cmdq)
3708 {
3709 unsigned int nents = 1 << cmdq->q.llq.max_n_shift;
3710
3711 atomic_set(&cmdq->owner_prod, 0);
3712 atomic_set(&cmdq->lock, 0);
3713
3714 cmdq->valid_map = (atomic_long_t *)devm_bitmap_zalloc(smmu->dev, nents,
3715 GFP_KERNEL);
3716 if (!cmdq->valid_map)
3717 return -ENOMEM;
3718
3719 return 0;
3720 }
3721
arm_smmu_init_queues(struct arm_smmu_device * smmu)3722 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
3723 {
3724 int ret;
3725
3726 /* cmdq */
3727 ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, smmu->base,
3728 ARM_SMMU_CMDQ_PROD, ARM_SMMU_CMDQ_CONS,
3729 CMDQ_ENT_DWORDS, "cmdq");
3730 if (ret)
3731 return ret;
3732
3733 ret = arm_smmu_cmdq_init(smmu, &smmu->cmdq);
3734 if (ret)
3735 return ret;
3736
3737 /* evtq */
3738 ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, smmu->page1,
3739 ARM_SMMU_EVTQ_PROD, ARM_SMMU_EVTQ_CONS,
3740 EVTQ_ENT_DWORDS, "evtq");
3741 if (ret)
3742 return ret;
3743
3744 if ((smmu->features & ARM_SMMU_FEAT_SVA) &&
3745 (smmu->features & ARM_SMMU_FEAT_STALLS)) {
3746 smmu->evtq.iopf = iopf_queue_alloc(dev_name(smmu->dev));
3747 if (!smmu->evtq.iopf)
3748 return -ENOMEM;
3749 }
3750
3751 /* priq */
3752 if (!(smmu->features & ARM_SMMU_FEAT_PRI))
3753 return 0;
3754
3755 return arm_smmu_init_one_queue(smmu, &smmu->priq.q, smmu->page1,
3756 ARM_SMMU_PRIQ_PROD, ARM_SMMU_PRIQ_CONS,
3757 PRIQ_ENT_DWORDS, "priq");
3758 }
3759
arm_smmu_init_strtab_2lvl(struct arm_smmu_device * smmu)3760 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
3761 {
3762 u32 l1size;
3763 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
3764 unsigned int last_sid_idx =
3765 arm_smmu_strtab_l1_idx((1ULL << smmu->sid_bits) - 1);
3766
3767 /* Calculate the L1 size, capped to the SIDSIZE. */
3768 cfg->l2.num_l1_ents = min(last_sid_idx + 1, STRTAB_MAX_L1_ENTRIES);
3769 if (cfg->l2.num_l1_ents <= last_sid_idx)
3770 dev_warn(smmu->dev,
3771 "2-level strtab only covers %u/%u bits of SID\n",
3772 ilog2(cfg->l2.num_l1_ents * STRTAB_NUM_L2_STES),
3773 smmu->sid_bits);
3774
3775 l1size = cfg->l2.num_l1_ents * sizeof(struct arm_smmu_strtab_l1);
3776 cfg->l2.l1tab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->l2.l1_dma,
3777 GFP_KERNEL);
3778 if (!cfg->l2.l1tab) {
3779 dev_err(smmu->dev,
3780 "failed to allocate l1 stream table (%u bytes)\n",
3781 l1size);
3782 return -ENOMEM;
3783 }
3784
3785 cfg->l2.l2ptrs = devm_kcalloc(smmu->dev, cfg->l2.num_l1_ents,
3786 sizeof(*cfg->l2.l2ptrs), GFP_KERNEL);
3787 if (!cfg->l2.l2ptrs)
3788 return -ENOMEM;
3789
3790 return 0;
3791 }
3792
arm_smmu_init_strtab_linear(struct arm_smmu_device * smmu)3793 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
3794 {
3795 u32 size;
3796 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
3797
3798 size = (1 << smmu->sid_bits) * sizeof(struct arm_smmu_ste);
3799 cfg->linear.table = dmam_alloc_coherent(smmu->dev, size,
3800 &cfg->linear.ste_dma,
3801 GFP_KERNEL);
3802 if (!cfg->linear.table) {
3803 dev_err(smmu->dev,
3804 "failed to allocate linear stream table (%u bytes)\n",
3805 size);
3806 return -ENOMEM;
3807 }
3808 cfg->linear.num_ents = 1 << smmu->sid_bits;
3809
3810 arm_smmu_init_initial_stes(cfg->linear.table, cfg->linear.num_ents);
3811 return 0;
3812 }
3813
arm_smmu_init_strtab(struct arm_smmu_device * smmu)3814 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
3815 {
3816 int ret;
3817
3818 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
3819 ret = arm_smmu_init_strtab_2lvl(smmu);
3820 else
3821 ret = arm_smmu_init_strtab_linear(smmu);
3822 if (ret)
3823 return ret;
3824
3825 ida_init(&smmu->vmid_map);
3826
3827 return 0;
3828 }
3829
arm_smmu_init_structures(struct arm_smmu_device * smmu)3830 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
3831 {
3832 int ret;
3833
3834 mutex_init(&smmu->streams_mutex);
3835 smmu->streams = RB_ROOT;
3836
3837 ret = arm_smmu_init_queues(smmu);
3838 if (ret)
3839 return ret;
3840
3841 ret = arm_smmu_init_strtab(smmu);
3842 if (ret)
3843 return ret;
3844
3845 if (smmu->impl_ops && smmu->impl_ops->init_structures)
3846 return smmu->impl_ops->init_structures(smmu);
3847
3848 return 0;
3849 }
3850
arm_smmu_write_reg_sync(struct arm_smmu_device * smmu,u32 val,unsigned int reg_off,unsigned int ack_off)3851 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
3852 unsigned int reg_off, unsigned int ack_off)
3853 {
3854 u32 reg;
3855
3856 writel_relaxed(val, smmu->base + reg_off);
3857 return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
3858 1, ARM_SMMU_POLL_TIMEOUT_US);
3859 }
3860
3861 /* GBPA is "special" */
arm_smmu_update_gbpa(struct arm_smmu_device * smmu,u32 set,u32 clr)3862 static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
3863 {
3864 int ret;
3865 u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;
3866
3867 ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
3868 1, ARM_SMMU_POLL_TIMEOUT_US);
3869 if (ret)
3870 return ret;
3871
3872 reg &= ~clr;
3873 reg |= set;
3874 writel_relaxed(reg | GBPA_UPDATE, gbpa);
3875 ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
3876 1, ARM_SMMU_POLL_TIMEOUT_US);
3877
3878 if (ret)
3879 dev_err(smmu->dev, "GBPA not responding to update\n");
3880 return ret;
3881 }
3882
arm_smmu_free_msis(void * data)3883 static void arm_smmu_free_msis(void *data)
3884 {
3885 struct device *dev = data;
3886
3887 platform_device_msi_free_irqs_all(dev);
3888 }
3889
arm_smmu_write_msi_msg(struct msi_desc * desc,struct msi_msg * msg)3890 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
3891 {
3892 phys_addr_t doorbell;
3893 struct device *dev = msi_desc_to_dev(desc);
3894 struct arm_smmu_device *smmu = dev_get_drvdata(dev);
3895 phys_addr_t *cfg = arm_smmu_msi_cfg[desc->msi_index];
3896
3897 doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
3898 doorbell &= MSI_CFG0_ADDR_MASK;
3899
3900 writeq_relaxed(doorbell, smmu->base + cfg[0]);
3901 writel_relaxed(msg->data, smmu->base + cfg[1]);
3902 writel_relaxed(ARM_SMMU_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
3903 }
3904
arm_smmu_setup_msis(struct arm_smmu_device * smmu)3905 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
3906 {
3907 int ret, nvec = ARM_SMMU_MAX_MSIS;
3908 struct device *dev = smmu->dev;
3909
3910 /* Clear the MSI address regs */
3911 writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
3912 writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
3913
3914 if (smmu->features & ARM_SMMU_FEAT_PRI)
3915 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
3916 else
3917 nvec--;
3918
3919 if (!(smmu->features & ARM_SMMU_FEAT_MSI))
3920 return;
3921
3922 if (!dev->msi.domain) {
3923 dev_info(smmu->dev, "msi_domain absent - falling back to wired irqs\n");
3924 return;
3925 }
3926
3927 /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
3928 ret = platform_device_msi_init_and_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
3929 if (ret) {
3930 dev_warn(dev, "failed to allocate MSIs - falling back to wired irqs\n");
3931 return;
3932 }
3933
3934 smmu->evtq.q.irq = msi_get_virq(dev, EVTQ_MSI_INDEX);
3935 smmu->gerr_irq = msi_get_virq(dev, GERROR_MSI_INDEX);
3936 smmu->priq.q.irq = msi_get_virq(dev, PRIQ_MSI_INDEX);
3937
3938 /* Add callback to free MSIs on teardown */
3939 devm_add_action_or_reset(dev, arm_smmu_free_msis, dev);
3940 }
3941
arm_smmu_setup_unique_irqs(struct arm_smmu_device * smmu)3942 static void arm_smmu_setup_unique_irqs(struct arm_smmu_device *smmu)
3943 {
3944 int irq, ret;
3945
3946 arm_smmu_setup_msis(smmu);
3947
3948 /* Request interrupt lines */
3949 irq = smmu->evtq.q.irq;
3950 if (irq) {
3951 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
3952 arm_smmu_evtq_thread,
3953 IRQF_ONESHOT,
3954 "arm-smmu-v3-evtq", smmu);
3955 if (ret < 0)
3956 dev_warn(smmu->dev, "failed to enable evtq irq\n");
3957 } else {
3958 dev_warn(smmu->dev, "no evtq irq - events will not be reported!\n");
3959 }
3960
3961 irq = smmu->gerr_irq;
3962 if (irq) {
3963 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
3964 0, "arm-smmu-v3-gerror", smmu);
3965 if (ret < 0)
3966 dev_warn(smmu->dev, "failed to enable gerror irq\n");
3967 } else {
3968 dev_warn(smmu->dev, "no gerr irq - errors will not be reported!\n");
3969 }
3970
3971 if (smmu->features & ARM_SMMU_FEAT_PRI) {
3972 irq = smmu->priq.q.irq;
3973 if (irq) {
3974 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
3975 arm_smmu_priq_thread,
3976 IRQF_ONESHOT,
3977 "arm-smmu-v3-priq",
3978 smmu);
3979 if (ret < 0)
3980 dev_warn(smmu->dev,
3981 "failed to enable priq irq\n");
3982 } else {
3983 dev_warn(smmu->dev, "no priq irq - PRI will be broken\n");
3984 }
3985 }
3986 }
3987
arm_smmu_setup_irqs(struct arm_smmu_device * smmu)3988 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
3989 {
3990 int ret, irq;
3991 u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
3992
3993 /* Disable IRQs first */
3994 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
3995 ARM_SMMU_IRQ_CTRLACK);
3996 if (ret) {
3997 dev_err(smmu->dev, "failed to disable irqs\n");
3998 return ret;
3999 }
4000
4001 irq = smmu->combined_irq;
4002 if (irq) {
4003 /*
4004 * Cavium ThunderX2 implementation doesn't support unique irq
4005 * lines. Use a single irq line for all the SMMUv3 interrupts.
4006 */
4007 ret = devm_request_threaded_irq(smmu->dev, irq,
4008 arm_smmu_combined_irq_handler,
4009 arm_smmu_combined_irq_thread,
4010 IRQF_ONESHOT,
4011 "arm-smmu-v3-combined-irq", smmu);
4012 if (ret < 0)
4013 dev_warn(smmu->dev, "failed to enable combined irq\n");
4014 } else
4015 arm_smmu_setup_unique_irqs(smmu);
4016
4017 if (smmu->features & ARM_SMMU_FEAT_PRI)
4018 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
4019
4020 /* Enable interrupt generation on the SMMU */
4021 ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
4022 ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
4023 if (ret)
4024 dev_warn(smmu->dev, "failed to enable irqs\n");
4025
4026 return 0;
4027 }
4028
arm_smmu_device_disable(struct arm_smmu_device * smmu)4029 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
4030 {
4031 int ret;
4032
4033 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
4034 if (ret)
4035 dev_err(smmu->dev, "failed to clear cr0\n");
4036
4037 return ret;
4038 }
4039
arm_smmu_write_strtab(struct arm_smmu_device * smmu)4040 static void arm_smmu_write_strtab(struct arm_smmu_device *smmu)
4041 {
4042 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
4043 dma_addr_t dma;
4044 u32 reg;
4045
4046 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
4047 reg = FIELD_PREP(STRTAB_BASE_CFG_FMT,
4048 STRTAB_BASE_CFG_FMT_2LVL) |
4049 FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE,
4050 ilog2(cfg->l2.num_l1_ents) + STRTAB_SPLIT) |
4051 FIELD_PREP(STRTAB_BASE_CFG_SPLIT, STRTAB_SPLIT);
4052 dma = cfg->l2.l1_dma;
4053 } else {
4054 reg = FIELD_PREP(STRTAB_BASE_CFG_FMT,
4055 STRTAB_BASE_CFG_FMT_LINEAR) |
4056 FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, smmu->sid_bits);
4057 dma = cfg->linear.ste_dma;
4058 }
4059 writeq_relaxed((dma & STRTAB_BASE_ADDR_MASK) | STRTAB_BASE_RA,
4060 smmu->base + ARM_SMMU_STRTAB_BASE);
4061 writel_relaxed(reg, smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
4062 }
4063
arm_smmu_device_reset(struct arm_smmu_device * smmu)4064 static int arm_smmu_device_reset(struct arm_smmu_device *smmu)
4065 {
4066 int ret;
4067 u32 reg, enables;
4068 struct arm_smmu_cmdq_ent cmd;
4069
4070 /* Clear CR0 and sync (disables SMMU and queue processing) */
4071 reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
4072 if (reg & CR0_SMMUEN) {
4073 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
4074 arm_smmu_update_gbpa(smmu, GBPA_ABORT, 0);
4075 }
4076
4077 ret = arm_smmu_device_disable(smmu);
4078 if (ret)
4079 return ret;
4080
4081 /* CR1 (table and queue memory attributes) */
4082 reg = FIELD_PREP(CR1_TABLE_SH, ARM_SMMU_SH_ISH) |
4083 FIELD_PREP(CR1_TABLE_OC, CR1_CACHE_WB) |
4084 FIELD_PREP(CR1_TABLE_IC, CR1_CACHE_WB) |
4085 FIELD_PREP(CR1_QUEUE_SH, ARM_SMMU_SH_ISH) |
4086 FIELD_PREP(CR1_QUEUE_OC, CR1_CACHE_WB) |
4087 FIELD_PREP(CR1_QUEUE_IC, CR1_CACHE_WB);
4088 writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
4089
4090 /* CR2 (random crap) */
4091 reg = CR2_PTM | CR2_RECINVSID;
4092
4093 if (smmu->features & ARM_SMMU_FEAT_E2H)
4094 reg |= CR2_E2H;
4095
4096 writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
4097
4098 /* Stream table */
4099 arm_smmu_write_strtab(smmu);
4100
4101 /* Command queue */
4102 writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
4103 writel_relaxed(smmu->cmdq.q.llq.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
4104 writel_relaxed(smmu->cmdq.q.llq.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
4105
4106 enables = CR0_CMDQEN;
4107 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
4108 ARM_SMMU_CR0ACK);
4109 if (ret) {
4110 dev_err(smmu->dev, "failed to enable command queue\n");
4111 return ret;
4112 }
4113
4114 /* Invalidate any cached configuration */
4115 cmd.opcode = CMDQ_OP_CFGI_ALL;
4116 arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd);
4117
4118 /* Invalidate any stale TLB entries */
4119 if (smmu->features & ARM_SMMU_FEAT_HYP) {
4120 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
4121 arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd);
4122 }
4123
4124 cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
4125 arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd);
4126
4127 /* Event queue */
4128 writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
4129 writel_relaxed(smmu->evtq.q.llq.prod, smmu->page1 + ARM_SMMU_EVTQ_PROD);
4130 writel_relaxed(smmu->evtq.q.llq.cons, smmu->page1 + ARM_SMMU_EVTQ_CONS);
4131
4132 enables |= CR0_EVTQEN;
4133 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
4134 ARM_SMMU_CR0ACK);
4135 if (ret) {
4136 dev_err(smmu->dev, "failed to enable event queue\n");
4137 return ret;
4138 }
4139
4140 /* PRI queue */
4141 if (smmu->features & ARM_SMMU_FEAT_PRI) {
4142 writeq_relaxed(smmu->priq.q.q_base,
4143 smmu->base + ARM_SMMU_PRIQ_BASE);
4144 writel_relaxed(smmu->priq.q.llq.prod,
4145 smmu->page1 + ARM_SMMU_PRIQ_PROD);
4146 writel_relaxed(smmu->priq.q.llq.cons,
4147 smmu->page1 + ARM_SMMU_PRIQ_CONS);
4148
4149 enables |= CR0_PRIQEN;
4150 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
4151 ARM_SMMU_CR0ACK);
4152 if (ret) {
4153 dev_err(smmu->dev, "failed to enable PRI queue\n");
4154 return ret;
4155 }
4156 }
4157
4158 if (smmu->features & ARM_SMMU_FEAT_ATS) {
4159 enables |= CR0_ATSCHK;
4160 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
4161 ARM_SMMU_CR0ACK);
4162 if (ret) {
4163 dev_err(smmu->dev, "failed to enable ATS check\n");
4164 return ret;
4165 }
4166 }
4167
4168 ret = arm_smmu_setup_irqs(smmu);
4169 if (ret) {
4170 dev_err(smmu->dev, "failed to setup irqs\n");
4171 return ret;
4172 }
4173
4174 if (is_kdump_kernel())
4175 enables &= ~(CR0_EVTQEN | CR0_PRIQEN);
4176
4177 /* Enable the SMMU interface */
4178 enables |= CR0_SMMUEN;
4179 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
4180 ARM_SMMU_CR0ACK);
4181 if (ret) {
4182 dev_err(smmu->dev, "failed to enable SMMU interface\n");
4183 return ret;
4184 }
4185
4186 if (smmu->impl_ops && smmu->impl_ops->device_reset) {
4187 ret = smmu->impl_ops->device_reset(smmu);
4188 if (ret) {
4189 dev_err(smmu->dev, "failed to reset impl\n");
4190 return ret;
4191 }
4192 }
4193
4194 return 0;
4195 }
4196
4197 #define IIDR_IMPLEMENTER_ARM 0x43b
4198 #define IIDR_PRODUCTID_ARM_MMU_600 0x483
4199 #define IIDR_PRODUCTID_ARM_MMU_700 0x487
4200
arm_smmu_device_iidr_probe(struct arm_smmu_device * smmu)4201 static void arm_smmu_device_iidr_probe(struct arm_smmu_device *smmu)
4202 {
4203 u32 reg;
4204 unsigned int implementer, productid, variant, revision;
4205
4206 reg = readl_relaxed(smmu->base + ARM_SMMU_IIDR);
4207 implementer = FIELD_GET(IIDR_IMPLEMENTER, reg);
4208 productid = FIELD_GET(IIDR_PRODUCTID, reg);
4209 variant = FIELD_GET(IIDR_VARIANT, reg);
4210 revision = FIELD_GET(IIDR_REVISION, reg);
4211
4212 switch (implementer) {
4213 case IIDR_IMPLEMENTER_ARM:
4214 switch (productid) {
4215 case IIDR_PRODUCTID_ARM_MMU_600:
4216 /* Arm erratum 1076982 */
4217 if (variant == 0 && revision <= 2)
4218 smmu->features &= ~ARM_SMMU_FEAT_SEV;
4219 /* Arm erratum 1209401 */
4220 if (variant < 2)
4221 smmu->features &= ~ARM_SMMU_FEAT_NESTING;
4222 break;
4223 case IIDR_PRODUCTID_ARM_MMU_700:
4224 /* Arm erratum 2812531 */
4225 smmu->features &= ~ARM_SMMU_FEAT_BTM;
4226 smmu->options |= ARM_SMMU_OPT_CMDQ_FORCE_SYNC;
4227 /* Arm errata 2268618, 2812531 */
4228 smmu->features &= ~ARM_SMMU_FEAT_NESTING;
4229 break;
4230 }
4231 break;
4232 }
4233 }
4234
arm_smmu_get_httu(struct arm_smmu_device * smmu,u32 reg)4235 static void arm_smmu_get_httu(struct arm_smmu_device *smmu, u32 reg)
4236 {
4237 u32 fw_features = smmu->features & (ARM_SMMU_FEAT_HA | ARM_SMMU_FEAT_HD);
4238 u32 hw_features = 0;
4239
4240 switch (FIELD_GET(IDR0_HTTU, reg)) {
4241 case IDR0_HTTU_ACCESS_DIRTY:
4242 hw_features |= ARM_SMMU_FEAT_HD;
4243 fallthrough;
4244 case IDR0_HTTU_ACCESS:
4245 hw_features |= ARM_SMMU_FEAT_HA;
4246 }
4247
4248 if (smmu->dev->of_node)
4249 smmu->features |= hw_features;
4250 else if (hw_features != fw_features)
4251 /* ACPI IORT sets the HTTU bits */
4252 dev_warn(smmu->dev,
4253 "IDR0.HTTU features(0x%x) overridden by FW configuration (0x%x)\n",
4254 hw_features, fw_features);
4255 }
4256
arm_smmu_device_hw_probe(struct arm_smmu_device * smmu)4257 static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu)
4258 {
4259 u32 reg;
4260 bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY;
4261
4262 /* IDR0 */
4263 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
4264
4265 /* 2-level structures */
4266 if (FIELD_GET(IDR0_ST_LVL, reg) == IDR0_ST_LVL_2LVL)
4267 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
4268
4269 if (reg & IDR0_CD2L)
4270 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
4271
4272 /*
4273 * Translation table endianness.
4274 * We currently require the same endianness as the CPU, but this
4275 * could be changed later by adding a new IO_PGTABLE_QUIRK.
4276 */
4277 switch (FIELD_GET(IDR0_TTENDIAN, reg)) {
4278 case IDR0_TTENDIAN_MIXED:
4279 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
4280 break;
4281 #ifdef __BIG_ENDIAN
4282 case IDR0_TTENDIAN_BE:
4283 smmu->features |= ARM_SMMU_FEAT_TT_BE;
4284 break;
4285 #else
4286 case IDR0_TTENDIAN_LE:
4287 smmu->features |= ARM_SMMU_FEAT_TT_LE;
4288 break;
4289 #endif
4290 default:
4291 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
4292 return -ENXIO;
4293 }
4294
4295 /* Boolean feature flags */
4296 if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
4297 smmu->features |= ARM_SMMU_FEAT_PRI;
4298
4299 if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
4300 smmu->features |= ARM_SMMU_FEAT_ATS;
4301
4302 if (reg & IDR0_SEV)
4303 smmu->features |= ARM_SMMU_FEAT_SEV;
4304
4305 if (reg & IDR0_MSI) {
4306 smmu->features |= ARM_SMMU_FEAT_MSI;
4307 if (coherent && !disable_msipolling)
4308 smmu->options |= ARM_SMMU_OPT_MSIPOLL;
4309 }
4310
4311 if (reg & IDR0_HYP) {
4312 smmu->features |= ARM_SMMU_FEAT_HYP;
4313 if (cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN))
4314 smmu->features |= ARM_SMMU_FEAT_E2H;
4315 }
4316
4317 arm_smmu_get_httu(smmu, reg);
4318
4319 /*
4320 * The coherency feature as set by FW is used in preference to the ID
4321 * register, but warn on mismatch.
4322 */
4323 if (!!(reg & IDR0_COHACC) != coherent)
4324 dev_warn(smmu->dev, "IDR0.COHACC overridden by FW configuration (%s)\n",
4325 str_true_false(coherent));
4326
4327 switch (FIELD_GET(IDR0_STALL_MODEL, reg)) {
4328 case IDR0_STALL_MODEL_FORCE:
4329 smmu->features |= ARM_SMMU_FEAT_STALL_FORCE;
4330 fallthrough;
4331 case IDR0_STALL_MODEL_STALL:
4332 smmu->features |= ARM_SMMU_FEAT_STALLS;
4333 }
4334
4335 if (reg & IDR0_S1P)
4336 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
4337
4338 if (reg & IDR0_S2P)
4339 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
4340
4341 if (!(reg & (IDR0_S1P | IDR0_S2P))) {
4342 dev_err(smmu->dev, "no translation support!\n");
4343 return -ENXIO;
4344 }
4345
4346 /* We only support the AArch64 table format at present */
4347 switch (FIELD_GET(IDR0_TTF, reg)) {
4348 case IDR0_TTF_AARCH32_64:
4349 smmu->ias = 40;
4350 fallthrough;
4351 case IDR0_TTF_AARCH64:
4352 break;
4353 default:
4354 dev_err(smmu->dev, "AArch64 table format not supported!\n");
4355 return -ENXIO;
4356 }
4357
4358 /* ASID/VMID sizes */
4359 smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
4360 smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
4361
4362 /* IDR1 */
4363 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
4364 if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
4365 dev_err(smmu->dev, "embedded implementation not supported\n");
4366 return -ENXIO;
4367 }
4368
4369 if (reg & IDR1_ATTR_TYPES_OVR)
4370 smmu->features |= ARM_SMMU_FEAT_ATTR_TYPES_OVR;
4371
4372 /* Queue sizes, capped to ensure natural alignment */
4373 smmu->cmdq.q.llq.max_n_shift = min_t(u32, CMDQ_MAX_SZ_SHIFT,
4374 FIELD_GET(IDR1_CMDQS, reg));
4375 if (smmu->cmdq.q.llq.max_n_shift <= ilog2(CMDQ_BATCH_ENTRIES)) {
4376 /*
4377 * We don't support splitting up batches, so one batch of
4378 * commands plus an extra sync needs to fit inside the command
4379 * queue. There's also no way we can handle the weird alignment
4380 * restrictions on the base pointer for a unit-length queue.
4381 */
4382 dev_err(smmu->dev, "command queue size <= %d entries not supported\n",
4383 CMDQ_BATCH_ENTRIES);
4384 return -ENXIO;
4385 }
4386
4387 smmu->evtq.q.llq.max_n_shift = min_t(u32, EVTQ_MAX_SZ_SHIFT,
4388 FIELD_GET(IDR1_EVTQS, reg));
4389 smmu->priq.q.llq.max_n_shift = min_t(u32, PRIQ_MAX_SZ_SHIFT,
4390 FIELD_GET(IDR1_PRIQS, reg));
4391
4392 /* SID/SSID sizes */
4393 smmu->ssid_bits = FIELD_GET(IDR1_SSIDSIZE, reg);
4394 smmu->sid_bits = FIELD_GET(IDR1_SIDSIZE, reg);
4395 smmu->iommu.max_pasids = 1UL << smmu->ssid_bits;
4396
4397 /*
4398 * If the SMMU supports fewer bits than would fill a single L2 stream
4399 * table, use a linear table instead.
4400 */
4401 if (smmu->sid_bits <= STRTAB_SPLIT)
4402 smmu->features &= ~ARM_SMMU_FEAT_2_LVL_STRTAB;
4403
4404 /* IDR3 */
4405 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR3);
4406 if (FIELD_GET(IDR3_RIL, reg))
4407 smmu->features |= ARM_SMMU_FEAT_RANGE_INV;
4408
4409 /* IDR5 */
4410 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
4411
4412 /* Maximum number of outstanding stalls */
4413 smmu->evtq.max_stalls = FIELD_GET(IDR5_STALL_MAX, reg);
4414
4415 /* Page sizes */
4416 if (reg & IDR5_GRAN64K)
4417 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
4418 if (reg & IDR5_GRAN16K)
4419 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
4420 if (reg & IDR5_GRAN4K)
4421 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
4422
4423 /* Input address size */
4424 if (FIELD_GET(IDR5_VAX, reg) == IDR5_VAX_52_BIT)
4425 smmu->features |= ARM_SMMU_FEAT_VAX;
4426
4427 /* Output address size */
4428 switch (FIELD_GET(IDR5_OAS, reg)) {
4429 case IDR5_OAS_32_BIT:
4430 smmu->oas = 32;
4431 break;
4432 case IDR5_OAS_36_BIT:
4433 smmu->oas = 36;
4434 break;
4435 case IDR5_OAS_40_BIT:
4436 smmu->oas = 40;
4437 break;
4438 case IDR5_OAS_42_BIT:
4439 smmu->oas = 42;
4440 break;
4441 case IDR5_OAS_44_BIT:
4442 smmu->oas = 44;
4443 break;
4444 case IDR5_OAS_52_BIT:
4445 smmu->oas = 52;
4446 smmu->pgsize_bitmap |= 1ULL << 42; /* 4TB */
4447 break;
4448 default:
4449 dev_info(smmu->dev,
4450 "unknown output address size. Truncating to 48-bit\n");
4451 fallthrough;
4452 case IDR5_OAS_48_BIT:
4453 smmu->oas = 48;
4454 }
4455
4456 if (arm_smmu_ops.pgsize_bitmap == -1UL)
4457 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
4458 else
4459 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
4460
4461 /* Set the DMA mask for our table walker */
4462 if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
4463 dev_warn(smmu->dev,
4464 "failed to set DMA mask for table walker\n");
4465
4466 smmu->ias = max(smmu->ias, smmu->oas);
4467
4468 if ((smmu->features & ARM_SMMU_FEAT_TRANS_S1) &&
4469 (smmu->features & ARM_SMMU_FEAT_TRANS_S2))
4470 smmu->features |= ARM_SMMU_FEAT_NESTING;
4471
4472 arm_smmu_device_iidr_probe(smmu);
4473
4474 if (arm_smmu_sva_supported(smmu))
4475 smmu->features |= ARM_SMMU_FEAT_SVA;
4476
4477 dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
4478 smmu->ias, smmu->oas, smmu->features);
4479 return 0;
4480 }
4481
4482 #ifdef CONFIG_ACPI
4483 #ifdef CONFIG_TEGRA241_CMDQV
acpi_smmu_dsdt_probe_tegra241_cmdqv(struct acpi_iort_node * node,struct arm_smmu_device * smmu)4484 static void acpi_smmu_dsdt_probe_tegra241_cmdqv(struct acpi_iort_node *node,
4485 struct arm_smmu_device *smmu)
4486 {
4487 const char *uid = kasprintf(GFP_KERNEL, "%u", node->identifier);
4488 struct acpi_device *adev;
4489
4490 /* Look for an NVDA200C node whose _UID matches the SMMU node ID */
4491 adev = acpi_dev_get_first_match_dev("NVDA200C", uid, -1);
4492 if (adev) {
4493 /* Tegra241 CMDQV driver is responsible for put_device() */
4494 smmu->impl_dev = &adev->dev;
4495 smmu->options |= ARM_SMMU_OPT_TEGRA241_CMDQV;
4496 dev_info(smmu->dev, "found companion CMDQV device: %s\n",
4497 dev_name(smmu->impl_dev));
4498 }
4499 kfree(uid);
4500 }
4501 #else
acpi_smmu_dsdt_probe_tegra241_cmdqv(struct acpi_iort_node * node,struct arm_smmu_device * smmu)4502 static void acpi_smmu_dsdt_probe_tegra241_cmdqv(struct acpi_iort_node *node,
4503 struct arm_smmu_device *smmu)
4504 {
4505 }
4506 #endif
4507
acpi_smmu_iort_probe_model(struct acpi_iort_node * node,struct arm_smmu_device * smmu)4508 static int acpi_smmu_iort_probe_model(struct acpi_iort_node *node,
4509 struct arm_smmu_device *smmu)
4510 {
4511 struct acpi_iort_smmu_v3 *iort_smmu =
4512 (struct acpi_iort_smmu_v3 *)node->node_data;
4513
4514 switch (iort_smmu->model) {
4515 case ACPI_IORT_SMMU_V3_CAVIUM_CN99XX:
4516 smmu->options |= ARM_SMMU_OPT_PAGE0_REGS_ONLY;
4517 break;
4518 case ACPI_IORT_SMMU_V3_HISILICON_HI161X:
4519 smmu->options |= ARM_SMMU_OPT_SKIP_PREFETCH;
4520 break;
4521 case ACPI_IORT_SMMU_V3_GENERIC:
4522 /*
4523 * Tegra241 implementation stores its SMMU options and impl_dev
4524 * in DSDT. Thus, go through the ACPI tables unconditionally.
4525 */
4526 acpi_smmu_dsdt_probe_tegra241_cmdqv(node, smmu);
4527 break;
4528 }
4529
4530 dev_notice(smmu->dev, "option mask 0x%x\n", smmu->options);
4531 return 0;
4532 }
4533
arm_smmu_device_acpi_probe(struct platform_device * pdev,struct arm_smmu_device * smmu)4534 static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
4535 struct arm_smmu_device *smmu)
4536 {
4537 struct acpi_iort_smmu_v3 *iort_smmu;
4538 struct device *dev = smmu->dev;
4539 struct acpi_iort_node *node;
4540
4541 node = *(struct acpi_iort_node **)dev_get_platdata(dev);
4542
4543 /* Retrieve SMMUv3 specific data */
4544 iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
4545
4546 if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE)
4547 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
4548
4549 switch (FIELD_GET(ACPI_IORT_SMMU_V3_HTTU_OVERRIDE, iort_smmu->flags)) {
4550 case IDR0_HTTU_ACCESS_DIRTY:
4551 smmu->features |= ARM_SMMU_FEAT_HD;
4552 fallthrough;
4553 case IDR0_HTTU_ACCESS:
4554 smmu->features |= ARM_SMMU_FEAT_HA;
4555 }
4556
4557 return acpi_smmu_iort_probe_model(node, smmu);
4558 }
4559 #else
arm_smmu_device_acpi_probe(struct platform_device * pdev,struct arm_smmu_device * smmu)4560 static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
4561 struct arm_smmu_device *smmu)
4562 {
4563 return -ENODEV;
4564 }
4565 #endif
4566
arm_smmu_device_dt_probe(struct platform_device * pdev,struct arm_smmu_device * smmu)4567 static int arm_smmu_device_dt_probe(struct platform_device *pdev,
4568 struct arm_smmu_device *smmu)
4569 {
4570 struct device *dev = &pdev->dev;
4571 u32 cells;
4572 int ret = -EINVAL;
4573
4574 if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
4575 dev_err(dev, "missing #iommu-cells property\n");
4576 else if (cells != 1)
4577 dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
4578 else
4579 ret = 0;
4580
4581 parse_driver_options(smmu);
4582
4583 if (of_dma_is_coherent(dev->of_node))
4584 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
4585
4586 return ret;
4587 }
4588
arm_smmu_resource_size(struct arm_smmu_device * smmu)4589 static unsigned long arm_smmu_resource_size(struct arm_smmu_device *smmu)
4590 {
4591 if (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY)
4592 return SZ_64K;
4593 else
4594 return SZ_128K;
4595 }
4596
arm_smmu_ioremap(struct device * dev,resource_size_t start,resource_size_t size)4597 static void __iomem *arm_smmu_ioremap(struct device *dev, resource_size_t start,
4598 resource_size_t size)
4599 {
4600 struct resource res = DEFINE_RES_MEM(start, size);
4601
4602 return devm_ioremap_resource(dev, &res);
4603 }
4604
arm_smmu_rmr_install_bypass_ste(struct arm_smmu_device * smmu)4605 static void arm_smmu_rmr_install_bypass_ste(struct arm_smmu_device *smmu)
4606 {
4607 struct list_head rmr_list;
4608 struct iommu_resv_region *e;
4609
4610 INIT_LIST_HEAD(&rmr_list);
4611 iort_get_rmr_sids(dev_fwnode(smmu->dev), &rmr_list);
4612
4613 list_for_each_entry(e, &rmr_list, list) {
4614 struct iommu_iort_rmr_data *rmr;
4615 int ret, i;
4616
4617 rmr = container_of(e, struct iommu_iort_rmr_data, rr);
4618 for (i = 0; i < rmr->num_sids; i++) {
4619 ret = arm_smmu_init_sid_strtab(smmu, rmr->sids[i]);
4620 if (ret) {
4621 dev_err(smmu->dev, "RMR SID(0x%x) bypass failed\n",
4622 rmr->sids[i]);
4623 continue;
4624 }
4625
4626 /*
4627 * STE table is not programmed to HW, see
4628 * arm_smmu_initial_bypass_stes()
4629 */
4630 arm_smmu_make_bypass_ste(smmu,
4631 arm_smmu_get_step_for_sid(smmu, rmr->sids[i]));
4632 }
4633 }
4634
4635 iort_put_rmr_sids(dev_fwnode(smmu->dev), &rmr_list);
4636 }
4637
arm_smmu_impl_remove(void * data)4638 static void arm_smmu_impl_remove(void *data)
4639 {
4640 struct arm_smmu_device *smmu = data;
4641
4642 if (smmu->impl_ops && smmu->impl_ops->device_remove)
4643 smmu->impl_ops->device_remove(smmu);
4644 }
4645
4646 /*
4647 * Probe all the compiled in implementations. Each one checks to see if it
4648 * matches this HW and if so returns a devm_krealloc'd arm_smmu_device which
4649 * replaces the callers. Otherwise the original is returned or ERR_PTR.
4650 */
arm_smmu_impl_probe(struct arm_smmu_device * smmu)4651 static struct arm_smmu_device *arm_smmu_impl_probe(struct arm_smmu_device *smmu)
4652 {
4653 struct arm_smmu_device *new_smmu = ERR_PTR(-ENODEV);
4654 int ret;
4655
4656 if (smmu->impl_dev && (smmu->options & ARM_SMMU_OPT_TEGRA241_CMDQV))
4657 new_smmu = tegra241_cmdqv_probe(smmu);
4658
4659 if (new_smmu == ERR_PTR(-ENODEV))
4660 return smmu;
4661 if (IS_ERR(new_smmu))
4662 return new_smmu;
4663
4664 ret = devm_add_action_or_reset(new_smmu->dev, arm_smmu_impl_remove,
4665 new_smmu);
4666 if (ret)
4667 return ERR_PTR(ret);
4668 return new_smmu;
4669 }
4670
arm_smmu_device_probe(struct platform_device * pdev)4671 static int arm_smmu_device_probe(struct platform_device *pdev)
4672 {
4673 int irq, ret;
4674 struct resource *res;
4675 resource_size_t ioaddr;
4676 struct arm_smmu_device *smmu;
4677 struct device *dev = &pdev->dev;
4678
4679 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
4680 if (!smmu)
4681 return -ENOMEM;
4682 smmu->dev = dev;
4683
4684 if (dev->of_node) {
4685 ret = arm_smmu_device_dt_probe(pdev, smmu);
4686 } else {
4687 ret = arm_smmu_device_acpi_probe(pdev, smmu);
4688 }
4689 if (ret)
4690 return ret;
4691
4692 smmu = arm_smmu_impl_probe(smmu);
4693 if (IS_ERR(smmu))
4694 return PTR_ERR(smmu);
4695
4696 /* Base address */
4697 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4698 if (!res)
4699 return -EINVAL;
4700 if (resource_size(res) < arm_smmu_resource_size(smmu)) {
4701 dev_err(dev, "MMIO region too small (%pr)\n", res);
4702 return -EINVAL;
4703 }
4704 ioaddr = res->start;
4705
4706 /*
4707 * Don't map the IMPLEMENTATION DEFINED regions, since they may contain
4708 * the PMCG registers which are reserved by the PMU driver.
4709 */
4710 smmu->base = arm_smmu_ioremap(dev, ioaddr, ARM_SMMU_REG_SZ);
4711 if (IS_ERR(smmu->base))
4712 return PTR_ERR(smmu->base);
4713
4714 if (arm_smmu_resource_size(smmu) > SZ_64K) {
4715 smmu->page1 = arm_smmu_ioremap(dev, ioaddr + SZ_64K,
4716 ARM_SMMU_REG_SZ);
4717 if (IS_ERR(smmu->page1))
4718 return PTR_ERR(smmu->page1);
4719 } else {
4720 smmu->page1 = smmu->base;
4721 }
4722
4723 /* Interrupt lines */
4724
4725 irq = platform_get_irq_byname_optional(pdev, "combined");
4726 if (irq > 0)
4727 smmu->combined_irq = irq;
4728 else {
4729 irq = platform_get_irq_byname_optional(pdev, "eventq");
4730 if (irq > 0)
4731 smmu->evtq.q.irq = irq;
4732
4733 irq = platform_get_irq_byname_optional(pdev, "priq");
4734 if (irq > 0)
4735 smmu->priq.q.irq = irq;
4736
4737 irq = platform_get_irq_byname_optional(pdev, "gerror");
4738 if (irq > 0)
4739 smmu->gerr_irq = irq;
4740 }
4741 /* Probe the h/w */
4742 ret = arm_smmu_device_hw_probe(smmu);
4743 if (ret)
4744 return ret;
4745
4746 /* Initialise in-memory data structures */
4747 ret = arm_smmu_init_structures(smmu);
4748 if (ret)
4749 goto err_free_iopf;
4750
4751 /* Record our private device structure */
4752 platform_set_drvdata(pdev, smmu);
4753
4754 /* Check for RMRs and install bypass STEs if any */
4755 arm_smmu_rmr_install_bypass_ste(smmu);
4756
4757 /* Reset the device */
4758 ret = arm_smmu_device_reset(smmu);
4759 if (ret)
4760 goto err_disable;
4761
4762 /* And we're up. Go go go! */
4763 ret = iommu_device_sysfs_add(&smmu->iommu, dev, NULL,
4764 "smmu3.%pa", &ioaddr);
4765 if (ret)
4766 goto err_disable;
4767
4768 ret = iommu_device_register(&smmu->iommu, &arm_smmu_ops, dev);
4769 if (ret) {
4770 dev_err(dev, "Failed to register iommu\n");
4771 goto err_free_sysfs;
4772 }
4773
4774 return 0;
4775
4776 err_free_sysfs:
4777 iommu_device_sysfs_remove(&smmu->iommu);
4778 err_disable:
4779 arm_smmu_device_disable(smmu);
4780 err_free_iopf:
4781 iopf_queue_free(smmu->evtq.iopf);
4782 return ret;
4783 }
4784
arm_smmu_device_remove(struct platform_device * pdev)4785 static void arm_smmu_device_remove(struct platform_device *pdev)
4786 {
4787 struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
4788
4789 iommu_device_unregister(&smmu->iommu);
4790 iommu_device_sysfs_remove(&smmu->iommu);
4791 arm_smmu_device_disable(smmu);
4792 iopf_queue_free(smmu->evtq.iopf);
4793 ida_destroy(&smmu->vmid_map);
4794 }
4795
arm_smmu_device_shutdown(struct platform_device * pdev)4796 static void arm_smmu_device_shutdown(struct platform_device *pdev)
4797 {
4798 struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
4799
4800 arm_smmu_device_disable(smmu);
4801 }
4802
4803 static const struct of_device_id arm_smmu_of_match[] = {
4804 { .compatible = "arm,smmu-v3", },
4805 { },
4806 };
4807 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
4808
arm_smmu_driver_unregister(struct platform_driver * drv)4809 static void arm_smmu_driver_unregister(struct platform_driver *drv)
4810 {
4811 arm_smmu_sva_notifier_synchronize();
4812 platform_driver_unregister(drv);
4813 }
4814
4815 static struct platform_driver arm_smmu_driver = {
4816 .driver = {
4817 .name = "arm-smmu-v3",
4818 .of_match_table = arm_smmu_of_match,
4819 .suppress_bind_attrs = true,
4820 },
4821 .probe = arm_smmu_device_probe,
4822 .remove = arm_smmu_device_remove,
4823 .shutdown = arm_smmu_device_shutdown,
4824 };
4825 module_driver(arm_smmu_driver, platform_driver_register,
4826 arm_smmu_driver_unregister);
4827
4828 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
4829 MODULE_AUTHOR("Will Deacon <will@kernel.org>");
4830 MODULE_ALIAS("platform:arm-smmu-v3");
4831 MODULE_LICENSE("GPL v2");
4832