xref: /linux/kernel/events/core.c (revision 4d84667627c4ff70826b349c449bbaf63b9af4e5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Linutronix GmbH, Thomas Gleixner <tglx@kernel.org>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58 #include <linux/percpu-rwsem.h>
59 #include <linux/unwind_deferred.h>
60 #include <linux/kvm_types.h>
61 
62 #include "internal.h"
63 
64 #include <asm/irq_regs.h>
65 
66 typedef int (*remote_function_f)(void *);
67 
68 struct remote_function_call {
69 	struct task_struct	*p;
70 	remote_function_f	func;
71 	void			*info;
72 	int			ret;
73 };
74 
75 static void remote_function(void *data)
76 {
77 	struct remote_function_call *tfc = data;
78 	struct task_struct *p = tfc->p;
79 
80 	if (p) {
81 		/* -EAGAIN */
82 		if (task_cpu(p) != smp_processor_id())
83 			return;
84 
85 		/*
86 		 * Now that we're on right CPU with IRQs disabled, we can test
87 		 * if we hit the right task without races.
88 		 */
89 
90 		tfc->ret = -ESRCH; /* No such (running) process */
91 		if (p != current)
92 			return;
93 	}
94 
95 	tfc->ret = tfc->func(tfc->info);
96 }
97 
98 /**
99  * task_function_call - call a function on the cpu on which a task runs
100  * @p:		the task to evaluate
101  * @func:	the function to be called
102  * @info:	the function call argument
103  *
104  * Calls the function @func when the task is currently running. This might
105  * be on the current CPU, which just calls the function directly.  This will
106  * retry due to any failures in smp_call_function_single(), such as if the
107  * task_cpu() goes offline concurrently.
108  *
109  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
110  */
111 static int
112 task_function_call(struct task_struct *p, remote_function_f func, void *info)
113 {
114 	struct remote_function_call data = {
115 		.p	= p,
116 		.func	= func,
117 		.info	= info,
118 		.ret	= -EAGAIN,
119 	};
120 	int ret;
121 
122 	for (;;) {
123 		ret = smp_call_function_single(task_cpu(p), remote_function,
124 					       &data, 1);
125 		if (!ret)
126 			ret = data.ret;
127 
128 		if (ret != -EAGAIN)
129 			break;
130 
131 		cond_resched();
132 	}
133 
134 	return ret;
135 }
136 
137 /**
138  * cpu_function_call - call a function on the cpu
139  * @cpu:	target cpu to queue this function
140  * @func:	the function to be called
141  * @info:	the function call argument
142  *
143  * Calls the function @func on the remote cpu.
144  *
145  * returns: @func return value or -ENXIO when the cpu is offline
146  */
147 static int cpu_function_call(int cpu, remote_function_f func, void *info)
148 {
149 	struct remote_function_call data = {
150 		.p	= NULL,
151 		.func	= func,
152 		.info	= info,
153 		.ret	= -ENXIO, /* No such CPU */
154 	};
155 
156 	smp_call_function_single(cpu, remote_function, &data, 1);
157 
158 	return data.ret;
159 }
160 
161 enum event_type_t {
162 	EVENT_FLEXIBLE	= 0x01,
163 	EVENT_PINNED	= 0x02,
164 	EVENT_TIME	= 0x04,
165 	EVENT_FROZEN	= 0x08,
166 	/* see ctx_resched() for details */
167 	EVENT_CPU	= 0x10,
168 	EVENT_CGROUP	= 0x20,
169 
170 	/*
171 	 * EVENT_GUEST is set when scheduling in/out events between the host
172 	 * and a guest with a mediated vPMU.  Among other things, EVENT_GUEST
173 	 * is used:
174 	 *
175 	 * - In for_each_epc() to skip PMUs that don't support events in a
176 	 *   MEDIATED_VPMU guest, i.e. don't need to be context switched.
177 	 * - To indicate the start/end point of the events in a guest.  Guest
178 	 *   running time is deducted for host-only (exclude_guest) events.
179 	 */
180 	EVENT_GUEST	= 0x40,
181 	EVENT_FLAGS	= EVENT_CGROUP | EVENT_GUEST,
182 	/* compound helpers */
183 	EVENT_ALL         = EVENT_FLEXIBLE | EVENT_PINNED,
184 	EVENT_TIME_FROZEN = EVENT_TIME | EVENT_FROZEN,
185 };
186 
187 static inline void __perf_ctx_lock(struct perf_event_context *ctx)
188 {
189 	raw_spin_lock(&ctx->lock);
190 	WARN_ON_ONCE(ctx->is_active & EVENT_FROZEN);
191 }
192 
193 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
194 			  struct perf_event_context *ctx)
195 {
196 	__perf_ctx_lock(&cpuctx->ctx);
197 	if (ctx)
198 		__perf_ctx_lock(ctx);
199 }
200 
201 static inline void __perf_ctx_unlock(struct perf_event_context *ctx)
202 {
203 	/*
204 	 * If ctx_sched_in() didn't again set any ALL flags, clean up
205 	 * after ctx_sched_out() by clearing is_active.
206 	 */
207 	if (ctx->is_active & EVENT_FROZEN) {
208 		if (!(ctx->is_active & EVENT_ALL))
209 			ctx->is_active = 0;
210 		else
211 			ctx->is_active &= ~EVENT_FROZEN;
212 	}
213 	raw_spin_unlock(&ctx->lock);
214 }
215 
216 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
217 			    struct perf_event_context *ctx)
218 {
219 	if (ctx)
220 		__perf_ctx_unlock(ctx);
221 	__perf_ctx_unlock(&cpuctx->ctx);
222 }
223 
224 typedef struct {
225 	struct perf_cpu_context *cpuctx;
226 	struct perf_event_context *ctx;
227 } class_perf_ctx_lock_t;
228 
229 static inline void class_perf_ctx_lock_destructor(class_perf_ctx_lock_t *_T)
230 { perf_ctx_unlock(_T->cpuctx, _T->ctx); }
231 
232 static inline class_perf_ctx_lock_t
233 class_perf_ctx_lock_constructor(struct perf_cpu_context *cpuctx,
234 				struct perf_event_context *ctx)
235 { perf_ctx_lock(cpuctx, ctx); return (class_perf_ctx_lock_t){ cpuctx, ctx }; }
236 
237 #define TASK_TOMBSTONE ((void *)-1L)
238 
239 static bool is_kernel_event(struct perf_event *event)
240 {
241 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
242 }
243 
244 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
245 
246 struct perf_event_context *perf_cpu_task_ctx(void)
247 {
248 	lockdep_assert_irqs_disabled();
249 	return this_cpu_ptr(&perf_cpu_context)->task_ctx;
250 }
251 
252 /*
253  * On task ctx scheduling...
254  *
255  * When !ctx->nr_events a task context will not be scheduled. This means
256  * we can disable the scheduler hooks (for performance) without leaving
257  * pending task ctx state.
258  *
259  * This however results in two special cases:
260  *
261  *  - removing the last event from a task ctx; this is relatively straight
262  *    forward and is done in __perf_remove_from_context.
263  *
264  *  - adding the first event to a task ctx; this is tricky because we cannot
265  *    rely on ctx->is_active and therefore cannot use event_function_call().
266  *    See perf_install_in_context().
267  *
268  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
269  */
270 
271 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
272 			struct perf_event_context *, void *);
273 
274 struct event_function_struct {
275 	struct perf_event *event;
276 	event_f func;
277 	void *data;
278 };
279 
280 static int event_function(void *info)
281 {
282 	struct event_function_struct *efs = info;
283 	struct perf_event *event = efs->event;
284 	struct perf_event_context *ctx = event->ctx;
285 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
286 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
287 	int ret = 0;
288 
289 	lockdep_assert_irqs_disabled();
290 
291 	perf_ctx_lock(cpuctx, task_ctx);
292 	/*
293 	 * Since we do the IPI call without holding ctx->lock things can have
294 	 * changed, double check we hit the task we set out to hit.
295 	 */
296 	if (ctx->task) {
297 		if (ctx->task != current) {
298 			ret = -ESRCH;
299 			goto unlock;
300 		}
301 
302 		/*
303 		 * We only use event_function_call() on established contexts,
304 		 * and event_function() is only ever called when active (or
305 		 * rather, we'll have bailed in task_function_call() or the
306 		 * above ctx->task != current test), therefore we must have
307 		 * ctx->is_active here.
308 		 */
309 		WARN_ON_ONCE(!ctx->is_active);
310 		/*
311 		 * And since we have ctx->is_active, cpuctx->task_ctx must
312 		 * match.
313 		 */
314 		WARN_ON_ONCE(task_ctx != ctx);
315 	} else {
316 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
317 	}
318 
319 	efs->func(event, cpuctx, ctx, efs->data);
320 unlock:
321 	perf_ctx_unlock(cpuctx, task_ctx);
322 
323 	return ret;
324 }
325 
326 static void event_function_call(struct perf_event *event, event_f func, void *data)
327 {
328 	struct perf_event_context *ctx = event->ctx;
329 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
330 	struct perf_cpu_context *cpuctx;
331 	struct event_function_struct efs = {
332 		.event = event,
333 		.func = func,
334 		.data = data,
335 	};
336 
337 	if (!event->parent) {
338 		/*
339 		 * If this is a !child event, we must hold ctx::mutex to
340 		 * stabilize the event->ctx relation. See
341 		 * perf_event_ctx_lock().
342 		 */
343 		lockdep_assert_held(&ctx->mutex);
344 	}
345 
346 	if (!task) {
347 		cpu_function_call(event->cpu, event_function, &efs);
348 		return;
349 	}
350 
351 	if (task == TASK_TOMBSTONE)
352 		return;
353 
354 again:
355 	if (!task_function_call(task, event_function, &efs))
356 		return;
357 
358 	local_irq_disable();
359 	cpuctx = this_cpu_ptr(&perf_cpu_context);
360 	perf_ctx_lock(cpuctx, ctx);
361 	/*
362 	 * Reload the task pointer, it might have been changed by
363 	 * a concurrent perf_event_context_sched_out().
364 	 */
365 	task = ctx->task;
366 	if (task == TASK_TOMBSTONE)
367 		goto unlock;
368 	if (ctx->is_active) {
369 		perf_ctx_unlock(cpuctx, ctx);
370 		local_irq_enable();
371 		goto again;
372 	}
373 	func(event, NULL, ctx, data);
374 unlock:
375 	perf_ctx_unlock(cpuctx, ctx);
376 	local_irq_enable();
377 }
378 
379 /*
380  * Similar to event_function_call() + event_function(), but hard assumes IRQs
381  * are already disabled and we're on the right CPU.
382  */
383 static void event_function_local(struct perf_event *event, event_f func, void *data)
384 {
385 	struct perf_event_context *ctx = event->ctx;
386 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
387 	struct task_struct *task = READ_ONCE(ctx->task);
388 	struct perf_event_context *task_ctx = NULL;
389 
390 	lockdep_assert_irqs_disabled();
391 
392 	if (task) {
393 		if (task == TASK_TOMBSTONE)
394 			return;
395 
396 		task_ctx = ctx;
397 	}
398 
399 	perf_ctx_lock(cpuctx, task_ctx);
400 
401 	task = ctx->task;
402 	if (task == TASK_TOMBSTONE)
403 		goto unlock;
404 
405 	if (task) {
406 		/*
407 		 * We must be either inactive or active and the right task,
408 		 * otherwise we're screwed, since we cannot IPI to somewhere
409 		 * else.
410 		 */
411 		if (ctx->is_active) {
412 			if (WARN_ON_ONCE(task != current))
413 				goto unlock;
414 
415 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
416 				goto unlock;
417 		}
418 	} else {
419 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
420 	}
421 
422 	func(event, cpuctx, ctx, data);
423 unlock:
424 	perf_ctx_unlock(cpuctx, task_ctx);
425 }
426 
427 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
428 		       PERF_FLAG_FD_OUTPUT  |\
429 		       PERF_FLAG_PID_CGROUP |\
430 		       PERF_FLAG_FD_CLOEXEC)
431 
432 /*
433  * branch priv levels that need permission checks
434  */
435 #define PERF_SAMPLE_BRANCH_PERM_PLM \
436 	(PERF_SAMPLE_BRANCH_KERNEL |\
437 	 PERF_SAMPLE_BRANCH_HV)
438 
439 /*
440  * perf_sched_events : >0 events exist
441  */
442 
443 static void perf_sched_delayed(struct work_struct *work);
444 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
445 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
446 static DEFINE_MUTEX(perf_sched_mutex);
447 static atomic_t perf_sched_count;
448 
449 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
450 
451 static atomic_t nr_mmap_events __read_mostly;
452 static atomic_t nr_comm_events __read_mostly;
453 static atomic_t nr_namespaces_events __read_mostly;
454 static atomic_t nr_task_events __read_mostly;
455 static atomic_t nr_freq_events __read_mostly;
456 static atomic_t nr_switch_events __read_mostly;
457 static atomic_t nr_ksymbol_events __read_mostly;
458 static atomic_t nr_bpf_events __read_mostly;
459 static atomic_t nr_cgroup_events __read_mostly;
460 static atomic_t nr_text_poke_events __read_mostly;
461 static atomic_t nr_build_id_events __read_mostly;
462 
463 static LIST_HEAD(pmus);
464 static DEFINE_MUTEX(pmus_lock);
465 static struct srcu_struct pmus_srcu;
466 static cpumask_var_t perf_online_mask;
467 static cpumask_var_t perf_online_core_mask;
468 static cpumask_var_t perf_online_die_mask;
469 static cpumask_var_t perf_online_cluster_mask;
470 static cpumask_var_t perf_online_pkg_mask;
471 static cpumask_var_t perf_online_sys_mask;
472 static struct kmem_cache *perf_event_cache;
473 
474 #ifdef CONFIG_PERF_GUEST_MEDIATED_PMU
475 static DEFINE_PER_CPU(bool, guest_ctx_loaded);
476 
477 static __always_inline bool is_guest_mediated_pmu_loaded(void)
478 {
479 	return __this_cpu_read(guest_ctx_loaded);
480 }
481 #else
482 static __always_inline bool is_guest_mediated_pmu_loaded(void)
483 {
484 	return false;
485 }
486 #endif
487 
488 /*
489  * perf event paranoia level:
490  *  -1 - not paranoid at all
491  *   0 - disallow raw tracepoint access for unpriv
492  *   1 - disallow cpu events for unpriv
493  *   2 - disallow kernel profiling for unpriv
494  */
495 int sysctl_perf_event_paranoid __read_mostly = 2;
496 
497 /* Minimum for 512 kiB + 1 user control page. 'free' kiB per user. */
498 static int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024);
499 
500 /*
501  * max perf event sample rate
502  */
503 #define DEFAULT_MAX_SAMPLE_RATE		100000
504 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
505 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
506 
507 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
508 static int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
509 
510 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
511 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
512 
513 static int perf_sample_allowed_ns __read_mostly =
514 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
515 
516 static void update_perf_cpu_limits(void)
517 {
518 	u64 tmp = perf_sample_period_ns;
519 
520 	tmp *= sysctl_perf_cpu_time_max_percent;
521 	tmp = div_u64(tmp, 100);
522 	if (!tmp)
523 		tmp = 1;
524 
525 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
526 }
527 
528 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
529 
530 static int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write,
531 				       void *buffer, size_t *lenp, loff_t *ppos)
532 {
533 	int ret;
534 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
535 	/*
536 	 * If throttling is disabled don't allow the write:
537 	 */
538 	if (write && (perf_cpu == 100 || perf_cpu == 0))
539 		return -EINVAL;
540 
541 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
542 	if (ret || !write)
543 		return ret;
544 
545 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
546 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547 	update_perf_cpu_limits();
548 
549 	return 0;
550 }
551 
552 static int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write,
553 		void *buffer, size_t *lenp, loff_t *ppos)
554 {
555 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
556 
557 	if (ret || !write)
558 		return ret;
559 
560 	if (sysctl_perf_cpu_time_max_percent == 100 ||
561 	    sysctl_perf_cpu_time_max_percent == 0) {
562 		printk(KERN_WARNING
563 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
564 		WRITE_ONCE(perf_sample_allowed_ns, 0);
565 	} else {
566 		update_perf_cpu_limits();
567 	}
568 
569 	return 0;
570 }
571 
572 static const struct ctl_table events_core_sysctl_table[] = {
573 	/*
574 	 * User-space relies on this file as a feature check for
575 	 * perf_events being enabled. It's an ABI, do not remove!
576 	 */
577 	{
578 		.procname	= "perf_event_paranoid",
579 		.data		= &sysctl_perf_event_paranoid,
580 		.maxlen		= sizeof(sysctl_perf_event_paranoid),
581 		.mode		= 0644,
582 		.proc_handler	= proc_dointvec,
583 	},
584 	{
585 		.procname	= "perf_event_mlock_kb",
586 		.data		= &sysctl_perf_event_mlock,
587 		.maxlen		= sizeof(sysctl_perf_event_mlock),
588 		.mode		= 0644,
589 		.proc_handler	= proc_dointvec,
590 	},
591 	{
592 		.procname	= "perf_event_max_sample_rate",
593 		.data		= &sysctl_perf_event_sample_rate,
594 		.maxlen		= sizeof(sysctl_perf_event_sample_rate),
595 		.mode		= 0644,
596 		.proc_handler	= perf_event_max_sample_rate_handler,
597 		.extra1		= SYSCTL_ONE,
598 	},
599 	{
600 		.procname	= "perf_cpu_time_max_percent",
601 		.data		= &sysctl_perf_cpu_time_max_percent,
602 		.maxlen		= sizeof(sysctl_perf_cpu_time_max_percent),
603 		.mode		= 0644,
604 		.proc_handler	= perf_cpu_time_max_percent_handler,
605 		.extra1		= SYSCTL_ZERO,
606 		.extra2		= SYSCTL_ONE_HUNDRED,
607 	},
608 };
609 
610 static int __init init_events_core_sysctls(void)
611 {
612 	register_sysctl_init("kernel", events_core_sysctl_table);
613 	return 0;
614 }
615 core_initcall(init_events_core_sysctls);
616 
617 
618 /*
619  * perf samples are done in some very critical code paths (NMIs).
620  * If they take too much CPU time, the system can lock up and not
621  * get any real work done.  This will drop the sample rate when
622  * we detect that events are taking too long.
623  */
624 #define NR_ACCUMULATED_SAMPLES 128
625 static DEFINE_PER_CPU(u64, running_sample_length);
626 
627 static u64 __report_avg;
628 static u64 __report_allowed;
629 
630 static void perf_duration_warn(struct irq_work *w)
631 {
632 	printk_ratelimited(KERN_INFO
633 		"perf: interrupt took too long (%lld > %lld), lowering "
634 		"kernel.perf_event_max_sample_rate to %d\n",
635 		__report_avg, __report_allowed,
636 		sysctl_perf_event_sample_rate);
637 }
638 
639 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
640 
641 void perf_sample_event_took(u64 sample_len_ns)
642 {
643 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
644 	u64 running_len;
645 	u64 avg_len;
646 	u32 max;
647 
648 	if (max_len == 0)
649 		return;
650 
651 	/* Decay the counter by 1 average sample. */
652 	running_len = __this_cpu_read(running_sample_length);
653 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
654 	running_len += sample_len_ns;
655 	__this_cpu_write(running_sample_length, running_len);
656 
657 	/*
658 	 * Note: this will be biased artificially low until we have
659 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
660 	 * from having to maintain a count.
661 	 */
662 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
663 	if (avg_len <= max_len)
664 		return;
665 
666 	__report_avg = avg_len;
667 	__report_allowed = max_len;
668 
669 	/*
670 	 * Compute a throttle threshold 25% below the current duration.
671 	 */
672 	avg_len += avg_len / 4;
673 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
674 	if (avg_len < max)
675 		max /= (u32)avg_len;
676 	else
677 		max = 1;
678 
679 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
680 	WRITE_ONCE(max_samples_per_tick, max);
681 
682 	sysctl_perf_event_sample_rate = max * HZ;
683 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
684 
685 	if (!irq_work_queue(&perf_duration_work)) {
686 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
687 			     "kernel.perf_event_max_sample_rate to %d\n",
688 			     __report_avg, __report_allowed,
689 			     sysctl_perf_event_sample_rate);
690 	}
691 }
692 
693 static atomic64_t perf_event_id;
694 
695 static void update_context_time(struct perf_event_context *ctx);
696 static u64 perf_event_time(struct perf_event *event);
697 
698 void __weak perf_event_print_debug(void)	{ }
699 
700 static inline u64 perf_clock(void)
701 {
702 	return local_clock();
703 }
704 
705 static inline u64 perf_event_clock(struct perf_event *event)
706 {
707 	return event->clock();
708 }
709 
710 /*
711  * State based event timekeeping...
712  *
713  * The basic idea is to use event->state to determine which (if any) time
714  * fields to increment with the current delta. This means we only need to
715  * update timestamps when we change state or when they are explicitly requested
716  * (read).
717  *
718  * Event groups make things a little more complicated, but not terribly so. The
719  * rules for a group are that if the group leader is OFF the entire group is
720  * OFF, irrespective of what the group member states are. This results in
721  * __perf_effective_state().
722  *
723  * A further ramification is that when a group leader flips between OFF and
724  * !OFF, we need to update all group member times.
725  *
726  *
727  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
728  * need to make sure the relevant context time is updated before we try and
729  * update our timestamps.
730  */
731 
732 static __always_inline enum perf_event_state
733 __perf_effective_state(struct perf_event *event)
734 {
735 	struct perf_event *leader = event->group_leader;
736 
737 	if (leader->state <= PERF_EVENT_STATE_OFF)
738 		return leader->state;
739 
740 	return event->state;
741 }
742 
743 static __always_inline void
744 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
745 {
746 	enum perf_event_state state = __perf_effective_state(event);
747 	u64 delta = now - event->tstamp;
748 
749 	*enabled = event->total_time_enabled;
750 	if (state >= PERF_EVENT_STATE_INACTIVE)
751 		*enabled += delta;
752 
753 	*running = event->total_time_running;
754 	if (state >= PERF_EVENT_STATE_ACTIVE)
755 		*running += delta;
756 }
757 
758 static void perf_event_update_time(struct perf_event *event)
759 {
760 	u64 now = perf_event_time(event);
761 
762 	__perf_update_times(event, now, &event->total_time_enabled,
763 					&event->total_time_running);
764 	event->tstamp = now;
765 }
766 
767 static void perf_event_update_sibling_time(struct perf_event *leader)
768 {
769 	struct perf_event *sibling;
770 
771 	for_each_sibling_event(sibling, leader)
772 		perf_event_update_time(sibling);
773 }
774 
775 static void
776 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
777 {
778 	if (event->state == state)
779 		return;
780 
781 	perf_event_update_time(event);
782 	/*
783 	 * If a group leader gets enabled/disabled all its siblings
784 	 * are affected too.
785 	 */
786 	if ((event->state < 0) ^ (state < 0))
787 		perf_event_update_sibling_time(event);
788 
789 	WRITE_ONCE(event->state, state);
790 }
791 
792 /*
793  * UP store-release, load-acquire
794  */
795 
796 #define __store_release(ptr, val)					\
797 do {									\
798 	barrier();							\
799 	WRITE_ONCE(*(ptr), (val));					\
800 } while (0)
801 
802 #define __load_acquire(ptr)						\
803 ({									\
804 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
805 	barrier();							\
806 	___p;								\
807 })
808 
809 static bool perf_skip_pmu_ctx(struct perf_event_pmu_context *pmu_ctx,
810 			      enum event_type_t event_type)
811 {
812 	if ((event_type & EVENT_CGROUP) && !pmu_ctx->nr_cgroups)
813 		return true;
814 	if ((event_type & EVENT_GUEST) &&
815 	    !(pmu_ctx->pmu->capabilities & PERF_PMU_CAP_MEDIATED_VPMU))
816 		return true;
817 	return false;
818 }
819 
820 #define for_each_epc(_epc, _ctx, _pmu, _event_type)			\
821 	list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \
822 		if (perf_skip_pmu_ctx(_epc, _event_type))		\
823 			continue;					\
824 		else if (_pmu && _epc->pmu != _pmu)			\
825 			continue;					\
826 		else
827 
828 static void perf_ctx_disable(struct perf_event_context *ctx,
829 			     enum event_type_t event_type)
830 {
831 	struct perf_event_pmu_context *pmu_ctx;
832 
833 	for_each_epc(pmu_ctx, ctx, NULL, event_type)
834 		perf_pmu_disable(pmu_ctx->pmu);
835 }
836 
837 static void perf_ctx_enable(struct perf_event_context *ctx,
838 			    enum event_type_t event_type)
839 {
840 	struct perf_event_pmu_context *pmu_ctx;
841 
842 	for_each_epc(pmu_ctx, ctx, NULL, event_type)
843 		perf_pmu_enable(pmu_ctx->pmu);
844 }
845 
846 static void ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
847 static void ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
848 
849 static inline void update_perf_time_ctx(struct perf_time_ctx *time, u64 now, bool adv)
850 {
851 	if (adv)
852 		time->time += now - time->stamp;
853 	time->stamp = now;
854 
855 	/*
856 	 * The above: time' = time + (now - timestamp), can be re-arranged
857 	 * into: time` = now + (time - timestamp), which gives a single value
858 	 * offset to compute future time without locks on.
859 	 *
860 	 * See perf_event_time_now(), which can be used from NMI context where
861 	 * it's (obviously) not possible to acquire ctx->lock in order to read
862 	 * both the above values in a consistent manner.
863 	 */
864 	WRITE_ONCE(time->offset, time->time - time->stamp);
865 }
866 
867 static_assert(offsetof(struct perf_event_context, timeguest) -
868 	      offsetof(struct perf_event_context, time) ==
869 	      sizeof(struct perf_time_ctx));
870 
871 #define T_TOTAL		0
872 #define T_GUEST		1
873 
874 static inline u64 __perf_event_time_ctx(struct perf_event *event,
875 					struct perf_time_ctx *times)
876 {
877 	u64 time = times[T_TOTAL].time;
878 
879 	if (event->attr.exclude_guest)
880 		time -= times[T_GUEST].time;
881 
882 	return time;
883 }
884 
885 static inline u64 __perf_event_time_ctx_now(struct perf_event *event,
886 					    struct perf_time_ctx *times,
887 					    u64 now)
888 {
889 	if (is_guest_mediated_pmu_loaded() && event->attr.exclude_guest) {
890 		/*
891 		 * (now + times[total].offset) - (now + times[guest].offset) :=
892 		 * times[total].offset - times[guest].offset
893 		 */
894 		return READ_ONCE(times[T_TOTAL].offset) - READ_ONCE(times[T_GUEST].offset);
895 	}
896 
897 	return now + READ_ONCE(times[T_TOTAL].offset);
898 }
899 
900 #ifdef CONFIG_CGROUP_PERF
901 
902 static inline bool
903 perf_cgroup_match(struct perf_event *event)
904 {
905 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
906 
907 	/* @event doesn't care about cgroup */
908 	if (!event->cgrp)
909 		return true;
910 
911 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
912 	if (!cpuctx->cgrp)
913 		return false;
914 
915 	/*
916 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
917 	 * also enabled for all its descendant cgroups.  If @cpuctx's
918 	 * cgroup is a descendant of @event's (the test covers identity
919 	 * case), it's a match.
920 	 */
921 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
922 				    event->cgrp->css.cgroup);
923 }
924 
925 static inline void perf_detach_cgroup(struct perf_event *event)
926 {
927 	css_put(&event->cgrp->css);
928 	event->cgrp = NULL;
929 }
930 
931 static inline int is_cgroup_event(struct perf_event *event)
932 {
933 	return event->cgrp != NULL;
934 }
935 
936 static_assert(offsetof(struct perf_cgroup_info, timeguest) -
937 	      offsetof(struct perf_cgroup_info, time) ==
938 	      sizeof(struct perf_time_ctx));
939 
940 static inline u64 perf_cgroup_event_time(struct perf_event *event)
941 {
942 	struct perf_cgroup_info *t;
943 
944 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
945 	return __perf_event_time_ctx(event, &t->time);
946 }
947 
948 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
949 {
950 	struct perf_cgroup_info *t;
951 
952 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
953 	if (!__load_acquire(&t->active))
954 		return __perf_event_time_ctx(event, &t->time);
955 
956 	return __perf_event_time_ctx_now(event, &t->time, now);
957 }
958 
959 static inline void __update_cgrp_guest_time(struct perf_cgroup_info *info, u64 now, bool adv)
960 {
961 	update_perf_time_ctx(&info->timeguest, now, adv);
962 }
963 
964 static inline void update_cgrp_time(struct perf_cgroup_info *info, u64 now)
965 {
966 	update_perf_time_ctx(&info->time, now, true);
967 	if (is_guest_mediated_pmu_loaded())
968 		__update_cgrp_guest_time(info, now, true);
969 }
970 
971 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
972 {
973 	struct perf_cgroup *cgrp = cpuctx->cgrp;
974 	struct cgroup_subsys_state *css;
975 	struct perf_cgroup_info *info;
976 
977 	if (cgrp) {
978 		u64 now = perf_clock();
979 
980 		for (css = &cgrp->css; css; css = css->parent) {
981 			cgrp = container_of(css, struct perf_cgroup, css);
982 			info = this_cpu_ptr(cgrp->info);
983 
984 			update_cgrp_time(info, now);
985 			if (final)
986 				__store_release(&info->active, 0);
987 		}
988 	}
989 }
990 
991 static inline void update_cgrp_time_from_event(struct perf_event *event)
992 {
993 	struct perf_cgroup_info *info;
994 
995 	/*
996 	 * ensure we access cgroup data only when needed and
997 	 * when we know the cgroup is pinned (css_get)
998 	 */
999 	if (!is_cgroup_event(event))
1000 		return;
1001 
1002 	info = this_cpu_ptr(event->cgrp->info);
1003 	/*
1004 	 * Do not update time when cgroup is not active
1005 	 */
1006 	if (info->active)
1007 		update_cgrp_time(info, perf_clock());
1008 }
1009 
1010 static inline void
1011 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx, bool guest)
1012 {
1013 	struct perf_event_context *ctx = &cpuctx->ctx;
1014 	struct perf_cgroup *cgrp = cpuctx->cgrp;
1015 	struct perf_cgroup_info *info;
1016 	struct cgroup_subsys_state *css;
1017 
1018 	/*
1019 	 * ctx->lock held by caller
1020 	 * ensure we do not access cgroup data
1021 	 * unless we have the cgroup pinned (css_get)
1022 	 */
1023 	if (!cgrp)
1024 		return;
1025 
1026 	WARN_ON_ONCE(!ctx->nr_cgroups);
1027 
1028 	for (css = &cgrp->css; css; css = css->parent) {
1029 		cgrp = container_of(css, struct perf_cgroup, css);
1030 		info = this_cpu_ptr(cgrp->info);
1031 		if (guest) {
1032 			__update_cgrp_guest_time(info, ctx->time.stamp, false);
1033 		} else {
1034 			update_perf_time_ctx(&info->time, ctx->time.stamp, false);
1035 			__store_release(&info->active, 1);
1036 		}
1037 	}
1038 }
1039 
1040 /*
1041  * reschedule events based on the cgroup constraint of task.
1042  */
1043 static void perf_cgroup_switch(struct task_struct *task)
1044 {
1045 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
1046 	struct perf_cgroup *cgrp;
1047 
1048 	/*
1049 	 * cpuctx->cgrp is set when the first cgroup event enabled,
1050 	 * and is cleared when the last cgroup event disabled.
1051 	 */
1052 	if (READ_ONCE(cpuctx->cgrp) == NULL)
1053 		return;
1054 
1055 	cgrp = perf_cgroup_from_task(task, NULL);
1056 	if (READ_ONCE(cpuctx->cgrp) == cgrp)
1057 		return;
1058 
1059 	guard(perf_ctx_lock)(cpuctx, cpuctx->task_ctx);
1060 	/*
1061 	 * Re-check, could've raced vs perf_remove_from_context().
1062 	 */
1063 	if (READ_ONCE(cpuctx->cgrp) == NULL)
1064 		return;
1065 
1066 	WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
1067 	perf_ctx_disable(&cpuctx->ctx, EVENT_CGROUP);
1068 
1069 	ctx_sched_out(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
1070 	/*
1071 	 * must not be done before ctxswout due
1072 	 * to update_cgrp_time_from_cpuctx() in
1073 	 * ctx_sched_out()
1074 	 */
1075 	cpuctx->cgrp = cgrp;
1076 	/*
1077 	 * set cgrp before ctxsw in to allow
1078 	 * perf_cgroup_set_timestamp() in ctx_sched_in()
1079 	 * to not have to pass task around
1080 	 */
1081 	ctx_sched_in(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
1082 
1083 	perf_ctx_enable(&cpuctx->ctx, EVENT_CGROUP);
1084 }
1085 
1086 static int perf_cgroup_ensure_storage(struct perf_event *event,
1087 				struct cgroup_subsys_state *css)
1088 {
1089 	struct perf_cpu_context *cpuctx;
1090 	struct perf_event **storage;
1091 	int cpu, heap_size, ret = 0;
1092 
1093 	/*
1094 	 * Allow storage to have sufficient space for an iterator for each
1095 	 * possibly nested cgroup plus an iterator for events with no cgroup.
1096 	 */
1097 	for (heap_size = 1; css; css = css->parent)
1098 		heap_size++;
1099 
1100 	for_each_possible_cpu(cpu) {
1101 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
1102 		if (heap_size <= cpuctx->heap_size)
1103 			continue;
1104 
1105 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
1106 				       GFP_KERNEL, cpu_to_node(cpu));
1107 		if (!storage) {
1108 			ret = -ENOMEM;
1109 			break;
1110 		}
1111 
1112 		raw_spin_lock_irq(&cpuctx->ctx.lock);
1113 		if (cpuctx->heap_size < heap_size) {
1114 			swap(cpuctx->heap, storage);
1115 			if (storage == cpuctx->heap_default)
1116 				storage = NULL;
1117 			cpuctx->heap_size = heap_size;
1118 		}
1119 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
1120 
1121 		kfree(storage);
1122 	}
1123 
1124 	return ret;
1125 }
1126 
1127 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
1128 				      struct perf_event_attr *attr,
1129 				      struct perf_event *group_leader)
1130 {
1131 	struct perf_cgroup *cgrp;
1132 	struct cgroup_subsys_state *css;
1133 	CLASS(fd, f)(fd);
1134 	int ret = 0;
1135 
1136 	if (fd_empty(f))
1137 		return -EBADF;
1138 
1139 	css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry,
1140 					 &perf_event_cgrp_subsys);
1141 	if (IS_ERR(css))
1142 		return PTR_ERR(css);
1143 
1144 	ret = perf_cgroup_ensure_storage(event, css);
1145 	if (ret)
1146 		return ret;
1147 
1148 	cgrp = container_of(css, struct perf_cgroup, css);
1149 	event->cgrp = cgrp;
1150 
1151 	/*
1152 	 * all events in a group must monitor
1153 	 * the same cgroup because a task belongs
1154 	 * to only one perf cgroup at a time
1155 	 */
1156 	if (group_leader && group_leader->cgrp != cgrp) {
1157 		perf_detach_cgroup(event);
1158 		ret = -EINVAL;
1159 	}
1160 	return ret;
1161 }
1162 
1163 static inline void
1164 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1165 {
1166 	struct perf_cpu_context *cpuctx;
1167 
1168 	if (!is_cgroup_event(event))
1169 		return;
1170 
1171 	event->pmu_ctx->nr_cgroups++;
1172 
1173 	/*
1174 	 * Because cgroup events are always per-cpu events,
1175 	 * @ctx == &cpuctx->ctx.
1176 	 */
1177 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1178 
1179 	if (ctx->nr_cgroups++)
1180 		return;
1181 
1182 	cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
1183 }
1184 
1185 static inline void
1186 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1187 {
1188 	struct perf_cpu_context *cpuctx;
1189 
1190 	if (!is_cgroup_event(event))
1191 		return;
1192 
1193 	event->pmu_ctx->nr_cgroups--;
1194 
1195 	/*
1196 	 * Because cgroup events are always per-cpu events,
1197 	 * @ctx == &cpuctx->ctx.
1198 	 */
1199 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1200 
1201 	if (--ctx->nr_cgroups)
1202 		return;
1203 
1204 	cpuctx->cgrp = NULL;
1205 }
1206 
1207 #else /* !CONFIG_CGROUP_PERF */
1208 
1209 static inline bool
1210 perf_cgroup_match(struct perf_event *event)
1211 {
1212 	return true;
1213 }
1214 
1215 static inline void perf_detach_cgroup(struct perf_event *event)
1216 {}
1217 
1218 static inline int is_cgroup_event(struct perf_event *event)
1219 {
1220 	return 0;
1221 }
1222 
1223 static inline void update_cgrp_time_from_event(struct perf_event *event)
1224 {
1225 }
1226 
1227 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1228 						bool final)
1229 {
1230 }
1231 
1232 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1233 				      struct perf_event_attr *attr,
1234 				      struct perf_event *group_leader)
1235 {
1236 	return -EINVAL;
1237 }
1238 
1239 static inline void
1240 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx, bool guest)
1241 {
1242 }
1243 
1244 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1245 {
1246 	return 0;
1247 }
1248 
1249 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1250 {
1251 	return 0;
1252 }
1253 
1254 static inline void
1255 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1256 {
1257 }
1258 
1259 static inline void
1260 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1261 {
1262 }
1263 
1264 static void perf_cgroup_switch(struct task_struct *task)
1265 {
1266 }
1267 #endif
1268 
1269 /*
1270  * set default to be dependent on timer tick just
1271  * like original code
1272  */
1273 #define PERF_CPU_HRTIMER (1000 / HZ)
1274 /*
1275  * function must be called with interrupts disabled
1276  */
1277 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1278 {
1279 	struct perf_cpu_pmu_context *cpc;
1280 	bool rotations;
1281 
1282 	lockdep_assert_irqs_disabled();
1283 
1284 	cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1285 	rotations = perf_rotate_context(cpc);
1286 
1287 	raw_spin_lock(&cpc->hrtimer_lock);
1288 	if (rotations)
1289 		hrtimer_forward_now(hr, cpc->hrtimer_interval);
1290 	else
1291 		cpc->hrtimer_active = 0;
1292 	raw_spin_unlock(&cpc->hrtimer_lock);
1293 
1294 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1295 }
1296 
1297 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1298 {
1299 	struct hrtimer *timer = &cpc->hrtimer;
1300 	struct pmu *pmu = cpc->epc.pmu;
1301 	u64 interval;
1302 
1303 	/*
1304 	 * check default is sane, if not set then force to
1305 	 * default interval (1/tick)
1306 	 */
1307 	interval = pmu->hrtimer_interval_ms;
1308 	if (interval < 1)
1309 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1310 
1311 	cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1312 
1313 	raw_spin_lock_init(&cpc->hrtimer_lock);
1314 	hrtimer_setup(timer, perf_mux_hrtimer_handler, CLOCK_MONOTONIC,
1315 		      HRTIMER_MODE_ABS_PINNED_HARD);
1316 }
1317 
1318 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1319 {
1320 	struct hrtimer *timer = &cpc->hrtimer;
1321 	unsigned long flags;
1322 
1323 	raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1324 	if (!cpc->hrtimer_active) {
1325 		cpc->hrtimer_active = 1;
1326 		hrtimer_forward_now(timer, cpc->hrtimer_interval);
1327 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1328 	}
1329 	raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1330 
1331 	return 0;
1332 }
1333 
1334 static int perf_mux_hrtimer_restart_ipi(void *arg)
1335 {
1336 	return perf_mux_hrtimer_restart(arg);
1337 }
1338 
1339 static __always_inline struct perf_cpu_pmu_context *this_cpc(struct pmu *pmu)
1340 {
1341 	return *this_cpu_ptr(pmu->cpu_pmu_context);
1342 }
1343 
1344 void perf_pmu_disable(struct pmu *pmu)
1345 {
1346 	int *count = &this_cpc(pmu)->pmu_disable_count;
1347 	if (!(*count)++)
1348 		pmu->pmu_disable(pmu);
1349 }
1350 
1351 void perf_pmu_enable(struct pmu *pmu)
1352 {
1353 	int *count = &this_cpc(pmu)->pmu_disable_count;
1354 	if (!--(*count))
1355 		pmu->pmu_enable(pmu);
1356 }
1357 
1358 static void perf_assert_pmu_disabled(struct pmu *pmu)
1359 {
1360 	int *count = &this_cpc(pmu)->pmu_disable_count;
1361 	WARN_ON_ONCE(*count == 0);
1362 }
1363 
1364 static inline void perf_pmu_read(struct perf_event *event)
1365 {
1366 	if (event->state == PERF_EVENT_STATE_ACTIVE)
1367 		event->pmu->read(event);
1368 }
1369 
1370 static void get_ctx(struct perf_event_context *ctx)
1371 {
1372 	refcount_inc(&ctx->refcount);
1373 }
1374 
1375 static void free_ctx(struct rcu_head *head)
1376 {
1377 	struct perf_event_context *ctx;
1378 
1379 	ctx = container_of(head, struct perf_event_context, rcu_head);
1380 	kfree(ctx);
1381 }
1382 
1383 static void put_ctx(struct perf_event_context *ctx)
1384 {
1385 	if (refcount_dec_and_test(&ctx->refcount)) {
1386 		if (ctx->parent_ctx)
1387 			put_ctx(ctx->parent_ctx);
1388 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1389 			put_task_struct(ctx->task);
1390 		call_rcu(&ctx->rcu_head, free_ctx);
1391 	} else {
1392 		smp_mb__after_atomic(); /* pairs with wait_var_event() */
1393 		if (ctx->task == TASK_TOMBSTONE)
1394 			wake_up_var(&ctx->refcount);
1395 	}
1396 }
1397 
1398 /*
1399  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1400  * perf_pmu_migrate_context() we need some magic.
1401  *
1402  * Those places that change perf_event::ctx will hold both
1403  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1404  *
1405  * Lock ordering is by mutex address. There are two other sites where
1406  * perf_event_context::mutex nests and those are:
1407  *
1408  *  - perf_event_exit_task_context()	[ child , 0 ]
1409  *      perf_event_exit_event()
1410  *        put_event()			[ parent, 1 ]
1411  *
1412  *  - perf_event_init_context()		[ parent, 0 ]
1413  *      inherit_task_group()
1414  *        inherit_group()
1415  *          inherit_event()
1416  *            perf_event_alloc()
1417  *              perf_init_event()
1418  *                perf_try_init_event()	[ child , 1 ]
1419  *
1420  * While it appears there is an obvious deadlock here -- the parent and child
1421  * nesting levels are inverted between the two. This is in fact safe because
1422  * life-time rules separate them. That is an exiting task cannot fork, and a
1423  * spawning task cannot (yet) exit.
1424  *
1425  * But remember that these are parent<->child context relations, and
1426  * migration does not affect children, therefore these two orderings should not
1427  * interact.
1428  *
1429  * The change in perf_event::ctx does not affect children (as claimed above)
1430  * because the sys_perf_event_open() case will install a new event and break
1431  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1432  * concerned with cpuctx and that doesn't have children.
1433  *
1434  * The places that change perf_event::ctx will issue:
1435  *
1436  *   perf_remove_from_context();
1437  *   synchronize_rcu();
1438  *   perf_install_in_context();
1439  *
1440  * to affect the change. The remove_from_context() + synchronize_rcu() should
1441  * quiesce the event, after which we can install it in the new location. This
1442  * means that only external vectors (perf_fops, prctl) can perturb the event
1443  * while in transit. Therefore all such accessors should also acquire
1444  * perf_event_context::mutex to serialize against this.
1445  *
1446  * However; because event->ctx can change while we're waiting to acquire
1447  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1448  * function.
1449  *
1450  * Lock order:
1451  *    exec_update_lock
1452  *	task_struct::perf_event_mutex
1453  *	  perf_event_context::mutex
1454  *	    perf_event::child_mutex;
1455  *	      perf_event_context::lock
1456  *	    mmap_lock
1457  *	      perf_event::mmap_mutex
1458  *	        perf_buffer::aux_mutex
1459  *	      perf_addr_filters_head::lock
1460  *
1461  *    cpu_hotplug_lock
1462  *      pmus_lock
1463  *	  cpuctx->mutex / perf_event_context::mutex
1464  */
1465 static struct perf_event_context *
1466 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1467 {
1468 	struct perf_event_context *ctx;
1469 
1470 again:
1471 	rcu_read_lock();
1472 	ctx = READ_ONCE(event->ctx);
1473 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1474 		rcu_read_unlock();
1475 		goto again;
1476 	}
1477 	rcu_read_unlock();
1478 
1479 	mutex_lock_nested(&ctx->mutex, nesting);
1480 	if (event->ctx != ctx) {
1481 		mutex_unlock(&ctx->mutex);
1482 		put_ctx(ctx);
1483 		goto again;
1484 	}
1485 
1486 	return ctx;
1487 }
1488 
1489 static inline struct perf_event_context *
1490 perf_event_ctx_lock(struct perf_event *event)
1491 {
1492 	return perf_event_ctx_lock_nested(event, 0);
1493 }
1494 
1495 static void perf_event_ctx_unlock(struct perf_event *event,
1496 				  struct perf_event_context *ctx)
1497 {
1498 	mutex_unlock(&ctx->mutex);
1499 	put_ctx(ctx);
1500 }
1501 
1502 /*
1503  * This must be done under the ctx->lock, such as to serialize against
1504  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1505  * calling scheduler related locks and ctx->lock nests inside those.
1506  */
1507 static __must_check struct perf_event_context *
1508 unclone_ctx(struct perf_event_context *ctx)
1509 {
1510 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1511 
1512 	lockdep_assert_held(&ctx->lock);
1513 
1514 	if (parent_ctx)
1515 		ctx->parent_ctx = NULL;
1516 	ctx->generation++;
1517 
1518 	return parent_ctx;
1519 }
1520 
1521 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1522 				enum pid_type type)
1523 {
1524 	u32 nr;
1525 	/*
1526 	 * only top level events have the pid namespace they were created in
1527 	 */
1528 	if (event->parent)
1529 		event = event->parent;
1530 
1531 	nr = __task_pid_nr_ns(p, type, event->ns);
1532 	/* avoid -1 if it is idle thread or runs in another ns */
1533 	if (!nr && !pid_alive(p))
1534 		nr = -1;
1535 	return nr;
1536 }
1537 
1538 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1539 {
1540 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1541 }
1542 
1543 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1544 {
1545 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1546 }
1547 
1548 /*
1549  * If we inherit events we want to return the parent event id
1550  * to userspace.
1551  */
1552 static u64 primary_event_id(struct perf_event *event)
1553 {
1554 	u64 id = event->id;
1555 
1556 	if (event->parent)
1557 		id = event->parent->id;
1558 
1559 	return id;
1560 }
1561 
1562 /*
1563  * Get the perf_event_context for a task and lock it.
1564  *
1565  * This has to cope with the fact that until it is locked,
1566  * the context could get moved to another task.
1567  */
1568 static struct perf_event_context *
1569 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1570 {
1571 	struct perf_event_context *ctx;
1572 
1573 retry:
1574 	/*
1575 	 * One of the few rules of preemptible RCU is that one cannot do
1576 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1577 	 * part of the read side critical section was irqs-enabled -- see
1578 	 * rcu_read_unlock_special().
1579 	 *
1580 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1581 	 * side critical section has interrupts disabled.
1582 	 */
1583 	local_irq_save(*flags);
1584 	rcu_read_lock();
1585 	ctx = rcu_dereference(task->perf_event_ctxp);
1586 	if (ctx) {
1587 		/*
1588 		 * If this context is a clone of another, it might
1589 		 * get swapped for another underneath us by
1590 		 * perf_event_task_sched_out, though the
1591 		 * rcu_read_lock() protects us from any context
1592 		 * getting freed.  Lock the context and check if it
1593 		 * got swapped before we could get the lock, and retry
1594 		 * if so.  If we locked the right context, then it
1595 		 * can't get swapped on us any more.
1596 		 */
1597 		raw_spin_lock(&ctx->lock);
1598 		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1599 			raw_spin_unlock(&ctx->lock);
1600 			rcu_read_unlock();
1601 			local_irq_restore(*flags);
1602 			goto retry;
1603 		}
1604 
1605 		if (ctx->task == TASK_TOMBSTONE ||
1606 		    !refcount_inc_not_zero(&ctx->refcount)) {
1607 			raw_spin_unlock(&ctx->lock);
1608 			ctx = NULL;
1609 		} else {
1610 			WARN_ON_ONCE(ctx->task != task);
1611 		}
1612 	}
1613 	rcu_read_unlock();
1614 	if (!ctx)
1615 		local_irq_restore(*flags);
1616 	return ctx;
1617 }
1618 
1619 /*
1620  * Get the context for a task and increment its pin_count so it
1621  * can't get swapped to another task.  This also increments its
1622  * reference count so that the context can't get freed.
1623  */
1624 static struct perf_event_context *
1625 perf_pin_task_context(struct task_struct *task)
1626 {
1627 	struct perf_event_context *ctx;
1628 	unsigned long flags;
1629 
1630 	ctx = perf_lock_task_context(task, &flags);
1631 	if (ctx) {
1632 		++ctx->pin_count;
1633 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1634 	}
1635 	return ctx;
1636 }
1637 
1638 static void perf_unpin_context(struct perf_event_context *ctx)
1639 {
1640 	unsigned long flags;
1641 
1642 	raw_spin_lock_irqsave(&ctx->lock, flags);
1643 	--ctx->pin_count;
1644 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1645 }
1646 
1647 /*
1648  * Update the record of the current time in a context.
1649  */
1650 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1651 {
1652 	lockdep_assert_held(&ctx->lock);
1653 
1654 	update_perf_time_ctx(&ctx->time, perf_clock(), adv);
1655 }
1656 
1657 static void __update_context_guest_time(struct perf_event_context *ctx, bool adv)
1658 {
1659 	lockdep_assert_held(&ctx->lock);
1660 
1661 	/* must be called after __update_context_time(); */
1662 	update_perf_time_ctx(&ctx->timeguest, ctx->time.stamp, adv);
1663 }
1664 
1665 static void update_context_time(struct perf_event_context *ctx)
1666 {
1667 	__update_context_time(ctx, true);
1668 	if (is_guest_mediated_pmu_loaded())
1669 		__update_context_guest_time(ctx, true);
1670 }
1671 
1672 static u64 perf_event_time(struct perf_event *event)
1673 {
1674 	struct perf_event_context *ctx = event->ctx;
1675 
1676 	if (unlikely(!ctx))
1677 		return 0;
1678 
1679 	if (is_cgroup_event(event))
1680 		return perf_cgroup_event_time(event);
1681 
1682 	return __perf_event_time_ctx(event, &ctx->time);
1683 }
1684 
1685 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1686 {
1687 	struct perf_event_context *ctx = event->ctx;
1688 
1689 	if (unlikely(!ctx))
1690 		return 0;
1691 
1692 	if (is_cgroup_event(event))
1693 		return perf_cgroup_event_time_now(event, now);
1694 
1695 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1696 		return __perf_event_time_ctx(event, &ctx->time);
1697 
1698 	return __perf_event_time_ctx_now(event, &ctx->time, now);
1699 }
1700 
1701 static enum event_type_t get_event_type(struct perf_event *event)
1702 {
1703 	struct perf_event_context *ctx = event->ctx;
1704 	enum event_type_t event_type;
1705 
1706 	lockdep_assert_held(&ctx->lock);
1707 
1708 	/*
1709 	 * It's 'group type', really, because if our group leader is
1710 	 * pinned, so are we.
1711 	 */
1712 	if (event->group_leader != event)
1713 		event = event->group_leader;
1714 
1715 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1716 	if (!ctx->task)
1717 		event_type |= EVENT_CPU;
1718 
1719 	return event_type;
1720 }
1721 
1722 /*
1723  * Helper function to initialize event group nodes.
1724  */
1725 static void init_event_group(struct perf_event *event)
1726 {
1727 	RB_CLEAR_NODE(&event->group_node);
1728 	event->group_index = 0;
1729 }
1730 
1731 /*
1732  * Extract pinned or flexible groups from the context
1733  * based on event attrs bits.
1734  */
1735 static struct perf_event_groups *
1736 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1737 {
1738 	if (event->attr.pinned)
1739 		return &ctx->pinned_groups;
1740 	else
1741 		return &ctx->flexible_groups;
1742 }
1743 
1744 /*
1745  * Helper function to initializes perf_event_group trees.
1746  */
1747 static void perf_event_groups_init(struct perf_event_groups *groups)
1748 {
1749 	groups->tree = RB_ROOT;
1750 	groups->index = 0;
1751 }
1752 
1753 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1754 {
1755 	struct cgroup *cgroup = NULL;
1756 
1757 #ifdef CONFIG_CGROUP_PERF
1758 	if (event->cgrp)
1759 		cgroup = event->cgrp->css.cgroup;
1760 #endif
1761 
1762 	return cgroup;
1763 }
1764 
1765 /*
1766  * Compare function for event groups;
1767  *
1768  * Implements complex key that first sorts by CPU and then by virtual index
1769  * which provides ordering when rotating groups for the same CPU.
1770  */
1771 static __always_inline int
1772 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1773 		      const struct cgroup *left_cgroup, const u64 left_group_index,
1774 		      const struct perf_event *right)
1775 {
1776 	if (left_cpu < right->cpu)
1777 		return -1;
1778 	if (left_cpu > right->cpu)
1779 		return 1;
1780 
1781 	if (left_pmu) {
1782 		if (left_pmu < right->pmu_ctx->pmu)
1783 			return -1;
1784 		if (left_pmu > right->pmu_ctx->pmu)
1785 			return 1;
1786 	}
1787 
1788 #ifdef CONFIG_CGROUP_PERF
1789 	{
1790 		const struct cgroup *right_cgroup = event_cgroup(right);
1791 
1792 		if (left_cgroup != right_cgroup) {
1793 			if (!left_cgroup) {
1794 				/*
1795 				 * Left has no cgroup but right does, no
1796 				 * cgroups come first.
1797 				 */
1798 				return -1;
1799 			}
1800 			if (!right_cgroup) {
1801 				/*
1802 				 * Right has no cgroup but left does, no
1803 				 * cgroups come first.
1804 				 */
1805 				return 1;
1806 			}
1807 			/* Two dissimilar cgroups, order by id. */
1808 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1809 				return -1;
1810 
1811 			return 1;
1812 		}
1813 	}
1814 #endif
1815 
1816 	if (left_group_index < right->group_index)
1817 		return -1;
1818 	if (left_group_index > right->group_index)
1819 		return 1;
1820 
1821 	return 0;
1822 }
1823 
1824 #define __node_2_pe(node) \
1825 	rb_entry((node), struct perf_event, group_node)
1826 
1827 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1828 {
1829 	struct perf_event *e = __node_2_pe(a);
1830 	return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1831 				     e->group_index, __node_2_pe(b)) < 0;
1832 }
1833 
1834 struct __group_key {
1835 	int cpu;
1836 	struct pmu *pmu;
1837 	struct cgroup *cgroup;
1838 };
1839 
1840 static inline int __group_cmp(const void *key, const struct rb_node *node)
1841 {
1842 	const struct __group_key *a = key;
1843 	const struct perf_event *b = __node_2_pe(node);
1844 
1845 	/* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1846 	return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1847 }
1848 
1849 static inline int
1850 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1851 {
1852 	const struct __group_key *a = key;
1853 	const struct perf_event *b = __node_2_pe(node);
1854 
1855 	/* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1856 	return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1857 				     b->group_index, b);
1858 }
1859 
1860 /*
1861  * Insert @event into @groups' tree; using
1862  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1863  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1864  */
1865 static void
1866 perf_event_groups_insert(struct perf_event_groups *groups,
1867 			 struct perf_event *event)
1868 {
1869 	event->group_index = ++groups->index;
1870 
1871 	rb_add(&event->group_node, &groups->tree, __group_less);
1872 }
1873 
1874 /*
1875  * Helper function to insert event into the pinned or flexible groups.
1876  */
1877 static void
1878 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1879 {
1880 	struct perf_event_groups *groups;
1881 
1882 	groups = get_event_groups(event, ctx);
1883 	perf_event_groups_insert(groups, event);
1884 }
1885 
1886 /*
1887  * Delete a group from a tree.
1888  */
1889 static void
1890 perf_event_groups_delete(struct perf_event_groups *groups,
1891 			 struct perf_event *event)
1892 {
1893 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1894 		     RB_EMPTY_ROOT(&groups->tree));
1895 
1896 	rb_erase(&event->group_node, &groups->tree);
1897 	init_event_group(event);
1898 }
1899 
1900 /*
1901  * Helper function to delete event from its groups.
1902  */
1903 static void
1904 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1905 {
1906 	struct perf_event_groups *groups;
1907 
1908 	groups = get_event_groups(event, ctx);
1909 	perf_event_groups_delete(groups, event);
1910 }
1911 
1912 /*
1913  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1914  */
1915 static struct perf_event *
1916 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1917 			struct pmu *pmu, struct cgroup *cgrp)
1918 {
1919 	struct __group_key key = {
1920 		.cpu = cpu,
1921 		.pmu = pmu,
1922 		.cgroup = cgrp,
1923 	};
1924 	struct rb_node *node;
1925 
1926 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1927 	if (node)
1928 		return __node_2_pe(node);
1929 
1930 	return NULL;
1931 }
1932 
1933 static struct perf_event *
1934 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1935 {
1936 	struct __group_key key = {
1937 		.cpu = event->cpu,
1938 		.pmu = pmu,
1939 		.cgroup = event_cgroup(event),
1940 	};
1941 	struct rb_node *next;
1942 
1943 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1944 	if (next)
1945 		return __node_2_pe(next);
1946 
1947 	return NULL;
1948 }
1949 
1950 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)		\
1951 	for (event = perf_event_groups_first(groups, cpu, pmu, NULL);	\
1952 	     event; event = perf_event_groups_next(event, pmu))
1953 
1954 /*
1955  * Iterate through the whole groups tree.
1956  */
1957 #define perf_event_groups_for_each(event, groups)			\
1958 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1959 				typeof(*event), group_node); event;	\
1960 		event = rb_entry_safe(rb_next(&event->group_node),	\
1961 				typeof(*event), group_node))
1962 
1963 /*
1964  * Does the event attribute request inherit with PERF_SAMPLE_READ
1965  */
1966 static inline bool has_inherit_and_sample_read(struct perf_event_attr *attr)
1967 {
1968 	return attr->inherit && (attr->sample_type & PERF_SAMPLE_READ);
1969 }
1970 
1971 /*
1972  * Add an event from the lists for its context.
1973  * Must be called with ctx->mutex and ctx->lock held.
1974  */
1975 static void
1976 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1977 {
1978 	lockdep_assert_held(&ctx->lock);
1979 
1980 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1981 	event->attach_state |= PERF_ATTACH_CONTEXT;
1982 
1983 	event->tstamp = perf_event_time(event);
1984 
1985 	/*
1986 	 * If we're a stand alone event or group leader, we go to the context
1987 	 * list, group events are kept attached to the group so that
1988 	 * perf_group_detach can, at all times, locate all siblings.
1989 	 */
1990 	if (event->group_leader == event) {
1991 		event->group_caps = event->event_caps;
1992 		add_event_to_groups(event, ctx);
1993 	}
1994 
1995 	list_add_rcu(&event->event_entry, &ctx->event_list);
1996 	ctx->nr_events++;
1997 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1998 		ctx->nr_user++;
1999 	if (event->attr.inherit_stat)
2000 		ctx->nr_stat++;
2001 	if (has_inherit_and_sample_read(&event->attr))
2002 		local_inc(&ctx->nr_no_switch_fast);
2003 
2004 	if (event->state > PERF_EVENT_STATE_OFF)
2005 		perf_cgroup_event_enable(event, ctx);
2006 
2007 	ctx->generation++;
2008 	event->pmu_ctx->nr_events++;
2009 }
2010 
2011 /*
2012  * Initialize event state based on the perf_event_attr::disabled.
2013  */
2014 static inline void perf_event__state_init(struct perf_event *event)
2015 {
2016 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
2017 					      PERF_EVENT_STATE_INACTIVE;
2018 }
2019 
2020 static int __perf_event_read_size(u64 read_format, int nr_siblings)
2021 {
2022 	int entry = sizeof(u64); /* value */
2023 	int size = 0;
2024 	int nr = 1;
2025 
2026 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2027 		size += sizeof(u64);
2028 
2029 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2030 		size += sizeof(u64);
2031 
2032 	if (read_format & PERF_FORMAT_ID)
2033 		entry += sizeof(u64);
2034 
2035 	if (read_format & PERF_FORMAT_LOST)
2036 		entry += sizeof(u64);
2037 
2038 	if (read_format & PERF_FORMAT_GROUP) {
2039 		nr += nr_siblings;
2040 		size += sizeof(u64);
2041 	}
2042 
2043 	/*
2044 	 * Since perf_event_validate_size() limits this to 16k and inhibits
2045 	 * adding more siblings, this will never overflow.
2046 	 */
2047 	return size + nr * entry;
2048 }
2049 
2050 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
2051 {
2052 	struct perf_sample_data *data;
2053 	u16 size = 0;
2054 
2055 	if (sample_type & PERF_SAMPLE_IP)
2056 		size += sizeof(data->ip);
2057 
2058 	if (sample_type & PERF_SAMPLE_ADDR)
2059 		size += sizeof(data->addr);
2060 
2061 	if (sample_type & PERF_SAMPLE_PERIOD)
2062 		size += sizeof(data->period);
2063 
2064 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
2065 		size += sizeof(data->weight.full);
2066 
2067 	if (sample_type & PERF_SAMPLE_READ)
2068 		size += event->read_size;
2069 
2070 	if (sample_type & PERF_SAMPLE_DATA_SRC)
2071 		size += sizeof(data->data_src.val);
2072 
2073 	if (sample_type & PERF_SAMPLE_TRANSACTION)
2074 		size += sizeof(data->txn);
2075 
2076 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
2077 		size += sizeof(data->phys_addr);
2078 
2079 	if (sample_type & PERF_SAMPLE_CGROUP)
2080 		size += sizeof(data->cgroup);
2081 
2082 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
2083 		size += sizeof(data->data_page_size);
2084 
2085 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
2086 		size += sizeof(data->code_page_size);
2087 
2088 	event->header_size = size;
2089 }
2090 
2091 /*
2092  * Called at perf_event creation and when events are attached/detached from a
2093  * group.
2094  */
2095 static void perf_event__header_size(struct perf_event *event)
2096 {
2097 	event->read_size =
2098 		__perf_event_read_size(event->attr.read_format,
2099 				       event->group_leader->nr_siblings);
2100 	__perf_event_header_size(event, event->attr.sample_type);
2101 }
2102 
2103 static void perf_event__id_header_size(struct perf_event *event)
2104 {
2105 	struct perf_sample_data *data;
2106 	u64 sample_type = event->attr.sample_type;
2107 	u16 size = 0;
2108 
2109 	if (sample_type & PERF_SAMPLE_TID)
2110 		size += sizeof(data->tid_entry);
2111 
2112 	if (sample_type & PERF_SAMPLE_TIME)
2113 		size += sizeof(data->time);
2114 
2115 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
2116 		size += sizeof(data->id);
2117 
2118 	if (sample_type & PERF_SAMPLE_ID)
2119 		size += sizeof(data->id);
2120 
2121 	if (sample_type & PERF_SAMPLE_STREAM_ID)
2122 		size += sizeof(data->stream_id);
2123 
2124 	if (sample_type & PERF_SAMPLE_CPU)
2125 		size += sizeof(data->cpu_entry);
2126 
2127 	event->id_header_size = size;
2128 }
2129 
2130 /*
2131  * Check that adding an event to the group does not result in anybody
2132  * overflowing the 64k event limit imposed by the output buffer.
2133  *
2134  * Specifically, check that the read_size for the event does not exceed 16k,
2135  * read_size being the one term that grows with groups size. Since read_size
2136  * depends on per-event read_format, also (re)check the existing events.
2137  *
2138  * This leaves 48k for the constant size fields and things like callchains,
2139  * branch stacks and register sets.
2140  */
2141 static bool perf_event_validate_size(struct perf_event *event)
2142 {
2143 	struct perf_event *sibling, *group_leader = event->group_leader;
2144 
2145 	if (__perf_event_read_size(event->attr.read_format,
2146 				   group_leader->nr_siblings + 1) > 16*1024)
2147 		return false;
2148 
2149 	if (__perf_event_read_size(group_leader->attr.read_format,
2150 				   group_leader->nr_siblings + 1) > 16*1024)
2151 		return false;
2152 
2153 	/*
2154 	 * When creating a new group leader, group_leader->ctx is initialized
2155 	 * after the size has been validated, but we cannot safely use
2156 	 * for_each_sibling_event() until group_leader->ctx is set. A new group
2157 	 * leader cannot have any siblings yet, so we can safely skip checking
2158 	 * the non-existent siblings.
2159 	 */
2160 	if (event == group_leader)
2161 		return true;
2162 
2163 	for_each_sibling_event(sibling, group_leader) {
2164 		if (__perf_event_read_size(sibling->attr.read_format,
2165 					   group_leader->nr_siblings + 1) > 16*1024)
2166 			return false;
2167 	}
2168 
2169 	return true;
2170 }
2171 
2172 static void perf_group_attach(struct perf_event *event)
2173 {
2174 	struct perf_event *group_leader = event->group_leader, *pos;
2175 
2176 	lockdep_assert_held(&event->ctx->lock);
2177 
2178 	/*
2179 	 * We can have double attach due to group movement (move_group) in
2180 	 * perf_event_open().
2181 	 */
2182 	if (event->attach_state & PERF_ATTACH_GROUP)
2183 		return;
2184 
2185 	event->attach_state |= PERF_ATTACH_GROUP;
2186 
2187 	if (group_leader == event)
2188 		return;
2189 
2190 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
2191 
2192 	group_leader->group_caps &= event->event_caps;
2193 
2194 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2195 	group_leader->nr_siblings++;
2196 	group_leader->group_generation++;
2197 
2198 	perf_event__header_size(group_leader);
2199 
2200 	for_each_sibling_event(pos, group_leader)
2201 		perf_event__header_size(pos);
2202 }
2203 
2204 /*
2205  * Remove an event from the lists for its context.
2206  * Must be called with ctx->mutex and ctx->lock held.
2207  */
2208 static void
2209 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2210 {
2211 	WARN_ON_ONCE(event->ctx != ctx);
2212 	lockdep_assert_held(&ctx->lock);
2213 
2214 	/*
2215 	 * We can have double detach due to exit/hot-unplug + close.
2216 	 */
2217 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2218 		return;
2219 
2220 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2221 
2222 	ctx->nr_events--;
2223 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2224 		ctx->nr_user--;
2225 	if (event->attr.inherit_stat)
2226 		ctx->nr_stat--;
2227 	if (has_inherit_and_sample_read(&event->attr))
2228 		local_dec(&ctx->nr_no_switch_fast);
2229 
2230 	list_del_rcu(&event->event_entry);
2231 
2232 	if (event->group_leader == event)
2233 		del_event_from_groups(event, ctx);
2234 
2235 	ctx->generation++;
2236 	event->pmu_ctx->nr_events--;
2237 }
2238 
2239 static int
2240 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2241 {
2242 	if (!has_aux(aux_event))
2243 		return 0;
2244 
2245 	if (!event->pmu->aux_output_match)
2246 		return 0;
2247 
2248 	return event->pmu->aux_output_match(aux_event);
2249 }
2250 
2251 static void put_event(struct perf_event *event);
2252 static void __event_disable(struct perf_event *event,
2253 			    struct perf_event_context *ctx,
2254 			    enum perf_event_state state);
2255 
2256 static void perf_put_aux_event(struct perf_event *event)
2257 {
2258 	struct perf_event_context *ctx = event->ctx;
2259 	struct perf_event *iter;
2260 
2261 	/*
2262 	 * If event uses aux_event tear down the link
2263 	 */
2264 	if (event->aux_event) {
2265 		iter = event->aux_event;
2266 		event->aux_event = NULL;
2267 		put_event(iter);
2268 		return;
2269 	}
2270 
2271 	/*
2272 	 * If the event is an aux_event, tear down all links to
2273 	 * it from other events.
2274 	 */
2275 	for_each_sibling_event(iter, event) {
2276 		if (iter->aux_event != event)
2277 			continue;
2278 
2279 		iter->aux_event = NULL;
2280 		put_event(event);
2281 
2282 		/*
2283 		 * If it's ACTIVE, schedule it out and put it into ERROR
2284 		 * state so that we don't try to schedule it again. Note
2285 		 * that perf_event_enable() will clear the ERROR status.
2286 		 */
2287 		__event_disable(iter, ctx, PERF_EVENT_STATE_ERROR);
2288 	}
2289 }
2290 
2291 static bool perf_need_aux_event(struct perf_event *event)
2292 {
2293 	return event->attr.aux_output || has_aux_action(event);
2294 }
2295 
2296 static int perf_get_aux_event(struct perf_event *event,
2297 			      struct perf_event *group_leader)
2298 {
2299 	/*
2300 	 * Our group leader must be an aux event if we want to be
2301 	 * an aux_output. This way, the aux event will precede its
2302 	 * aux_output events in the group, and therefore will always
2303 	 * schedule first.
2304 	 */
2305 	if (!group_leader)
2306 		return 0;
2307 
2308 	/*
2309 	 * aux_output and aux_sample_size are mutually exclusive.
2310 	 */
2311 	if (event->attr.aux_output && event->attr.aux_sample_size)
2312 		return 0;
2313 
2314 	if (event->attr.aux_output &&
2315 	    !perf_aux_output_match(event, group_leader))
2316 		return 0;
2317 
2318 	if ((event->attr.aux_pause || event->attr.aux_resume) &&
2319 	    !(group_leader->pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE))
2320 		return 0;
2321 
2322 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2323 		return 0;
2324 
2325 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2326 		return 0;
2327 
2328 	/*
2329 	 * Link aux_outputs to their aux event; this is undone in
2330 	 * perf_group_detach() by perf_put_aux_event(). When the
2331 	 * group in torn down, the aux_output events loose their
2332 	 * link to the aux_event and can't schedule any more.
2333 	 */
2334 	event->aux_event = group_leader;
2335 
2336 	return 1;
2337 }
2338 
2339 static inline struct list_head *get_event_list(struct perf_event *event)
2340 {
2341 	return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2342 				    &event->pmu_ctx->flexible_active;
2343 }
2344 
2345 static void perf_group_detach(struct perf_event *event)
2346 {
2347 	struct perf_event *leader = event->group_leader;
2348 	struct perf_event *sibling, *tmp;
2349 	struct perf_event_context *ctx = event->ctx;
2350 
2351 	lockdep_assert_held(&ctx->lock);
2352 
2353 	/*
2354 	 * We can have double detach due to exit/hot-unplug + close.
2355 	 */
2356 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2357 		return;
2358 
2359 	event->attach_state &= ~PERF_ATTACH_GROUP;
2360 
2361 	perf_put_aux_event(event);
2362 
2363 	/*
2364 	 * If this is a sibling, remove it from its group.
2365 	 */
2366 	if (leader != event) {
2367 		list_del_init(&event->sibling_list);
2368 		event->group_leader->nr_siblings--;
2369 		event->group_leader->group_generation++;
2370 		goto out;
2371 	}
2372 
2373 	/*
2374 	 * If this was a group event with sibling events then
2375 	 * upgrade the siblings to singleton events by adding them
2376 	 * to whatever list we are on.
2377 	 */
2378 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2379 
2380 		/*
2381 		 * Events that have PERF_EV_CAP_SIBLING require being part of
2382 		 * a group and cannot exist on their own, schedule them out
2383 		 * and move them into the ERROR state. Also see
2384 		 * _perf_event_enable(), it will not be able to recover this
2385 		 * ERROR state.
2386 		 */
2387 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2388 			__event_disable(sibling, ctx, PERF_EVENT_STATE_ERROR);
2389 
2390 		sibling->group_leader = sibling;
2391 		list_del_init(&sibling->sibling_list);
2392 
2393 		/* Inherit group flags from the previous leader */
2394 		sibling->group_caps = event->group_caps;
2395 
2396 		if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2397 			add_event_to_groups(sibling, event->ctx);
2398 
2399 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2400 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2401 		}
2402 
2403 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2404 	}
2405 
2406 out:
2407 	for_each_sibling_event(tmp, leader)
2408 		perf_event__header_size(tmp);
2409 
2410 	perf_event__header_size(leader);
2411 }
2412 
2413 static void perf_child_detach(struct perf_event *event)
2414 {
2415 	struct perf_event *parent_event = event->parent;
2416 
2417 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2418 		return;
2419 
2420 	event->attach_state &= ~PERF_ATTACH_CHILD;
2421 
2422 	if (WARN_ON_ONCE(!parent_event))
2423 		return;
2424 
2425 	/*
2426 	 * Can't check this from an IPI, the holder is likey another CPU.
2427 	 *
2428 	lockdep_assert_held(&parent_event->child_mutex);
2429 	 */
2430 
2431 	list_del_init(&event->child_list);
2432 }
2433 
2434 static bool is_orphaned_event(struct perf_event *event)
2435 {
2436 	return event->state == PERF_EVENT_STATE_DEAD;
2437 }
2438 
2439 static inline int
2440 event_filter_match(struct perf_event *event)
2441 {
2442 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2443 	       perf_cgroup_match(event);
2444 }
2445 
2446 static inline bool is_event_in_freq_mode(struct perf_event *event)
2447 {
2448 	return event->attr.freq && event->attr.sample_freq;
2449 }
2450 
2451 static void
2452 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2453 {
2454 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2455 	struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu);
2456 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2457 
2458 	// XXX cpc serialization, probably per-cpu IRQ disabled
2459 
2460 	WARN_ON_ONCE(event->ctx != ctx);
2461 	lockdep_assert_held(&ctx->lock);
2462 
2463 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2464 		return;
2465 
2466 	/*
2467 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2468 	 * we can schedule events _OUT_ individually through things like
2469 	 * __perf_remove_from_context().
2470 	 */
2471 	list_del_init(&event->active_list);
2472 
2473 	perf_pmu_disable(event->pmu);
2474 
2475 	event->pmu->del(event, 0);
2476 	event->oncpu = -1;
2477 
2478 	if (event->pending_disable) {
2479 		event->pending_disable = 0;
2480 		perf_cgroup_event_disable(event, ctx);
2481 		state = PERF_EVENT_STATE_OFF;
2482 	}
2483 
2484 	perf_event_set_state(event, state);
2485 
2486 	if (!is_software_event(event))
2487 		cpc->active_oncpu--;
2488 	if (is_event_in_freq_mode(event)) {
2489 		ctx->nr_freq--;
2490 		epc->nr_freq--;
2491 	}
2492 	if (event->attr.exclusive || !cpc->active_oncpu)
2493 		cpc->exclusive = 0;
2494 
2495 	perf_pmu_enable(event->pmu);
2496 }
2497 
2498 static void
2499 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2500 {
2501 	struct perf_event *event;
2502 
2503 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2504 		return;
2505 
2506 	perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2507 
2508 	event_sched_out(group_event, ctx);
2509 
2510 	/*
2511 	 * Schedule out siblings (if any):
2512 	 */
2513 	for_each_sibling_event(event, group_event)
2514 		event_sched_out(event, ctx);
2515 }
2516 
2517 static inline void
2518 __ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx,
2519 		  bool final, enum event_type_t event_type)
2520 {
2521 	if (ctx->is_active & EVENT_TIME) {
2522 		if (ctx->is_active & EVENT_FROZEN)
2523 			return;
2524 
2525 		update_context_time(ctx);
2526 		/* vPMU should not stop time */
2527 		update_cgrp_time_from_cpuctx(cpuctx, !(event_type & EVENT_GUEST) && final);
2528 	}
2529 }
2530 
2531 static inline void
2532 ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2533 {
2534 	__ctx_time_update(cpuctx, ctx, false, 0);
2535 }
2536 
2537 /*
2538  * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock().
2539  */
2540 static inline void
2541 ctx_time_freeze(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2542 {
2543 	ctx_time_update(cpuctx, ctx);
2544 	if (ctx->is_active & EVENT_TIME)
2545 		ctx->is_active |= EVENT_FROZEN;
2546 }
2547 
2548 static inline void
2549 ctx_time_update_event(struct perf_event_context *ctx, struct perf_event *event)
2550 {
2551 	if (ctx->is_active & EVENT_TIME) {
2552 		if (ctx->is_active & EVENT_FROZEN)
2553 			return;
2554 		update_context_time(ctx);
2555 		update_cgrp_time_from_event(event);
2556 	}
2557 }
2558 
2559 #define DETACH_GROUP	0x01UL
2560 #define DETACH_CHILD	0x02UL
2561 #define DETACH_EXIT	0x04UL
2562 #define DETACH_REVOKE	0x08UL
2563 #define DETACH_DEAD	0x10UL
2564 
2565 /*
2566  * Cross CPU call to remove a performance event
2567  *
2568  * We disable the event on the hardware level first. After that we
2569  * remove it from the context list.
2570  */
2571 static void
2572 __perf_remove_from_context(struct perf_event *event,
2573 			   struct perf_cpu_context *cpuctx,
2574 			   struct perf_event_context *ctx,
2575 			   void *info)
2576 {
2577 	struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2578 	enum perf_event_state state = PERF_EVENT_STATE_OFF;
2579 	unsigned long flags = (unsigned long)info;
2580 
2581 	ctx_time_update(cpuctx, ctx);
2582 
2583 	/*
2584 	 * Ensure event_sched_out() switches to OFF, at the very least
2585 	 * this avoids raising perf_pending_task() at this time.
2586 	 */
2587 	if (flags & DETACH_EXIT)
2588 		state = PERF_EVENT_STATE_EXIT;
2589 	if (flags & DETACH_REVOKE)
2590 		state = PERF_EVENT_STATE_REVOKED;
2591 	if (flags & DETACH_DEAD)
2592 		state = PERF_EVENT_STATE_DEAD;
2593 
2594 	event_sched_out(event, ctx);
2595 
2596 	if (event->state > PERF_EVENT_STATE_OFF)
2597 		perf_cgroup_event_disable(event, ctx);
2598 
2599 	perf_event_set_state(event, min(event->state, state));
2600 
2601 	if (flags & DETACH_GROUP)
2602 		perf_group_detach(event);
2603 	if (flags & DETACH_CHILD)
2604 		perf_child_detach(event);
2605 	list_del_event(event, ctx);
2606 
2607 	if (!pmu_ctx->nr_events) {
2608 		pmu_ctx->rotate_necessary = 0;
2609 
2610 		if (ctx->task && ctx->is_active) {
2611 			struct perf_cpu_pmu_context *cpc = this_cpc(pmu_ctx->pmu);
2612 
2613 			WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2614 			cpc->task_epc = NULL;
2615 		}
2616 	}
2617 
2618 	if (!ctx->nr_events && ctx->is_active) {
2619 		if (ctx == &cpuctx->ctx)
2620 			update_cgrp_time_from_cpuctx(cpuctx, true);
2621 
2622 		ctx->is_active = 0;
2623 		if (ctx->task) {
2624 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2625 			cpuctx->task_ctx = NULL;
2626 		}
2627 	}
2628 }
2629 
2630 /*
2631  * Remove the event from a task's (or a CPU's) list of events.
2632  *
2633  * If event->ctx is a cloned context, callers must make sure that
2634  * every task struct that event->ctx->task could possibly point to
2635  * remains valid.  This is OK when called from perf_release since
2636  * that only calls us on the top-level context, which can't be a clone.
2637  * When called from perf_event_exit_task, it's OK because the
2638  * context has been detached from its task.
2639  */
2640 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2641 {
2642 	struct perf_event_context *ctx = event->ctx;
2643 
2644 	lockdep_assert_held(&ctx->mutex);
2645 
2646 	/*
2647 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2648 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2649 	 * event_function_call() user.
2650 	 */
2651 	raw_spin_lock_irq(&ctx->lock);
2652 	if (!ctx->is_active) {
2653 		__perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2654 					   ctx, (void *)flags);
2655 		raw_spin_unlock_irq(&ctx->lock);
2656 		return;
2657 	}
2658 	raw_spin_unlock_irq(&ctx->lock);
2659 
2660 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2661 }
2662 
2663 static void __event_disable(struct perf_event *event,
2664 			    struct perf_event_context *ctx,
2665 			    enum perf_event_state state)
2666 {
2667 	event_sched_out(event, ctx);
2668 	perf_cgroup_event_disable(event, ctx);
2669 	perf_event_set_state(event, state);
2670 }
2671 
2672 /*
2673  * Cross CPU call to disable a performance event
2674  */
2675 static void __perf_event_disable(struct perf_event *event,
2676 				 struct perf_cpu_context *cpuctx,
2677 				 struct perf_event_context *ctx,
2678 				 void *info)
2679 {
2680 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2681 		return;
2682 
2683 	perf_pmu_disable(event->pmu_ctx->pmu);
2684 	ctx_time_update_event(ctx, event);
2685 
2686 	/*
2687 	 * When disabling a group leader, the whole group becomes ineligible
2688 	 * to run, so schedule out the full group.
2689 	 */
2690 	if (event == event->group_leader)
2691 		group_sched_out(event, ctx);
2692 
2693 	/*
2694 	 * But only mark the leader OFF; the siblings will remain
2695 	 * INACTIVE.
2696 	 */
2697 	__event_disable(event, ctx, PERF_EVENT_STATE_OFF);
2698 
2699 	perf_pmu_enable(event->pmu_ctx->pmu);
2700 }
2701 
2702 /*
2703  * Disable an event.
2704  *
2705  * If event->ctx is a cloned context, callers must make sure that
2706  * every task struct that event->ctx->task could possibly point to
2707  * remains valid.  This condition is satisfied when called through
2708  * perf_event_for_each_child or perf_event_for_each because they
2709  * hold the top-level event's child_mutex, so any descendant that
2710  * goes to exit will block in perf_event_exit_event().
2711  *
2712  * When called from perf_pending_disable it's OK because event->ctx
2713  * is the current context on this CPU and preemption is disabled,
2714  * hence we can't get into perf_event_task_sched_out for this context.
2715  */
2716 static void _perf_event_disable(struct perf_event *event)
2717 {
2718 	struct perf_event_context *ctx = event->ctx;
2719 
2720 	raw_spin_lock_irq(&ctx->lock);
2721 	if (event->state <= PERF_EVENT_STATE_OFF) {
2722 		raw_spin_unlock_irq(&ctx->lock);
2723 		return;
2724 	}
2725 	raw_spin_unlock_irq(&ctx->lock);
2726 
2727 	event_function_call(event, __perf_event_disable, NULL);
2728 }
2729 
2730 void perf_event_disable_local(struct perf_event *event)
2731 {
2732 	event_function_local(event, __perf_event_disable, NULL);
2733 }
2734 
2735 /*
2736  * Strictly speaking kernel users cannot create groups and therefore this
2737  * interface does not need the perf_event_ctx_lock() magic.
2738  */
2739 void perf_event_disable(struct perf_event *event)
2740 {
2741 	struct perf_event_context *ctx;
2742 
2743 	ctx = perf_event_ctx_lock(event);
2744 	_perf_event_disable(event);
2745 	perf_event_ctx_unlock(event, ctx);
2746 }
2747 EXPORT_SYMBOL_GPL(perf_event_disable);
2748 
2749 void perf_event_disable_inatomic(struct perf_event *event)
2750 {
2751 	event->pending_disable = 1;
2752 	irq_work_queue(&event->pending_disable_irq);
2753 }
2754 
2755 #define MAX_INTERRUPTS (~0ULL)
2756 
2757 static void perf_log_throttle(struct perf_event *event, int enable);
2758 static void perf_log_itrace_start(struct perf_event *event);
2759 
2760 static void perf_event_unthrottle(struct perf_event *event, bool start)
2761 {
2762 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2763 		return;
2764 
2765 	event->hw.interrupts = 0;
2766 	if (start)
2767 		event->pmu->start(event, 0);
2768 	if (event == event->group_leader)
2769 		perf_log_throttle(event, 1);
2770 }
2771 
2772 static void perf_event_throttle(struct perf_event *event)
2773 {
2774 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2775 		return;
2776 
2777 	event->hw.interrupts = MAX_INTERRUPTS;
2778 	event->pmu->stop(event, 0);
2779 	if (event == event->group_leader)
2780 		perf_log_throttle(event, 0);
2781 }
2782 
2783 static void perf_event_unthrottle_group(struct perf_event *event, bool skip_start_event)
2784 {
2785 	struct perf_event *sibling, *leader = event->group_leader;
2786 
2787 	perf_event_unthrottle(leader, skip_start_event ? leader != event : true);
2788 	for_each_sibling_event(sibling, leader)
2789 		perf_event_unthrottle(sibling, skip_start_event ? sibling != event : true);
2790 }
2791 
2792 static void perf_event_throttle_group(struct perf_event *event)
2793 {
2794 	struct perf_event *sibling, *leader = event->group_leader;
2795 
2796 	perf_event_throttle(leader);
2797 	for_each_sibling_event(sibling, leader)
2798 		perf_event_throttle(sibling);
2799 }
2800 
2801 static int
2802 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2803 {
2804 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2805 	struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu);
2806 	int ret = 0;
2807 
2808 	WARN_ON_ONCE(event->ctx != ctx);
2809 
2810 	lockdep_assert_held(&ctx->lock);
2811 
2812 	if (event->state <= PERF_EVENT_STATE_OFF)
2813 		return 0;
2814 
2815 	WRITE_ONCE(event->oncpu, smp_processor_id());
2816 	/*
2817 	 * Order event::oncpu write to happen before the ACTIVE state is
2818 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2819 	 * ->oncpu if it sees ACTIVE.
2820 	 */
2821 	smp_wmb();
2822 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2823 
2824 	/*
2825 	 * Unthrottle events, since we scheduled we might have missed several
2826 	 * ticks already, also for a heavily scheduling task there is little
2827 	 * guarantee it'll get a tick in a timely manner.
2828 	 */
2829 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS))
2830 		perf_event_unthrottle(event, false);
2831 
2832 	perf_pmu_disable(event->pmu);
2833 
2834 	perf_log_itrace_start(event);
2835 
2836 	if (event->pmu->add(event, PERF_EF_START)) {
2837 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2838 		event->oncpu = -1;
2839 		ret = -EAGAIN;
2840 		goto out;
2841 	}
2842 
2843 	if (!is_software_event(event))
2844 		cpc->active_oncpu++;
2845 	if (is_event_in_freq_mode(event)) {
2846 		ctx->nr_freq++;
2847 		epc->nr_freq++;
2848 	}
2849 	if (event->attr.exclusive)
2850 		cpc->exclusive = 1;
2851 
2852 out:
2853 	perf_pmu_enable(event->pmu);
2854 
2855 	return ret;
2856 }
2857 
2858 static int
2859 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2860 {
2861 	struct perf_event *event, *partial_group = NULL;
2862 	struct pmu *pmu = group_event->pmu_ctx->pmu;
2863 
2864 	if (group_event->state == PERF_EVENT_STATE_OFF)
2865 		return 0;
2866 
2867 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2868 
2869 	if (event_sched_in(group_event, ctx))
2870 		goto error;
2871 
2872 	/*
2873 	 * Schedule in siblings as one group (if any):
2874 	 */
2875 	for_each_sibling_event(event, group_event) {
2876 		if (event_sched_in(event, ctx)) {
2877 			partial_group = event;
2878 			goto group_error;
2879 		}
2880 	}
2881 
2882 	if (!pmu->commit_txn(pmu))
2883 		return 0;
2884 
2885 group_error:
2886 	/*
2887 	 * Groups can be scheduled in as one unit only, so undo any
2888 	 * partial group before returning:
2889 	 * The events up to the failed event are scheduled out normally.
2890 	 */
2891 	for_each_sibling_event(event, group_event) {
2892 		if (event == partial_group)
2893 			break;
2894 
2895 		event_sched_out(event, ctx);
2896 	}
2897 	event_sched_out(group_event, ctx);
2898 
2899 error:
2900 	pmu->cancel_txn(pmu);
2901 	return -EAGAIN;
2902 }
2903 
2904 /*
2905  * Work out whether we can put this event group on the CPU now.
2906  */
2907 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2908 {
2909 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2910 	struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu);
2911 
2912 	/*
2913 	 * Groups consisting entirely of software events can always go on.
2914 	 */
2915 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2916 		return 1;
2917 	/*
2918 	 * If an exclusive group is already on, no other hardware
2919 	 * events can go on.
2920 	 */
2921 	if (cpc->exclusive)
2922 		return 0;
2923 	/*
2924 	 * If this group is exclusive and there are already
2925 	 * events on the CPU, it can't go on.
2926 	 */
2927 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2928 		return 0;
2929 	/*
2930 	 * Otherwise, try to add it if all previous groups were able
2931 	 * to go on.
2932 	 */
2933 	return can_add_hw;
2934 }
2935 
2936 static void add_event_to_ctx(struct perf_event *event,
2937 			       struct perf_event_context *ctx)
2938 {
2939 	list_add_event(event, ctx);
2940 	perf_group_attach(event);
2941 }
2942 
2943 static void task_ctx_sched_out(struct perf_event_context *ctx,
2944 			       struct pmu *pmu,
2945 			       enum event_type_t event_type)
2946 {
2947 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2948 
2949 	if (!cpuctx->task_ctx)
2950 		return;
2951 
2952 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2953 		return;
2954 
2955 	ctx_sched_out(ctx, pmu, event_type);
2956 }
2957 
2958 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2959 				struct perf_event_context *ctx,
2960 				struct pmu *pmu,
2961 				enum event_type_t event_type)
2962 {
2963 	ctx_sched_in(&cpuctx->ctx, pmu, EVENT_PINNED | event_type);
2964 	if (ctx)
2965 		ctx_sched_in(ctx, pmu, EVENT_PINNED | event_type);
2966 	ctx_sched_in(&cpuctx->ctx, pmu, EVENT_FLEXIBLE | event_type);
2967 	if (ctx)
2968 		ctx_sched_in(ctx, pmu, EVENT_FLEXIBLE | event_type);
2969 }
2970 
2971 /*
2972  * We want to maintain the following priority of scheduling:
2973  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2974  *  - task pinned (EVENT_PINNED)
2975  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2976  *  - task flexible (EVENT_FLEXIBLE).
2977  *
2978  * In order to avoid unscheduling and scheduling back in everything every
2979  * time an event is added, only do it for the groups of equal priority and
2980  * below.
2981  *
2982  * This can be called after a batch operation on task events, in which case
2983  * event_type is a bit mask of the types of events involved. For CPU events,
2984  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2985  */
2986 static void ctx_resched(struct perf_cpu_context *cpuctx,
2987 			struct perf_event_context *task_ctx,
2988 			struct pmu *pmu, enum event_type_t event_type)
2989 {
2990 	bool cpu_event = !!(event_type & EVENT_CPU);
2991 	struct perf_event_pmu_context *epc;
2992 
2993 	/*
2994 	 * If pinned groups are involved, flexible groups also need to be
2995 	 * scheduled out.
2996 	 */
2997 	if (event_type & EVENT_PINNED)
2998 		event_type |= EVENT_FLEXIBLE;
2999 
3000 	event_type &= EVENT_ALL;
3001 
3002 	for_each_epc(epc, &cpuctx->ctx, pmu, 0)
3003 		perf_pmu_disable(epc->pmu);
3004 
3005 	if (task_ctx) {
3006 		for_each_epc(epc, task_ctx, pmu, 0)
3007 			perf_pmu_disable(epc->pmu);
3008 
3009 		task_ctx_sched_out(task_ctx, pmu, event_type);
3010 	}
3011 
3012 	/*
3013 	 * Decide which cpu ctx groups to schedule out based on the types
3014 	 * of events that caused rescheduling:
3015 	 *  - EVENT_CPU: schedule out corresponding groups;
3016 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
3017 	 *  - otherwise, do nothing more.
3018 	 */
3019 	if (cpu_event)
3020 		ctx_sched_out(&cpuctx->ctx, pmu, event_type);
3021 	else if (event_type & EVENT_PINNED)
3022 		ctx_sched_out(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
3023 
3024 	perf_event_sched_in(cpuctx, task_ctx, pmu, 0);
3025 
3026 	for_each_epc(epc, &cpuctx->ctx, pmu, 0)
3027 		perf_pmu_enable(epc->pmu);
3028 
3029 	if (task_ctx) {
3030 		for_each_epc(epc, task_ctx, pmu, 0)
3031 			perf_pmu_enable(epc->pmu);
3032 	}
3033 }
3034 
3035 void perf_pmu_resched(struct pmu *pmu)
3036 {
3037 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3038 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
3039 
3040 	perf_ctx_lock(cpuctx, task_ctx);
3041 	ctx_resched(cpuctx, task_ctx, pmu, EVENT_ALL|EVENT_CPU);
3042 	perf_ctx_unlock(cpuctx, task_ctx);
3043 }
3044 
3045 /*
3046  * Cross CPU call to install and enable a performance event
3047  *
3048  * Very similar to remote_function() + event_function() but cannot assume that
3049  * things like ctx->is_active and cpuctx->task_ctx are set.
3050  */
3051 static int  __perf_install_in_context(void *info)
3052 {
3053 	struct perf_event *event = info;
3054 	struct perf_event_context *ctx = event->ctx;
3055 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3056 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
3057 	bool reprogram = true;
3058 	int ret = 0;
3059 
3060 	raw_spin_lock(&cpuctx->ctx.lock);
3061 	if (ctx->task) {
3062 		raw_spin_lock(&ctx->lock);
3063 		task_ctx = ctx;
3064 
3065 		reprogram = (ctx->task == current);
3066 
3067 		/*
3068 		 * If the task is running, it must be running on this CPU,
3069 		 * otherwise we cannot reprogram things.
3070 		 *
3071 		 * If its not running, we don't care, ctx->lock will
3072 		 * serialize against it becoming runnable.
3073 		 */
3074 		if (task_curr(ctx->task) && !reprogram) {
3075 			ret = -ESRCH;
3076 			goto unlock;
3077 		}
3078 
3079 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
3080 	} else if (task_ctx) {
3081 		raw_spin_lock(&task_ctx->lock);
3082 	}
3083 
3084 #ifdef CONFIG_CGROUP_PERF
3085 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
3086 		/*
3087 		 * If the current cgroup doesn't match the event's
3088 		 * cgroup, we should not try to schedule it.
3089 		 */
3090 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
3091 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
3092 					event->cgrp->css.cgroup);
3093 	}
3094 #endif
3095 
3096 	if (reprogram) {
3097 		ctx_time_freeze(cpuctx, ctx);
3098 		add_event_to_ctx(event, ctx);
3099 		ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu,
3100 			    get_event_type(event));
3101 	} else {
3102 		add_event_to_ctx(event, ctx);
3103 	}
3104 
3105 unlock:
3106 	perf_ctx_unlock(cpuctx, task_ctx);
3107 
3108 	return ret;
3109 }
3110 
3111 static bool exclusive_event_installable(struct perf_event *event,
3112 					struct perf_event_context *ctx);
3113 
3114 /*
3115  * Attach a performance event to a context.
3116  *
3117  * Very similar to event_function_call, see comment there.
3118  */
3119 static void
3120 perf_install_in_context(struct perf_event_context *ctx,
3121 			struct perf_event *event,
3122 			int cpu)
3123 {
3124 	struct task_struct *task = READ_ONCE(ctx->task);
3125 
3126 	lockdep_assert_held(&ctx->mutex);
3127 
3128 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
3129 
3130 	if (event->cpu != -1)
3131 		WARN_ON_ONCE(event->cpu != cpu);
3132 
3133 	/*
3134 	 * Ensures that if we can observe event->ctx, both the event and ctx
3135 	 * will be 'complete'. See perf_iterate_sb_cpu().
3136 	 */
3137 	smp_store_release(&event->ctx, ctx);
3138 
3139 	/*
3140 	 * perf_event_attr::disabled events will not run and can be initialized
3141 	 * without IPI. Except when this is the first event for the context, in
3142 	 * that case we need the magic of the IPI to set ctx->is_active.
3143 	 *
3144 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
3145 	 * event will issue the IPI and reprogram the hardware.
3146 	 */
3147 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
3148 	    ctx->nr_events && !is_cgroup_event(event)) {
3149 		raw_spin_lock_irq(&ctx->lock);
3150 		if (ctx->task == TASK_TOMBSTONE) {
3151 			raw_spin_unlock_irq(&ctx->lock);
3152 			return;
3153 		}
3154 		add_event_to_ctx(event, ctx);
3155 		raw_spin_unlock_irq(&ctx->lock);
3156 		return;
3157 	}
3158 
3159 	if (!task) {
3160 		cpu_function_call(cpu, __perf_install_in_context, event);
3161 		return;
3162 	}
3163 
3164 	/*
3165 	 * Should not happen, we validate the ctx is still alive before calling.
3166 	 */
3167 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
3168 		return;
3169 
3170 	/*
3171 	 * Installing events is tricky because we cannot rely on ctx->is_active
3172 	 * to be set in case this is the nr_events 0 -> 1 transition.
3173 	 *
3174 	 * Instead we use task_curr(), which tells us if the task is running.
3175 	 * However, since we use task_curr() outside of rq::lock, we can race
3176 	 * against the actual state. This means the result can be wrong.
3177 	 *
3178 	 * If we get a false positive, we retry, this is harmless.
3179 	 *
3180 	 * If we get a false negative, things are complicated. If we are after
3181 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
3182 	 * value must be correct. If we're before, it doesn't matter since
3183 	 * perf_event_context_sched_in() will program the counter.
3184 	 *
3185 	 * However, this hinges on the remote context switch having observed
3186 	 * our task->perf_event_ctxp[] store, such that it will in fact take
3187 	 * ctx::lock in perf_event_context_sched_in().
3188 	 *
3189 	 * We do this by task_function_call(), if the IPI fails to hit the task
3190 	 * we know any future context switch of task must see the
3191 	 * perf_event_ctpx[] store.
3192 	 */
3193 
3194 	/*
3195 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
3196 	 * task_cpu() load, such that if the IPI then does not find the task
3197 	 * running, a future context switch of that task must observe the
3198 	 * store.
3199 	 */
3200 	smp_mb();
3201 again:
3202 	if (!task_function_call(task, __perf_install_in_context, event))
3203 		return;
3204 
3205 	raw_spin_lock_irq(&ctx->lock);
3206 	task = ctx->task;
3207 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
3208 		/*
3209 		 * Cannot happen because we already checked above (which also
3210 		 * cannot happen), and we hold ctx->mutex, which serializes us
3211 		 * against perf_event_exit_task_context().
3212 		 */
3213 		raw_spin_unlock_irq(&ctx->lock);
3214 		return;
3215 	}
3216 	/*
3217 	 * If the task is not running, ctx->lock will avoid it becoming so,
3218 	 * thus we can safely install the event.
3219 	 */
3220 	if (task_curr(task)) {
3221 		raw_spin_unlock_irq(&ctx->lock);
3222 		goto again;
3223 	}
3224 	add_event_to_ctx(event, ctx);
3225 	raw_spin_unlock_irq(&ctx->lock);
3226 }
3227 
3228 /*
3229  * Cross CPU call to enable a performance event
3230  */
3231 static void __perf_event_enable(struct perf_event *event,
3232 				struct perf_cpu_context *cpuctx,
3233 				struct perf_event_context *ctx,
3234 				void *info)
3235 {
3236 	struct perf_event *leader = event->group_leader;
3237 	struct perf_event_context *task_ctx;
3238 
3239 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3240 	    event->state <= PERF_EVENT_STATE_ERROR)
3241 		return;
3242 
3243 	ctx_time_freeze(cpuctx, ctx);
3244 
3245 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3246 	perf_cgroup_event_enable(event, ctx);
3247 
3248 	if (!ctx->is_active)
3249 		return;
3250 
3251 	if (!event_filter_match(event))
3252 		return;
3253 
3254 	/*
3255 	 * If the event is in a group and isn't the group leader,
3256 	 * then don't put it on unless the group is on.
3257 	 */
3258 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
3259 		return;
3260 
3261 	task_ctx = cpuctx->task_ctx;
3262 	if (ctx->task)
3263 		WARN_ON_ONCE(task_ctx != ctx);
3264 
3265 	ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, get_event_type(event));
3266 }
3267 
3268 /*
3269  * Enable an event.
3270  *
3271  * If event->ctx is a cloned context, callers must make sure that
3272  * every task struct that event->ctx->task could possibly point to
3273  * remains valid.  This condition is satisfied when called through
3274  * perf_event_for_each_child or perf_event_for_each as described
3275  * for perf_event_disable.
3276  */
3277 static void _perf_event_enable(struct perf_event *event)
3278 {
3279 	struct perf_event_context *ctx = event->ctx;
3280 
3281 	raw_spin_lock_irq(&ctx->lock);
3282 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3283 	    event->state <  PERF_EVENT_STATE_ERROR) {
3284 out:
3285 		raw_spin_unlock_irq(&ctx->lock);
3286 		return;
3287 	}
3288 
3289 	/*
3290 	 * If the event is in error state, clear that first.
3291 	 *
3292 	 * That way, if we see the event in error state below, we know that it
3293 	 * has gone back into error state, as distinct from the task having
3294 	 * been scheduled away before the cross-call arrived.
3295 	 */
3296 	if (event->state == PERF_EVENT_STATE_ERROR) {
3297 		/*
3298 		 * Detached SIBLING events cannot leave ERROR state.
3299 		 */
3300 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3301 		    event->group_leader == event)
3302 			goto out;
3303 
3304 		event->state = PERF_EVENT_STATE_OFF;
3305 	}
3306 	raw_spin_unlock_irq(&ctx->lock);
3307 
3308 	event_function_call(event, __perf_event_enable, NULL);
3309 }
3310 
3311 /*
3312  * See perf_event_disable();
3313  */
3314 void perf_event_enable(struct perf_event *event)
3315 {
3316 	struct perf_event_context *ctx;
3317 
3318 	ctx = perf_event_ctx_lock(event);
3319 	_perf_event_enable(event);
3320 	perf_event_ctx_unlock(event, ctx);
3321 }
3322 EXPORT_SYMBOL_GPL(perf_event_enable);
3323 
3324 struct stop_event_data {
3325 	struct perf_event	*event;
3326 	unsigned int		restart;
3327 };
3328 
3329 static int __perf_event_stop(void *info)
3330 {
3331 	struct stop_event_data *sd = info;
3332 	struct perf_event *event = sd->event;
3333 
3334 	/* if it's already INACTIVE, do nothing */
3335 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3336 		return 0;
3337 
3338 	/* matches smp_wmb() in event_sched_in() */
3339 	smp_rmb();
3340 
3341 	/*
3342 	 * There is a window with interrupts enabled before we get here,
3343 	 * so we need to check again lest we try to stop another CPU's event.
3344 	 */
3345 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3346 		return -EAGAIN;
3347 
3348 	event->pmu->stop(event, PERF_EF_UPDATE);
3349 
3350 	/*
3351 	 * May race with the actual stop (through perf_pmu_output_stop()),
3352 	 * but it is only used for events with AUX ring buffer, and such
3353 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3354 	 * see comments in perf_aux_output_begin().
3355 	 *
3356 	 * Since this is happening on an event-local CPU, no trace is lost
3357 	 * while restarting.
3358 	 */
3359 	if (sd->restart)
3360 		event->pmu->start(event, 0);
3361 
3362 	return 0;
3363 }
3364 
3365 static int perf_event_stop(struct perf_event *event, int restart)
3366 {
3367 	struct stop_event_data sd = {
3368 		.event		= event,
3369 		.restart	= restart,
3370 	};
3371 	int ret = 0;
3372 
3373 	do {
3374 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3375 			return 0;
3376 
3377 		/* matches smp_wmb() in event_sched_in() */
3378 		smp_rmb();
3379 
3380 		/*
3381 		 * We only want to restart ACTIVE events, so if the event goes
3382 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3383 		 * fall through with ret==-ENXIO.
3384 		 */
3385 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3386 					__perf_event_stop, &sd);
3387 	} while (ret == -EAGAIN);
3388 
3389 	return ret;
3390 }
3391 
3392 /*
3393  * In order to contain the amount of racy and tricky in the address filter
3394  * configuration management, it is a two part process:
3395  *
3396  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3397  *      we update the addresses of corresponding vmas in
3398  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3399  * (p2) when an event is scheduled in (pmu::add), it calls
3400  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3401  *      if the generation has changed since the previous call.
3402  *
3403  * If (p1) happens while the event is active, we restart it to force (p2).
3404  *
3405  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3406  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3407  *     ioctl;
3408  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3409  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3410  *     for reading;
3411  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3412  *     of exec.
3413  */
3414 void perf_event_addr_filters_sync(struct perf_event *event)
3415 {
3416 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3417 
3418 	if (!has_addr_filter(event))
3419 		return;
3420 
3421 	raw_spin_lock(&ifh->lock);
3422 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3423 		event->pmu->addr_filters_sync(event);
3424 		event->hw.addr_filters_gen = event->addr_filters_gen;
3425 	}
3426 	raw_spin_unlock(&ifh->lock);
3427 }
3428 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3429 
3430 static int _perf_event_refresh(struct perf_event *event, int refresh)
3431 {
3432 	/*
3433 	 * not supported on inherited events
3434 	 */
3435 	if (event->attr.inherit || !is_sampling_event(event))
3436 		return -EINVAL;
3437 
3438 	atomic_add(refresh, &event->event_limit);
3439 	_perf_event_enable(event);
3440 
3441 	return 0;
3442 }
3443 
3444 /*
3445  * See perf_event_disable()
3446  */
3447 int perf_event_refresh(struct perf_event *event, int refresh)
3448 {
3449 	struct perf_event_context *ctx;
3450 	int ret;
3451 
3452 	ctx = perf_event_ctx_lock(event);
3453 	ret = _perf_event_refresh(event, refresh);
3454 	perf_event_ctx_unlock(event, ctx);
3455 
3456 	return ret;
3457 }
3458 EXPORT_SYMBOL_GPL(perf_event_refresh);
3459 
3460 static int perf_event_modify_breakpoint(struct perf_event *bp,
3461 					 struct perf_event_attr *attr)
3462 {
3463 	int err;
3464 
3465 	_perf_event_disable(bp);
3466 
3467 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3468 
3469 	if (!bp->attr.disabled)
3470 		_perf_event_enable(bp);
3471 
3472 	return err;
3473 }
3474 
3475 /*
3476  * Copy event-type-independent attributes that may be modified.
3477  */
3478 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3479 					const struct perf_event_attr *from)
3480 {
3481 	to->sig_data = from->sig_data;
3482 }
3483 
3484 static int perf_event_modify_attr(struct perf_event *event,
3485 				  struct perf_event_attr *attr)
3486 {
3487 	int (*func)(struct perf_event *, struct perf_event_attr *);
3488 	struct perf_event *child;
3489 	int err;
3490 
3491 	if (event->attr.type != attr->type)
3492 		return -EINVAL;
3493 
3494 	switch (event->attr.type) {
3495 	case PERF_TYPE_BREAKPOINT:
3496 		func = perf_event_modify_breakpoint;
3497 		break;
3498 	default:
3499 		/* Place holder for future additions. */
3500 		return -EOPNOTSUPP;
3501 	}
3502 
3503 	WARN_ON_ONCE(event->ctx->parent_ctx);
3504 
3505 	mutex_lock(&event->child_mutex);
3506 	/*
3507 	 * Event-type-independent attributes must be copied before event-type
3508 	 * modification, which will validate that final attributes match the
3509 	 * source attributes after all relevant attributes have been copied.
3510 	 */
3511 	perf_event_modify_copy_attr(&event->attr, attr);
3512 	err = func(event, attr);
3513 	if (err)
3514 		goto out;
3515 	list_for_each_entry(child, &event->child_list, child_list) {
3516 		perf_event_modify_copy_attr(&child->attr, attr);
3517 		err = func(child, attr);
3518 		if (err)
3519 			goto out;
3520 	}
3521 out:
3522 	mutex_unlock(&event->child_mutex);
3523 	return err;
3524 }
3525 
3526 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3527 				enum event_type_t event_type)
3528 {
3529 	struct perf_event_context *ctx = pmu_ctx->ctx;
3530 	struct perf_event *event, *tmp;
3531 	struct pmu *pmu = pmu_ctx->pmu;
3532 
3533 	if (ctx->task && !(ctx->is_active & EVENT_ALL)) {
3534 		struct perf_cpu_pmu_context *cpc = this_cpc(pmu);
3535 
3536 		WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3537 		cpc->task_epc = NULL;
3538 	}
3539 
3540 	if (!(event_type & EVENT_ALL))
3541 		return;
3542 
3543 	perf_pmu_disable(pmu);
3544 	if (event_type & EVENT_PINNED) {
3545 		list_for_each_entry_safe(event, tmp,
3546 					 &pmu_ctx->pinned_active,
3547 					 active_list)
3548 			group_sched_out(event, ctx);
3549 	}
3550 
3551 	if (event_type & EVENT_FLEXIBLE) {
3552 		list_for_each_entry_safe(event, tmp,
3553 					 &pmu_ctx->flexible_active,
3554 					 active_list)
3555 			group_sched_out(event, ctx);
3556 		/*
3557 		 * Since we cleared EVENT_FLEXIBLE, also clear
3558 		 * rotate_necessary, is will be reset by
3559 		 * ctx_flexible_sched_in() when needed.
3560 		 */
3561 		pmu_ctx->rotate_necessary = 0;
3562 	}
3563 	perf_pmu_enable(pmu);
3564 }
3565 
3566 /*
3567  * Be very careful with the @pmu argument since this will change ctx state.
3568  * The @pmu argument works for ctx_resched(), because that is symmetric in
3569  * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant.
3570  *
3571  * However, if you were to be asymmetrical, you could end up with messed up
3572  * state, eg. ctx->is_active cleared even though most EPCs would still actually
3573  * be active.
3574  */
3575 static void
3576 ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
3577 {
3578 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3579 	enum event_type_t active_type = event_type & ~EVENT_FLAGS;
3580 	struct perf_event_pmu_context *pmu_ctx;
3581 	int is_active = ctx->is_active;
3582 
3583 
3584 	lockdep_assert_held(&ctx->lock);
3585 
3586 	if (likely(!ctx->nr_events)) {
3587 		/*
3588 		 * See __perf_remove_from_context().
3589 		 */
3590 		WARN_ON_ONCE(ctx->is_active);
3591 		if (ctx->task)
3592 			WARN_ON_ONCE(cpuctx->task_ctx);
3593 		return;
3594 	}
3595 
3596 	/*
3597 	 * Always update time if it was set; not only when it changes.
3598 	 * Otherwise we can 'forget' to update time for any but the last
3599 	 * context we sched out. For example:
3600 	 *
3601 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3602 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3603 	 *
3604 	 * would only update time for the pinned events.
3605 	 */
3606 	__ctx_time_update(cpuctx, ctx, ctx == &cpuctx->ctx, event_type);
3607 
3608 	/*
3609 	 * CPU-release for the below ->is_active store,
3610 	 * see __load_acquire() in perf_event_time_now()
3611 	 */
3612 	barrier();
3613 	ctx->is_active &= ~active_type;
3614 
3615 	if (!(ctx->is_active & EVENT_ALL)) {
3616 		/*
3617 		 * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now()
3618 		 * does not observe a hole. perf_ctx_unlock() will clean up.
3619 		 */
3620 		if (ctx->is_active & EVENT_FROZEN)
3621 			ctx->is_active &= EVENT_TIME_FROZEN;
3622 		else
3623 			ctx->is_active = 0;
3624 	}
3625 
3626 	if (ctx->task) {
3627 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3628 		if (!(ctx->is_active & EVENT_ALL))
3629 			cpuctx->task_ctx = NULL;
3630 	}
3631 
3632 	if (event_type & EVENT_GUEST) {
3633 		/*
3634 		 * Schedule out all exclude_guest events of PMU
3635 		 * with PERF_PMU_CAP_MEDIATED_VPMU.
3636 		 */
3637 		is_active = EVENT_ALL;
3638 		__update_context_guest_time(ctx, false);
3639 		perf_cgroup_set_timestamp(cpuctx, true);
3640 		barrier();
3641 	} else {
3642 		is_active ^= ctx->is_active; /* changed bits */
3643 	}
3644 
3645 	for_each_epc(pmu_ctx, ctx, pmu, event_type)
3646 		__pmu_ctx_sched_out(pmu_ctx, is_active);
3647 }
3648 
3649 /*
3650  * Test whether two contexts are equivalent, i.e. whether they have both been
3651  * cloned from the same version of the same context.
3652  *
3653  * Equivalence is measured using a generation number in the context that is
3654  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3655  * and list_del_event().
3656  */
3657 static int context_equiv(struct perf_event_context *ctx1,
3658 			 struct perf_event_context *ctx2)
3659 {
3660 	lockdep_assert_held(&ctx1->lock);
3661 	lockdep_assert_held(&ctx2->lock);
3662 
3663 	/* Pinning disables the swap optimization */
3664 	if (ctx1->pin_count || ctx2->pin_count)
3665 		return 0;
3666 
3667 	/* If ctx1 is the parent of ctx2 */
3668 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3669 		return 1;
3670 
3671 	/* If ctx2 is the parent of ctx1 */
3672 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3673 		return 1;
3674 
3675 	/*
3676 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3677 	 * hierarchy, see perf_event_init_context().
3678 	 */
3679 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3680 			ctx1->parent_gen == ctx2->parent_gen)
3681 		return 1;
3682 
3683 	/* Unmatched */
3684 	return 0;
3685 }
3686 
3687 static void __perf_event_sync_stat(struct perf_event *event,
3688 				     struct perf_event *next_event)
3689 {
3690 	u64 value;
3691 
3692 	if (!event->attr.inherit_stat)
3693 		return;
3694 
3695 	/*
3696 	 * Update the event value, we cannot use perf_event_read()
3697 	 * because we're in the middle of a context switch and have IRQs
3698 	 * disabled, which upsets smp_call_function_single(), however
3699 	 * we know the event must be on the current CPU, therefore we
3700 	 * don't need to use it.
3701 	 */
3702 	perf_pmu_read(event);
3703 
3704 	perf_event_update_time(event);
3705 
3706 	/*
3707 	 * In order to keep per-task stats reliable we need to flip the event
3708 	 * values when we flip the contexts.
3709 	 */
3710 	value = local64_read(&next_event->count);
3711 	value = local64_xchg(&event->count, value);
3712 	local64_set(&next_event->count, value);
3713 
3714 	swap(event->total_time_enabled, next_event->total_time_enabled);
3715 	swap(event->total_time_running, next_event->total_time_running);
3716 
3717 	/*
3718 	 * Since we swizzled the values, update the user visible data too.
3719 	 */
3720 	perf_event_update_userpage(event);
3721 	perf_event_update_userpage(next_event);
3722 }
3723 
3724 static void perf_event_sync_stat(struct perf_event_context *ctx,
3725 				   struct perf_event_context *next_ctx)
3726 {
3727 	struct perf_event *event, *next_event;
3728 
3729 	if (!ctx->nr_stat)
3730 		return;
3731 
3732 	update_context_time(ctx);
3733 
3734 	event = list_first_entry(&ctx->event_list,
3735 				   struct perf_event, event_entry);
3736 
3737 	next_event = list_first_entry(&next_ctx->event_list,
3738 					struct perf_event, event_entry);
3739 
3740 	while (&event->event_entry != &ctx->event_list &&
3741 	       &next_event->event_entry != &next_ctx->event_list) {
3742 
3743 		__perf_event_sync_stat(event, next_event);
3744 
3745 		event = list_next_entry(event, event_entry);
3746 		next_event = list_next_entry(next_event, event_entry);
3747 	}
3748 }
3749 
3750 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx,
3751 				   struct task_struct *task, bool sched_in)
3752 {
3753 	struct perf_event_pmu_context *pmu_ctx;
3754 	struct perf_cpu_pmu_context *cpc;
3755 
3756 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3757 		cpc = this_cpc(pmu_ctx->pmu);
3758 
3759 		if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3760 			pmu_ctx->pmu->sched_task(pmu_ctx, task, sched_in);
3761 	}
3762 }
3763 
3764 static void
3765 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3766 {
3767 	struct perf_event_context *ctx = task->perf_event_ctxp;
3768 	struct perf_event_context *next_ctx;
3769 	struct perf_event_context *parent, *next_parent;
3770 	int do_switch = 1;
3771 
3772 	if (likely(!ctx))
3773 		return;
3774 
3775 	rcu_read_lock();
3776 	next_ctx = rcu_dereference(next->perf_event_ctxp);
3777 	if (!next_ctx)
3778 		goto unlock;
3779 
3780 	parent = rcu_dereference(ctx->parent_ctx);
3781 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3782 
3783 	/* If neither context have a parent context; they cannot be clones. */
3784 	if (!parent && !next_parent)
3785 		goto unlock;
3786 
3787 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3788 		/*
3789 		 * Looks like the two contexts are clones, so we might be
3790 		 * able to optimize the context switch.  We lock both
3791 		 * contexts and check that they are clones under the
3792 		 * lock (including re-checking that neither has been
3793 		 * uncloned in the meantime).  It doesn't matter which
3794 		 * order we take the locks because no other cpu could
3795 		 * be trying to lock both of these tasks.
3796 		 */
3797 		raw_spin_lock(&ctx->lock);
3798 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3799 		if (context_equiv(ctx, next_ctx)) {
3800 
3801 			perf_ctx_disable(ctx, 0);
3802 
3803 			/* PMIs are disabled; ctx->nr_no_switch_fast is stable. */
3804 			if (local_read(&ctx->nr_no_switch_fast) ||
3805 			    local_read(&next_ctx->nr_no_switch_fast)) {
3806 				/*
3807 				 * Must not swap out ctx when there's pending
3808 				 * events that rely on the ctx->task relation.
3809 				 *
3810 				 * Likewise, when a context contains inherit +
3811 				 * SAMPLE_READ events they should be switched
3812 				 * out using the slow path so that they are
3813 				 * treated as if they were distinct contexts.
3814 				 */
3815 				raw_spin_unlock(&next_ctx->lock);
3816 				rcu_read_unlock();
3817 				goto inside_switch;
3818 			}
3819 
3820 			WRITE_ONCE(ctx->task, next);
3821 			WRITE_ONCE(next_ctx->task, task);
3822 
3823 			perf_ctx_sched_task_cb(ctx, task, false);
3824 
3825 			perf_ctx_enable(ctx, 0);
3826 
3827 			/*
3828 			 * RCU_INIT_POINTER here is safe because we've not
3829 			 * modified the ctx and the above modification of
3830 			 * ctx->task is immaterial since this value is
3831 			 * always verified under ctx->lock which we're now
3832 			 * holding.
3833 			 */
3834 			RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3835 			RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3836 
3837 			do_switch = 0;
3838 
3839 			perf_event_sync_stat(ctx, next_ctx);
3840 		}
3841 		raw_spin_unlock(&next_ctx->lock);
3842 		raw_spin_unlock(&ctx->lock);
3843 	}
3844 unlock:
3845 	rcu_read_unlock();
3846 
3847 	if (do_switch) {
3848 		raw_spin_lock(&ctx->lock);
3849 		perf_ctx_disable(ctx, 0);
3850 
3851 inside_switch:
3852 		perf_ctx_sched_task_cb(ctx, task, false);
3853 		task_ctx_sched_out(ctx, NULL, EVENT_ALL);
3854 
3855 		perf_ctx_enable(ctx, 0);
3856 		raw_spin_unlock(&ctx->lock);
3857 	}
3858 }
3859 
3860 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3861 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3862 
3863 void perf_sched_cb_dec(struct pmu *pmu)
3864 {
3865 	struct perf_cpu_pmu_context *cpc = this_cpc(pmu);
3866 
3867 	this_cpu_dec(perf_sched_cb_usages);
3868 	barrier();
3869 
3870 	if (!--cpc->sched_cb_usage)
3871 		list_del(&cpc->sched_cb_entry);
3872 }
3873 
3874 
3875 void perf_sched_cb_inc(struct pmu *pmu)
3876 {
3877 	struct perf_cpu_pmu_context *cpc = this_cpc(pmu);
3878 
3879 	if (!cpc->sched_cb_usage++)
3880 		list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3881 
3882 	barrier();
3883 	this_cpu_inc(perf_sched_cb_usages);
3884 }
3885 
3886 /*
3887  * This function provides the context switch callback to the lower code
3888  * layer. It is invoked ONLY when the context switch callback is enabled.
3889  *
3890  * This callback is relevant even to per-cpu events; for example multi event
3891  * PEBS requires this to provide PID/TID information. This requires we flush
3892  * all queued PEBS records before we context switch to a new task.
3893  */
3894 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc,
3895 				  struct task_struct *task, bool sched_in)
3896 {
3897 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3898 	struct pmu *pmu;
3899 
3900 	pmu = cpc->epc.pmu;
3901 
3902 	/* software PMUs will not have sched_task */
3903 	if (WARN_ON_ONCE(!pmu->sched_task))
3904 		return;
3905 
3906 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3907 	perf_pmu_disable(pmu);
3908 
3909 	pmu->sched_task(cpc->task_epc, task, sched_in);
3910 
3911 	perf_pmu_enable(pmu);
3912 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3913 }
3914 
3915 static void perf_pmu_sched_task(struct task_struct *prev,
3916 				struct task_struct *next,
3917 				bool sched_in)
3918 {
3919 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3920 	struct perf_cpu_pmu_context *cpc;
3921 
3922 	/* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3923 	if (prev == next || cpuctx->task_ctx)
3924 		return;
3925 
3926 	list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3927 		__perf_pmu_sched_task(cpc, sched_in ? next : prev, sched_in);
3928 }
3929 
3930 static void perf_event_switch(struct task_struct *task,
3931 			      struct task_struct *next_prev, bool sched_in);
3932 
3933 /*
3934  * Called from scheduler to remove the events of the current task,
3935  * with interrupts disabled.
3936  *
3937  * We stop each event and update the event value in event->count.
3938  *
3939  * This does not protect us against NMI, but disable()
3940  * sets the disabled bit in the control field of event _before_
3941  * accessing the event control register. If a NMI hits, then it will
3942  * not restart the event.
3943  */
3944 void __perf_event_task_sched_out(struct task_struct *task,
3945 				 struct task_struct *next)
3946 {
3947 	if (__this_cpu_read(perf_sched_cb_usages))
3948 		perf_pmu_sched_task(task, next, false);
3949 
3950 	if (atomic_read(&nr_switch_events))
3951 		perf_event_switch(task, next, false);
3952 
3953 	perf_event_context_sched_out(task, next);
3954 
3955 	/*
3956 	 * if cgroup events exist on this CPU, then we need
3957 	 * to check if we have to switch out PMU state.
3958 	 * cgroup event are system-wide mode only
3959 	 */
3960 	perf_cgroup_switch(next);
3961 }
3962 
3963 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args)
3964 {
3965 	const struct perf_event *le = *(const struct perf_event **)l;
3966 	const struct perf_event *re = *(const struct perf_event **)r;
3967 
3968 	return le->group_index < re->group_index;
3969 }
3970 
3971 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap);
3972 
3973 static const struct min_heap_callbacks perf_min_heap = {
3974 	.less = perf_less_group_idx,
3975 	.swp = NULL,
3976 };
3977 
3978 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event)
3979 {
3980 	struct perf_event **itrs = heap->data;
3981 
3982 	if (event) {
3983 		itrs[heap->nr] = event;
3984 		heap->nr++;
3985 	}
3986 }
3987 
3988 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3989 {
3990 	struct perf_cpu_pmu_context *cpc;
3991 
3992 	if (!pmu_ctx->ctx->task)
3993 		return;
3994 
3995 	cpc = this_cpc(pmu_ctx->pmu);
3996 	WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3997 	cpc->task_epc = pmu_ctx;
3998 }
3999 
4000 static noinline int visit_groups_merge(struct perf_event_context *ctx,
4001 				struct perf_event_groups *groups, int cpu,
4002 				struct pmu *pmu,
4003 				int (*func)(struct perf_event *, void *),
4004 				void *data)
4005 {
4006 #ifdef CONFIG_CGROUP_PERF
4007 	struct cgroup_subsys_state *css = NULL;
4008 #endif
4009 	struct perf_cpu_context *cpuctx = NULL;
4010 	/* Space for per CPU and/or any CPU event iterators. */
4011 	struct perf_event *itrs[2];
4012 	struct perf_event_min_heap event_heap;
4013 	struct perf_event **evt;
4014 	int ret;
4015 
4016 	if (pmu->filter && pmu->filter(pmu, cpu))
4017 		return 0;
4018 
4019 	if (!ctx->task) {
4020 		cpuctx = this_cpu_ptr(&perf_cpu_context);
4021 		event_heap = (struct perf_event_min_heap){
4022 			.data = cpuctx->heap,
4023 			.nr = 0,
4024 			.size = cpuctx->heap_size,
4025 		};
4026 
4027 		lockdep_assert_held(&cpuctx->ctx.lock);
4028 
4029 #ifdef CONFIG_CGROUP_PERF
4030 		if (cpuctx->cgrp)
4031 			css = &cpuctx->cgrp->css;
4032 #endif
4033 	} else {
4034 		event_heap = (struct perf_event_min_heap){
4035 			.data = itrs,
4036 			.nr = 0,
4037 			.size = ARRAY_SIZE(itrs),
4038 		};
4039 		/* Events not within a CPU context may be on any CPU. */
4040 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
4041 	}
4042 	evt = event_heap.data;
4043 
4044 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
4045 
4046 #ifdef CONFIG_CGROUP_PERF
4047 	for (; css; css = css->parent)
4048 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
4049 #endif
4050 
4051 	if (event_heap.nr) {
4052 		__link_epc((*evt)->pmu_ctx);
4053 		perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
4054 	}
4055 
4056 	min_heapify_all_inline(&event_heap, &perf_min_heap, NULL);
4057 
4058 	while (event_heap.nr) {
4059 		ret = func(*evt, data);
4060 		if (ret)
4061 			return ret;
4062 
4063 		*evt = perf_event_groups_next(*evt, pmu);
4064 		if (*evt)
4065 			min_heap_sift_down_inline(&event_heap, 0, &perf_min_heap, NULL);
4066 		else
4067 			min_heap_pop_inline(&event_heap, &perf_min_heap, NULL);
4068 	}
4069 
4070 	return 0;
4071 }
4072 
4073 /*
4074  * Because the userpage is strictly per-event (there is no concept of context,
4075  * so there cannot be a context indirection), every userpage must be updated
4076  * when context time starts :-(
4077  *
4078  * IOW, we must not miss EVENT_TIME edges.
4079  */
4080 static inline bool event_update_userpage(struct perf_event *event)
4081 {
4082 	if (likely(!refcount_read(&event->mmap_count)))
4083 		return false;
4084 
4085 	perf_event_update_time(event);
4086 	perf_event_update_userpage(event);
4087 
4088 	return true;
4089 }
4090 
4091 static inline void group_update_userpage(struct perf_event *group_event)
4092 {
4093 	struct perf_event *event;
4094 
4095 	if (!event_update_userpage(group_event))
4096 		return;
4097 
4098 	for_each_sibling_event(event, group_event)
4099 		event_update_userpage(event);
4100 }
4101 
4102 struct merge_sched_data {
4103 	int can_add_hw;
4104 	enum event_type_t event_type;
4105 };
4106 
4107 static int merge_sched_in(struct perf_event *event, void *data)
4108 {
4109 	struct perf_event_context *ctx = event->ctx;
4110 	struct merge_sched_data *msd = data;
4111 
4112 	if (event->state <= PERF_EVENT_STATE_OFF)
4113 		return 0;
4114 
4115 	if (!event_filter_match(event))
4116 		return 0;
4117 
4118 	/*
4119 	 * Don't schedule in any host events from PMU with
4120 	 * PERF_PMU_CAP_MEDIATED_VPMU, while a guest is running.
4121 	 */
4122 	if (is_guest_mediated_pmu_loaded() &&
4123 	    event->pmu_ctx->pmu->capabilities & PERF_PMU_CAP_MEDIATED_VPMU &&
4124 	    !(msd->event_type & EVENT_GUEST))
4125 		return 0;
4126 
4127 	if (group_can_go_on(event, msd->can_add_hw)) {
4128 		if (!group_sched_in(event, ctx))
4129 			list_add_tail(&event->active_list, get_event_list(event));
4130 	}
4131 
4132 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
4133 		msd->can_add_hw = 0;
4134 		if (event->attr.pinned) {
4135 			perf_cgroup_event_disable(event, ctx);
4136 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
4137 
4138 			if (*perf_event_fasync(event))
4139 				event->pending_kill = POLL_ERR;
4140 
4141 			perf_event_wakeup(event);
4142 		} else {
4143 			struct perf_cpu_pmu_context *cpc = this_cpc(event->pmu_ctx->pmu);
4144 
4145 			event->pmu_ctx->rotate_necessary = 1;
4146 			perf_mux_hrtimer_restart(cpc);
4147 			group_update_userpage(event);
4148 		}
4149 	}
4150 
4151 	return 0;
4152 }
4153 
4154 static void pmu_groups_sched_in(struct perf_event_context *ctx,
4155 				struct perf_event_groups *groups,
4156 				struct pmu *pmu,
4157 				enum event_type_t event_type)
4158 {
4159 	struct merge_sched_data msd = {
4160 		.can_add_hw = 1,
4161 		.event_type = event_type,
4162 	};
4163 	visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
4164 			   merge_sched_in, &msd);
4165 }
4166 
4167 static void __pmu_ctx_sched_in(struct perf_event_pmu_context *pmu_ctx,
4168 			       enum event_type_t event_type)
4169 {
4170 	struct perf_event_context *ctx = pmu_ctx->ctx;
4171 
4172 	if (event_type & EVENT_PINNED)
4173 		pmu_groups_sched_in(ctx, &ctx->pinned_groups, pmu_ctx->pmu, event_type);
4174 	if (event_type & EVENT_FLEXIBLE)
4175 		pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu_ctx->pmu, event_type);
4176 }
4177 
4178 static void
4179 ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
4180 {
4181 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4182 	enum event_type_t active_type = event_type & ~EVENT_FLAGS;
4183 	struct perf_event_pmu_context *pmu_ctx;
4184 	int is_active = ctx->is_active;
4185 
4186 	lockdep_assert_held(&ctx->lock);
4187 
4188 	if (likely(!ctx->nr_events))
4189 		return;
4190 
4191 	if (!(is_active & EVENT_TIME)) {
4192 		/* EVENT_TIME should be active while the guest runs */
4193 		WARN_ON_ONCE(event_type & EVENT_GUEST);
4194 		/* start ctx time */
4195 		__update_context_time(ctx, false);
4196 		perf_cgroup_set_timestamp(cpuctx, false);
4197 		/*
4198 		 * CPU-release for the below ->is_active store,
4199 		 * see __load_acquire() in perf_event_time_now()
4200 		 */
4201 		barrier();
4202 	}
4203 
4204 	ctx->is_active |= active_type | EVENT_TIME;
4205 	if (ctx->task) {
4206 		if (!(is_active & EVENT_ALL))
4207 			cpuctx->task_ctx = ctx;
4208 		else
4209 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
4210 	}
4211 
4212 	if (event_type & EVENT_GUEST) {
4213 		/*
4214 		 * Schedule in the required exclude_guest events of PMU
4215 		 * with PERF_PMU_CAP_MEDIATED_VPMU.
4216 		 */
4217 		is_active = event_type & EVENT_ALL;
4218 
4219 		/*
4220 		 * Update ctx time to set the new start time for
4221 		 * the exclude_guest events.
4222 		 */
4223 		update_context_time(ctx);
4224 		update_cgrp_time_from_cpuctx(cpuctx, false);
4225 		barrier();
4226 	} else {
4227 		is_active ^= ctx->is_active; /* changed bits */
4228 	}
4229 
4230 	/*
4231 	 * First go through the list and put on any pinned groups
4232 	 * in order to give them the best chance of going on.
4233 	 */
4234 	if (is_active & EVENT_PINNED) {
4235 		for_each_epc(pmu_ctx, ctx, pmu, event_type)
4236 			__pmu_ctx_sched_in(pmu_ctx, EVENT_PINNED | (event_type & EVENT_GUEST));
4237 	}
4238 
4239 	/* Then walk through the lower prio flexible groups */
4240 	if (is_active & EVENT_FLEXIBLE) {
4241 		for_each_epc(pmu_ctx, ctx, pmu, event_type)
4242 			__pmu_ctx_sched_in(pmu_ctx, EVENT_FLEXIBLE | (event_type & EVENT_GUEST));
4243 	}
4244 }
4245 
4246 static void perf_event_context_sched_in(struct task_struct *task)
4247 {
4248 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4249 	struct perf_event_context *ctx;
4250 
4251 	rcu_read_lock();
4252 	ctx = rcu_dereference(task->perf_event_ctxp);
4253 	if (!ctx)
4254 		goto rcu_unlock;
4255 
4256 	if (cpuctx->task_ctx == ctx) {
4257 		perf_ctx_lock(cpuctx, ctx);
4258 		perf_ctx_disable(ctx, 0);
4259 
4260 		perf_ctx_sched_task_cb(ctx, task, true);
4261 
4262 		perf_ctx_enable(ctx, 0);
4263 		perf_ctx_unlock(cpuctx, ctx);
4264 		goto rcu_unlock;
4265 	}
4266 
4267 	perf_ctx_lock(cpuctx, ctx);
4268 	/*
4269 	 * We must check ctx->nr_events while holding ctx->lock, such
4270 	 * that we serialize against perf_install_in_context().
4271 	 */
4272 	if (!ctx->nr_events)
4273 		goto unlock;
4274 
4275 	perf_ctx_disable(ctx, 0);
4276 	/*
4277 	 * We want to keep the following priority order:
4278 	 * cpu pinned (that don't need to move), task pinned,
4279 	 * cpu flexible, task flexible.
4280 	 *
4281 	 * However, if task's ctx is not carrying any pinned
4282 	 * events, no need to flip the cpuctx's events around.
4283 	 */
4284 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
4285 		perf_ctx_disable(&cpuctx->ctx, 0);
4286 		ctx_sched_out(&cpuctx->ctx, NULL, EVENT_FLEXIBLE);
4287 	}
4288 
4289 	perf_event_sched_in(cpuctx, ctx, NULL, 0);
4290 
4291 	perf_ctx_sched_task_cb(cpuctx->task_ctx, task, true);
4292 
4293 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
4294 		perf_ctx_enable(&cpuctx->ctx, 0);
4295 
4296 	perf_ctx_enable(ctx, 0);
4297 
4298 unlock:
4299 	perf_ctx_unlock(cpuctx, ctx);
4300 rcu_unlock:
4301 	rcu_read_unlock();
4302 }
4303 
4304 /*
4305  * Called from scheduler to add the events of the current task
4306  * with interrupts disabled.
4307  *
4308  * We restore the event value and then enable it.
4309  *
4310  * This does not protect us against NMI, but enable()
4311  * sets the enabled bit in the control field of event _before_
4312  * accessing the event control register. If a NMI hits, then it will
4313  * keep the event running.
4314  */
4315 void __perf_event_task_sched_in(struct task_struct *prev,
4316 				struct task_struct *task)
4317 {
4318 	perf_event_context_sched_in(task);
4319 
4320 	if (atomic_read(&nr_switch_events))
4321 		perf_event_switch(task, prev, true);
4322 
4323 	if (__this_cpu_read(perf_sched_cb_usages))
4324 		perf_pmu_sched_task(prev, task, true);
4325 }
4326 
4327 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4328 {
4329 	u64 frequency = event->attr.sample_freq;
4330 	u64 sec = NSEC_PER_SEC;
4331 	u64 divisor, dividend;
4332 
4333 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4334 
4335 	count_fls = fls64(count);
4336 	nsec_fls = fls64(nsec);
4337 	frequency_fls = fls64(frequency);
4338 	sec_fls = 30;
4339 
4340 	/*
4341 	 * We got @count in @nsec, with a target of sample_freq HZ
4342 	 * the target period becomes:
4343 	 *
4344 	 *             @count * 10^9
4345 	 * period = -------------------
4346 	 *          @nsec * sample_freq
4347 	 *
4348 	 */
4349 
4350 	/*
4351 	 * Reduce accuracy by one bit such that @a and @b converge
4352 	 * to a similar magnitude.
4353 	 */
4354 #define REDUCE_FLS(a, b)		\
4355 do {					\
4356 	if (a##_fls > b##_fls) {	\
4357 		a >>= 1;		\
4358 		a##_fls--;		\
4359 	} else {			\
4360 		b >>= 1;		\
4361 		b##_fls--;		\
4362 	}				\
4363 } while (0)
4364 
4365 	/*
4366 	 * Reduce accuracy until either term fits in a u64, then proceed with
4367 	 * the other, so that finally we can do a u64/u64 division.
4368 	 */
4369 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4370 		REDUCE_FLS(nsec, frequency);
4371 		REDUCE_FLS(sec, count);
4372 	}
4373 
4374 	if (count_fls + sec_fls > 64) {
4375 		divisor = nsec * frequency;
4376 
4377 		while (count_fls + sec_fls > 64) {
4378 			REDUCE_FLS(count, sec);
4379 			divisor >>= 1;
4380 		}
4381 
4382 		dividend = count * sec;
4383 	} else {
4384 		dividend = count * sec;
4385 
4386 		while (nsec_fls + frequency_fls > 64) {
4387 			REDUCE_FLS(nsec, frequency);
4388 			dividend >>= 1;
4389 		}
4390 
4391 		divisor = nsec * frequency;
4392 	}
4393 
4394 	if (!divisor)
4395 		return dividend;
4396 
4397 	return div64_u64(dividend, divisor);
4398 }
4399 
4400 static DEFINE_PER_CPU(int, perf_throttled_count);
4401 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4402 
4403 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4404 {
4405 	struct hw_perf_event *hwc = &event->hw;
4406 	s64 period, sample_period;
4407 	s64 delta;
4408 
4409 	period = perf_calculate_period(event, nsec, count);
4410 
4411 	delta = (s64)(period - hwc->sample_period);
4412 	if (delta >= 0)
4413 		delta += 7;
4414 	else
4415 		delta -= 7;
4416 	delta /= 8; /* low pass filter */
4417 
4418 	sample_period = hwc->sample_period + delta;
4419 
4420 	if (!sample_period)
4421 		sample_period = 1;
4422 
4423 	hwc->sample_period = sample_period;
4424 
4425 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4426 		if (disable)
4427 			event->pmu->stop(event, PERF_EF_UPDATE);
4428 
4429 		local64_set(&hwc->period_left, 0);
4430 
4431 		if (disable)
4432 			event->pmu->start(event, PERF_EF_RELOAD);
4433 	}
4434 }
4435 
4436 static void perf_adjust_freq_unthr_events(struct list_head *event_list)
4437 {
4438 	struct perf_event *event;
4439 	struct hw_perf_event *hwc;
4440 	u64 now, period = TICK_NSEC;
4441 	s64 delta;
4442 
4443 	list_for_each_entry(event, event_list, active_list) {
4444 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4445 			continue;
4446 
4447 		// XXX use visit thingy to avoid the -1,cpu match
4448 		if (!event_filter_match(event))
4449 			continue;
4450 
4451 		hwc = &event->hw;
4452 
4453 		if (hwc->interrupts == MAX_INTERRUPTS)
4454 			perf_event_unthrottle_group(event, is_event_in_freq_mode(event));
4455 
4456 		if (!is_event_in_freq_mode(event))
4457 			continue;
4458 
4459 		/*
4460 		 * stop the event and update event->count
4461 		 */
4462 		event->pmu->stop(event, PERF_EF_UPDATE);
4463 
4464 		now = local64_read(&event->count);
4465 		delta = now - hwc->freq_count_stamp;
4466 		hwc->freq_count_stamp = now;
4467 
4468 		/*
4469 		 * restart the event
4470 		 * reload only if value has changed
4471 		 * we have stopped the event so tell that
4472 		 * to perf_adjust_period() to avoid stopping it
4473 		 * twice.
4474 		 */
4475 		if (delta > 0)
4476 			perf_adjust_period(event, period, delta, false);
4477 
4478 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4479 	}
4480 }
4481 
4482 /*
4483  * combine freq adjustment with unthrottling to avoid two passes over the
4484  * events. At the same time, make sure, having freq events does not change
4485  * the rate of unthrottling as that would introduce bias.
4486  */
4487 static void
4488 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4489 {
4490 	struct perf_event_pmu_context *pmu_ctx;
4491 
4492 	/*
4493 	 * only need to iterate over all events iff:
4494 	 * - context have events in frequency mode (needs freq adjust)
4495 	 * - there are events to unthrottle on this cpu
4496 	 */
4497 	if (!(ctx->nr_freq || unthrottle))
4498 		return;
4499 
4500 	raw_spin_lock(&ctx->lock);
4501 
4502 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4503 		if (!(pmu_ctx->nr_freq || unthrottle))
4504 			continue;
4505 		if (!perf_pmu_ctx_is_active(pmu_ctx))
4506 			continue;
4507 		if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT)
4508 			continue;
4509 
4510 		perf_pmu_disable(pmu_ctx->pmu);
4511 		perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active);
4512 		perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active);
4513 		perf_pmu_enable(pmu_ctx->pmu);
4514 	}
4515 
4516 	raw_spin_unlock(&ctx->lock);
4517 }
4518 
4519 /*
4520  * Move @event to the tail of the @ctx's elegible events.
4521  */
4522 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4523 {
4524 	/*
4525 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4526 	 * disabled by the inheritance code.
4527 	 */
4528 	if (ctx->rotate_disable)
4529 		return;
4530 
4531 	perf_event_groups_delete(&ctx->flexible_groups, event);
4532 	perf_event_groups_insert(&ctx->flexible_groups, event);
4533 }
4534 
4535 /* pick an event from the flexible_groups to rotate */
4536 static inline struct perf_event *
4537 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4538 {
4539 	struct perf_event *event;
4540 	struct rb_node *node;
4541 	struct rb_root *tree;
4542 	struct __group_key key = {
4543 		.pmu = pmu_ctx->pmu,
4544 	};
4545 
4546 	/* pick the first active flexible event */
4547 	event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4548 					 struct perf_event, active_list);
4549 	if (event)
4550 		goto out;
4551 
4552 	/* if no active flexible event, pick the first event */
4553 	tree = &pmu_ctx->ctx->flexible_groups.tree;
4554 
4555 	if (!pmu_ctx->ctx->task) {
4556 		key.cpu = smp_processor_id();
4557 
4558 		node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4559 		if (node)
4560 			event = __node_2_pe(node);
4561 		goto out;
4562 	}
4563 
4564 	key.cpu = -1;
4565 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4566 	if (node) {
4567 		event = __node_2_pe(node);
4568 		goto out;
4569 	}
4570 
4571 	key.cpu = smp_processor_id();
4572 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4573 	if (node)
4574 		event = __node_2_pe(node);
4575 
4576 out:
4577 	/*
4578 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4579 	 * finds there are unschedulable events, it will set it again.
4580 	 */
4581 	pmu_ctx->rotate_necessary = 0;
4582 
4583 	return event;
4584 }
4585 
4586 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4587 {
4588 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4589 	struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4590 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4591 	int cpu_rotate, task_rotate;
4592 	struct pmu *pmu;
4593 
4594 	/*
4595 	 * Since we run this from IRQ context, nobody can install new
4596 	 * events, thus the event count values are stable.
4597 	 */
4598 
4599 	cpu_epc = &cpc->epc;
4600 	pmu = cpu_epc->pmu;
4601 	task_epc = cpc->task_epc;
4602 
4603 	cpu_rotate = cpu_epc->rotate_necessary;
4604 	task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4605 
4606 	if (!(cpu_rotate || task_rotate))
4607 		return false;
4608 
4609 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4610 	perf_pmu_disable(pmu);
4611 
4612 	if (task_rotate)
4613 		task_event = ctx_event_to_rotate(task_epc);
4614 	if (cpu_rotate)
4615 		cpu_event = ctx_event_to_rotate(cpu_epc);
4616 
4617 	/*
4618 	 * As per the order given at ctx_resched() first 'pop' task flexible
4619 	 * and then, if needed CPU flexible.
4620 	 */
4621 	if (task_event || (task_epc && cpu_event)) {
4622 		update_context_time(task_epc->ctx);
4623 		__pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4624 	}
4625 
4626 	if (cpu_event) {
4627 		update_context_time(&cpuctx->ctx);
4628 		__pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4629 		rotate_ctx(&cpuctx->ctx, cpu_event);
4630 		__pmu_ctx_sched_in(cpu_epc, EVENT_FLEXIBLE);
4631 	}
4632 
4633 	if (task_event)
4634 		rotate_ctx(task_epc->ctx, task_event);
4635 
4636 	if (task_event || (task_epc && cpu_event))
4637 		__pmu_ctx_sched_in(task_epc, EVENT_FLEXIBLE);
4638 
4639 	perf_pmu_enable(pmu);
4640 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4641 
4642 	return true;
4643 }
4644 
4645 void perf_event_task_tick(void)
4646 {
4647 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4648 	struct perf_event_context *ctx;
4649 	int throttled;
4650 
4651 	lockdep_assert_irqs_disabled();
4652 
4653 	__this_cpu_inc(perf_throttled_seq);
4654 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4655 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4656 
4657 	perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4658 
4659 	rcu_read_lock();
4660 	ctx = rcu_dereference(current->perf_event_ctxp);
4661 	if (ctx)
4662 		perf_adjust_freq_unthr_context(ctx, !!throttled);
4663 	rcu_read_unlock();
4664 }
4665 
4666 static int event_enable_on_exec(struct perf_event *event,
4667 				struct perf_event_context *ctx)
4668 {
4669 	if (!event->attr.enable_on_exec)
4670 		return 0;
4671 
4672 	event->attr.enable_on_exec = 0;
4673 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4674 		return 0;
4675 
4676 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4677 
4678 	return 1;
4679 }
4680 
4681 /*
4682  * Enable all of a task's events that have been marked enable-on-exec.
4683  * This expects task == current.
4684  */
4685 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4686 {
4687 	struct perf_event_context *clone_ctx = NULL;
4688 	enum event_type_t event_type = 0;
4689 	struct perf_cpu_context *cpuctx;
4690 	struct perf_event *event;
4691 	unsigned long flags;
4692 	int enabled = 0;
4693 
4694 	local_irq_save(flags);
4695 	if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4696 		goto out;
4697 
4698 	if (!ctx->nr_events)
4699 		goto out;
4700 
4701 	cpuctx = this_cpu_ptr(&perf_cpu_context);
4702 	perf_ctx_lock(cpuctx, ctx);
4703 	ctx_time_freeze(cpuctx, ctx);
4704 
4705 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4706 		enabled |= event_enable_on_exec(event, ctx);
4707 		event_type |= get_event_type(event);
4708 	}
4709 
4710 	/*
4711 	 * Unclone and reschedule this context if we enabled any event.
4712 	 */
4713 	if (enabled) {
4714 		clone_ctx = unclone_ctx(ctx);
4715 		ctx_resched(cpuctx, ctx, NULL, event_type);
4716 	}
4717 	perf_ctx_unlock(cpuctx, ctx);
4718 
4719 out:
4720 	local_irq_restore(flags);
4721 
4722 	if (clone_ctx)
4723 		put_ctx(clone_ctx);
4724 }
4725 
4726 static void perf_remove_from_owner(struct perf_event *event);
4727 static void perf_event_exit_event(struct perf_event *event,
4728 				  struct perf_event_context *ctx,
4729 				  struct task_struct *task,
4730 				  bool revoke);
4731 
4732 /*
4733  * Removes all events from the current task that have been marked
4734  * remove-on-exec, and feeds their values back to parent events.
4735  */
4736 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4737 {
4738 	struct perf_event_context *clone_ctx = NULL;
4739 	struct perf_event *event, *next;
4740 	unsigned long flags;
4741 	bool modified = false;
4742 
4743 	mutex_lock(&ctx->mutex);
4744 
4745 	if (WARN_ON_ONCE(ctx->task != current))
4746 		goto unlock;
4747 
4748 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4749 		if (!event->attr.remove_on_exec)
4750 			continue;
4751 
4752 		if (!is_kernel_event(event))
4753 			perf_remove_from_owner(event);
4754 
4755 		modified = true;
4756 
4757 		perf_event_exit_event(event, ctx, ctx->task, false);
4758 	}
4759 
4760 	raw_spin_lock_irqsave(&ctx->lock, flags);
4761 	if (modified)
4762 		clone_ctx = unclone_ctx(ctx);
4763 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4764 
4765 unlock:
4766 	mutex_unlock(&ctx->mutex);
4767 
4768 	if (clone_ctx)
4769 		put_ctx(clone_ctx);
4770 }
4771 
4772 struct perf_read_data {
4773 	struct perf_event *event;
4774 	bool group;
4775 	int ret;
4776 };
4777 
4778 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu);
4779 
4780 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4781 {
4782 	int local_cpu = smp_processor_id();
4783 	u16 local_pkg, event_pkg;
4784 
4785 	if ((unsigned)event_cpu >= nr_cpu_ids)
4786 		return event_cpu;
4787 
4788 	if (event->group_caps & PERF_EV_CAP_READ_SCOPE) {
4789 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(event->pmu->scope, event_cpu);
4790 
4791 		if (cpumask && cpumask_test_cpu(local_cpu, cpumask))
4792 			return local_cpu;
4793 	}
4794 
4795 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4796 		event_pkg = topology_physical_package_id(event_cpu);
4797 		local_pkg = topology_physical_package_id(local_cpu);
4798 
4799 		if (event_pkg == local_pkg)
4800 			return local_cpu;
4801 	}
4802 
4803 	return event_cpu;
4804 }
4805 
4806 /*
4807  * Cross CPU call to read the hardware event
4808  */
4809 static void __perf_event_read(void *info)
4810 {
4811 	struct perf_read_data *data = info;
4812 	struct perf_event *sub, *event = data->event;
4813 	struct perf_event_context *ctx = event->ctx;
4814 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4815 	struct pmu *pmu = event->pmu;
4816 
4817 	/*
4818 	 * If this is a task context, we need to check whether it is
4819 	 * the current task context of this cpu.  If not it has been
4820 	 * scheduled out before the smp call arrived.  In that case
4821 	 * event->count would have been updated to a recent sample
4822 	 * when the event was scheduled out.
4823 	 */
4824 	if (ctx->task && cpuctx->task_ctx != ctx)
4825 		return;
4826 
4827 	raw_spin_lock(&ctx->lock);
4828 	ctx_time_update_event(ctx, event);
4829 
4830 	perf_event_update_time(event);
4831 	if (data->group)
4832 		perf_event_update_sibling_time(event);
4833 
4834 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4835 		goto unlock;
4836 
4837 	if (!data->group) {
4838 		pmu->read(event);
4839 		data->ret = 0;
4840 		goto unlock;
4841 	}
4842 
4843 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4844 
4845 	pmu->read(event);
4846 
4847 	for_each_sibling_event(sub, event)
4848 		perf_pmu_read(sub);
4849 
4850 	data->ret = pmu->commit_txn(pmu);
4851 
4852 unlock:
4853 	raw_spin_unlock(&ctx->lock);
4854 }
4855 
4856 static inline u64 perf_event_count(struct perf_event *event, bool self)
4857 {
4858 	if (self)
4859 		return local64_read(&event->count);
4860 
4861 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4862 }
4863 
4864 static void calc_timer_values(struct perf_event *event,
4865 				u64 *now,
4866 				u64 *enabled,
4867 				u64 *running)
4868 {
4869 	u64 ctx_time;
4870 
4871 	*now = perf_clock();
4872 	ctx_time = perf_event_time_now(event, *now);
4873 	__perf_update_times(event, ctx_time, enabled, running);
4874 }
4875 
4876 /*
4877  * NMI-safe method to read a local event, that is an event that
4878  * is:
4879  *   - either for the current task, or for this CPU
4880  *   - does not have inherit set, for inherited task events
4881  *     will not be local and we cannot read them atomically
4882  *   - must not have a pmu::count method
4883  */
4884 int perf_event_read_local(struct perf_event *event, u64 *value,
4885 			  u64 *enabled, u64 *running)
4886 {
4887 	unsigned long flags;
4888 	int event_oncpu;
4889 	int event_cpu;
4890 	int ret = 0;
4891 
4892 	/*
4893 	 * Disabling interrupts avoids all counter scheduling (context
4894 	 * switches, timer based rotation and IPIs).
4895 	 */
4896 	local_irq_save(flags);
4897 
4898 	/*
4899 	 * It must not be an event with inherit set, we cannot read
4900 	 * all child counters from atomic context.
4901 	 */
4902 	if (event->attr.inherit) {
4903 		ret = -EOPNOTSUPP;
4904 		goto out;
4905 	}
4906 
4907 	/* If this is a per-task event, it must be for current */
4908 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4909 	    event->hw.target != current) {
4910 		ret = -EINVAL;
4911 		goto out;
4912 	}
4913 
4914 	/*
4915 	 * Get the event CPU numbers, and adjust them to local if the event is
4916 	 * a per-package event that can be read locally
4917 	 */
4918 	event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4919 	event_cpu = __perf_event_read_cpu(event, event->cpu);
4920 
4921 	/* If this is a per-CPU event, it must be for this CPU */
4922 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4923 	    event_cpu != smp_processor_id()) {
4924 		ret = -EINVAL;
4925 		goto out;
4926 	}
4927 
4928 	/* If this is a pinned event it must be running on this CPU */
4929 	if (event->attr.pinned && event_oncpu != smp_processor_id()) {
4930 		ret = -EBUSY;
4931 		goto out;
4932 	}
4933 
4934 	/*
4935 	 * If the event is currently on this CPU, its either a per-task event,
4936 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4937 	 * oncpu == -1).
4938 	 */
4939 	if (event_oncpu == smp_processor_id())
4940 		event->pmu->read(event);
4941 
4942 	*value = local64_read(&event->count);
4943 	if (enabled || running) {
4944 		u64 __enabled, __running, __now;
4945 
4946 		calc_timer_values(event, &__now, &__enabled, &__running);
4947 		if (enabled)
4948 			*enabled = __enabled;
4949 		if (running)
4950 			*running = __running;
4951 	}
4952 out:
4953 	local_irq_restore(flags);
4954 
4955 	return ret;
4956 }
4957 
4958 static int perf_event_read(struct perf_event *event, bool group)
4959 {
4960 	enum perf_event_state state = READ_ONCE(event->state);
4961 	int event_cpu, ret = 0;
4962 
4963 	/*
4964 	 * If event is enabled and currently active on a CPU, update the
4965 	 * value in the event structure:
4966 	 */
4967 again:
4968 	if (state == PERF_EVENT_STATE_ACTIVE) {
4969 		struct perf_read_data data;
4970 
4971 		/*
4972 		 * Orders the ->state and ->oncpu loads such that if we see
4973 		 * ACTIVE we must also see the right ->oncpu.
4974 		 *
4975 		 * Matches the smp_wmb() from event_sched_in().
4976 		 */
4977 		smp_rmb();
4978 
4979 		event_cpu = READ_ONCE(event->oncpu);
4980 		if ((unsigned)event_cpu >= nr_cpu_ids)
4981 			return 0;
4982 
4983 		data = (struct perf_read_data){
4984 			.event = event,
4985 			.group = group,
4986 			.ret = 0,
4987 		};
4988 
4989 		preempt_disable();
4990 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4991 
4992 		/*
4993 		 * Purposely ignore the smp_call_function_single() return
4994 		 * value.
4995 		 *
4996 		 * If event_cpu isn't a valid CPU it means the event got
4997 		 * scheduled out and that will have updated the event count.
4998 		 *
4999 		 * Therefore, either way, we'll have an up-to-date event count
5000 		 * after this.
5001 		 */
5002 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
5003 		preempt_enable();
5004 		ret = data.ret;
5005 
5006 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
5007 		struct perf_event_context *ctx = event->ctx;
5008 		unsigned long flags;
5009 
5010 		raw_spin_lock_irqsave(&ctx->lock, flags);
5011 		state = event->state;
5012 		if (state != PERF_EVENT_STATE_INACTIVE) {
5013 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
5014 			goto again;
5015 		}
5016 
5017 		/*
5018 		 * May read while context is not active (e.g., thread is
5019 		 * blocked), in that case we cannot update context time
5020 		 */
5021 		ctx_time_update_event(ctx, event);
5022 
5023 		perf_event_update_time(event);
5024 		if (group)
5025 			perf_event_update_sibling_time(event);
5026 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
5027 	}
5028 
5029 	return ret;
5030 }
5031 
5032 /*
5033  * Initialize the perf_event context in a task_struct:
5034  */
5035 static void __perf_event_init_context(struct perf_event_context *ctx)
5036 {
5037 	raw_spin_lock_init(&ctx->lock);
5038 	mutex_init(&ctx->mutex);
5039 	INIT_LIST_HEAD(&ctx->pmu_ctx_list);
5040 	perf_event_groups_init(&ctx->pinned_groups);
5041 	perf_event_groups_init(&ctx->flexible_groups);
5042 	INIT_LIST_HEAD(&ctx->event_list);
5043 	refcount_set(&ctx->refcount, 1);
5044 }
5045 
5046 static void
5047 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
5048 {
5049 	epc->pmu = pmu;
5050 	INIT_LIST_HEAD(&epc->pmu_ctx_entry);
5051 	INIT_LIST_HEAD(&epc->pinned_active);
5052 	INIT_LIST_HEAD(&epc->flexible_active);
5053 	atomic_set(&epc->refcount, 1);
5054 }
5055 
5056 static struct perf_event_context *
5057 alloc_perf_context(struct task_struct *task)
5058 {
5059 	struct perf_event_context *ctx;
5060 
5061 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
5062 	if (!ctx)
5063 		return NULL;
5064 
5065 	__perf_event_init_context(ctx);
5066 	if (task)
5067 		ctx->task = get_task_struct(task);
5068 
5069 	return ctx;
5070 }
5071 
5072 static struct task_struct *
5073 find_lively_task_by_vpid(pid_t vpid)
5074 {
5075 	struct task_struct *task;
5076 
5077 	rcu_read_lock();
5078 	if (!vpid)
5079 		task = current;
5080 	else
5081 		task = find_task_by_vpid(vpid);
5082 	if (task)
5083 		get_task_struct(task);
5084 	rcu_read_unlock();
5085 
5086 	if (!task)
5087 		return ERR_PTR(-ESRCH);
5088 
5089 	return task;
5090 }
5091 
5092 /*
5093  * Returns a matching context with refcount and pincount.
5094  */
5095 static struct perf_event_context *
5096 find_get_context(struct task_struct *task, struct perf_event *event)
5097 {
5098 	struct perf_event_context *ctx, *clone_ctx = NULL;
5099 	struct perf_cpu_context *cpuctx;
5100 	unsigned long flags;
5101 	int err;
5102 
5103 	if (!task) {
5104 		/* Must be root to operate on a CPU event: */
5105 		err = perf_allow_cpu();
5106 		if (err)
5107 			return ERR_PTR(err);
5108 
5109 		cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
5110 		ctx = &cpuctx->ctx;
5111 		get_ctx(ctx);
5112 		raw_spin_lock_irqsave(&ctx->lock, flags);
5113 		++ctx->pin_count;
5114 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
5115 
5116 		return ctx;
5117 	}
5118 
5119 	err = -EINVAL;
5120 retry:
5121 	ctx = perf_lock_task_context(task, &flags);
5122 	if (ctx) {
5123 		clone_ctx = unclone_ctx(ctx);
5124 		++ctx->pin_count;
5125 
5126 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
5127 
5128 		if (clone_ctx)
5129 			put_ctx(clone_ctx);
5130 	} else {
5131 		ctx = alloc_perf_context(task);
5132 		err = -ENOMEM;
5133 		if (!ctx)
5134 			goto errout;
5135 
5136 		err = 0;
5137 		mutex_lock(&task->perf_event_mutex);
5138 		/*
5139 		 * If it has already passed perf_event_exit_task().
5140 		 * we must see PF_EXITING, it takes this mutex too.
5141 		 */
5142 		if (task->flags & PF_EXITING)
5143 			err = -ESRCH;
5144 		else if (task->perf_event_ctxp)
5145 			err = -EAGAIN;
5146 		else {
5147 			get_ctx(ctx);
5148 			++ctx->pin_count;
5149 			rcu_assign_pointer(task->perf_event_ctxp, ctx);
5150 		}
5151 		mutex_unlock(&task->perf_event_mutex);
5152 
5153 		if (unlikely(err)) {
5154 			put_ctx(ctx);
5155 
5156 			if (err == -EAGAIN)
5157 				goto retry;
5158 			goto errout;
5159 		}
5160 	}
5161 
5162 	return ctx;
5163 
5164 errout:
5165 	return ERR_PTR(err);
5166 }
5167 
5168 static struct perf_event_pmu_context *
5169 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
5170 		     struct perf_event *event)
5171 {
5172 	struct perf_event_pmu_context *new = NULL, *pos = NULL, *epc;
5173 
5174 	if (!ctx->task) {
5175 		/*
5176 		 * perf_pmu_migrate_context() / __perf_pmu_install_event()
5177 		 * relies on the fact that find_get_pmu_context() cannot fail
5178 		 * for CPU contexts.
5179 		 */
5180 		struct perf_cpu_pmu_context *cpc;
5181 
5182 		cpc = *per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
5183 		epc = &cpc->epc;
5184 		raw_spin_lock_irq(&ctx->lock);
5185 		if (!epc->ctx) {
5186 			/*
5187 			 * One extra reference for the pmu; see perf_pmu_free().
5188 			 */
5189 			atomic_set(&epc->refcount, 2);
5190 			epc->embedded = 1;
5191 			list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
5192 			epc->ctx = ctx;
5193 		} else {
5194 			WARN_ON_ONCE(epc->ctx != ctx);
5195 			atomic_inc(&epc->refcount);
5196 		}
5197 		raw_spin_unlock_irq(&ctx->lock);
5198 		return epc;
5199 	}
5200 
5201 	new = kzalloc(sizeof(*epc), GFP_KERNEL);
5202 	if (!new)
5203 		return ERR_PTR(-ENOMEM);
5204 
5205 	__perf_init_event_pmu_context(new, pmu);
5206 
5207 	/*
5208 	 * XXX
5209 	 *
5210 	 * lockdep_assert_held(&ctx->mutex);
5211 	 *
5212 	 * can't because perf_event_init_task() doesn't actually hold the
5213 	 * child_ctx->mutex.
5214 	 */
5215 
5216 	raw_spin_lock_irq(&ctx->lock);
5217 	list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
5218 		if (epc->pmu == pmu) {
5219 			WARN_ON_ONCE(epc->ctx != ctx);
5220 			atomic_inc(&epc->refcount);
5221 			goto found_epc;
5222 		}
5223 		/* Make sure the pmu_ctx_list is sorted by PMU type: */
5224 		if (!pos && epc->pmu->type > pmu->type)
5225 			pos = epc;
5226 	}
5227 
5228 	epc = new;
5229 	new = NULL;
5230 
5231 	if (!pos)
5232 		list_add_tail(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
5233 	else
5234 		list_add(&epc->pmu_ctx_entry, pos->pmu_ctx_entry.prev);
5235 
5236 	epc->ctx = ctx;
5237 
5238 found_epc:
5239 	raw_spin_unlock_irq(&ctx->lock);
5240 	kfree(new);
5241 
5242 	return epc;
5243 }
5244 
5245 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
5246 {
5247 	WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
5248 }
5249 
5250 static void free_cpc_rcu(struct rcu_head *head)
5251 {
5252 	struct perf_cpu_pmu_context *cpc =
5253 		container_of(head, typeof(*cpc), epc.rcu_head);
5254 
5255 	kfree(cpc);
5256 }
5257 
5258 static void free_epc_rcu(struct rcu_head *head)
5259 {
5260 	struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
5261 
5262 	kfree(epc);
5263 }
5264 
5265 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
5266 {
5267 	struct perf_event_context *ctx = epc->ctx;
5268 	unsigned long flags;
5269 
5270 	/*
5271 	 * XXX
5272 	 *
5273 	 * lockdep_assert_held(&ctx->mutex);
5274 	 *
5275 	 * can't because of the call-site in _free_event()/put_event()
5276 	 * which isn't always called under ctx->mutex.
5277 	 */
5278 	if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
5279 		return;
5280 
5281 	WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
5282 
5283 	list_del_init(&epc->pmu_ctx_entry);
5284 	epc->ctx = NULL;
5285 
5286 	WARN_ON_ONCE(!list_empty(&epc->pinned_active));
5287 	WARN_ON_ONCE(!list_empty(&epc->flexible_active));
5288 
5289 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5290 
5291 	if (epc->embedded) {
5292 		call_rcu(&epc->rcu_head, free_cpc_rcu);
5293 		return;
5294 	}
5295 
5296 	call_rcu(&epc->rcu_head, free_epc_rcu);
5297 }
5298 
5299 static void perf_event_free_filter(struct perf_event *event);
5300 
5301 static void free_event_rcu(struct rcu_head *head)
5302 {
5303 	struct perf_event *event = container_of(head, typeof(*event), rcu_head);
5304 
5305 	if (event->ns)
5306 		put_pid_ns(event->ns);
5307 	perf_event_free_filter(event);
5308 	kmem_cache_free(perf_event_cache, event);
5309 }
5310 
5311 static void ring_buffer_attach(struct perf_event *event,
5312 			       struct perf_buffer *rb);
5313 
5314 static void detach_sb_event(struct perf_event *event)
5315 {
5316 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
5317 
5318 	raw_spin_lock(&pel->lock);
5319 	list_del_rcu(&event->sb_list);
5320 	raw_spin_unlock(&pel->lock);
5321 }
5322 
5323 static bool is_sb_event(struct perf_event *event)
5324 {
5325 	struct perf_event_attr *attr = &event->attr;
5326 
5327 	if (event->parent)
5328 		return false;
5329 
5330 	if (event->attach_state & PERF_ATTACH_TASK)
5331 		return false;
5332 
5333 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5334 	    attr->comm || attr->comm_exec ||
5335 	    attr->task || attr->ksymbol ||
5336 	    attr->context_switch || attr->text_poke ||
5337 	    attr->bpf_event)
5338 		return true;
5339 
5340 	return false;
5341 }
5342 
5343 static void unaccount_pmu_sb_event(struct perf_event *event)
5344 {
5345 	if (is_sb_event(event))
5346 		detach_sb_event(event);
5347 }
5348 
5349 #ifdef CONFIG_NO_HZ_FULL
5350 static DEFINE_SPINLOCK(nr_freq_lock);
5351 #endif
5352 
5353 static void unaccount_freq_event_nohz(void)
5354 {
5355 #ifdef CONFIG_NO_HZ_FULL
5356 	spin_lock(&nr_freq_lock);
5357 	if (atomic_dec_and_test(&nr_freq_events))
5358 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5359 	spin_unlock(&nr_freq_lock);
5360 #endif
5361 }
5362 
5363 static void unaccount_freq_event(void)
5364 {
5365 	if (tick_nohz_full_enabled())
5366 		unaccount_freq_event_nohz();
5367 	else
5368 		atomic_dec(&nr_freq_events);
5369 }
5370 
5371 
5372 static struct perf_ctx_data *
5373 alloc_perf_ctx_data(struct kmem_cache *ctx_cache, bool global)
5374 {
5375 	struct perf_ctx_data *cd;
5376 
5377 	cd = kzalloc(sizeof(*cd), GFP_KERNEL);
5378 	if (!cd)
5379 		return NULL;
5380 
5381 	cd->data = kmem_cache_zalloc(ctx_cache, GFP_KERNEL);
5382 	if (!cd->data) {
5383 		kfree(cd);
5384 		return NULL;
5385 	}
5386 
5387 	cd->global = global;
5388 	cd->ctx_cache = ctx_cache;
5389 	refcount_set(&cd->refcount, 1);
5390 
5391 	return cd;
5392 }
5393 
5394 static void free_perf_ctx_data(struct perf_ctx_data *cd)
5395 {
5396 	kmem_cache_free(cd->ctx_cache, cd->data);
5397 	kfree(cd);
5398 }
5399 
5400 static void __free_perf_ctx_data_rcu(struct rcu_head *rcu_head)
5401 {
5402 	struct perf_ctx_data *cd;
5403 
5404 	cd = container_of(rcu_head, struct perf_ctx_data, rcu_head);
5405 	free_perf_ctx_data(cd);
5406 }
5407 
5408 static inline void perf_free_ctx_data_rcu(struct perf_ctx_data *cd)
5409 {
5410 	call_rcu(&cd->rcu_head, __free_perf_ctx_data_rcu);
5411 }
5412 
5413 static int
5414 attach_task_ctx_data(struct task_struct *task, struct kmem_cache *ctx_cache,
5415 		     bool global)
5416 {
5417 	struct perf_ctx_data *cd, *old = NULL;
5418 
5419 	cd = alloc_perf_ctx_data(ctx_cache, global);
5420 	if (!cd)
5421 		return -ENOMEM;
5422 
5423 	for (;;) {
5424 		if (try_cmpxchg(&task->perf_ctx_data, &old, cd)) {
5425 			if (old)
5426 				perf_free_ctx_data_rcu(old);
5427 			/*
5428 			 * Above try_cmpxchg() pairs with try_cmpxchg() from
5429 			 * detach_task_ctx_data() such that
5430 			 * if we race with perf_event_exit_task(), we must
5431 			 * observe PF_EXITING.
5432 			 */
5433 			if (task->flags & PF_EXITING) {
5434 				/* detach_task_ctx_data() may free it already */
5435 				if (try_cmpxchg(&task->perf_ctx_data, &cd, NULL))
5436 					perf_free_ctx_data_rcu(cd);
5437 			}
5438 			return 0;
5439 		}
5440 
5441 		if (!old) {
5442 			/*
5443 			 * After seeing a dead @old, we raced with
5444 			 * removal and lost, try again to install @cd.
5445 			 */
5446 			continue;
5447 		}
5448 
5449 		if (refcount_inc_not_zero(&old->refcount)) {
5450 			free_perf_ctx_data(cd); /* unused */
5451 			return 0;
5452 		}
5453 
5454 		/*
5455 		 * @old is a dead object, refcount==0 is stable, try and
5456 		 * replace it with @cd.
5457 		 */
5458 	}
5459 	return 0;
5460 }
5461 
5462 static void __detach_global_ctx_data(void);
5463 DEFINE_STATIC_PERCPU_RWSEM(global_ctx_data_rwsem);
5464 static refcount_t global_ctx_data_ref;
5465 
5466 static int
5467 attach_global_ctx_data(struct kmem_cache *ctx_cache)
5468 {
5469 	struct task_struct *g, *p;
5470 	struct perf_ctx_data *cd;
5471 	int ret;
5472 
5473 	if (refcount_inc_not_zero(&global_ctx_data_ref))
5474 		return 0;
5475 
5476 	guard(percpu_write)(&global_ctx_data_rwsem);
5477 	if (refcount_inc_not_zero(&global_ctx_data_ref))
5478 		return 0;
5479 again:
5480 	/* Allocate everything */
5481 	scoped_guard (rcu) {
5482 		for_each_process_thread(g, p) {
5483 			if (p->flags & PF_EXITING)
5484 				continue;
5485 			cd = rcu_dereference(p->perf_ctx_data);
5486 			if (cd && !cd->global) {
5487 				cd->global = 1;
5488 				if (!refcount_inc_not_zero(&cd->refcount))
5489 					cd = NULL;
5490 			}
5491 			if (!cd) {
5492 				get_task_struct(p);
5493 				goto alloc;
5494 			}
5495 		}
5496 	}
5497 
5498 	refcount_set(&global_ctx_data_ref, 1);
5499 
5500 	return 0;
5501 alloc:
5502 	ret = attach_task_ctx_data(p, ctx_cache, true);
5503 	put_task_struct(p);
5504 	if (ret) {
5505 		__detach_global_ctx_data();
5506 		return ret;
5507 	}
5508 	goto again;
5509 }
5510 
5511 static int
5512 attach_perf_ctx_data(struct perf_event *event)
5513 {
5514 	struct task_struct *task = event->hw.target;
5515 	struct kmem_cache *ctx_cache = event->pmu->task_ctx_cache;
5516 	int ret;
5517 
5518 	if (!ctx_cache)
5519 		return -ENOMEM;
5520 
5521 	if (task)
5522 		return attach_task_ctx_data(task, ctx_cache, false);
5523 
5524 	ret = attach_global_ctx_data(ctx_cache);
5525 	if (ret)
5526 		return ret;
5527 
5528 	event->attach_state |= PERF_ATTACH_GLOBAL_DATA;
5529 	return 0;
5530 }
5531 
5532 static void
5533 detach_task_ctx_data(struct task_struct *p)
5534 {
5535 	struct perf_ctx_data *cd;
5536 
5537 	scoped_guard (rcu) {
5538 		cd = rcu_dereference(p->perf_ctx_data);
5539 		if (!cd || !refcount_dec_and_test(&cd->refcount))
5540 			return;
5541 	}
5542 
5543 	/*
5544 	 * The old ctx_data may be lost because of the race.
5545 	 * Nothing is required to do for the case.
5546 	 * See attach_task_ctx_data().
5547 	 */
5548 	if (try_cmpxchg((struct perf_ctx_data **)&p->perf_ctx_data, &cd, NULL))
5549 		perf_free_ctx_data_rcu(cd);
5550 }
5551 
5552 static void __detach_global_ctx_data(void)
5553 {
5554 	struct task_struct *g, *p;
5555 	struct perf_ctx_data *cd;
5556 
5557 again:
5558 	scoped_guard (rcu) {
5559 		for_each_process_thread(g, p) {
5560 			cd = rcu_dereference(p->perf_ctx_data);
5561 			if (!cd || !cd->global)
5562 				continue;
5563 			cd->global = 0;
5564 			get_task_struct(p);
5565 			goto detach;
5566 		}
5567 	}
5568 	return;
5569 detach:
5570 	detach_task_ctx_data(p);
5571 	put_task_struct(p);
5572 	goto again;
5573 }
5574 
5575 static void detach_global_ctx_data(void)
5576 {
5577 	if (refcount_dec_not_one(&global_ctx_data_ref))
5578 		return;
5579 
5580 	guard(percpu_write)(&global_ctx_data_rwsem);
5581 	if (!refcount_dec_and_test(&global_ctx_data_ref))
5582 		return;
5583 
5584 	/* remove everything */
5585 	__detach_global_ctx_data();
5586 }
5587 
5588 static void detach_perf_ctx_data(struct perf_event *event)
5589 {
5590 	struct task_struct *task = event->hw.target;
5591 
5592 	event->attach_state &= ~PERF_ATTACH_TASK_DATA;
5593 
5594 	if (task)
5595 		return detach_task_ctx_data(task);
5596 
5597 	if (event->attach_state & PERF_ATTACH_GLOBAL_DATA) {
5598 		detach_global_ctx_data();
5599 		event->attach_state &= ~PERF_ATTACH_GLOBAL_DATA;
5600 	}
5601 }
5602 
5603 static void unaccount_event(struct perf_event *event)
5604 {
5605 	bool dec = false;
5606 
5607 	if (event->parent)
5608 		return;
5609 
5610 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5611 		dec = true;
5612 	if (event->attr.mmap || event->attr.mmap_data)
5613 		atomic_dec(&nr_mmap_events);
5614 	if (event->attr.build_id)
5615 		atomic_dec(&nr_build_id_events);
5616 	if (event->attr.comm)
5617 		atomic_dec(&nr_comm_events);
5618 	if (event->attr.namespaces)
5619 		atomic_dec(&nr_namespaces_events);
5620 	if (event->attr.cgroup)
5621 		atomic_dec(&nr_cgroup_events);
5622 	if (event->attr.task)
5623 		atomic_dec(&nr_task_events);
5624 	if (event->attr.freq)
5625 		unaccount_freq_event();
5626 	if (event->attr.context_switch) {
5627 		dec = true;
5628 		atomic_dec(&nr_switch_events);
5629 	}
5630 	if (is_cgroup_event(event))
5631 		dec = true;
5632 	if (has_branch_stack(event))
5633 		dec = true;
5634 	if (event->attr.ksymbol)
5635 		atomic_dec(&nr_ksymbol_events);
5636 	if (event->attr.bpf_event)
5637 		atomic_dec(&nr_bpf_events);
5638 	if (event->attr.text_poke)
5639 		atomic_dec(&nr_text_poke_events);
5640 
5641 	if (dec) {
5642 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
5643 			schedule_delayed_work(&perf_sched_work, HZ);
5644 	}
5645 
5646 	unaccount_pmu_sb_event(event);
5647 }
5648 
5649 static void perf_sched_delayed(struct work_struct *work)
5650 {
5651 	mutex_lock(&perf_sched_mutex);
5652 	if (atomic_dec_and_test(&perf_sched_count))
5653 		static_branch_disable(&perf_sched_events);
5654 	mutex_unlock(&perf_sched_mutex);
5655 }
5656 
5657 /*
5658  * The following implement mutual exclusion of events on "exclusive" pmus
5659  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5660  * at a time, so we disallow creating events that might conflict, namely:
5661  *
5662  *  1) cpu-wide events in the presence of per-task events,
5663  *  2) per-task events in the presence of cpu-wide events,
5664  *  3) two matching events on the same perf_event_context.
5665  *
5666  * The former two cases are handled in the allocation path (perf_event_alloc(),
5667  * _free_event()), the latter -- before the first perf_install_in_context().
5668  */
5669 static int exclusive_event_init(struct perf_event *event)
5670 {
5671 	struct pmu *pmu = event->pmu;
5672 
5673 	if (!is_exclusive_pmu(pmu))
5674 		return 0;
5675 
5676 	/*
5677 	 * Prevent co-existence of per-task and cpu-wide events on the
5678 	 * same exclusive pmu.
5679 	 *
5680 	 * Negative pmu::exclusive_cnt means there are cpu-wide
5681 	 * events on this "exclusive" pmu, positive means there are
5682 	 * per-task events.
5683 	 *
5684 	 * Since this is called in perf_event_alloc() path, event::ctx
5685 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5686 	 * to mean "per-task event", because unlike other attach states it
5687 	 * never gets cleared.
5688 	 */
5689 	if (event->attach_state & PERF_ATTACH_TASK) {
5690 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5691 			return -EBUSY;
5692 	} else {
5693 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5694 			return -EBUSY;
5695 	}
5696 
5697 	event->attach_state |= PERF_ATTACH_EXCLUSIVE;
5698 
5699 	return 0;
5700 }
5701 
5702 static void exclusive_event_destroy(struct perf_event *event)
5703 {
5704 	struct pmu *pmu = event->pmu;
5705 
5706 	/* see comment in exclusive_event_init() */
5707 	if (event->attach_state & PERF_ATTACH_TASK)
5708 		atomic_dec(&pmu->exclusive_cnt);
5709 	else
5710 		atomic_inc(&pmu->exclusive_cnt);
5711 
5712 	event->attach_state &= ~PERF_ATTACH_EXCLUSIVE;
5713 }
5714 
5715 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5716 {
5717 	if ((e1->pmu == e2->pmu) &&
5718 	    (e1->cpu == e2->cpu ||
5719 	     e1->cpu == -1 ||
5720 	     e2->cpu == -1))
5721 		return true;
5722 	return false;
5723 }
5724 
5725 static bool exclusive_event_installable(struct perf_event *event,
5726 					struct perf_event_context *ctx)
5727 {
5728 	struct perf_event *iter_event;
5729 	struct pmu *pmu = event->pmu;
5730 
5731 	lockdep_assert_held(&ctx->mutex);
5732 
5733 	if (!is_exclusive_pmu(pmu))
5734 		return true;
5735 
5736 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5737 		if (exclusive_event_match(iter_event, event))
5738 			return false;
5739 	}
5740 
5741 	return true;
5742 }
5743 
5744 static void perf_free_addr_filters(struct perf_event *event);
5745 
5746 /* vs perf_event_alloc() error */
5747 static void __free_event(struct perf_event *event)
5748 {
5749 	struct pmu *pmu = event->pmu;
5750 
5751 	security_perf_event_free(event);
5752 
5753 	if (event->attach_state & PERF_ATTACH_CALLCHAIN)
5754 		put_callchain_buffers();
5755 
5756 	kfree(event->addr_filter_ranges);
5757 
5758 	if (event->attach_state & PERF_ATTACH_EXCLUSIVE)
5759 		exclusive_event_destroy(event);
5760 
5761 	if (is_cgroup_event(event))
5762 		perf_detach_cgroup(event);
5763 
5764 	if (event->attach_state & PERF_ATTACH_TASK_DATA)
5765 		detach_perf_ctx_data(event);
5766 
5767 	if (event->destroy)
5768 		event->destroy(event);
5769 
5770 	/*
5771 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5772 	 * hw.target.
5773 	 */
5774 	if (event->hw.target)
5775 		put_task_struct(event->hw.target);
5776 
5777 	if (event->pmu_ctx) {
5778 		/*
5779 		 * put_pmu_ctx() needs an event->ctx reference, because of
5780 		 * epc->ctx.
5781 		 */
5782 		WARN_ON_ONCE(!pmu);
5783 		WARN_ON_ONCE(!event->ctx);
5784 		WARN_ON_ONCE(event->pmu_ctx->ctx != event->ctx);
5785 		put_pmu_ctx(event->pmu_ctx);
5786 	}
5787 
5788 	/*
5789 	 * perf_event_free_task() relies on put_ctx() being 'last', in
5790 	 * particular all task references must be cleaned up.
5791 	 */
5792 	if (event->ctx)
5793 		put_ctx(event->ctx);
5794 
5795 	if (pmu) {
5796 		module_put(pmu->module);
5797 		scoped_guard (spinlock, &pmu->events_lock) {
5798 			list_del(&event->pmu_list);
5799 			wake_up_var(pmu);
5800 		}
5801 	}
5802 
5803 	call_rcu(&event->rcu_head, free_event_rcu);
5804 }
5805 
5806 static void mediated_pmu_unaccount_event(struct perf_event *event);
5807 
5808 DEFINE_FREE(__free_event, struct perf_event *, if (_T) __free_event(_T))
5809 
5810 /* vs perf_event_alloc() success */
5811 static void _free_event(struct perf_event *event)
5812 {
5813 	irq_work_sync(&event->pending_irq);
5814 	irq_work_sync(&event->pending_disable_irq);
5815 
5816 	unaccount_event(event);
5817 	mediated_pmu_unaccount_event(event);
5818 
5819 	if (event->rb) {
5820 		/*
5821 		 * Can happen when we close an event with re-directed output.
5822 		 *
5823 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5824 		 * over us; possibly making our ring_buffer_put() the last.
5825 		 */
5826 		mutex_lock(&event->mmap_mutex);
5827 		ring_buffer_attach(event, NULL);
5828 		mutex_unlock(&event->mmap_mutex);
5829 	}
5830 
5831 	perf_event_free_bpf_prog(event);
5832 	perf_free_addr_filters(event);
5833 
5834 	__free_event(event);
5835 }
5836 
5837 /*
5838  * Used to free events which have a known refcount of 1, such as in error paths
5839  * of inherited events.
5840  */
5841 static void free_event(struct perf_event *event)
5842 {
5843 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5844 				     "unexpected event refcount: %ld; ptr=%p\n",
5845 				     atomic_long_read(&event->refcount), event)) {
5846 		/* leak to avoid use-after-free */
5847 		return;
5848 	}
5849 
5850 	_free_event(event);
5851 }
5852 
5853 /*
5854  * Remove user event from the owner task.
5855  */
5856 static void perf_remove_from_owner(struct perf_event *event)
5857 {
5858 	struct task_struct *owner;
5859 
5860 	rcu_read_lock();
5861 	/*
5862 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5863 	 * observe !owner it means the list deletion is complete and we can
5864 	 * indeed free this event, otherwise we need to serialize on
5865 	 * owner->perf_event_mutex.
5866 	 */
5867 	owner = READ_ONCE(event->owner);
5868 	if (owner) {
5869 		/*
5870 		 * Since delayed_put_task_struct() also drops the last
5871 		 * task reference we can safely take a new reference
5872 		 * while holding the rcu_read_lock().
5873 		 */
5874 		get_task_struct(owner);
5875 	}
5876 	rcu_read_unlock();
5877 
5878 	if (owner) {
5879 		/*
5880 		 * If we're here through perf_event_exit_task() we're already
5881 		 * holding ctx->mutex which would be an inversion wrt. the
5882 		 * normal lock order.
5883 		 *
5884 		 * However we can safely take this lock because its the child
5885 		 * ctx->mutex.
5886 		 */
5887 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5888 
5889 		/*
5890 		 * We have to re-check the event->owner field, if it is cleared
5891 		 * we raced with perf_event_exit_task(), acquiring the mutex
5892 		 * ensured they're done, and we can proceed with freeing the
5893 		 * event.
5894 		 */
5895 		if (event->owner) {
5896 			list_del_init(&event->owner_entry);
5897 			smp_store_release(&event->owner, NULL);
5898 		}
5899 		mutex_unlock(&owner->perf_event_mutex);
5900 		put_task_struct(owner);
5901 	}
5902 }
5903 
5904 static void put_event(struct perf_event *event)
5905 {
5906 	struct perf_event *parent;
5907 
5908 	if (!atomic_long_dec_and_test(&event->refcount))
5909 		return;
5910 
5911 	parent = event->parent;
5912 	_free_event(event);
5913 
5914 	/* Matches the refcount bump in inherit_event() */
5915 	if (parent)
5916 		put_event(parent);
5917 }
5918 
5919 /*
5920  * Kill an event dead; while event:refcount will preserve the event
5921  * object, it will not preserve its functionality. Once the last 'user'
5922  * gives up the object, we'll destroy the thing.
5923  */
5924 int perf_event_release_kernel(struct perf_event *event)
5925 {
5926 	struct perf_event_context *ctx = event->ctx;
5927 	struct perf_event *child, *tmp;
5928 
5929 	/*
5930 	 * If we got here through err_alloc: free_event(event); we will not
5931 	 * have attached to a context yet.
5932 	 */
5933 	if (!ctx) {
5934 		WARN_ON_ONCE(event->attach_state &
5935 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5936 		goto no_ctx;
5937 	}
5938 
5939 	if (!is_kernel_event(event))
5940 		perf_remove_from_owner(event);
5941 
5942 	ctx = perf_event_ctx_lock(event);
5943 	WARN_ON_ONCE(ctx->parent_ctx);
5944 
5945 	/*
5946 	 * Mark this event as STATE_DEAD, there is no external reference to it
5947 	 * anymore.
5948 	 *
5949 	 * Anybody acquiring event->child_mutex after the below loop _must_
5950 	 * also see this, most importantly inherit_event() which will avoid
5951 	 * placing more children on the list.
5952 	 *
5953 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5954 	 * child events.
5955 	 */
5956 	if (event->state > PERF_EVENT_STATE_REVOKED) {
5957 		perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5958 	} else {
5959 		event->state = PERF_EVENT_STATE_DEAD;
5960 	}
5961 
5962 	perf_event_ctx_unlock(event, ctx);
5963 
5964 again:
5965 	mutex_lock(&event->child_mutex);
5966 	list_for_each_entry(child, &event->child_list, child_list) {
5967 		/*
5968 		 * Cannot change, child events are not migrated, see the
5969 		 * comment with perf_event_ctx_lock_nested().
5970 		 */
5971 		ctx = READ_ONCE(child->ctx);
5972 		/*
5973 		 * Since child_mutex nests inside ctx::mutex, we must jump
5974 		 * through hoops. We start by grabbing a reference on the ctx.
5975 		 *
5976 		 * Since the event cannot get freed while we hold the
5977 		 * child_mutex, the context must also exist and have a !0
5978 		 * reference count.
5979 		 */
5980 		get_ctx(ctx);
5981 
5982 		/*
5983 		 * Now that we have a ctx ref, we can drop child_mutex, and
5984 		 * acquire ctx::mutex without fear of it going away. Then we
5985 		 * can re-acquire child_mutex.
5986 		 */
5987 		mutex_unlock(&event->child_mutex);
5988 		mutex_lock(&ctx->mutex);
5989 		mutex_lock(&event->child_mutex);
5990 
5991 		/*
5992 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5993 		 * state, if child is still the first entry, it didn't get freed
5994 		 * and we can continue doing so.
5995 		 */
5996 		tmp = list_first_entry_or_null(&event->child_list,
5997 					       struct perf_event, child_list);
5998 		if (tmp == child) {
5999 			perf_remove_from_context(child, DETACH_GROUP | DETACH_CHILD);
6000 		} else {
6001 			child = NULL;
6002 		}
6003 
6004 		mutex_unlock(&event->child_mutex);
6005 		mutex_unlock(&ctx->mutex);
6006 
6007 		if (child) {
6008 			/* Last reference unless ->pending_task work is pending */
6009 			put_event(child);
6010 		}
6011 		put_ctx(ctx);
6012 
6013 		goto again;
6014 	}
6015 	mutex_unlock(&event->child_mutex);
6016 
6017 no_ctx:
6018 	/*
6019 	 * Last reference unless ->pending_task work is pending on this event
6020 	 * or any of its children.
6021 	 */
6022 	put_event(event);
6023 	return 0;
6024 }
6025 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
6026 
6027 /*
6028  * Called when the last reference to the file is gone.
6029  */
6030 static int perf_release(struct inode *inode, struct file *file)
6031 {
6032 	perf_event_release_kernel(file->private_data);
6033 	return 0;
6034 }
6035 
6036 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
6037 {
6038 	struct perf_event *child;
6039 	u64 total = 0;
6040 
6041 	*enabled = 0;
6042 	*running = 0;
6043 
6044 	mutex_lock(&event->child_mutex);
6045 
6046 	(void)perf_event_read(event, false);
6047 	total += perf_event_count(event, false);
6048 
6049 	*enabled += event->total_time_enabled +
6050 			atomic64_read(&event->child_total_time_enabled);
6051 	*running += event->total_time_running +
6052 			atomic64_read(&event->child_total_time_running);
6053 
6054 	list_for_each_entry(child, &event->child_list, child_list) {
6055 		(void)perf_event_read(child, false);
6056 		total += perf_event_count(child, false);
6057 		*enabled += child->total_time_enabled;
6058 		*running += child->total_time_running;
6059 	}
6060 	mutex_unlock(&event->child_mutex);
6061 
6062 	return total;
6063 }
6064 
6065 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
6066 {
6067 	struct perf_event_context *ctx;
6068 	u64 count;
6069 
6070 	ctx = perf_event_ctx_lock(event);
6071 	count = __perf_event_read_value(event, enabled, running);
6072 	perf_event_ctx_unlock(event, ctx);
6073 
6074 	return count;
6075 }
6076 EXPORT_SYMBOL_GPL(perf_event_read_value);
6077 
6078 static int __perf_read_group_add(struct perf_event *leader,
6079 					u64 read_format, u64 *values)
6080 {
6081 	struct perf_event_context *ctx = leader->ctx;
6082 	struct perf_event *sub, *parent;
6083 	unsigned long flags;
6084 	int n = 1; /* skip @nr */
6085 	int ret;
6086 
6087 	ret = perf_event_read(leader, true);
6088 	if (ret)
6089 		return ret;
6090 
6091 	raw_spin_lock_irqsave(&ctx->lock, flags);
6092 	/*
6093 	 * Verify the grouping between the parent and child (inherited)
6094 	 * events is still in tact.
6095 	 *
6096 	 * Specifically:
6097 	 *  - leader->ctx->lock pins leader->sibling_list
6098 	 *  - parent->child_mutex pins parent->child_list
6099 	 *  - parent->ctx->mutex pins parent->sibling_list
6100 	 *
6101 	 * Because parent->ctx != leader->ctx (and child_list nests inside
6102 	 * ctx->mutex), group destruction is not atomic between children, also
6103 	 * see perf_event_release_kernel(). Additionally, parent can grow the
6104 	 * group.
6105 	 *
6106 	 * Therefore it is possible to have parent and child groups in a
6107 	 * different configuration and summing over such a beast makes no sense
6108 	 * what so ever.
6109 	 *
6110 	 * Reject this.
6111 	 */
6112 	parent = leader->parent;
6113 	if (parent &&
6114 	    (parent->group_generation != leader->group_generation ||
6115 	     parent->nr_siblings != leader->nr_siblings)) {
6116 		ret = -ECHILD;
6117 		goto unlock;
6118 	}
6119 
6120 	/*
6121 	 * Since we co-schedule groups, {enabled,running} times of siblings
6122 	 * will be identical to those of the leader, so we only publish one
6123 	 * set.
6124 	 */
6125 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6126 		values[n++] += leader->total_time_enabled +
6127 			atomic64_read(&leader->child_total_time_enabled);
6128 	}
6129 
6130 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6131 		values[n++] += leader->total_time_running +
6132 			atomic64_read(&leader->child_total_time_running);
6133 	}
6134 
6135 	/*
6136 	 * Write {count,id} tuples for every sibling.
6137 	 */
6138 	values[n++] += perf_event_count(leader, false);
6139 	if (read_format & PERF_FORMAT_ID)
6140 		values[n++] = primary_event_id(leader);
6141 	if (read_format & PERF_FORMAT_LOST)
6142 		values[n++] = atomic64_read(&leader->lost_samples);
6143 
6144 	for_each_sibling_event(sub, leader) {
6145 		values[n++] += perf_event_count(sub, false);
6146 		if (read_format & PERF_FORMAT_ID)
6147 			values[n++] = primary_event_id(sub);
6148 		if (read_format & PERF_FORMAT_LOST)
6149 			values[n++] = atomic64_read(&sub->lost_samples);
6150 	}
6151 
6152 unlock:
6153 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
6154 	return ret;
6155 }
6156 
6157 static int perf_read_group(struct perf_event *event,
6158 				   u64 read_format, char __user *buf)
6159 {
6160 	struct perf_event *leader = event->group_leader, *child;
6161 	struct perf_event_context *ctx = leader->ctx;
6162 	int ret;
6163 	u64 *values;
6164 
6165 	lockdep_assert_held(&ctx->mutex);
6166 
6167 	values = kzalloc(event->read_size, GFP_KERNEL);
6168 	if (!values)
6169 		return -ENOMEM;
6170 
6171 	values[0] = 1 + leader->nr_siblings;
6172 
6173 	mutex_lock(&leader->child_mutex);
6174 
6175 	ret = __perf_read_group_add(leader, read_format, values);
6176 	if (ret)
6177 		goto unlock;
6178 
6179 	list_for_each_entry(child, &leader->child_list, child_list) {
6180 		ret = __perf_read_group_add(child, read_format, values);
6181 		if (ret)
6182 			goto unlock;
6183 	}
6184 
6185 	mutex_unlock(&leader->child_mutex);
6186 
6187 	ret = event->read_size;
6188 	if (copy_to_user(buf, values, event->read_size))
6189 		ret = -EFAULT;
6190 	goto out;
6191 
6192 unlock:
6193 	mutex_unlock(&leader->child_mutex);
6194 out:
6195 	kfree(values);
6196 	return ret;
6197 }
6198 
6199 static int perf_read_one(struct perf_event *event,
6200 				 u64 read_format, char __user *buf)
6201 {
6202 	u64 enabled, running;
6203 	u64 values[5];
6204 	int n = 0;
6205 
6206 	values[n++] = __perf_event_read_value(event, &enabled, &running);
6207 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6208 		values[n++] = enabled;
6209 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6210 		values[n++] = running;
6211 	if (read_format & PERF_FORMAT_ID)
6212 		values[n++] = primary_event_id(event);
6213 	if (read_format & PERF_FORMAT_LOST)
6214 		values[n++] = atomic64_read(&event->lost_samples);
6215 
6216 	if (copy_to_user(buf, values, n * sizeof(u64)))
6217 		return -EFAULT;
6218 
6219 	return n * sizeof(u64);
6220 }
6221 
6222 static bool is_event_hup(struct perf_event *event)
6223 {
6224 	bool no_children;
6225 
6226 	if (event->state > PERF_EVENT_STATE_EXIT)
6227 		return false;
6228 
6229 	mutex_lock(&event->child_mutex);
6230 	no_children = list_empty(&event->child_list);
6231 	mutex_unlock(&event->child_mutex);
6232 	return no_children;
6233 }
6234 
6235 /*
6236  * Read the performance event - simple non blocking version for now
6237  */
6238 static ssize_t
6239 __perf_read(struct perf_event *event, char __user *buf, size_t count)
6240 {
6241 	u64 read_format = event->attr.read_format;
6242 	int ret;
6243 
6244 	/*
6245 	 * Return end-of-file for a read on an event that is in
6246 	 * error state (i.e. because it was pinned but it couldn't be
6247 	 * scheduled on to the CPU at some point).
6248 	 */
6249 	if (event->state == PERF_EVENT_STATE_ERROR)
6250 		return 0;
6251 
6252 	if (count < event->read_size)
6253 		return -ENOSPC;
6254 
6255 	WARN_ON_ONCE(event->ctx->parent_ctx);
6256 	if (read_format & PERF_FORMAT_GROUP)
6257 		ret = perf_read_group(event, read_format, buf);
6258 	else
6259 		ret = perf_read_one(event, read_format, buf);
6260 
6261 	return ret;
6262 }
6263 
6264 static ssize_t
6265 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
6266 {
6267 	struct perf_event *event = file->private_data;
6268 	struct perf_event_context *ctx;
6269 	int ret;
6270 
6271 	ret = security_perf_event_read(event);
6272 	if (ret)
6273 		return ret;
6274 
6275 	ctx = perf_event_ctx_lock(event);
6276 	ret = __perf_read(event, buf, count);
6277 	perf_event_ctx_unlock(event, ctx);
6278 
6279 	return ret;
6280 }
6281 
6282 static __poll_t perf_poll(struct file *file, poll_table *wait)
6283 {
6284 	struct perf_event *event = file->private_data;
6285 	struct perf_buffer *rb;
6286 	__poll_t events = EPOLLHUP;
6287 
6288 	if (event->state <= PERF_EVENT_STATE_REVOKED)
6289 		return EPOLLERR;
6290 
6291 	poll_wait(file, &event->waitq, wait);
6292 
6293 	if (event->state <= PERF_EVENT_STATE_REVOKED)
6294 		return EPOLLERR;
6295 
6296 	if (is_event_hup(event))
6297 		return events;
6298 
6299 	if (unlikely(READ_ONCE(event->state) == PERF_EVENT_STATE_ERROR &&
6300 		     event->attr.pinned))
6301 		return EPOLLERR;
6302 
6303 	/*
6304 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
6305 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
6306 	 */
6307 	mutex_lock(&event->mmap_mutex);
6308 	rb = event->rb;
6309 	if (rb)
6310 		events = atomic_xchg(&rb->poll, 0);
6311 	mutex_unlock(&event->mmap_mutex);
6312 	return events;
6313 }
6314 
6315 static void _perf_event_reset(struct perf_event *event)
6316 {
6317 	(void)perf_event_read(event, false);
6318 	local64_set(&event->count, 0);
6319 	perf_event_update_userpage(event);
6320 }
6321 
6322 /* Assume it's not an event with inherit set. */
6323 u64 perf_event_pause(struct perf_event *event, bool reset)
6324 {
6325 	struct perf_event_context *ctx;
6326 	u64 count;
6327 
6328 	ctx = perf_event_ctx_lock(event);
6329 	WARN_ON_ONCE(event->attr.inherit);
6330 	_perf_event_disable(event);
6331 	count = local64_read(&event->count);
6332 	if (reset)
6333 		local64_set(&event->count, 0);
6334 	perf_event_ctx_unlock(event, ctx);
6335 
6336 	return count;
6337 }
6338 EXPORT_SYMBOL_GPL(perf_event_pause);
6339 
6340 #ifdef CONFIG_PERF_GUEST_MEDIATED_PMU
6341 static atomic_t nr_include_guest_events __read_mostly;
6342 
6343 static atomic_t nr_mediated_pmu_vms __read_mostly;
6344 static DEFINE_MUTEX(perf_mediated_pmu_mutex);
6345 
6346 /* !exclude_guest event of PMU with PERF_PMU_CAP_MEDIATED_VPMU */
6347 static inline bool is_include_guest_event(struct perf_event *event)
6348 {
6349 	if ((event->pmu->capabilities & PERF_PMU_CAP_MEDIATED_VPMU) &&
6350 	    !event->attr.exclude_guest)
6351 		return true;
6352 
6353 	return false;
6354 }
6355 
6356 static int mediated_pmu_account_event(struct perf_event *event)
6357 {
6358 	if (!is_include_guest_event(event))
6359 		return 0;
6360 
6361 	if (atomic_inc_not_zero(&nr_include_guest_events))
6362 		return 0;
6363 
6364 	guard(mutex)(&perf_mediated_pmu_mutex);
6365 	if (atomic_read(&nr_mediated_pmu_vms))
6366 		return -EOPNOTSUPP;
6367 
6368 	atomic_inc(&nr_include_guest_events);
6369 	return 0;
6370 }
6371 
6372 static void mediated_pmu_unaccount_event(struct perf_event *event)
6373 {
6374 	if (!is_include_guest_event(event))
6375 		return;
6376 
6377 	if (WARN_ON_ONCE(!atomic_read(&nr_include_guest_events)))
6378 		return;
6379 
6380 	atomic_dec(&nr_include_guest_events);
6381 }
6382 
6383 /*
6384  * Currently invoked at VM creation to
6385  * - Check whether there are existing !exclude_guest events of PMU with
6386  *   PERF_PMU_CAP_MEDIATED_VPMU
6387  * - Set nr_mediated_pmu_vms to prevent !exclude_guest event creation on
6388  *   PMUs with PERF_PMU_CAP_MEDIATED_VPMU
6389  *
6390  * No impact for the PMU without PERF_PMU_CAP_MEDIATED_VPMU. The perf
6391  * still owns all the PMU resources.
6392  */
6393 int perf_create_mediated_pmu(void)
6394 {
6395 	if (atomic_inc_not_zero(&nr_mediated_pmu_vms))
6396 		return 0;
6397 
6398 	guard(mutex)(&perf_mediated_pmu_mutex);
6399 	if (atomic_read(&nr_include_guest_events))
6400 		return -EBUSY;
6401 
6402 	atomic_inc(&nr_mediated_pmu_vms);
6403 	return 0;
6404 }
6405 EXPORT_SYMBOL_FOR_KVM(perf_create_mediated_pmu);
6406 
6407 void perf_release_mediated_pmu(void)
6408 {
6409 	if (WARN_ON_ONCE(!atomic_read(&nr_mediated_pmu_vms)))
6410 		return;
6411 
6412 	atomic_dec(&nr_mediated_pmu_vms);
6413 }
6414 EXPORT_SYMBOL_FOR_KVM(perf_release_mediated_pmu);
6415 
6416 /* When loading a guest's mediated PMU, schedule out all exclude_guest events. */
6417 void perf_load_guest_context(void)
6418 {
6419 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
6420 
6421 	lockdep_assert_irqs_disabled();
6422 
6423 	guard(perf_ctx_lock)(cpuctx, cpuctx->task_ctx);
6424 
6425 	if (WARN_ON_ONCE(__this_cpu_read(guest_ctx_loaded)))
6426 		return;
6427 
6428 	perf_ctx_disable(&cpuctx->ctx, EVENT_GUEST);
6429 	ctx_sched_out(&cpuctx->ctx, NULL, EVENT_GUEST);
6430 	if (cpuctx->task_ctx) {
6431 		perf_ctx_disable(cpuctx->task_ctx, EVENT_GUEST);
6432 		task_ctx_sched_out(cpuctx->task_ctx, NULL, EVENT_GUEST);
6433 	}
6434 
6435 	perf_ctx_enable(&cpuctx->ctx, EVENT_GUEST);
6436 	if (cpuctx->task_ctx)
6437 		perf_ctx_enable(cpuctx->task_ctx, EVENT_GUEST);
6438 
6439 	__this_cpu_write(guest_ctx_loaded, true);
6440 }
6441 EXPORT_SYMBOL_GPL(perf_load_guest_context);
6442 
6443 void perf_put_guest_context(void)
6444 {
6445 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
6446 
6447 	lockdep_assert_irqs_disabled();
6448 
6449 	guard(perf_ctx_lock)(cpuctx, cpuctx->task_ctx);
6450 
6451 	if (WARN_ON_ONCE(!__this_cpu_read(guest_ctx_loaded)))
6452 		return;
6453 
6454 	perf_ctx_disable(&cpuctx->ctx, EVENT_GUEST);
6455 	if (cpuctx->task_ctx)
6456 		perf_ctx_disable(cpuctx->task_ctx, EVENT_GUEST);
6457 
6458 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, NULL, EVENT_GUEST);
6459 
6460 	if (cpuctx->task_ctx)
6461 		perf_ctx_enable(cpuctx->task_ctx, EVENT_GUEST);
6462 	perf_ctx_enable(&cpuctx->ctx, EVENT_GUEST);
6463 
6464 	__this_cpu_write(guest_ctx_loaded, false);
6465 }
6466 EXPORT_SYMBOL_GPL(perf_put_guest_context);
6467 #else
6468 static int mediated_pmu_account_event(struct perf_event *event) { return 0; }
6469 static void mediated_pmu_unaccount_event(struct perf_event *event) {}
6470 #endif
6471 
6472 /*
6473  * Holding the top-level event's child_mutex means that any
6474  * descendant process that has inherited this event will block
6475  * in perf_event_exit_event() if it goes to exit, thus satisfying the
6476  * task existence requirements of perf_event_enable/disable.
6477  */
6478 static void perf_event_for_each_child(struct perf_event *event,
6479 					void (*func)(struct perf_event *))
6480 {
6481 	struct perf_event *child;
6482 
6483 	WARN_ON_ONCE(event->ctx->parent_ctx);
6484 
6485 	mutex_lock(&event->child_mutex);
6486 	func(event);
6487 	list_for_each_entry(child, &event->child_list, child_list)
6488 		func(child);
6489 	mutex_unlock(&event->child_mutex);
6490 }
6491 
6492 static void perf_event_for_each(struct perf_event *event,
6493 				  void (*func)(struct perf_event *))
6494 {
6495 	struct perf_event_context *ctx = event->ctx;
6496 	struct perf_event *sibling;
6497 
6498 	lockdep_assert_held(&ctx->mutex);
6499 
6500 	event = event->group_leader;
6501 
6502 	perf_event_for_each_child(event, func);
6503 	for_each_sibling_event(sibling, event)
6504 		perf_event_for_each_child(sibling, func);
6505 }
6506 
6507 static void __perf_event_period(struct perf_event *event,
6508 				struct perf_cpu_context *cpuctx,
6509 				struct perf_event_context *ctx,
6510 				void *info)
6511 {
6512 	u64 value = *((u64 *)info);
6513 	bool active;
6514 
6515 	if (event->attr.freq) {
6516 		event->attr.sample_freq = value;
6517 	} else {
6518 		event->attr.sample_period = value;
6519 		event->hw.sample_period = value;
6520 	}
6521 
6522 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
6523 	if (active) {
6524 		perf_pmu_disable(event->pmu);
6525 		event->pmu->stop(event, PERF_EF_UPDATE);
6526 	}
6527 
6528 	local64_set(&event->hw.period_left, 0);
6529 
6530 	if (active) {
6531 		event->pmu->start(event, PERF_EF_RELOAD);
6532 		/*
6533 		 * Once the period is force-reset, the event starts immediately.
6534 		 * But the event/group could be throttled. Unthrottle the
6535 		 * event/group now to avoid the next tick trying to unthrottle
6536 		 * while we already re-started the event/group.
6537 		 */
6538 		if (event->hw.interrupts == MAX_INTERRUPTS)
6539 			perf_event_unthrottle_group(event, true);
6540 		perf_pmu_enable(event->pmu);
6541 	}
6542 }
6543 
6544 static int perf_event_check_period(struct perf_event *event, u64 value)
6545 {
6546 	return event->pmu->check_period(event, value);
6547 }
6548 
6549 static int _perf_event_period(struct perf_event *event, u64 value)
6550 {
6551 	if (!is_sampling_event(event))
6552 		return -EINVAL;
6553 
6554 	if (!value)
6555 		return -EINVAL;
6556 
6557 	if (event->attr.freq) {
6558 		if (value > sysctl_perf_event_sample_rate)
6559 			return -EINVAL;
6560 	} else {
6561 		if (perf_event_check_period(event, value))
6562 			return -EINVAL;
6563 		if (value & (1ULL << 63))
6564 			return -EINVAL;
6565 	}
6566 
6567 	event_function_call(event, __perf_event_period, &value);
6568 
6569 	return 0;
6570 }
6571 
6572 int perf_event_period(struct perf_event *event, u64 value)
6573 {
6574 	struct perf_event_context *ctx;
6575 	int ret;
6576 
6577 	ctx = perf_event_ctx_lock(event);
6578 	ret = _perf_event_period(event, value);
6579 	perf_event_ctx_unlock(event, ctx);
6580 
6581 	return ret;
6582 }
6583 EXPORT_SYMBOL_GPL(perf_event_period);
6584 
6585 static const struct file_operations perf_fops;
6586 
6587 static inline bool is_perf_file(struct fd f)
6588 {
6589 	return !fd_empty(f) && fd_file(f)->f_op == &perf_fops;
6590 }
6591 
6592 static int perf_event_set_output(struct perf_event *event,
6593 				 struct perf_event *output_event);
6594 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
6595 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6596 			  struct perf_event_attr *attr);
6597 static int __perf_event_set_bpf_prog(struct perf_event *event,
6598 				     struct bpf_prog *prog,
6599 				     u64 bpf_cookie);
6600 
6601 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
6602 {
6603 	void (*func)(struct perf_event *);
6604 	u32 flags = arg;
6605 
6606 	if (event->state <= PERF_EVENT_STATE_REVOKED)
6607 		return -ENODEV;
6608 
6609 	switch (cmd) {
6610 	case PERF_EVENT_IOC_ENABLE:
6611 		func = _perf_event_enable;
6612 		break;
6613 	case PERF_EVENT_IOC_DISABLE:
6614 		func = _perf_event_disable;
6615 		break;
6616 	case PERF_EVENT_IOC_RESET:
6617 		func = _perf_event_reset;
6618 		break;
6619 
6620 	case PERF_EVENT_IOC_REFRESH:
6621 		return _perf_event_refresh(event, arg);
6622 
6623 	case PERF_EVENT_IOC_PERIOD:
6624 	{
6625 		u64 value;
6626 
6627 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
6628 			return -EFAULT;
6629 
6630 		return _perf_event_period(event, value);
6631 	}
6632 	case PERF_EVENT_IOC_ID:
6633 	{
6634 		u64 id = primary_event_id(event);
6635 
6636 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
6637 			return -EFAULT;
6638 		return 0;
6639 	}
6640 
6641 	case PERF_EVENT_IOC_SET_OUTPUT:
6642 	{
6643 		CLASS(fd, output)(arg);	     // arg == -1 => empty
6644 		struct perf_event *output_event = NULL;
6645 		if (arg != -1) {
6646 			if (!is_perf_file(output))
6647 				return -EBADF;
6648 			output_event = fd_file(output)->private_data;
6649 		}
6650 		return perf_event_set_output(event, output_event);
6651 	}
6652 
6653 	case PERF_EVENT_IOC_SET_FILTER:
6654 		return perf_event_set_filter(event, (void __user *)arg);
6655 
6656 	case PERF_EVENT_IOC_SET_BPF:
6657 	{
6658 		struct bpf_prog *prog;
6659 		int err;
6660 
6661 		prog = bpf_prog_get(arg);
6662 		if (IS_ERR(prog))
6663 			return PTR_ERR(prog);
6664 
6665 		err = __perf_event_set_bpf_prog(event, prog, 0);
6666 		if (err) {
6667 			bpf_prog_put(prog);
6668 			return err;
6669 		}
6670 
6671 		return 0;
6672 	}
6673 
6674 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
6675 		struct perf_buffer *rb;
6676 
6677 		rcu_read_lock();
6678 		rb = rcu_dereference(event->rb);
6679 		if (!rb || !rb->nr_pages) {
6680 			rcu_read_unlock();
6681 			return -EINVAL;
6682 		}
6683 		rb_toggle_paused(rb, !!arg);
6684 		rcu_read_unlock();
6685 		return 0;
6686 	}
6687 
6688 	case PERF_EVENT_IOC_QUERY_BPF:
6689 		return perf_event_query_prog_array(event, (void __user *)arg);
6690 
6691 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
6692 		struct perf_event_attr new_attr;
6693 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
6694 					 &new_attr);
6695 
6696 		if (err)
6697 			return err;
6698 
6699 		return perf_event_modify_attr(event,  &new_attr);
6700 	}
6701 	default:
6702 		return -ENOTTY;
6703 	}
6704 
6705 	if (flags & PERF_IOC_FLAG_GROUP)
6706 		perf_event_for_each(event, func);
6707 	else
6708 		perf_event_for_each_child(event, func);
6709 
6710 	return 0;
6711 }
6712 
6713 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6714 {
6715 	struct perf_event *event = file->private_data;
6716 	struct perf_event_context *ctx;
6717 	long ret;
6718 
6719 	/* Treat ioctl like writes as it is likely a mutating operation. */
6720 	ret = security_perf_event_write(event);
6721 	if (ret)
6722 		return ret;
6723 
6724 	ctx = perf_event_ctx_lock(event);
6725 	ret = _perf_ioctl(event, cmd, arg);
6726 	perf_event_ctx_unlock(event, ctx);
6727 
6728 	return ret;
6729 }
6730 
6731 #ifdef CONFIG_COMPAT
6732 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6733 				unsigned long arg)
6734 {
6735 	switch (_IOC_NR(cmd)) {
6736 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6737 	case _IOC_NR(PERF_EVENT_IOC_ID):
6738 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6739 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6740 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6741 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6742 			cmd &= ~IOCSIZE_MASK;
6743 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6744 		}
6745 		break;
6746 	}
6747 	return perf_ioctl(file, cmd, arg);
6748 }
6749 #else
6750 # define perf_compat_ioctl NULL
6751 #endif
6752 
6753 int perf_event_task_enable(void)
6754 {
6755 	struct perf_event_context *ctx;
6756 	struct perf_event *event;
6757 
6758 	mutex_lock(&current->perf_event_mutex);
6759 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6760 		ctx = perf_event_ctx_lock(event);
6761 		perf_event_for_each_child(event, _perf_event_enable);
6762 		perf_event_ctx_unlock(event, ctx);
6763 	}
6764 	mutex_unlock(&current->perf_event_mutex);
6765 
6766 	return 0;
6767 }
6768 
6769 int perf_event_task_disable(void)
6770 {
6771 	struct perf_event_context *ctx;
6772 	struct perf_event *event;
6773 
6774 	mutex_lock(&current->perf_event_mutex);
6775 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6776 		ctx = perf_event_ctx_lock(event);
6777 		perf_event_for_each_child(event, _perf_event_disable);
6778 		perf_event_ctx_unlock(event, ctx);
6779 	}
6780 	mutex_unlock(&current->perf_event_mutex);
6781 
6782 	return 0;
6783 }
6784 
6785 static int perf_event_index(struct perf_event *event)
6786 {
6787 	if (event->hw.state & PERF_HES_STOPPED)
6788 		return 0;
6789 
6790 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6791 		return 0;
6792 
6793 	return event->pmu->event_idx(event);
6794 }
6795 
6796 static void perf_event_init_userpage(struct perf_event *event)
6797 {
6798 	struct perf_event_mmap_page *userpg;
6799 	struct perf_buffer *rb;
6800 
6801 	rcu_read_lock();
6802 	rb = rcu_dereference(event->rb);
6803 	if (!rb)
6804 		goto unlock;
6805 
6806 	userpg = rb->user_page;
6807 
6808 	/* Allow new userspace to detect that bit 0 is deprecated */
6809 	userpg->cap_bit0_is_deprecated = 1;
6810 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6811 	userpg->data_offset = PAGE_SIZE;
6812 	userpg->data_size = perf_data_size(rb);
6813 
6814 unlock:
6815 	rcu_read_unlock();
6816 }
6817 
6818 void __weak arch_perf_update_userpage(
6819 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6820 {
6821 }
6822 
6823 /*
6824  * Callers need to ensure there can be no nesting of this function, otherwise
6825  * the seqlock logic goes bad. We can not serialize this because the arch
6826  * code calls this from NMI context.
6827  */
6828 void perf_event_update_userpage(struct perf_event *event)
6829 {
6830 	struct perf_event_mmap_page *userpg;
6831 	struct perf_buffer *rb;
6832 	u64 enabled, running, now;
6833 
6834 	rcu_read_lock();
6835 	rb = rcu_dereference(event->rb);
6836 	if (!rb)
6837 		goto unlock;
6838 
6839 	/*
6840 	 * Disable preemption to guarantee consistent time stamps are stored to
6841 	 * the user page.
6842 	 */
6843 	preempt_disable();
6844 
6845 	/*
6846 	 * Compute total_time_enabled, total_time_running based on snapshot
6847 	 * values taken when the event was last scheduled in.
6848 	 *
6849 	 * We cannot simply call update_context_time() because doing so would
6850 	 * lead to deadlock when called from NMI context.
6851 	 */
6852 	calc_timer_values(event, &now, &enabled, &running);
6853 
6854 	userpg = rb->user_page;
6855 
6856 	++userpg->lock;
6857 	barrier();
6858 	userpg->index = perf_event_index(event);
6859 	userpg->offset = perf_event_count(event, false);
6860 	if (userpg->index)
6861 		userpg->offset -= local64_read(&event->hw.prev_count);
6862 
6863 	userpg->time_enabled = enabled +
6864 			atomic64_read(&event->child_total_time_enabled);
6865 
6866 	userpg->time_running = running +
6867 			atomic64_read(&event->child_total_time_running);
6868 
6869 	arch_perf_update_userpage(event, userpg, now);
6870 
6871 	barrier();
6872 	++userpg->lock;
6873 	preempt_enable();
6874 unlock:
6875 	rcu_read_unlock();
6876 }
6877 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6878 
6879 static void ring_buffer_attach(struct perf_event *event,
6880 			       struct perf_buffer *rb)
6881 {
6882 	struct perf_buffer *old_rb = NULL;
6883 	unsigned long flags;
6884 
6885 	WARN_ON_ONCE(event->parent);
6886 
6887 	if (event->rb) {
6888 		/*
6889 		 * Should be impossible, we set this when removing
6890 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6891 		 */
6892 		WARN_ON_ONCE(event->rcu_pending);
6893 
6894 		old_rb = event->rb;
6895 		spin_lock_irqsave(&old_rb->event_lock, flags);
6896 		list_del_rcu(&event->rb_entry);
6897 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6898 
6899 		event->rcu_batches = get_state_synchronize_rcu();
6900 		event->rcu_pending = 1;
6901 	}
6902 
6903 	if (rb) {
6904 		if (event->rcu_pending) {
6905 			cond_synchronize_rcu(event->rcu_batches);
6906 			event->rcu_pending = 0;
6907 		}
6908 
6909 		spin_lock_irqsave(&rb->event_lock, flags);
6910 		list_add_rcu(&event->rb_entry, &rb->event_list);
6911 		spin_unlock_irqrestore(&rb->event_lock, flags);
6912 	}
6913 
6914 	/*
6915 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6916 	 * before swizzling the event::rb pointer; if it's getting
6917 	 * unmapped, its aux_mmap_count will be 0 and it won't
6918 	 * restart. See the comment in __perf_pmu_output_stop().
6919 	 *
6920 	 * Data will inevitably be lost when set_output is done in
6921 	 * mid-air, but then again, whoever does it like this is
6922 	 * not in for the data anyway.
6923 	 */
6924 	if (has_aux(event))
6925 		perf_event_stop(event, 0);
6926 
6927 	rcu_assign_pointer(event->rb, rb);
6928 
6929 	if (old_rb) {
6930 		ring_buffer_put(old_rb);
6931 		/*
6932 		 * Since we detached before setting the new rb, so that we
6933 		 * could attach the new rb, we could have missed a wakeup.
6934 		 * Provide it now.
6935 		 */
6936 		wake_up_all(&event->waitq);
6937 	}
6938 }
6939 
6940 static void ring_buffer_wakeup(struct perf_event *event)
6941 {
6942 	struct perf_buffer *rb;
6943 
6944 	if (event->parent)
6945 		event = event->parent;
6946 
6947 	rcu_read_lock();
6948 	rb = rcu_dereference(event->rb);
6949 	if (rb) {
6950 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6951 			wake_up_all(&event->waitq);
6952 	}
6953 	rcu_read_unlock();
6954 }
6955 
6956 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6957 {
6958 	struct perf_buffer *rb;
6959 
6960 	if (event->parent)
6961 		event = event->parent;
6962 
6963 	rcu_read_lock();
6964 	rb = rcu_dereference(event->rb);
6965 	if (rb) {
6966 		if (!refcount_inc_not_zero(&rb->refcount))
6967 			rb = NULL;
6968 	}
6969 	rcu_read_unlock();
6970 
6971 	return rb;
6972 }
6973 
6974 void ring_buffer_put(struct perf_buffer *rb)
6975 {
6976 	if (!refcount_dec_and_test(&rb->refcount))
6977 		return;
6978 
6979 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6980 
6981 	call_rcu(&rb->rcu_head, rb_free_rcu);
6982 }
6983 
6984 typedef void (*mapped_f)(struct perf_event *event, struct mm_struct *mm);
6985 
6986 #define get_mapped(event, func)			\
6987 ({	struct pmu *pmu;			\
6988 	mapped_f f = NULL;			\
6989 	guard(rcu)();				\
6990 	pmu = READ_ONCE(event->pmu);		\
6991 	if (pmu)				\
6992 		f = pmu->func;			\
6993 	f;					\
6994 })
6995 
6996 static void perf_mmap_open(struct vm_area_struct *vma)
6997 {
6998 	struct perf_event *event = vma->vm_file->private_data;
6999 	mapped_f mapped = get_mapped(event, event_mapped);
7000 
7001 	refcount_inc(&event->mmap_count);
7002 	refcount_inc(&event->rb->mmap_count);
7003 
7004 	if (vma->vm_pgoff)
7005 		refcount_inc(&event->rb->aux_mmap_count);
7006 
7007 	if (mapped)
7008 		mapped(event, vma->vm_mm);
7009 }
7010 
7011 static void perf_pmu_output_stop(struct perf_event *event);
7012 
7013 /*
7014  * A buffer can be mmap()ed multiple times; either directly through the same
7015  * event, or through other events by use of perf_event_set_output().
7016  *
7017  * In order to undo the VM accounting done by perf_mmap() we need to destroy
7018  * the buffer here, where we still have a VM context. This means we need
7019  * to detach all events redirecting to us.
7020  */
7021 static void perf_mmap_close(struct vm_area_struct *vma)
7022 {
7023 	struct perf_event *event = vma->vm_file->private_data;
7024 	mapped_f unmapped = get_mapped(event, event_unmapped);
7025 	struct perf_buffer *rb = ring_buffer_get(event);
7026 	struct user_struct *mmap_user = rb->mmap_user;
7027 	int mmap_locked = rb->mmap_locked;
7028 	unsigned long size = perf_data_size(rb);
7029 	bool detach_rest = false;
7030 
7031 	/* FIXIES vs perf_pmu_unregister() */
7032 	if (unmapped)
7033 		unmapped(event, vma->vm_mm);
7034 
7035 	/*
7036 	 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex
7037 	 * to avoid complications.
7038 	 */
7039 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
7040 	    refcount_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) {
7041 		/*
7042 		 * Stop all AUX events that are writing to this buffer,
7043 		 * so that we can free its AUX pages and corresponding PMU
7044 		 * data. Note that after rb::aux_mmap_count dropped to zero,
7045 		 * they won't start any more (see perf_aux_output_begin()).
7046 		 */
7047 		perf_pmu_output_stop(event);
7048 
7049 		/* now it's safe to free the pages */
7050 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
7051 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
7052 
7053 		/* this has to be the last one */
7054 		rb_free_aux(rb);
7055 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
7056 
7057 		mutex_unlock(&rb->aux_mutex);
7058 	}
7059 
7060 	if (refcount_dec_and_test(&rb->mmap_count))
7061 		detach_rest = true;
7062 
7063 	if (!refcount_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
7064 		goto out_put;
7065 
7066 	ring_buffer_attach(event, NULL);
7067 	mutex_unlock(&event->mmap_mutex);
7068 
7069 	/* If there's still other mmap()s of this buffer, we're done. */
7070 	if (!detach_rest)
7071 		goto out_put;
7072 
7073 	/*
7074 	 * No other mmap()s, detach from all other events that might redirect
7075 	 * into the now unreachable buffer. Somewhat complicated by the
7076 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
7077 	 */
7078 again:
7079 	rcu_read_lock();
7080 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
7081 		if (!atomic_long_inc_not_zero(&event->refcount)) {
7082 			/*
7083 			 * This event is en-route to free_event() which will
7084 			 * detach it and remove it from the list.
7085 			 */
7086 			continue;
7087 		}
7088 		rcu_read_unlock();
7089 
7090 		mutex_lock(&event->mmap_mutex);
7091 		/*
7092 		 * Check we didn't race with perf_event_set_output() which can
7093 		 * swizzle the rb from under us while we were waiting to
7094 		 * acquire mmap_mutex.
7095 		 *
7096 		 * If we find a different rb; ignore this event, a next
7097 		 * iteration will no longer find it on the list. We have to
7098 		 * still restart the iteration to make sure we're not now
7099 		 * iterating the wrong list.
7100 		 */
7101 		if (event->rb == rb)
7102 			ring_buffer_attach(event, NULL);
7103 
7104 		mutex_unlock(&event->mmap_mutex);
7105 		put_event(event);
7106 
7107 		/*
7108 		 * Restart the iteration; either we're on the wrong list or
7109 		 * destroyed its integrity by doing a deletion.
7110 		 */
7111 		goto again;
7112 	}
7113 	rcu_read_unlock();
7114 
7115 	/*
7116 	 * It could be there's still a few 0-ref events on the list; they'll
7117 	 * get cleaned up by free_event() -- they'll also still have their
7118 	 * ref on the rb and will free it whenever they are done with it.
7119 	 *
7120 	 * Aside from that, this buffer is 'fully' detached and unmapped,
7121 	 * undo the VM accounting.
7122 	 */
7123 
7124 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
7125 			&mmap_user->locked_vm);
7126 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
7127 	free_uid(mmap_user);
7128 
7129 out_put:
7130 	ring_buffer_put(rb); /* could be last */
7131 }
7132 
7133 static vm_fault_t perf_mmap_pfn_mkwrite(struct vm_fault *vmf)
7134 {
7135 	/* The first page is the user control page, others are read-only. */
7136 	return vmf->pgoff == 0 ? 0 : VM_FAULT_SIGBUS;
7137 }
7138 
7139 static int perf_mmap_may_split(struct vm_area_struct *vma, unsigned long addr)
7140 {
7141 	/*
7142 	 * Forbid splitting perf mappings to prevent refcount leaks due to
7143 	 * the resulting non-matching offsets and sizes. See open()/close().
7144 	 */
7145 	return -EINVAL;
7146 }
7147 
7148 static const struct vm_operations_struct perf_mmap_vmops = {
7149 	.open		= perf_mmap_open,
7150 	.close		= perf_mmap_close, /* non mergeable */
7151 	.pfn_mkwrite	= perf_mmap_pfn_mkwrite,
7152 	.may_split	= perf_mmap_may_split,
7153 };
7154 
7155 static int map_range(struct perf_buffer *rb, struct vm_area_struct *vma)
7156 {
7157 	unsigned long nr_pages = vma_pages(vma);
7158 	int err = 0;
7159 	unsigned long pagenum;
7160 
7161 	/*
7162 	 * We map this as a VM_PFNMAP VMA.
7163 	 *
7164 	 * This is not ideal as this is designed broadly for mappings of PFNs
7165 	 * referencing memory-mapped I/O ranges or non-system RAM i.e. for which
7166 	 * !pfn_valid(pfn).
7167 	 *
7168 	 * We are mapping kernel-allocated memory (memory we manage ourselves)
7169 	 * which would more ideally be mapped using vm_insert_page() or a
7170 	 * similar mechanism, that is as a VM_MIXEDMAP mapping.
7171 	 *
7172 	 * However this won't work here, because:
7173 	 *
7174 	 * 1. It uses vma->vm_page_prot, but this field has not been completely
7175 	 *    setup at the point of the f_op->mmp() hook, so we are unable to
7176 	 *    indicate that this should be mapped CoW in order that the
7177 	 *    mkwrite() hook can be invoked to make the first page R/W and the
7178 	 *    rest R/O as desired.
7179 	 *
7180 	 * 2. Anything other than a VM_PFNMAP of valid PFNs will result in
7181 	 *    vm_normal_page() returning a struct page * pointer, which means
7182 	 *    vm_ops->page_mkwrite() will be invoked rather than
7183 	 *    vm_ops->pfn_mkwrite(), and this means we have to set page->mapping
7184 	 *    to work around retry logic in the fault handler, however this
7185 	 *    field is no longer allowed to be used within struct page.
7186 	 *
7187 	 * 3. Having a struct page * made available in the fault logic also
7188 	 *    means that the page gets put on the rmap and becomes
7189 	 *    inappropriately accessible and subject to map and ref counting.
7190 	 *
7191 	 * Ideally we would have a mechanism that could explicitly express our
7192 	 * desires, but this is not currently the case, so we instead use
7193 	 * VM_PFNMAP.
7194 	 *
7195 	 * We manage the lifetime of these mappings with internal refcounts (see
7196 	 * perf_mmap_open() and perf_mmap_close()) so we ensure the lifetime of
7197 	 * this mapping is maintained correctly.
7198 	 */
7199 	for (pagenum = 0; pagenum < nr_pages; pagenum++) {
7200 		unsigned long va = vma->vm_start + PAGE_SIZE * pagenum;
7201 		struct page *page = perf_mmap_to_page(rb, vma->vm_pgoff + pagenum);
7202 
7203 		if (page == NULL) {
7204 			err = -EINVAL;
7205 			break;
7206 		}
7207 
7208 		/* Map readonly, perf_mmap_pfn_mkwrite() called on write fault. */
7209 		err = remap_pfn_range(vma, va, page_to_pfn(page), PAGE_SIZE,
7210 				      vm_get_page_prot(vma->vm_flags & ~VM_SHARED));
7211 		if (err)
7212 			break;
7213 	}
7214 
7215 #ifdef CONFIG_MMU
7216 	/* Clear any partial mappings on error. */
7217 	if (err)
7218 		zap_page_range_single(vma, vma->vm_start, nr_pages * PAGE_SIZE, NULL);
7219 #endif
7220 
7221 	return err;
7222 }
7223 
7224 static bool perf_mmap_calc_limits(struct vm_area_struct *vma, long *user_extra, long *extra)
7225 {
7226 	unsigned long user_locked, user_lock_limit, locked, lock_limit;
7227 	struct user_struct *user = current_user();
7228 
7229 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
7230 	/* Increase the limit linearly with more CPUs */
7231 	user_lock_limit *= num_online_cpus();
7232 
7233 	user_locked = atomic_long_read(&user->locked_vm);
7234 
7235 	/*
7236 	 * sysctl_perf_event_mlock may have changed, so that
7237 	 *     user->locked_vm > user_lock_limit
7238 	 */
7239 	if (user_locked > user_lock_limit)
7240 		user_locked = user_lock_limit;
7241 	user_locked += *user_extra;
7242 
7243 	if (user_locked > user_lock_limit) {
7244 		/*
7245 		 * charge locked_vm until it hits user_lock_limit;
7246 		 * charge the rest from pinned_vm
7247 		 */
7248 		*extra = user_locked - user_lock_limit;
7249 		*user_extra -= *extra;
7250 	}
7251 
7252 	lock_limit = rlimit(RLIMIT_MEMLOCK);
7253 	lock_limit >>= PAGE_SHIFT;
7254 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + *extra;
7255 
7256 	return locked <= lock_limit || !perf_is_paranoid() || capable(CAP_IPC_LOCK);
7257 }
7258 
7259 static void perf_mmap_account(struct vm_area_struct *vma, long user_extra, long extra)
7260 {
7261 	struct user_struct *user = current_user();
7262 
7263 	atomic_long_add(user_extra, &user->locked_vm);
7264 	atomic64_add(extra, &vma->vm_mm->pinned_vm);
7265 }
7266 
7267 static int perf_mmap_rb(struct vm_area_struct *vma, struct perf_event *event,
7268 			unsigned long nr_pages)
7269 {
7270 	long extra = 0, user_extra = nr_pages;
7271 	struct perf_buffer *rb;
7272 	int rb_flags = 0;
7273 
7274 	nr_pages -= 1;
7275 
7276 	/*
7277 	 * If we have rb pages ensure they're a power-of-two number, so we
7278 	 * can do bitmasks instead of modulo.
7279 	 */
7280 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
7281 		return -EINVAL;
7282 
7283 	WARN_ON_ONCE(event->ctx->parent_ctx);
7284 
7285 	if (event->rb) {
7286 		if (data_page_nr(event->rb) != nr_pages)
7287 			return -EINVAL;
7288 
7289 		/*
7290 		 * If this event doesn't have mmap_count, we're attempting to
7291 		 * create an alias of another event's mmap(); this would mean
7292 		 * both events will end up scribbling the same user_page;
7293 		 * which makes no sense.
7294 		 */
7295 		if (!refcount_read(&event->mmap_count))
7296 			return -EBUSY;
7297 
7298 		if (refcount_inc_not_zero(&event->rb->mmap_count)) {
7299 			/*
7300 			 * Success -- managed to mmap() the same buffer
7301 			 * multiple times.
7302 			 */
7303 			perf_mmap_account(vma, user_extra, extra);
7304 			refcount_inc(&event->mmap_count);
7305 			return 0;
7306 		}
7307 
7308 		/*
7309 		 * Raced against perf_mmap_close()'s
7310 		 * refcount_dec_and_mutex_lock() remove the
7311 		 * event and continue as if !event->rb
7312 		 */
7313 		ring_buffer_attach(event, NULL);
7314 	}
7315 
7316 	if (!perf_mmap_calc_limits(vma, &user_extra, &extra))
7317 		return -EPERM;
7318 
7319 	if (vma->vm_flags & VM_WRITE)
7320 		rb_flags |= RING_BUFFER_WRITABLE;
7321 
7322 	rb = rb_alloc(nr_pages,
7323 		      event->attr.watermark ? event->attr.wakeup_watermark : 0,
7324 		      event->cpu, rb_flags);
7325 
7326 	if (!rb)
7327 		return -ENOMEM;
7328 
7329 	refcount_set(&rb->mmap_count, 1);
7330 	rb->mmap_user = get_current_user();
7331 	rb->mmap_locked = extra;
7332 
7333 	ring_buffer_attach(event, rb);
7334 
7335 	perf_event_update_time(event);
7336 	perf_event_init_userpage(event);
7337 	perf_event_update_userpage(event);
7338 
7339 	perf_mmap_account(vma, user_extra, extra);
7340 	refcount_set(&event->mmap_count, 1);
7341 
7342 	return 0;
7343 }
7344 
7345 static int perf_mmap_aux(struct vm_area_struct *vma, struct perf_event *event,
7346 			 unsigned long nr_pages)
7347 {
7348 	long extra = 0, user_extra = nr_pages;
7349 	u64 aux_offset, aux_size;
7350 	struct perf_buffer *rb;
7351 	int ret, rb_flags = 0;
7352 
7353 	rb = event->rb;
7354 	if (!rb)
7355 		return -EINVAL;
7356 
7357 	guard(mutex)(&rb->aux_mutex);
7358 
7359 	/*
7360 	 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
7361 	 * mapped, all subsequent mappings should have the same size
7362 	 * and offset. Must be above the normal perf buffer.
7363 	 */
7364 	aux_offset = READ_ONCE(rb->user_page->aux_offset);
7365 	aux_size = READ_ONCE(rb->user_page->aux_size);
7366 
7367 	if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
7368 		return -EINVAL;
7369 
7370 	if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
7371 		return -EINVAL;
7372 
7373 	/* already mapped with a different offset */
7374 	if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
7375 		return -EINVAL;
7376 
7377 	if (aux_size != nr_pages * PAGE_SIZE)
7378 		return -EINVAL;
7379 
7380 	/* already mapped with a different size */
7381 	if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
7382 		return -EINVAL;
7383 
7384 	if (!is_power_of_2(nr_pages))
7385 		return -EINVAL;
7386 
7387 	if (!refcount_inc_not_zero(&rb->mmap_count))
7388 		return -EINVAL;
7389 
7390 	if (rb_has_aux(rb)) {
7391 		refcount_inc(&rb->aux_mmap_count);
7392 
7393 	} else {
7394 		if (!perf_mmap_calc_limits(vma, &user_extra, &extra)) {
7395 			refcount_dec(&rb->mmap_count);
7396 			return -EPERM;
7397 		}
7398 
7399 		WARN_ON(!rb && event->rb);
7400 
7401 		if (vma->vm_flags & VM_WRITE)
7402 			rb_flags |= RING_BUFFER_WRITABLE;
7403 
7404 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
7405 				   event->attr.aux_watermark, rb_flags);
7406 		if (ret) {
7407 			refcount_dec(&rb->mmap_count);
7408 			return ret;
7409 		}
7410 
7411 		refcount_set(&rb->aux_mmap_count, 1);
7412 		rb->aux_mmap_locked = extra;
7413 	}
7414 
7415 	perf_mmap_account(vma, user_extra, extra);
7416 	refcount_inc(&event->mmap_count);
7417 
7418 	return 0;
7419 }
7420 
7421 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
7422 {
7423 	struct perf_event *event = file->private_data;
7424 	unsigned long vma_size, nr_pages;
7425 	mapped_f mapped;
7426 	int ret;
7427 
7428 	/*
7429 	 * Don't allow mmap() of inherited per-task counters. This would
7430 	 * create a performance issue due to all children writing to the
7431 	 * same rb.
7432 	 */
7433 	if (event->cpu == -1 && event->attr.inherit)
7434 		return -EINVAL;
7435 
7436 	if (!(vma->vm_flags & VM_SHARED))
7437 		return -EINVAL;
7438 
7439 	ret = security_perf_event_read(event);
7440 	if (ret)
7441 		return ret;
7442 
7443 	vma_size = vma->vm_end - vma->vm_start;
7444 	nr_pages = vma_size / PAGE_SIZE;
7445 
7446 	if (nr_pages > INT_MAX)
7447 		return -ENOMEM;
7448 
7449 	if (vma_size != PAGE_SIZE * nr_pages)
7450 		return -EINVAL;
7451 
7452 	scoped_guard (mutex, &event->mmap_mutex) {
7453 		/*
7454 		 * This relies on __pmu_detach_event() taking mmap_mutex after marking
7455 		 * the event REVOKED. Either we observe the state, or __pmu_detach_event()
7456 		 * will detach the rb created here.
7457 		 */
7458 		if (event->state <= PERF_EVENT_STATE_REVOKED)
7459 			return -ENODEV;
7460 
7461 		if (vma->vm_pgoff == 0)
7462 			ret = perf_mmap_rb(vma, event, nr_pages);
7463 		else
7464 			ret = perf_mmap_aux(vma, event, nr_pages);
7465 		if (ret)
7466 			return ret;
7467 	}
7468 
7469 	/*
7470 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
7471 	 * vma.
7472 	 */
7473 	vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
7474 	vma->vm_ops = &perf_mmap_vmops;
7475 
7476 	mapped = get_mapped(event, event_mapped);
7477 	if (mapped)
7478 		mapped(event, vma->vm_mm);
7479 
7480 	/*
7481 	 * Try to map it into the page table. On fail, invoke
7482 	 * perf_mmap_close() to undo the above, as the callsite expects
7483 	 * full cleanup in this case and therefore does not invoke
7484 	 * vmops::close().
7485 	 */
7486 	ret = map_range(event->rb, vma);
7487 	if (ret)
7488 		perf_mmap_close(vma);
7489 
7490 	return ret;
7491 }
7492 
7493 static int perf_fasync(int fd, struct file *filp, int on)
7494 {
7495 	struct inode *inode = file_inode(filp);
7496 	struct perf_event *event = filp->private_data;
7497 	int retval;
7498 
7499 	if (event->state <= PERF_EVENT_STATE_REVOKED)
7500 		return -ENODEV;
7501 
7502 	inode_lock(inode);
7503 	retval = fasync_helper(fd, filp, on, &event->fasync);
7504 	inode_unlock(inode);
7505 
7506 	if (retval < 0)
7507 		return retval;
7508 
7509 	return 0;
7510 }
7511 
7512 static const struct file_operations perf_fops = {
7513 	.release		= perf_release,
7514 	.read			= perf_read,
7515 	.poll			= perf_poll,
7516 	.unlocked_ioctl		= perf_ioctl,
7517 	.compat_ioctl		= perf_compat_ioctl,
7518 	.mmap			= perf_mmap,
7519 	.fasync			= perf_fasync,
7520 };
7521 
7522 /*
7523  * Perf event wakeup
7524  *
7525  * If there's data, ensure we set the poll() state and publish everything
7526  * to user-space before waking everybody up.
7527  */
7528 
7529 void perf_event_wakeup(struct perf_event *event)
7530 {
7531 	ring_buffer_wakeup(event);
7532 
7533 	if (event->pending_kill) {
7534 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
7535 		event->pending_kill = 0;
7536 	}
7537 }
7538 
7539 static void perf_sigtrap(struct perf_event *event)
7540 {
7541 	/*
7542 	 * Both perf_pending_task() and perf_pending_irq() can race with the
7543 	 * task exiting.
7544 	 */
7545 	if (current->flags & PF_EXITING)
7546 		return;
7547 
7548 	/*
7549 	 * We'd expect this to only occur if the irq_work is delayed and either
7550 	 * ctx->task or current has changed in the meantime. This can be the
7551 	 * case on architectures that do not implement arch_irq_work_raise().
7552 	 */
7553 	if (WARN_ON_ONCE(event->ctx->task != current))
7554 		return;
7555 
7556 	send_sig_perf((void __user *)event->pending_addr,
7557 		      event->orig_type, event->attr.sig_data);
7558 }
7559 
7560 /*
7561  * Deliver the pending work in-event-context or follow the context.
7562  */
7563 static void __perf_pending_disable(struct perf_event *event)
7564 {
7565 	int cpu = READ_ONCE(event->oncpu);
7566 
7567 	/*
7568 	 * If the event isn't running; we done. event_sched_out() will have
7569 	 * taken care of things.
7570 	 */
7571 	if (cpu < 0)
7572 		return;
7573 
7574 	/*
7575 	 * Yay, we hit home and are in the context of the event.
7576 	 */
7577 	if (cpu == smp_processor_id()) {
7578 		if (event->pending_disable) {
7579 			event->pending_disable = 0;
7580 			perf_event_disable_local(event);
7581 		}
7582 		return;
7583 	}
7584 
7585 	/*
7586 	 *  CPU-A			CPU-B
7587 	 *
7588 	 *  perf_event_disable_inatomic()
7589 	 *    @pending_disable = 1;
7590 	 *    irq_work_queue();
7591 	 *
7592 	 *  sched-out
7593 	 *    @pending_disable = 0;
7594 	 *
7595 	 *				sched-in
7596 	 *				perf_event_disable_inatomic()
7597 	 *				  @pending_disable = 1;
7598 	 *				  irq_work_queue(); // FAILS
7599 	 *
7600 	 *  irq_work_run()
7601 	 *    perf_pending_disable()
7602 	 *
7603 	 * But the event runs on CPU-B and wants disabling there.
7604 	 */
7605 	irq_work_queue_on(&event->pending_disable_irq, cpu);
7606 }
7607 
7608 static void perf_pending_disable(struct irq_work *entry)
7609 {
7610 	struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq);
7611 	int rctx;
7612 
7613 	/*
7614 	 * If we 'fail' here, that's OK, it means recursion is already disabled
7615 	 * and we won't recurse 'further'.
7616 	 */
7617 	rctx = perf_swevent_get_recursion_context();
7618 	__perf_pending_disable(event);
7619 	if (rctx >= 0)
7620 		perf_swevent_put_recursion_context(rctx);
7621 }
7622 
7623 static void perf_pending_irq(struct irq_work *entry)
7624 {
7625 	struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
7626 	int rctx;
7627 
7628 	/*
7629 	 * If we 'fail' here, that's OK, it means recursion is already disabled
7630 	 * and we won't recurse 'further'.
7631 	 */
7632 	rctx = perf_swevent_get_recursion_context();
7633 
7634 	/*
7635 	 * The wakeup isn't bound to the context of the event -- it can happen
7636 	 * irrespective of where the event is.
7637 	 */
7638 	if (event->pending_wakeup) {
7639 		event->pending_wakeup = 0;
7640 		perf_event_wakeup(event);
7641 	}
7642 
7643 	if (rctx >= 0)
7644 		perf_swevent_put_recursion_context(rctx);
7645 }
7646 
7647 static void perf_pending_task(struct callback_head *head)
7648 {
7649 	struct perf_event *event = container_of(head, struct perf_event, pending_task);
7650 	int rctx;
7651 
7652 	/*
7653 	 * If we 'fail' here, that's OK, it means recursion is already disabled
7654 	 * and we won't recurse 'further'.
7655 	 */
7656 	rctx = perf_swevent_get_recursion_context();
7657 
7658 	if (event->pending_work) {
7659 		event->pending_work = 0;
7660 		perf_sigtrap(event);
7661 		local_dec(&event->ctx->nr_no_switch_fast);
7662 	}
7663 	put_event(event);
7664 
7665 	if (rctx >= 0)
7666 		perf_swevent_put_recursion_context(rctx);
7667 }
7668 
7669 #ifdef CONFIG_GUEST_PERF_EVENTS
7670 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
7671 
7672 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
7673 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
7674 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
7675 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_mediated_pmi, *perf_guest_cbs->handle_mediated_pmi);
7676 
7677 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7678 {
7679 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
7680 		return;
7681 
7682 	rcu_assign_pointer(perf_guest_cbs, cbs);
7683 	static_call_update(__perf_guest_state, cbs->state);
7684 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
7685 
7686 	/* Implementing ->handle_intel_pt_intr is optional. */
7687 	if (cbs->handle_intel_pt_intr)
7688 		static_call_update(__perf_guest_handle_intel_pt_intr,
7689 				   cbs->handle_intel_pt_intr);
7690 
7691 	if (cbs->handle_mediated_pmi)
7692 		static_call_update(__perf_guest_handle_mediated_pmi,
7693 				   cbs->handle_mediated_pmi);
7694 }
7695 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
7696 
7697 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7698 {
7699 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
7700 		return;
7701 
7702 	rcu_assign_pointer(perf_guest_cbs, NULL);
7703 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
7704 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
7705 	static_call_update(__perf_guest_handle_intel_pt_intr, (void *)&__static_call_return0);
7706 	static_call_update(__perf_guest_handle_mediated_pmi, (void *)&__static_call_return0);
7707 	synchronize_rcu();
7708 }
7709 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
7710 #endif
7711 
7712 static bool should_sample_guest(struct perf_event *event)
7713 {
7714 	return !event->attr.exclude_guest && perf_guest_state();
7715 }
7716 
7717 unsigned long perf_misc_flags(struct perf_event *event,
7718 			      struct pt_regs *regs)
7719 {
7720 	if (should_sample_guest(event))
7721 		return perf_arch_guest_misc_flags(regs);
7722 
7723 	return perf_arch_misc_flags(regs);
7724 }
7725 
7726 unsigned long perf_instruction_pointer(struct perf_event *event,
7727 				       struct pt_regs *regs)
7728 {
7729 	if (should_sample_guest(event))
7730 		return perf_guest_get_ip();
7731 
7732 	return perf_arch_instruction_pointer(regs);
7733 }
7734 
7735 static void
7736 perf_output_sample_regs(struct perf_output_handle *handle,
7737 			struct pt_regs *regs, u64 mask)
7738 {
7739 	int bit;
7740 	DECLARE_BITMAP(_mask, 64);
7741 
7742 	bitmap_from_u64(_mask, mask);
7743 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
7744 		u64 val;
7745 
7746 		val = perf_reg_value(regs, bit);
7747 		perf_output_put(handle, val);
7748 	}
7749 }
7750 
7751 static void perf_sample_regs_user(struct perf_regs *regs_user,
7752 				  struct pt_regs *regs)
7753 {
7754 	if (user_mode(regs)) {
7755 		regs_user->abi = perf_reg_abi(current);
7756 		regs_user->regs = regs;
7757 	} else if (is_user_task(current)) {
7758 		perf_get_regs_user(regs_user, regs);
7759 	} else {
7760 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
7761 		regs_user->regs = NULL;
7762 	}
7763 }
7764 
7765 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
7766 				  struct pt_regs *regs)
7767 {
7768 	regs_intr->regs = regs;
7769 	regs_intr->abi  = perf_reg_abi(current);
7770 }
7771 
7772 
7773 /*
7774  * Get remaining task size from user stack pointer.
7775  *
7776  * It'd be better to take stack vma map and limit this more
7777  * precisely, but there's no way to get it safely under interrupt,
7778  * so using TASK_SIZE as limit.
7779  */
7780 static u64 perf_ustack_task_size(struct pt_regs *regs)
7781 {
7782 	unsigned long addr = perf_user_stack_pointer(regs);
7783 
7784 	if (!addr || addr >= TASK_SIZE)
7785 		return 0;
7786 
7787 	return TASK_SIZE - addr;
7788 }
7789 
7790 static u16
7791 perf_sample_ustack_size(u16 stack_size, u16 header_size,
7792 			struct pt_regs *regs)
7793 {
7794 	u64 task_size;
7795 
7796 	/* No regs, no stack pointer, no dump. */
7797 	if (!regs)
7798 		return 0;
7799 
7800 	/* No mm, no stack, no dump. */
7801 	if (!current->mm)
7802 		return 0;
7803 
7804 	/*
7805 	 * Check if we fit in with the requested stack size into the:
7806 	 * - TASK_SIZE
7807 	 *   If we don't, we limit the size to the TASK_SIZE.
7808 	 *
7809 	 * - remaining sample size
7810 	 *   If we don't, we customize the stack size to
7811 	 *   fit in to the remaining sample size.
7812 	 */
7813 
7814 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
7815 	stack_size = min(stack_size, (u16) task_size);
7816 
7817 	/* Current header size plus static size and dynamic size. */
7818 	header_size += 2 * sizeof(u64);
7819 
7820 	/* Do we fit in with the current stack dump size? */
7821 	if ((u16) (header_size + stack_size) < header_size) {
7822 		/*
7823 		 * If we overflow the maximum size for the sample,
7824 		 * we customize the stack dump size to fit in.
7825 		 */
7826 		stack_size = USHRT_MAX - header_size - sizeof(u64);
7827 		stack_size = round_up(stack_size, sizeof(u64));
7828 	}
7829 
7830 	return stack_size;
7831 }
7832 
7833 static void
7834 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
7835 			  struct pt_regs *regs)
7836 {
7837 	/* Case of a kernel thread, nothing to dump */
7838 	if (!regs) {
7839 		u64 size = 0;
7840 		perf_output_put(handle, size);
7841 	} else {
7842 		unsigned long sp;
7843 		unsigned int rem;
7844 		u64 dyn_size;
7845 
7846 		/*
7847 		 * We dump:
7848 		 * static size
7849 		 *   - the size requested by user or the best one we can fit
7850 		 *     in to the sample max size
7851 		 * data
7852 		 *   - user stack dump data
7853 		 * dynamic size
7854 		 *   - the actual dumped size
7855 		 */
7856 
7857 		/* Static size. */
7858 		perf_output_put(handle, dump_size);
7859 
7860 		/* Data. */
7861 		sp = perf_user_stack_pointer(regs);
7862 		rem = __output_copy_user(handle, (void *) sp, dump_size);
7863 		dyn_size = dump_size - rem;
7864 
7865 		perf_output_skip(handle, rem);
7866 
7867 		/* Dynamic size. */
7868 		perf_output_put(handle, dyn_size);
7869 	}
7870 }
7871 
7872 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7873 					  struct perf_sample_data *data,
7874 					  size_t size)
7875 {
7876 	struct perf_event *sampler = event->aux_event;
7877 	struct perf_buffer *rb;
7878 
7879 	data->aux_size = 0;
7880 
7881 	if (!sampler)
7882 		goto out;
7883 
7884 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7885 		goto out;
7886 
7887 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7888 		goto out;
7889 
7890 	rb = ring_buffer_get(sampler);
7891 	if (!rb)
7892 		goto out;
7893 
7894 	/*
7895 	 * If this is an NMI hit inside sampling code, don't take
7896 	 * the sample. See also perf_aux_sample_output().
7897 	 */
7898 	if (READ_ONCE(rb->aux_in_sampling)) {
7899 		data->aux_size = 0;
7900 	} else {
7901 		size = min_t(size_t, size, perf_aux_size(rb));
7902 		data->aux_size = ALIGN(size, sizeof(u64));
7903 	}
7904 	ring_buffer_put(rb);
7905 
7906 out:
7907 	return data->aux_size;
7908 }
7909 
7910 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7911                                  struct perf_event *event,
7912                                  struct perf_output_handle *handle,
7913                                  unsigned long size)
7914 {
7915 	unsigned long flags;
7916 	long ret;
7917 
7918 	/*
7919 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7920 	 * paths. If we start calling them in NMI context, they may race with
7921 	 * the IRQ ones, that is, for example, re-starting an event that's just
7922 	 * been stopped, which is why we're using a separate callback that
7923 	 * doesn't change the event state.
7924 	 *
7925 	 * IRQs need to be disabled to prevent IPIs from racing with us.
7926 	 */
7927 	local_irq_save(flags);
7928 	/*
7929 	 * Guard against NMI hits inside the critical section;
7930 	 * see also perf_prepare_sample_aux().
7931 	 */
7932 	WRITE_ONCE(rb->aux_in_sampling, 1);
7933 	barrier();
7934 
7935 	ret = event->pmu->snapshot_aux(event, handle, size);
7936 
7937 	barrier();
7938 	WRITE_ONCE(rb->aux_in_sampling, 0);
7939 	local_irq_restore(flags);
7940 
7941 	return ret;
7942 }
7943 
7944 static void perf_aux_sample_output(struct perf_event *event,
7945 				   struct perf_output_handle *handle,
7946 				   struct perf_sample_data *data)
7947 {
7948 	struct perf_event *sampler = event->aux_event;
7949 	struct perf_buffer *rb;
7950 	unsigned long pad;
7951 	long size;
7952 
7953 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
7954 		return;
7955 
7956 	rb = ring_buffer_get(sampler);
7957 	if (!rb)
7958 		return;
7959 
7960 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7961 
7962 	/*
7963 	 * An error here means that perf_output_copy() failed (returned a
7964 	 * non-zero surplus that it didn't copy), which in its current
7965 	 * enlightened implementation is not possible. If that changes, we'd
7966 	 * like to know.
7967 	 */
7968 	if (WARN_ON_ONCE(size < 0))
7969 		goto out_put;
7970 
7971 	/*
7972 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7973 	 * perf_prepare_sample_aux(), so should not be more than that.
7974 	 */
7975 	pad = data->aux_size - size;
7976 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
7977 		pad = 8;
7978 
7979 	if (pad) {
7980 		u64 zero = 0;
7981 		perf_output_copy(handle, &zero, pad);
7982 	}
7983 
7984 out_put:
7985 	ring_buffer_put(rb);
7986 }
7987 
7988 /*
7989  * A set of common sample data types saved even for non-sample records
7990  * when event->attr.sample_id_all is set.
7991  */
7992 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |	\
7993 			     PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |	\
7994 			     PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7995 
7996 static void __perf_event_header__init_id(struct perf_sample_data *data,
7997 					 struct perf_event *event,
7998 					 u64 sample_type)
7999 {
8000 	data->type = event->attr.sample_type;
8001 	data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
8002 
8003 	if (sample_type & PERF_SAMPLE_TID) {
8004 		/* namespace issues */
8005 		data->tid_entry.pid = perf_event_pid(event, current);
8006 		data->tid_entry.tid = perf_event_tid(event, current);
8007 	}
8008 
8009 	if (sample_type & PERF_SAMPLE_TIME)
8010 		data->time = perf_event_clock(event);
8011 
8012 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
8013 		data->id = primary_event_id(event);
8014 
8015 	if (sample_type & PERF_SAMPLE_STREAM_ID)
8016 		data->stream_id = event->id;
8017 
8018 	if (sample_type & PERF_SAMPLE_CPU) {
8019 		data->cpu_entry.cpu	 = raw_smp_processor_id();
8020 		data->cpu_entry.reserved = 0;
8021 	}
8022 }
8023 
8024 void perf_event_header__init_id(struct perf_event_header *header,
8025 				struct perf_sample_data *data,
8026 				struct perf_event *event)
8027 {
8028 	if (event->attr.sample_id_all) {
8029 		header->size += event->id_header_size;
8030 		__perf_event_header__init_id(data, event, event->attr.sample_type);
8031 	}
8032 }
8033 
8034 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
8035 					   struct perf_sample_data *data)
8036 {
8037 	u64 sample_type = data->type;
8038 
8039 	if (sample_type & PERF_SAMPLE_TID)
8040 		perf_output_put(handle, data->tid_entry);
8041 
8042 	if (sample_type & PERF_SAMPLE_TIME)
8043 		perf_output_put(handle, data->time);
8044 
8045 	if (sample_type & PERF_SAMPLE_ID)
8046 		perf_output_put(handle, data->id);
8047 
8048 	if (sample_type & PERF_SAMPLE_STREAM_ID)
8049 		perf_output_put(handle, data->stream_id);
8050 
8051 	if (sample_type & PERF_SAMPLE_CPU)
8052 		perf_output_put(handle, data->cpu_entry);
8053 
8054 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
8055 		perf_output_put(handle, data->id);
8056 }
8057 
8058 void perf_event__output_id_sample(struct perf_event *event,
8059 				  struct perf_output_handle *handle,
8060 				  struct perf_sample_data *sample)
8061 {
8062 	if (event->attr.sample_id_all)
8063 		__perf_event__output_id_sample(handle, sample);
8064 }
8065 
8066 static void perf_output_read_one(struct perf_output_handle *handle,
8067 				 struct perf_event *event,
8068 				 u64 enabled, u64 running)
8069 {
8070 	u64 read_format = event->attr.read_format;
8071 	u64 values[5];
8072 	int n = 0;
8073 
8074 	values[n++] = perf_event_count(event, has_inherit_and_sample_read(&event->attr));
8075 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
8076 		values[n++] = enabled +
8077 			atomic64_read(&event->child_total_time_enabled);
8078 	}
8079 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
8080 		values[n++] = running +
8081 			atomic64_read(&event->child_total_time_running);
8082 	}
8083 	if (read_format & PERF_FORMAT_ID)
8084 		values[n++] = primary_event_id(event);
8085 	if (read_format & PERF_FORMAT_LOST)
8086 		values[n++] = atomic64_read(&event->lost_samples);
8087 
8088 	__output_copy(handle, values, n * sizeof(u64));
8089 }
8090 
8091 static void perf_output_read_group(struct perf_output_handle *handle,
8092 				   struct perf_event *event,
8093 				   u64 enabled, u64 running)
8094 {
8095 	struct perf_event *leader = event->group_leader, *sub;
8096 	u64 read_format = event->attr.read_format;
8097 	unsigned long flags;
8098 	u64 values[6];
8099 	int n = 0;
8100 	bool self = has_inherit_and_sample_read(&event->attr);
8101 
8102 	/*
8103 	 * Disabling interrupts avoids all counter scheduling
8104 	 * (context switches, timer based rotation and IPIs).
8105 	 */
8106 	local_irq_save(flags);
8107 
8108 	values[n++] = 1 + leader->nr_siblings;
8109 
8110 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
8111 		values[n++] = enabled;
8112 
8113 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
8114 		values[n++] = running;
8115 
8116 	if ((leader != event) && !handle->skip_read)
8117 		perf_pmu_read(leader);
8118 
8119 	values[n++] = perf_event_count(leader, self);
8120 	if (read_format & PERF_FORMAT_ID)
8121 		values[n++] = primary_event_id(leader);
8122 	if (read_format & PERF_FORMAT_LOST)
8123 		values[n++] = atomic64_read(&leader->lost_samples);
8124 
8125 	__output_copy(handle, values, n * sizeof(u64));
8126 
8127 	for_each_sibling_event(sub, leader) {
8128 		n = 0;
8129 
8130 		if ((sub != event) && !handle->skip_read)
8131 			perf_pmu_read(sub);
8132 
8133 		values[n++] = perf_event_count(sub, self);
8134 		if (read_format & PERF_FORMAT_ID)
8135 			values[n++] = primary_event_id(sub);
8136 		if (read_format & PERF_FORMAT_LOST)
8137 			values[n++] = atomic64_read(&sub->lost_samples);
8138 
8139 		__output_copy(handle, values, n * sizeof(u64));
8140 	}
8141 
8142 	local_irq_restore(flags);
8143 }
8144 
8145 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
8146 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
8147 
8148 /*
8149  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
8150  *
8151  * The problem is that its both hard and excessively expensive to iterate the
8152  * child list, not to mention that its impossible to IPI the children running
8153  * on another CPU, from interrupt/NMI context.
8154  *
8155  * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread
8156  * counts rather than attempting to accumulate some value across all children on
8157  * all cores.
8158  */
8159 static void perf_output_read(struct perf_output_handle *handle,
8160 			     struct perf_event *event)
8161 {
8162 	u64 enabled = 0, running = 0, now;
8163 	u64 read_format = event->attr.read_format;
8164 
8165 	/*
8166 	 * Compute total_time_enabled, total_time_running based on snapshot
8167 	 * values taken when the event was last scheduled in.
8168 	 *
8169 	 * We cannot simply call update_context_time() because doing so would
8170 	 * lead to deadlock when called from NMI context.
8171 	 */
8172 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
8173 		calc_timer_values(event, &now, &enabled, &running);
8174 
8175 	if (event->attr.read_format & PERF_FORMAT_GROUP)
8176 		perf_output_read_group(handle, event, enabled, running);
8177 	else
8178 		perf_output_read_one(handle, event, enabled, running);
8179 }
8180 
8181 void perf_output_sample(struct perf_output_handle *handle,
8182 			struct perf_event_header *header,
8183 			struct perf_sample_data *data,
8184 			struct perf_event *event)
8185 {
8186 	u64 sample_type = data->type;
8187 
8188 	if (data->sample_flags & PERF_SAMPLE_READ)
8189 		handle->skip_read = 1;
8190 
8191 	perf_output_put(handle, *header);
8192 
8193 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
8194 		perf_output_put(handle, data->id);
8195 
8196 	if (sample_type & PERF_SAMPLE_IP)
8197 		perf_output_put(handle, data->ip);
8198 
8199 	if (sample_type & PERF_SAMPLE_TID)
8200 		perf_output_put(handle, data->tid_entry);
8201 
8202 	if (sample_type & PERF_SAMPLE_TIME)
8203 		perf_output_put(handle, data->time);
8204 
8205 	if (sample_type & PERF_SAMPLE_ADDR)
8206 		perf_output_put(handle, data->addr);
8207 
8208 	if (sample_type & PERF_SAMPLE_ID)
8209 		perf_output_put(handle, data->id);
8210 
8211 	if (sample_type & PERF_SAMPLE_STREAM_ID)
8212 		perf_output_put(handle, data->stream_id);
8213 
8214 	if (sample_type & PERF_SAMPLE_CPU)
8215 		perf_output_put(handle, data->cpu_entry);
8216 
8217 	if (sample_type & PERF_SAMPLE_PERIOD)
8218 		perf_output_put(handle, data->period);
8219 
8220 	if (sample_type & PERF_SAMPLE_READ)
8221 		perf_output_read(handle, event);
8222 
8223 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
8224 		int size = 1;
8225 
8226 		size += data->callchain->nr;
8227 		size *= sizeof(u64);
8228 		__output_copy(handle, data->callchain, size);
8229 	}
8230 
8231 	if (sample_type & PERF_SAMPLE_RAW) {
8232 		struct perf_raw_record *raw = data->raw;
8233 
8234 		if (raw) {
8235 			struct perf_raw_frag *frag = &raw->frag;
8236 
8237 			perf_output_put(handle, raw->size);
8238 			do {
8239 				if (frag->copy) {
8240 					__output_custom(handle, frag->copy,
8241 							frag->data, frag->size);
8242 				} else {
8243 					__output_copy(handle, frag->data,
8244 						      frag->size);
8245 				}
8246 				if (perf_raw_frag_last(frag))
8247 					break;
8248 				frag = frag->next;
8249 			} while (1);
8250 			if (frag->pad)
8251 				__output_skip(handle, NULL, frag->pad);
8252 		} else {
8253 			struct {
8254 				u32	size;
8255 				u32	data;
8256 			} raw = {
8257 				.size = sizeof(u32),
8258 				.data = 0,
8259 			};
8260 			perf_output_put(handle, raw);
8261 		}
8262 	}
8263 
8264 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
8265 		if (data->br_stack) {
8266 			size_t size;
8267 
8268 			size = data->br_stack->nr
8269 			     * sizeof(struct perf_branch_entry);
8270 
8271 			perf_output_put(handle, data->br_stack->nr);
8272 			if (branch_sample_hw_index(event))
8273 				perf_output_put(handle, data->br_stack->hw_idx);
8274 			perf_output_copy(handle, data->br_stack->entries, size);
8275 			/*
8276 			 * Add the extension space which is appended
8277 			 * right after the struct perf_branch_stack.
8278 			 */
8279 			if (data->br_stack_cntr) {
8280 				size = data->br_stack->nr * sizeof(u64);
8281 				perf_output_copy(handle, data->br_stack_cntr, size);
8282 			}
8283 		} else {
8284 			/*
8285 			 * we always store at least the value of nr
8286 			 */
8287 			u64 nr = 0;
8288 			perf_output_put(handle, nr);
8289 		}
8290 	}
8291 
8292 	if (sample_type & PERF_SAMPLE_REGS_USER) {
8293 		u64 abi = data->regs_user.abi;
8294 
8295 		/*
8296 		 * If there are no regs to dump, notice it through
8297 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
8298 		 */
8299 		perf_output_put(handle, abi);
8300 
8301 		if (abi) {
8302 			u64 mask = event->attr.sample_regs_user;
8303 			perf_output_sample_regs(handle,
8304 						data->regs_user.regs,
8305 						mask);
8306 		}
8307 	}
8308 
8309 	if (sample_type & PERF_SAMPLE_STACK_USER) {
8310 		perf_output_sample_ustack(handle,
8311 					  data->stack_user_size,
8312 					  data->regs_user.regs);
8313 	}
8314 
8315 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
8316 		perf_output_put(handle, data->weight.full);
8317 
8318 	if (sample_type & PERF_SAMPLE_DATA_SRC)
8319 		perf_output_put(handle, data->data_src.val);
8320 
8321 	if (sample_type & PERF_SAMPLE_TRANSACTION)
8322 		perf_output_put(handle, data->txn);
8323 
8324 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
8325 		u64 abi = data->regs_intr.abi;
8326 		/*
8327 		 * If there are no regs to dump, notice it through
8328 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
8329 		 */
8330 		perf_output_put(handle, abi);
8331 
8332 		if (abi) {
8333 			u64 mask = event->attr.sample_regs_intr;
8334 
8335 			perf_output_sample_regs(handle,
8336 						data->regs_intr.regs,
8337 						mask);
8338 		}
8339 	}
8340 
8341 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
8342 		perf_output_put(handle, data->phys_addr);
8343 
8344 	if (sample_type & PERF_SAMPLE_CGROUP)
8345 		perf_output_put(handle, data->cgroup);
8346 
8347 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
8348 		perf_output_put(handle, data->data_page_size);
8349 
8350 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
8351 		perf_output_put(handle, data->code_page_size);
8352 
8353 	if (sample_type & PERF_SAMPLE_AUX) {
8354 		perf_output_put(handle, data->aux_size);
8355 
8356 		if (data->aux_size)
8357 			perf_aux_sample_output(event, handle, data);
8358 	}
8359 
8360 	if (!event->attr.watermark) {
8361 		int wakeup_events = event->attr.wakeup_events;
8362 
8363 		if (wakeup_events) {
8364 			struct perf_buffer *rb = handle->rb;
8365 			int events = local_inc_return(&rb->events);
8366 
8367 			if (events >= wakeup_events) {
8368 				local_sub(wakeup_events, &rb->events);
8369 				local_inc(&rb->wakeup);
8370 			}
8371 		}
8372 	}
8373 }
8374 
8375 static u64 perf_virt_to_phys(u64 virt)
8376 {
8377 	u64 phys_addr = 0;
8378 
8379 	if (!virt)
8380 		return 0;
8381 
8382 	if (virt >= TASK_SIZE) {
8383 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
8384 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
8385 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
8386 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
8387 	} else {
8388 		/*
8389 		 * Walking the pages tables for user address.
8390 		 * Interrupts are disabled, so it prevents any tear down
8391 		 * of the page tables.
8392 		 * Try IRQ-safe get_user_page_fast_only first.
8393 		 * If failed, leave phys_addr as 0.
8394 		 */
8395 		if (is_user_task(current)) {
8396 			struct page *p;
8397 
8398 			pagefault_disable();
8399 			if (get_user_page_fast_only(virt, 0, &p)) {
8400 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
8401 				put_page(p);
8402 			}
8403 			pagefault_enable();
8404 		}
8405 	}
8406 
8407 	return phys_addr;
8408 }
8409 
8410 /*
8411  * Return the pagetable size of a given virtual address.
8412  */
8413 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
8414 {
8415 	u64 size = 0;
8416 
8417 #ifdef CONFIG_HAVE_GUP_FAST
8418 	pgd_t *pgdp, pgd;
8419 	p4d_t *p4dp, p4d;
8420 	pud_t *pudp, pud;
8421 	pmd_t *pmdp, pmd;
8422 	pte_t *ptep, pte;
8423 
8424 	pgdp = pgd_offset(mm, addr);
8425 	pgd = READ_ONCE(*pgdp);
8426 	if (pgd_none(pgd))
8427 		return 0;
8428 
8429 	if (pgd_leaf(pgd))
8430 		return pgd_leaf_size(pgd);
8431 
8432 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
8433 	p4d = READ_ONCE(*p4dp);
8434 	if (!p4d_present(p4d))
8435 		return 0;
8436 
8437 	if (p4d_leaf(p4d))
8438 		return p4d_leaf_size(p4d);
8439 
8440 	pudp = pud_offset_lockless(p4dp, p4d, addr);
8441 	pud = READ_ONCE(*pudp);
8442 	if (!pud_present(pud))
8443 		return 0;
8444 
8445 	if (pud_leaf(pud))
8446 		return pud_leaf_size(pud);
8447 
8448 	pmdp = pmd_offset_lockless(pudp, pud, addr);
8449 again:
8450 	pmd = pmdp_get_lockless(pmdp);
8451 	if (!pmd_present(pmd))
8452 		return 0;
8453 
8454 	if (pmd_leaf(pmd))
8455 		return pmd_leaf_size(pmd);
8456 
8457 	ptep = pte_offset_map(&pmd, addr);
8458 	if (!ptep)
8459 		goto again;
8460 
8461 	pte = ptep_get_lockless(ptep);
8462 	if (pte_present(pte))
8463 		size = __pte_leaf_size(pmd, pte);
8464 	pte_unmap(ptep);
8465 #endif /* CONFIG_HAVE_GUP_FAST */
8466 
8467 	return size;
8468 }
8469 
8470 static u64 perf_get_page_size(unsigned long addr)
8471 {
8472 	struct mm_struct *mm;
8473 	unsigned long flags;
8474 	u64 size;
8475 
8476 	if (!addr)
8477 		return 0;
8478 
8479 	/*
8480 	 * Software page-table walkers must disable IRQs,
8481 	 * which prevents any tear down of the page tables.
8482 	 */
8483 	local_irq_save(flags);
8484 
8485 	mm = current->mm;
8486 	if (!mm) {
8487 		/*
8488 		 * For kernel threads and the like, use init_mm so that
8489 		 * we can find kernel memory.
8490 		 */
8491 		mm = &init_mm;
8492 	}
8493 
8494 	size = perf_get_pgtable_size(mm, addr);
8495 
8496 	local_irq_restore(flags);
8497 
8498 	return size;
8499 }
8500 
8501 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
8502 
8503 static struct unwind_work perf_unwind_work;
8504 
8505 struct perf_callchain_entry *
8506 perf_callchain(struct perf_event *event, struct pt_regs *regs)
8507 {
8508 	bool kernel = !event->attr.exclude_callchain_kernel;
8509 	bool user   = !event->attr.exclude_callchain_user &&
8510 		is_user_task(current);
8511 	/* Disallow cross-task user callchains. */
8512 	bool crosstask = event->ctx->task && event->ctx->task != current;
8513 	bool defer_user = IS_ENABLED(CONFIG_UNWIND_USER) && user &&
8514 			  event->attr.defer_callchain;
8515 	const u32 max_stack = event->attr.sample_max_stack;
8516 	struct perf_callchain_entry *callchain;
8517 	u64 defer_cookie;
8518 
8519 	if (!current->mm)
8520 		user = false;
8521 
8522 	if (!kernel && !user)
8523 		return &__empty_callchain;
8524 
8525 	if (!(user && defer_user && !crosstask &&
8526 	      unwind_deferred_request(&perf_unwind_work, &defer_cookie) >= 0))
8527 		defer_cookie = 0;
8528 
8529 	callchain = get_perf_callchain(regs, kernel, user, max_stack,
8530 				       crosstask, true, defer_cookie);
8531 
8532 	return callchain ?: &__empty_callchain;
8533 }
8534 
8535 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
8536 {
8537 	return d * !!(flags & s);
8538 }
8539 
8540 void perf_prepare_sample(struct perf_sample_data *data,
8541 			 struct perf_event *event,
8542 			 struct pt_regs *regs)
8543 {
8544 	u64 sample_type = event->attr.sample_type;
8545 	u64 filtered_sample_type;
8546 
8547 	/*
8548 	 * Add the sample flags that are dependent to others.  And clear the
8549 	 * sample flags that have already been done by the PMU driver.
8550 	 */
8551 	filtered_sample_type = sample_type;
8552 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
8553 					   PERF_SAMPLE_IP);
8554 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
8555 					   PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
8556 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
8557 					   PERF_SAMPLE_REGS_USER);
8558 	filtered_sample_type &= ~data->sample_flags;
8559 
8560 	if (filtered_sample_type == 0) {
8561 		/* Make sure it has the correct data->type for output */
8562 		data->type = event->attr.sample_type;
8563 		return;
8564 	}
8565 
8566 	__perf_event_header__init_id(data, event, filtered_sample_type);
8567 
8568 	if (filtered_sample_type & PERF_SAMPLE_IP) {
8569 		data->ip = perf_instruction_pointer(event, regs);
8570 		data->sample_flags |= PERF_SAMPLE_IP;
8571 	}
8572 
8573 	if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
8574 		perf_sample_save_callchain(data, event, regs);
8575 
8576 	if (filtered_sample_type & PERF_SAMPLE_RAW) {
8577 		data->raw = NULL;
8578 		data->dyn_size += sizeof(u64);
8579 		data->sample_flags |= PERF_SAMPLE_RAW;
8580 	}
8581 
8582 	if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
8583 		data->br_stack = NULL;
8584 		data->dyn_size += sizeof(u64);
8585 		data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
8586 	}
8587 
8588 	if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
8589 		perf_sample_regs_user(&data->regs_user, regs);
8590 
8591 	/*
8592 	 * It cannot use the filtered_sample_type here as REGS_USER can be set
8593 	 * by STACK_USER (using __cond_set() above) and we don't want to update
8594 	 * the dyn_size if it's not requested by users.
8595 	 */
8596 	if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
8597 		/* regs dump ABI info */
8598 		int size = sizeof(u64);
8599 
8600 		if (data->regs_user.regs) {
8601 			u64 mask = event->attr.sample_regs_user;
8602 			size += hweight64(mask) * sizeof(u64);
8603 		}
8604 
8605 		data->dyn_size += size;
8606 		data->sample_flags |= PERF_SAMPLE_REGS_USER;
8607 	}
8608 
8609 	if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
8610 		/*
8611 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
8612 		 * processed as the last one or have additional check added
8613 		 * in case new sample type is added, because we could eat
8614 		 * up the rest of the sample size.
8615 		 */
8616 		u16 stack_size = event->attr.sample_stack_user;
8617 		u16 header_size = perf_sample_data_size(data, event);
8618 		u16 size = sizeof(u64);
8619 
8620 		stack_size = perf_sample_ustack_size(stack_size, header_size,
8621 						     data->regs_user.regs);
8622 
8623 		/*
8624 		 * If there is something to dump, add space for the dump
8625 		 * itself and for the field that tells the dynamic size,
8626 		 * which is how many have been actually dumped.
8627 		 */
8628 		if (stack_size)
8629 			size += sizeof(u64) + stack_size;
8630 
8631 		data->stack_user_size = stack_size;
8632 		data->dyn_size += size;
8633 		data->sample_flags |= PERF_SAMPLE_STACK_USER;
8634 	}
8635 
8636 	if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
8637 		data->weight.full = 0;
8638 		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
8639 	}
8640 
8641 	if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
8642 		data->data_src.val = PERF_MEM_NA;
8643 		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
8644 	}
8645 
8646 	if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
8647 		data->txn = 0;
8648 		data->sample_flags |= PERF_SAMPLE_TRANSACTION;
8649 	}
8650 
8651 	if (filtered_sample_type & PERF_SAMPLE_ADDR) {
8652 		data->addr = 0;
8653 		data->sample_flags |= PERF_SAMPLE_ADDR;
8654 	}
8655 
8656 	if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
8657 		/* regs dump ABI info */
8658 		int size = sizeof(u64);
8659 
8660 		perf_sample_regs_intr(&data->regs_intr, regs);
8661 
8662 		if (data->regs_intr.regs) {
8663 			u64 mask = event->attr.sample_regs_intr;
8664 
8665 			size += hweight64(mask) * sizeof(u64);
8666 		}
8667 
8668 		data->dyn_size += size;
8669 		data->sample_flags |= PERF_SAMPLE_REGS_INTR;
8670 	}
8671 
8672 	if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
8673 		data->phys_addr = perf_virt_to_phys(data->addr);
8674 		data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
8675 	}
8676 
8677 #ifdef CONFIG_CGROUP_PERF
8678 	if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
8679 		struct cgroup *cgrp;
8680 
8681 		/* protected by RCU */
8682 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
8683 		data->cgroup = cgroup_id(cgrp);
8684 		data->sample_flags |= PERF_SAMPLE_CGROUP;
8685 	}
8686 #endif
8687 
8688 	/*
8689 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
8690 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
8691 	 * but the value will not dump to the userspace.
8692 	 */
8693 	if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
8694 		data->data_page_size = perf_get_page_size(data->addr);
8695 		data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
8696 	}
8697 
8698 	if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
8699 		data->code_page_size = perf_get_page_size(data->ip);
8700 		data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
8701 	}
8702 
8703 	if (filtered_sample_type & PERF_SAMPLE_AUX) {
8704 		u64 size;
8705 		u16 header_size = perf_sample_data_size(data, event);
8706 
8707 		header_size += sizeof(u64); /* size */
8708 
8709 		/*
8710 		 * Given the 16bit nature of header::size, an AUX sample can
8711 		 * easily overflow it, what with all the preceding sample bits.
8712 		 * Make sure this doesn't happen by using up to U16_MAX bytes
8713 		 * per sample in total (rounded down to 8 byte boundary).
8714 		 */
8715 		size = min_t(size_t, U16_MAX - header_size,
8716 			     event->attr.aux_sample_size);
8717 		size = rounddown(size, 8);
8718 		size = perf_prepare_sample_aux(event, data, size);
8719 
8720 		WARN_ON_ONCE(size + header_size > U16_MAX);
8721 		data->dyn_size += size + sizeof(u64); /* size above */
8722 		data->sample_flags |= PERF_SAMPLE_AUX;
8723 	}
8724 }
8725 
8726 void perf_prepare_header(struct perf_event_header *header,
8727 			 struct perf_sample_data *data,
8728 			 struct perf_event *event,
8729 			 struct pt_regs *regs)
8730 {
8731 	header->type = PERF_RECORD_SAMPLE;
8732 	header->size = perf_sample_data_size(data, event);
8733 	header->misc = perf_misc_flags(event, regs);
8734 
8735 	/*
8736 	 * If you're adding more sample types here, you likely need to do
8737 	 * something about the overflowing header::size, like repurpose the
8738 	 * lowest 3 bits of size, which should be always zero at the moment.
8739 	 * This raises a more important question, do we really need 512k sized
8740 	 * samples and why, so good argumentation is in order for whatever you
8741 	 * do here next.
8742 	 */
8743 	WARN_ON_ONCE(header->size & 7);
8744 }
8745 
8746 static void __perf_event_aux_pause(struct perf_event *event, bool pause)
8747 {
8748 	if (pause) {
8749 		if (!event->hw.aux_paused) {
8750 			event->hw.aux_paused = 1;
8751 			event->pmu->stop(event, PERF_EF_PAUSE);
8752 		}
8753 	} else {
8754 		if (event->hw.aux_paused) {
8755 			event->hw.aux_paused = 0;
8756 			event->pmu->start(event, PERF_EF_RESUME);
8757 		}
8758 	}
8759 }
8760 
8761 static void perf_event_aux_pause(struct perf_event *event, bool pause)
8762 {
8763 	struct perf_buffer *rb;
8764 
8765 	if (WARN_ON_ONCE(!event))
8766 		return;
8767 
8768 	rb = ring_buffer_get(event);
8769 	if (!rb)
8770 		return;
8771 
8772 	scoped_guard (irqsave) {
8773 		/*
8774 		 * Guard against self-recursion here. Another event could trip
8775 		 * this same from NMI context.
8776 		 */
8777 		if (READ_ONCE(rb->aux_in_pause_resume))
8778 			break;
8779 
8780 		WRITE_ONCE(rb->aux_in_pause_resume, 1);
8781 		barrier();
8782 		__perf_event_aux_pause(event, pause);
8783 		barrier();
8784 		WRITE_ONCE(rb->aux_in_pause_resume, 0);
8785 	}
8786 	ring_buffer_put(rb);
8787 }
8788 
8789 static __always_inline int
8790 __perf_event_output(struct perf_event *event,
8791 		    struct perf_sample_data *data,
8792 		    struct pt_regs *regs,
8793 		    int (*output_begin)(struct perf_output_handle *,
8794 					struct perf_sample_data *,
8795 					struct perf_event *,
8796 					unsigned int))
8797 {
8798 	struct perf_output_handle handle;
8799 	struct perf_event_header header;
8800 	int err;
8801 
8802 	/* protect the callchain buffers */
8803 	rcu_read_lock();
8804 
8805 	perf_prepare_sample(data, event, regs);
8806 	perf_prepare_header(&header, data, event, regs);
8807 
8808 	err = output_begin(&handle, data, event, header.size);
8809 	if (err)
8810 		goto exit;
8811 
8812 	perf_output_sample(&handle, &header, data, event);
8813 
8814 	perf_output_end(&handle);
8815 
8816 exit:
8817 	rcu_read_unlock();
8818 	return err;
8819 }
8820 
8821 void
8822 perf_event_output_forward(struct perf_event *event,
8823 			 struct perf_sample_data *data,
8824 			 struct pt_regs *regs)
8825 {
8826 	__perf_event_output(event, data, regs, perf_output_begin_forward);
8827 }
8828 
8829 void
8830 perf_event_output_backward(struct perf_event *event,
8831 			   struct perf_sample_data *data,
8832 			   struct pt_regs *regs)
8833 {
8834 	__perf_event_output(event, data, regs, perf_output_begin_backward);
8835 }
8836 
8837 int
8838 perf_event_output(struct perf_event *event,
8839 		  struct perf_sample_data *data,
8840 		  struct pt_regs *regs)
8841 {
8842 	return __perf_event_output(event, data, regs, perf_output_begin);
8843 }
8844 
8845 /*
8846  * read event_id
8847  */
8848 
8849 struct perf_read_event {
8850 	struct perf_event_header	header;
8851 
8852 	u32				pid;
8853 	u32				tid;
8854 };
8855 
8856 static void
8857 perf_event_read_event(struct perf_event *event,
8858 			struct task_struct *task)
8859 {
8860 	struct perf_output_handle handle;
8861 	struct perf_sample_data sample;
8862 	struct perf_read_event read_event = {
8863 		.header = {
8864 			.type = PERF_RECORD_READ,
8865 			.misc = 0,
8866 			.size = sizeof(read_event) + event->read_size,
8867 		},
8868 		.pid = perf_event_pid(event, task),
8869 		.tid = perf_event_tid(event, task),
8870 	};
8871 	int ret;
8872 
8873 	perf_event_header__init_id(&read_event.header, &sample, event);
8874 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
8875 	if (ret)
8876 		return;
8877 
8878 	perf_output_put(&handle, read_event);
8879 	perf_output_read(&handle, event);
8880 	perf_event__output_id_sample(event, &handle, &sample);
8881 
8882 	perf_output_end(&handle);
8883 }
8884 
8885 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
8886 
8887 static void
8888 perf_iterate_ctx(struct perf_event_context *ctx,
8889 		   perf_iterate_f output,
8890 		   void *data, bool all)
8891 {
8892 	struct perf_event *event;
8893 
8894 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8895 		if (!all) {
8896 			if (event->state < PERF_EVENT_STATE_INACTIVE)
8897 				continue;
8898 			if (!event_filter_match(event))
8899 				continue;
8900 		}
8901 
8902 		output(event, data);
8903 	}
8904 }
8905 
8906 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
8907 {
8908 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
8909 	struct perf_event *event;
8910 
8911 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
8912 		/*
8913 		 * Skip events that are not fully formed yet; ensure that
8914 		 * if we observe event->ctx, both event and ctx will be
8915 		 * complete enough. See perf_install_in_context().
8916 		 */
8917 		if (!smp_load_acquire(&event->ctx))
8918 			continue;
8919 
8920 		if (event->state < PERF_EVENT_STATE_INACTIVE)
8921 			continue;
8922 		if (!event_filter_match(event))
8923 			continue;
8924 		output(event, data);
8925 	}
8926 }
8927 
8928 /*
8929  * Iterate all events that need to receive side-band events.
8930  *
8931  * For new callers; ensure that account_pmu_sb_event() includes
8932  * your event, otherwise it might not get delivered.
8933  */
8934 static void
8935 perf_iterate_sb(perf_iterate_f output, void *data,
8936 	       struct perf_event_context *task_ctx)
8937 {
8938 	struct perf_event_context *ctx;
8939 
8940 	rcu_read_lock();
8941 	preempt_disable();
8942 
8943 	/*
8944 	 * If we have task_ctx != NULL we only notify the task context itself.
8945 	 * The task_ctx is set only for EXIT events before releasing task
8946 	 * context.
8947 	 */
8948 	if (task_ctx) {
8949 		perf_iterate_ctx(task_ctx, output, data, false);
8950 		goto done;
8951 	}
8952 
8953 	perf_iterate_sb_cpu(output, data);
8954 
8955 	ctx = rcu_dereference(current->perf_event_ctxp);
8956 	if (ctx)
8957 		perf_iterate_ctx(ctx, output, data, false);
8958 done:
8959 	preempt_enable();
8960 	rcu_read_unlock();
8961 }
8962 
8963 /*
8964  * Clear all file-based filters at exec, they'll have to be
8965  * re-instated when/if these objects are mmapped again.
8966  */
8967 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8968 {
8969 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8970 	struct perf_addr_filter *filter;
8971 	unsigned int restart = 0, count = 0;
8972 	unsigned long flags;
8973 
8974 	if (!has_addr_filter(event))
8975 		return;
8976 
8977 	raw_spin_lock_irqsave(&ifh->lock, flags);
8978 	list_for_each_entry(filter, &ifh->list, entry) {
8979 		if (filter->path.dentry) {
8980 			event->addr_filter_ranges[count].start = 0;
8981 			event->addr_filter_ranges[count].size = 0;
8982 			restart++;
8983 		}
8984 
8985 		count++;
8986 	}
8987 
8988 	if (restart)
8989 		event->addr_filters_gen++;
8990 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8991 
8992 	if (restart)
8993 		perf_event_stop(event, 1);
8994 }
8995 
8996 void perf_event_exec(void)
8997 {
8998 	struct perf_event_context *ctx;
8999 
9000 	ctx = perf_pin_task_context(current);
9001 	if (!ctx)
9002 		return;
9003 
9004 	perf_event_enable_on_exec(ctx);
9005 	perf_event_remove_on_exec(ctx);
9006 	scoped_guard(rcu)
9007 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
9008 
9009 	perf_unpin_context(ctx);
9010 	put_ctx(ctx);
9011 }
9012 
9013 struct remote_output {
9014 	struct perf_buffer	*rb;
9015 	int			err;
9016 };
9017 
9018 static void __perf_event_output_stop(struct perf_event *event, void *data)
9019 {
9020 	struct perf_event *parent = event->parent;
9021 	struct remote_output *ro = data;
9022 	struct perf_buffer *rb = ro->rb;
9023 	struct stop_event_data sd = {
9024 		.event	= event,
9025 	};
9026 
9027 	if (!has_aux(event))
9028 		return;
9029 
9030 	if (!parent)
9031 		parent = event;
9032 
9033 	/*
9034 	 * In case of inheritance, it will be the parent that links to the
9035 	 * ring-buffer, but it will be the child that's actually using it.
9036 	 *
9037 	 * We are using event::rb to determine if the event should be stopped,
9038 	 * however this may race with ring_buffer_attach() (through set_output),
9039 	 * which will make us skip the event that actually needs to be stopped.
9040 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
9041 	 * its rb pointer.
9042 	 */
9043 	if (rcu_dereference(parent->rb) == rb)
9044 		ro->err = __perf_event_stop(&sd);
9045 }
9046 
9047 static int __perf_pmu_output_stop(void *info)
9048 {
9049 	struct perf_event *event = info;
9050 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
9051 	struct remote_output ro = {
9052 		.rb	= event->rb,
9053 	};
9054 
9055 	rcu_read_lock();
9056 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
9057 	if (cpuctx->task_ctx)
9058 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
9059 				   &ro, false);
9060 	rcu_read_unlock();
9061 
9062 	return ro.err;
9063 }
9064 
9065 static void perf_pmu_output_stop(struct perf_event *event)
9066 {
9067 	struct perf_event *iter;
9068 	int err, cpu;
9069 
9070 restart:
9071 	rcu_read_lock();
9072 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
9073 		/*
9074 		 * For per-CPU events, we need to make sure that neither they
9075 		 * nor their children are running; for cpu==-1 events it's
9076 		 * sufficient to stop the event itself if it's active, since
9077 		 * it can't have children.
9078 		 */
9079 		cpu = iter->cpu;
9080 		if (cpu == -1)
9081 			cpu = READ_ONCE(iter->oncpu);
9082 
9083 		if (cpu == -1)
9084 			continue;
9085 
9086 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
9087 		if (err == -EAGAIN) {
9088 			rcu_read_unlock();
9089 			goto restart;
9090 		}
9091 	}
9092 	rcu_read_unlock();
9093 }
9094 
9095 /*
9096  * task tracking -- fork/exit
9097  *
9098  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
9099  */
9100 
9101 struct perf_task_event {
9102 	struct task_struct		*task;
9103 	struct perf_event_context	*task_ctx;
9104 
9105 	struct {
9106 		struct perf_event_header	header;
9107 
9108 		u32				pid;
9109 		u32				ppid;
9110 		u32				tid;
9111 		u32				ptid;
9112 		u64				time;
9113 	} event_id;
9114 };
9115 
9116 static int perf_event_task_match(struct perf_event *event)
9117 {
9118 	return event->attr.comm  || event->attr.mmap ||
9119 	       event->attr.mmap2 || event->attr.mmap_data ||
9120 	       event->attr.task;
9121 }
9122 
9123 static void perf_event_task_output(struct perf_event *event,
9124 				   void *data)
9125 {
9126 	struct perf_task_event *task_event = data;
9127 	struct perf_output_handle handle;
9128 	struct perf_sample_data	sample;
9129 	struct task_struct *task = task_event->task;
9130 	int ret, size = task_event->event_id.header.size;
9131 
9132 	if (!perf_event_task_match(event))
9133 		return;
9134 
9135 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
9136 
9137 	ret = perf_output_begin(&handle, &sample, event,
9138 				task_event->event_id.header.size);
9139 	if (ret)
9140 		goto out;
9141 
9142 	task_event->event_id.pid = perf_event_pid(event, task);
9143 	task_event->event_id.tid = perf_event_tid(event, task);
9144 
9145 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
9146 		task_event->event_id.ppid = perf_event_pid(event,
9147 							task->real_parent);
9148 		task_event->event_id.ptid = perf_event_pid(event,
9149 							task->real_parent);
9150 	} else {  /* PERF_RECORD_FORK */
9151 		task_event->event_id.ppid = perf_event_pid(event, current);
9152 		task_event->event_id.ptid = perf_event_tid(event, current);
9153 	}
9154 
9155 	task_event->event_id.time = perf_event_clock(event);
9156 
9157 	perf_output_put(&handle, task_event->event_id);
9158 
9159 	perf_event__output_id_sample(event, &handle, &sample);
9160 
9161 	perf_output_end(&handle);
9162 out:
9163 	task_event->event_id.header.size = size;
9164 }
9165 
9166 static void perf_event_task(struct task_struct *task,
9167 			      struct perf_event_context *task_ctx,
9168 			      int new)
9169 {
9170 	struct perf_task_event task_event;
9171 
9172 	if (!atomic_read(&nr_comm_events) &&
9173 	    !atomic_read(&nr_mmap_events) &&
9174 	    !atomic_read(&nr_task_events))
9175 		return;
9176 
9177 	task_event = (struct perf_task_event){
9178 		.task	  = task,
9179 		.task_ctx = task_ctx,
9180 		.event_id    = {
9181 			.header = {
9182 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
9183 				.misc = 0,
9184 				.size = sizeof(task_event.event_id),
9185 			},
9186 			/* .pid  */
9187 			/* .ppid */
9188 			/* .tid  */
9189 			/* .ptid */
9190 			/* .time */
9191 		},
9192 	};
9193 
9194 	perf_iterate_sb(perf_event_task_output,
9195 		       &task_event,
9196 		       task_ctx);
9197 }
9198 
9199 /*
9200  * Allocate data for a new task when profiling system-wide
9201  * events which require PMU specific data
9202  */
9203 static void
9204 perf_event_alloc_task_data(struct task_struct *child,
9205 			   struct task_struct *parent)
9206 {
9207 	struct kmem_cache *ctx_cache = NULL;
9208 	struct perf_ctx_data *cd;
9209 
9210 	if (!refcount_read(&global_ctx_data_ref))
9211 		return;
9212 
9213 	scoped_guard (rcu) {
9214 		cd = rcu_dereference(parent->perf_ctx_data);
9215 		if (cd)
9216 			ctx_cache = cd->ctx_cache;
9217 	}
9218 
9219 	if (!ctx_cache)
9220 		return;
9221 
9222 	guard(percpu_read)(&global_ctx_data_rwsem);
9223 	scoped_guard (rcu) {
9224 		cd = rcu_dereference(child->perf_ctx_data);
9225 		if (!cd) {
9226 			/*
9227 			 * A system-wide event may be unaccount,
9228 			 * when attaching the perf_ctx_data.
9229 			 */
9230 			if (!refcount_read(&global_ctx_data_ref))
9231 				return;
9232 			goto attach;
9233 		}
9234 
9235 		if (!cd->global) {
9236 			cd->global = 1;
9237 			refcount_inc(&cd->refcount);
9238 		}
9239 	}
9240 
9241 	return;
9242 attach:
9243 	attach_task_ctx_data(child, ctx_cache, true);
9244 }
9245 
9246 void perf_event_fork(struct task_struct *task)
9247 {
9248 	perf_event_task(task, NULL, 1);
9249 	perf_event_namespaces(task);
9250 	perf_event_alloc_task_data(task, current);
9251 }
9252 
9253 /*
9254  * comm tracking
9255  */
9256 
9257 struct perf_comm_event {
9258 	struct task_struct	*task;
9259 	char			*comm;
9260 	int			comm_size;
9261 
9262 	struct {
9263 		struct perf_event_header	header;
9264 
9265 		u32				pid;
9266 		u32				tid;
9267 	} event_id;
9268 };
9269 
9270 static int perf_event_comm_match(struct perf_event *event)
9271 {
9272 	return event->attr.comm;
9273 }
9274 
9275 static void perf_event_comm_output(struct perf_event *event,
9276 				   void *data)
9277 {
9278 	struct perf_comm_event *comm_event = data;
9279 	struct perf_output_handle handle;
9280 	struct perf_sample_data sample;
9281 	int size = comm_event->event_id.header.size;
9282 	int ret;
9283 
9284 	if (!perf_event_comm_match(event))
9285 		return;
9286 
9287 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
9288 	ret = perf_output_begin(&handle, &sample, event,
9289 				comm_event->event_id.header.size);
9290 
9291 	if (ret)
9292 		goto out;
9293 
9294 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
9295 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
9296 
9297 	perf_output_put(&handle, comm_event->event_id);
9298 	__output_copy(&handle, comm_event->comm,
9299 				   comm_event->comm_size);
9300 
9301 	perf_event__output_id_sample(event, &handle, &sample);
9302 
9303 	perf_output_end(&handle);
9304 out:
9305 	comm_event->event_id.header.size = size;
9306 }
9307 
9308 static void perf_event_comm_event(struct perf_comm_event *comm_event)
9309 {
9310 	char comm[TASK_COMM_LEN];
9311 	unsigned int size;
9312 
9313 	memset(comm, 0, sizeof(comm));
9314 	strscpy(comm, comm_event->task->comm);
9315 	size = ALIGN(strlen(comm)+1, sizeof(u64));
9316 
9317 	comm_event->comm = comm;
9318 	comm_event->comm_size = size;
9319 
9320 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
9321 
9322 	perf_iterate_sb(perf_event_comm_output,
9323 		       comm_event,
9324 		       NULL);
9325 }
9326 
9327 void perf_event_comm(struct task_struct *task, bool exec)
9328 {
9329 	struct perf_comm_event comm_event;
9330 
9331 	if (!atomic_read(&nr_comm_events))
9332 		return;
9333 
9334 	comm_event = (struct perf_comm_event){
9335 		.task	= task,
9336 		/* .comm      */
9337 		/* .comm_size */
9338 		.event_id  = {
9339 			.header = {
9340 				.type = PERF_RECORD_COMM,
9341 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
9342 				/* .size */
9343 			},
9344 			/* .pid */
9345 			/* .tid */
9346 		},
9347 	};
9348 
9349 	perf_event_comm_event(&comm_event);
9350 }
9351 
9352 /*
9353  * namespaces tracking
9354  */
9355 
9356 struct perf_namespaces_event {
9357 	struct task_struct		*task;
9358 
9359 	struct {
9360 		struct perf_event_header	header;
9361 
9362 		u32				pid;
9363 		u32				tid;
9364 		u64				nr_namespaces;
9365 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
9366 	} event_id;
9367 };
9368 
9369 static int perf_event_namespaces_match(struct perf_event *event)
9370 {
9371 	return event->attr.namespaces;
9372 }
9373 
9374 static void perf_event_namespaces_output(struct perf_event *event,
9375 					 void *data)
9376 {
9377 	struct perf_namespaces_event *namespaces_event = data;
9378 	struct perf_output_handle handle;
9379 	struct perf_sample_data sample;
9380 	u16 header_size = namespaces_event->event_id.header.size;
9381 	int ret;
9382 
9383 	if (!perf_event_namespaces_match(event))
9384 		return;
9385 
9386 	perf_event_header__init_id(&namespaces_event->event_id.header,
9387 				   &sample, event);
9388 	ret = perf_output_begin(&handle, &sample, event,
9389 				namespaces_event->event_id.header.size);
9390 	if (ret)
9391 		goto out;
9392 
9393 	namespaces_event->event_id.pid = perf_event_pid(event,
9394 							namespaces_event->task);
9395 	namespaces_event->event_id.tid = perf_event_tid(event,
9396 							namespaces_event->task);
9397 
9398 	perf_output_put(&handle, namespaces_event->event_id);
9399 
9400 	perf_event__output_id_sample(event, &handle, &sample);
9401 
9402 	perf_output_end(&handle);
9403 out:
9404 	namespaces_event->event_id.header.size = header_size;
9405 }
9406 
9407 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
9408 				   struct task_struct *task,
9409 				   const struct proc_ns_operations *ns_ops)
9410 {
9411 	struct path ns_path;
9412 	struct inode *ns_inode;
9413 	int error;
9414 
9415 	error = ns_get_path(&ns_path, task, ns_ops);
9416 	if (!error) {
9417 		ns_inode = ns_path.dentry->d_inode;
9418 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
9419 		ns_link_info->ino = ns_inode->i_ino;
9420 		path_put(&ns_path);
9421 	}
9422 }
9423 
9424 void perf_event_namespaces(struct task_struct *task)
9425 {
9426 	struct perf_namespaces_event namespaces_event;
9427 	struct perf_ns_link_info *ns_link_info;
9428 
9429 	if (!atomic_read(&nr_namespaces_events))
9430 		return;
9431 
9432 	namespaces_event = (struct perf_namespaces_event){
9433 		.task	= task,
9434 		.event_id  = {
9435 			.header = {
9436 				.type = PERF_RECORD_NAMESPACES,
9437 				.misc = 0,
9438 				.size = sizeof(namespaces_event.event_id),
9439 			},
9440 			/* .pid */
9441 			/* .tid */
9442 			.nr_namespaces = NR_NAMESPACES,
9443 			/* .link_info[NR_NAMESPACES] */
9444 		},
9445 	};
9446 
9447 	ns_link_info = namespaces_event.event_id.link_info;
9448 
9449 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
9450 			       task, &mntns_operations);
9451 
9452 #ifdef CONFIG_USER_NS
9453 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
9454 			       task, &userns_operations);
9455 #endif
9456 #ifdef CONFIG_NET_NS
9457 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
9458 			       task, &netns_operations);
9459 #endif
9460 #ifdef CONFIG_UTS_NS
9461 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
9462 			       task, &utsns_operations);
9463 #endif
9464 #ifdef CONFIG_IPC_NS
9465 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
9466 			       task, &ipcns_operations);
9467 #endif
9468 #ifdef CONFIG_PID_NS
9469 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
9470 			       task, &pidns_operations);
9471 #endif
9472 #ifdef CONFIG_CGROUPS
9473 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
9474 			       task, &cgroupns_operations);
9475 #endif
9476 
9477 	perf_iterate_sb(perf_event_namespaces_output,
9478 			&namespaces_event,
9479 			NULL);
9480 }
9481 
9482 /*
9483  * cgroup tracking
9484  */
9485 #ifdef CONFIG_CGROUP_PERF
9486 
9487 struct perf_cgroup_event {
9488 	char				*path;
9489 	int				path_size;
9490 	struct {
9491 		struct perf_event_header	header;
9492 		u64				id;
9493 		char				path[];
9494 	} event_id;
9495 };
9496 
9497 static int perf_event_cgroup_match(struct perf_event *event)
9498 {
9499 	return event->attr.cgroup;
9500 }
9501 
9502 static void perf_event_cgroup_output(struct perf_event *event, void *data)
9503 {
9504 	struct perf_cgroup_event *cgroup_event = data;
9505 	struct perf_output_handle handle;
9506 	struct perf_sample_data sample;
9507 	u16 header_size = cgroup_event->event_id.header.size;
9508 	int ret;
9509 
9510 	if (!perf_event_cgroup_match(event))
9511 		return;
9512 
9513 	perf_event_header__init_id(&cgroup_event->event_id.header,
9514 				   &sample, event);
9515 	ret = perf_output_begin(&handle, &sample, event,
9516 				cgroup_event->event_id.header.size);
9517 	if (ret)
9518 		goto out;
9519 
9520 	perf_output_put(&handle, cgroup_event->event_id);
9521 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
9522 
9523 	perf_event__output_id_sample(event, &handle, &sample);
9524 
9525 	perf_output_end(&handle);
9526 out:
9527 	cgroup_event->event_id.header.size = header_size;
9528 }
9529 
9530 static void perf_event_cgroup(struct cgroup *cgrp)
9531 {
9532 	struct perf_cgroup_event cgroup_event;
9533 	char path_enomem[16] = "//enomem";
9534 	char *pathname;
9535 	size_t size;
9536 
9537 	if (!atomic_read(&nr_cgroup_events))
9538 		return;
9539 
9540 	cgroup_event = (struct perf_cgroup_event){
9541 		.event_id  = {
9542 			.header = {
9543 				.type = PERF_RECORD_CGROUP,
9544 				.misc = 0,
9545 				.size = sizeof(cgroup_event.event_id),
9546 			},
9547 			.id = cgroup_id(cgrp),
9548 		},
9549 	};
9550 
9551 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
9552 	if (pathname == NULL) {
9553 		cgroup_event.path = path_enomem;
9554 	} else {
9555 		/* just to be sure to have enough space for alignment */
9556 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
9557 		cgroup_event.path = pathname;
9558 	}
9559 
9560 	/*
9561 	 * Since our buffer works in 8 byte units we need to align our string
9562 	 * size to a multiple of 8. However, we must guarantee the tail end is
9563 	 * zero'd out to avoid leaking random bits to userspace.
9564 	 */
9565 	size = strlen(cgroup_event.path) + 1;
9566 	while (!IS_ALIGNED(size, sizeof(u64)))
9567 		cgroup_event.path[size++] = '\0';
9568 
9569 	cgroup_event.event_id.header.size += size;
9570 	cgroup_event.path_size = size;
9571 
9572 	perf_iterate_sb(perf_event_cgroup_output,
9573 			&cgroup_event,
9574 			NULL);
9575 
9576 	kfree(pathname);
9577 }
9578 
9579 #endif
9580 
9581 /*
9582  * mmap tracking
9583  */
9584 
9585 struct perf_mmap_event {
9586 	struct vm_area_struct	*vma;
9587 
9588 	const char		*file_name;
9589 	int			file_size;
9590 	int			maj, min;
9591 	u64			ino;
9592 	u64			ino_generation;
9593 	u32			prot, flags;
9594 	u8			build_id[BUILD_ID_SIZE_MAX];
9595 	u32			build_id_size;
9596 
9597 	struct {
9598 		struct perf_event_header	header;
9599 
9600 		u32				pid;
9601 		u32				tid;
9602 		u64				start;
9603 		u64				len;
9604 		u64				pgoff;
9605 	} event_id;
9606 };
9607 
9608 static int perf_event_mmap_match(struct perf_event *event,
9609 				 void *data)
9610 {
9611 	struct perf_mmap_event *mmap_event = data;
9612 	struct vm_area_struct *vma = mmap_event->vma;
9613 	int executable = vma->vm_flags & VM_EXEC;
9614 
9615 	return (!executable && event->attr.mmap_data) ||
9616 	       (executable && (event->attr.mmap || event->attr.mmap2));
9617 }
9618 
9619 static void perf_event_mmap_output(struct perf_event *event,
9620 				   void *data)
9621 {
9622 	struct perf_mmap_event *mmap_event = data;
9623 	struct perf_output_handle handle;
9624 	struct perf_sample_data sample;
9625 	int size = mmap_event->event_id.header.size;
9626 	u32 type = mmap_event->event_id.header.type;
9627 	bool use_build_id;
9628 	int ret;
9629 
9630 	if (!perf_event_mmap_match(event, data))
9631 		return;
9632 
9633 	if (event->attr.mmap2) {
9634 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
9635 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
9636 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
9637 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
9638 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
9639 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
9640 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
9641 	}
9642 
9643 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
9644 	ret = perf_output_begin(&handle, &sample, event,
9645 				mmap_event->event_id.header.size);
9646 	if (ret)
9647 		goto out;
9648 
9649 	mmap_event->event_id.pid = perf_event_pid(event, current);
9650 	mmap_event->event_id.tid = perf_event_tid(event, current);
9651 
9652 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
9653 
9654 	if (event->attr.mmap2 && use_build_id)
9655 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
9656 
9657 	perf_output_put(&handle, mmap_event->event_id);
9658 
9659 	if (event->attr.mmap2) {
9660 		if (use_build_id) {
9661 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
9662 
9663 			__output_copy(&handle, size, 4);
9664 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
9665 		} else {
9666 			perf_output_put(&handle, mmap_event->maj);
9667 			perf_output_put(&handle, mmap_event->min);
9668 			perf_output_put(&handle, mmap_event->ino);
9669 			perf_output_put(&handle, mmap_event->ino_generation);
9670 		}
9671 		perf_output_put(&handle, mmap_event->prot);
9672 		perf_output_put(&handle, mmap_event->flags);
9673 	}
9674 
9675 	__output_copy(&handle, mmap_event->file_name,
9676 				   mmap_event->file_size);
9677 
9678 	perf_event__output_id_sample(event, &handle, &sample);
9679 
9680 	perf_output_end(&handle);
9681 out:
9682 	mmap_event->event_id.header.size = size;
9683 	mmap_event->event_id.header.type = type;
9684 }
9685 
9686 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
9687 {
9688 	struct vm_area_struct *vma = mmap_event->vma;
9689 	struct file *file = vma->vm_file;
9690 	int maj = 0, min = 0;
9691 	u64 ino = 0, gen = 0;
9692 	u32 prot = 0, flags = 0;
9693 	unsigned int size;
9694 	char tmp[16];
9695 	char *buf = NULL;
9696 	char *name = NULL;
9697 
9698 	if (vma->vm_flags & VM_READ)
9699 		prot |= PROT_READ;
9700 	if (vma->vm_flags & VM_WRITE)
9701 		prot |= PROT_WRITE;
9702 	if (vma->vm_flags & VM_EXEC)
9703 		prot |= PROT_EXEC;
9704 
9705 	if (vma->vm_flags & VM_MAYSHARE)
9706 		flags = MAP_SHARED;
9707 	else
9708 		flags = MAP_PRIVATE;
9709 
9710 	if (vma->vm_flags & VM_LOCKED)
9711 		flags |= MAP_LOCKED;
9712 	if (is_vm_hugetlb_page(vma))
9713 		flags |= MAP_HUGETLB;
9714 
9715 	if (file) {
9716 		const struct inode *inode;
9717 		dev_t dev;
9718 
9719 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
9720 		if (!buf) {
9721 			name = "//enomem";
9722 			goto cpy_name;
9723 		}
9724 		/*
9725 		 * d_path() works from the end of the rb backwards, so we
9726 		 * need to add enough zero bytes after the string to handle
9727 		 * the 64bit alignment we do later.
9728 		 */
9729 		name = d_path(file_user_path(file), buf, PATH_MAX - sizeof(u64));
9730 		if (IS_ERR(name)) {
9731 			name = "//toolong";
9732 			goto cpy_name;
9733 		}
9734 		inode = file_user_inode(vma->vm_file);
9735 		dev = inode->i_sb->s_dev;
9736 		ino = inode->i_ino;
9737 		gen = inode->i_generation;
9738 		maj = MAJOR(dev);
9739 		min = MINOR(dev);
9740 
9741 		goto got_name;
9742 	} else {
9743 		if (vma->vm_ops && vma->vm_ops->name)
9744 			name = (char *) vma->vm_ops->name(vma);
9745 		if (!name)
9746 			name = (char *)arch_vma_name(vma);
9747 		if (!name) {
9748 			if (vma_is_initial_heap(vma))
9749 				name = "[heap]";
9750 			else if (vma_is_initial_stack(vma))
9751 				name = "[stack]";
9752 			else
9753 				name = "//anon";
9754 		}
9755 	}
9756 
9757 cpy_name:
9758 	strscpy(tmp, name);
9759 	name = tmp;
9760 got_name:
9761 	/*
9762 	 * Since our buffer works in 8 byte units we need to align our string
9763 	 * size to a multiple of 8. However, we must guarantee the tail end is
9764 	 * zero'd out to avoid leaking random bits to userspace.
9765 	 */
9766 	size = strlen(name)+1;
9767 	while (!IS_ALIGNED(size, sizeof(u64)))
9768 		name[size++] = '\0';
9769 
9770 	mmap_event->file_name = name;
9771 	mmap_event->file_size = size;
9772 	mmap_event->maj = maj;
9773 	mmap_event->min = min;
9774 	mmap_event->ino = ino;
9775 	mmap_event->ino_generation = gen;
9776 	mmap_event->prot = prot;
9777 	mmap_event->flags = flags;
9778 
9779 	if (!(vma->vm_flags & VM_EXEC))
9780 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
9781 
9782 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
9783 
9784 	if (atomic_read(&nr_build_id_events))
9785 		build_id_parse_nofault(vma, mmap_event->build_id, &mmap_event->build_id_size);
9786 
9787 	perf_iterate_sb(perf_event_mmap_output,
9788 		       mmap_event,
9789 		       NULL);
9790 
9791 	kfree(buf);
9792 }
9793 
9794 /*
9795  * Check whether inode and address range match filter criteria.
9796  */
9797 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
9798 				     struct file *file, unsigned long offset,
9799 				     unsigned long size)
9800 {
9801 	/* d_inode(NULL) won't be equal to any mapped user-space file */
9802 	if (!filter->path.dentry)
9803 		return false;
9804 
9805 	if (d_inode(filter->path.dentry) != file_user_inode(file))
9806 		return false;
9807 
9808 	if (filter->offset > offset + size)
9809 		return false;
9810 
9811 	if (filter->offset + filter->size < offset)
9812 		return false;
9813 
9814 	return true;
9815 }
9816 
9817 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
9818 					struct vm_area_struct *vma,
9819 					struct perf_addr_filter_range *fr)
9820 {
9821 	unsigned long vma_size = vma->vm_end - vma->vm_start;
9822 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
9823 	struct file *file = vma->vm_file;
9824 
9825 	if (!perf_addr_filter_match(filter, file, off, vma_size))
9826 		return false;
9827 
9828 	if (filter->offset < off) {
9829 		fr->start = vma->vm_start;
9830 		fr->size = min(vma_size, filter->size - (off - filter->offset));
9831 	} else {
9832 		fr->start = vma->vm_start + filter->offset - off;
9833 		fr->size = min(vma->vm_end - fr->start, filter->size);
9834 	}
9835 
9836 	return true;
9837 }
9838 
9839 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
9840 {
9841 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9842 	struct vm_area_struct *vma = data;
9843 	struct perf_addr_filter *filter;
9844 	unsigned int restart = 0, count = 0;
9845 	unsigned long flags;
9846 
9847 	if (!has_addr_filter(event))
9848 		return;
9849 
9850 	if (!vma->vm_file)
9851 		return;
9852 
9853 	raw_spin_lock_irqsave(&ifh->lock, flags);
9854 	list_for_each_entry(filter, &ifh->list, entry) {
9855 		if (perf_addr_filter_vma_adjust(filter, vma,
9856 						&event->addr_filter_ranges[count]))
9857 			restart++;
9858 
9859 		count++;
9860 	}
9861 
9862 	if (restart)
9863 		event->addr_filters_gen++;
9864 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
9865 
9866 	if (restart)
9867 		perf_event_stop(event, 1);
9868 }
9869 
9870 /*
9871  * Adjust all task's events' filters to the new vma
9872  */
9873 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
9874 {
9875 	struct perf_event_context *ctx;
9876 
9877 	/*
9878 	 * Data tracing isn't supported yet and as such there is no need
9879 	 * to keep track of anything that isn't related to executable code:
9880 	 */
9881 	if (!(vma->vm_flags & VM_EXEC))
9882 		return;
9883 
9884 	rcu_read_lock();
9885 	ctx = rcu_dereference(current->perf_event_ctxp);
9886 	if (ctx)
9887 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
9888 	rcu_read_unlock();
9889 }
9890 
9891 void perf_event_mmap(struct vm_area_struct *vma)
9892 {
9893 	struct perf_mmap_event mmap_event;
9894 
9895 	if (!atomic_read(&nr_mmap_events))
9896 		return;
9897 
9898 	mmap_event = (struct perf_mmap_event){
9899 		.vma	= vma,
9900 		/* .file_name */
9901 		/* .file_size */
9902 		.event_id  = {
9903 			.header = {
9904 				.type = PERF_RECORD_MMAP,
9905 				.misc = PERF_RECORD_MISC_USER,
9906 				/* .size */
9907 			},
9908 			/* .pid */
9909 			/* .tid */
9910 			.start  = vma->vm_start,
9911 			.len    = vma->vm_end - vma->vm_start,
9912 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
9913 		},
9914 		/* .maj (attr_mmap2 only) */
9915 		/* .min (attr_mmap2 only) */
9916 		/* .ino (attr_mmap2 only) */
9917 		/* .ino_generation (attr_mmap2 only) */
9918 		/* .prot (attr_mmap2 only) */
9919 		/* .flags (attr_mmap2 only) */
9920 	};
9921 
9922 	perf_addr_filters_adjust(vma);
9923 	perf_event_mmap_event(&mmap_event);
9924 }
9925 
9926 void perf_event_aux_event(struct perf_event *event, unsigned long head,
9927 			  unsigned long size, u64 flags)
9928 {
9929 	struct perf_output_handle handle;
9930 	struct perf_sample_data sample;
9931 	struct perf_aux_event {
9932 		struct perf_event_header	header;
9933 		u64				offset;
9934 		u64				size;
9935 		u64				flags;
9936 	} rec = {
9937 		.header = {
9938 			.type = PERF_RECORD_AUX,
9939 			.misc = 0,
9940 			.size = sizeof(rec),
9941 		},
9942 		.offset		= head,
9943 		.size		= size,
9944 		.flags		= flags,
9945 	};
9946 	int ret;
9947 
9948 	perf_event_header__init_id(&rec.header, &sample, event);
9949 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9950 
9951 	if (ret)
9952 		return;
9953 
9954 	perf_output_put(&handle, rec);
9955 	perf_event__output_id_sample(event, &handle, &sample);
9956 
9957 	perf_output_end(&handle);
9958 }
9959 
9960 /*
9961  * Lost/dropped samples logging
9962  */
9963 void perf_log_lost_samples(struct perf_event *event, u64 lost)
9964 {
9965 	struct perf_output_handle handle;
9966 	struct perf_sample_data sample;
9967 	int ret;
9968 
9969 	struct {
9970 		struct perf_event_header	header;
9971 		u64				lost;
9972 	} lost_samples_event = {
9973 		.header = {
9974 			.type = PERF_RECORD_LOST_SAMPLES,
9975 			.misc = 0,
9976 			.size = sizeof(lost_samples_event),
9977 		},
9978 		.lost		= lost,
9979 	};
9980 
9981 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9982 
9983 	ret = perf_output_begin(&handle, &sample, event,
9984 				lost_samples_event.header.size);
9985 	if (ret)
9986 		return;
9987 
9988 	perf_output_put(&handle, lost_samples_event);
9989 	perf_event__output_id_sample(event, &handle, &sample);
9990 	perf_output_end(&handle);
9991 }
9992 
9993 /*
9994  * context_switch tracking
9995  */
9996 
9997 struct perf_switch_event {
9998 	struct task_struct	*task;
9999 	struct task_struct	*next_prev;
10000 
10001 	struct {
10002 		struct perf_event_header	header;
10003 		u32				next_prev_pid;
10004 		u32				next_prev_tid;
10005 	} event_id;
10006 };
10007 
10008 static int perf_event_switch_match(struct perf_event *event)
10009 {
10010 	return event->attr.context_switch;
10011 }
10012 
10013 static void perf_event_switch_output(struct perf_event *event, void *data)
10014 {
10015 	struct perf_switch_event *se = data;
10016 	struct perf_output_handle handle;
10017 	struct perf_sample_data sample;
10018 	int ret;
10019 
10020 	if (!perf_event_switch_match(event))
10021 		return;
10022 
10023 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
10024 	if (event->ctx->task) {
10025 		se->event_id.header.type = PERF_RECORD_SWITCH;
10026 		se->event_id.header.size = sizeof(se->event_id.header);
10027 	} else {
10028 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
10029 		se->event_id.header.size = sizeof(se->event_id);
10030 		se->event_id.next_prev_pid =
10031 					perf_event_pid(event, se->next_prev);
10032 		se->event_id.next_prev_tid =
10033 					perf_event_tid(event, se->next_prev);
10034 	}
10035 
10036 	perf_event_header__init_id(&se->event_id.header, &sample, event);
10037 
10038 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
10039 	if (ret)
10040 		return;
10041 
10042 	if (event->ctx->task)
10043 		perf_output_put(&handle, se->event_id.header);
10044 	else
10045 		perf_output_put(&handle, se->event_id);
10046 
10047 	perf_event__output_id_sample(event, &handle, &sample);
10048 
10049 	perf_output_end(&handle);
10050 }
10051 
10052 static void perf_event_switch(struct task_struct *task,
10053 			      struct task_struct *next_prev, bool sched_in)
10054 {
10055 	struct perf_switch_event switch_event;
10056 
10057 	/* N.B. caller checks nr_switch_events != 0 */
10058 
10059 	switch_event = (struct perf_switch_event){
10060 		.task		= task,
10061 		.next_prev	= next_prev,
10062 		.event_id	= {
10063 			.header = {
10064 				/* .type */
10065 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
10066 				/* .size */
10067 			},
10068 			/* .next_prev_pid */
10069 			/* .next_prev_tid */
10070 		},
10071 	};
10072 
10073 	if (!sched_in && task_is_runnable(task)) {
10074 		switch_event.event_id.header.misc |=
10075 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
10076 	}
10077 
10078 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
10079 }
10080 
10081 /*
10082  * IRQ throttle logging
10083  */
10084 
10085 static void perf_log_throttle(struct perf_event *event, int enable)
10086 {
10087 	struct perf_output_handle handle;
10088 	struct perf_sample_data sample;
10089 	int ret;
10090 
10091 	struct {
10092 		struct perf_event_header	header;
10093 		u64				time;
10094 		u64				id;
10095 		u64				stream_id;
10096 	} throttle_event = {
10097 		.header = {
10098 			.type = PERF_RECORD_THROTTLE,
10099 			.misc = 0,
10100 			.size = sizeof(throttle_event),
10101 		},
10102 		.time		= perf_event_clock(event),
10103 		.id		= primary_event_id(event),
10104 		.stream_id	= event->id,
10105 	};
10106 
10107 	if (enable)
10108 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
10109 
10110 	perf_event_header__init_id(&throttle_event.header, &sample, event);
10111 
10112 	ret = perf_output_begin(&handle, &sample, event,
10113 				throttle_event.header.size);
10114 	if (ret)
10115 		return;
10116 
10117 	perf_output_put(&handle, throttle_event);
10118 	perf_event__output_id_sample(event, &handle, &sample);
10119 	perf_output_end(&handle);
10120 }
10121 
10122 /*
10123  * ksymbol register/unregister tracking
10124  */
10125 
10126 struct perf_ksymbol_event {
10127 	const char	*name;
10128 	int		name_len;
10129 	struct {
10130 		struct perf_event_header        header;
10131 		u64				addr;
10132 		u32				len;
10133 		u16				ksym_type;
10134 		u16				flags;
10135 	} event_id;
10136 };
10137 
10138 static int perf_event_ksymbol_match(struct perf_event *event)
10139 {
10140 	return event->attr.ksymbol;
10141 }
10142 
10143 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
10144 {
10145 	struct perf_ksymbol_event *ksymbol_event = data;
10146 	struct perf_output_handle handle;
10147 	struct perf_sample_data sample;
10148 	int ret;
10149 
10150 	if (!perf_event_ksymbol_match(event))
10151 		return;
10152 
10153 	perf_event_header__init_id(&ksymbol_event->event_id.header,
10154 				   &sample, event);
10155 	ret = perf_output_begin(&handle, &sample, event,
10156 				ksymbol_event->event_id.header.size);
10157 	if (ret)
10158 		return;
10159 
10160 	perf_output_put(&handle, ksymbol_event->event_id);
10161 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
10162 	perf_event__output_id_sample(event, &handle, &sample);
10163 
10164 	perf_output_end(&handle);
10165 }
10166 
10167 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
10168 			const char *sym)
10169 {
10170 	struct perf_ksymbol_event ksymbol_event;
10171 	char name[KSYM_NAME_LEN];
10172 	u16 flags = 0;
10173 	int name_len;
10174 
10175 	if (!atomic_read(&nr_ksymbol_events))
10176 		return;
10177 
10178 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
10179 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
10180 		goto err;
10181 
10182 	strscpy(name, sym);
10183 	name_len = strlen(name) + 1;
10184 	while (!IS_ALIGNED(name_len, sizeof(u64)))
10185 		name[name_len++] = '\0';
10186 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
10187 
10188 	if (unregister)
10189 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
10190 
10191 	ksymbol_event = (struct perf_ksymbol_event){
10192 		.name = name,
10193 		.name_len = name_len,
10194 		.event_id = {
10195 			.header = {
10196 				.type = PERF_RECORD_KSYMBOL,
10197 				.size = sizeof(ksymbol_event.event_id) +
10198 					name_len,
10199 			},
10200 			.addr = addr,
10201 			.len = len,
10202 			.ksym_type = ksym_type,
10203 			.flags = flags,
10204 		},
10205 	};
10206 
10207 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
10208 	return;
10209 err:
10210 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
10211 }
10212 
10213 /*
10214  * bpf program load/unload tracking
10215  */
10216 
10217 struct perf_bpf_event {
10218 	struct bpf_prog	*prog;
10219 	struct {
10220 		struct perf_event_header        header;
10221 		u16				type;
10222 		u16				flags;
10223 		u32				id;
10224 		u8				tag[BPF_TAG_SIZE];
10225 	} event_id;
10226 };
10227 
10228 static int perf_event_bpf_match(struct perf_event *event)
10229 {
10230 	return event->attr.bpf_event;
10231 }
10232 
10233 static void perf_event_bpf_output(struct perf_event *event, void *data)
10234 {
10235 	struct perf_bpf_event *bpf_event = data;
10236 	struct perf_output_handle handle;
10237 	struct perf_sample_data sample;
10238 	int ret;
10239 
10240 	if (!perf_event_bpf_match(event))
10241 		return;
10242 
10243 	perf_event_header__init_id(&bpf_event->event_id.header,
10244 				   &sample, event);
10245 	ret = perf_output_begin(&handle, &sample, event,
10246 				bpf_event->event_id.header.size);
10247 	if (ret)
10248 		return;
10249 
10250 	perf_output_put(&handle, bpf_event->event_id);
10251 	perf_event__output_id_sample(event, &handle, &sample);
10252 
10253 	perf_output_end(&handle);
10254 }
10255 
10256 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
10257 					 enum perf_bpf_event_type type)
10258 {
10259 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
10260 	int i;
10261 
10262 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
10263 			   (u64)(unsigned long)prog->bpf_func,
10264 			   prog->jited_len, unregister,
10265 			   prog->aux->ksym.name);
10266 
10267 	for (i = 1; i < prog->aux->func_cnt; i++) {
10268 		struct bpf_prog *subprog = prog->aux->func[i];
10269 
10270 		perf_event_ksymbol(
10271 			PERF_RECORD_KSYMBOL_TYPE_BPF,
10272 			(u64)(unsigned long)subprog->bpf_func,
10273 			subprog->jited_len, unregister,
10274 			subprog->aux->ksym.name);
10275 	}
10276 }
10277 
10278 void perf_event_bpf_event(struct bpf_prog *prog,
10279 			  enum perf_bpf_event_type type,
10280 			  u16 flags)
10281 {
10282 	struct perf_bpf_event bpf_event;
10283 
10284 	switch (type) {
10285 	case PERF_BPF_EVENT_PROG_LOAD:
10286 	case PERF_BPF_EVENT_PROG_UNLOAD:
10287 		if (atomic_read(&nr_ksymbol_events))
10288 			perf_event_bpf_emit_ksymbols(prog, type);
10289 		break;
10290 	default:
10291 		return;
10292 	}
10293 
10294 	if (!atomic_read(&nr_bpf_events))
10295 		return;
10296 
10297 	bpf_event = (struct perf_bpf_event){
10298 		.prog = prog,
10299 		.event_id = {
10300 			.header = {
10301 				.type = PERF_RECORD_BPF_EVENT,
10302 				.size = sizeof(bpf_event.event_id),
10303 			},
10304 			.type = type,
10305 			.flags = flags,
10306 			.id = prog->aux->id,
10307 		},
10308 	};
10309 
10310 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
10311 
10312 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
10313 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
10314 }
10315 
10316 struct perf_callchain_deferred_event {
10317 	struct unwind_stacktrace *trace;
10318 	struct {
10319 		struct perf_event_header	header;
10320 		u64				cookie;
10321 		u64				nr;
10322 		u64				ips[];
10323 	} event;
10324 };
10325 
10326 static void perf_callchain_deferred_output(struct perf_event *event, void *data)
10327 {
10328 	struct perf_callchain_deferred_event *deferred_event = data;
10329 	struct perf_output_handle handle;
10330 	struct perf_sample_data sample;
10331 	int ret, size = deferred_event->event.header.size;
10332 
10333 	if (!event->attr.defer_output)
10334 		return;
10335 
10336 	/* XXX do we really need sample_id_all for this ??? */
10337 	perf_event_header__init_id(&deferred_event->event.header, &sample, event);
10338 
10339 	ret = perf_output_begin(&handle, &sample, event,
10340 				deferred_event->event.header.size);
10341 	if (ret)
10342 		goto out;
10343 
10344 	perf_output_put(&handle, deferred_event->event);
10345 	for (int i = 0; i < deferred_event->trace->nr; i++) {
10346 		u64 entry = deferred_event->trace->entries[i];
10347 		perf_output_put(&handle, entry);
10348 	}
10349 	perf_event__output_id_sample(event, &handle, &sample);
10350 
10351 	perf_output_end(&handle);
10352 out:
10353 	deferred_event->event.header.size = size;
10354 }
10355 
10356 static void perf_unwind_deferred_callback(struct unwind_work *work,
10357 					 struct unwind_stacktrace *trace, u64 cookie)
10358 {
10359 	struct perf_callchain_deferred_event deferred_event = {
10360 		.trace = trace,
10361 		.event = {
10362 			.header = {
10363 				.type = PERF_RECORD_CALLCHAIN_DEFERRED,
10364 				.misc = PERF_RECORD_MISC_USER,
10365 				.size = sizeof(deferred_event.event) +
10366 					(trace->nr * sizeof(u64)),
10367 			},
10368 			.cookie = cookie,
10369 			.nr = trace->nr,
10370 		},
10371 	};
10372 
10373 	perf_iterate_sb(perf_callchain_deferred_output, &deferred_event, NULL);
10374 }
10375 
10376 struct perf_text_poke_event {
10377 	const void		*old_bytes;
10378 	const void		*new_bytes;
10379 	size_t			pad;
10380 	u16			old_len;
10381 	u16			new_len;
10382 
10383 	struct {
10384 		struct perf_event_header	header;
10385 
10386 		u64				addr;
10387 	} event_id;
10388 };
10389 
10390 static int perf_event_text_poke_match(struct perf_event *event)
10391 {
10392 	return event->attr.text_poke;
10393 }
10394 
10395 static void perf_event_text_poke_output(struct perf_event *event, void *data)
10396 {
10397 	struct perf_text_poke_event *text_poke_event = data;
10398 	struct perf_output_handle handle;
10399 	struct perf_sample_data sample;
10400 	u64 padding = 0;
10401 	int ret;
10402 
10403 	if (!perf_event_text_poke_match(event))
10404 		return;
10405 
10406 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
10407 
10408 	ret = perf_output_begin(&handle, &sample, event,
10409 				text_poke_event->event_id.header.size);
10410 	if (ret)
10411 		return;
10412 
10413 	perf_output_put(&handle, text_poke_event->event_id);
10414 	perf_output_put(&handle, text_poke_event->old_len);
10415 	perf_output_put(&handle, text_poke_event->new_len);
10416 
10417 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
10418 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
10419 
10420 	if (text_poke_event->pad)
10421 		__output_copy(&handle, &padding, text_poke_event->pad);
10422 
10423 	perf_event__output_id_sample(event, &handle, &sample);
10424 
10425 	perf_output_end(&handle);
10426 }
10427 
10428 void perf_event_text_poke(const void *addr, const void *old_bytes,
10429 			  size_t old_len, const void *new_bytes, size_t new_len)
10430 {
10431 	struct perf_text_poke_event text_poke_event;
10432 	size_t tot, pad;
10433 
10434 	if (!atomic_read(&nr_text_poke_events))
10435 		return;
10436 
10437 	tot  = sizeof(text_poke_event.old_len) + old_len;
10438 	tot += sizeof(text_poke_event.new_len) + new_len;
10439 	pad  = ALIGN(tot, sizeof(u64)) - tot;
10440 
10441 	text_poke_event = (struct perf_text_poke_event){
10442 		.old_bytes    = old_bytes,
10443 		.new_bytes    = new_bytes,
10444 		.pad          = pad,
10445 		.old_len      = old_len,
10446 		.new_len      = new_len,
10447 		.event_id  = {
10448 			.header = {
10449 				.type = PERF_RECORD_TEXT_POKE,
10450 				.misc = PERF_RECORD_MISC_KERNEL,
10451 				.size = sizeof(text_poke_event.event_id) + tot + pad,
10452 			},
10453 			.addr = (unsigned long)addr,
10454 		},
10455 	};
10456 
10457 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
10458 }
10459 
10460 void perf_event_itrace_started(struct perf_event *event)
10461 {
10462 	WRITE_ONCE(event->attach_state, event->attach_state | PERF_ATTACH_ITRACE);
10463 }
10464 
10465 static void perf_log_itrace_start(struct perf_event *event)
10466 {
10467 	struct perf_output_handle handle;
10468 	struct perf_sample_data sample;
10469 	struct perf_aux_event {
10470 		struct perf_event_header        header;
10471 		u32				pid;
10472 		u32				tid;
10473 	} rec;
10474 	int ret;
10475 
10476 	if (event->parent)
10477 		event = event->parent;
10478 
10479 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
10480 	    event->attach_state & PERF_ATTACH_ITRACE)
10481 		return;
10482 
10483 	rec.header.type	= PERF_RECORD_ITRACE_START;
10484 	rec.header.misc	= 0;
10485 	rec.header.size	= sizeof(rec);
10486 	rec.pid	= perf_event_pid(event, current);
10487 	rec.tid	= perf_event_tid(event, current);
10488 
10489 	perf_event_header__init_id(&rec.header, &sample, event);
10490 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
10491 
10492 	if (ret)
10493 		return;
10494 
10495 	perf_output_put(&handle, rec);
10496 	perf_event__output_id_sample(event, &handle, &sample);
10497 
10498 	perf_output_end(&handle);
10499 }
10500 
10501 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
10502 {
10503 	struct perf_output_handle handle;
10504 	struct perf_sample_data sample;
10505 	struct perf_aux_event {
10506 		struct perf_event_header        header;
10507 		u64				hw_id;
10508 	} rec;
10509 	int ret;
10510 
10511 	if (event->parent)
10512 		event = event->parent;
10513 
10514 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
10515 	rec.header.misc	= 0;
10516 	rec.header.size	= sizeof(rec);
10517 	rec.hw_id	= hw_id;
10518 
10519 	perf_event_header__init_id(&rec.header, &sample, event);
10520 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
10521 
10522 	if (ret)
10523 		return;
10524 
10525 	perf_output_put(&handle, rec);
10526 	perf_event__output_id_sample(event, &handle, &sample);
10527 
10528 	perf_output_end(&handle);
10529 }
10530 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
10531 
10532 static int
10533 __perf_event_account_interrupt(struct perf_event *event, int throttle)
10534 {
10535 	struct hw_perf_event *hwc = &event->hw;
10536 	int ret = 0;
10537 	u64 seq;
10538 
10539 	seq = __this_cpu_read(perf_throttled_seq);
10540 	if (seq != hwc->interrupts_seq) {
10541 		hwc->interrupts_seq = seq;
10542 		hwc->interrupts = 1;
10543 	} else {
10544 		hwc->interrupts++;
10545 	}
10546 
10547 	if (unlikely(throttle && hwc->interrupts >= max_samples_per_tick)) {
10548 		__this_cpu_inc(perf_throttled_count);
10549 		tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
10550 		perf_event_throttle_group(event);
10551 		ret = 1;
10552 	}
10553 
10554 	if (event->attr.freq) {
10555 		u64 now = perf_clock();
10556 		s64 delta = now - hwc->freq_time_stamp;
10557 
10558 		hwc->freq_time_stamp = now;
10559 
10560 		if (delta > 0 && delta < 2*TICK_NSEC)
10561 			perf_adjust_period(event, delta, hwc->last_period, true);
10562 	}
10563 
10564 	return ret;
10565 }
10566 
10567 int perf_event_account_interrupt(struct perf_event *event)
10568 {
10569 	return __perf_event_account_interrupt(event, 1);
10570 }
10571 
10572 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
10573 {
10574 	/*
10575 	 * Due to interrupt latency (AKA "skid"), we may enter the
10576 	 * kernel before taking an overflow, even if the PMU is only
10577 	 * counting user events.
10578 	 */
10579 	if (event->attr.exclude_kernel && !user_mode(regs))
10580 		return false;
10581 
10582 	return true;
10583 }
10584 
10585 #ifdef CONFIG_BPF_SYSCALL
10586 static int bpf_overflow_handler(struct perf_event *event,
10587 				struct perf_sample_data *data,
10588 				struct pt_regs *regs)
10589 {
10590 	struct bpf_perf_event_data_kern ctx = {
10591 		.data = data,
10592 		.event = event,
10593 	};
10594 	struct bpf_prog *prog;
10595 	int ret = 0;
10596 
10597 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10598 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10599 		goto out;
10600 	rcu_read_lock();
10601 	prog = READ_ONCE(event->prog);
10602 	if (prog) {
10603 		perf_prepare_sample(data, event, regs);
10604 		ret = bpf_prog_run(prog, &ctx);
10605 	}
10606 	rcu_read_unlock();
10607 out:
10608 	__this_cpu_dec(bpf_prog_active);
10609 
10610 	return ret;
10611 }
10612 
10613 static inline int perf_event_set_bpf_handler(struct perf_event *event,
10614 					     struct bpf_prog *prog,
10615 					     u64 bpf_cookie)
10616 {
10617 	if (event->overflow_handler_context)
10618 		/* hw breakpoint or kernel counter */
10619 		return -EINVAL;
10620 
10621 	if (event->prog)
10622 		return -EEXIST;
10623 
10624 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10625 		return -EINVAL;
10626 
10627 	if (event->attr.precise_ip &&
10628 	    prog->call_get_stack &&
10629 	    (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10630 	     event->attr.exclude_callchain_kernel ||
10631 	     event->attr.exclude_callchain_user)) {
10632 		/*
10633 		 * On perf_event with precise_ip, calling bpf_get_stack()
10634 		 * may trigger unwinder warnings and occasional crashes.
10635 		 * bpf_get_[stack|stackid] works around this issue by using
10636 		 * callchain attached to perf_sample_data. If the
10637 		 * perf_event does not full (kernel and user) callchain
10638 		 * attached to perf_sample_data, do not allow attaching BPF
10639 		 * program that calls bpf_get_[stack|stackid].
10640 		 */
10641 		return -EPROTO;
10642 	}
10643 
10644 	event->prog = prog;
10645 	event->bpf_cookie = bpf_cookie;
10646 	return 0;
10647 }
10648 
10649 static inline void perf_event_free_bpf_handler(struct perf_event *event)
10650 {
10651 	struct bpf_prog *prog = event->prog;
10652 
10653 	if (!prog)
10654 		return;
10655 
10656 	event->prog = NULL;
10657 	bpf_prog_put(prog);
10658 }
10659 #else
10660 static inline int bpf_overflow_handler(struct perf_event *event,
10661 				       struct perf_sample_data *data,
10662 				       struct pt_regs *regs)
10663 {
10664 	return 1;
10665 }
10666 
10667 static inline int perf_event_set_bpf_handler(struct perf_event *event,
10668 					     struct bpf_prog *prog,
10669 					     u64 bpf_cookie)
10670 {
10671 	return -EOPNOTSUPP;
10672 }
10673 
10674 static inline void perf_event_free_bpf_handler(struct perf_event *event)
10675 {
10676 }
10677 #endif
10678 
10679 /*
10680  * Generic event overflow handling, sampling.
10681  */
10682 
10683 static int __perf_event_overflow(struct perf_event *event,
10684 				 int throttle, struct perf_sample_data *data,
10685 				 struct pt_regs *regs)
10686 {
10687 	int events = atomic_read(&event->event_limit);
10688 	int ret = 0;
10689 
10690 	/*
10691 	 * Non-sampling counters might still use the PMI to fold short
10692 	 * hardware counters, ignore those.
10693 	 */
10694 	if (unlikely(!is_sampling_event(event)))
10695 		return 0;
10696 
10697 	ret = __perf_event_account_interrupt(event, throttle);
10698 
10699 	if (event->attr.aux_pause)
10700 		perf_event_aux_pause(event->aux_event, true);
10701 
10702 	if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT &&
10703 	    !bpf_overflow_handler(event, data, regs))
10704 		goto out;
10705 
10706 	/*
10707 	 * XXX event_limit might not quite work as expected on inherited
10708 	 * events
10709 	 */
10710 
10711 	event->pending_kill = POLL_IN;
10712 	if (events && atomic_dec_and_test(&event->event_limit)) {
10713 		ret = 1;
10714 		event->pending_kill = POLL_HUP;
10715 		perf_event_disable_inatomic(event);
10716 		event->pmu->stop(event, 0);
10717 	}
10718 
10719 	if (event->attr.sigtrap) {
10720 		/*
10721 		 * The desired behaviour of sigtrap vs invalid samples is a bit
10722 		 * tricky; on the one hand, one should not loose the SIGTRAP if
10723 		 * it is the first event, on the other hand, we should also not
10724 		 * trigger the WARN or override the data address.
10725 		 */
10726 		bool valid_sample = sample_is_allowed(event, regs);
10727 		unsigned int pending_id = 1;
10728 		enum task_work_notify_mode notify_mode;
10729 
10730 		if (regs)
10731 			pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
10732 
10733 		notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME;
10734 
10735 		if (!event->pending_work &&
10736 		    !task_work_add(current, &event->pending_task, notify_mode)) {
10737 			event->pending_work = pending_id;
10738 			local_inc(&event->ctx->nr_no_switch_fast);
10739 			WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
10740 
10741 			event->pending_addr = 0;
10742 			if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
10743 				event->pending_addr = data->addr;
10744 
10745 		} else if (event->attr.exclude_kernel && valid_sample) {
10746 			/*
10747 			 * Should not be able to return to user space without
10748 			 * consuming pending_work; with exceptions:
10749 			 *
10750 			 *  1. Where !exclude_kernel, events can overflow again
10751 			 *     in the kernel without returning to user space.
10752 			 *
10753 			 *  2. Events that can overflow again before the IRQ-
10754 			 *     work without user space progress (e.g. hrtimer).
10755 			 *     To approximate progress (with false negatives),
10756 			 *     check 32-bit hash of the current IP.
10757 			 */
10758 			WARN_ON_ONCE(event->pending_work != pending_id);
10759 		}
10760 	}
10761 
10762 	READ_ONCE(event->overflow_handler)(event, data, regs);
10763 
10764 	if (*perf_event_fasync(event) && event->pending_kill) {
10765 		event->pending_wakeup = 1;
10766 		irq_work_queue(&event->pending_irq);
10767 	}
10768 out:
10769 	if (event->attr.aux_resume)
10770 		perf_event_aux_pause(event->aux_event, false);
10771 
10772 	return ret;
10773 }
10774 
10775 int perf_event_overflow(struct perf_event *event,
10776 			struct perf_sample_data *data,
10777 			struct pt_regs *regs)
10778 {
10779 	return __perf_event_overflow(event, 1, data, regs);
10780 }
10781 
10782 /*
10783  * Generic software event infrastructure
10784  */
10785 
10786 struct swevent_htable {
10787 	struct swevent_hlist		*swevent_hlist;
10788 	struct mutex			hlist_mutex;
10789 	int				hlist_refcount;
10790 };
10791 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
10792 
10793 /*
10794  * We directly increment event->count and keep a second value in
10795  * event->hw.period_left to count intervals. This period event
10796  * is kept in the range [-sample_period, 0] so that we can use the
10797  * sign as trigger.
10798  */
10799 
10800 u64 perf_swevent_set_period(struct perf_event *event)
10801 {
10802 	struct hw_perf_event *hwc = &event->hw;
10803 	u64 period = hwc->last_period;
10804 	u64 nr, offset;
10805 	s64 old, val;
10806 
10807 	hwc->last_period = hwc->sample_period;
10808 
10809 	old = local64_read(&hwc->period_left);
10810 	do {
10811 		val = old;
10812 		if (val < 0)
10813 			return 0;
10814 
10815 		nr = div64_u64(period + val, period);
10816 		offset = nr * period;
10817 		val -= offset;
10818 	} while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
10819 
10820 	return nr;
10821 }
10822 
10823 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
10824 				    struct perf_sample_data *data,
10825 				    struct pt_regs *regs)
10826 {
10827 	struct hw_perf_event *hwc = &event->hw;
10828 	int throttle = 0;
10829 
10830 	if (!overflow)
10831 		overflow = perf_swevent_set_period(event);
10832 
10833 	if (hwc->interrupts == MAX_INTERRUPTS)
10834 		return;
10835 
10836 	for (; overflow; overflow--) {
10837 		if (__perf_event_overflow(event, throttle,
10838 					    data, regs)) {
10839 			/*
10840 			 * We inhibit the overflow from happening when
10841 			 * hwc->interrupts == MAX_INTERRUPTS.
10842 			 */
10843 			break;
10844 		}
10845 		throttle = 1;
10846 	}
10847 }
10848 
10849 static void perf_swevent_event(struct perf_event *event, u64 nr,
10850 			       struct perf_sample_data *data,
10851 			       struct pt_regs *regs)
10852 {
10853 	struct hw_perf_event *hwc = &event->hw;
10854 
10855 	local64_add(nr, &event->count);
10856 
10857 	if (!regs)
10858 		return;
10859 
10860 	if (!is_sampling_event(event))
10861 		return;
10862 
10863 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
10864 		data->period = nr;
10865 		return perf_swevent_overflow(event, 1, data, regs);
10866 	} else
10867 		data->period = event->hw.last_period;
10868 
10869 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
10870 		return perf_swevent_overflow(event, 1, data, regs);
10871 
10872 	if (local64_add_negative(nr, &hwc->period_left))
10873 		return;
10874 
10875 	perf_swevent_overflow(event, 0, data, regs);
10876 }
10877 
10878 int perf_exclude_event(struct perf_event *event, struct pt_regs *regs)
10879 {
10880 	if (event->hw.state & PERF_HES_STOPPED)
10881 		return 1;
10882 
10883 	if (regs) {
10884 		if (event->attr.exclude_user && user_mode(regs))
10885 			return 1;
10886 
10887 		if (event->attr.exclude_kernel && !user_mode(regs))
10888 			return 1;
10889 	}
10890 
10891 	return 0;
10892 }
10893 
10894 static int perf_swevent_match(struct perf_event *event,
10895 				enum perf_type_id type,
10896 				u32 event_id,
10897 				struct perf_sample_data *data,
10898 				struct pt_regs *regs)
10899 {
10900 	if (event->attr.type != type)
10901 		return 0;
10902 
10903 	if (event->attr.config != event_id)
10904 		return 0;
10905 
10906 	if (perf_exclude_event(event, regs))
10907 		return 0;
10908 
10909 	return 1;
10910 }
10911 
10912 static inline u64 swevent_hash(u64 type, u32 event_id)
10913 {
10914 	u64 val = event_id | (type << 32);
10915 
10916 	return hash_64(val, SWEVENT_HLIST_BITS);
10917 }
10918 
10919 static inline struct hlist_head *
10920 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
10921 {
10922 	u64 hash = swevent_hash(type, event_id);
10923 
10924 	return &hlist->heads[hash];
10925 }
10926 
10927 /* For the read side: events when they trigger */
10928 static inline struct hlist_head *
10929 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
10930 {
10931 	struct swevent_hlist *hlist;
10932 
10933 	hlist = rcu_dereference(swhash->swevent_hlist);
10934 	if (!hlist)
10935 		return NULL;
10936 
10937 	return __find_swevent_head(hlist, type, event_id);
10938 }
10939 
10940 /* For the event head insertion and removal in the hlist */
10941 static inline struct hlist_head *
10942 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
10943 {
10944 	struct swevent_hlist *hlist;
10945 	u32 event_id = event->attr.config;
10946 	u64 type = event->attr.type;
10947 
10948 	/*
10949 	 * Event scheduling is always serialized against hlist allocation
10950 	 * and release. Which makes the protected version suitable here.
10951 	 * The context lock guarantees that.
10952 	 */
10953 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
10954 					  lockdep_is_held(&event->ctx->lock));
10955 	if (!hlist)
10956 		return NULL;
10957 
10958 	return __find_swevent_head(hlist, type, event_id);
10959 }
10960 
10961 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
10962 				    u64 nr,
10963 				    struct perf_sample_data *data,
10964 				    struct pt_regs *regs)
10965 {
10966 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10967 	struct perf_event *event;
10968 	struct hlist_head *head;
10969 
10970 	rcu_read_lock();
10971 	head = find_swevent_head_rcu(swhash, type, event_id);
10972 	if (!head)
10973 		goto end;
10974 
10975 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10976 		if (perf_swevent_match(event, type, event_id, data, regs))
10977 			perf_swevent_event(event, nr, data, regs);
10978 	}
10979 end:
10980 	rcu_read_unlock();
10981 }
10982 
10983 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
10984 
10985 int perf_swevent_get_recursion_context(void)
10986 {
10987 	return get_recursion_context(current->perf_recursion);
10988 }
10989 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
10990 
10991 void perf_swevent_put_recursion_context(int rctx)
10992 {
10993 	put_recursion_context(current->perf_recursion, rctx);
10994 }
10995 
10996 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10997 {
10998 	struct perf_sample_data data;
10999 
11000 	if (WARN_ON_ONCE(!regs))
11001 		return;
11002 
11003 	perf_sample_data_init(&data, addr, 0);
11004 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
11005 }
11006 
11007 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
11008 {
11009 	int rctx;
11010 
11011 	preempt_disable_notrace();
11012 	rctx = perf_swevent_get_recursion_context();
11013 	if (unlikely(rctx < 0))
11014 		goto fail;
11015 
11016 	___perf_sw_event(event_id, nr, regs, addr);
11017 
11018 	perf_swevent_put_recursion_context(rctx);
11019 fail:
11020 	preempt_enable_notrace();
11021 }
11022 
11023 static void perf_swevent_read(struct perf_event *event)
11024 {
11025 }
11026 
11027 static int perf_swevent_add(struct perf_event *event, int flags)
11028 {
11029 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
11030 	struct hw_perf_event *hwc = &event->hw;
11031 	struct hlist_head *head;
11032 
11033 	if (is_sampling_event(event)) {
11034 		hwc->last_period = hwc->sample_period;
11035 		perf_swevent_set_period(event);
11036 	}
11037 
11038 	hwc->state = !(flags & PERF_EF_START);
11039 
11040 	head = find_swevent_head(swhash, event);
11041 	if (WARN_ON_ONCE(!head))
11042 		return -EINVAL;
11043 
11044 	hlist_add_head_rcu(&event->hlist_entry, head);
11045 	perf_event_update_userpage(event);
11046 
11047 	return 0;
11048 }
11049 
11050 static void perf_swevent_del(struct perf_event *event, int flags)
11051 {
11052 	hlist_del_rcu(&event->hlist_entry);
11053 }
11054 
11055 static void perf_swevent_start(struct perf_event *event, int flags)
11056 {
11057 	event->hw.state = 0;
11058 }
11059 
11060 static void perf_swevent_stop(struct perf_event *event, int flags)
11061 {
11062 	event->hw.state = PERF_HES_STOPPED;
11063 }
11064 
11065 /* Deref the hlist from the update side */
11066 static inline struct swevent_hlist *
11067 swevent_hlist_deref(struct swevent_htable *swhash)
11068 {
11069 	return rcu_dereference_protected(swhash->swevent_hlist,
11070 					 lockdep_is_held(&swhash->hlist_mutex));
11071 }
11072 
11073 static void swevent_hlist_release(struct swevent_htable *swhash)
11074 {
11075 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
11076 
11077 	if (!hlist)
11078 		return;
11079 
11080 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
11081 	kfree_rcu(hlist, rcu_head);
11082 }
11083 
11084 static void swevent_hlist_put_cpu(int cpu)
11085 {
11086 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11087 
11088 	mutex_lock(&swhash->hlist_mutex);
11089 
11090 	if (!--swhash->hlist_refcount)
11091 		swevent_hlist_release(swhash);
11092 
11093 	mutex_unlock(&swhash->hlist_mutex);
11094 }
11095 
11096 static void swevent_hlist_put(void)
11097 {
11098 	int cpu;
11099 
11100 	for_each_possible_cpu(cpu)
11101 		swevent_hlist_put_cpu(cpu);
11102 }
11103 
11104 static int swevent_hlist_get_cpu(int cpu)
11105 {
11106 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11107 	int err = 0;
11108 
11109 	mutex_lock(&swhash->hlist_mutex);
11110 	if (!swevent_hlist_deref(swhash) &&
11111 	    cpumask_test_cpu(cpu, perf_online_mask)) {
11112 		struct swevent_hlist *hlist;
11113 
11114 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
11115 		if (!hlist) {
11116 			err = -ENOMEM;
11117 			goto exit;
11118 		}
11119 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
11120 	}
11121 	swhash->hlist_refcount++;
11122 exit:
11123 	mutex_unlock(&swhash->hlist_mutex);
11124 
11125 	return err;
11126 }
11127 
11128 static int swevent_hlist_get(void)
11129 {
11130 	int err, cpu, failed_cpu;
11131 
11132 	mutex_lock(&pmus_lock);
11133 	for_each_possible_cpu(cpu) {
11134 		err = swevent_hlist_get_cpu(cpu);
11135 		if (err) {
11136 			failed_cpu = cpu;
11137 			goto fail;
11138 		}
11139 	}
11140 	mutex_unlock(&pmus_lock);
11141 	return 0;
11142 fail:
11143 	for_each_possible_cpu(cpu) {
11144 		if (cpu == failed_cpu)
11145 			break;
11146 		swevent_hlist_put_cpu(cpu);
11147 	}
11148 	mutex_unlock(&pmus_lock);
11149 	return err;
11150 }
11151 
11152 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
11153 
11154 static void sw_perf_event_destroy(struct perf_event *event)
11155 {
11156 	u64 event_id = event->attr.config;
11157 
11158 	WARN_ON(event->parent);
11159 
11160 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
11161 	swevent_hlist_put();
11162 }
11163 
11164 static struct pmu perf_cpu_clock; /* fwd declaration */
11165 static struct pmu perf_task_clock;
11166 
11167 static int perf_swevent_init(struct perf_event *event)
11168 {
11169 	u64 event_id = event->attr.config;
11170 
11171 	if (event->attr.type != PERF_TYPE_SOFTWARE)
11172 		return -ENOENT;
11173 
11174 	/*
11175 	 * no branch sampling for software events
11176 	 */
11177 	if (has_branch_stack(event))
11178 		return -EOPNOTSUPP;
11179 
11180 	switch (event_id) {
11181 	case PERF_COUNT_SW_CPU_CLOCK:
11182 		event->attr.type = perf_cpu_clock.type;
11183 		return -ENOENT;
11184 	case PERF_COUNT_SW_TASK_CLOCK:
11185 		event->attr.type = perf_task_clock.type;
11186 		return -ENOENT;
11187 
11188 	default:
11189 		break;
11190 	}
11191 
11192 	if (event_id >= PERF_COUNT_SW_MAX)
11193 		return -ENOENT;
11194 
11195 	if (!event->parent) {
11196 		int err;
11197 
11198 		err = swevent_hlist_get();
11199 		if (err)
11200 			return err;
11201 
11202 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
11203 		event->destroy = sw_perf_event_destroy;
11204 	}
11205 
11206 	return 0;
11207 }
11208 
11209 static struct pmu perf_swevent = {
11210 	.task_ctx_nr	= perf_sw_context,
11211 
11212 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11213 
11214 	.event_init	= perf_swevent_init,
11215 	.add		= perf_swevent_add,
11216 	.del		= perf_swevent_del,
11217 	.start		= perf_swevent_start,
11218 	.stop		= perf_swevent_stop,
11219 	.read		= perf_swevent_read,
11220 };
11221 
11222 #ifdef CONFIG_EVENT_TRACING
11223 
11224 static void tp_perf_event_destroy(struct perf_event *event)
11225 {
11226 	perf_trace_destroy(event);
11227 }
11228 
11229 static int perf_tp_event_init(struct perf_event *event)
11230 {
11231 	int err;
11232 
11233 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
11234 		return -ENOENT;
11235 
11236 	/*
11237 	 * no branch sampling for tracepoint events
11238 	 */
11239 	if (has_branch_stack(event))
11240 		return -EOPNOTSUPP;
11241 
11242 	err = perf_trace_init(event);
11243 	if (err)
11244 		return err;
11245 
11246 	event->destroy = tp_perf_event_destroy;
11247 
11248 	return 0;
11249 }
11250 
11251 static struct pmu perf_tracepoint = {
11252 	.task_ctx_nr	= perf_sw_context,
11253 
11254 	.event_init	= perf_tp_event_init,
11255 	.add		= perf_trace_add,
11256 	.del		= perf_trace_del,
11257 	.start		= perf_swevent_start,
11258 	.stop		= perf_swevent_stop,
11259 	.read		= perf_swevent_read,
11260 };
11261 
11262 static int perf_tp_filter_match(struct perf_event *event,
11263 				struct perf_raw_record *raw)
11264 {
11265 	void *record = raw->frag.data;
11266 
11267 	/* only top level events have filters set */
11268 	if (event->parent)
11269 		event = event->parent;
11270 
11271 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
11272 		return 1;
11273 	return 0;
11274 }
11275 
11276 static int perf_tp_event_match(struct perf_event *event,
11277 				struct perf_raw_record *raw,
11278 				struct pt_regs *regs)
11279 {
11280 	if (event->hw.state & PERF_HES_STOPPED)
11281 		return 0;
11282 	/*
11283 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
11284 	 */
11285 	if (event->attr.exclude_kernel && !user_mode(regs))
11286 		return 0;
11287 
11288 	if (!perf_tp_filter_match(event, raw))
11289 		return 0;
11290 
11291 	return 1;
11292 }
11293 
11294 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
11295 			       struct trace_event_call *call, u64 count,
11296 			       struct pt_regs *regs, struct hlist_head *head,
11297 			       struct task_struct *task)
11298 {
11299 	if (bpf_prog_array_valid(call)) {
11300 		*(struct pt_regs **)raw_data = regs;
11301 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
11302 			perf_swevent_put_recursion_context(rctx);
11303 			return;
11304 		}
11305 	}
11306 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
11307 		      rctx, task);
11308 }
11309 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
11310 
11311 static void __perf_tp_event_target_task(u64 count, void *record,
11312 					struct pt_regs *regs,
11313 					struct perf_sample_data *data,
11314 					struct perf_raw_record *raw,
11315 					struct perf_event *event)
11316 {
11317 	struct trace_entry *entry = record;
11318 
11319 	if (event->attr.config != entry->type)
11320 		return;
11321 	/* Cannot deliver synchronous signal to other task. */
11322 	if (event->attr.sigtrap)
11323 		return;
11324 	if (perf_tp_event_match(event, raw, regs)) {
11325 		perf_sample_data_init(data, 0, 0);
11326 		perf_sample_save_raw_data(data, event, raw);
11327 		perf_swevent_event(event, count, data, regs);
11328 	}
11329 }
11330 
11331 static void perf_tp_event_target_task(u64 count, void *record,
11332 				      struct pt_regs *regs,
11333 				      struct perf_sample_data *data,
11334 				      struct perf_raw_record *raw,
11335 				      struct perf_event_context *ctx)
11336 {
11337 	unsigned int cpu = smp_processor_id();
11338 	struct pmu *pmu = &perf_tracepoint;
11339 	struct perf_event *event, *sibling;
11340 
11341 	perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
11342 		__perf_tp_event_target_task(count, record, regs, data, raw, event);
11343 		for_each_sibling_event(sibling, event)
11344 			__perf_tp_event_target_task(count, record, regs, data, raw, sibling);
11345 	}
11346 
11347 	perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
11348 		__perf_tp_event_target_task(count, record, regs, data, raw, event);
11349 		for_each_sibling_event(sibling, event)
11350 			__perf_tp_event_target_task(count, record, regs, data, raw, sibling);
11351 	}
11352 }
11353 
11354 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
11355 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
11356 		   struct task_struct *task)
11357 {
11358 	struct perf_sample_data data;
11359 	struct perf_event *event;
11360 
11361 	struct perf_raw_record raw = {
11362 		.frag = {
11363 			.size = entry_size,
11364 			.data = record,
11365 		},
11366 	};
11367 
11368 	perf_trace_buf_update(record, event_type);
11369 
11370 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
11371 		if (perf_tp_event_match(event, &raw, regs)) {
11372 			/*
11373 			 * Here use the same on-stack perf_sample_data,
11374 			 * some members in data are event-specific and
11375 			 * need to be re-computed for different sweveents.
11376 			 * Re-initialize data->sample_flags safely to avoid
11377 			 * the problem that next event skips preparing data
11378 			 * because data->sample_flags is set.
11379 			 */
11380 			perf_sample_data_init(&data, 0, 0);
11381 			perf_sample_save_raw_data(&data, event, &raw);
11382 			perf_swevent_event(event, count, &data, regs);
11383 		}
11384 	}
11385 
11386 	/*
11387 	 * If we got specified a target task, also iterate its context and
11388 	 * deliver this event there too.
11389 	 */
11390 	if (task && task != current) {
11391 		struct perf_event_context *ctx;
11392 
11393 		rcu_read_lock();
11394 		ctx = rcu_dereference(task->perf_event_ctxp);
11395 		if (!ctx)
11396 			goto unlock;
11397 
11398 		raw_spin_lock(&ctx->lock);
11399 		perf_tp_event_target_task(count, record, regs, &data, &raw, ctx);
11400 		raw_spin_unlock(&ctx->lock);
11401 unlock:
11402 		rcu_read_unlock();
11403 	}
11404 
11405 	perf_swevent_put_recursion_context(rctx);
11406 }
11407 EXPORT_SYMBOL_GPL(perf_tp_event);
11408 
11409 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
11410 /*
11411  * Flags in config, used by dynamic PMU kprobe and uprobe
11412  * The flags should match following PMU_FORMAT_ATTR().
11413  *
11414  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
11415  *                               if not set, create kprobe/uprobe
11416  *
11417  * The following values specify a reference counter (or semaphore in the
11418  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
11419  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
11420  *
11421  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
11422  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
11423  */
11424 enum perf_probe_config {
11425 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
11426 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
11427 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
11428 };
11429 
11430 PMU_FORMAT_ATTR(retprobe, "config:0");
11431 #endif
11432 
11433 #ifdef CONFIG_KPROBE_EVENTS
11434 static struct attribute *kprobe_attrs[] = {
11435 	&format_attr_retprobe.attr,
11436 	NULL,
11437 };
11438 
11439 static struct attribute_group kprobe_format_group = {
11440 	.name = "format",
11441 	.attrs = kprobe_attrs,
11442 };
11443 
11444 static const struct attribute_group *kprobe_attr_groups[] = {
11445 	&kprobe_format_group,
11446 	NULL,
11447 };
11448 
11449 static int perf_kprobe_event_init(struct perf_event *event);
11450 static struct pmu perf_kprobe = {
11451 	.task_ctx_nr	= perf_sw_context,
11452 	.event_init	= perf_kprobe_event_init,
11453 	.add		= perf_trace_add,
11454 	.del		= perf_trace_del,
11455 	.start		= perf_swevent_start,
11456 	.stop		= perf_swevent_stop,
11457 	.read		= perf_swevent_read,
11458 	.attr_groups	= kprobe_attr_groups,
11459 };
11460 
11461 static int perf_kprobe_event_init(struct perf_event *event)
11462 {
11463 	int err;
11464 	bool is_retprobe;
11465 
11466 	if (event->attr.type != perf_kprobe.type)
11467 		return -ENOENT;
11468 
11469 	if (!perfmon_capable())
11470 		return -EACCES;
11471 
11472 	/*
11473 	 * no branch sampling for probe events
11474 	 */
11475 	if (has_branch_stack(event))
11476 		return -EOPNOTSUPP;
11477 
11478 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
11479 	err = perf_kprobe_init(event, is_retprobe);
11480 	if (err)
11481 		return err;
11482 
11483 	event->destroy = perf_kprobe_destroy;
11484 
11485 	return 0;
11486 }
11487 #endif /* CONFIG_KPROBE_EVENTS */
11488 
11489 #ifdef CONFIG_UPROBE_EVENTS
11490 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
11491 
11492 static struct attribute *uprobe_attrs[] = {
11493 	&format_attr_retprobe.attr,
11494 	&format_attr_ref_ctr_offset.attr,
11495 	NULL,
11496 };
11497 
11498 static struct attribute_group uprobe_format_group = {
11499 	.name = "format",
11500 	.attrs = uprobe_attrs,
11501 };
11502 
11503 static const struct attribute_group *uprobe_attr_groups[] = {
11504 	&uprobe_format_group,
11505 	NULL,
11506 };
11507 
11508 static int perf_uprobe_event_init(struct perf_event *event);
11509 static struct pmu perf_uprobe = {
11510 	.task_ctx_nr	= perf_sw_context,
11511 	.event_init	= perf_uprobe_event_init,
11512 	.add		= perf_trace_add,
11513 	.del		= perf_trace_del,
11514 	.start		= perf_swevent_start,
11515 	.stop		= perf_swevent_stop,
11516 	.read		= perf_swevent_read,
11517 	.attr_groups	= uprobe_attr_groups,
11518 };
11519 
11520 static int perf_uprobe_event_init(struct perf_event *event)
11521 {
11522 	int err;
11523 	unsigned long ref_ctr_offset;
11524 	bool is_retprobe;
11525 
11526 	if (event->attr.type != perf_uprobe.type)
11527 		return -ENOENT;
11528 
11529 	if (!capable(CAP_SYS_ADMIN))
11530 		return -EACCES;
11531 
11532 	/*
11533 	 * no branch sampling for probe events
11534 	 */
11535 	if (has_branch_stack(event))
11536 		return -EOPNOTSUPP;
11537 
11538 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
11539 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
11540 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
11541 	if (err)
11542 		return err;
11543 
11544 	event->destroy = perf_uprobe_destroy;
11545 
11546 	return 0;
11547 }
11548 #endif /* CONFIG_UPROBE_EVENTS */
11549 
11550 static inline void perf_tp_register(void)
11551 {
11552 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
11553 #ifdef CONFIG_KPROBE_EVENTS
11554 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
11555 #endif
11556 #ifdef CONFIG_UPROBE_EVENTS
11557 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
11558 #endif
11559 }
11560 
11561 static void perf_event_free_filter(struct perf_event *event)
11562 {
11563 	ftrace_profile_free_filter(event);
11564 }
11565 
11566 /*
11567  * returns true if the event is a tracepoint, or a kprobe/upprobe created
11568  * with perf_event_open()
11569  */
11570 static inline bool perf_event_is_tracing(struct perf_event *event)
11571 {
11572 	if (event->pmu == &perf_tracepoint)
11573 		return true;
11574 #ifdef CONFIG_KPROBE_EVENTS
11575 	if (event->pmu == &perf_kprobe)
11576 		return true;
11577 #endif
11578 #ifdef CONFIG_UPROBE_EVENTS
11579 	if (event->pmu == &perf_uprobe)
11580 		return true;
11581 #endif
11582 	return false;
11583 }
11584 
11585 static int __perf_event_set_bpf_prog(struct perf_event *event,
11586 				     struct bpf_prog *prog,
11587 				     u64 bpf_cookie)
11588 {
11589 	bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
11590 
11591 	if (event->state <= PERF_EVENT_STATE_REVOKED)
11592 		return -ENODEV;
11593 
11594 	if (!perf_event_is_tracing(event))
11595 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
11596 
11597 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
11598 	is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
11599 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
11600 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
11601 	if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
11602 		/* bpf programs can only be attached to u/kprobe or tracepoint */
11603 		return -EINVAL;
11604 
11605 	if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
11606 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
11607 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
11608 		return -EINVAL;
11609 
11610 	if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe)
11611 		/* only uprobe programs are allowed to be sleepable */
11612 		return -EINVAL;
11613 
11614 	/* Kprobe override only works for kprobes, not uprobes. */
11615 	if (prog->kprobe_override && !is_kprobe)
11616 		return -EINVAL;
11617 
11618 	/* Writing to context allowed only for uprobes. */
11619 	if (prog->aux->kprobe_write_ctx && !is_uprobe)
11620 		return -EINVAL;
11621 
11622 	if (is_tracepoint || is_syscall_tp) {
11623 		int off = trace_event_get_offsets(event->tp_event);
11624 
11625 		if (prog->aux->max_ctx_offset > off)
11626 			return -EACCES;
11627 	}
11628 
11629 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
11630 }
11631 
11632 int perf_event_set_bpf_prog(struct perf_event *event,
11633 			    struct bpf_prog *prog,
11634 			    u64 bpf_cookie)
11635 {
11636 	struct perf_event_context *ctx;
11637 	int ret;
11638 
11639 	ctx = perf_event_ctx_lock(event);
11640 	ret = __perf_event_set_bpf_prog(event, prog, bpf_cookie);
11641 	perf_event_ctx_unlock(event, ctx);
11642 
11643 	return ret;
11644 }
11645 
11646 void perf_event_free_bpf_prog(struct perf_event *event)
11647 {
11648 	if (!event->prog)
11649 		return;
11650 
11651 	if (!perf_event_is_tracing(event)) {
11652 		perf_event_free_bpf_handler(event);
11653 		return;
11654 	}
11655 	perf_event_detach_bpf_prog(event);
11656 }
11657 
11658 #else
11659 
11660 static inline void perf_tp_register(void)
11661 {
11662 }
11663 
11664 static void perf_event_free_filter(struct perf_event *event)
11665 {
11666 }
11667 
11668 static int __perf_event_set_bpf_prog(struct perf_event *event,
11669 				     struct bpf_prog *prog,
11670 				     u64 bpf_cookie)
11671 {
11672 	return -ENOENT;
11673 }
11674 
11675 int perf_event_set_bpf_prog(struct perf_event *event,
11676 			    struct bpf_prog *prog,
11677 			    u64 bpf_cookie)
11678 {
11679 	return -ENOENT;
11680 }
11681 
11682 void perf_event_free_bpf_prog(struct perf_event *event)
11683 {
11684 }
11685 #endif /* CONFIG_EVENT_TRACING */
11686 
11687 #ifdef CONFIG_HAVE_HW_BREAKPOINT
11688 void perf_bp_event(struct perf_event *bp, void *data)
11689 {
11690 	struct perf_sample_data sample;
11691 	struct pt_regs *regs = data;
11692 
11693 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
11694 
11695 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
11696 		perf_swevent_event(bp, 1, &sample, regs);
11697 }
11698 #endif
11699 
11700 /*
11701  * Allocate a new address filter
11702  */
11703 static struct perf_addr_filter *
11704 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
11705 {
11706 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
11707 	struct perf_addr_filter *filter;
11708 
11709 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
11710 	if (!filter)
11711 		return NULL;
11712 
11713 	INIT_LIST_HEAD(&filter->entry);
11714 	list_add_tail(&filter->entry, filters);
11715 
11716 	return filter;
11717 }
11718 
11719 static void free_filters_list(struct list_head *filters)
11720 {
11721 	struct perf_addr_filter *filter, *iter;
11722 
11723 	list_for_each_entry_safe(filter, iter, filters, entry) {
11724 		path_put(&filter->path);
11725 		list_del(&filter->entry);
11726 		kfree(filter);
11727 	}
11728 }
11729 
11730 /*
11731  * Free existing address filters and optionally install new ones
11732  */
11733 static void perf_addr_filters_splice(struct perf_event *event,
11734 				     struct list_head *head)
11735 {
11736 	unsigned long flags;
11737 	LIST_HEAD(list);
11738 
11739 	if (!has_addr_filter(event))
11740 		return;
11741 
11742 	/* don't bother with children, they don't have their own filters */
11743 	if (event->parent)
11744 		return;
11745 
11746 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
11747 
11748 	list_splice_init(&event->addr_filters.list, &list);
11749 	if (head)
11750 		list_splice(head, &event->addr_filters.list);
11751 
11752 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
11753 
11754 	free_filters_list(&list);
11755 }
11756 
11757 static void perf_free_addr_filters(struct perf_event *event)
11758 {
11759 	/*
11760 	 * Used during free paths, there is no concurrency.
11761 	 */
11762 	if (list_empty(&event->addr_filters.list))
11763 		return;
11764 
11765 	perf_addr_filters_splice(event, NULL);
11766 }
11767 
11768 /*
11769  * Scan through mm's vmas and see if one of them matches the
11770  * @filter; if so, adjust filter's address range.
11771  * Called with mm::mmap_lock down for reading.
11772  */
11773 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
11774 				   struct mm_struct *mm,
11775 				   struct perf_addr_filter_range *fr)
11776 {
11777 	struct vm_area_struct *vma;
11778 	VMA_ITERATOR(vmi, mm, 0);
11779 
11780 	for_each_vma(vmi, vma) {
11781 		if (!vma->vm_file)
11782 			continue;
11783 
11784 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
11785 			return;
11786 	}
11787 }
11788 
11789 /*
11790  * Update event's address range filters based on the
11791  * task's existing mappings, if any.
11792  */
11793 static void perf_event_addr_filters_apply(struct perf_event *event)
11794 {
11795 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11796 	struct task_struct *task = READ_ONCE(event->ctx->task);
11797 	struct perf_addr_filter *filter;
11798 	struct mm_struct *mm = NULL;
11799 	unsigned int count = 0;
11800 	unsigned long flags;
11801 
11802 	/*
11803 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
11804 	 * will stop on the parent's child_mutex that our caller is also holding
11805 	 */
11806 	if (task == TASK_TOMBSTONE)
11807 		return;
11808 
11809 	if (ifh->nr_file_filters) {
11810 		mm = get_task_mm(task);
11811 		if (!mm)
11812 			goto restart;
11813 
11814 		mmap_read_lock(mm);
11815 	}
11816 
11817 	raw_spin_lock_irqsave(&ifh->lock, flags);
11818 	list_for_each_entry(filter, &ifh->list, entry) {
11819 		if (filter->path.dentry) {
11820 			/*
11821 			 * Adjust base offset if the filter is associated to a
11822 			 * binary that needs to be mapped:
11823 			 */
11824 			event->addr_filter_ranges[count].start = 0;
11825 			event->addr_filter_ranges[count].size = 0;
11826 
11827 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
11828 		} else {
11829 			event->addr_filter_ranges[count].start = filter->offset;
11830 			event->addr_filter_ranges[count].size  = filter->size;
11831 		}
11832 
11833 		count++;
11834 	}
11835 
11836 	event->addr_filters_gen++;
11837 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
11838 
11839 	if (ifh->nr_file_filters) {
11840 		mmap_read_unlock(mm);
11841 
11842 		mmput(mm);
11843 	}
11844 
11845 restart:
11846 	perf_event_stop(event, 1);
11847 }
11848 
11849 /*
11850  * Address range filtering: limiting the data to certain
11851  * instruction address ranges. Filters are ioctl()ed to us from
11852  * userspace as ascii strings.
11853  *
11854  * Filter string format:
11855  *
11856  * ACTION RANGE_SPEC
11857  * where ACTION is one of the
11858  *  * "filter": limit the trace to this region
11859  *  * "start": start tracing from this address
11860  *  * "stop": stop tracing at this address/region;
11861  * RANGE_SPEC is
11862  *  * for kernel addresses: <start address>[/<size>]
11863  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
11864  *
11865  * if <size> is not specified or is zero, the range is treated as a single
11866  * address; not valid for ACTION=="filter".
11867  */
11868 enum {
11869 	IF_ACT_NONE = -1,
11870 	IF_ACT_FILTER,
11871 	IF_ACT_START,
11872 	IF_ACT_STOP,
11873 	IF_SRC_FILE,
11874 	IF_SRC_KERNEL,
11875 	IF_SRC_FILEADDR,
11876 	IF_SRC_KERNELADDR,
11877 };
11878 
11879 enum {
11880 	IF_STATE_ACTION = 0,
11881 	IF_STATE_SOURCE,
11882 	IF_STATE_END,
11883 };
11884 
11885 static const match_table_t if_tokens = {
11886 	{ IF_ACT_FILTER,	"filter" },
11887 	{ IF_ACT_START,		"start" },
11888 	{ IF_ACT_STOP,		"stop" },
11889 	{ IF_SRC_FILE,		"%u/%u@%s" },
11890 	{ IF_SRC_KERNEL,	"%u/%u" },
11891 	{ IF_SRC_FILEADDR,	"%u@%s" },
11892 	{ IF_SRC_KERNELADDR,	"%u" },
11893 	{ IF_ACT_NONE,		NULL },
11894 };
11895 
11896 /*
11897  * Address filter string parser
11898  */
11899 static int
11900 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
11901 			     struct list_head *filters)
11902 {
11903 	struct perf_addr_filter *filter = NULL;
11904 	char *start, *orig, *filename = NULL;
11905 	substring_t args[MAX_OPT_ARGS];
11906 	int state = IF_STATE_ACTION, token;
11907 	unsigned int kernel = 0;
11908 	int ret = -EINVAL;
11909 
11910 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
11911 	if (!fstr)
11912 		return -ENOMEM;
11913 
11914 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
11915 		static const enum perf_addr_filter_action_t actions[] = {
11916 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
11917 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
11918 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
11919 		};
11920 		ret = -EINVAL;
11921 
11922 		if (!*start)
11923 			continue;
11924 
11925 		/* filter definition begins */
11926 		if (state == IF_STATE_ACTION) {
11927 			filter = perf_addr_filter_new(event, filters);
11928 			if (!filter)
11929 				goto fail;
11930 		}
11931 
11932 		token = match_token(start, if_tokens, args);
11933 		switch (token) {
11934 		case IF_ACT_FILTER:
11935 		case IF_ACT_START:
11936 		case IF_ACT_STOP:
11937 			if (state != IF_STATE_ACTION)
11938 				goto fail;
11939 
11940 			filter->action = actions[token];
11941 			state = IF_STATE_SOURCE;
11942 			break;
11943 
11944 		case IF_SRC_KERNELADDR:
11945 		case IF_SRC_KERNEL:
11946 			kernel = 1;
11947 			fallthrough;
11948 
11949 		case IF_SRC_FILEADDR:
11950 		case IF_SRC_FILE:
11951 			if (state != IF_STATE_SOURCE)
11952 				goto fail;
11953 
11954 			*args[0].to = 0;
11955 			ret = kstrtoul(args[0].from, 0, &filter->offset);
11956 			if (ret)
11957 				goto fail;
11958 
11959 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
11960 				*args[1].to = 0;
11961 				ret = kstrtoul(args[1].from, 0, &filter->size);
11962 				if (ret)
11963 					goto fail;
11964 			}
11965 
11966 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
11967 				int fpos = token == IF_SRC_FILE ? 2 : 1;
11968 
11969 				kfree(filename);
11970 				filename = match_strdup(&args[fpos]);
11971 				if (!filename) {
11972 					ret = -ENOMEM;
11973 					goto fail;
11974 				}
11975 			}
11976 
11977 			state = IF_STATE_END;
11978 			break;
11979 
11980 		default:
11981 			goto fail;
11982 		}
11983 
11984 		/*
11985 		 * Filter definition is fully parsed, validate and install it.
11986 		 * Make sure that it doesn't contradict itself or the event's
11987 		 * attribute.
11988 		 */
11989 		if (state == IF_STATE_END) {
11990 			ret = -EINVAL;
11991 
11992 			/*
11993 			 * ACTION "filter" must have a non-zero length region
11994 			 * specified.
11995 			 */
11996 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
11997 			    !filter->size)
11998 				goto fail;
11999 
12000 			if (!kernel) {
12001 				if (!filename)
12002 					goto fail;
12003 
12004 				/*
12005 				 * For now, we only support file-based filters
12006 				 * in per-task events; doing so for CPU-wide
12007 				 * events requires additional context switching
12008 				 * trickery, since same object code will be
12009 				 * mapped at different virtual addresses in
12010 				 * different processes.
12011 				 */
12012 				ret = -EOPNOTSUPP;
12013 				if (!event->ctx->task)
12014 					goto fail;
12015 
12016 				/* look up the path and grab its inode */
12017 				ret = kern_path(filename, LOOKUP_FOLLOW,
12018 						&filter->path);
12019 				if (ret)
12020 					goto fail;
12021 
12022 				ret = -EINVAL;
12023 				if (!filter->path.dentry ||
12024 				    !S_ISREG(d_inode(filter->path.dentry)
12025 					     ->i_mode))
12026 					goto fail;
12027 
12028 				event->addr_filters.nr_file_filters++;
12029 			}
12030 
12031 			/* ready to consume more filters */
12032 			kfree(filename);
12033 			filename = NULL;
12034 			state = IF_STATE_ACTION;
12035 			filter = NULL;
12036 			kernel = 0;
12037 		}
12038 	}
12039 
12040 	if (state != IF_STATE_ACTION)
12041 		goto fail;
12042 
12043 	kfree(filename);
12044 	kfree(orig);
12045 
12046 	return 0;
12047 
12048 fail:
12049 	kfree(filename);
12050 	free_filters_list(filters);
12051 	kfree(orig);
12052 
12053 	return ret;
12054 }
12055 
12056 static int
12057 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
12058 {
12059 	LIST_HEAD(filters);
12060 	int ret;
12061 
12062 	/*
12063 	 * Since this is called in perf_ioctl() path, we're already holding
12064 	 * ctx::mutex.
12065 	 */
12066 	lockdep_assert_held(&event->ctx->mutex);
12067 
12068 	if (WARN_ON_ONCE(event->parent))
12069 		return -EINVAL;
12070 
12071 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
12072 	if (ret)
12073 		goto fail_clear_files;
12074 
12075 	ret = event->pmu->addr_filters_validate(&filters);
12076 	if (ret)
12077 		goto fail_free_filters;
12078 
12079 	/* remove existing filters, if any */
12080 	perf_addr_filters_splice(event, &filters);
12081 
12082 	/* install new filters */
12083 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
12084 
12085 	return ret;
12086 
12087 fail_free_filters:
12088 	free_filters_list(&filters);
12089 
12090 fail_clear_files:
12091 	event->addr_filters.nr_file_filters = 0;
12092 
12093 	return ret;
12094 }
12095 
12096 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
12097 {
12098 	int ret = -EINVAL;
12099 	char *filter_str;
12100 
12101 	filter_str = strndup_user(arg, PAGE_SIZE);
12102 	if (IS_ERR(filter_str))
12103 		return PTR_ERR(filter_str);
12104 
12105 #ifdef CONFIG_EVENT_TRACING
12106 	if (perf_event_is_tracing(event)) {
12107 		struct perf_event_context *ctx = event->ctx;
12108 
12109 		/*
12110 		 * Beware, here be dragons!!
12111 		 *
12112 		 * the tracepoint muck will deadlock against ctx->mutex, but
12113 		 * the tracepoint stuff does not actually need it. So
12114 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
12115 		 * already have a reference on ctx.
12116 		 *
12117 		 * This can result in event getting moved to a different ctx,
12118 		 * but that does not affect the tracepoint state.
12119 		 */
12120 		mutex_unlock(&ctx->mutex);
12121 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
12122 		mutex_lock(&ctx->mutex);
12123 	} else
12124 #endif
12125 	if (has_addr_filter(event))
12126 		ret = perf_event_set_addr_filter(event, filter_str);
12127 
12128 	kfree(filter_str);
12129 	return ret;
12130 }
12131 
12132 /*
12133  * hrtimer based swevent callback
12134  */
12135 
12136 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
12137 {
12138 	enum hrtimer_restart ret = HRTIMER_RESTART;
12139 	struct perf_sample_data data;
12140 	struct pt_regs *regs;
12141 	struct perf_event *event;
12142 	u64 period;
12143 
12144 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
12145 
12146 	if (event->state != PERF_EVENT_STATE_ACTIVE ||
12147 	    event->hw.state & PERF_HES_STOPPED)
12148 		return HRTIMER_NORESTART;
12149 
12150 	event->pmu->read(event);
12151 
12152 	perf_sample_data_init(&data, 0, event->hw.last_period);
12153 	regs = get_irq_regs();
12154 
12155 	if (regs && !perf_exclude_event(event, regs)) {
12156 		if (!(event->attr.exclude_idle && is_idle_task(current)))
12157 			if (__perf_event_overflow(event, 1, &data, regs))
12158 				ret = HRTIMER_NORESTART;
12159 	}
12160 
12161 	period = max_t(u64, 10000, event->hw.sample_period);
12162 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
12163 
12164 	return ret;
12165 }
12166 
12167 static void perf_swevent_start_hrtimer(struct perf_event *event)
12168 {
12169 	struct hw_perf_event *hwc = &event->hw;
12170 	s64 period;
12171 
12172 	if (!is_sampling_event(event))
12173 		return;
12174 
12175 	period = local64_read(&hwc->period_left);
12176 	if (period) {
12177 		if (period < 0)
12178 			period = 10000;
12179 
12180 		local64_set(&hwc->period_left, 0);
12181 	} else {
12182 		period = max_t(u64, 10000, hwc->sample_period);
12183 	}
12184 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
12185 		      HRTIMER_MODE_REL_PINNED_HARD);
12186 }
12187 
12188 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
12189 {
12190 	struct hw_perf_event *hwc = &event->hw;
12191 
12192 	/*
12193 	 * Careful: this function can be triggered in the hrtimer handler,
12194 	 * for cpu-clock events, so hrtimer_cancel() would cause a
12195 	 * deadlock.
12196 	 *
12197 	 * So use hrtimer_try_to_cancel() to try to stop the hrtimer,
12198 	 * and the cpu-clock handler also sets the PERF_HES_STOPPED flag,
12199 	 * which guarantees that perf_swevent_hrtimer() will stop the
12200 	 * hrtimer once it sees the PERF_HES_STOPPED flag.
12201 	 */
12202 	if (is_sampling_event(event) && (hwc->interrupts != MAX_INTERRUPTS)) {
12203 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
12204 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
12205 
12206 		hrtimer_try_to_cancel(&hwc->hrtimer);
12207 	}
12208 }
12209 
12210 static void perf_swevent_destroy_hrtimer(struct perf_event *event)
12211 {
12212 	hrtimer_cancel(&event->hw.hrtimer);
12213 }
12214 
12215 static void perf_swevent_init_hrtimer(struct perf_event *event)
12216 {
12217 	struct hw_perf_event *hwc = &event->hw;
12218 
12219 	if (!is_sampling_event(event))
12220 		return;
12221 
12222 	hrtimer_setup(&hwc->hrtimer, perf_swevent_hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
12223 	event->destroy = perf_swevent_destroy_hrtimer;
12224 
12225 	/*
12226 	 * Since hrtimers have a fixed rate, we can do a static freq->period
12227 	 * mapping and avoid the whole period adjust feedback stuff.
12228 	 */
12229 	if (event->attr.freq) {
12230 		long freq = event->attr.sample_freq;
12231 
12232 		event->attr.sample_period = NSEC_PER_SEC / freq;
12233 		hwc->sample_period = event->attr.sample_period;
12234 		local64_set(&hwc->period_left, hwc->sample_period);
12235 		hwc->last_period = hwc->sample_period;
12236 		event->attr.freq = 0;
12237 	}
12238 }
12239 
12240 /*
12241  * Software event: cpu wall time clock
12242  */
12243 
12244 static void cpu_clock_event_update(struct perf_event *event)
12245 {
12246 	s64 prev;
12247 	u64 now;
12248 
12249 	now = local_clock();
12250 	prev = local64_xchg(&event->hw.prev_count, now);
12251 	local64_add(now - prev, &event->count);
12252 }
12253 
12254 static void cpu_clock_event_start(struct perf_event *event, int flags)
12255 {
12256 	event->hw.state = 0;
12257 	local64_set(&event->hw.prev_count, local_clock());
12258 	perf_swevent_start_hrtimer(event);
12259 }
12260 
12261 static void cpu_clock_event_stop(struct perf_event *event, int flags)
12262 {
12263 	event->hw.state = PERF_HES_STOPPED;
12264 	perf_swevent_cancel_hrtimer(event);
12265 	if (flags & PERF_EF_UPDATE)
12266 		cpu_clock_event_update(event);
12267 }
12268 
12269 static int cpu_clock_event_add(struct perf_event *event, int flags)
12270 {
12271 	if (flags & PERF_EF_START)
12272 		cpu_clock_event_start(event, flags);
12273 	perf_event_update_userpage(event);
12274 
12275 	return 0;
12276 }
12277 
12278 static void cpu_clock_event_del(struct perf_event *event, int flags)
12279 {
12280 	cpu_clock_event_stop(event, PERF_EF_UPDATE);
12281 }
12282 
12283 static void cpu_clock_event_read(struct perf_event *event)
12284 {
12285 	cpu_clock_event_update(event);
12286 }
12287 
12288 static int cpu_clock_event_init(struct perf_event *event)
12289 {
12290 	if (event->attr.type != perf_cpu_clock.type)
12291 		return -ENOENT;
12292 
12293 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
12294 		return -ENOENT;
12295 
12296 	/*
12297 	 * no branch sampling for software events
12298 	 */
12299 	if (has_branch_stack(event))
12300 		return -EOPNOTSUPP;
12301 
12302 	perf_swevent_init_hrtimer(event);
12303 
12304 	return 0;
12305 }
12306 
12307 static struct pmu perf_cpu_clock = {
12308 	.task_ctx_nr	= perf_sw_context,
12309 
12310 	.capabilities	= PERF_PMU_CAP_NO_NMI,
12311 	.dev		= PMU_NULL_DEV,
12312 
12313 	.event_init	= cpu_clock_event_init,
12314 	.add		= cpu_clock_event_add,
12315 	.del		= cpu_clock_event_del,
12316 	.start		= cpu_clock_event_start,
12317 	.stop		= cpu_clock_event_stop,
12318 	.read		= cpu_clock_event_read,
12319 };
12320 
12321 /*
12322  * Software event: task time clock
12323  */
12324 
12325 static void task_clock_event_update(struct perf_event *event, u64 now)
12326 {
12327 	u64 prev;
12328 	s64 delta;
12329 
12330 	prev = local64_xchg(&event->hw.prev_count, now);
12331 	delta = now - prev;
12332 	local64_add(delta, &event->count);
12333 }
12334 
12335 static void task_clock_event_start(struct perf_event *event, int flags)
12336 {
12337 	event->hw.state = 0;
12338 	local64_set(&event->hw.prev_count, event->ctx->time.time);
12339 	perf_swevent_start_hrtimer(event);
12340 }
12341 
12342 static void task_clock_event_stop(struct perf_event *event, int flags)
12343 {
12344 	event->hw.state = PERF_HES_STOPPED;
12345 	perf_swevent_cancel_hrtimer(event);
12346 	if (flags & PERF_EF_UPDATE)
12347 		task_clock_event_update(event, event->ctx->time.time);
12348 }
12349 
12350 static int task_clock_event_add(struct perf_event *event, int flags)
12351 {
12352 	if (flags & PERF_EF_START)
12353 		task_clock_event_start(event, flags);
12354 	perf_event_update_userpage(event);
12355 
12356 	return 0;
12357 }
12358 
12359 static void task_clock_event_del(struct perf_event *event, int flags)
12360 {
12361 	task_clock_event_stop(event, PERF_EF_UPDATE);
12362 }
12363 
12364 static void task_clock_event_read(struct perf_event *event)
12365 {
12366 	u64 now = perf_clock();
12367 	u64 delta = now - event->ctx->time.stamp;
12368 	u64 time = event->ctx->time.time + delta;
12369 
12370 	task_clock_event_update(event, time);
12371 }
12372 
12373 static int task_clock_event_init(struct perf_event *event)
12374 {
12375 	if (event->attr.type != perf_task_clock.type)
12376 		return -ENOENT;
12377 
12378 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
12379 		return -ENOENT;
12380 
12381 	/*
12382 	 * no branch sampling for software events
12383 	 */
12384 	if (has_branch_stack(event))
12385 		return -EOPNOTSUPP;
12386 
12387 	perf_swevent_init_hrtimer(event);
12388 
12389 	return 0;
12390 }
12391 
12392 static struct pmu perf_task_clock = {
12393 	.task_ctx_nr	= perf_sw_context,
12394 
12395 	.capabilities	= PERF_PMU_CAP_NO_NMI,
12396 	.dev		= PMU_NULL_DEV,
12397 
12398 	.event_init	= task_clock_event_init,
12399 	.add		= task_clock_event_add,
12400 	.del		= task_clock_event_del,
12401 	.start		= task_clock_event_start,
12402 	.stop		= task_clock_event_stop,
12403 	.read		= task_clock_event_read,
12404 };
12405 
12406 static void perf_pmu_nop_void(struct pmu *pmu)
12407 {
12408 }
12409 
12410 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
12411 {
12412 }
12413 
12414 static int perf_pmu_nop_int(struct pmu *pmu)
12415 {
12416 	return 0;
12417 }
12418 
12419 static int perf_event_nop_int(struct perf_event *event, u64 value)
12420 {
12421 	return 0;
12422 }
12423 
12424 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
12425 
12426 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
12427 {
12428 	__this_cpu_write(nop_txn_flags, flags);
12429 
12430 	if (flags & ~PERF_PMU_TXN_ADD)
12431 		return;
12432 
12433 	perf_pmu_disable(pmu);
12434 }
12435 
12436 static int perf_pmu_commit_txn(struct pmu *pmu)
12437 {
12438 	unsigned int flags = __this_cpu_read(nop_txn_flags);
12439 
12440 	__this_cpu_write(nop_txn_flags, 0);
12441 
12442 	if (flags & ~PERF_PMU_TXN_ADD)
12443 		return 0;
12444 
12445 	perf_pmu_enable(pmu);
12446 	return 0;
12447 }
12448 
12449 static void perf_pmu_cancel_txn(struct pmu *pmu)
12450 {
12451 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
12452 
12453 	__this_cpu_write(nop_txn_flags, 0);
12454 
12455 	if (flags & ~PERF_PMU_TXN_ADD)
12456 		return;
12457 
12458 	perf_pmu_enable(pmu);
12459 }
12460 
12461 static int perf_event_idx_default(struct perf_event *event)
12462 {
12463 	return 0;
12464 }
12465 
12466 /*
12467  * Let userspace know that this PMU supports address range filtering:
12468  */
12469 static ssize_t nr_addr_filters_show(struct device *dev,
12470 				    struct device_attribute *attr,
12471 				    char *page)
12472 {
12473 	struct pmu *pmu = dev_get_drvdata(dev);
12474 
12475 	return sysfs_emit(page, "%d\n", pmu->nr_addr_filters);
12476 }
12477 DEVICE_ATTR_RO(nr_addr_filters);
12478 
12479 static struct idr pmu_idr;
12480 
12481 static ssize_t
12482 type_show(struct device *dev, struct device_attribute *attr, char *page)
12483 {
12484 	struct pmu *pmu = dev_get_drvdata(dev);
12485 
12486 	return sysfs_emit(page, "%d\n", pmu->type);
12487 }
12488 static DEVICE_ATTR_RO(type);
12489 
12490 static ssize_t
12491 perf_event_mux_interval_ms_show(struct device *dev,
12492 				struct device_attribute *attr,
12493 				char *page)
12494 {
12495 	struct pmu *pmu = dev_get_drvdata(dev);
12496 
12497 	return sysfs_emit(page, "%d\n", pmu->hrtimer_interval_ms);
12498 }
12499 
12500 static DEFINE_MUTEX(mux_interval_mutex);
12501 
12502 static ssize_t
12503 perf_event_mux_interval_ms_store(struct device *dev,
12504 				 struct device_attribute *attr,
12505 				 const char *buf, size_t count)
12506 {
12507 	struct pmu *pmu = dev_get_drvdata(dev);
12508 	int timer, cpu, ret;
12509 
12510 	ret = kstrtoint(buf, 0, &timer);
12511 	if (ret)
12512 		return ret;
12513 
12514 	if (timer < 1)
12515 		return -EINVAL;
12516 
12517 	/* same value, noting to do */
12518 	if (timer == pmu->hrtimer_interval_ms)
12519 		return count;
12520 
12521 	mutex_lock(&mux_interval_mutex);
12522 	pmu->hrtimer_interval_ms = timer;
12523 
12524 	/* update all cpuctx for this PMU */
12525 	cpus_read_lock();
12526 	for_each_online_cpu(cpu) {
12527 		struct perf_cpu_pmu_context *cpc;
12528 		cpc = *per_cpu_ptr(pmu->cpu_pmu_context, cpu);
12529 		cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
12530 
12531 		cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
12532 	}
12533 	cpus_read_unlock();
12534 	mutex_unlock(&mux_interval_mutex);
12535 
12536 	return count;
12537 }
12538 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
12539 
12540 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu)
12541 {
12542 	switch (scope) {
12543 	case PERF_PMU_SCOPE_CORE:
12544 		return topology_sibling_cpumask(cpu);
12545 	case PERF_PMU_SCOPE_DIE:
12546 		return topology_die_cpumask(cpu);
12547 	case PERF_PMU_SCOPE_CLUSTER:
12548 		return topology_cluster_cpumask(cpu);
12549 	case PERF_PMU_SCOPE_PKG:
12550 		return topology_core_cpumask(cpu);
12551 	case PERF_PMU_SCOPE_SYS_WIDE:
12552 		return cpu_online_mask;
12553 	}
12554 
12555 	return NULL;
12556 }
12557 
12558 static inline struct cpumask *perf_scope_cpumask(unsigned int scope)
12559 {
12560 	switch (scope) {
12561 	case PERF_PMU_SCOPE_CORE:
12562 		return perf_online_core_mask;
12563 	case PERF_PMU_SCOPE_DIE:
12564 		return perf_online_die_mask;
12565 	case PERF_PMU_SCOPE_CLUSTER:
12566 		return perf_online_cluster_mask;
12567 	case PERF_PMU_SCOPE_PKG:
12568 		return perf_online_pkg_mask;
12569 	case PERF_PMU_SCOPE_SYS_WIDE:
12570 		return perf_online_sys_mask;
12571 	}
12572 
12573 	return NULL;
12574 }
12575 
12576 static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr,
12577 			    char *buf)
12578 {
12579 	struct pmu *pmu = dev_get_drvdata(dev);
12580 	struct cpumask *mask = perf_scope_cpumask(pmu->scope);
12581 
12582 	if (mask)
12583 		return cpumap_print_to_pagebuf(true, buf, mask);
12584 	return 0;
12585 }
12586 
12587 static DEVICE_ATTR_RO(cpumask);
12588 
12589 static struct attribute *pmu_dev_attrs[] = {
12590 	&dev_attr_type.attr,
12591 	&dev_attr_perf_event_mux_interval_ms.attr,
12592 	&dev_attr_nr_addr_filters.attr,
12593 	&dev_attr_cpumask.attr,
12594 	NULL,
12595 };
12596 
12597 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
12598 {
12599 	struct device *dev = kobj_to_dev(kobj);
12600 	struct pmu *pmu = dev_get_drvdata(dev);
12601 
12602 	if (n == 2 && !pmu->nr_addr_filters)
12603 		return 0;
12604 
12605 	/* cpumask */
12606 	if (n == 3 && pmu->scope == PERF_PMU_SCOPE_NONE)
12607 		return 0;
12608 
12609 	return a->mode;
12610 }
12611 
12612 static struct attribute_group pmu_dev_attr_group = {
12613 	.is_visible = pmu_dev_is_visible,
12614 	.attrs = pmu_dev_attrs,
12615 };
12616 
12617 static const struct attribute_group *pmu_dev_groups[] = {
12618 	&pmu_dev_attr_group,
12619 	NULL,
12620 };
12621 
12622 static int pmu_bus_running;
12623 static const struct bus_type pmu_bus = {
12624 	.name		= "event_source",
12625 	.dev_groups	= pmu_dev_groups,
12626 };
12627 
12628 static void pmu_dev_release(struct device *dev)
12629 {
12630 	kfree(dev);
12631 }
12632 
12633 static int pmu_dev_alloc(struct pmu *pmu)
12634 {
12635 	int ret = -ENOMEM;
12636 
12637 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
12638 	if (!pmu->dev)
12639 		goto out;
12640 
12641 	pmu->dev->groups = pmu->attr_groups;
12642 	device_initialize(pmu->dev);
12643 
12644 	dev_set_drvdata(pmu->dev, pmu);
12645 	pmu->dev->bus = &pmu_bus;
12646 	pmu->dev->parent = pmu->parent;
12647 	pmu->dev->release = pmu_dev_release;
12648 
12649 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
12650 	if (ret)
12651 		goto free_dev;
12652 
12653 	ret = device_add(pmu->dev);
12654 	if (ret)
12655 		goto free_dev;
12656 
12657 	if (pmu->attr_update) {
12658 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
12659 		if (ret)
12660 			goto del_dev;
12661 	}
12662 
12663 out:
12664 	return ret;
12665 
12666 del_dev:
12667 	device_del(pmu->dev);
12668 
12669 free_dev:
12670 	put_device(pmu->dev);
12671 	pmu->dev = NULL;
12672 	goto out;
12673 }
12674 
12675 static struct lock_class_key cpuctx_mutex;
12676 static struct lock_class_key cpuctx_lock;
12677 
12678 static bool idr_cmpxchg(struct idr *idr, unsigned long id, void *old, void *new)
12679 {
12680 	void *tmp, *val = idr_find(idr, id);
12681 
12682 	if (val != old)
12683 		return false;
12684 
12685 	tmp = idr_replace(idr, new, id);
12686 	if (IS_ERR(tmp))
12687 		return false;
12688 
12689 	WARN_ON_ONCE(tmp != val);
12690 	return true;
12691 }
12692 
12693 static void perf_pmu_free(struct pmu *pmu)
12694 {
12695 	if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
12696 		if (pmu->nr_addr_filters)
12697 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
12698 		device_del(pmu->dev);
12699 		put_device(pmu->dev);
12700 	}
12701 
12702 	if (pmu->cpu_pmu_context) {
12703 		int cpu;
12704 
12705 		for_each_possible_cpu(cpu) {
12706 			struct perf_cpu_pmu_context *cpc;
12707 
12708 			cpc = *per_cpu_ptr(pmu->cpu_pmu_context, cpu);
12709 			if (!cpc)
12710 				continue;
12711 			if (cpc->epc.embedded) {
12712 				/* refcount managed */
12713 				put_pmu_ctx(&cpc->epc);
12714 				continue;
12715 			}
12716 			kfree(cpc);
12717 		}
12718 		free_percpu(pmu->cpu_pmu_context);
12719 	}
12720 }
12721 
12722 DEFINE_FREE(pmu_unregister, struct pmu *, if (_T) perf_pmu_free(_T))
12723 
12724 int perf_pmu_register(struct pmu *_pmu, const char *name, int type)
12725 {
12726 	int cpu, max = PERF_TYPE_MAX;
12727 
12728 	struct pmu *pmu __free(pmu_unregister) = _pmu;
12729 	guard(mutex)(&pmus_lock);
12730 
12731 	if (WARN_ONCE(!name, "Can not register anonymous pmu.\n"))
12732 		return -EINVAL;
12733 
12734 	if (WARN_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE,
12735 		      "Can not register a pmu with an invalid scope.\n"))
12736 		return -EINVAL;
12737 
12738 	pmu->name = name;
12739 
12740 	if (type >= 0)
12741 		max = type;
12742 
12743 	CLASS(idr_alloc, pmu_type)(&pmu_idr, NULL, max, 0, GFP_KERNEL);
12744 	if (pmu_type.id < 0)
12745 		return pmu_type.id;
12746 
12747 	WARN_ON(type >= 0 && pmu_type.id != type);
12748 
12749 	pmu->type = pmu_type.id;
12750 	atomic_set(&pmu->exclusive_cnt, 0);
12751 
12752 	if (pmu_bus_running && !pmu->dev) {
12753 		int ret = pmu_dev_alloc(pmu);
12754 		if (ret)
12755 			return ret;
12756 	}
12757 
12758 	pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context *);
12759 	if (!pmu->cpu_pmu_context)
12760 		return -ENOMEM;
12761 
12762 	for_each_possible_cpu(cpu) {
12763 		struct perf_cpu_pmu_context *cpc =
12764 			kmalloc_node(sizeof(struct perf_cpu_pmu_context),
12765 				     GFP_KERNEL | __GFP_ZERO,
12766 				     cpu_to_node(cpu));
12767 
12768 		if (!cpc)
12769 			return -ENOMEM;
12770 
12771 		*per_cpu_ptr(pmu->cpu_pmu_context, cpu) = cpc;
12772 		__perf_init_event_pmu_context(&cpc->epc, pmu);
12773 		__perf_mux_hrtimer_init(cpc, cpu);
12774 	}
12775 
12776 	if (!pmu->start_txn) {
12777 		if (pmu->pmu_enable) {
12778 			/*
12779 			 * If we have pmu_enable/pmu_disable calls, install
12780 			 * transaction stubs that use that to try and batch
12781 			 * hardware accesses.
12782 			 */
12783 			pmu->start_txn  = perf_pmu_start_txn;
12784 			pmu->commit_txn = perf_pmu_commit_txn;
12785 			pmu->cancel_txn = perf_pmu_cancel_txn;
12786 		} else {
12787 			pmu->start_txn  = perf_pmu_nop_txn;
12788 			pmu->commit_txn = perf_pmu_nop_int;
12789 			pmu->cancel_txn = perf_pmu_nop_void;
12790 		}
12791 	}
12792 
12793 	if (!pmu->pmu_enable) {
12794 		pmu->pmu_enable  = perf_pmu_nop_void;
12795 		pmu->pmu_disable = perf_pmu_nop_void;
12796 	}
12797 
12798 	if (!pmu->check_period)
12799 		pmu->check_period = perf_event_nop_int;
12800 
12801 	if (!pmu->event_idx)
12802 		pmu->event_idx = perf_event_idx_default;
12803 
12804 	INIT_LIST_HEAD(&pmu->events);
12805 	spin_lock_init(&pmu->events_lock);
12806 
12807 	/*
12808 	 * Now that the PMU is complete, make it visible to perf_try_init_event().
12809 	 */
12810 	if (!idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu))
12811 		return -EINVAL;
12812 	list_add_rcu(&pmu->entry, &pmus);
12813 
12814 	take_idr_id(pmu_type);
12815 	_pmu = no_free_ptr(pmu); // let it rip
12816 	return 0;
12817 }
12818 EXPORT_SYMBOL_GPL(perf_pmu_register);
12819 
12820 static void __pmu_detach_event(struct pmu *pmu, struct perf_event *event,
12821 			       struct perf_event_context *ctx)
12822 {
12823 	/*
12824 	 * De-schedule the event and mark it REVOKED.
12825 	 */
12826 	perf_event_exit_event(event, ctx, ctx->task, true);
12827 
12828 	/*
12829 	 * All _free_event() bits that rely on event->pmu:
12830 	 *
12831 	 * Notably, perf_mmap() relies on the ordering here.
12832 	 */
12833 	scoped_guard (mutex, &event->mmap_mutex) {
12834 		WARN_ON_ONCE(pmu->event_unmapped);
12835 		/*
12836 		 * Mostly an empty lock sequence, such that perf_mmap(), which
12837 		 * relies on mmap_mutex, is sure to observe the state change.
12838 		 */
12839 	}
12840 
12841 	perf_event_free_bpf_prog(event);
12842 	perf_free_addr_filters(event);
12843 
12844 	if (event->destroy) {
12845 		event->destroy(event);
12846 		event->destroy = NULL;
12847 	}
12848 
12849 	if (event->pmu_ctx) {
12850 		put_pmu_ctx(event->pmu_ctx);
12851 		event->pmu_ctx = NULL;
12852 	}
12853 
12854 	exclusive_event_destroy(event);
12855 	module_put(pmu->module);
12856 
12857 	event->pmu = NULL; /* force fault instead of UAF */
12858 }
12859 
12860 static void pmu_detach_event(struct pmu *pmu, struct perf_event *event)
12861 {
12862 	struct perf_event_context *ctx;
12863 
12864 	ctx = perf_event_ctx_lock(event);
12865 	__pmu_detach_event(pmu, event, ctx);
12866 	perf_event_ctx_unlock(event, ctx);
12867 
12868 	scoped_guard (spinlock, &pmu->events_lock)
12869 		list_del(&event->pmu_list);
12870 }
12871 
12872 static struct perf_event *pmu_get_event(struct pmu *pmu)
12873 {
12874 	struct perf_event *event;
12875 
12876 	guard(spinlock)(&pmu->events_lock);
12877 	list_for_each_entry(event, &pmu->events, pmu_list) {
12878 		if (atomic_long_inc_not_zero(&event->refcount))
12879 			return event;
12880 	}
12881 
12882 	return NULL;
12883 }
12884 
12885 static bool pmu_empty(struct pmu *pmu)
12886 {
12887 	guard(spinlock)(&pmu->events_lock);
12888 	return list_empty(&pmu->events);
12889 }
12890 
12891 static void pmu_detach_events(struct pmu *pmu)
12892 {
12893 	struct perf_event *event;
12894 
12895 	for (;;) {
12896 		event = pmu_get_event(pmu);
12897 		if (!event)
12898 			break;
12899 
12900 		pmu_detach_event(pmu, event);
12901 		put_event(event);
12902 	}
12903 
12904 	/*
12905 	 * wait for pending _free_event()s
12906 	 */
12907 	wait_var_event(pmu, pmu_empty(pmu));
12908 }
12909 
12910 int perf_pmu_unregister(struct pmu *pmu)
12911 {
12912 	scoped_guard (mutex, &pmus_lock) {
12913 		if (!idr_cmpxchg(&pmu_idr, pmu->type, pmu, NULL))
12914 			return -EINVAL;
12915 
12916 		list_del_rcu(&pmu->entry);
12917 	}
12918 
12919 	/*
12920 	 * We dereference the pmu list under both SRCU and regular RCU, so
12921 	 * synchronize against both of those.
12922 	 *
12923 	 * Notably, the entirety of event creation, from perf_init_event()
12924 	 * (which will now fail, because of the above) until
12925 	 * perf_install_in_context() should be under SRCU such that
12926 	 * this synchronizes against event creation. This avoids trying to
12927 	 * detach events that are not fully formed.
12928 	 */
12929 	synchronize_srcu(&pmus_srcu);
12930 	synchronize_rcu();
12931 
12932 	if (pmu->event_unmapped && !pmu_empty(pmu)) {
12933 		/*
12934 		 * Can't force remove events when pmu::event_unmapped()
12935 		 * is used in perf_mmap_close().
12936 		 */
12937 		guard(mutex)(&pmus_lock);
12938 		idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu);
12939 		list_add_rcu(&pmu->entry, &pmus);
12940 		return -EBUSY;
12941 	}
12942 
12943 	scoped_guard (mutex, &pmus_lock)
12944 		idr_remove(&pmu_idr, pmu->type);
12945 
12946 	/*
12947 	 * PMU is removed from the pmus list, so no new events will
12948 	 * be created, now take care of the existing ones.
12949 	 */
12950 	pmu_detach_events(pmu);
12951 
12952 	/*
12953 	 * PMU is unused, make it go away.
12954 	 */
12955 	perf_pmu_free(pmu);
12956 	return 0;
12957 }
12958 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
12959 
12960 static inline bool has_extended_regs(struct perf_event *event)
12961 {
12962 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
12963 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
12964 }
12965 
12966 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
12967 {
12968 	struct perf_event_context *ctx = NULL;
12969 	int ret;
12970 
12971 	if (!try_module_get(pmu->module))
12972 		return -ENODEV;
12973 
12974 	/*
12975 	 * A number of pmu->event_init() methods iterate the sibling_list to,
12976 	 * for example, validate if the group fits on the PMU. Therefore,
12977 	 * if this is a sibling event, acquire the ctx->mutex to protect
12978 	 * the sibling_list.
12979 	 */
12980 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
12981 		/*
12982 		 * This ctx->mutex can nest when we're called through
12983 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
12984 		 */
12985 		ctx = perf_event_ctx_lock_nested(event->group_leader,
12986 						 SINGLE_DEPTH_NESTING);
12987 		BUG_ON(!ctx);
12988 	}
12989 
12990 	event->pmu = pmu;
12991 	ret = pmu->event_init(event);
12992 
12993 	if (ctx)
12994 		perf_event_ctx_unlock(event->group_leader, ctx);
12995 
12996 	if (ret)
12997 		goto err_pmu;
12998 
12999 	if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
13000 	    has_extended_regs(event)) {
13001 		ret = -EOPNOTSUPP;
13002 		goto err_destroy;
13003 	}
13004 
13005 	if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
13006 	    event_has_any_exclude_flag(event)) {
13007 		ret = -EINVAL;
13008 		goto err_destroy;
13009 	}
13010 
13011 	if (pmu->scope != PERF_PMU_SCOPE_NONE && event->cpu >= 0) {
13012 		const struct cpumask *cpumask;
13013 		struct cpumask *pmu_cpumask;
13014 		int cpu;
13015 
13016 		cpumask = perf_scope_cpu_topology_cpumask(pmu->scope, event->cpu);
13017 		pmu_cpumask = perf_scope_cpumask(pmu->scope);
13018 
13019 		ret = -ENODEV;
13020 		if (!pmu_cpumask || !cpumask)
13021 			goto err_destroy;
13022 
13023 		cpu = cpumask_any_and(pmu_cpumask, cpumask);
13024 		if (cpu >= nr_cpu_ids)
13025 			goto err_destroy;
13026 
13027 		event->event_caps |= PERF_EV_CAP_READ_SCOPE;
13028 	}
13029 
13030 	return 0;
13031 
13032 err_destroy:
13033 	if (event->destroy) {
13034 		event->destroy(event);
13035 		event->destroy = NULL;
13036 	}
13037 
13038 err_pmu:
13039 	event->pmu = NULL;
13040 	module_put(pmu->module);
13041 	return ret;
13042 }
13043 
13044 static struct pmu *perf_init_event(struct perf_event *event)
13045 {
13046 	bool extended_type = false;
13047 	struct pmu *pmu;
13048 	int type, ret;
13049 
13050 	guard(srcu)(&pmus_srcu); /* pmu idr/list access */
13051 
13052 	/*
13053 	 * Save original type before calling pmu->event_init() since certain
13054 	 * pmus overwrites event->attr.type to forward event to another pmu.
13055 	 */
13056 	event->orig_type = event->attr.type;
13057 
13058 	/* Try parent's PMU first: */
13059 	if (event->parent && event->parent->pmu) {
13060 		pmu = event->parent->pmu;
13061 		ret = perf_try_init_event(pmu, event);
13062 		if (!ret)
13063 			return pmu;
13064 	}
13065 
13066 	/*
13067 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
13068 	 * are often aliases for PERF_TYPE_RAW.
13069 	 */
13070 	type = event->attr.type;
13071 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
13072 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
13073 		if (!type) {
13074 			type = PERF_TYPE_RAW;
13075 		} else {
13076 			extended_type = true;
13077 			event->attr.config &= PERF_HW_EVENT_MASK;
13078 		}
13079 	}
13080 
13081 again:
13082 	scoped_guard (rcu)
13083 		pmu = idr_find(&pmu_idr, type);
13084 	if (pmu) {
13085 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
13086 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
13087 			return ERR_PTR(-ENOENT);
13088 
13089 		ret = perf_try_init_event(pmu, event);
13090 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
13091 			type = event->attr.type;
13092 			goto again;
13093 		}
13094 
13095 		if (ret)
13096 			return ERR_PTR(ret);
13097 
13098 		return pmu;
13099 	}
13100 
13101 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
13102 		ret = perf_try_init_event(pmu, event);
13103 		if (!ret)
13104 			return pmu;
13105 
13106 		if (ret != -ENOENT)
13107 			return ERR_PTR(ret);
13108 	}
13109 
13110 	return ERR_PTR(-ENOENT);
13111 }
13112 
13113 static void attach_sb_event(struct perf_event *event)
13114 {
13115 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
13116 
13117 	raw_spin_lock(&pel->lock);
13118 	list_add_rcu(&event->sb_list, &pel->list);
13119 	raw_spin_unlock(&pel->lock);
13120 }
13121 
13122 /*
13123  * We keep a list of all !task (and therefore per-cpu) events
13124  * that need to receive side-band records.
13125  *
13126  * This avoids having to scan all the various PMU per-cpu contexts
13127  * looking for them.
13128  */
13129 static void account_pmu_sb_event(struct perf_event *event)
13130 {
13131 	if (is_sb_event(event))
13132 		attach_sb_event(event);
13133 }
13134 
13135 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
13136 static void account_freq_event_nohz(void)
13137 {
13138 #ifdef CONFIG_NO_HZ_FULL
13139 	/* Lock so we don't race with concurrent unaccount */
13140 	spin_lock(&nr_freq_lock);
13141 	if (atomic_inc_return(&nr_freq_events) == 1)
13142 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
13143 	spin_unlock(&nr_freq_lock);
13144 #endif
13145 }
13146 
13147 static void account_freq_event(void)
13148 {
13149 	if (tick_nohz_full_enabled())
13150 		account_freq_event_nohz();
13151 	else
13152 		atomic_inc(&nr_freq_events);
13153 }
13154 
13155 
13156 static void account_event(struct perf_event *event)
13157 {
13158 	bool inc = false;
13159 
13160 	if (event->parent)
13161 		return;
13162 
13163 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
13164 		inc = true;
13165 	if (event->attr.mmap || event->attr.mmap_data)
13166 		atomic_inc(&nr_mmap_events);
13167 	if (event->attr.build_id)
13168 		atomic_inc(&nr_build_id_events);
13169 	if (event->attr.comm)
13170 		atomic_inc(&nr_comm_events);
13171 	if (event->attr.namespaces)
13172 		atomic_inc(&nr_namespaces_events);
13173 	if (event->attr.cgroup)
13174 		atomic_inc(&nr_cgroup_events);
13175 	if (event->attr.task)
13176 		atomic_inc(&nr_task_events);
13177 	if (event->attr.freq)
13178 		account_freq_event();
13179 	if (event->attr.context_switch) {
13180 		atomic_inc(&nr_switch_events);
13181 		inc = true;
13182 	}
13183 	if (has_branch_stack(event))
13184 		inc = true;
13185 	if (is_cgroup_event(event))
13186 		inc = true;
13187 	if (event->attr.ksymbol)
13188 		atomic_inc(&nr_ksymbol_events);
13189 	if (event->attr.bpf_event)
13190 		atomic_inc(&nr_bpf_events);
13191 	if (event->attr.text_poke)
13192 		atomic_inc(&nr_text_poke_events);
13193 
13194 	if (inc) {
13195 		/*
13196 		 * We need the mutex here because static_branch_enable()
13197 		 * must complete *before* the perf_sched_count increment
13198 		 * becomes visible.
13199 		 */
13200 		if (atomic_inc_not_zero(&perf_sched_count))
13201 			goto enabled;
13202 
13203 		mutex_lock(&perf_sched_mutex);
13204 		if (!atomic_read(&perf_sched_count)) {
13205 			static_branch_enable(&perf_sched_events);
13206 			/*
13207 			 * Guarantee that all CPUs observe they key change and
13208 			 * call the perf scheduling hooks before proceeding to
13209 			 * install events that need them.
13210 			 */
13211 			synchronize_rcu();
13212 		}
13213 		/*
13214 		 * Now that we have waited for the sync_sched(), allow further
13215 		 * increments to by-pass the mutex.
13216 		 */
13217 		atomic_inc(&perf_sched_count);
13218 		mutex_unlock(&perf_sched_mutex);
13219 	}
13220 enabled:
13221 
13222 	account_pmu_sb_event(event);
13223 }
13224 
13225 /*
13226  * Allocate and initialize an event structure
13227  */
13228 static struct perf_event *
13229 perf_event_alloc(struct perf_event_attr *attr, int cpu,
13230 		 struct task_struct *task,
13231 		 struct perf_event *group_leader,
13232 		 struct perf_event *parent_event,
13233 		 perf_overflow_handler_t overflow_handler,
13234 		 void *context, int cgroup_fd)
13235 {
13236 	struct pmu *pmu;
13237 	struct hw_perf_event *hwc;
13238 	long err = -EINVAL;
13239 	int node;
13240 
13241 	if ((unsigned)cpu >= nr_cpu_ids) {
13242 		if (!task || cpu != -1)
13243 			return ERR_PTR(-EINVAL);
13244 	}
13245 	if (attr->sigtrap && !task) {
13246 		/* Requires a task: avoid signalling random tasks. */
13247 		return ERR_PTR(-EINVAL);
13248 	}
13249 
13250 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
13251 	struct perf_event *event __free(__free_event) =
13252 		kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, node);
13253 	if (!event)
13254 		return ERR_PTR(-ENOMEM);
13255 
13256 	/*
13257 	 * Single events are their own group leaders, with an
13258 	 * empty sibling list:
13259 	 */
13260 	if (!group_leader)
13261 		group_leader = event;
13262 
13263 	mutex_init(&event->child_mutex);
13264 	INIT_LIST_HEAD(&event->child_list);
13265 
13266 	INIT_LIST_HEAD(&event->event_entry);
13267 	INIT_LIST_HEAD(&event->sibling_list);
13268 	INIT_LIST_HEAD(&event->active_list);
13269 	init_event_group(event);
13270 	INIT_LIST_HEAD(&event->rb_entry);
13271 	INIT_LIST_HEAD(&event->active_entry);
13272 	INIT_LIST_HEAD(&event->addr_filters.list);
13273 	INIT_HLIST_NODE(&event->hlist_entry);
13274 	INIT_LIST_HEAD(&event->pmu_list);
13275 
13276 
13277 	init_waitqueue_head(&event->waitq);
13278 	init_irq_work(&event->pending_irq, perf_pending_irq);
13279 	event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable);
13280 	init_task_work(&event->pending_task, perf_pending_task);
13281 
13282 	mutex_init(&event->mmap_mutex);
13283 	raw_spin_lock_init(&event->addr_filters.lock);
13284 
13285 	atomic_long_set(&event->refcount, 1);
13286 	event->cpu		= cpu;
13287 	event->attr		= *attr;
13288 	event->group_leader	= group_leader;
13289 	event->pmu		= NULL;
13290 	event->oncpu		= -1;
13291 
13292 	event->parent		= parent_event;
13293 
13294 	event->ns		= get_pid_ns(task_active_pid_ns(current));
13295 	event->id		= atomic64_inc_return(&perf_event_id);
13296 
13297 	event->state		= PERF_EVENT_STATE_INACTIVE;
13298 
13299 	if (parent_event)
13300 		event->event_caps = parent_event->event_caps;
13301 
13302 	if (task) {
13303 		event->attach_state = PERF_ATTACH_TASK;
13304 		/*
13305 		 * XXX pmu::event_init needs to know what task to account to
13306 		 * and we cannot use the ctx information because we need the
13307 		 * pmu before we get a ctx.
13308 		 */
13309 		event->hw.target = get_task_struct(task);
13310 	}
13311 
13312 	event->clock = &local_clock;
13313 	if (parent_event)
13314 		event->clock = parent_event->clock;
13315 
13316 	if (!overflow_handler && parent_event) {
13317 		overflow_handler = parent_event->overflow_handler;
13318 		context = parent_event->overflow_handler_context;
13319 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
13320 		if (parent_event->prog) {
13321 			struct bpf_prog *prog = parent_event->prog;
13322 
13323 			bpf_prog_inc(prog);
13324 			event->prog = prog;
13325 		}
13326 #endif
13327 	}
13328 
13329 	if (overflow_handler) {
13330 		event->overflow_handler	= overflow_handler;
13331 		event->overflow_handler_context = context;
13332 	} else if (is_write_backward(event)){
13333 		event->overflow_handler = perf_event_output_backward;
13334 		event->overflow_handler_context = NULL;
13335 	} else {
13336 		event->overflow_handler = perf_event_output_forward;
13337 		event->overflow_handler_context = NULL;
13338 	}
13339 
13340 	perf_event__state_init(event);
13341 
13342 	pmu = NULL;
13343 
13344 	hwc = &event->hw;
13345 	hwc->sample_period = attr->sample_period;
13346 	if (is_event_in_freq_mode(event))
13347 		hwc->sample_period = 1;
13348 	hwc->last_period = hwc->sample_period;
13349 
13350 	local64_set(&hwc->period_left, hwc->sample_period);
13351 
13352 	/*
13353 	 * We do not support PERF_SAMPLE_READ on inherited events unless
13354 	 * PERF_SAMPLE_TID is also selected, which allows inherited events to
13355 	 * collect per-thread samples.
13356 	 * See perf_output_read().
13357 	 */
13358 	if (has_inherit_and_sample_read(attr) && !(attr->sample_type & PERF_SAMPLE_TID))
13359 		return ERR_PTR(-EINVAL);
13360 
13361 	if (!has_branch_stack(event))
13362 		event->attr.branch_sample_type = 0;
13363 
13364 	pmu = perf_init_event(event);
13365 	if (IS_ERR(pmu))
13366 		return (void*)pmu;
13367 
13368 	/*
13369 	 * The PERF_ATTACH_TASK_DATA is set in the event_init()->hw_config().
13370 	 * The attach should be right after the perf_init_event().
13371 	 * Otherwise, the __free_event() would mistakenly detach the non-exist
13372 	 * perf_ctx_data because of the other errors between them.
13373 	 */
13374 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
13375 		err = attach_perf_ctx_data(event);
13376 		if (err)
13377 			return ERR_PTR(err);
13378 	}
13379 
13380 	/*
13381 	 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
13382 	 * events (they don't make sense as the cgroup will be different
13383 	 * on other CPUs in the uncore mask).
13384 	 */
13385 	if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1))
13386 		return ERR_PTR(-EINVAL);
13387 
13388 	if (event->attr.aux_output &&
13389 	    (!(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT) ||
13390 	     event->attr.aux_pause || event->attr.aux_resume))
13391 		return ERR_PTR(-EOPNOTSUPP);
13392 
13393 	if (event->attr.aux_pause && event->attr.aux_resume)
13394 		return ERR_PTR(-EINVAL);
13395 
13396 	if (event->attr.aux_start_paused) {
13397 		if (!(pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE))
13398 			return ERR_PTR(-EOPNOTSUPP);
13399 		event->hw.aux_paused = 1;
13400 	}
13401 
13402 	if (cgroup_fd != -1) {
13403 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
13404 		if (err)
13405 			return ERR_PTR(err);
13406 	}
13407 
13408 	err = exclusive_event_init(event);
13409 	if (err)
13410 		return ERR_PTR(err);
13411 
13412 	if (has_addr_filter(event)) {
13413 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
13414 						    sizeof(struct perf_addr_filter_range),
13415 						    GFP_KERNEL);
13416 		if (!event->addr_filter_ranges)
13417 			return ERR_PTR(-ENOMEM);
13418 
13419 		/*
13420 		 * Clone the parent's vma offsets: they are valid until exec()
13421 		 * even if the mm is not shared with the parent.
13422 		 */
13423 		if (event->parent) {
13424 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
13425 
13426 			raw_spin_lock_irq(&ifh->lock);
13427 			memcpy(event->addr_filter_ranges,
13428 			       event->parent->addr_filter_ranges,
13429 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
13430 			raw_spin_unlock_irq(&ifh->lock);
13431 		}
13432 
13433 		/* force hw sync on the address filters */
13434 		event->addr_filters_gen = 1;
13435 	}
13436 
13437 	if (!event->parent) {
13438 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
13439 			err = get_callchain_buffers(attr->sample_max_stack);
13440 			if (err)
13441 				return ERR_PTR(err);
13442 			event->attach_state |= PERF_ATTACH_CALLCHAIN;
13443 		}
13444 	}
13445 
13446 	err = security_perf_event_alloc(event);
13447 	if (err)
13448 		return ERR_PTR(err);
13449 
13450 	err = mediated_pmu_account_event(event);
13451 	if (err)
13452 		return ERR_PTR(err);
13453 
13454 	/* symmetric to unaccount_event() in _free_event() */
13455 	account_event(event);
13456 
13457 	/*
13458 	 * Event creation should be under SRCU, see perf_pmu_unregister().
13459 	 */
13460 	lockdep_assert_held(&pmus_srcu);
13461 	scoped_guard (spinlock, &pmu->events_lock)
13462 		list_add(&event->pmu_list, &pmu->events);
13463 
13464 	return_ptr(event);
13465 }
13466 
13467 static int perf_copy_attr(struct perf_event_attr __user *uattr,
13468 			  struct perf_event_attr *attr)
13469 {
13470 	u32 size;
13471 	int ret;
13472 
13473 	/* Zero the full structure, so that a short copy will be nice. */
13474 	memset(attr, 0, sizeof(*attr));
13475 
13476 	ret = get_user(size, &uattr->size);
13477 	if (ret)
13478 		return ret;
13479 
13480 	/* ABI compatibility quirk: */
13481 	if (!size)
13482 		size = PERF_ATTR_SIZE_VER0;
13483 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
13484 		goto err_size;
13485 
13486 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
13487 	if (ret) {
13488 		if (ret == -E2BIG)
13489 			goto err_size;
13490 		return ret;
13491 	}
13492 
13493 	attr->size = size;
13494 
13495 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
13496 		return -EINVAL;
13497 
13498 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
13499 		return -EINVAL;
13500 
13501 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
13502 		return -EINVAL;
13503 
13504 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
13505 		u64 mask = attr->branch_sample_type;
13506 
13507 		/* only using defined bits */
13508 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
13509 			return -EINVAL;
13510 
13511 		/* at least one branch bit must be set */
13512 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
13513 			return -EINVAL;
13514 
13515 		/* propagate priv level, when not set for branch */
13516 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
13517 
13518 			/* exclude_kernel checked on syscall entry */
13519 			if (!attr->exclude_kernel)
13520 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
13521 
13522 			if (!attr->exclude_user)
13523 				mask |= PERF_SAMPLE_BRANCH_USER;
13524 
13525 			if (!attr->exclude_hv)
13526 				mask |= PERF_SAMPLE_BRANCH_HV;
13527 			/*
13528 			 * adjust user setting (for HW filter setup)
13529 			 */
13530 			attr->branch_sample_type = mask;
13531 		}
13532 		/* privileged levels capture (kernel, hv): check permissions */
13533 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
13534 			ret = perf_allow_kernel();
13535 			if (ret)
13536 				return ret;
13537 		}
13538 	}
13539 
13540 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
13541 		ret = perf_reg_validate(attr->sample_regs_user);
13542 		if (ret)
13543 			return ret;
13544 	}
13545 
13546 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
13547 		if (!arch_perf_have_user_stack_dump())
13548 			return -ENOSYS;
13549 
13550 		/*
13551 		 * We have __u32 type for the size, but so far
13552 		 * we can only use __u16 as maximum due to the
13553 		 * __u16 sample size limit.
13554 		 */
13555 		if (attr->sample_stack_user >= USHRT_MAX)
13556 			return -EINVAL;
13557 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
13558 			return -EINVAL;
13559 	}
13560 
13561 	if (!attr->sample_max_stack)
13562 		attr->sample_max_stack = sysctl_perf_event_max_stack;
13563 
13564 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
13565 		ret = perf_reg_validate(attr->sample_regs_intr);
13566 
13567 #ifndef CONFIG_CGROUP_PERF
13568 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
13569 		return -EINVAL;
13570 #endif
13571 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
13572 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
13573 		return -EINVAL;
13574 
13575 	if (!attr->inherit && attr->inherit_thread)
13576 		return -EINVAL;
13577 
13578 	if (attr->remove_on_exec && attr->enable_on_exec)
13579 		return -EINVAL;
13580 
13581 	if (attr->sigtrap && !attr->remove_on_exec)
13582 		return -EINVAL;
13583 
13584 out:
13585 	return ret;
13586 
13587 err_size:
13588 	put_user(sizeof(*attr), &uattr->size);
13589 	ret = -E2BIG;
13590 	goto out;
13591 }
13592 
13593 static void mutex_lock_double(struct mutex *a, struct mutex *b)
13594 {
13595 	if (b < a)
13596 		swap(a, b);
13597 
13598 	mutex_lock(a);
13599 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
13600 }
13601 
13602 static int
13603 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
13604 {
13605 	struct perf_buffer *rb = NULL;
13606 	int ret = -EINVAL;
13607 
13608 	if (!output_event) {
13609 		mutex_lock(&event->mmap_mutex);
13610 		goto set;
13611 	}
13612 
13613 	/* don't allow circular references */
13614 	if (event == output_event)
13615 		goto out;
13616 
13617 	/*
13618 	 * Don't allow cross-cpu buffers
13619 	 */
13620 	if (output_event->cpu != event->cpu)
13621 		goto out;
13622 
13623 	/*
13624 	 * If its not a per-cpu rb, it must be the same task.
13625 	 */
13626 	if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
13627 		goto out;
13628 
13629 	/*
13630 	 * Mixing clocks in the same buffer is trouble you don't need.
13631 	 */
13632 	if (output_event->clock != event->clock)
13633 		goto out;
13634 
13635 	/*
13636 	 * Either writing ring buffer from beginning or from end.
13637 	 * Mixing is not allowed.
13638 	 */
13639 	if (is_write_backward(output_event) != is_write_backward(event))
13640 		goto out;
13641 
13642 	/*
13643 	 * If both events generate aux data, they must be on the same PMU
13644 	 */
13645 	if (has_aux(event) && has_aux(output_event) &&
13646 	    event->pmu != output_event->pmu)
13647 		goto out;
13648 
13649 	/*
13650 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
13651 	 * output_event is already on rb->event_list, and the list iteration
13652 	 * restarts after every removal, it is guaranteed this new event is
13653 	 * observed *OR* if output_event is already removed, it's guaranteed we
13654 	 * observe !rb->mmap_count.
13655 	 */
13656 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
13657 set:
13658 	/* Can't redirect output if we've got an active mmap() */
13659 	if (refcount_read(&event->mmap_count))
13660 		goto unlock;
13661 
13662 	if (output_event) {
13663 		if (output_event->state <= PERF_EVENT_STATE_REVOKED)
13664 			goto unlock;
13665 
13666 		/* get the rb we want to redirect to */
13667 		rb = ring_buffer_get(output_event);
13668 		if (!rb)
13669 			goto unlock;
13670 
13671 		/* did we race against perf_mmap_close() */
13672 		if (!refcount_read(&rb->mmap_count)) {
13673 			ring_buffer_put(rb);
13674 			goto unlock;
13675 		}
13676 	}
13677 
13678 	ring_buffer_attach(event, rb);
13679 
13680 	ret = 0;
13681 unlock:
13682 	mutex_unlock(&event->mmap_mutex);
13683 	if (output_event)
13684 		mutex_unlock(&output_event->mmap_mutex);
13685 
13686 out:
13687 	return ret;
13688 }
13689 
13690 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
13691 {
13692 	bool nmi_safe = false;
13693 
13694 	switch (clk_id) {
13695 	case CLOCK_MONOTONIC:
13696 		event->clock = &ktime_get_mono_fast_ns;
13697 		nmi_safe = true;
13698 		break;
13699 
13700 	case CLOCK_MONOTONIC_RAW:
13701 		event->clock = &ktime_get_raw_fast_ns;
13702 		nmi_safe = true;
13703 		break;
13704 
13705 	case CLOCK_REALTIME:
13706 		event->clock = &ktime_get_real_ns;
13707 		break;
13708 
13709 	case CLOCK_BOOTTIME:
13710 		event->clock = &ktime_get_boottime_ns;
13711 		break;
13712 
13713 	case CLOCK_TAI:
13714 		event->clock = &ktime_get_clocktai_ns;
13715 		break;
13716 
13717 	default:
13718 		return -EINVAL;
13719 	}
13720 
13721 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
13722 		return -EINVAL;
13723 
13724 	return 0;
13725 }
13726 
13727 static bool
13728 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
13729 {
13730 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
13731 	bool is_capable = perfmon_capable();
13732 
13733 	if (attr->sigtrap) {
13734 		/*
13735 		 * perf_event_attr::sigtrap sends signals to the other task.
13736 		 * Require the current task to also have CAP_KILL.
13737 		 */
13738 		rcu_read_lock();
13739 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
13740 		rcu_read_unlock();
13741 
13742 		/*
13743 		 * If the required capabilities aren't available, checks for
13744 		 * ptrace permissions: upgrade to ATTACH, since sending signals
13745 		 * can effectively change the target task.
13746 		 */
13747 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
13748 	}
13749 
13750 	/*
13751 	 * Preserve ptrace permission check for backwards compatibility. The
13752 	 * ptrace check also includes checks that the current task and other
13753 	 * task have matching uids, and is therefore not done here explicitly.
13754 	 */
13755 	return is_capable || ptrace_may_access(task, ptrace_mode);
13756 }
13757 
13758 /**
13759  * sys_perf_event_open - open a performance event, associate it to a task/cpu
13760  *
13761  * @attr_uptr:	event_id type attributes for monitoring/sampling
13762  * @pid:		target pid
13763  * @cpu:		target cpu
13764  * @group_fd:		group leader event fd
13765  * @flags:		perf event open flags
13766  */
13767 SYSCALL_DEFINE5(perf_event_open,
13768 		struct perf_event_attr __user *, attr_uptr,
13769 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
13770 {
13771 	struct perf_event *group_leader = NULL, *output_event = NULL;
13772 	struct perf_event_pmu_context *pmu_ctx;
13773 	struct perf_event *event, *sibling;
13774 	struct perf_event_attr attr;
13775 	struct perf_event_context *ctx;
13776 	struct file *event_file = NULL;
13777 	struct task_struct *task = NULL;
13778 	struct pmu *pmu;
13779 	int event_fd;
13780 	int move_group = 0;
13781 	int err;
13782 	int f_flags = O_RDWR;
13783 	int cgroup_fd = -1;
13784 
13785 	/* for future expandability... */
13786 	if (flags & ~PERF_FLAG_ALL)
13787 		return -EINVAL;
13788 
13789 	err = perf_copy_attr(attr_uptr, &attr);
13790 	if (err)
13791 		return err;
13792 
13793 	/* Do we allow access to perf_event_open(2) ? */
13794 	err = security_perf_event_open(PERF_SECURITY_OPEN);
13795 	if (err)
13796 		return err;
13797 
13798 	if (!attr.exclude_kernel) {
13799 		err = perf_allow_kernel();
13800 		if (err)
13801 			return err;
13802 	}
13803 
13804 	if (attr.namespaces) {
13805 		if (!perfmon_capable())
13806 			return -EACCES;
13807 	}
13808 
13809 	if (attr.freq) {
13810 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
13811 			return -EINVAL;
13812 	} else {
13813 		if (attr.sample_period & (1ULL << 63))
13814 			return -EINVAL;
13815 	}
13816 
13817 	/* Only privileged users can get physical addresses */
13818 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
13819 		err = perf_allow_kernel();
13820 		if (err)
13821 			return err;
13822 	}
13823 
13824 	/* REGS_INTR can leak data, lockdown must prevent this */
13825 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
13826 		err = security_locked_down(LOCKDOWN_PERF);
13827 		if (err)
13828 			return err;
13829 	}
13830 
13831 	/*
13832 	 * In cgroup mode, the pid argument is used to pass the fd
13833 	 * opened to the cgroup directory in cgroupfs. The cpu argument
13834 	 * designates the cpu on which to monitor threads from that
13835 	 * cgroup.
13836 	 */
13837 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
13838 		return -EINVAL;
13839 
13840 	if (flags & PERF_FLAG_FD_CLOEXEC)
13841 		f_flags |= O_CLOEXEC;
13842 
13843 	event_fd = get_unused_fd_flags(f_flags);
13844 	if (event_fd < 0)
13845 		return event_fd;
13846 
13847 	/*
13848 	 * Event creation should be under SRCU, see perf_pmu_unregister().
13849 	 */
13850 	guard(srcu)(&pmus_srcu);
13851 
13852 	CLASS(fd, group)(group_fd);     // group_fd == -1 => empty
13853 	if (group_fd != -1) {
13854 		if (!is_perf_file(group)) {
13855 			err = -EBADF;
13856 			goto err_fd;
13857 		}
13858 		group_leader = fd_file(group)->private_data;
13859 		if (group_leader->state <= PERF_EVENT_STATE_REVOKED) {
13860 			err = -ENODEV;
13861 			goto err_fd;
13862 		}
13863 		if (flags & PERF_FLAG_FD_OUTPUT)
13864 			output_event = group_leader;
13865 		if (flags & PERF_FLAG_FD_NO_GROUP)
13866 			group_leader = NULL;
13867 	}
13868 
13869 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
13870 		task = find_lively_task_by_vpid(pid);
13871 		if (IS_ERR(task)) {
13872 			err = PTR_ERR(task);
13873 			goto err_fd;
13874 		}
13875 	}
13876 
13877 	if (task && group_leader &&
13878 	    group_leader->attr.inherit != attr.inherit) {
13879 		err = -EINVAL;
13880 		goto err_task;
13881 	}
13882 
13883 	if (flags & PERF_FLAG_PID_CGROUP)
13884 		cgroup_fd = pid;
13885 
13886 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
13887 				 NULL, NULL, cgroup_fd);
13888 	if (IS_ERR(event)) {
13889 		err = PTR_ERR(event);
13890 		goto err_task;
13891 	}
13892 
13893 	if (is_sampling_event(event)) {
13894 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
13895 			err = -EOPNOTSUPP;
13896 			goto err_alloc;
13897 		}
13898 	}
13899 
13900 	/*
13901 	 * Special case software events and allow them to be part of
13902 	 * any hardware group.
13903 	 */
13904 	pmu = event->pmu;
13905 
13906 	if (attr.use_clockid) {
13907 		err = perf_event_set_clock(event, attr.clockid);
13908 		if (err)
13909 			goto err_alloc;
13910 	}
13911 
13912 	if (pmu->task_ctx_nr == perf_sw_context)
13913 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
13914 
13915 	if (task) {
13916 		err = down_read_interruptible(&task->signal->exec_update_lock);
13917 		if (err)
13918 			goto err_alloc;
13919 
13920 		/*
13921 		 * We must hold exec_update_lock across this and any potential
13922 		 * perf_install_in_context() call for this new event to
13923 		 * serialize against exec() altering our credentials (and the
13924 		 * perf_event_exit_task() that could imply).
13925 		 */
13926 		err = -EACCES;
13927 		if (!perf_check_permission(&attr, task))
13928 			goto err_cred;
13929 	}
13930 
13931 	/*
13932 	 * Get the target context (task or percpu):
13933 	 */
13934 	ctx = find_get_context(task, event);
13935 	if (IS_ERR(ctx)) {
13936 		err = PTR_ERR(ctx);
13937 		goto err_cred;
13938 	}
13939 
13940 	mutex_lock(&ctx->mutex);
13941 
13942 	if (ctx->task == TASK_TOMBSTONE) {
13943 		err = -ESRCH;
13944 		goto err_locked;
13945 	}
13946 
13947 	if (!task) {
13948 		/*
13949 		 * Check if the @cpu we're creating an event for is online.
13950 		 *
13951 		 * We use the perf_cpu_context::ctx::mutex to serialize against
13952 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
13953 		 */
13954 		struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
13955 
13956 		if (!cpuctx->online) {
13957 			err = -ENODEV;
13958 			goto err_locked;
13959 		}
13960 	}
13961 
13962 	if (group_leader) {
13963 		err = -EINVAL;
13964 
13965 		/*
13966 		 * Do not allow a recursive hierarchy (this new sibling
13967 		 * becoming part of another group-sibling):
13968 		 */
13969 		if (group_leader->group_leader != group_leader)
13970 			goto err_locked;
13971 
13972 		/* All events in a group should have the same clock */
13973 		if (group_leader->clock != event->clock)
13974 			goto err_locked;
13975 
13976 		/*
13977 		 * Make sure we're both events for the same CPU;
13978 		 * grouping events for different CPUs is broken; since
13979 		 * you can never concurrently schedule them anyhow.
13980 		 */
13981 		if (group_leader->cpu != event->cpu)
13982 			goto err_locked;
13983 
13984 		/*
13985 		 * Make sure we're both on the same context; either task or cpu.
13986 		 */
13987 		if (group_leader->ctx != ctx)
13988 			goto err_locked;
13989 
13990 		/*
13991 		 * Only a group leader can be exclusive or pinned
13992 		 */
13993 		if (attr.exclusive || attr.pinned)
13994 			goto err_locked;
13995 
13996 		if (is_software_event(event) &&
13997 		    !in_software_context(group_leader)) {
13998 			/*
13999 			 * If the event is a sw event, but the group_leader
14000 			 * is on hw context.
14001 			 *
14002 			 * Allow the addition of software events to hw
14003 			 * groups, this is safe because software events
14004 			 * never fail to schedule.
14005 			 *
14006 			 * Note the comment that goes with struct
14007 			 * perf_event_pmu_context.
14008 			 */
14009 			pmu = group_leader->pmu_ctx->pmu;
14010 		} else if (!is_software_event(event)) {
14011 			if (is_software_event(group_leader) &&
14012 			    (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
14013 				/*
14014 				 * In case the group is a pure software group, and we
14015 				 * try to add a hardware event, move the whole group to
14016 				 * the hardware context.
14017 				 */
14018 				move_group = 1;
14019 			}
14020 
14021 			/* Don't allow group of multiple hw events from different pmus */
14022 			if (!in_software_context(group_leader) &&
14023 			    group_leader->pmu_ctx->pmu != pmu)
14024 				goto err_locked;
14025 		}
14026 	}
14027 
14028 	/*
14029 	 * Now that we're certain of the pmu; find the pmu_ctx.
14030 	 */
14031 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
14032 	if (IS_ERR(pmu_ctx)) {
14033 		err = PTR_ERR(pmu_ctx);
14034 		goto err_locked;
14035 	}
14036 	event->pmu_ctx = pmu_ctx;
14037 
14038 	if (output_event) {
14039 		err = perf_event_set_output(event, output_event);
14040 		if (err)
14041 			goto err_context;
14042 	}
14043 
14044 	if (!perf_event_validate_size(event)) {
14045 		err = -E2BIG;
14046 		goto err_context;
14047 	}
14048 
14049 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
14050 		err = -EINVAL;
14051 		goto err_context;
14052 	}
14053 
14054 	/*
14055 	 * Must be under the same ctx::mutex as perf_install_in_context(),
14056 	 * because we need to serialize with concurrent event creation.
14057 	 */
14058 	if (!exclusive_event_installable(event, ctx)) {
14059 		err = -EBUSY;
14060 		goto err_context;
14061 	}
14062 
14063 	WARN_ON_ONCE(ctx->parent_ctx);
14064 
14065 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
14066 	if (IS_ERR(event_file)) {
14067 		err = PTR_ERR(event_file);
14068 		event_file = NULL;
14069 		goto err_context;
14070 	}
14071 
14072 	/*
14073 	 * This is the point on no return; we cannot fail hereafter. This is
14074 	 * where we start modifying current state.
14075 	 */
14076 
14077 	if (move_group) {
14078 		perf_remove_from_context(group_leader, 0);
14079 		put_pmu_ctx(group_leader->pmu_ctx);
14080 
14081 		for_each_sibling_event(sibling, group_leader) {
14082 			perf_remove_from_context(sibling, 0);
14083 			put_pmu_ctx(sibling->pmu_ctx);
14084 		}
14085 
14086 		/*
14087 		 * Install the group siblings before the group leader.
14088 		 *
14089 		 * Because a group leader will try and install the entire group
14090 		 * (through the sibling list, which is still in-tact), we can
14091 		 * end up with siblings installed in the wrong context.
14092 		 *
14093 		 * By installing siblings first we NO-OP because they're not
14094 		 * reachable through the group lists.
14095 		 */
14096 		for_each_sibling_event(sibling, group_leader) {
14097 			sibling->pmu_ctx = pmu_ctx;
14098 			get_pmu_ctx(pmu_ctx);
14099 			perf_event__state_init(sibling);
14100 			perf_install_in_context(ctx, sibling, sibling->cpu);
14101 		}
14102 
14103 		/*
14104 		 * Removing from the context ends up with disabled
14105 		 * event. What we want here is event in the initial
14106 		 * startup state, ready to be add into new context.
14107 		 */
14108 		group_leader->pmu_ctx = pmu_ctx;
14109 		get_pmu_ctx(pmu_ctx);
14110 		perf_event__state_init(group_leader);
14111 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
14112 	}
14113 
14114 	/*
14115 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
14116 	 * that we're serialized against further additions and before
14117 	 * perf_install_in_context() which is the point the event is active and
14118 	 * can use these values.
14119 	 */
14120 	perf_event__header_size(event);
14121 	perf_event__id_header_size(event);
14122 
14123 	event->owner = current;
14124 
14125 	perf_install_in_context(ctx, event, event->cpu);
14126 	perf_unpin_context(ctx);
14127 
14128 	mutex_unlock(&ctx->mutex);
14129 
14130 	if (task) {
14131 		up_read(&task->signal->exec_update_lock);
14132 		put_task_struct(task);
14133 	}
14134 
14135 	mutex_lock(&current->perf_event_mutex);
14136 	list_add_tail(&event->owner_entry, &current->perf_event_list);
14137 	mutex_unlock(&current->perf_event_mutex);
14138 
14139 	/*
14140 	 * File reference in group guarantees that group_leader has been
14141 	 * kept alive until we place the new event on the sibling_list.
14142 	 * This ensures destruction of the group leader will find
14143 	 * the pointer to itself in perf_group_detach().
14144 	 */
14145 	fd_install(event_fd, event_file);
14146 	return event_fd;
14147 
14148 err_context:
14149 	put_pmu_ctx(event->pmu_ctx);
14150 	event->pmu_ctx = NULL; /* _free_event() */
14151 err_locked:
14152 	mutex_unlock(&ctx->mutex);
14153 	perf_unpin_context(ctx);
14154 	put_ctx(ctx);
14155 err_cred:
14156 	if (task)
14157 		up_read(&task->signal->exec_update_lock);
14158 err_alloc:
14159 	put_event(event);
14160 err_task:
14161 	if (task)
14162 		put_task_struct(task);
14163 err_fd:
14164 	put_unused_fd(event_fd);
14165 	return err;
14166 }
14167 
14168 /**
14169  * perf_event_create_kernel_counter
14170  *
14171  * @attr: attributes of the counter to create
14172  * @cpu: cpu in which the counter is bound
14173  * @task: task to profile (NULL for percpu)
14174  * @overflow_handler: callback to trigger when we hit the event
14175  * @context: context data could be used in overflow_handler callback
14176  */
14177 struct perf_event *
14178 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
14179 				 struct task_struct *task,
14180 				 perf_overflow_handler_t overflow_handler,
14181 				 void *context)
14182 {
14183 	struct perf_event_pmu_context *pmu_ctx;
14184 	struct perf_event_context *ctx;
14185 	struct perf_event *event;
14186 	struct pmu *pmu;
14187 	int err;
14188 
14189 	/*
14190 	 * Grouping is not supported for kernel events, neither is 'AUX',
14191 	 * make sure the caller's intentions are adjusted.
14192 	 */
14193 	if (attr->aux_output || attr->aux_action)
14194 		return ERR_PTR(-EINVAL);
14195 
14196 	/*
14197 	 * Event creation should be under SRCU, see perf_pmu_unregister().
14198 	 */
14199 	guard(srcu)(&pmus_srcu);
14200 
14201 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
14202 				 overflow_handler, context, -1);
14203 	if (IS_ERR(event)) {
14204 		err = PTR_ERR(event);
14205 		goto err;
14206 	}
14207 
14208 	/* Mark owner so we could distinguish it from user events. */
14209 	event->owner = TASK_TOMBSTONE;
14210 	pmu = event->pmu;
14211 
14212 	if (pmu->task_ctx_nr == perf_sw_context)
14213 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
14214 
14215 	/*
14216 	 * Get the target context (task or percpu):
14217 	 */
14218 	ctx = find_get_context(task, event);
14219 	if (IS_ERR(ctx)) {
14220 		err = PTR_ERR(ctx);
14221 		goto err_alloc;
14222 	}
14223 
14224 	WARN_ON_ONCE(ctx->parent_ctx);
14225 	mutex_lock(&ctx->mutex);
14226 	if (ctx->task == TASK_TOMBSTONE) {
14227 		err = -ESRCH;
14228 		goto err_unlock;
14229 	}
14230 
14231 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
14232 	if (IS_ERR(pmu_ctx)) {
14233 		err = PTR_ERR(pmu_ctx);
14234 		goto err_unlock;
14235 	}
14236 	event->pmu_ctx = pmu_ctx;
14237 
14238 	if (!task) {
14239 		/*
14240 		 * Check if the @cpu we're creating an event for is online.
14241 		 *
14242 		 * We use the perf_cpu_context::ctx::mutex to serialize against
14243 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
14244 		 */
14245 		struct perf_cpu_context *cpuctx =
14246 			container_of(ctx, struct perf_cpu_context, ctx);
14247 		if (!cpuctx->online) {
14248 			err = -ENODEV;
14249 			goto err_pmu_ctx;
14250 		}
14251 	}
14252 
14253 	if (!exclusive_event_installable(event, ctx)) {
14254 		err = -EBUSY;
14255 		goto err_pmu_ctx;
14256 	}
14257 
14258 	perf_install_in_context(ctx, event, event->cpu);
14259 	perf_unpin_context(ctx);
14260 	mutex_unlock(&ctx->mutex);
14261 
14262 	return event;
14263 
14264 err_pmu_ctx:
14265 	put_pmu_ctx(pmu_ctx);
14266 	event->pmu_ctx = NULL; /* _free_event() */
14267 err_unlock:
14268 	mutex_unlock(&ctx->mutex);
14269 	perf_unpin_context(ctx);
14270 	put_ctx(ctx);
14271 err_alloc:
14272 	put_event(event);
14273 err:
14274 	return ERR_PTR(err);
14275 }
14276 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
14277 
14278 static void __perf_pmu_remove(struct perf_event_context *ctx,
14279 			      int cpu, struct pmu *pmu,
14280 			      struct perf_event_groups *groups,
14281 			      struct list_head *events)
14282 {
14283 	struct perf_event *event, *sibling;
14284 
14285 	perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
14286 		perf_remove_from_context(event, 0);
14287 		put_pmu_ctx(event->pmu_ctx);
14288 		list_add(&event->migrate_entry, events);
14289 
14290 		for_each_sibling_event(sibling, event) {
14291 			perf_remove_from_context(sibling, 0);
14292 			put_pmu_ctx(sibling->pmu_ctx);
14293 			list_add(&sibling->migrate_entry, events);
14294 		}
14295 	}
14296 }
14297 
14298 static void __perf_pmu_install_event(struct pmu *pmu,
14299 				     struct perf_event_context *ctx,
14300 				     int cpu, struct perf_event *event)
14301 {
14302 	struct perf_event_pmu_context *epc;
14303 	struct perf_event_context *old_ctx = event->ctx;
14304 
14305 	get_ctx(ctx); /* normally find_get_context() */
14306 
14307 	event->cpu = cpu;
14308 	epc = find_get_pmu_context(pmu, ctx, event);
14309 	event->pmu_ctx = epc;
14310 
14311 	if (event->state >= PERF_EVENT_STATE_OFF)
14312 		event->state = PERF_EVENT_STATE_INACTIVE;
14313 	perf_install_in_context(ctx, event, cpu);
14314 
14315 	/*
14316 	 * Now that event->ctx is updated and visible, put the old ctx.
14317 	 */
14318 	put_ctx(old_ctx);
14319 }
14320 
14321 static void __perf_pmu_install(struct perf_event_context *ctx,
14322 			       int cpu, struct pmu *pmu, struct list_head *events)
14323 {
14324 	struct perf_event *event, *tmp;
14325 
14326 	/*
14327 	 * Re-instate events in 2 passes.
14328 	 *
14329 	 * Skip over group leaders and only install siblings on this first
14330 	 * pass, siblings will not get enabled without a leader, however a
14331 	 * leader will enable its siblings, even if those are still on the old
14332 	 * context.
14333 	 */
14334 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
14335 		if (event->group_leader == event)
14336 			continue;
14337 
14338 		list_del(&event->migrate_entry);
14339 		__perf_pmu_install_event(pmu, ctx, cpu, event);
14340 	}
14341 
14342 	/*
14343 	 * Once all the siblings are setup properly, install the group leaders
14344 	 * to make it go.
14345 	 */
14346 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
14347 		list_del(&event->migrate_entry);
14348 		__perf_pmu_install_event(pmu, ctx, cpu, event);
14349 	}
14350 }
14351 
14352 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
14353 {
14354 	struct perf_event_context *src_ctx, *dst_ctx;
14355 	LIST_HEAD(events);
14356 
14357 	/*
14358 	 * Since per-cpu context is persistent, no need to grab an extra
14359 	 * reference.
14360 	 */
14361 	src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
14362 	dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
14363 
14364 	/*
14365 	 * See perf_event_ctx_lock() for comments on the details
14366 	 * of swizzling perf_event::ctx.
14367 	 */
14368 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
14369 
14370 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
14371 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
14372 
14373 	if (!list_empty(&events)) {
14374 		/*
14375 		 * Wait for the events to quiesce before re-instating them.
14376 		 */
14377 		synchronize_rcu();
14378 
14379 		__perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
14380 	}
14381 
14382 	mutex_unlock(&dst_ctx->mutex);
14383 	mutex_unlock(&src_ctx->mutex);
14384 }
14385 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
14386 
14387 static void sync_child_event(struct perf_event *child_event,
14388 			     struct task_struct *task)
14389 {
14390 	struct perf_event *parent_event = child_event->parent;
14391 	u64 child_val;
14392 
14393 	if (child_event->attr.inherit_stat) {
14394 		if (task && task != TASK_TOMBSTONE)
14395 			perf_event_read_event(child_event, task);
14396 	}
14397 
14398 	child_val = perf_event_count(child_event, false);
14399 
14400 	/*
14401 	 * Add back the child's count to the parent's count:
14402 	 */
14403 	atomic64_add(child_val, &parent_event->child_count);
14404 	atomic64_add(child_event->total_time_enabled,
14405 		     &parent_event->child_total_time_enabled);
14406 	atomic64_add(child_event->total_time_running,
14407 		     &parent_event->child_total_time_running);
14408 }
14409 
14410 static void
14411 perf_event_exit_event(struct perf_event *event,
14412 		      struct perf_event_context *ctx,
14413 		      struct task_struct *task,
14414 		      bool revoke)
14415 {
14416 	struct perf_event *parent_event = event->parent;
14417 	unsigned long detach_flags = DETACH_EXIT;
14418 	unsigned int attach_state;
14419 
14420 	if (parent_event) {
14421 		/*
14422 		 * Do not destroy the 'original' grouping; because of the
14423 		 * context switch optimization the original events could've
14424 		 * ended up in a random child task.
14425 		 *
14426 		 * If we were to destroy the original group, all group related
14427 		 * operations would cease to function properly after this
14428 		 * random child dies.
14429 		 *
14430 		 * Do destroy all inherited groups, we don't care about those
14431 		 * and being thorough is better.
14432 		 */
14433 		detach_flags |= DETACH_GROUP | DETACH_CHILD;
14434 		mutex_lock(&parent_event->child_mutex);
14435 		/* PERF_ATTACH_ITRACE might be set concurrently */
14436 		attach_state = READ_ONCE(event->attach_state);
14437 
14438 		if (attach_state & PERF_ATTACH_CHILD)
14439 			sync_child_event(event, task);
14440 	}
14441 
14442 	if (revoke)
14443 		detach_flags |= DETACH_GROUP | DETACH_REVOKE;
14444 
14445 	perf_remove_from_context(event, detach_flags);
14446 	/*
14447 	 * Child events can be freed.
14448 	 */
14449 	if (parent_event) {
14450 		mutex_unlock(&parent_event->child_mutex);
14451 
14452 		/*
14453 		 * Match the refcount initialization. Make sure it doesn't happen
14454 		 * twice if pmu_detach_event() calls it on an already exited task.
14455 		 */
14456 		if (attach_state & PERF_ATTACH_CHILD) {
14457 			/*
14458 			 * Kick perf_poll() for is_event_hup();
14459 			 */
14460 			perf_event_wakeup(parent_event);
14461 			/*
14462 			 * pmu_detach_event() will have an extra refcount.
14463 			 * perf_pending_task() might have one too.
14464 			 */
14465 			put_event(event);
14466 		}
14467 
14468 		return;
14469 	}
14470 
14471 	/*
14472 	 * Parent events are governed by their filedesc, retain them.
14473 	 */
14474 	perf_event_wakeup(event);
14475 }
14476 
14477 static void perf_event_exit_task_context(struct task_struct *task, bool exit)
14478 {
14479 	struct perf_event_context *ctx, *clone_ctx = NULL;
14480 	struct perf_event *child_event, *next;
14481 
14482 	ctx = perf_pin_task_context(task);
14483 	if (!ctx)
14484 		return;
14485 
14486 	/*
14487 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
14488 	 * ctx::mutex over the entire thing. This serializes against almost
14489 	 * everything that wants to access the ctx.
14490 	 *
14491 	 * The exception is sys_perf_event_open() /
14492 	 * perf_event_create_kernel_count() which does find_get_context()
14493 	 * without ctx::mutex (it cannot because of the move_group double mutex
14494 	 * lock thing). See the comments in perf_install_in_context().
14495 	 */
14496 	mutex_lock(&ctx->mutex);
14497 
14498 	/*
14499 	 * In a single ctx::lock section, de-schedule the events and detach the
14500 	 * context from the task such that we cannot ever get it scheduled back
14501 	 * in.
14502 	 */
14503 	raw_spin_lock_irq(&ctx->lock);
14504 	if (exit)
14505 		task_ctx_sched_out(ctx, NULL, EVENT_ALL);
14506 
14507 	/*
14508 	 * Now that the context is inactive, destroy the task <-> ctx relation
14509 	 * and mark the context dead.
14510 	 */
14511 	RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
14512 	put_ctx(ctx); /* cannot be last */
14513 	WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
14514 	put_task_struct(task); /* cannot be last */
14515 
14516 	clone_ctx = unclone_ctx(ctx);
14517 	raw_spin_unlock_irq(&ctx->lock);
14518 
14519 	if (clone_ctx)
14520 		put_ctx(clone_ctx);
14521 
14522 	/*
14523 	 * Report the task dead after unscheduling the events so that we
14524 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
14525 	 * get a few PERF_RECORD_READ events.
14526 	 */
14527 	if (exit)
14528 		perf_event_task(task, ctx, 0);
14529 
14530 	list_for_each_entry_safe(child_event, next, &ctx->event_list, event_entry)
14531 		perf_event_exit_event(child_event, ctx, exit ? task : NULL, false);
14532 
14533 	mutex_unlock(&ctx->mutex);
14534 
14535 	if (!exit) {
14536 		/*
14537 		 * perf_event_release_kernel() could still have a reference on
14538 		 * this context. In that case we must wait for these events to
14539 		 * have been freed (in particular all their references to this
14540 		 * task must've been dropped).
14541 		 *
14542 		 * Without this copy_process() will unconditionally free this
14543 		 * task (irrespective of its reference count) and
14544 		 * _free_event()'s put_task_struct(event->hw.target) will be a
14545 		 * use-after-free.
14546 		 *
14547 		 * Wait for all events to drop their context reference.
14548 		 */
14549 		wait_var_event(&ctx->refcount,
14550 			       refcount_read(&ctx->refcount) == 1);
14551 	}
14552 	put_ctx(ctx);
14553 }
14554 
14555 /*
14556  * When a task exits, feed back event values to parent events.
14557  *
14558  * Can be called with exec_update_lock held when called from
14559  * setup_new_exec().
14560  */
14561 void perf_event_exit_task(struct task_struct *task)
14562 {
14563 	struct perf_event *event, *tmp;
14564 
14565 	WARN_ON_ONCE(task != current);
14566 
14567 	mutex_lock(&task->perf_event_mutex);
14568 	list_for_each_entry_safe(event, tmp, &task->perf_event_list,
14569 				 owner_entry) {
14570 		list_del_init(&event->owner_entry);
14571 
14572 		/*
14573 		 * Ensure the list deletion is visible before we clear
14574 		 * the owner, closes a race against perf_release() where
14575 		 * we need to serialize on the owner->perf_event_mutex.
14576 		 */
14577 		smp_store_release(&event->owner, NULL);
14578 	}
14579 	mutex_unlock(&task->perf_event_mutex);
14580 
14581 	perf_event_exit_task_context(task, true);
14582 
14583 	/*
14584 	 * The perf_event_exit_task_context calls perf_event_task
14585 	 * with task's task_ctx, which generates EXIT events for
14586 	 * task contexts and sets task->perf_event_ctxp[] to NULL.
14587 	 * At this point we need to send EXIT events to cpu contexts.
14588 	 */
14589 	perf_event_task(task, NULL, 0);
14590 
14591 	/*
14592 	 * Detach the perf_ctx_data for the system-wide event.
14593 	 *
14594 	 * Done without holding global_ctx_data_rwsem; typically
14595 	 * attach_global_ctx_data() will skip over this task, but otherwise
14596 	 * attach_task_ctx_data() will observe PF_EXITING.
14597 	 */
14598 	detach_task_ctx_data(task);
14599 }
14600 
14601 /*
14602  * Free a context as created by inheritance by perf_event_init_task() below,
14603  * used by fork() in case of fail.
14604  *
14605  * Even though the task has never lived, the context and events have been
14606  * exposed through the child_list, so we must take care tearing it all down.
14607  */
14608 void perf_event_free_task(struct task_struct *task)
14609 {
14610 	perf_event_exit_task_context(task, false);
14611 }
14612 
14613 void perf_event_delayed_put(struct task_struct *task)
14614 {
14615 	WARN_ON_ONCE(task->perf_event_ctxp);
14616 }
14617 
14618 struct file *perf_event_get(unsigned int fd)
14619 {
14620 	struct file *file = fget(fd);
14621 	if (!file)
14622 		return ERR_PTR(-EBADF);
14623 
14624 	if (file->f_op != &perf_fops) {
14625 		fput(file);
14626 		return ERR_PTR(-EBADF);
14627 	}
14628 
14629 	return file;
14630 }
14631 
14632 const struct perf_event *perf_get_event(struct file *file)
14633 {
14634 	if (file->f_op != &perf_fops)
14635 		return ERR_PTR(-EINVAL);
14636 
14637 	return file->private_data;
14638 }
14639 
14640 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
14641 {
14642 	if (!event)
14643 		return ERR_PTR(-EINVAL);
14644 
14645 	return &event->attr;
14646 }
14647 
14648 int perf_allow_kernel(void)
14649 {
14650 	if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
14651 		return -EACCES;
14652 
14653 	return security_perf_event_open(PERF_SECURITY_KERNEL);
14654 }
14655 EXPORT_SYMBOL_GPL(perf_allow_kernel);
14656 
14657 /*
14658  * Inherit an event from parent task to child task.
14659  *
14660  * Returns:
14661  *  - valid pointer on success
14662  *  - NULL for orphaned events
14663  *  - IS_ERR() on error
14664  */
14665 static struct perf_event *
14666 inherit_event(struct perf_event *parent_event,
14667 	      struct task_struct *parent,
14668 	      struct perf_event_context *parent_ctx,
14669 	      struct task_struct *child,
14670 	      struct perf_event *group_leader,
14671 	      struct perf_event_context *child_ctx)
14672 {
14673 	enum perf_event_state parent_state = parent_event->state;
14674 	struct perf_event_pmu_context *pmu_ctx;
14675 	struct perf_event *child_event;
14676 	unsigned long flags;
14677 
14678 	/*
14679 	 * Instead of creating recursive hierarchies of events,
14680 	 * we link inherited events back to the original parent,
14681 	 * which has a filp for sure, which we use as the reference
14682 	 * count:
14683 	 */
14684 	if (parent_event->parent)
14685 		parent_event = parent_event->parent;
14686 
14687 	if (parent_event->state <= PERF_EVENT_STATE_REVOKED)
14688 		return NULL;
14689 
14690 	/*
14691 	 * Event creation should be under SRCU, see perf_pmu_unregister().
14692 	 */
14693 	guard(srcu)(&pmus_srcu);
14694 
14695 	child_event = perf_event_alloc(&parent_event->attr,
14696 					   parent_event->cpu,
14697 					   child,
14698 					   group_leader, parent_event,
14699 					   NULL, NULL, -1);
14700 	if (IS_ERR(child_event))
14701 		return child_event;
14702 
14703 	get_ctx(child_ctx);
14704 	child_event->ctx = child_ctx;
14705 
14706 	pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
14707 	if (IS_ERR(pmu_ctx)) {
14708 		free_event(child_event);
14709 		return ERR_CAST(pmu_ctx);
14710 	}
14711 	child_event->pmu_ctx = pmu_ctx;
14712 
14713 	/*
14714 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
14715 	 * must be under the same lock in order to serialize against
14716 	 * perf_event_release_kernel(), such that either we must observe
14717 	 * is_orphaned_event() or they will observe us on the child_list.
14718 	 */
14719 	mutex_lock(&parent_event->child_mutex);
14720 	if (is_orphaned_event(parent_event) ||
14721 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
14722 		mutex_unlock(&parent_event->child_mutex);
14723 		free_event(child_event);
14724 		return NULL;
14725 	}
14726 
14727 	/*
14728 	 * Make the child state follow the state of the parent event,
14729 	 * not its attr.disabled bit.  We hold the parent's mutex,
14730 	 * so we won't race with perf_event_{en, dis}able_family.
14731 	 */
14732 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
14733 		child_event->state = PERF_EVENT_STATE_INACTIVE;
14734 	else
14735 		child_event->state = PERF_EVENT_STATE_OFF;
14736 
14737 	if (parent_event->attr.freq) {
14738 		u64 sample_period = parent_event->hw.sample_period;
14739 		struct hw_perf_event *hwc = &child_event->hw;
14740 
14741 		hwc->sample_period = sample_period;
14742 		hwc->last_period   = sample_period;
14743 
14744 		local64_set(&hwc->period_left, sample_period);
14745 	}
14746 
14747 	child_event->overflow_handler = parent_event->overflow_handler;
14748 	child_event->overflow_handler_context
14749 		= parent_event->overflow_handler_context;
14750 
14751 	/*
14752 	 * Precalculate sample_data sizes
14753 	 */
14754 	perf_event__header_size(child_event);
14755 	perf_event__id_header_size(child_event);
14756 
14757 	/*
14758 	 * Link it up in the child's context:
14759 	 */
14760 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
14761 	add_event_to_ctx(child_event, child_ctx);
14762 	child_event->attach_state |= PERF_ATTACH_CHILD;
14763 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
14764 
14765 	/*
14766 	 * Link this into the parent event's child list
14767 	 */
14768 	list_add_tail(&child_event->child_list, &parent_event->child_list);
14769 	mutex_unlock(&parent_event->child_mutex);
14770 
14771 	return child_event;
14772 }
14773 
14774 /*
14775  * Inherits an event group.
14776  *
14777  * This will quietly suppress orphaned events; !inherit_event() is not an error.
14778  * This matches with perf_event_release_kernel() removing all child events.
14779  *
14780  * Returns:
14781  *  - 0 on success
14782  *  - <0 on error
14783  */
14784 static int inherit_group(struct perf_event *parent_event,
14785 	      struct task_struct *parent,
14786 	      struct perf_event_context *parent_ctx,
14787 	      struct task_struct *child,
14788 	      struct perf_event_context *child_ctx)
14789 {
14790 	struct perf_event *leader;
14791 	struct perf_event *sub;
14792 	struct perf_event *child_ctr;
14793 
14794 	leader = inherit_event(parent_event, parent, parent_ctx,
14795 				 child, NULL, child_ctx);
14796 	if (IS_ERR(leader))
14797 		return PTR_ERR(leader);
14798 	/*
14799 	 * @leader can be NULL here because of is_orphaned_event(). In this
14800 	 * case inherit_event() will create individual events, similar to what
14801 	 * perf_group_detach() would do anyway.
14802 	 */
14803 	for_each_sibling_event(sub, parent_event) {
14804 		child_ctr = inherit_event(sub, parent, parent_ctx,
14805 					    child, leader, child_ctx);
14806 		if (IS_ERR(child_ctr))
14807 			return PTR_ERR(child_ctr);
14808 
14809 		if (sub->aux_event == parent_event && child_ctr &&
14810 		    !perf_get_aux_event(child_ctr, leader))
14811 			return -EINVAL;
14812 	}
14813 	if (leader)
14814 		leader->group_generation = parent_event->group_generation;
14815 	return 0;
14816 }
14817 
14818 /*
14819  * Creates the child task context and tries to inherit the event-group.
14820  *
14821  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
14822  * inherited_all set when we 'fail' to inherit an orphaned event; this is
14823  * consistent with perf_event_release_kernel() removing all child events.
14824  *
14825  * Returns:
14826  *  - 0 on success
14827  *  - <0 on error
14828  */
14829 static int
14830 inherit_task_group(struct perf_event *event, struct task_struct *parent,
14831 		   struct perf_event_context *parent_ctx,
14832 		   struct task_struct *child,
14833 		   u64 clone_flags, int *inherited_all)
14834 {
14835 	struct perf_event_context *child_ctx;
14836 	int ret;
14837 
14838 	if (!event->attr.inherit ||
14839 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
14840 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
14841 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
14842 		*inherited_all = 0;
14843 		return 0;
14844 	}
14845 
14846 	child_ctx = child->perf_event_ctxp;
14847 	if (!child_ctx) {
14848 		/*
14849 		 * This is executed from the parent task context, so
14850 		 * inherit events that have been marked for cloning.
14851 		 * First allocate and initialize a context for the
14852 		 * child.
14853 		 */
14854 		child_ctx = alloc_perf_context(child);
14855 		if (!child_ctx)
14856 			return -ENOMEM;
14857 
14858 		child->perf_event_ctxp = child_ctx;
14859 	}
14860 
14861 	ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
14862 	if (ret)
14863 		*inherited_all = 0;
14864 
14865 	return ret;
14866 }
14867 
14868 /*
14869  * Initialize the perf_event context in task_struct
14870  */
14871 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
14872 {
14873 	struct perf_event_context *child_ctx, *parent_ctx;
14874 	struct perf_event_context *cloned_ctx;
14875 	struct perf_event *event;
14876 	struct task_struct *parent = current;
14877 	int inherited_all = 1;
14878 	unsigned long flags;
14879 	int ret = 0;
14880 
14881 	if (likely(!parent->perf_event_ctxp))
14882 		return 0;
14883 
14884 	/*
14885 	 * If the parent's context is a clone, pin it so it won't get
14886 	 * swapped under us.
14887 	 */
14888 	parent_ctx = perf_pin_task_context(parent);
14889 	if (!parent_ctx)
14890 		return 0;
14891 
14892 	/*
14893 	 * No need to check if parent_ctx != NULL here; since we saw
14894 	 * it non-NULL earlier, the only reason for it to become NULL
14895 	 * is if we exit, and since we're currently in the middle of
14896 	 * a fork we can't be exiting at the same time.
14897 	 */
14898 
14899 	/*
14900 	 * Lock the parent list. No need to lock the child - not PID
14901 	 * hashed yet and not running, so nobody can access it.
14902 	 */
14903 	mutex_lock(&parent_ctx->mutex);
14904 
14905 	/*
14906 	 * We dont have to disable NMIs - we are only looking at
14907 	 * the list, not manipulating it:
14908 	 */
14909 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
14910 		ret = inherit_task_group(event, parent, parent_ctx,
14911 					 child, clone_flags, &inherited_all);
14912 		if (ret)
14913 			goto out_unlock;
14914 	}
14915 
14916 	/*
14917 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
14918 	 * to allocations, but we need to prevent rotation because
14919 	 * rotate_ctx() will change the list from interrupt context.
14920 	 */
14921 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
14922 	parent_ctx->rotate_disable = 1;
14923 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
14924 
14925 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
14926 		ret = inherit_task_group(event, parent, parent_ctx,
14927 					 child, clone_flags, &inherited_all);
14928 		if (ret)
14929 			goto out_unlock;
14930 	}
14931 
14932 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
14933 	parent_ctx->rotate_disable = 0;
14934 
14935 	child_ctx = child->perf_event_ctxp;
14936 
14937 	if (child_ctx && inherited_all) {
14938 		/*
14939 		 * Mark the child context as a clone of the parent
14940 		 * context, or of whatever the parent is a clone of.
14941 		 *
14942 		 * Note that if the parent is a clone, the holding of
14943 		 * parent_ctx->lock avoids it from being uncloned.
14944 		 */
14945 		cloned_ctx = parent_ctx->parent_ctx;
14946 		if (cloned_ctx) {
14947 			child_ctx->parent_ctx = cloned_ctx;
14948 			child_ctx->parent_gen = parent_ctx->parent_gen;
14949 		} else {
14950 			child_ctx->parent_ctx = parent_ctx;
14951 			child_ctx->parent_gen = parent_ctx->generation;
14952 		}
14953 		get_ctx(child_ctx->parent_ctx);
14954 	}
14955 
14956 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
14957 out_unlock:
14958 	mutex_unlock(&parent_ctx->mutex);
14959 
14960 	perf_unpin_context(parent_ctx);
14961 	put_ctx(parent_ctx);
14962 
14963 	return ret;
14964 }
14965 
14966 /*
14967  * Initialize the perf_event context in task_struct
14968  */
14969 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
14970 {
14971 	int ret;
14972 
14973 	memset(child->perf_recursion, 0, sizeof(child->perf_recursion));
14974 	child->perf_event_ctxp = NULL;
14975 	mutex_init(&child->perf_event_mutex);
14976 	INIT_LIST_HEAD(&child->perf_event_list);
14977 	child->perf_ctx_data = NULL;
14978 
14979 	ret = perf_event_init_context(child, clone_flags);
14980 	if (ret) {
14981 		perf_event_free_task(child);
14982 		return ret;
14983 	}
14984 
14985 	return 0;
14986 }
14987 
14988 static void __init perf_event_init_all_cpus(void)
14989 {
14990 	struct swevent_htable *swhash;
14991 	struct perf_cpu_context *cpuctx;
14992 	int cpu;
14993 
14994 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
14995 	zalloc_cpumask_var(&perf_online_core_mask, GFP_KERNEL);
14996 	zalloc_cpumask_var(&perf_online_die_mask, GFP_KERNEL);
14997 	zalloc_cpumask_var(&perf_online_cluster_mask, GFP_KERNEL);
14998 	zalloc_cpumask_var(&perf_online_pkg_mask, GFP_KERNEL);
14999 	zalloc_cpumask_var(&perf_online_sys_mask, GFP_KERNEL);
15000 
15001 
15002 	for_each_possible_cpu(cpu) {
15003 		swhash = &per_cpu(swevent_htable, cpu);
15004 		mutex_init(&swhash->hlist_mutex);
15005 
15006 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
15007 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
15008 
15009 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
15010 
15011 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
15012 		__perf_event_init_context(&cpuctx->ctx);
15013 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
15014 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
15015 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
15016 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
15017 		cpuctx->heap = cpuctx->heap_default;
15018 	}
15019 }
15020 
15021 static void perf_swevent_init_cpu(unsigned int cpu)
15022 {
15023 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
15024 
15025 	mutex_lock(&swhash->hlist_mutex);
15026 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
15027 		struct swevent_hlist *hlist;
15028 
15029 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
15030 		WARN_ON(!hlist);
15031 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
15032 	}
15033 	mutex_unlock(&swhash->hlist_mutex);
15034 }
15035 
15036 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
15037 static void __perf_event_exit_context(void *__info)
15038 {
15039 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
15040 	struct perf_event_context *ctx = __info;
15041 	struct perf_event *event;
15042 
15043 	raw_spin_lock(&ctx->lock);
15044 	ctx_sched_out(ctx, NULL, EVENT_TIME);
15045 	list_for_each_entry(event, &ctx->event_list, event_entry)
15046 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
15047 	raw_spin_unlock(&ctx->lock);
15048 }
15049 
15050 static void perf_event_clear_cpumask(unsigned int cpu)
15051 {
15052 	int target[PERF_PMU_MAX_SCOPE];
15053 	unsigned int scope;
15054 	struct pmu *pmu;
15055 
15056 	cpumask_clear_cpu(cpu, perf_online_mask);
15057 
15058 	for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
15059 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
15060 		struct cpumask *pmu_cpumask = perf_scope_cpumask(scope);
15061 
15062 		target[scope] = -1;
15063 		if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
15064 			continue;
15065 
15066 		if (!cpumask_test_and_clear_cpu(cpu, pmu_cpumask))
15067 			continue;
15068 		target[scope] = cpumask_any_but(cpumask, cpu);
15069 		if (target[scope] < nr_cpu_ids)
15070 			cpumask_set_cpu(target[scope], pmu_cpumask);
15071 	}
15072 
15073 	/* migrate */
15074 	list_for_each_entry(pmu, &pmus, entry) {
15075 		if (pmu->scope == PERF_PMU_SCOPE_NONE ||
15076 		    WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE))
15077 			continue;
15078 
15079 		if (target[pmu->scope] >= 0 && target[pmu->scope] < nr_cpu_ids)
15080 			perf_pmu_migrate_context(pmu, cpu, target[pmu->scope]);
15081 	}
15082 }
15083 
15084 static void perf_event_exit_cpu_context(int cpu)
15085 {
15086 	struct perf_cpu_context *cpuctx;
15087 	struct perf_event_context *ctx;
15088 
15089 	// XXX simplify cpuctx->online
15090 	mutex_lock(&pmus_lock);
15091 	/*
15092 	 * Clear the cpumasks, and migrate to other CPUs if possible.
15093 	 * Must be invoked before the __perf_event_exit_context.
15094 	 */
15095 	perf_event_clear_cpumask(cpu);
15096 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
15097 	ctx = &cpuctx->ctx;
15098 
15099 	mutex_lock(&ctx->mutex);
15100 	if (ctx->nr_events)
15101 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
15102 	cpuctx->online = 0;
15103 	mutex_unlock(&ctx->mutex);
15104 	mutex_unlock(&pmus_lock);
15105 }
15106 #else
15107 
15108 static void perf_event_exit_cpu_context(int cpu) { }
15109 
15110 #endif
15111 
15112 static void perf_event_setup_cpumask(unsigned int cpu)
15113 {
15114 	struct cpumask *pmu_cpumask;
15115 	unsigned int scope;
15116 
15117 	/*
15118 	 * Early boot stage, the cpumask hasn't been set yet.
15119 	 * The perf_online_<domain>_masks includes the first CPU of each domain.
15120 	 * Always unconditionally set the boot CPU for the perf_online_<domain>_masks.
15121 	 */
15122 	if (cpumask_empty(perf_online_mask)) {
15123 		for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
15124 			pmu_cpumask = perf_scope_cpumask(scope);
15125 			if (WARN_ON_ONCE(!pmu_cpumask))
15126 				continue;
15127 			cpumask_set_cpu(cpu, pmu_cpumask);
15128 		}
15129 		goto end;
15130 	}
15131 
15132 	for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
15133 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
15134 
15135 		pmu_cpumask = perf_scope_cpumask(scope);
15136 
15137 		if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
15138 			continue;
15139 
15140 		if (!cpumask_empty(cpumask) &&
15141 		    cpumask_any_and(pmu_cpumask, cpumask) >= nr_cpu_ids)
15142 			cpumask_set_cpu(cpu, pmu_cpumask);
15143 	}
15144 end:
15145 	cpumask_set_cpu(cpu, perf_online_mask);
15146 }
15147 
15148 int perf_event_init_cpu(unsigned int cpu)
15149 {
15150 	struct perf_cpu_context *cpuctx;
15151 	struct perf_event_context *ctx;
15152 
15153 	perf_swevent_init_cpu(cpu);
15154 
15155 	mutex_lock(&pmus_lock);
15156 	perf_event_setup_cpumask(cpu);
15157 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
15158 	ctx = &cpuctx->ctx;
15159 
15160 	mutex_lock(&ctx->mutex);
15161 	cpuctx->online = 1;
15162 	mutex_unlock(&ctx->mutex);
15163 	mutex_unlock(&pmus_lock);
15164 
15165 	return 0;
15166 }
15167 
15168 int perf_event_exit_cpu(unsigned int cpu)
15169 {
15170 	perf_event_exit_cpu_context(cpu);
15171 	return 0;
15172 }
15173 
15174 static int
15175 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
15176 {
15177 	int cpu;
15178 
15179 	for_each_online_cpu(cpu)
15180 		perf_event_exit_cpu(cpu);
15181 
15182 	return NOTIFY_OK;
15183 }
15184 
15185 /*
15186  * Run the perf reboot notifier at the very last possible moment so that
15187  * the generic watchdog code runs as long as possible.
15188  */
15189 static struct notifier_block perf_reboot_notifier = {
15190 	.notifier_call = perf_reboot,
15191 	.priority = INT_MIN,
15192 };
15193 
15194 void __init perf_event_init(void)
15195 {
15196 	int ret;
15197 
15198 	idr_init(&pmu_idr);
15199 
15200 	unwind_deferred_init(&perf_unwind_work,
15201 			     perf_unwind_deferred_callback);
15202 
15203 	perf_event_init_all_cpus();
15204 	init_srcu_struct(&pmus_srcu);
15205 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
15206 	perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
15207 	perf_pmu_register(&perf_task_clock, "task_clock", -1);
15208 	perf_tp_register();
15209 	perf_event_init_cpu(smp_processor_id());
15210 	register_reboot_notifier(&perf_reboot_notifier);
15211 
15212 	ret = init_hw_breakpoint();
15213 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
15214 
15215 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
15216 
15217 	/*
15218 	 * Build time assertion that we keep the data_head at the intended
15219 	 * location.  IOW, validation we got the __reserved[] size right.
15220 	 */
15221 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
15222 		     != 1024);
15223 }
15224 
15225 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
15226 			      char *page)
15227 {
15228 	struct perf_pmu_events_attr *pmu_attr =
15229 		container_of(attr, struct perf_pmu_events_attr, attr);
15230 
15231 	if (pmu_attr->event_str)
15232 		return sprintf(page, "%s\n", pmu_attr->event_str);
15233 
15234 	return 0;
15235 }
15236 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
15237 
15238 static int __init perf_event_sysfs_init(void)
15239 {
15240 	struct pmu *pmu;
15241 	int ret;
15242 
15243 	mutex_lock(&pmus_lock);
15244 
15245 	ret = bus_register(&pmu_bus);
15246 	if (ret)
15247 		goto unlock;
15248 
15249 	list_for_each_entry(pmu, &pmus, entry) {
15250 		if (pmu->dev)
15251 			continue;
15252 
15253 		ret = pmu_dev_alloc(pmu);
15254 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
15255 	}
15256 	pmu_bus_running = 1;
15257 	ret = 0;
15258 
15259 unlock:
15260 	mutex_unlock(&pmus_lock);
15261 
15262 	return ret;
15263 }
15264 device_initcall(perf_event_sysfs_init);
15265 
15266 #ifdef CONFIG_CGROUP_PERF
15267 static struct cgroup_subsys_state *
15268 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
15269 {
15270 	struct perf_cgroup *jc;
15271 
15272 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
15273 	if (!jc)
15274 		return ERR_PTR(-ENOMEM);
15275 
15276 	jc->info = alloc_percpu(struct perf_cgroup_info);
15277 	if (!jc->info) {
15278 		kfree(jc);
15279 		return ERR_PTR(-ENOMEM);
15280 	}
15281 
15282 	return &jc->css;
15283 }
15284 
15285 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
15286 {
15287 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
15288 
15289 	free_percpu(jc->info);
15290 	kfree(jc);
15291 }
15292 
15293 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
15294 {
15295 	perf_event_cgroup(css->cgroup);
15296 	return 0;
15297 }
15298 
15299 static int __perf_cgroup_move(void *info)
15300 {
15301 	struct task_struct *task = info;
15302 
15303 	preempt_disable();
15304 	perf_cgroup_switch(task);
15305 	preempt_enable();
15306 
15307 	return 0;
15308 }
15309 
15310 static void perf_cgroup_attach(struct cgroup_taskset *tset)
15311 {
15312 	struct task_struct *task;
15313 	struct cgroup_subsys_state *css;
15314 
15315 	cgroup_taskset_for_each(task, css, tset)
15316 		task_function_call(task, __perf_cgroup_move, task);
15317 }
15318 
15319 struct cgroup_subsys perf_event_cgrp_subsys = {
15320 	.css_alloc	= perf_cgroup_css_alloc,
15321 	.css_free	= perf_cgroup_css_free,
15322 	.css_online	= perf_cgroup_css_online,
15323 	.attach		= perf_cgroup_attach,
15324 	/*
15325 	 * Implicitly enable on dfl hierarchy so that perf events can
15326 	 * always be filtered by cgroup2 path as long as perf_event
15327 	 * controller is not mounted on a legacy hierarchy.
15328 	 */
15329 	.implicit_on_dfl = true,
15330 	.threaded	= true,
15331 };
15332 #endif /* CONFIG_CGROUP_PERF */
15333 
15334 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
15335