xref: /linux/kernel/events/callchain.c (revision a1ff5a7d78a036d6c2178ee5acd6ba4946243800)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events callchain code, extracted from core.c:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/perf_event.h>
12 #include <linux/slab.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/uprobes.h>
15 
16 #include "internal.h"
17 
18 struct callchain_cpus_entries {
19 	struct rcu_head			rcu_head;
20 	struct perf_callchain_entry	*cpu_entries[];
21 };
22 
23 int sysctl_perf_event_max_stack __read_mostly = PERF_MAX_STACK_DEPTH;
24 int sysctl_perf_event_max_contexts_per_stack __read_mostly = PERF_MAX_CONTEXTS_PER_STACK;
25 
perf_callchain_entry__sizeof(void)26 static inline size_t perf_callchain_entry__sizeof(void)
27 {
28 	return (sizeof(struct perf_callchain_entry) +
29 		sizeof(__u64) * (sysctl_perf_event_max_stack +
30 				 sysctl_perf_event_max_contexts_per_stack));
31 }
32 
33 static DEFINE_PER_CPU(u8, callchain_recursion[PERF_NR_CONTEXTS]);
34 static atomic_t nr_callchain_events;
35 static DEFINE_MUTEX(callchain_mutex);
36 static struct callchain_cpus_entries *callchain_cpus_entries;
37 
38 
perf_callchain_kernel(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)39 __weak void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
40 				  struct pt_regs *regs)
41 {
42 }
43 
perf_callchain_user(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)44 __weak void perf_callchain_user(struct perf_callchain_entry_ctx *entry,
45 				struct pt_regs *regs)
46 {
47 }
48 
release_callchain_buffers_rcu(struct rcu_head * head)49 static void release_callchain_buffers_rcu(struct rcu_head *head)
50 {
51 	struct callchain_cpus_entries *entries;
52 	int cpu;
53 
54 	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
55 
56 	for_each_possible_cpu(cpu)
57 		kfree(entries->cpu_entries[cpu]);
58 
59 	kfree(entries);
60 }
61 
release_callchain_buffers(void)62 static void release_callchain_buffers(void)
63 {
64 	struct callchain_cpus_entries *entries;
65 
66 	entries = callchain_cpus_entries;
67 	RCU_INIT_POINTER(callchain_cpus_entries, NULL);
68 	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
69 }
70 
alloc_callchain_buffers(void)71 static int alloc_callchain_buffers(void)
72 {
73 	int cpu;
74 	int size;
75 	struct callchain_cpus_entries *entries;
76 
77 	/*
78 	 * We can't use the percpu allocation API for data that can be
79 	 * accessed from NMI. Use a temporary manual per cpu allocation
80 	 * until that gets sorted out.
81 	 */
82 	size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
83 
84 	entries = kzalloc(size, GFP_KERNEL);
85 	if (!entries)
86 		return -ENOMEM;
87 
88 	size = perf_callchain_entry__sizeof() * PERF_NR_CONTEXTS;
89 
90 	for_each_possible_cpu(cpu) {
91 		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
92 							 cpu_to_node(cpu));
93 		if (!entries->cpu_entries[cpu])
94 			goto fail;
95 	}
96 
97 	rcu_assign_pointer(callchain_cpus_entries, entries);
98 
99 	return 0;
100 
101 fail:
102 	for_each_possible_cpu(cpu)
103 		kfree(entries->cpu_entries[cpu]);
104 	kfree(entries);
105 
106 	return -ENOMEM;
107 }
108 
get_callchain_buffers(int event_max_stack)109 int get_callchain_buffers(int event_max_stack)
110 {
111 	int err = 0;
112 	int count;
113 
114 	mutex_lock(&callchain_mutex);
115 
116 	count = atomic_inc_return(&nr_callchain_events);
117 	if (WARN_ON_ONCE(count < 1)) {
118 		err = -EINVAL;
119 		goto exit;
120 	}
121 
122 	/*
123 	 * If requesting per event more than the global cap,
124 	 * return a different error to help userspace figure
125 	 * this out.
126 	 *
127 	 * And also do it here so that we have &callchain_mutex held.
128 	 */
129 	if (event_max_stack > sysctl_perf_event_max_stack) {
130 		err = -EOVERFLOW;
131 		goto exit;
132 	}
133 
134 	if (count == 1)
135 		err = alloc_callchain_buffers();
136 exit:
137 	if (err)
138 		atomic_dec(&nr_callchain_events);
139 
140 	mutex_unlock(&callchain_mutex);
141 
142 	return err;
143 }
144 
put_callchain_buffers(void)145 void put_callchain_buffers(void)
146 {
147 	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
148 		release_callchain_buffers();
149 		mutex_unlock(&callchain_mutex);
150 	}
151 }
152 
get_callchain_entry(int * rctx)153 struct perf_callchain_entry *get_callchain_entry(int *rctx)
154 {
155 	int cpu;
156 	struct callchain_cpus_entries *entries;
157 
158 	*rctx = get_recursion_context(this_cpu_ptr(callchain_recursion));
159 	if (*rctx == -1)
160 		return NULL;
161 
162 	entries = rcu_dereference(callchain_cpus_entries);
163 	if (!entries) {
164 		put_recursion_context(this_cpu_ptr(callchain_recursion), *rctx);
165 		return NULL;
166 	}
167 
168 	cpu = smp_processor_id();
169 
170 	return (((void *)entries->cpu_entries[cpu]) +
171 		(*rctx * perf_callchain_entry__sizeof()));
172 }
173 
174 void
put_callchain_entry(int rctx)175 put_callchain_entry(int rctx)
176 {
177 	put_recursion_context(this_cpu_ptr(callchain_recursion), rctx);
178 }
179 
fixup_uretprobe_trampoline_entries(struct perf_callchain_entry * entry,int start_entry_idx)180 static void fixup_uretprobe_trampoline_entries(struct perf_callchain_entry *entry,
181 					       int start_entry_idx)
182 {
183 #ifdef CONFIG_UPROBES
184 	struct uprobe_task *utask = current->utask;
185 	struct return_instance *ri;
186 	__u64 *cur_ip, *last_ip, tramp_addr;
187 
188 	if (likely(!utask || !utask->return_instances))
189 		return;
190 
191 	cur_ip = &entry->ip[start_entry_idx];
192 	last_ip = &entry->ip[entry->nr - 1];
193 	ri = utask->return_instances;
194 	tramp_addr = uprobe_get_trampoline_vaddr();
195 
196 	/*
197 	 * If there are pending uretprobes for the current thread, they are
198 	 * recorded in a list inside utask->return_instances; each such
199 	 * pending uretprobe replaces traced user function's return address on
200 	 * the stack, so when stack trace is captured, instead of seeing
201 	 * actual function's return address, we'll have one or many uretprobe
202 	 * trampoline addresses in the stack trace, which are not helpful and
203 	 * misleading to users.
204 	 * So here we go over the pending list of uretprobes, and each
205 	 * encountered trampoline address is replaced with actual return
206 	 * address.
207 	 */
208 	while (ri && cur_ip <= last_ip) {
209 		if (*cur_ip == tramp_addr) {
210 			*cur_ip = ri->orig_ret_vaddr;
211 			ri = ri->next;
212 		}
213 		cur_ip++;
214 	}
215 #endif
216 }
217 
218 struct perf_callchain_entry *
get_perf_callchain(struct pt_regs * regs,u32 init_nr,bool kernel,bool user,u32 max_stack,bool crosstask,bool add_mark)219 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
220 		   u32 max_stack, bool crosstask, bool add_mark)
221 {
222 	struct perf_callchain_entry *entry;
223 	struct perf_callchain_entry_ctx ctx;
224 	int rctx, start_entry_idx;
225 
226 	entry = get_callchain_entry(&rctx);
227 	if (!entry)
228 		return NULL;
229 
230 	ctx.entry     = entry;
231 	ctx.max_stack = max_stack;
232 	ctx.nr	      = entry->nr = init_nr;
233 	ctx.contexts       = 0;
234 	ctx.contexts_maxed = false;
235 
236 	if (kernel && !user_mode(regs)) {
237 		if (add_mark)
238 			perf_callchain_store_context(&ctx, PERF_CONTEXT_KERNEL);
239 		perf_callchain_kernel(&ctx, regs);
240 	}
241 
242 	if (user) {
243 		if (!user_mode(regs)) {
244 			if  (current->mm)
245 				regs = task_pt_regs(current);
246 			else
247 				regs = NULL;
248 		}
249 
250 		if (regs) {
251 			if (crosstask)
252 				goto exit_put;
253 
254 			if (add_mark)
255 				perf_callchain_store_context(&ctx, PERF_CONTEXT_USER);
256 
257 			start_entry_idx = entry->nr;
258 			perf_callchain_user(&ctx, regs);
259 			fixup_uretprobe_trampoline_entries(entry, start_entry_idx);
260 		}
261 	}
262 
263 exit_put:
264 	put_callchain_entry(rctx);
265 
266 	return entry;
267 }
268 
269 /*
270  * Used for sysctl_perf_event_max_stack and
271  * sysctl_perf_event_max_contexts_per_stack.
272  */
perf_event_max_stack_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)273 int perf_event_max_stack_handler(const struct ctl_table *table, int write,
274 				 void *buffer, size_t *lenp, loff_t *ppos)
275 {
276 	int *value = table->data;
277 	int new_value = *value, ret;
278 	struct ctl_table new_table = *table;
279 
280 	new_table.data = &new_value;
281 	ret = proc_dointvec_minmax(&new_table, write, buffer, lenp, ppos);
282 	if (ret || !write)
283 		return ret;
284 
285 	mutex_lock(&callchain_mutex);
286 	if (atomic_read(&nr_callchain_events))
287 		ret = -EBUSY;
288 	else
289 		*value = new_value;
290 
291 	mutex_unlock(&callchain_mutex);
292 
293 	return ret;
294 }
295