xref: /linux/drivers/edac/igen6_edac.c (revision 3fd6c59042dbba50391e30862beac979491145fe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Driver for Intel client SoC with integrated memory controller using IBECC
4  *
5  * Copyright (C) 2020 Intel Corporation
6  *
7  * The In-Band ECC (IBECC) IP provides ECC protection to all or specific
8  * regions of the physical memory space. It's used for memory controllers
9  * that don't support the out-of-band ECC which often needs an additional
10  * storage device to each channel for storing ECC data.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/slab.h>
17 #include <linux/irq_work.h>
18 #include <linux/llist.h>
19 #include <linux/genalloc.h>
20 #include <linux/edac.h>
21 #include <linux/bits.h>
22 #include <linux/io.h>
23 #include <asm/mach_traps.h>
24 #include <asm/nmi.h>
25 #include <asm/mce.h>
26 
27 #include "edac_mc.h"
28 #include "edac_module.h"
29 
30 #define IGEN6_REVISION	"v2.5.1"
31 
32 #define EDAC_MOD_STR	"igen6_edac"
33 #define IGEN6_NMI_NAME	"igen6_ibecc"
34 
35 /* Debug macros */
36 #define igen6_printk(level, fmt, arg...)		\
37 	edac_printk(level, "igen6", fmt, ##arg)
38 
39 #define igen6_mc_printk(mci, level, fmt, arg...)	\
40 	edac_mc_chipset_printk(mci, level, "igen6", fmt, ##arg)
41 
42 #define GET_BITFIELD(v, lo, hi) (((v) & GENMASK_ULL(hi, lo)) >> (lo))
43 
44 #define NUM_IMC				2 /* Max memory controllers */
45 #define NUM_CHANNELS			2 /* Max channels */
46 #define NUM_DIMMS			2 /* Max DIMMs per channel */
47 
48 #define _4GB				BIT_ULL(32)
49 
50 /* Size of physical memory */
51 #define TOM_OFFSET			0xa0
52 /* Top of low usable DRAM */
53 #define TOLUD_OFFSET			0xbc
54 /* Capability register C */
55 #define CAPID_C_OFFSET			0xec
56 #define CAPID_C_IBECC			BIT(15)
57 
58 /* Capability register E */
59 #define CAPID_E_OFFSET			0xf0
60 #define CAPID_E_IBECC			BIT(12)
61 #define CAPID_E_IBECC_BIT18		BIT(18)
62 
63 /* Error Status */
64 #define ERRSTS_OFFSET			0xc8
65 #define ERRSTS_CE			BIT_ULL(6)
66 #define ERRSTS_UE			BIT_ULL(7)
67 
68 /* Error Command */
69 #define ERRCMD_OFFSET			0xca
70 #define ERRCMD_CE			BIT_ULL(6)
71 #define ERRCMD_UE			BIT_ULL(7)
72 
73 /* IBECC MMIO base address */
74 #define IBECC_BASE			(res_cfg->ibecc_base)
75 #define IBECC_ACTIVATE_OFFSET		IBECC_BASE
76 #define IBECC_ACTIVATE_EN		BIT(0)
77 
78 /* IBECC error log */
79 #define ECC_ERROR_LOG_OFFSET		(IBECC_BASE + res_cfg->ibecc_error_log_offset)
80 #define ECC_ERROR_LOG_CE		BIT_ULL(62)
81 #define ECC_ERROR_LOG_UE		BIT_ULL(63)
82 #define ECC_ERROR_LOG_ADDR_SHIFT	5
83 #define ECC_ERROR_LOG_ADDR(v)		GET_BITFIELD(v, 5, 38)
84 #define ECC_ERROR_LOG_ADDR45(v)		GET_BITFIELD(v, 5, 45)
85 #define ECC_ERROR_LOG_SYND(v)		GET_BITFIELD(v, 46, 61)
86 
87 /* Host MMIO base address */
88 #define MCHBAR_OFFSET			0x48
89 #define MCHBAR_EN			BIT_ULL(0)
90 #define MCHBAR_BASE(v)			(GET_BITFIELD(v, 16, 38) << 16)
91 #define MCHBAR_SIZE			0x10000
92 
93 /* Parameters for the channel decode stage */
94 #define IMC_BASE			(res_cfg->imc_base)
95 #define MAD_INTER_CHANNEL_OFFSET	IMC_BASE
96 #define MAD_INTER_CHANNEL_DDR_TYPE(v)	GET_BITFIELD(v, 0, 2)
97 #define MAD_INTER_CHANNEL_ECHM(v)	GET_BITFIELD(v, 3, 3)
98 #define MAD_INTER_CHANNEL_CH_L_MAP(v)	GET_BITFIELD(v, 4, 4)
99 #define MAD_INTER_CHANNEL_CH_S_SIZE(v)	((u64)GET_BITFIELD(v, 12, 19) << 29)
100 
101 /* Parameters for DRAM decode stage */
102 #define MAD_INTRA_CH0_OFFSET		(IMC_BASE + 4)
103 #define MAD_INTRA_CH_DIMM_L_MAP(v)	GET_BITFIELD(v, 0, 0)
104 
105 /* DIMM characteristics */
106 #define MAD_DIMM_CH0_OFFSET		(IMC_BASE + 0xc)
107 #define MAD_DIMM_CH_DIMM_L_SIZE(v)	((u64)GET_BITFIELD(v, 0, 6) << 29)
108 #define MAD_DIMM_CH_DLW(v)		GET_BITFIELD(v, 7, 8)
109 #define MAD_DIMM_CH_DIMM_S_SIZE(v)	((u64)GET_BITFIELD(v, 16, 22) << 29)
110 #define MAD_DIMM_CH_DSW(v)		GET_BITFIELD(v, 24, 25)
111 
112 /* Hash for memory controller selection */
113 #define MAD_MC_HASH_OFFSET		(IMC_BASE + 0x1b8)
114 #define MAC_MC_HASH_LSB(v)		GET_BITFIELD(v, 1, 3)
115 
116 /* Hash for channel selection */
117 #define CHANNEL_HASH_OFFSET		(IMC_BASE + 0x24)
118 /* Hash for enhanced channel selection */
119 #define CHANNEL_EHASH_OFFSET		(IMC_BASE + 0x28)
120 #define CHANNEL_HASH_MASK(v)		(GET_BITFIELD(v, 6, 19) << 6)
121 #define CHANNEL_HASH_LSB_MASK_BIT(v)	GET_BITFIELD(v, 24, 26)
122 #define CHANNEL_HASH_MODE(v)		GET_BITFIELD(v, 28, 28)
123 
124 /* Parameters for memory slice decode stage */
125 #define MEM_SLICE_HASH_MASK(v)		(GET_BITFIELD(v, 6, 19) << 6)
126 #define MEM_SLICE_HASH_LSB_MASK_BIT(v)	GET_BITFIELD(v, 24, 26)
127 
128 static struct res_config {
129 	bool machine_check;
130 	int num_imc;
131 	u32 imc_base;
132 	u32 cmf_base;
133 	u32 cmf_size;
134 	u32 ms_hash_offset;
135 	u32 ibecc_base;
136 	u32 ibecc_error_log_offset;
137 	bool (*ibecc_available)(struct pci_dev *pdev);
138 	/* Extract error address logged in IBECC */
139 	u64 (*err_addr)(u64 ecclog);
140 	/* Convert error address logged in IBECC to system physical address */
141 	u64 (*err_addr_to_sys_addr)(u64 eaddr, int mc);
142 	/* Convert error address logged in IBECC to integrated memory controller address */
143 	u64 (*err_addr_to_imc_addr)(u64 eaddr, int mc);
144 } *res_cfg;
145 
146 struct igen6_imc {
147 	int mc;
148 	struct mem_ctl_info *mci;
149 	struct pci_dev *pdev;
150 	struct device dev;
151 	void __iomem *window;
152 	u64 size;
153 	u64 ch_s_size;
154 	int ch_l_map;
155 	u64 dimm_s_size[NUM_CHANNELS];
156 	u64 dimm_l_size[NUM_CHANNELS];
157 	int dimm_l_map[NUM_CHANNELS];
158 };
159 
160 static struct igen6_pvt {
161 	struct igen6_imc imc[NUM_IMC];
162 	u64 ms_hash;
163 	u64 ms_s_size;
164 	int ms_l_map;
165 } *igen6_pvt;
166 
167 /* The top of low usable DRAM */
168 static u32 igen6_tolud;
169 /* The size of physical memory */
170 static u64 igen6_tom;
171 
172 struct decoded_addr {
173 	int mc;
174 	u64 imc_addr;
175 	u64 sys_addr;
176 	int channel_idx;
177 	u64 channel_addr;
178 	int sub_channel_idx;
179 	u64 sub_channel_addr;
180 };
181 
182 struct ecclog_node {
183 	struct llist_node llnode;
184 	int mc;
185 	u64 ecclog;
186 };
187 
188 /*
189  * In the NMI handler, the driver uses the lock-less memory allocator
190  * to allocate memory to store the IBECC error logs and links the logs
191  * to the lock-less list. Delay printk() and the work of error reporting
192  * to EDAC core in a worker.
193  */
194 #define ECCLOG_POOL_SIZE	PAGE_SIZE
195 static LLIST_HEAD(ecclog_llist);
196 static struct gen_pool *ecclog_pool;
197 static char ecclog_buf[ECCLOG_POOL_SIZE];
198 static struct irq_work ecclog_irq_work;
199 static struct work_struct ecclog_work;
200 
201 /* Compute die IDs for Elkhart Lake with IBECC */
202 #define DID_EHL_SKU5	0x4514
203 #define DID_EHL_SKU6	0x4528
204 #define DID_EHL_SKU7	0x452a
205 #define DID_EHL_SKU8	0x4516
206 #define DID_EHL_SKU9	0x452c
207 #define DID_EHL_SKU10	0x452e
208 #define DID_EHL_SKU11	0x4532
209 #define DID_EHL_SKU12	0x4518
210 #define DID_EHL_SKU13	0x451a
211 #define DID_EHL_SKU14	0x4534
212 #define DID_EHL_SKU15	0x4536
213 
214 /* Compute die IDs for ICL-NNPI with IBECC */
215 #define DID_ICL_SKU8	0x4581
216 #define DID_ICL_SKU10	0x4585
217 #define DID_ICL_SKU11	0x4589
218 #define DID_ICL_SKU12	0x458d
219 
220 /* Compute die IDs for Tiger Lake with IBECC */
221 #define DID_TGL_SKU	0x9a14
222 
223 /* Compute die IDs for Alder Lake with IBECC */
224 #define DID_ADL_SKU1	0x4601
225 #define DID_ADL_SKU2	0x4602
226 #define DID_ADL_SKU3	0x4621
227 #define DID_ADL_SKU4	0x4641
228 
229 /* Compute die IDs for Alder Lake-N with IBECC */
230 #define DID_ADL_N_SKU1	0x4614
231 #define DID_ADL_N_SKU2	0x4617
232 #define DID_ADL_N_SKU3	0x461b
233 #define DID_ADL_N_SKU4	0x461c
234 #define DID_ADL_N_SKU5	0x4673
235 #define DID_ADL_N_SKU6	0x4674
236 #define DID_ADL_N_SKU7	0x4675
237 #define DID_ADL_N_SKU8	0x4677
238 #define DID_ADL_N_SKU9	0x4678
239 #define DID_ADL_N_SKU10	0x4679
240 #define DID_ADL_N_SKU11	0x467c
241 #define DID_ADL_N_SKU12	0x4632
242 
243 /* Compute die IDs for Raptor Lake-P with IBECC */
244 #define DID_RPL_P_SKU1	0xa706
245 #define DID_RPL_P_SKU2	0xa707
246 #define DID_RPL_P_SKU3	0xa708
247 #define DID_RPL_P_SKU4	0xa716
248 #define DID_RPL_P_SKU5	0xa718
249 
250 /* Compute die IDs for Meteor Lake-PS with IBECC */
251 #define DID_MTL_PS_SKU1	0x7d21
252 #define DID_MTL_PS_SKU2	0x7d22
253 #define DID_MTL_PS_SKU3	0x7d23
254 #define DID_MTL_PS_SKU4	0x7d24
255 
256 /* Compute die IDs for Meteor Lake-P with IBECC */
257 #define DID_MTL_P_SKU1	0x7d01
258 #define DID_MTL_P_SKU2	0x7d02
259 #define DID_MTL_P_SKU3	0x7d14
260 
261 /* Compute die IDs for Arrow Lake-UH with IBECC */
262 #define DID_ARL_UH_SKU1	0x7d06
263 #define DID_ARL_UH_SKU2	0x7d20
264 #define DID_ARL_UH_SKU3	0x7d30
265 
266 /* Compute die IDs for Panther Lake-H with IBECC */
267 #define DID_PTL_H_SKU1	0xb000
268 #define DID_PTL_H_SKU2	0xb001
269 #define DID_PTL_H_SKU3	0xb002
270 
get_mchbar(struct pci_dev * pdev,u64 * mchbar)271 static int get_mchbar(struct pci_dev *pdev, u64 *mchbar)
272 {
273 	union  {
274 		u64 v;
275 		struct {
276 			u32 v_lo;
277 			u32 v_hi;
278 		};
279 	} u;
280 
281 	if (pci_read_config_dword(pdev, MCHBAR_OFFSET, &u.v_lo)) {
282 		igen6_printk(KERN_ERR, "Failed to read lower MCHBAR\n");
283 		return -ENODEV;
284 	}
285 
286 	if (pci_read_config_dword(pdev, MCHBAR_OFFSET + 4, &u.v_hi)) {
287 		igen6_printk(KERN_ERR, "Failed to read upper MCHBAR\n");
288 		return -ENODEV;
289 	}
290 
291 	if (!(u.v & MCHBAR_EN)) {
292 		igen6_printk(KERN_ERR, "MCHBAR is disabled\n");
293 		return -ENODEV;
294 	}
295 
296 	*mchbar = MCHBAR_BASE(u.v);
297 
298 	return 0;
299 }
300 
ehl_ibecc_available(struct pci_dev * pdev)301 static bool ehl_ibecc_available(struct pci_dev *pdev)
302 {
303 	u32 v;
304 
305 	if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
306 		return false;
307 
308 	return !!(CAPID_C_IBECC & v);
309 }
310 
ehl_err_addr_to_sys_addr(u64 eaddr,int mc)311 static u64 ehl_err_addr_to_sys_addr(u64 eaddr, int mc)
312 {
313 	return eaddr;
314 }
315 
ehl_err_addr_to_imc_addr(u64 eaddr,int mc)316 static u64 ehl_err_addr_to_imc_addr(u64 eaddr, int mc)
317 {
318 	if (eaddr < igen6_tolud)
319 		return eaddr;
320 
321 	if (igen6_tom <= _4GB)
322 		return eaddr + igen6_tolud - _4GB;
323 
324 	if (eaddr >= igen6_tom)
325 		return eaddr + igen6_tolud - igen6_tom;
326 
327 	return eaddr;
328 }
329 
icl_ibecc_available(struct pci_dev * pdev)330 static bool icl_ibecc_available(struct pci_dev *pdev)
331 {
332 	u32 v;
333 
334 	if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
335 		return false;
336 
337 	return !(CAPID_C_IBECC & v) &&
338 		(boot_cpu_data.x86_stepping >= 1);
339 }
340 
tgl_ibecc_available(struct pci_dev * pdev)341 static bool tgl_ibecc_available(struct pci_dev *pdev)
342 {
343 	u32 v;
344 
345 	if (pci_read_config_dword(pdev, CAPID_E_OFFSET, &v))
346 		return false;
347 
348 	return !(CAPID_E_IBECC & v);
349 }
350 
mtl_p_ibecc_available(struct pci_dev * pdev)351 static bool mtl_p_ibecc_available(struct pci_dev *pdev)
352 {
353 	u32 v;
354 
355 	if (pci_read_config_dword(pdev, CAPID_E_OFFSET, &v))
356 		return false;
357 
358 	return !(CAPID_E_IBECC_BIT18 & v);
359 }
360 
mtl_ps_ibecc_available(struct pci_dev * pdev)361 static bool mtl_ps_ibecc_available(struct pci_dev *pdev)
362 {
363 #define MCHBAR_MEMSS_IBECCDIS	0x13c00
364 	void __iomem *window;
365 	u64 mchbar;
366 	u32 val;
367 
368 	if (get_mchbar(pdev, &mchbar))
369 		return false;
370 
371 	window = ioremap(mchbar, MCHBAR_SIZE * 2);
372 	if (!window) {
373 		igen6_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", mchbar);
374 		return false;
375 	}
376 
377 	val = readl(window + MCHBAR_MEMSS_IBECCDIS);
378 	iounmap(window);
379 
380 	/* Bit6: 1 - IBECC is disabled, 0 - IBECC isn't disabled */
381 	return !GET_BITFIELD(val, 6, 6);
382 }
383 
mem_addr_to_sys_addr(u64 maddr)384 static u64 mem_addr_to_sys_addr(u64 maddr)
385 {
386 	if (maddr < igen6_tolud)
387 		return maddr;
388 
389 	if (igen6_tom <= _4GB)
390 		return maddr - igen6_tolud + _4GB;
391 
392 	if (maddr < _4GB)
393 		return maddr - igen6_tolud + igen6_tom;
394 
395 	return maddr;
396 }
397 
mem_slice_hash(u64 addr,u64 mask,u64 hash_init,int intlv_bit)398 static u64 mem_slice_hash(u64 addr, u64 mask, u64 hash_init, int intlv_bit)
399 {
400 	u64 hash_addr = addr & mask, hash = hash_init;
401 	u64 intlv = (addr >> intlv_bit) & 1;
402 	int i;
403 
404 	for (i = 6; i < 20; i++)
405 		hash ^= (hash_addr >> i) & 1;
406 
407 	return hash ^ intlv;
408 }
409 
tgl_err_addr_to_mem_addr(u64 eaddr,int mc)410 static u64 tgl_err_addr_to_mem_addr(u64 eaddr, int mc)
411 {
412 	u64 maddr, hash, mask, ms_s_size;
413 	int intlv_bit;
414 	u32 ms_hash;
415 
416 	ms_s_size = igen6_pvt->ms_s_size;
417 	if (eaddr >= ms_s_size)
418 		return eaddr + ms_s_size;
419 
420 	ms_hash = igen6_pvt->ms_hash;
421 
422 	mask = MEM_SLICE_HASH_MASK(ms_hash);
423 	intlv_bit = MEM_SLICE_HASH_LSB_MASK_BIT(ms_hash) + 6;
424 
425 	maddr = GET_BITFIELD(eaddr, intlv_bit, 63) << (intlv_bit + 1) |
426 		GET_BITFIELD(eaddr, 0, intlv_bit - 1);
427 
428 	hash = mem_slice_hash(maddr, mask, mc, intlv_bit);
429 
430 	return maddr | (hash << intlv_bit);
431 }
432 
tgl_err_addr_to_sys_addr(u64 eaddr,int mc)433 static u64 tgl_err_addr_to_sys_addr(u64 eaddr, int mc)
434 {
435 	u64 maddr = tgl_err_addr_to_mem_addr(eaddr, mc);
436 
437 	return mem_addr_to_sys_addr(maddr);
438 }
439 
tgl_err_addr_to_imc_addr(u64 eaddr,int mc)440 static u64 tgl_err_addr_to_imc_addr(u64 eaddr, int mc)
441 {
442 	return eaddr;
443 }
444 
adl_err_addr_to_sys_addr(u64 eaddr,int mc)445 static u64 adl_err_addr_to_sys_addr(u64 eaddr, int mc)
446 {
447 	return mem_addr_to_sys_addr(eaddr);
448 }
449 
adl_err_addr_to_imc_addr(u64 eaddr,int mc)450 static u64 adl_err_addr_to_imc_addr(u64 eaddr, int mc)
451 {
452 	u64 imc_addr, ms_s_size = igen6_pvt->ms_s_size;
453 	struct igen6_imc *imc = &igen6_pvt->imc[mc];
454 	int intlv_bit;
455 	u32 mc_hash;
456 
457 	if (eaddr >= 2 * ms_s_size)
458 		return eaddr - ms_s_size;
459 
460 	mc_hash = readl(imc->window + MAD_MC_HASH_OFFSET);
461 
462 	intlv_bit = MAC_MC_HASH_LSB(mc_hash) + 6;
463 
464 	imc_addr = GET_BITFIELD(eaddr, intlv_bit + 1, 63) << intlv_bit |
465 		   GET_BITFIELD(eaddr, 0, intlv_bit - 1);
466 
467 	return imc_addr;
468 }
469 
rpl_p_err_addr(u64 ecclog)470 static u64 rpl_p_err_addr(u64 ecclog)
471 {
472 	return ECC_ERROR_LOG_ADDR45(ecclog);
473 }
474 
475 static struct res_config ehl_cfg = {
476 	.num_imc		= 1,
477 	.imc_base		= 0x5000,
478 	.ibecc_base		= 0xdc00,
479 	.ibecc_available	= ehl_ibecc_available,
480 	.ibecc_error_log_offset	= 0x170,
481 	.err_addr_to_sys_addr	= ehl_err_addr_to_sys_addr,
482 	.err_addr_to_imc_addr	= ehl_err_addr_to_imc_addr,
483 };
484 
485 static struct res_config icl_cfg = {
486 	.num_imc		= 1,
487 	.imc_base		= 0x5000,
488 	.ibecc_base		= 0xd800,
489 	.ibecc_error_log_offset	= 0x170,
490 	.ibecc_available	= icl_ibecc_available,
491 	.err_addr_to_sys_addr	= ehl_err_addr_to_sys_addr,
492 	.err_addr_to_imc_addr	= ehl_err_addr_to_imc_addr,
493 };
494 
495 static struct res_config tgl_cfg = {
496 	.machine_check		= true,
497 	.num_imc		= 2,
498 	.imc_base		= 0x5000,
499 	.cmf_base		= 0x11000,
500 	.cmf_size		= 0x800,
501 	.ms_hash_offset		= 0xac,
502 	.ibecc_base		= 0xd400,
503 	.ibecc_error_log_offset	= 0x170,
504 	.ibecc_available	= tgl_ibecc_available,
505 	.err_addr_to_sys_addr	= tgl_err_addr_to_sys_addr,
506 	.err_addr_to_imc_addr	= tgl_err_addr_to_imc_addr,
507 };
508 
509 static struct res_config adl_cfg = {
510 	.machine_check		= true,
511 	.num_imc		= 2,
512 	.imc_base		= 0xd800,
513 	.ibecc_base		= 0xd400,
514 	.ibecc_error_log_offset	= 0x68,
515 	.ibecc_available	= tgl_ibecc_available,
516 	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
517 	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
518 };
519 
520 static struct res_config adl_n_cfg = {
521 	.machine_check		= true,
522 	.num_imc		= 1,
523 	.imc_base		= 0xd800,
524 	.ibecc_base		= 0xd400,
525 	.ibecc_error_log_offset	= 0x68,
526 	.ibecc_available	= tgl_ibecc_available,
527 	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
528 	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
529 };
530 
531 static struct res_config rpl_p_cfg = {
532 	.machine_check		= true,
533 	.num_imc		= 2,
534 	.imc_base		= 0xd800,
535 	.ibecc_base		= 0xd400,
536 	.ibecc_error_log_offset	= 0x68,
537 	.ibecc_available	= tgl_ibecc_available,
538 	.err_addr		= rpl_p_err_addr,
539 	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
540 	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
541 };
542 
543 static struct res_config mtl_ps_cfg = {
544 	.machine_check		= true,
545 	.num_imc		= 2,
546 	.imc_base		= 0xd800,
547 	.ibecc_base		= 0xd400,
548 	.ibecc_error_log_offset	= 0x170,
549 	.ibecc_available	= mtl_ps_ibecc_available,
550 	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
551 	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
552 };
553 
554 static struct res_config mtl_p_cfg = {
555 	.machine_check		= true,
556 	.num_imc		= 2,
557 	.imc_base		= 0xd800,
558 	.ibecc_base		= 0xd400,
559 	.ibecc_error_log_offset	= 0x170,
560 	.ibecc_available	= mtl_p_ibecc_available,
561 	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
562 	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
563 };
564 
565 static const struct pci_device_id igen6_pci_tbl[] = {
566 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU5), (kernel_ulong_t)&ehl_cfg },
567 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU6), (kernel_ulong_t)&ehl_cfg },
568 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU7), (kernel_ulong_t)&ehl_cfg },
569 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU8), (kernel_ulong_t)&ehl_cfg },
570 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU9), (kernel_ulong_t)&ehl_cfg },
571 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU10), (kernel_ulong_t)&ehl_cfg },
572 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU11), (kernel_ulong_t)&ehl_cfg },
573 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU12), (kernel_ulong_t)&ehl_cfg },
574 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU13), (kernel_ulong_t)&ehl_cfg },
575 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU14), (kernel_ulong_t)&ehl_cfg },
576 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU15), (kernel_ulong_t)&ehl_cfg },
577 	{ PCI_VDEVICE(INTEL, DID_ICL_SKU8), (kernel_ulong_t)&icl_cfg },
578 	{ PCI_VDEVICE(INTEL, DID_ICL_SKU10), (kernel_ulong_t)&icl_cfg },
579 	{ PCI_VDEVICE(INTEL, DID_ICL_SKU11), (kernel_ulong_t)&icl_cfg },
580 	{ PCI_VDEVICE(INTEL, DID_ICL_SKU12), (kernel_ulong_t)&icl_cfg },
581 	{ PCI_VDEVICE(INTEL, DID_TGL_SKU), (kernel_ulong_t)&tgl_cfg },
582 	{ PCI_VDEVICE(INTEL, DID_ADL_SKU1), (kernel_ulong_t)&adl_cfg },
583 	{ PCI_VDEVICE(INTEL, DID_ADL_SKU2), (kernel_ulong_t)&adl_cfg },
584 	{ PCI_VDEVICE(INTEL, DID_ADL_SKU3), (kernel_ulong_t)&adl_cfg },
585 	{ PCI_VDEVICE(INTEL, DID_ADL_SKU4), (kernel_ulong_t)&adl_cfg },
586 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU1), (kernel_ulong_t)&adl_n_cfg },
587 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU2), (kernel_ulong_t)&adl_n_cfg },
588 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU3), (kernel_ulong_t)&adl_n_cfg },
589 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU4), (kernel_ulong_t)&adl_n_cfg },
590 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU5), (kernel_ulong_t)&adl_n_cfg },
591 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU6), (kernel_ulong_t)&adl_n_cfg },
592 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU7), (kernel_ulong_t)&adl_n_cfg },
593 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU8), (kernel_ulong_t)&adl_n_cfg },
594 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU9), (kernel_ulong_t)&adl_n_cfg },
595 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU10), (kernel_ulong_t)&adl_n_cfg },
596 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU11), (kernel_ulong_t)&adl_n_cfg },
597 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU12), (kernel_ulong_t)&adl_n_cfg },
598 	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU1), (kernel_ulong_t)&rpl_p_cfg },
599 	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU2), (kernel_ulong_t)&rpl_p_cfg },
600 	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU3), (kernel_ulong_t)&rpl_p_cfg },
601 	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU4), (kernel_ulong_t)&rpl_p_cfg },
602 	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU5), (kernel_ulong_t)&rpl_p_cfg },
603 	{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU1), (kernel_ulong_t)&mtl_ps_cfg },
604 	{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU2), (kernel_ulong_t)&mtl_ps_cfg },
605 	{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU3), (kernel_ulong_t)&mtl_ps_cfg },
606 	{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU4), (kernel_ulong_t)&mtl_ps_cfg },
607 	{ PCI_VDEVICE(INTEL, DID_MTL_P_SKU1), (kernel_ulong_t)&mtl_p_cfg },
608 	{ PCI_VDEVICE(INTEL, DID_MTL_P_SKU2), (kernel_ulong_t)&mtl_p_cfg },
609 	{ PCI_VDEVICE(INTEL, DID_MTL_P_SKU3), (kernel_ulong_t)&mtl_p_cfg },
610 	{ PCI_VDEVICE(INTEL, DID_ARL_UH_SKU1), (kernel_ulong_t)&mtl_p_cfg },
611 	{ PCI_VDEVICE(INTEL, DID_ARL_UH_SKU2), (kernel_ulong_t)&mtl_p_cfg },
612 	{ PCI_VDEVICE(INTEL, DID_ARL_UH_SKU3), (kernel_ulong_t)&mtl_p_cfg },
613 	{ PCI_VDEVICE(INTEL, DID_PTL_H_SKU1), (kernel_ulong_t)&mtl_p_cfg },
614 	{ PCI_VDEVICE(INTEL, DID_PTL_H_SKU2), (kernel_ulong_t)&mtl_p_cfg },
615 	{ PCI_VDEVICE(INTEL, DID_PTL_H_SKU3), (kernel_ulong_t)&mtl_p_cfg },
616 	{ },
617 };
618 MODULE_DEVICE_TABLE(pci, igen6_pci_tbl);
619 
get_width(int dimm_l,u32 mad_dimm)620 static enum dev_type get_width(int dimm_l, u32 mad_dimm)
621 {
622 	u32 w = dimm_l ? MAD_DIMM_CH_DLW(mad_dimm) :
623 			 MAD_DIMM_CH_DSW(mad_dimm);
624 
625 	switch (w) {
626 	case 0:
627 		return DEV_X8;
628 	case 1:
629 		return DEV_X16;
630 	case 2:
631 		return DEV_X32;
632 	default:
633 		return DEV_UNKNOWN;
634 	}
635 }
636 
get_memory_type(u32 mad_inter)637 static enum mem_type get_memory_type(u32 mad_inter)
638 {
639 	u32 t = MAD_INTER_CHANNEL_DDR_TYPE(mad_inter);
640 
641 	switch (t) {
642 	case 0:
643 		return MEM_DDR4;
644 	case 1:
645 		return MEM_DDR3;
646 	case 2:
647 		return MEM_LPDDR3;
648 	case 3:
649 		return MEM_LPDDR4;
650 	case 4:
651 		return MEM_WIO2;
652 	default:
653 		return MEM_UNKNOWN;
654 	}
655 }
656 
decode_chan_idx(u64 addr,u64 mask,int intlv_bit)657 static int decode_chan_idx(u64 addr, u64 mask, int intlv_bit)
658 {
659 	u64 hash_addr = addr & mask, hash = 0;
660 	u64 intlv = (addr >> intlv_bit) & 1;
661 	int i;
662 
663 	for (i = 6; i < 20; i++)
664 		hash ^= (hash_addr >> i) & 1;
665 
666 	return (int)hash ^ intlv;
667 }
668 
decode_channel_addr(u64 addr,int intlv_bit)669 static u64 decode_channel_addr(u64 addr, int intlv_bit)
670 {
671 	u64 channel_addr;
672 
673 	/* Remove the interleave bit and shift upper part down to fill gap */
674 	channel_addr  = GET_BITFIELD(addr, intlv_bit + 1, 63) << intlv_bit;
675 	channel_addr |= GET_BITFIELD(addr, 0, intlv_bit - 1);
676 
677 	return channel_addr;
678 }
679 
decode_addr(u64 addr,u32 hash,u64 s_size,int l_map,int * idx,u64 * sub_addr)680 static void decode_addr(u64 addr, u32 hash, u64 s_size, int l_map,
681 			int *idx, u64 *sub_addr)
682 {
683 	int intlv_bit = CHANNEL_HASH_LSB_MASK_BIT(hash) + 6;
684 
685 	if (addr > 2 * s_size) {
686 		*sub_addr = addr - s_size;
687 		*idx = l_map;
688 		return;
689 	}
690 
691 	if (CHANNEL_HASH_MODE(hash)) {
692 		*sub_addr = decode_channel_addr(addr, intlv_bit);
693 		*idx = decode_chan_idx(addr, CHANNEL_HASH_MASK(hash), intlv_bit);
694 	} else {
695 		*sub_addr = decode_channel_addr(addr, 6);
696 		*idx = GET_BITFIELD(addr, 6, 6);
697 	}
698 }
699 
igen6_decode(struct decoded_addr * res)700 static int igen6_decode(struct decoded_addr *res)
701 {
702 	struct igen6_imc *imc = &igen6_pvt->imc[res->mc];
703 	u64 addr = res->imc_addr, sub_addr, s_size;
704 	int idx, l_map;
705 	u32 hash;
706 
707 	if (addr >= igen6_tom) {
708 		edac_dbg(0, "Address 0x%llx out of range\n", addr);
709 		return -EINVAL;
710 	}
711 
712 	/* Decode channel */
713 	hash   = readl(imc->window + CHANNEL_HASH_OFFSET);
714 	s_size = imc->ch_s_size;
715 	l_map  = imc->ch_l_map;
716 	decode_addr(addr, hash, s_size, l_map, &idx, &sub_addr);
717 	res->channel_idx  = idx;
718 	res->channel_addr = sub_addr;
719 
720 	/* Decode sub-channel/DIMM */
721 	hash   = readl(imc->window + CHANNEL_EHASH_OFFSET);
722 	s_size = imc->dimm_s_size[idx];
723 	l_map  = imc->dimm_l_map[idx];
724 	decode_addr(res->channel_addr, hash, s_size, l_map, &idx, &sub_addr);
725 	res->sub_channel_idx  = idx;
726 	res->sub_channel_addr = sub_addr;
727 
728 	return 0;
729 }
730 
igen6_output_error(struct decoded_addr * res,struct mem_ctl_info * mci,u64 ecclog)731 static void igen6_output_error(struct decoded_addr *res,
732 			       struct mem_ctl_info *mci, u64 ecclog)
733 {
734 	enum hw_event_mc_err_type type = ecclog & ECC_ERROR_LOG_UE ?
735 					 HW_EVENT_ERR_UNCORRECTED :
736 					 HW_EVENT_ERR_CORRECTED;
737 
738 	edac_mc_handle_error(type, mci, 1,
739 			     res->sys_addr >> PAGE_SHIFT,
740 			     res->sys_addr & ~PAGE_MASK,
741 			     ECC_ERROR_LOG_SYND(ecclog),
742 			     res->channel_idx, res->sub_channel_idx,
743 			     -1, "", "");
744 }
745 
ecclog_gen_pool_create(void)746 static struct gen_pool *ecclog_gen_pool_create(void)
747 {
748 	struct gen_pool *pool;
749 
750 	pool = gen_pool_create(ilog2(sizeof(struct ecclog_node)), -1);
751 	if (!pool)
752 		return NULL;
753 
754 	if (gen_pool_add(pool, (unsigned long)ecclog_buf, ECCLOG_POOL_SIZE, -1)) {
755 		gen_pool_destroy(pool);
756 		return NULL;
757 	}
758 
759 	return pool;
760 }
761 
ecclog_gen_pool_add(int mc,u64 ecclog)762 static int ecclog_gen_pool_add(int mc, u64 ecclog)
763 {
764 	struct ecclog_node *node;
765 
766 	node = (void *)gen_pool_alloc(ecclog_pool, sizeof(*node));
767 	if (!node)
768 		return -ENOMEM;
769 
770 	node->mc = mc;
771 	node->ecclog = ecclog;
772 	llist_add(&node->llnode, &ecclog_llist);
773 
774 	return 0;
775 }
776 
777 /*
778  * Either the memory-mapped I/O status register ECC_ERROR_LOG or the PCI
779  * configuration space status register ERRSTS can indicate whether a
780  * correctable error or an uncorrectable error occurred. We only use the
781  * ECC_ERROR_LOG register to check error type, but need to clear both
782  * registers to enable future error events.
783  */
ecclog_read_and_clear(struct igen6_imc * imc)784 static u64 ecclog_read_and_clear(struct igen6_imc *imc)
785 {
786 	u64 ecclog = readq(imc->window + ECC_ERROR_LOG_OFFSET);
787 
788 	if (ecclog & (ECC_ERROR_LOG_CE | ECC_ERROR_LOG_UE)) {
789 		/* Clear CE/UE bits by writing 1s */
790 		writeq(ecclog, imc->window + ECC_ERROR_LOG_OFFSET);
791 		return ecclog;
792 	}
793 
794 	return 0;
795 }
796 
errsts_clear(struct igen6_imc * imc)797 static void errsts_clear(struct igen6_imc *imc)
798 {
799 	u16 errsts;
800 
801 	if (pci_read_config_word(imc->pdev, ERRSTS_OFFSET, &errsts)) {
802 		igen6_printk(KERN_ERR, "Failed to read ERRSTS\n");
803 		return;
804 	}
805 
806 	/* Clear CE/UE bits by writing 1s */
807 	if (errsts & (ERRSTS_CE | ERRSTS_UE))
808 		pci_write_config_word(imc->pdev, ERRSTS_OFFSET, errsts);
809 }
810 
errcmd_enable_error_reporting(bool enable)811 static int errcmd_enable_error_reporting(bool enable)
812 {
813 	struct igen6_imc *imc = &igen6_pvt->imc[0];
814 	u16 errcmd;
815 	int rc;
816 
817 	rc = pci_read_config_word(imc->pdev, ERRCMD_OFFSET, &errcmd);
818 	if (rc)
819 		return pcibios_err_to_errno(rc);
820 
821 	if (enable)
822 		errcmd |= ERRCMD_CE | ERRSTS_UE;
823 	else
824 		errcmd &= ~(ERRCMD_CE | ERRSTS_UE);
825 
826 	rc = pci_write_config_word(imc->pdev, ERRCMD_OFFSET, errcmd);
827 	if (rc)
828 		return pcibios_err_to_errno(rc);
829 
830 	return 0;
831 }
832 
ecclog_handler(void)833 static int ecclog_handler(void)
834 {
835 	struct igen6_imc *imc;
836 	int i, n = 0;
837 	u64 ecclog;
838 
839 	for (i = 0; i < res_cfg->num_imc; i++) {
840 		imc = &igen6_pvt->imc[i];
841 
842 		/* errsts_clear() isn't NMI-safe. Delay it in the IRQ context */
843 
844 		ecclog = ecclog_read_and_clear(imc);
845 		if (!ecclog)
846 			continue;
847 
848 		if (!ecclog_gen_pool_add(i, ecclog))
849 			irq_work_queue(&ecclog_irq_work);
850 
851 		n++;
852 	}
853 
854 	return n;
855 }
856 
ecclog_work_cb(struct work_struct * work)857 static void ecclog_work_cb(struct work_struct *work)
858 {
859 	struct ecclog_node *node, *tmp;
860 	struct mem_ctl_info *mci;
861 	struct llist_node *head;
862 	struct decoded_addr res;
863 	u64 eaddr;
864 
865 	head = llist_del_all(&ecclog_llist);
866 	if (!head)
867 		return;
868 
869 	llist_for_each_entry_safe(node, tmp, head, llnode) {
870 		memset(&res, 0, sizeof(res));
871 		if (res_cfg->err_addr)
872 			eaddr = res_cfg->err_addr(node->ecclog);
873 		else
874 			eaddr = ECC_ERROR_LOG_ADDR(node->ecclog) <<
875 				ECC_ERROR_LOG_ADDR_SHIFT;
876 		res.mc	     = node->mc;
877 		res.sys_addr = res_cfg->err_addr_to_sys_addr(eaddr, res.mc);
878 		res.imc_addr = res_cfg->err_addr_to_imc_addr(eaddr, res.mc);
879 
880 		mci = igen6_pvt->imc[res.mc].mci;
881 
882 		edac_dbg(2, "MC %d, ecclog = 0x%llx\n", node->mc, node->ecclog);
883 		igen6_mc_printk(mci, KERN_DEBUG, "HANDLING IBECC MEMORY ERROR\n");
884 		igen6_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", res.sys_addr);
885 
886 		if (!igen6_decode(&res))
887 			igen6_output_error(&res, mci, node->ecclog);
888 
889 		gen_pool_free(ecclog_pool, (unsigned long)node, sizeof(*node));
890 	}
891 }
892 
ecclog_irq_work_cb(struct irq_work * irq_work)893 static void ecclog_irq_work_cb(struct irq_work *irq_work)
894 {
895 	int i;
896 
897 	for (i = 0; i < res_cfg->num_imc; i++)
898 		errsts_clear(&igen6_pvt->imc[i]);
899 
900 	if (!llist_empty(&ecclog_llist))
901 		schedule_work(&ecclog_work);
902 }
903 
ecclog_nmi_handler(unsigned int cmd,struct pt_regs * regs)904 static int ecclog_nmi_handler(unsigned int cmd, struct pt_regs *regs)
905 {
906 	unsigned char reason;
907 
908 	if (!ecclog_handler())
909 		return NMI_DONE;
910 
911 	/*
912 	 * Both In-Band ECC correctable error and uncorrectable error are
913 	 * reported by SERR# NMI. The NMI generic code (see pci_serr_error())
914 	 * doesn't clear the bit NMI_REASON_CLEAR_SERR (in port 0x61) to
915 	 * re-enable the SERR# NMI after NMI handling. So clear this bit here
916 	 * to re-enable SERR# NMI for receiving future In-Band ECC errors.
917 	 */
918 	reason  = x86_platform.get_nmi_reason() & NMI_REASON_CLEAR_MASK;
919 	reason |= NMI_REASON_CLEAR_SERR;
920 	outb(reason, NMI_REASON_PORT);
921 	reason &= ~NMI_REASON_CLEAR_SERR;
922 	outb(reason, NMI_REASON_PORT);
923 
924 	return NMI_HANDLED;
925 }
926 
ecclog_mce_handler(struct notifier_block * nb,unsigned long val,void * data)927 static int ecclog_mce_handler(struct notifier_block *nb, unsigned long val,
928 			      void *data)
929 {
930 	struct mce *mce = (struct mce *)data;
931 	char *type;
932 
933 	if (mce->kflags & MCE_HANDLED_CEC)
934 		return NOTIFY_DONE;
935 
936 	/*
937 	 * Ignore unless this is a memory related error.
938 	 * We don't check the bit MCI_STATUS_ADDRV of MCi_STATUS here,
939 	 * since this bit isn't set on some CPU (e.g., Tiger Lake UP3).
940 	 */
941 	if ((mce->status & 0xefff) >> 7 != 1)
942 		return NOTIFY_DONE;
943 
944 	if (mce->mcgstatus & MCG_STATUS_MCIP)
945 		type = "Exception";
946 	else
947 		type = "Event";
948 
949 	edac_dbg(0, "CPU %d: Machine Check %s: 0x%llx Bank %d: 0x%llx\n",
950 		 mce->extcpu, type, mce->mcgstatus,
951 		 mce->bank, mce->status);
952 	edac_dbg(0, "TSC 0x%llx\n", mce->tsc);
953 	edac_dbg(0, "ADDR 0x%llx\n", mce->addr);
954 	edac_dbg(0, "MISC 0x%llx\n", mce->misc);
955 	edac_dbg(0, "PROCESSOR %u:0x%x TIME %llu SOCKET %u APIC 0x%x\n",
956 		 mce->cpuvendor, mce->cpuid, mce->time,
957 		 mce->socketid, mce->apicid);
958 	/*
959 	 * We just use the Machine Check for the memory error notification.
960 	 * Each memory controller is associated with an IBECC instance.
961 	 * Directly read and clear the error information(error address and
962 	 * error type) on all the IBECC instances so that we know on which
963 	 * memory controller the memory error(s) occurred.
964 	 */
965 	if (!ecclog_handler())
966 		return NOTIFY_DONE;
967 
968 	mce->kflags |= MCE_HANDLED_EDAC;
969 
970 	return NOTIFY_DONE;
971 }
972 
973 static struct notifier_block ecclog_mce_dec = {
974 	.notifier_call	= ecclog_mce_handler,
975 	.priority	= MCE_PRIO_EDAC,
976 };
977 
igen6_check_ecc(struct igen6_imc * imc)978 static bool igen6_check_ecc(struct igen6_imc *imc)
979 {
980 	u32 activate = readl(imc->window + IBECC_ACTIVATE_OFFSET);
981 
982 	return !!(activate & IBECC_ACTIVATE_EN);
983 }
984 
igen6_get_dimm_config(struct mem_ctl_info * mci)985 static int igen6_get_dimm_config(struct mem_ctl_info *mci)
986 {
987 	struct igen6_imc *imc = mci->pvt_info;
988 	u32 mad_inter, mad_intra, mad_dimm;
989 	int i, j, ndimms, mc = imc->mc;
990 	struct dimm_info *dimm;
991 	enum mem_type mtype;
992 	enum dev_type dtype;
993 	u64 dsize;
994 	bool ecc;
995 
996 	edac_dbg(2, "\n");
997 
998 	mad_inter = readl(imc->window + MAD_INTER_CHANNEL_OFFSET);
999 	mtype = get_memory_type(mad_inter);
1000 	ecc = igen6_check_ecc(imc);
1001 	imc->ch_s_size = MAD_INTER_CHANNEL_CH_S_SIZE(mad_inter);
1002 	imc->ch_l_map  = MAD_INTER_CHANNEL_CH_L_MAP(mad_inter);
1003 
1004 	for (i = 0; i < NUM_CHANNELS; i++) {
1005 		mad_intra = readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4);
1006 		mad_dimm  = readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4);
1007 
1008 		imc->dimm_l_size[i] = MAD_DIMM_CH_DIMM_L_SIZE(mad_dimm);
1009 		imc->dimm_s_size[i] = MAD_DIMM_CH_DIMM_S_SIZE(mad_dimm);
1010 		imc->dimm_l_map[i]  = MAD_INTRA_CH_DIMM_L_MAP(mad_intra);
1011 		imc->size += imc->dimm_s_size[i];
1012 		imc->size += imc->dimm_l_size[i];
1013 		ndimms = 0;
1014 
1015 		for (j = 0; j < NUM_DIMMS; j++) {
1016 			dimm = edac_get_dimm(mci, i, j, 0);
1017 
1018 			if (j ^ imc->dimm_l_map[i]) {
1019 				dtype = get_width(0, mad_dimm);
1020 				dsize = imc->dimm_s_size[i];
1021 			} else {
1022 				dtype = get_width(1, mad_dimm);
1023 				dsize = imc->dimm_l_size[i];
1024 			}
1025 
1026 			if (!dsize)
1027 				continue;
1028 
1029 			dimm->grain = 64;
1030 			dimm->mtype = mtype;
1031 			dimm->dtype = dtype;
1032 			dimm->nr_pages  = MiB_TO_PAGES(dsize >> 20);
1033 			dimm->edac_mode = EDAC_SECDED;
1034 			snprintf(dimm->label, sizeof(dimm->label),
1035 				 "MC#%d_Chan#%d_DIMM#%d", mc, i, j);
1036 			edac_dbg(0, "MC %d, Channel %d, DIMM %d, Size %llu MiB (%u pages)\n",
1037 				 mc, i, j, dsize >> 20, dimm->nr_pages);
1038 
1039 			ndimms++;
1040 		}
1041 
1042 		if (ndimms && !ecc) {
1043 			igen6_printk(KERN_ERR, "MC%d In-Band ECC is disabled\n", mc);
1044 			return -ENODEV;
1045 		}
1046 	}
1047 
1048 	edac_dbg(0, "MC %d, total size %llu MiB\n", mc, imc->size >> 20);
1049 
1050 	return 0;
1051 }
1052 
1053 #ifdef CONFIG_EDAC_DEBUG
1054 /* Top of upper usable DRAM */
1055 static u64 igen6_touud;
1056 #define TOUUD_OFFSET	0xa8
1057 
igen6_reg_dump(struct igen6_imc * imc)1058 static void igen6_reg_dump(struct igen6_imc *imc)
1059 {
1060 	int i;
1061 
1062 	edac_dbg(2, "CHANNEL_HASH     : 0x%x\n",
1063 		 readl(imc->window + CHANNEL_HASH_OFFSET));
1064 	edac_dbg(2, "CHANNEL_EHASH    : 0x%x\n",
1065 		 readl(imc->window + CHANNEL_EHASH_OFFSET));
1066 	edac_dbg(2, "MAD_INTER_CHANNEL: 0x%x\n",
1067 		 readl(imc->window + MAD_INTER_CHANNEL_OFFSET));
1068 	edac_dbg(2, "ECC_ERROR_LOG    : 0x%llx\n",
1069 		 readq(imc->window + ECC_ERROR_LOG_OFFSET));
1070 
1071 	for (i = 0; i < NUM_CHANNELS; i++) {
1072 		edac_dbg(2, "MAD_INTRA_CH%d    : 0x%x\n", i,
1073 			 readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4));
1074 		edac_dbg(2, "MAD_DIMM_CH%d     : 0x%x\n", i,
1075 			 readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4));
1076 	}
1077 	edac_dbg(2, "TOLUD            : 0x%x", igen6_tolud);
1078 	edac_dbg(2, "TOUUD            : 0x%llx", igen6_touud);
1079 	edac_dbg(2, "TOM              : 0x%llx", igen6_tom);
1080 }
1081 
1082 static struct dentry *igen6_test;
1083 
debugfs_u64_set(void * data,u64 val)1084 static int debugfs_u64_set(void *data, u64 val)
1085 {
1086 	u64 ecclog;
1087 
1088 	if ((val >= igen6_tolud && val < _4GB) || val >= igen6_touud) {
1089 		edac_dbg(0, "Address 0x%llx out of range\n", val);
1090 		return 0;
1091 	}
1092 
1093 	pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val);
1094 
1095 	val  >>= ECC_ERROR_LOG_ADDR_SHIFT;
1096 	ecclog = (val << ECC_ERROR_LOG_ADDR_SHIFT) | ECC_ERROR_LOG_CE;
1097 
1098 	if (!ecclog_gen_pool_add(0, ecclog))
1099 		irq_work_queue(&ecclog_irq_work);
1100 
1101 	return 0;
1102 }
1103 DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
1104 
igen6_debug_setup(void)1105 static void igen6_debug_setup(void)
1106 {
1107 	igen6_test = edac_debugfs_create_dir("igen6_test");
1108 	if (!igen6_test)
1109 		return;
1110 
1111 	if (!edac_debugfs_create_file("addr", 0200, igen6_test,
1112 				      NULL, &fops_u64_wo)) {
1113 		debugfs_remove(igen6_test);
1114 		igen6_test = NULL;
1115 	}
1116 }
1117 
igen6_debug_teardown(void)1118 static void igen6_debug_teardown(void)
1119 {
1120 	debugfs_remove_recursive(igen6_test);
1121 }
1122 #else
igen6_reg_dump(struct igen6_imc * imc)1123 static void igen6_reg_dump(struct igen6_imc *imc) {}
igen6_debug_setup(void)1124 static void igen6_debug_setup(void) {}
igen6_debug_teardown(void)1125 static void igen6_debug_teardown(void) {}
1126 #endif
1127 
igen6_pci_setup(struct pci_dev * pdev,u64 * mchbar)1128 static int igen6_pci_setup(struct pci_dev *pdev, u64 *mchbar)
1129 {
1130 	union  {
1131 		u64 v;
1132 		struct {
1133 			u32 v_lo;
1134 			u32 v_hi;
1135 		};
1136 	} u;
1137 
1138 	edac_dbg(2, "\n");
1139 
1140 	if (!res_cfg->ibecc_available(pdev)) {
1141 		edac_dbg(2, "No In-Band ECC IP\n");
1142 		goto fail;
1143 	}
1144 
1145 	if (pci_read_config_dword(pdev, TOLUD_OFFSET, &igen6_tolud)) {
1146 		igen6_printk(KERN_ERR, "Failed to read TOLUD\n");
1147 		goto fail;
1148 	}
1149 
1150 	igen6_tolud &= GENMASK(31, 20);
1151 
1152 	if (pci_read_config_dword(pdev, TOM_OFFSET, &u.v_lo)) {
1153 		igen6_printk(KERN_ERR, "Failed to read lower TOM\n");
1154 		goto fail;
1155 	}
1156 
1157 	if (pci_read_config_dword(pdev, TOM_OFFSET + 4, &u.v_hi)) {
1158 		igen6_printk(KERN_ERR, "Failed to read upper TOM\n");
1159 		goto fail;
1160 	}
1161 
1162 	igen6_tom = u.v & GENMASK_ULL(38, 20);
1163 
1164 	if (get_mchbar(pdev, mchbar))
1165 		goto fail;
1166 
1167 #ifdef CONFIG_EDAC_DEBUG
1168 	if (pci_read_config_dword(pdev, TOUUD_OFFSET, &u.v_lo))
1169 		edac_dbg(2, "Failed to read lower TOUUD\n");
1170 	else if (pci_read_config_dword(pdev, TOUUD_OFFSET + 4, &u.v_hi))
1171 		edac_dbg(2, "Failed to read upper TOUUD\n");
1172 	else
1173 		igen6_touud = u.v & GENMASK_ULL(38, 20);
1174 #endif
1175 
1176 	return 0;
1177 fail:
1178 	return -ENODEV;
1179 }
1180 
igen6_check(struct mem_ctl_info * mci)1181 static void igen6_check(struct mem_ctl_info *mci)
1182 {
1183 	struct igen6_imc *imc = mci->pvt_info;
1184 	u64 ecclog;
1185 
1186 	/* errsts_clear() isn't NMI-safe. Delay it in the IRQ context */
1187 	ecclog = ecclog_read_and_clear(imc);
1188 	if (!ecclog)
1189 		return;
1190 
1191 	if (!ecclog_gen_pool_add(imc->mc, ecclog))
1192 		irq_work_queue(&ecclog_irq_work);
1193 }
1194 
igen6_register_mci(int mc,u64 mchbar,struct pci_dev * pdev)1195 static int igen6_register_mci(int mc, u64 mchbar, struct pci_dev *pdev)
1196 {
1197 	struct edac_mc_layer layers[2];
1198 	struct mem_ctl_info *mci;
1199 	struct igen6_imc *imc;
1200 	void __iomem *window;
1201 	int rc;
1202 
1203 	edac_dbg(2, "\n");
1204 
1205 	mchbar += mc * MCHBAR_SIZE;
1206 	window = ioremap(mchbar, MCHBAR_SIZE);
1207 	if (!window) {
1208 		igen6_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", mchbar);
1209 		return -ENODEV;
1210 	}
1211 
1212 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
1213 	layers[0].size = NUM_CHANNELS;
1214 	layers[0].is_virt_csrow = false;
1215 	layers[1].type = EDAC_MC_LAYER_SLOT;
1216 	layers[1].size = NUM_DIMMS;
1217 	layers[1].is_virt_csrow = true;
1218 
1219 	mci = edac_mc_alloc(mc, ARRAY_SIZE(layers), layers, 0);
1220 	if (!mci) {
1221 		rc = -ENOMEM;
1222 		goto fail;
1223 	}
1224 
1225 	mci->ctl_name = kasprintf(GFP_KERNEL, "Intel_client_SoC MC#%d", mc);
1226 	if (!mci->ctl_name) {
1227 		rc = -ENOMEM;
1228 		goto fail2;
1229 	}
1230 
1231 	mci->mtype_cap = MEM_FLAG_LPDDR4 | MEM_FLAG_DDR4;
1232 	mci->edac_ctl_cap = EDAC_FLAG_SECDED;
1233 	mci->edac_cap = EDAC_FLAG_SECDED;
1234 	mci->mod_name = EDAC_MOD_STR;
1235 	mci->dev_name = pci_name(pdev);
1236 	if (edac_op_state == EDAC_OPSTATE_POLL)
1237 		mci->edac_check = igen6_check;
1238 	mci->pvt_info = &igen6_pvt->imc[mc];
1239 
1240 	imc = mci->pvt_info;
1241 	device_initialize(&imc->dev);
1242 	/*
1243 	 * EDAC core uses mci->pdev(pointer of structure device) as
1244 	 * memory controller ID. The client SoCs attach one or more
1245 	 * memory controllers to single pci_dev (single pci_dev->dev
1246 	 * can be for multiple memory controllers).
1247 	 *
1248 	 * To make mci->pdev unique, assign pci_dev->dev to mci->pdev
1249 	 * for the first memory controller and assign a unique imc->dev
1250 	 * to mci->pdev for each non-first memory controller.
1251 	 */
1252 	mci->pdev = mc ? &imc->dev : &pdev->dev;
1253 	imc->mc	= mc;
1254 	imc->pdev = pdev;
1255 	imc->window = window;
1256 
1257 	igen6_reg_dump(imc);
1258 
1259 	rc = igen6_get_dimm_config(mci);
1260 	if (rc)
1261 		goto fail3;
1262 
1263 	rc = edac_mc_add_mc(mci);
1264 	if (rc) {
1265 		igen6_printk(KERN_ERR, "Failed to register mci#%d\n", mc);
1266 		goto fail3;
1267 	}
1268 
1269 	imc->mci = mci;
1270 	return 0;
1271 fail3:
1272 	mci->pvt_info = NULL;
1273 	kfree(mci->ctl_name);
1274 fail2:
1275 	edac_mc_free(mci);
1276 fail:
1277 	iounmap(window);
1278 	return rc;
1279 }
1280 
igen6_unregister_mcis(void)1281 static void igen6_unregister_mcis(void)
1282 {
1283 	struct mem_ctl_info *mci;
1284 	struct igen6_imc *imc;
1285 	int i;
1286 
1287 	edac_dbg(2, "\n");
1288 
1289 	for (i = 0; i < res_cfg->num_imc; i++) {
1290 		imc = &igen6_pvt->imc[i];
1291 		mci = imc->mci;
1292 		if (!mci)
1293 			continue;
1294 
1295 		edac_mc_del_mc(mci->pdev);
1296 		kfree(mci->ctl_name);
1297 		mci->pvt_info = NULL;
1298 		edac_mc_free(mci);
1299 		iounmap(imc->window);
1300 	}
1301 }
1302 
igen6_mem_slice_setup(u64 mchbar)1303 static int igen6_mem_slice_setup(u64 mchbar)
1304 {
1305 	struct igen6_imc *imc = &igen6_pvt->imc[0];
1306 	u64 base = mchbar + res_cfg->cmf_base;
1307 	u32 offset = res_cfg->ms_hash_offset;
1308 	u32 size = res_cfg->cmf_size;
1309 	u64 ms_s_size, ms_hash;
1310 	void __iomem *cmf;
1311 	int ms_l_map;
1312 
1313 	edac_dbg(2, "\n");
1314 
1315 	if (imc[0].size < imc[1].size) {
1316 		ms_s_size = imc[0].size;
1317 		ms_l_map  = 1;
1318 	} else {
1319 		ms_s_size = imc[1].size;
1320 		ms_l_map  = 0;
1321 	}
1322 
1323 	igen6_pvt->ms_s_size = ms_s_size;
1324 	igen6_pvt->ms_l_map  = ms_l_map;
1325 
1326 	edac_dbg(0, "ms_s_size: %llu MiB, ms_l_map %d\n",
1327 		 ms_s_size >> 20, ms_l_map);
1328 
1329 	if (!size)
1330 		return 0;
1331 
1332 	cmf = ioremap(base, size);
1333 	if (!cmf) {
1334 		igen6_printk(KERN_ERR, "Failed to ioremap cmf 0x%llx\n", base);
1335 		return -ENODEV;
1336 	}
1337 
1338 	ms_hash = readq(cmf + offset);
1339 	igen6_pvt->ms_hash = ms_hash;
1340 
1341 	edac_dbg(0, "MEM_SLICE_HASH: 0x%llx\n", ms_hash);
1342 
1343 	iounmap(cmf);
1344 
1345 	return 0;
1346 }
1347 
register_err_handler(void)1348 static int register_err_handler(void)
1349 {
1350 	int rc;
1351 
1352 	if (res_cfg->machine_check) {
1353 		mce_register_decode_chain(&ecclog_mce_dec);
1354 		return 0;
1355 	}
1356 
1357 	rc = register_nmi_handler(NMI_SERR, ecclog_nmi_handler,
1358 				  0, IGEN6_NMI_NAME);
1359 	if (rc) {
1360 		igen6_printk(KERN_ERR, "Failed to register NMI handler\n");
1361 		return rc;
1362 	}
1363 
1364 	return 0;
1365 }
1366 
unregister_err_handler(void)1367 static void unregister_err_handler(void)
1368 {
1369 	if (res_cfg->machine_check) {
1370 		mce_unregister_decode_chain(&ecclog_mce_dec);
1371 		return;
1372 	}
1373 
1374 	unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
1375 }
1376 
opstate_set(struct res_config * cfg,const struct pci_device_id * ent)1377 static void opstate_set(struct res_config *cfg, const struct pci_device_id *ent)
1378 {
1379 	/*
1380 	 * Quirk: Certain SoCs' error reporting interrupts don't work.
1381 	 *        Force polling mode for them to ensure that memory error
1382 	 *        events can be handled.
1383 	 */
1384 	if (ent->device == DID_ADL_N_SKU4) {
1385 		edac_op_state = EDAC_OPSTATE_POLL;
1386 		return;
1387 	}
1388 
1389 	/* Set the mode according to the configuration data. */
1390 	if (cfg->machine_check)
1391 		edac_op_state = EDAC_OPSTATE_INT;
1392 	else
1393 		edac_op_state = EDAC_OPSTATE_NMI;
1394 }
1395 
igen6_probe(struct pci_dev * pdev,const struct pci_device_id * ent)1396 static int igen6_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1397 {
1398 	u64 mchbar;
1399 	int i, rc;
1400 
1401 	edac_dbg(2, "\n");
1402 
1403 	igen6_pvt = kzalloc(sizeof(*igen6_pvt), GFP_KERNEL);
1404 	if (!igen6_pvt)
1405 		return -ENOMEM;
1406 
1407 	res_cfg = (struct res_config *)ent->driver_data;
1408 
1409 	rc = igen6_pci_setup(pdev, &mchbar);
1410 	if (rc)
1411 		goto fail;
1412 
1413 	opstate_set(res_cfg, ent);
1414 
1415 	for (i = 0; i < res_cfg->num_imc; i++) {
1416 		rc = igen6_register_mci(i, mchbar, pdev);
1417 		if (rc)
1418 			goto fail2;
1419 	}
1420 
1421 	if (res_cfg->num_imc > 1) {
1422 		rc = igen6_mem_slice_setup(mchbar);
1423 		if (rc)
1424 			goto fail2;
1425 	}
1426 
1427 	ecclog_pool = ecclog_gen_pool_create();
1428 	if (!ecclog_pool) {
1429 		rc = -ENOMEM;
1430 		goto fail2;
1431 	}
1432 
1433 	INIT_WORK(&ecclog_work, ecclog_work_cb);
1434 	init_irq_work(&ecclog_irq_work, ecclog_irq_work_cb);
1435 
1436 	rc = register_err_handler();
1437 	if (rc)
1438 		goto fail3;
1439 
1440 	/* Enable error reporting */
1441 	rc = errcmd_enable_error_reporting(true);
1442 	if (rc) {
1443 		igen6_printk(KERN_ERR, "Failed to enable error reporting\n");
1444 		goto fail4;
1445 	}
1446 
1447 	/* Check if any pending errors before/during the registration of the error handler */
1448 	ecclog_handler();
1449 
1450 	igen6_debug_setup();
1451 	return 0;
1452 fail4:
1453 	unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
1454 fail3:
1455 	gen_pool_destroy(ecclog_pool);
1456 fail2:
1457 	igen6_unregister_mcis();
1458 fail:
1459 	kfree(igen6_pvt);
1460 	return rc;
1461 }
1462 
igen6_remove(struct pci_dev * pdev)1463 static void igen6_remove(struct pci_dev *pdev)
1464 {
1465 	edac_dbg(2, "\n");
1466 
1467 	igen6_debug_teardown();
1468 	errcmd_enable_error_reporting(false);
1469 	unregister_err_handler();
1470 	irq_work_sync(&ecclog_irq_work);
1471 	flush_work(&ecclog_work);
1472 	gen_pool_destroy(ecclog_pool);
1473 	igen6_unregister_mcis();
1474 	kfree(igen6_pvt);
1475 }
1476 
1477 static struct pci_driver igen6_driver = {
1478 	.name     = EDAC_MOD_STR,
1479 	.probe    = igen6_probe,
1480 	.remove   = igen6_remove,
1481 	.id_table = igen6_pci_tbl,
1482 };
1483 
igen6_init(void)1484 static int __init igen6_init(void)
1485 {
1486 	const char *owner;
1487 	int rc;
1488 
1489 	edac_dbg(2, "\n");
1490 
1491 	if (ghes_get_devices())
1492 		return -EBUSY;
1493 
1494 	owner = edac_get_owner();
1495 	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
1496 		return -EBUSY;
1497 
1498 	rc = pci_register_driver(&igen6_driver);
1499 	if (rc)
1500 		return rc;
1501 
1502 	igen6_printk(KERN_INFO, "%s\n", IGEN6_REVISION);
1503 
1504 	return 0;
1505 }
1506 
igen6_exit(void)1507 static void __exit igen6_exit(void)
1508 {
1509 	edac_dbg(2, "\n");
1510 
1511 	pci_unregister_driver(&igen6_driver);
1512 }
1513 
1514 module_init(igen6_init);
1515 module_exit(igen6_exit);
1516 
1517 MODULE_LICENSE("GPL v2");
1518 MODULE_AUTHOR("Qiuxu Zhuo");
1519 MODULE_DESCRIPTION("MC Driver for Intel client SoC using In-Band ECC");
1520