xref: /linux/drivers/pci/controller/pcie-iproc-msi.c (revision 0bd0a41a5120f78685a132834865b0a631b9026a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2015 Broadcom Corporation
4  */
5 
6 #include <linux/interrupt.h>
7 #include <linux/irqchip/chained_irq.h>
8 #include <linux/irqchip/irq-msi-lib.h>
9 #include <linux/irqdomain.h>
10 #include <linux/msi.h>
11 #include <linux/of_irq.h>
12 #include <linux/of_pci.h>
13 #include <linux/pci.h>
14 
15 #include "pcie-iproc.h"
16 
17 #define IPROC_MSI_INTR_EN_SHIFT        11
18 #define IPROC_MSI_INTR_EN              BIT(IPROC_MSI_INTR_EN_SHIFT)
19 #define IPROC_MSI_INT_N_EVENT_SHIFT    1
20 #define IPROC_MSI_INT_N_EVENT          BIT(IPROC_MSI_INT_N_EVENT_SHIFT)
21 #define IPROC_MSI_EQ_EN_SHIFT          0
22 #define IPROC_MSI_EQ_EN                BIT(IPROC_MSI_EQ_EN_SHIFT)
23 
24 #define IPROC_MSI_EQ_MASK              0x3f
25 
26 /* Max number of GIC interrupts */
27 #define NR_HW_IRQS                     6
28 
29 /* Number of entries in each event queue */
30 #define EQ_LEN                         64
31 
32 /* Size of each event queue memory region */
33 #define EQ_MEM_REGION_SIZE             SZ_4K
34 
35 /* Size of each MSI address region */
36 #define MSI_MEM_REGION_SIZE            SZ_4K
37 
38 enum iproc_msi_reg {
39 	IPROC_MSI_EQ_PAGE = 0,
40 	IPROC_MSI_EQ_PAGE_UPPER,
41 	IPROC_MSI_PAGE,
42 	IPROC_MSI_PAGE_UPPER,
43 	IPROC_MSI_CTRL,
44 	IPROC_MSI_EQ_HEAD,
45 	IPROC_MSI_EQ_TAIL,
46 	IPROC_MSI_INTS_EN,
47 	IPROC_MSI_REG_SIZE,
48 };
49 
50 struct iproc_msi;
51 
52 /**
53  * struct iproc_msi_grp - iProc MSI group
54  *
55  * One MSI group is allocated per GIC interrupt, serviced by one iProc MSI
56  * event queue.
57  *
58  * @msi: pointer to iProc MSI data
59  * @gic_irq: GIC interrupt
60  * @eq: Event queue number
61  */
62 struct iproc_msi_grp {
63 	struct iproc_msi *msi;
64 	int gic_irq;
65 	unsigned int eq;
66 };
67 
68 /**
69  * struct iproc_msi - iProc event queue based MSI
70  *
71  * Only meant to be used on platforms without MSI support integrated into the
72  * GIC.
73  *
74  * @pcie: pointer to iProc PCIe data
75  * @reg_offsets: MSI register offsets
76  * @grps: MSI groups
77  * @nr_irqs: number of total interrupts connected to GIC
78  * @nr_cpus: number of toal CPUs
79  * @has_inten_reg: indicates the MSI interrupt enable register needs to be
80  * set explicitly (required for some legacy platforms)
81  * @bitmap: MSI vector bitmap
82  * @bitmap_lock: lock to protect access to the MSI bitmap
83  * @nr_msi_vecs: total number of MSI vectors
84  * @inner_domain: inner IRQ domain
85  * @nr_eq_region: required number of 4K aligned memory region for MSI event
86  * queues
87  * @nr_msi_region: required number of 4K aligned address region for MSI posted
88  * writes
89  * @eq_cpu: pointer to allocated memory region for MSI event queues
90  * @eq_dma: DMA address of MSI event queues
91  * @msi_addr: MSI address
92  */
93 struct iproc_msi {
94 	struct iproc_pcie *pcie;
95 	const u16 (*reg_offsets)[IPROC_MSI_REG_SIZE];
96 	struct iproc_msi_grp *grps;
97 	int nr_irqs;
98 	int nr_cpus;
99 	bool has_inten_reg;
100 	unsigned long *bitmap;
101 	struct mutex bitmap_lock;
102 	unsigned int nr_msi_vecs;
103 	struct irq_domain *inner_domain;
104 	unsigned int nr_eq_region;
105 	unsigned int nr_msi_region;
106 	void *eq_cpu;
107 	dma_addr_t eq_dma;
108 	phys_addr_t msi_addr;
109 };
110 
111 static const u16 iproc_msi_reg_paxb[NR_HW_IRQS][IPROC_MSI_REG_SIZE] = {
112 	{ 0x200, 0x2c0, 0x204, 0x2c4, 0x210, 0x250, 0x254, 0x208 },
113 	{ 0x200, 0x2c0, 0x204, 0x2c4, 0x214, 0x258, 0x25c, 0x208 },
114 	{ 0x200, 0x2c0, 0x204, 0x2c4, 0x218, 0x260, 0x264, 0x208 },
115 	{ 0x200, 0x2c0, 0x204, 0x2c4, 0x21c, 0x268, 0x26c, 0x208 },
116 	{ 0x200, 0x2c0, 0x204, 0x2c4, 0x220, 0x270, 0x274, 0x208 },
117 	{ 0x200, 0x2c0, 0x204, 0x2c4, 0x224, 0x278, 0x27c, 0x208 },
118 };
119 
120 static const u16 iproc_msi_reg_paxc[NR_HW_IRQS][IPROC_MSI_REG_SIZE] = {
121 	{ 0xc00, 0xc04, 0xc08, 0xc0c, 0xc40, 0xc50, 0xc60 },
122 	{ 0xc10, 0xc14, 0xc18, 0xc1c, 0xc44, 0xc54, 0xc64 },
123 	{ 0xc20, 0xc24, 0xc28, 0xc2c, 0xc48, 0xc58, 0xc68 },
124 	{ 0xc30, 0xc34, 0xc38, 0xc3c, 0xc4c, 0xc5c, 0xc6c },
125 };
126 
iproc_msi_read_reg(struct iproc_msi * msi,enum iproc_msi_reg reg,unsigned int eq)127 static inline u32 iproc_msi_read_reg(struct iproc_msi *msi,
128 				     enum iproc_msi_reg reg,
129 				     unsigned int eq)
130 {
131 	struct iproc_pcie *pcie = msi->pcie;
132 
133 	return readl_relaxed(pcie->base + msi->reg_offsets[eq][reg]);
134 }
135 
iproc_msi_write_reg(struct iproc_msi * msi,enum iproc_msi_reg reg,int eq,u32 val)136 static inline void iproc_msi_write_reg(struct iproc_msi *msi,
137 				       enum iproc_msi_reg reg,
138 				       int eq, u32 val)
139 {
140 	struct iproc_pcie *pcie = msi->pcie;
141 
142 	writel_relaxed(val, pcie->base + msi->reg_offsets[eq][reg]);
143 }
144 
hwirq_to_group(struct iproc_msi * msi,unsigned long hwirq)145 static inline u32 hwirq_to_group(struct iproc_msi *msi, unsigned long hwirq)
146 {
147 	return (hwirq % msi->nr_irqs);
148 }
149 
iproc_msi_addr_offset(struct iproc_msi * msi,unsigned long hwirq)150 static inline unsigned int iproc_msi_addr_offset(struct iproc_msi *msi,
151 						 unsigned long hwirq)
152 {
153 	if (msi->nr_msi_region > 1)
154 		return hwirq_to_group(msi, hwirq) * MSI_MEM_REGION_SIZE;
155 	else
156 		return hwirq_to_group(msi, hwirq) * sizeof(u32);
157 }
158 
iproc_msi_eq_offset(struct iproc_msi * msi,u32 eq)159 static inline unsigned int iproc_msi_eq_offset(struct iproc_msi *msi, u32 eq)
160 {
161 	if (msi->nr_eq_region > 1)
162 		return eq * EQ_MEM_REGION_SIZE;
163 	else
164 		return eq * EQ_LEN * sizeof(u32);
165 }
166 
167 #define IPROC_MSI_FLAGS_REQUIRED (MSI_FLAG_USE_DEF_DOM_OPS	| \
168 				  MSI_FLAG_USE_DEF_CHIP_OPS)
169 #define IPROC_MSI_FLAGS_SUPPORTED (MSI_GENERIC_FLAGS_MASK	| \
170 				   MSI_FLAG_PCI_MSIX)
171 
172 static struct msi_parent_ops iproc_msi_parent_ops = {
173 	.required_flags		= IPROC_MSI_FLAGS_REQUIRED,
174 	.supported_flags	= IPROC_MSI_FLAGS_SUPPORTED,
175 	.bus_select_token	= DOMAIN_BUS_PCI_MSI,
176 	.prefix			= "iProc-",
177 	.init_dev_msi_info	= msi_lib_init_dev_msi_info,
178 };
179 /*
180  * In iProc PCIe core, each MSI group is serviced by a GIC interrupt and a
181  * dedicated event queue.  Each MSI group can support up to 64 MSI vectors.
182  *
183  * The number of MSI groups varies between different iProc SoCs.  The total
184  * number of CPU cores also varies.  To support MSI IRQ affinity, we
185  * distribute GIC interrupts across all available CPUs.  MSI vector is moved
186  * from one GIC interrupt to another to steer to the target CPU.
187  *
188  * Assuming:
189  * - the number of MSI groups is M
190  * - the number of CPU cores is N
191  * - M is always a multiple of N
192  *
193  * Total number of raw MSI vectors = M * 64
194  * Total number of supported MSI vectors = (M * 64) / N
195  */
hwirq_to_cpu(struct iproc_msi * msi,unsigned long hwirq)196 static inline int hwirq_to_cpu(struct iproc_msi *msi, unsigned long hwirq)
197 {
198 	return (hwirq % msi->nr_cpus);
199 }
200 
hwirq_to_canonical_hwirq(struct iproc_msi * msi,unsigned long hwirq)201 static inline unsigned long hwirq_to_canonical_hwirq(struct iproc_msi *msi,
202 						     unsigned long hwirq)
203 {
204 	return (hwirq - hwirq_to_cpu(msi, hwirq));
205 }
206 
iproc_msi_irq_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)207 static int iproc_msi_irq_set_affinity(struct irq_data *data,
208 				      const struct cpumask *mask, bool force)
209 {
210 	struct iproc_msi *msi = irq_data_get_irq_chip_data(data);
211 	int target_cpu = cpumask_first(mask);
212 	int curr_cpu;
213 	int ret;
214 
215 	curr_cpu = hwirq_to_cpu(msi, data->hwirq);
216 	if (curr_cpu == target_cpu)
217 		ret = IRQ_SET_MASK_OK_DONE;
218 	else {
219 		/* steer MSI to the target CPU */
220 		data->hwirq = hwirq_to_canonical_hwirq(msi, data->hwirq) + target_cpu;
221 		ret = IRQ_SET_MASK_OK;
222 	}
223 
224 	irq_data_update_effective_affinity(data, cpumask_of(target_cpu));
225 
226 	return ret;
227 }
228 
iproc_msi_irq_compose_msi_msg(struct irq_data * data,struct msi_msg * msg)229 static void iproc_msi_irq_compose_msi_msg(struct irq_data *data,
230 					  struct msi_msg *msg)
231 {
232 	struct iproc_msi *msi = irq_data_get_irq_chip_data(data);
233 	dma_addr_t addr;
234 
235 	addr = msi->msi_addr + iproc_msi_addr_offset(msi, data->hwirq);
236 	msg->address_lo = lower_32_bits(addr);
237 	msg->address_hi = upper_32_bits(addr);
238 	msg->data = data->hwirq << 5;
239 }
240 
241 static struct irq_chip iproc_msi_bottom_irq_chip = {
242 	.name = "MSI",
243 	.irq_set_affinity = iproc_msi_irq_set_affinity,
244 	.irq_compose_msi_msg = iproc_msi_irq_compose_msi_msg,
245 };
246 
iproc_msi_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)247 static int iproc_msi_irq_domain_alloc(struct irq_domain *domain,
248 				      unsigned int virq, unsigned int nr_irqs,
249 				      void *args)
250 {
251 	struct iproc_msi *msi = domain->host_data;
252 	int hwirq, i;
253 
254 	if (msi->nr_cpus > 1 && nr_irqs > 1)
255 		return -EINVAL;
256 
257 	mutex_lock(&msi->bitmap_lock);
258 
259 	/*
260 	 * Allocate 'nr_irqs' multiplied by 'nr_cpus' number of MSI vectors
261 	 * each time
262 	 */
263 	hwirq = bitmap_find_free_region(msi->bitmap, msi->nr_msi_vecs,
264 					order_base_2(msi->nr_cpus * nr_irqs));
265 
266 	mutex_unlock(&msi->bitmap_lock);
267 
268 	if (hwirq < 0)
269 		return -ENOSPC;
270 
271 	for (i = 0; i < nr_irqs; i++) {
272 		irq_domain_set_info(domain, virq + i, hwirq + i,
273 				    &iproc_msi_bottom_irq_chip,
274 				    domain->host_data, handle_simple_irq,
275 				    NULL, NULL);
276 	}
277 
278 	return 0;
279 }
280 
iproc_msi_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)281 static void iproc_msi_irq_domain_free(struct irq_domain *domain,
282 				      unsigned int virq, unsigned int nr_irqs)
283 {
284 	struct irq_data *data = irq_domain_get_irq_data(domain, virq);
285 	struct iproc_msi *msi = irq_data_get_irq_chip_data(data);
286 	unsigned int hwirq;
287 
288 	mutex_lock(&msi->bitmap_lock);
289 
290 	hwirq = hwirq_to_canonical_hwirq(msi, data->hwirq);
291 	bitmap_release_region(msi->bitmap, hwirq,
292 			      order_base_2(msi->nr_cpus * nr_irqs));
293 
294 	mutex_unlock(&msi->bitmap_lock);
295 
296 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
297 }
298 
299 static const struct irq_domain_ops msi_domain_ops = {
300 	.alloc = iproc_msi_irq_domain_alloc,
301 	.free = iproc_msi_irq_domain_free,
302 };
303 
decode_msi_hwirq(struct iproc_msi * msi,u32 eq,u32 head)304 static inline u32 decode_msi_hwirq(struct iproc_msi *msi, u32 eq, u32 head)
305 {
306 	u32 __iomem *msg;
307 	u32 hwirq;
308 	unsigned int offs;
309 
310 	offs = iproc_msi_eq_offset(msi, eq) + head * sizeof(u32);
311 	msg = (u32 __iomem *)(msi->eq_cpu + offs);
312 	hwirq = readl(msg);
313 	hwirq = (hwirq >> 5) + (hwirq & 0x1f);
314 
315 	/*
316 	 * Since we have multiple hwirq mapped to a single MSI vector,
317 	 * now we need to derive the hwirq at CPU0.  It can then be used to
318 	 * mapped back to virq.
319 	 */
320 	return hwirq_to_canonical_hwirq(msi, hwirq);
321 }
322 
iproc_msi_handler(struct irq_desc * desc)323 static void iproc_msi_handler(struct irq_desc *desc)
324 {
325 	struct irq_chip *chip = irq_desc_get_chip(desc);
326 	struct iproc_msi_grp *grp;
327 	struct iproc_msi *msi;
328 	u32 eq, head, tail, nr_events;
329 	unsigned long hwirq;
330 
331 	chained_irq_enter(chip, desc);
332 
333 	grp = irq_desc_get_handler_data(desc);
334 	msi = grp->msi;
335 	eq = grp->eq;
336 
337 	/*
338 	 * iProc MSI event queue is tracked by head and tail pointers.  Head
339 	 * pointer indicates the next entry (MSI data) to be consumed by SW in
340 	 * the queue and needs to be updated by SW.  iProc MSI core uses the
341 	 * tail pointer as the next data insertion point.
342 	 *
343 	 * Entries between head and tail pointers contain valid MSI data.  MSI
344 	 * data is guaranteed to be in the event queue memory before the tail
345 	 * pointer is updated by the iProc MSI core.
346 	 */
347 	head = iproc_msi_read_reg(msi, IPROC_MSI_EQ_HEAD,
348 				  eq) & IPROC_MSI_EQ_MASK;
349 	do {
350 		tail = iproc_msi_read_reg(msi, IPROC_MSI_EQ_TAIL,
351 					  eq) & IPROC_MSI_EQ_MASK;
352 
353 		/*
354 		 * Figure out total number of events (MSI data) to be
355 		 * processed.
356 		 */
357 		nr_events = (tail < head) ?
358 			(EQ_LEN - (head - tail)) : (tail - head);
359 		if (!nr_events)
360 			break;
361 
362 		/* process all outstanding events */
363 		while (nr_events--) {
364 			hwirq = decode_msi_hwirq(msi, eq, head);
365 			generic_handle_domain_irq(msi->inner_domain, hwirq);
366 
367 			head++;
368 			head %= EQ_LEN;
369 		}
370 
371 		/*
372 		 * Now all outstanding events have been processed.  Update the
373 		 * head pointer.
374 		 */
375 		iproc_msi_write_reg(msi, IPROC_MSI_EQ_HEAD, eq, head);
376 
377 		/*
378 		 * Now go read the tail pointer again to see if there are new
379 		 * outstanding events that came in during the above window.
380 		 */
381 	} while (true);
382 
383 	chained_irq_exit(chip, desc);
384 }
385 
iproc_msi_enable(struct iproc_msi * msi)386 static void iproc_msi_enable(struct iproc_msi *msi)
387 {
388 	int i, eq;
389 	u32 val;
390 
391 	/* Program memory region for each event queue */
392 	for (i = 0; i < msi->nr_eq_region; i++) {
393 		dma_addr_t addr = msi->eq_dma + (i * EQ_MEM_REGION_SIZE);
394 
395 		iproc_msi_write_reg(msi, IPROC_MSI_EQ_PAGE, i,
396 				    lower_32_bits(addr));
397 		iproc_msi_write_reg(msi, IPROC_MSI_EQ_PAGE_UPPER, i,
398 				    upper_32_bits(addr));
399 	}
400 
401 	/* Program address region for MSI posted writes */
402 	for (i = 0; i < msi->nr_msi_region; i++) {
403 		phys_addr_t addr = msi->msi_addr + (i * MSI_MEM_REGION_SIZE);
404 
405 		iproc_msi_write_reg(msi, IPROC_MSI_PAGE, i,
406 				    lower_32_bits(addr));
407 		iproc_msi_write_reg(msi, IPROC_MSI_PAGE_UPPER, i,
408 				    upper_32_bits(addr));
409 	}
410 
411 	for (eq = 0; eq < msi->nr_irqs; eq++) {
412 		/* Enable MSI event queue */
413 		val = IPROC_MSI_INTR_EN | IPROC_MSI_INT_N_EVENT |
414 			IPROC_MSI_EQ_EN;
415 		iproc_msi_write_reg(msi, IPROC_MSI_CTRL, eq, val);
416 
417 		/*
418 		 * Some legacy platforms require the MSI interrupt enable
419 		 * register to be set explicitly.
420 		 */
421 		if (msi->has_inten_reg) {
422 			val = iproc_msi_read_reg(msi, IPROC_MSI_INTS_EN, eq);
423 			val |= BIT(eq);
424 			iproc_msi_write_reg(msi, IPROC_MSI_INTS_EN, eq, val);
425 		}
426 	}
427 }
428 
iproc_msi_disable(struct iproc_msi * msi)429 static void iproc_msi_disable(struct iproc_msi *msi)
430 {
431 	u32 eq, val;
432 
433 	for (eq = 0; eq < msi->nr_irqs; eq++) {
434 		if (msi->has_inten_reg) {
435 			val = iproc_msi_read_reg(msi, IPROC_MSI_INTS_EN, eq);
436 			val &= ~BIT(eq);
437 			iproc_msi_write_reg(msi, IPROC_MSI_INTS_EN, eq, val);
438 		}
439 
440 		val = iproc_msi_read_reg(msi, IPROC_MSI_CTRL, eq);
441 		val &= ~(IPROC_MSI_INTR_EN | IPROC_MSI_INT_N_EVENT |
442 			 IPROC_MSI_EQ_EN);
443 		iproc_msi_write_reg(msi, IPROC_MSI_CTRL, eq, val);
444 	}
445 }
446 
iproc_msi_alloc_domains(struct device_node * node,struct iproc_msi * msi)447 static int iproc_msi_alloc_domains(struct device_node *node,
448 				   struct iproc_msi *msi)
449 {
450 	struct irq_domain_info info = {
451 		.fwnode		= of_fwnode_handle(node),
452 		.ops		= &msi_domain_ops,
453 		.host_data	= msi,
454 		.size		= msi->nr_msi_vecs,
455 	};
456 
457 	msi->inner_domain = msi_create_parent_irq_domain(&info, &iproc_msi_parent_ops);
458 	if (!msi->inner_domain)
459 		return -ENOMEM;
460 
461 	return 0;
462 }
463 
iproc_msi_free_domains(struct iproc_msi * msi)464 static void iproc_msi_free_domains(struct iproc_msi *msi)
465 {
466 	if (msi->inner_domain)
467 		irq_domain_remove(msi->inner_domain);
468 }
469 
iproc_msi_irq_free(struct iproc_msi * msi,unsigned int cpu)470 static void iproc_msi_irq_free(struct iproc_msi *msi, unsigned int cpu)
471 {
472 	int i;
473 
474 	for (i = cpu; i < msi->nr_irqs; i += msi->nr_cpus) {
475 		irq_set_chained_handler_and_data(msi->grps[i].gic_irq,
476 						 NULL, NULL);
477 	}
478 }
479 
iproc_msi_irq_setup(struct iproc_msi * msi,unsigned int cpu)480 static int iproc_msi_irq_setup(struct iproc_msi *msi, unsigned int cpu)
481 {
482 	int i, ret;
483 	cpumask_var_t mask;
484 	struct iproc_pcie *pcie = msi->pcie;
485 
486 	for (i = cpu; i < msi->nr_irqs; i += msi->nr_cpus) {
487 		irq_set_chained_handler_and_data(msi->grps[i].gic_irq,
488 						 iproc_msi_handler,
489 						 &msi->grps[i]);
490 		/* Dedicate GIC interrupt to each CPU core */
491 		if (alloc_cpumask_var(&mask, GFP_KERNEL)) {
492 			cpumask_clear(mask);
493 			cpumask_set_cpu(cpu, mask);
494 			ret = irq_set_affinity(msi->grps[i].gic_irq, mask);
495 			if (ret)
496 				dev_err(pcie->dev,
497 					"failed to set affinity for IRQ%d\n",
498 					msi->grps[i].gic_irq);
499 			free_cpumask_var(mask);
500 		} else {
501 			dev_err(pcie->dev, "failed to alloc CPU mask\n");
502 			ret = -EINVAL;
503 		}
504 
505 		if (ret) {
506 			/* Free all configured/unconfigured IRQs */
507 			iproc_msi_irq_free(msi, cpu);
508 			return ret;
509 		}
510 	}
511 
512 	return 0;
513 }
514 
iproc_msi_init(struct iproc_pcie * pcie,struct device_node * node)515 int iproc_msi_init(struct iproc_pcie *pcie, struct device_node *node)
516 {
517 	struct iproc_msi *msi;
518 	int i, ret;
519 	unsigned int cpu;
520 
521 	if (!of_device_is_compatible(node, "brcm,iproc-msi"))
522 		return -ENODEV;
523 
524 	if (!of_property_read_bool(node, "msi-controller"))
525 		return -ENODEV;
526 
527 	if (pcie->msi)
528 		return -EBUSY;
529 
530 	msi = devm_kzalloc(pcie->dev, sizeof(*msi), GFP_KERNEL);
531 	if (!msi)
532 		return -ENOMEM;
533 
534 	msi->pcie = pcie;
535 	pcie->msi = msi;
536 	msi->msi_addr = pcie->base_addr;
537 	mutex_init(&msi->bitmap_lock);
538 	msi->nr_cpus = num_possible_cpus();
539 
540 	if (msi->nr_cpus == 1)
541 		iproc_msi_parent_ops.supported_flags |= MSI_FLAG_MULTI_PCI_MSI;
542 
543 	msi->nr_irqs = of_irq_count(node);
544 	if (!msi->nr_irqs) {
545 		dev_err(pcie->dev, "found no MSI GIC interrupt\n");
546 		return -ENODEV;
547 	}
548 
549 	if (msi->nr_irqs > NR_HW_IRQS) {
550 		dev_warn(pcie->dev, "too many MSI GIC interrupts defined %d\n",
551 			 msi->nr_irqs);
552 		msi->nr_irqs = NR_HW_IRQS;
553 	}
554 
555 	if (msi->nr_irqs < msi->nr_cpus) {
556 		dev_err(pcie->dev,
557 			"not enough GIC interrupts for MSI affinity\n");
558 		return -EINVAL;
559 	}
560 
561 	if (msi->nr_irqs % msi->nr_cpus != 0) {
562 		msi->nr_irqs -= msi->nr_irqs % msi->nr_cpus;
563 		dev_warn(pcie->dev, "Reducing number of interrupts to %d\n",
564 			 msi->nr_irqs);
565 	}
566 
567 	switch (pcie->type) {
568 	case IPROC_PCIE_PAXB_BCMA:
569 	case IPROC_PCIE_PAXB:
570 		msi->reg_offsets = iproc_msi_reg_paxb;
571 		msi->nr_eq_region = 1;
572 		msi->nr_msi_region = 1;
573 		break;
574 	case IPROC_PCIE_PAXC:
575 		msi->reg_offsets = iproc_msi_reg_paxc;
576 		msi->nr_eq_region = msi->nr_irqs;
577 		msi->nr_msi_region = msi->nr_irqs;
578 		break;
579 	default:
580 		dev_err(pcie->dev, "incompatible iProc PCIe interface\n");
581 		return -EINVAL;
582 	}
583 
584 	msi->has_inten_reg = of_property_read_bool(node, "brcm,pcie-msi-inten");
585 
586 	msi->nr_msi_vecs = msi->nr_irqs * EQ_LEN;
587 	msi->bitmap = devm_bitmap_zalloc(pcie->dev, msi->nr_msi_vecs,
588 					 GFP_KERNEL);
589 	if (!msi->bitmap)
590 		return -ENOMEM;
591 
592 	msi->grps = devm_kcalloc(pcie->dev, msi->nr_irqs, sizeof(*msi->grps),
593 				 GFP_KERNEL);
594 	if (!msi->grps)
595 		return -ENOMEM;
596 
597 	for (i = 0; i < msi->nr_irqs; i++) {
598 		unsigned int irq = irq_of_parse_and_map(node, i);
599 
600 		if (!irq) {
601 			dev_err(pcie->dev, "unable to parse/map interrupt\n");
602 			ret = -ENODEV;
603 			goto free_irqs;
604 		}
605 		msi->grps[i].gic_irq = irq;
606 		msi->grps[i].msi = msi;
607 		msi->grps[i].eq = i;
608 	}
609 
610 	/* Reserve memory for event queue and make sure memories are zeroed */
611 	msi->eq_cpu = dma_alloc_coherent(pcie->dev,
612 					 msi->nr_eq_region * EQ_MEM_REGION_SIZE,
613 					 &msi->eq_dma, GFP_KERNEL);
614 	if (!msi->eq_cpu) {
615 		ret = -ENOMEM;
616 		goto free_irqs;
617 	}
618 
619 	ret = iproc_msi_alloc_domains(node, msi);
620 	if (ret) {
621 		dev_err(pcie->dev, "failed to create MSI domains\n");
622 		goto free_eq_dma;
623 	}
624 
625 	for_each_online_cpu(cpu) {
626 		ret = iproc_msi_irq_setup(msi, cpu);
627 		if (ret)
628 			goto free_msi_irq;
629 	}
630 
631 	iproc_msi_enable(msi);
632 
633 	return 0;
634 
635 free_msi_irq:
636 	for_each_online_cpu(cpu)
637 		iproc_msi_irq_free(msi, cpu);
638 	iproc_msi_free_domains(msi);
639 
640 free_eq_dma:
641 	dma_free_coherent(pcie->dev, msi->nr_eq_region * EQ_MEM_REGION_SIZE,
642 			  msi->eq_cpu, msi->eq_dma);
643 
644 free_irqs:
645 	for (i = 0; i < msi->nr_irqs; i++) {
646 		if (msi->grps[i].gic_irq)
647 			irq_dispose_mapping(msi->grps[i].gic_irq);
648 	}
649 	pcie->msi = NULL;
650 	return ret;
651 }
652 EXPORT_SYMBOL(iproc_msi_init);
653 
iproc_msi_exit(struct iproc_pcie * pcie)654 void iproc_msi_exit(struct iproc_pcie *pcie)
655 {
656 	struct iproc_msi *msi = pcie->msi;
657 	unsigned int i, cpu;
658 
659 	if (!msi)
660 		return;
661 
662 	iproc_msi_disable(msi);
663 
664 	for_each_online_cpu(cpu)
665 		iproc_msi_irq_free(msi, cpu);
666 
667 	iproc_msi_free_domains(msi);
668 
669 	dma_free_coherent(pcie->dev, msi->nr_eq_region * EQ_MEM_REGION_SIZE,
670 			  msi->eq_cpu, msi->eq_dma);
671 
672 	for (i = 0; i < msi->nr_irqs; i++) {
673 		if (msi->grps[i].gic_irq)
674 			irq_dispose_mapping(msi->grps[i].gic_irq);
675 	}
676 }
677 EXPORT_SYMBOL(iproc_msi_exit);
678