xref: /linux/fs/eventpoll.c (revision 3fd6c59042dbba50391e30862beac979491145fe)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  fs/eventpoll.c (Efficient event retrieval implementation)
4  *  Copyright (C) 2001,...,2009	 Davide Libenzi
5  *
6  *  Davide Libenzi <davidel@xmailserver.org>
7  */
8 
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/mman.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <linux/capability.h>
41 #include <net/busy_poll.h>
42 
43 /*
44  * LOCKING:
45  * There are three level of locking required by epoll :
46  *
47  * 1) epnested_mutex (mutex)
48  * 2) ep->mtx (mutex)
49  * 3) ep->lock (rwlock)
50  *
51  * The acquire order is the one listed above, from 1 to 3.
52  * We need a rwlock (ep->lock) because we manipulate objects
53  * from inside the poll callback, that might be triggered from
54  * a wake_up() that in turn might be called from IRQ context.
55  * So we can't sleep inside the poll callback and hence we need
56  * a spinlock. During the event transfer loop (from kernel to
57  * user space) we could end up sleeping due a copy_to_user(), so
58  * we need a lock that will allow us to sleep. This lock is a
59  * mutex (ep->mtx). It is acquired during the event transfer loop,
60  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
61  * The epnested_mutex is acquired when inserting an epoll fd onto another
62  * epoll fd. We do this so that we walk the epoll tree and ensure that this
63  * insertion does not create a cycle of epoll file descriptors, which
64  * could lead to deadlock. We need a global mutex to prevent two
65  * simultaneous inserts (A into B and B into A) from racing and
66  * constructing a cycle without either insert observing that it is
67  * going to.
68  * It is necessary to acquire multiple "ep->mtx"es at once in the
69  * case when one epoll fd is added to another. In this case, we
70  * always acquire the locks in the order of nesting (i.e. after
71  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
72  * before e2->mtx). Since we disallow cycles of epoll file
73  * descriptors, this ensures that the mutexes are well-ordered. In
74  * order to communicate this nesting to lockdep, when walking a tree
75  * of epoll file descriptors, we use the current recursion depth as
76  * the lockdep subkey.
77  * It is possible to drop the "ep->mtx" and to use the global
78  * mutex "epnested_mutex" (together with "ep->lock") to have it working,
79  * but having "ep->mtx" will make the interface more scalable.
80  * Events that require holding "epnested_mutex" are very rare, while for
81  * normal operations the epoll private "ep->mtx" will guarantee
82  * a better scalability.
83  */
84 
85 /* Epoll private bits inside the event mask */
86 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
87 
88 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
89 
90 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
91 				EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
92 
93 /* Maximum number of nesting allowed inside epoll sets */
94 #define EP_MAX_NESTS 4
95 
96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
97 
98 #define EP_UNACTIVE_PTR ((void *) -1L)
99 
100 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
101 
102 struct epoll_filefd {
103 	struct file *file;
104 	int fd;
105 } __packed;
106 
107 /* Wait structure used by the poll hooks */
108 struct eppoll_entry {
109 	/* List header used to link this structure to the "struct epitem" */
110 	struct eppoll_entry *next;
111 
112 	/* The "base" pointer is set to the container "struct epitem" */
113 	struct epitem *base;
114 
115 	/*
116 	 * Wait queue item that will be linked to the target file wait
117 	 * queue head.
118 	 */
119 	wait_queue_entry_t wait;
120 
121 	/* The wait queue head that linked the "wait" wait queue item */
122 	wait_queue_head_t *whead;
123 };
124 
125 /*
126  * Each file descriptor added to the eventpoll interface will
127  * have an entry of this type linked to the "rbr" RB tree.
128  * Avoid increasing the size of this struct, there can be many thousands
129  * of these on a server and we do not want this to take another cache line.
130  */
131 struct epitem {
132 	union {
133 		/* RB tree node links this structure to the eventpoll RB tree */
134 		struct rb_node rbn;
135 		/* Used to free the struct epitem */
136 		struct rcu_head rcu;
137 	};
138 
139 	/* List header used to link this structure to the eventpoll ready list */
140 	struct list_head rdllink;
141 
142 	/*
143 	 * Works together "struct eventpoll"->ovflist in keeping the
144 	 * single linked chain of items.
145 	 */
146 	struct epitem *next;
147 
148 	/* The file descriptor information this item refers to */
149 	struct epoll_filefd ffd;
150 
151 	/*
152 	 * Protected by file->f_lock, true for to-be-released epitem already
153 	 * removed from the "struct file" items list; together with
154 	 * eventpoll->refcount orchestrates "struct eventpoll" disposal
155 	 */
156 	bool dying;
157 
158 	/* List containing poll wait queues */
159 	struct eppoll_entry *pwqlist;
160 
161 	/* The "container" of this item */
162 	struct eventpoll *ep;
163 
164 	/* List header used to link this item to the "struct file" items list */
165 	struct hlist_node fllink;
166 
167 	/* wakeup_source used when EPOLLWAKEUP is set */
168 	struct wakeup_source __rcu *ws;
169 
170 	/* The structure that describe the interested events and the source fd */
171 	struct epoll_event event;
172 };
173 
174 /*
175  * This structure is stored inside the "private_data" member of the file
176  * structure and represents the main data structure for the eventpoll
177  * interface.
178  */
179 struct eventpoll {
180 	/*
181 	 * This mutex is used to ensure that files are not removed
182 	 * while epoll is using them. This is held during the event
183 	 * collection loop, the file cleanup path, the epoll file exit
184 	 * code and the ctl operations.
185 	 */
186 	struct mutex mtx;
187 
188 	/* Wait queue used by sys_epoll_wait() */
189 	wait_queue_head_t wq;
190 
191 	/* Wait queue used by file->poll() */
192 	wait_queue_head_t poll_wait;
193 
194 	/* List of ready file descriptors */
195 	struct list_head rdllist;
196 
197 	/* Lock which protects rdllist and ovflist */
198 	rwlock_t lock;
199 
200 	/* RB tree root used to store monitored fd structs */
201 	struct rb_root_cached rbr;
202 
203 	/*
204 	 * This is a single linked list that chains all the "struct epitem" that
205 	 * happened while transferring ready events to userspace w/out
206 	 * holding ->lock.
207 	 */
208 	struct epitem *ovflist;
209 
210 	/* wakeup_source used when ep_send_events or __ep_eventpoll_poll is running */
211 	struct wakeup_source *ws;
212 
213 	/* The user that created the eventpoll descriptor */
214 	struct user_struct *user;
215 
216 	struct file *file;
217 
218 	/* used to optimize loop detection check */
219 	u64 gen;
220 	struct hlist_head refs;
221 
222 	/*
223 	 * usage count, used together with epitem->dying to
224 	 * orchestrate the disposal of this struct
225 	 */
226 	refcount_t refcount;
227 
228 #ifdef CONFIG_NET_RX_BUSY_POLL
229 	/* used to track busy poll napi_id */
230 	unsigned int napi_id;
231 	/* busy poll timeout */
232 	u32 busy_poll_usecs;
233 	/* busy poll packet budget */
234 	u16 busy_poll_budget;
235 	bool prefer_busy_poll;
236 #endif
237 
238 #ifdef CONFIG_DEBUG_LOCK_ALLOC
239 	/* tracks wakeup nests for lockdep validation */
240 	u8 nests;
241 #endif
242 };
243 
244 /* Wrapper struct used by poll queueing */
245 struct ep_pqueue {
246 	poll_table pt;
247 	struct epitem *epi;
248 };
249 
250 /*
251  * Configuration options available inside /proc/sys/fs/epoll/
252  */
253 /* Maximum number of epoll watched descriptors, per user */
254 static long max_user_watches __read_mostly;
255 
256 /* Used for cycles detection */
257 static DEFINE_MUTEX(epnested_mutex);
258 
259 static u64 loop_check_gen = 0;
260 
261 /* Used to check for epoll file descriptor inclusion loops */
262 static struct eventpoll *inserting_into;
263 
264 /* Slab cache used to allocate "struct epitem" */
265 static struct kmem_cache *epi_cache __ro_after_init;
266 
267 /* Slab cache used to allocate "struct eppoll_entry" */
268 static struct kmem_cache *pwq_cache __ro_after_init;
269 
270 /*
271  * List of files with newly added links, where we may need to limit the number
272  * of emanating paths. Protected by the epnested_mutex.
273  */
274 struct epitems_head {
275 	struct hlist_head epitems;
276 	struct epitems_head *next;
277 };
278 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
279 
280 static struct kmem_cache *ephead_cache __ro_after_init;
281 
free_ephead(struct epitems_head * head)282 static inline void free_ephead(struct epitems_head *head)
283 {
284 	if (head)
285 		kmem_cache_free(ephead_cache, head);
286 }
287 
list_file(struct file * file)288 static void list_file(struct file *file)
289 {
290 	struct epitems_head *head;
291 
292 	head = container_of(file->f_ep, struct epitems_head, epitems);
293 	if (!head->next) {
294 		head->next = tfile_check_list;
295 		tfile_check_list = head;
296 	}
297 }
298 
unlist_file(struct epitems_head * head)299 static void unlist_file(struct epitems_head *head)
300 {
301 	struct epitems_head *to_free = head;
302 	struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
303 	if (p) {
304 		struct epitem *epi= container_of(p, struct epitem, fllink);
305 		spin_lock(&epi->ffd.file->f_lock);
306 		if (!hlist_empty(&head->epitems))
307 			to_free = NULL;
308 		head->next = NULL;
309 		spin_unlock(&epi->ffd.file->f_lock);
310 	}
311 	free_ephead(to_free);
312 }
313 
314 #ifdef CONFIG_SYSCTL
315 
316 #include <linux/sysctl.h>
317 
318 static long long_zero;
319 static long long_max = LONG_MAX;
320 
321 static struct ctl_table epoll_table[] = {
322 	{
323 		.procname	= "max_user_watches",
324 		.data		= &max_user_watches,
325 		.maxlen		= sizeof(max_user_watches),
326 		.mode		= 0644,
327 		.proc_handler	= proc_doulongvec_minmax,
328 		.extra1		= &long_zero,
329 		.extra2		= &long_max,
330 	},
331 };
332 
epoll_sysctls_init(void)333 static void __init epoll_sysctls_init(void)
334 {
335 	register_sysctl("fs/epoll", epoll_table);
336 }
337 #else
338 #define epoll_sysctls_init() do { } while (0)
339 #endif /* CONFIG_SYSCTL */
340 
341 static const struct file_operations eventpoll_fops;
342 
is_file_epoll(struct file * f)343 static inline int is_file_epoll(struct file *f)
344 {
345 	return f->f_op == &eventpoll_fops;
346 }
347 
348 /* Setup the structure that is used as key for the RB tree */
ep_set_ffd(struct epoll_filefd * ffd,struct file * file,int fd)349 static inline void ep_set_ffd(struct epoll_filefd *ffd,
350 			      struct file *file, int fd)
351 {
352 	ffd->file = file;
353 	ffd->fd = fd;
354 }
355 
356 /* Compare RB tree keys */
ep_cmp_ffd(struct epoll_filefd * p1,struct epoll_filefd * p2)357 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
358 			     struct epoll_filefd *p2)
359 {
360 	return (p1->file > p2->file ? +1:
361 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
362 }
363 
364 /* Tells us if the item is currently linked */
ep_is_linked(struct epitem * epi)365 static inline int ep_is_linked(struct epitem *epi)
366 {
367 	return !list_empty(&epi->rdllink);
368 }
369 
ep_pwq_from_wait(wait_queue_entry_t * p)370 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
371 {
372 	return container_of(p, struct eppoll_entry, wait);
373 }
374 
375 /* Get the "struct epitem" from a wait queue pointer */
ep_item_from_wait(wait_queue_entry_t * p)376 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
377 {
378 	return container_of(p, struct eppoll_entry, wait)->base;
379 }
380 
381 /**
382  * ep_events_available - Checks if ready events might be available.
383  *
384  * @ep: Pointer to the eventpoll context.
385  *
386  * Return: a value different than %zero if ready events are available,
387  *          or %zero otherwise.
388  */
ep_events_available(struct eventpoll * ep)389 static inline int ep_events_available(struct eventpoll *ep)
390 {
391 	return !list_empty_careful(&ep->rdllist) ||
392 		READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
393 }
394 
395 #ifdef CONFIG_NET_RX_BUSY_POLL
396 /**
397  * busy_loop_ep_timeout - check if busy poll has timed out. The timeout value
398  * from the epoll instance ep is preferred, but if it is not set fallback to
399  * the system-wide global via busy_loop_timeout.
400  *
401  * @start_time: The start time used to compute the remaining time until timeout.
402  * @ep: Pointer to the eventpoll context.
403  *
404  * Return: true if the timeout has expired, false otherwise.
405  */
busy_loop_ep_timeout(unsigned long start_time,struct eventpoll * ep)406 static bool busy_loop_ep_timeout(unsigned long start_time,
407 				 struct eventpoll *ep)
408 {
409 	unsigned long bp_usec = READ_ONCE(ep->busy_poll_usecs);
410 
411 	if (bp_usec) {
412 		unsigned long end_time = start_time + bp_usec;
413 		unsigned long now = busy_loop_current_time();
414 
415 		return time_after(now, end_time);
416 	} else {
417 		return busy_loop_timeout(start_time);
418 	}
419 }
420 
ep_busy_loop_on(struct eventpoll * ep)421 static bool ep_busy_loop_on(struct eventpoll *ep)
422 {
423 	return !!READ_ONCE(ep->busy_poll_usecs) ||
424 	       READ_ONCE(ep->prefer_busy_poll) ||
425 	       net_busy_loop_on();
426 }
427 
ep_busy_loop_end(void * p,unsigned long start_time)428 static bool ep_busy_loop_end(void *p, unsigned long start_time)
429 {
430 	struct eventpoll *ep = p;
431 
432 	return ep_events_available(ep) || busy_loop_ep_timeout(start_time, ep);
433 }
434 
435 /*
436  * Busy poll if globally on and supporting sockets found && no events,
437  * busy loop will return if need_resched or ep_events_available.
438  *
439  * we must do our busy polling with irqs enabled
440  */
ep_busy_loop(struct eventpoll * ep,int nonblock)441 static bool ep_busy_loop(struct eventpoll *ep, int nonblock)
442 {
443 	unsigned int napi_id = READ_ONCE(ep->napi_id);
444 	u16 budget = READ_ONCE(ep->busy_poll_budget);
445 	bool prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll);
446 
447 	if (!budget)
448 		budget = BUSY_POLL_BUDGET;
449 
450 	if (napi_id >= MIN_NAPI_ID && ep_busy_loop_on(ep)) {
451 		napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end,
452 			       ep, prefer_busy_poll, budget);
453 		if (ep_events_available(ep))
454 			return true;
455 		/*
456 		 * Busy poll timed out.  Drop NAPI ID for now, we can add
457 		 * it back in when we have moved a socket with a valid NAPI
458 		 * ID onto the ready list.
459 		 */
460 		if (prefer_busy_poll)
461 			napi_resume_irqs(napi_id);
462 		ep->napi_id = 0;
463 		return false;
464 	}
465 	return false;
466 }
467 
468 /*
469  * Set epoll busy poll NAPI ID from sk.
470  */
ep_set_busy_poll_napi_id(struct epitem * epi)471 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
472 {
473 	struct eventpoll *ep = epi->ep;
474 	unsigned int napi_id;
475 	struct socket *sock;
476 	struct sock *sk;
477 
478 	if (!ep_busy_loop_on(ep))
479 		return;
480 
481 	sock = sock_from_file(epi->ffd.file);
482 	if (!sock)
483 		return;
484 
485 	sk = sock->sk;
486 	if (!sk)
487 		return;
488 
489 	napi_id = READ_ONCE(sk->sk_napi_id);
490 
491 	/* Non-NAPI IDs can be rejected
492 	 *	or
493 	 * Nothing to do if we already have this ID
494 	 */
495 	if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
496 		return;
497 
498 	/* record NAPI ID for use in next busy poll */
499 	ep->napi_id = napi_id;
500 }
501 
ep_eventpoll_bp_ioctl(struct file * file,unsigned int cmd,unsigned long arg)502 static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd,
503 				  unsigned long arg)
504 {
505 	struct eventpoll *ep = file->private_data;
506 	void __user *uarg = (void __user *)arg;
507 	struct epoll_params epoll_params;
508 
509 	switch (cmd) {
510 	case EPIOCSPARAMS:
511 		if (copy_from_user(&epoll_params, uarg, sizeof(epoll_params)))
512 			return -EFAULT;
513 
514 		/* pad byte must be zero */
515 		if (epoll_params.__pad)
516 			return -EINVAL;
517 
518 		if (epoll_params.busy_poll_usecs > S32_MAX)
519 			return -EINVAL;
520 
521 		if (epoll_params.prefer_busy_poll > 1)
522 			return -EINVAL;
523 
524 		if (epoll_params.busy_poll_budget > NAPI_POLL_WEIGHT &&
525 		    !capable(CAP_NET_ADMIN))
526 			return -EPERM;
527 
528 		WRITE_ONCE(ep->busy_poll_usecs, epoll_params.busy_poll_usecs);
529 		WRITE_ONCE(ep->busy_poll_budget, epoll_params.busy_poll_budget);
530 		WRITE_ONCE(ep->prefer_busy_poll, epoll_params.prefer_busy_poll);
531 		return 0;
532 	case EPIOCGPARAMS:
533 		memset(&epoll_params, 0, sizeof(epoll_params));
534 		epoll_params.busy_poll_usecs = READ_ONCE(ep->busy_poll_usecs);
535 		epoll_params.busy_poll_budget = READ_ONCE(ep->busy_poll_budget);
536 		epoll_params.prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll);
537 		if (copy_to_user(uarg, &epoll_params, sizeof(epoll_params)))
538 			return -EFAULT;
539 		return 0;
540 	default:
541 		return -ENOIOCTLCMD;
542 	}
543 }
544 
ep_suspend_napi_irqs(struct eventpoll * ep)545 static void ep_suspend_napi_irqs(struct eventpoll *ep)
546 {
547 	unsigned int napi_id = READ_ONCE(ep->napi_id);
548 
549 	if (napi_id >= MIN_NAPI_ID && READ_ONCE(ep->prefer_busy_poll))
550 		napi_suspend_irqs(napi_id);
551 }
552 
ep_resume_napi_irqs(struct eventpoll * ep)553 static void ep_resume_napi_irqs(struct eventpoll *ep)
554 {
555 	unsigned int napi_id = READ_ONCE(ep->napi_id);
556 
557 	if (napi_id >= MIN_NAPI_ID && READ_ONCE(ep->prefer_busy_poll))
558 		napi_resume_irqs(napi_id);
559 }
560 
561 #else
562 
ep_busy_loop(struct eventpoll * ep,int nonblock)563 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock)
564 {
565 	return false;
566 }
567 
ep_set_busy_poll_napi_id(struct epitem * epi)568 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
569 {
570 }
571 
ep_eventpoll_bp_ioctl(struct file * file,unsigned int cmd,unsigned long arg)572 static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd,
573 				  unsigned long arg)
574 {
575 	return -EOPNOTSUPP;
576 }
577 
ep_suspend_napi_irqs(struct eventpoll * ep)578 static void ep_suspend_napi_irqs(struct eventpoll *ep)
579 {
580 }
581 
ep_resume_napi_irqs(struct eventpoll * ep)582 static void ep_resume_napi_irqs(struct eventpoll *ep)
583 {
584 }
585 
586 #endif /* CONFIG_NET_RX_BUSY_POLL */
587 
588 /*
589  * As described in commit 0ccf831cb lockdep: annotate epoll
590  * the use of wait queues used by epoll is done in a very controlled
591  * manner. Wake ups can nest inside each other, but are never done
592  * with the same locking. For example:
593  *
594  *   dfd = socket(...);
595  *   efd1 = epoll_create();
596  *   efd2 = epoll_create();
597  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
598  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
599  *
600  * When a packet arrives to the device underneath "dfd", the net code will
601  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
602  * callback wakeup entry on that queue, and the wake_up() performed by the
603  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
604  * (efd1) notices that it may have some event ready, so it needs to wake up
605  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
606  * that ends up in another wake_up(), after having checked about the
607  * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid
608  * stack blasting.
609  *
610  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
611  * this special case of epoll.
612  */
613 #ifdef CONFIG_DEBUG_LOCK_ALLOC
614 
ep_poll_safewake(struct eventpoll * ep,struct epitem * epi,unsigned pollflags)615 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
616 			     unsigned pollflags)
617 {
618 	struct eventpoll *ep_src;
619 	unsigned long flags;
620 	u8 nests = 0;
621 
622 	/*
623 	 * To set the subclass or nesting level for spin_lock_irqsave_nested()
624 	 * it might be natural to create a per-cpu nest count. However, since
625 	 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
626 	 * schedule() in the -rt kernel, the per-cpu variable are no longer
627 	 * protected. Thus, we are introducing a per eventpoll nest field.
628 	 * If we are not being call from ep_poll_callback(), epi is NULL and
629 	 * we are at the first level of nesting, 0. Otherwise, we are being
630 	 * called from ep_poll_callback() and if a previous wakeup source is
631 	 * not an epoll file itself, we are at depth 1 since the wakeup source
632 	 * is depth 0. If the wakeup source is a previous epoll file in the
633 	 * wakeup chain then we use its nests value and record ours as
634 	 * nests + 1. The previous epoll file nests value is stable since its
635 	 * already holding its own poll_wait.lock.
636 	 */
637 	if (epi) {
638 		if ((is_file_epoll(epi->ffd.file))) {
639 			ep_src = epi->ffd.file->private_data;
640 			nests = ep_src->nests;
641 		} else {
642 			nests = 1;
643 		}
644 	}
645 	spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
646 	ep->nests = nests + 1;
647 	wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags);
648 	ep->nests = 0;
649 	spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
650 }
651 
652 #else
653 
ep_poll_safewake(struct eventpoll * ep,struct epitem * epi,__poll_t pollflags)654 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
655 			     __poll_t pollflags)
656 {
657 	wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags);
658 }
659 
660 #endif
661 
ep_remove_wait_queue(struct eppoll_entry * pwq)662 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
663 {
664 	wait_queue_head_t *whead;
665 
666 	rcu_read_lock();
667 	/*
668 	 * If it is cleared by POLLFREE, it should be rcu-safe.
669 	 * If we read NULL we need a barrier paired with
670 	 * smp_store_release() in ep_poll_callback(), otherwise
671 	 * we rely on whead->lock.
672 	 */
673 	whead = smp_load_acquire(&pwq->whead);
674 	if (whead)
675 		remove_wait_queue(whead, &pwq->wait);
676 	rcu_read_unlock();
677 }
678 
679 /*
680  * This function unregisters poll callbacks from the associated file
681  * descriptor.  Must be called with "mtx" held.
682  */
ep_unregister_pollwait(struct eventpoll * ep,struct epitem * epi)683 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
684 {
685 	struct eppoll_entry **p = &epi->pwqlist;
686 	struct eppoll_entry *pwq;
687 
688 	while ((pwq = *p) != NULL) {
689 		*p = pwq->next;
690 		ep_remove_wait_queue(pwq);
691 		kmem_cache_free(pwq_cache, pwq);
692 	}
693 }
694 
695 /* call only when ep->mtx is held */
ep_wakeup_source(struct epitem * epi)696 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
697 {
698 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
699 }
700 
701 /* call only when ep->mtx is held */
ep_pm_stay_awake(struct epitem * epi)702 static inline void ep_pm_stay_awake(struct epitem *epi)
703 {
704 	struct wakeup_source *ws = ep_wakeup_source(epi);
705 
706 	if (ws)
707 		__pm_stay_awake(ws);
708 }
709 
ep_has_wakeup_source(struct epitem * epi)710 static inline bool ep_has_wakeup_source(struct epitem *epi)
711 {
712 	return rcu_access_pointer(epi->ws) ? true : false;
713 }
714 
715 /* call when ep->mtx cannot be held (ep_poll_callback) */
ep_pm_stay_awake_rcu(struct epitem * epi)716 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
717 {
718 	struct wakeup_source *ws;
719 
720 	rcu_read_lock();
721 	ws = rcu_dereference(epi->ws);
722 	if (ws)
723 		__pm_stay_awake(ws);
724 	rcu_read_unlock();
725 }
726 
727 
728 /*
729  * ep->mutex needs to be held because we could be hit by
730  * eventpoll_release_file() and epoll_ctl().
731  */
ep_start_scan(struct eventpoll * ep,struct list_head * txlist)732 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
733 {
734 	/*
735 	 * Steal the ready list, and re-init the original one to the
736 	 * empty list. Also, set ep->ovflist to NULL so that events
737 	 * happening while looping w/out locks, are not lost. We cannot
738 	 * have the poll callback to queue directly on ep->rdllist,
739 	 * because we want the "sproc" callback to be able to do it
740 	 * in a lockless way.
741 	 */
742 	lockdep_assert_irqs_enabled();
743 	write_lock_irq(&ep->lock);
744 	list_splice_init(&ep->rdllist, txlist);
745 	WRITE_ONCE(ep->ovflist, NULL);
746 	write_unlock_irq(&ep->lock);
747 }
748 
ep_done_scan(struct eventpoll * ep,struct list_head * txlist)749 static void ep_done_scan(struct eventpoll *ep,
750 			 struct list_head *txlist)
751 {
752 	struct epitem *epi, *nepi;
753 
754 	write_lock_irq(&ep->lock);
755 	/*
756 	 * During the time we spent inside the "sproc" callback, some
757 	 * other events might have been queued by the poll callback.
758 	 * We re-insert them inside the main ready-list here.
759 	 */
760 	for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
761 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
762 		/*
763 		 * We need to check if the item is already in the list.
764 		 * During the "sproc" callback execution time, items are
765 		 * queued into ->ovflist but the "txlist" might already
766 		 * contain them, and the list_splice() below takes care of them.
767 		 */
768 		if (!ep_is_linked(epi)) {
769 			/*
770 			 * ->ovflist is LIFO, so we have to reverse it in order
771 			 * to keep in FIFO.
772 			 */
773 			list_add(&epi->rdllink, &ep->rdllist);
774 			ep_pm_stay_awake(epi);
775 		}
776 	}
777 	/*
778 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
779 	 * releasing the lock, events will be queued in the normal way inside
780 	 * ep->rdllist.
781 	 */
782 	WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
783 
784 	/*
785 	 * Quickly re-inject items left on "txlist".
786 	 */
787 	list_splice(txlist, &ep->rdllist);
788 	__pm_relax(ep->ws);
789 
790 	if (!list_empty(&ep->rdllist)) {
791 		if (waitqueue_active(&ep->wq))
792 			wake_up(&ep->wq);
793 	}
794 
795 	write_unlock_irq(&ep->lock);
796 }
797 
ep_get(struct eventpoll * ep)798 static void ep_get(struct eventpoll *ep)
799 {
800 	refcount_inc(&ep->refcount);
801 }
802 
803 /*
804  * Returns true if the event poll can be disposed
805  */
ep_refcount_dec_and_test(struct eventpoll * ep)806 static bool ep_refcount_dec_and_test(struct eventpoll *ep)
807 {
808 	if (!refcount_dec_and_test(&ep->refcount))
809 		return false;
810 
811 	WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root));
812 	return true;
813 }
814 
ep_free(struct eventpoll * ep)815 static void ep_free(struct eventpoll *ep)
816 {
817 	ep_resume_napi_irqs(ep);
818 	mutex_destroy(&ep->mtx);
819 	free_uid(ep->user);
820 	wakeup_source_unregister(ep->ws);
821 	kfree(ep);
822 }
823 
824 /*
825  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
826  * all the associated resources. Must be called with "mtx" held.
827  * If the dying flag is set, do the removal only if force is true.
828  * This prevents ep_clear_and_put() from dropping all the ep references
829  * while running concurrently with eventpoll_release_file().
830  * Returns true if the eventpoll can be disposed.
831  */
__ep_remove(struct eventpoll * ep,struct epitem * epi,bool force)832 static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force)
833 {
834 	struct file *file = epi->ffd.file;
835 	struct epitems_head *to_free;
836 	struct hlist_head *head;
837 
838 	lockdep_assert_irqs_enabled();
839 
840 	/*
841 	 * Removes poll wait queue hooks.
842 	 */
843 	ep_unregister_pollwait(ep, epi);
844 
845 	/* Remove the current item from the list of epoll hooks */
846 	spin_lock(&file->f_lock);
847 	if (epi->dying && !force) {
848 		spin_unlock(&file->f_lock);
849 		return false;
850 	}
851 
852 	to_free = NULL;
853 	head = file->f_ep;
854 	if (head->first == &epi->fllink && !epi->fllink.next) {
855 		/* See eventpoll_release() for details. */
856 		WRITE_ONCE(file->f_ep, NULL);
857 		if (!is_file_epoll(file)) {
858 			struct epitems_head *v;
859 			v = container_of(head, struct epitems_head, epitems);
860 			if (!smp_load_acquire(&v->next))
861 				to_free = v;
862 		}
863 	}
864 	hlist_del_rcu(&epi->fllink);
865 	spin_unlock(&file->f_lock);
866 	free_ephead(to_free);
867 
868 	rb_erase_cached(&epi->rbn, &ep->rbr);
869 
870 	write_lock_irq(&ep->lock);
871 	if (ep_is_linked(epi))
872 		list_del_init(&epi->rdllink);
873 	write_unlock_irq(&ep->lock);
874 
875 	wakeup_source_unregister(ep_wakeup_source(epi));
876 	/*
877 	 * At this point it is safe to free the eventpoll item. Use the union
878 	 * field epi->rcu, since we are trying to minimize the size of
879 	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
880 	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
881 	 * use of the rbn field.
882 	 */
883 	kfree_rcu(epi, rcu);
884 
885 	percpu_counter_dec(&ep->user->epoll_watches);
886 	return ep_refcount_dec_and_test(ep);
887 }
888 
889 /*
890  * ep_remove variant for callers owing an additional reference to the ep
891  */
ep_remove_safe(struct eventpoll * ep,struct epitem * epi)892 static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi)
893 {
894 	WARN_ON_ONCE(__ep_remove(ep, epi, false));
895 }
896 
ep_clear_and_put(struct eventpoll * ep)897 static void ep_clear_and_put(struct eventpoll *ep)
898 {
899 	struct rb_node *rbp, *next;
900 	struct epitem *epi;
901 	bool dispose;
902 
903 	/* We need to release all tasks waiting for these file */
904 	if (waitqueue_active(&ep->poll_wait))
905 		ep_poll_safewake(ep, NULL, 0);
906 
907 	mutex_lock(&ep->mtx);
908 
909 	/*
910 	 * Walks through the whole tree by unregistering poll callbacks.
911 	 */
912 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
913 		epi = rb_entry(rbp, struct epitem, rbn);
914 
915 		ep_unregister_pollwait(ep, epi);
916 		cond_resched();
917 	}
918 
919 	/*
920 	 * Walks through the whole tree and try to free each "struct epitem".
921 	 * Note that ep_remove_safe() will not remove the epitem in case of a
922 	 * racing eventpoll_release_file(); the latter will do the removal.
923 	 * At this point we are sure no poll callbacks will be lingering around.
924 	 * Since we still own a reference to the eventpoll struct, the loop can't
925 	 * dispose it.
926 	 */
927 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) {
928 		next = rb_next(rbp);
929 		epi = rb_entry(rbp, struct epitem, rbn);
930 		ep_remove_safe(ep, epi);
931 		cond_resched();
932 	}
933 
934 	dispose = ep_refcount_dec_and_test(ep);
935 	mutex_unlock(&ep->mtx);
936 
937 	if (dispose)
938 		ep_free(ep);
939 }
940 
ep_eventpoll_ioctl(struct file * file,unsigned int cmd,unsigned long arg)941 static long ep_eventpoll_ioctl(struct file *file, unsigned int cmd,
942 			       unsigned long arg)
943 {
944 	int ret;
945 
946 	if (!is_file_epoll(file))
947 		return -EINVAL;
948 
949 	switch (cmd) {
950 	case EPIOCSPARAMS:
951 	case EPIOCGPARAMS:
952 		ret = ep_eventpoll_bp_ioctl(file, cmd, arg);
953 		break;
954 	default:
955 		ret = -EINVAL;
956 		break;
957 	}
958 
959 	return ret;
960 }
961 
ep_eventpoll_release(struct inode * inode,struct file * file)962 static int ep_eventpoll_release(struct inode *inode, struct file *file)
963 {
964 	struct eventpoll *ep = file->private_data;
965 
966 	if (ep)
967 		ep_clear_and_put(ep);
968 
969 	return 0;
970 }
971 
972 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
973 
__ep_eventpoll_poll(struct file * file,poll_table * wait,int depth)974 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
975 {
976 	struct eventpoll *ep = file->private_data;
977 	LIST_HEAD(txlist);
978 	struct epitem *epi, *tmp;
979 	poll_table pt;
980 	__poll_t res = 0;
981 
982 	init_poll_funcptr(&pt, NULL);
983 
984 	/* Insert inside our poll wait queue */
985 	poll_wait(file, &ep->poll_wait, wait);
986 
987 	/*
988 	 * Proceed to find out if wanted events are really available inside
989 	 * the ready list.
990 	 */
991 	mutex_lock_nested(&ep->mtx, depth);
992 	ep_start_scan(ep, &txlist);
993 	list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
994 		if (ep_item_poll(epi, &pt, depth + 1)) {
995 			res = EPOLLIN | EPOLLRDNORM;
996 			break;
997 		} else {
998 			/*
999 			 * Item has been dropped into the ready list by the poll
1000 			 * callback, but it's not actually ready, as far as
1001 			 * caller requested events goes. We can remove it here.
1002 			 */
1003 			__pm_relax(ep_wakeup_source(epi));
1004 			list_del_init(&epi->rdllink);
1005 		}
1006 	}
1007 	ep_done_scan(ep, &txlist);
1008 	mutex_unlock(&ep->mtx);
1009 	return res;
1010 }
1011 
1012 /*
1013  * The ffd.file pointer may be in the process of being torn down due to
1014  * being closed, but we may not have finished eventpoll_release() yet.
1015  *
1016  * Normally, even with the atomic_long_inc_not_zero, the file may have
1017  * been free'd and then gotten re-allocated to something else (since
1018  * files are not RCU-delayed, they are SLAB_TYPESAFE_BY_RCU).
1019  *
1020  * But for epoll, users hold the ep->mtx mutex, and as such any file in
1021  * the process of being free'd will block in eventpoll_release_file()
1022  * and thus the underlying file allocation will not be free'd, and the
1023  * file re-use cannot happen.
1024  *
1025  * For the same reason we can avoid a rcu_read_lock() around the
1026  * operation - 'ffd.file' cannot go away even if the refcount has
1027  * reached zero (but we must still not call out to ->poll() functions
1028  * etc).
1029  */
epi_fget(const struct epitem * epi)1030 static struct file *epi_fget(const struct epitem *epi)
1031 {
1032 	struct file *file;
1033 
1034 	file = epi->ffd.file;
1035 	if (!file_ref_get(&file->f_ref))
1036 		file = NULL;
1037 	return file;
1038 }
1039 
1040 /*
1041  * Differs from ep_eventpoll_poll() in that internal callers already have
1042  * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
1043  * is correctly annotated.
1044  */
ep_item_poll(const struct epitem * epi,poll_table * pt,int depth)1045 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
1046 				 int depth)
1047 {
1048 	struct file *file = epi_fget(epi);
1049 	__poll_t res;
1050 
1051 	/*
1052 	 * We could return EPOLLERR | EPOLLHUP or something, but let's
1053 	 * treat this more as "file doesn't exist, poll didn't happen".
1054 	 */
1055 	if (!file)
1056 		return 0;
1057 
1058 	pt->_key = epi->event.events;
1059 	if (!is_file_epoll(file))
1060 		res = vfs_poll(file, pt);
1061 	else
1062 		res = __ep_eventpoll_poll(file, pt, depth);
1063 	fput(file);
1064 	return res & epi->event.events;
1065 }
1066 
ep_eventpoll_poll(struct file * file,poll_table * wait)1067 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
1068 {
1069 	return __ep_eventpoll_poll(file, wait, 0);
1070 }
1071 
1072 #ifdef CONFIG_PROC_FS
ep_show_fdinfo(struct seq_file * m,struct file * f)1073 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
1074 {
1075 	struct eventpoll *ep = f->private_data;
1076 	struct rb_node *rbp;
1077 
1078 	mutex_lock(&ep->mtx);
1079 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1080 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
1081 		struct inode *inode = file_inode(epi->ffd.file);
1082 
1083 		seq_printf(m, "tfd: %8d events: %8x data: %16llx "
1084 			   " pos:%lli ino:%lx sdev:%x\n",
1085 			   epi->ffd.fd, epi->event.events,
1086 			   (long long)epi->event.data,
1087 			   (long long)epi->ffd.file->f_pos,
1088 			   inode->i_ino, inode->i_sb->s_dev);
1089 		if (seq_has_overflowed(m))
1090 			break;
1091 	}
1092 	mutex_unlock(&ep->mtx);
1093 }
1094 #endif
1095 
1096 /* File callbacks that implement the eventpoll file behaviour */
1097 static const struct file_operations eventpoll_fops = {
1098 #ifdef CONFIG_PROC_FS
1099 	.show_fdinfo	= ep_show_fdinfo,
1100 #endif
1101 	.release	= ep_eventpoll_release,
1102 	.poll		= ep_eventpoll_poll,
1103 	.llseek		= noop_llseek,
1104 	.unlocked_ioctl	= ep_eventpoll_ioctl,
1105 	.compat_ioctl   = compat_ptr_ioctl,
1106 };
1107 
1108 /*
1109  * This is called from eventpoll_release() to unlink files from the eventpoll
1110  * interface. We need to have this facility to cleanup correctly files that are
1111  * closed without being removed from the eventpoll interface.
1112  */
eventpoll_release_file(struct file * file)1113 void eventpoll_release_file(struct file *file)
1114 {
1115 	struct eventpoll *ep;
1116 	struct epitem *epi;
1117 	bool dispose;
1118 
1119 	/*
1120 	 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from
1121 	 * touching the epitems list before eventpoll_release_file() can access
1122 	 * the ep->mtx.
1123 	 */
1124 again:
1125 	spin_lock(&file->f_lock);
1126 	if (file->f_ep && file->f_ep->first) {
1127 		epi = hlist_entry(file->f_ep->first, struct epitem, fllink);
1128 		epi->dying = true;
1129 		spin_unlock(&file->f_lock);
1130 
1131 		/*
1132 		 * ep access is safe as we still own a reference to the ep
1133 		 * struct
1134 		 */
1135 		ep = epi->ep;
1136 		mutex_lock(&ep->mtx);
1137 		dispose = __ep_remove(ep, epi, true);
1138 		mutex_unlock(&ep->mtx);
1139 
1140 		if (dispose)
1141 			ep_free(ep);
1142 		goto again;
1143 	}
1144 	spin_unlock(&file->f_lock);
1145 }
1146 
ep_alloc(struct eventpoll ** pep)1147 static int ep_alloc(struct eventpoll **pep)
1148 {
1149 	struct eventpoll *ep;
1150 
1151 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1152 	if (unlikely(!ep))
1153 		return -ENOMEM;
1154 
1155 	mutex_init(&ep->mtx);
1156 	rwlock_init(&ep->lock);
1157 	init_waitqueue_head(&ep->wq);
1158 	init_waitqueue_head(&ep->poll_wait);
1159 	INIT_LIST_HEAD(&ep->rdllist);
1160 	ep->rbr = RB_ROOT_CACHED;
1161 	ep->ovflist = EP_UNACTIVE_PTR;
1162 	ep->user = get_current_user();
1163 	refcount_set(&ep->refcount, 1);
1164 
1165 	*pep = ep;
1166 
1167 	return 0;
1168 }
1169 
1170 /*
1171  * Search the file inside the eventpoll tree. The RB tree operations
1172  * are protected by the "mtx" mutex, and ep_find() must be called with
1173  * "mtx" held.
1174  */
ep_find(struct eventpoll * ep,struct file * file,int fd)1175 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1176 {
1177 	int kcmp;
1178 	struct rb_node *rbp;
1179 	struct epitem *epi, *epir = NULL;
1180 	struct epoll_filefd ffd;
1181 
1182 	ep_set_ffd(&ffd, file, fd);
1183 	for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1184 		epi = rb_entry(rbp, struct epitem, rbn);
1185 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1186 		if (kcmp > 0)
1187 			rbp = rbp->rb_right;
1188 		else if (kcmp < 0)
1189 			rbp = rbp->rb_left;
1190 		else {
1191 			epir = epi;
1192 			break;
1193 		}
1194 	}
1195 
1196 	return epir;
1197 }
1198 
1199 #ifdef CONFIG_KCMP
ep_find_tfd(struct eventpoll * ep,int tfd,unsigned long toff)1200 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1201 {
1202 	struct rb_node *rbp;
1203 	struct epitem *epi;
1204 
1205 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1206 		epi = rb_entry(rbp, struct epitem, rbn);
1207 		if (epi->ffd.fd == tfd) {
1208 			if (toff == 0)
1209 				return epi;
1210 			else
1211 				toff--;
1212 		}
1213 		cond_resched();
1214 	}
1215 
1216 	return NULL;
1217 }
1218 
get_epoll_tfile_raw_ptr(struct file * file,int tfd,unsigned long toff)1219 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1220 				     unsigned long toff)
1221 {
1222 	struct file *file_raw;
1223 	struct eventpoll *ep;
1224 	struct epitem *epi;
1225 
1226 	if (!is_file_epoll(file))
1227 		return ERR_PTR(-EINVAL);
1228 
1229 	ep = file->private_data;
1230 
1231 	mutex_lock(&ep->mtx);
1232 	epi = ep_find_tfd(ep, tfd, toff);
1233 	if (epi)
1234 		file_raw = epi->ffd.file;
1235 	else
1236 		file_raw = ERR_PTR(-ENOENT);
1237 	mutex_unlock(&ep->mtx);
1238 
1239 	return file_raw;
1240 }
1241 #endif /* CONFIG_KCMP */
1242 
1243 /*
1244  * Adds a new entry to the tail of the list in a lockless way, i.e.
1245  * multiple CPUs are allowed to call this function concurrently.
1246  *
1247  * Beware: it is necessary to prevent any other modifications of the
1248  *         existing list until all changes are completed, in other words
1249  *         concurrent list_add_tail_lockless() calls should be protected
1250  *         with a read lock, where write lock acts as a barrier which
1251  *         makes sure all list_add_tail_lockless() calls are fully
1252  *         completed.
1253  *
1254  *        Also an element can be locklessly added to the list only in one
1255  *        direction i.e. either to the tail or to the head, otherwise
1256  *        concurrent access will corrupt the list.
1257  *
1258  * Return: %false if element has been already added to the list, %true
1259  * otherwise.
1260  */
list_add_tail_lockless(struct list_head * new,struct list_head * head)1261 static inline bool list_add_tail_lockless(struct list_head *new,
1262 					  struct list_head *head)
1263 {
1264 	struct list_head *prev;
1265 
1266 	/*
1267 	 * This is simple 'new->next = head' operation, but cmpxchg()
1268 	 * is used in order to detect that same element has been just
1269 	 * added to the list from another CPU: the winner observes
1270 	 * new->next == new.
1271 	 */
1272 	if (!try_cmpxchg(&new->next, &new, head))
1273 		return false;
1274 
1275 	/*
1276 	 * Initially ->next of a new element must be updated with the head
1277 	 * (we are inserting to the tail) and only then pointers are atomically
1278 	 * exchanged.  XCHG guarantees memory ordering, thus ->next should be
1279 	 * updated before pointers are actually swapped and pointers are
1280 	 * swapped before prev->next is updated.
1281 	 */
1282 
1283 	prev = xchg(&head->prev, new);
1284 
1285 	/*
1286 	 * It is safe to modify prev->next and new->prev, because a new element
1287 	 * is added only to the tail and new->next is updated before XCHG.
1288 	 */
1289 
1290 	prev->next = new;
1291 	new->prev = prev;
1292 
1293 	return true;
1294 }
1295 
1296 /*
1297  * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1298  * i.e. multiple CPUs are allowed to call this function concurrently.
1299  *
1300  * Return: %false if epi element has been already chained, %true otherwise.
1301  */
chain_epi_lockless(struct epitem * epi)1302 static inline bool chain_epi_lockless(struct epitem *epi)
1303 {
1304 	struct eventpoll *ep = epi->ep;
1305 
1306 	/* Fast preliminary check */
1307 	if (epi->next != EP_UNACTIVE_PTR)
1308 		return false;
1309 
1310 	/* Check that the same epi has not been just chained from another CPU */
1311 	if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1312 		return false;
1313 
1314 	/* Atomically exchange tail */
1315 	epi->next = xchg(&ep->ovflist, epi);
1316 
1317 	return true;
1318 }
1319 
1320 /*
1321  * This is the callback that is passed to the wait queue wakeup
1322  * mechanism. It is called by the stored file descriptors when they
1323  * have events to report.
1324  *
1325  * This callback takes a read lock in order not to contend with concurrent
1326  * events from another file descriptor, thus all modifications to ->rdllist
1327  * or ->ovflist are lockless.  Read lock is paired with the write lock from
1328  * ep_start/done_scan(), which stops all list modifications and guarantees
1329  * that lists state is seen correctly.
1330  *
1331  * Another thing worth to mention is that ep_poll_callback() can be called
1332  * concurrently for the same @epi from different CPUs if poll table was inited
1333  * with several wait queues entries.  Plural wakeup from different CPUs of a
1334  * single wait queue is serialized by wq.lock, but the case when multiple wait
1335  * queues are used should be detected accordingly.  This is detected using
1336  * cmpxchg() operation.
1337  */
ep_poll_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1338 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1339 {
1340 	int pwake = 0;
1341 	struct epitem *epi = ep_item_from_wait(wait);
1342 	struct eventpoll *ep = epi->ep;
1343 	__poll_t pollflags = key_to_poll(key);
1344 	unsigned long flags;
1345 	int ewake = 0;
1346 
1347 	read_lock_irqsave(&ep->lock, flags);
1348 
1349 	ep_set_busy_poll_napi_id(epi);
1350 
1351 	/*
1352 	 * If the event mask does not contain any poll(2) event, we consider the
1353 	 * descriptor to be disabled. This condition is likely the effect of the
1354 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1355 	 * until the next EPOLL_CTL_MOD will be issued.
1356 	 */
1357 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1358 		goto out_unlock;
1359 
1360 	/*
1361 	 * Check the events coming with the callback. At this stage, not
1362 	 * every device reports the events in the "key" parameter of the
1363 	 * callback. We need to be able to handle both cases here, hence the
1364 	 * test for "key" != NULL before the event match test.
1365 	 */
1366 	if (pollflags && !(pollflags & epi->event.events))
1367 		goto out_unlock;
1368 
1369 	/*
1370 	 * If we are transferring events to userspace, we can hold no locks
1371 	 * (because we're accessing user memory, and because of linux f_op->poll()
1372 	 * semantics). All the events that happen during that period of time are
1373 	 * chained in ep->ovflist and requeued later on.
1374 	 */
1375 	if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1376 		if (chain_epi_lockless(epi))
1377 			ep_pm_stay_awake_rcu(epi);
1378 	} else if (!ep_is_linked(epi)) {
1379 		/* In the usual case, add event to ready list. */
1380 		if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1381 			ep_pm_stay_awake_rcu(epi);
1382 	}
1383 
1384 	/*
1385 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1386 	 * wait list.
1387 	 */
1388 	if (waitqueue_active(&ep->wq)) {
1389 		if ((epi->event.events & EPOLLEXCLUSIVE) &&
1390 					!(pollflags & POLLFREE)) {
1391 			switch (pollflags & EPOLLINOUT_BITS) {
1392 			case EPOLLIN:
1393 				if (epi->event.events & EPOLLIN)
1394 					ewake = 1;
1395 				break;
1396 			case EPOLLOUT:
1397 				if (epi->event.events & EPOLLOUT)
1398 					ewake = 1;
1399 				break;
1400 			case 0:
1401 				ewake = 1;
1402 				break;
1403 			}
1404 		}
1405 		if (sync)
1406 			wake_up_sync(&ep->wq);
1407 		else
1408 			wake_up(&ep->wq);
1409 	}
1410 	if (waitqueue_active(&ep->poll_wait))
1411 		pwake++;
1412 
1413 out_unlock:
1414 	read_unlock_irqrestore(&ep->lock, flags);
1415 
1416 	/* We have to call this outside the lock */
1417 	if (pwake)
1418 		ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE);
1419 
1420 	if (!(epi->event.events & EPOLLEXCLUSIVE))
1421 		ewake = 1;
1422 
1423 	if (pollflags & POLLFREE) {
1424 		/*
1425 		 * If we race with ep_remove_wait_queue() it can miss
1426 		 * ->whead = NULL and do another remove_wait_queue() after
1427 		 * us, so we can't use __remove_wait_queue().
1428 		 */
1429 		list_del_init(&wait->entry);
1430 		/*
1431 		 * ->whead != NULL protects us from the race with
1432 		 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue()
1433 		 * takes whead->lock held by the caller. Once we nullify it,
1434 		 * nothing protects ep/epi or even wait.
1435 		 */
1436 		smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1437 	}
1438 
1439 	return ewake;
1440 }
1441 
1442 /*
1443  * This is the callback that is used to add our wait queue to the
1444  * target file wakeup lists.
1445  */
ep_ptable_queue_proc(struct file * file,wait_queue_head_t * whead,poll_table * pt)1446 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1447 				 poll_table *pt)
1448 {
1449 	struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1450 	struct epitem *epi = epq->epi;
1451 	struct eppoll_entry *pwq;
1452 
1453 	if (unlikely(!epi))	// an earlier allocation has failed
1454 		return;
1455 
1456 	pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1457 	if (unlikely(!pwq)) {
1458 		epq->epi = NULL;
1459 		return;
1460 	}
1461 
1462 	init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1463 	pwq->whead = whead;
1464 	pwq->base = epi;
1465 	if (epi->event.events & EPOLLEXCLUSIVE)
1466 		add_wait_queue_exclusive(whead, &pwq->wait);
1467 	else
1468 		add_wait_queue(whead, &pwq->wait);
1469 	pwq->next = epi->pwqlist;
1470 	epi->pwqlist = pwq;
1471 }
1472 
ep_rbtree_insert(struct eventpoll * ep,struct epitem * epi)1473 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1474 {
1475 	int kcmp;
1476 	struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1477 	struct epitem *epic;
1478 	bool leftmost = true;
1479 
1480 	while (*p) {
1481 		parent = *p;
1482 		epic = rb_entry(parent, struct epitem, rbn);
1483 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1484 		if (kcmp > 0) {
1485 			p = &parent->rb_right;
1486 			leftmost = false;
1487 		} else
1488 			p = &parent->rb_left;
1489 	}
1490 	rb_link_node(&epi->rbn, parent, p);
1491 	rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1492 }
1493 
1494 
1495 
1496 #define PATH_ARR_SIZE 5
1497 /*
1498  * These are the number paths of length 1 to 5, that we are allowing to emanate
1499  * from a single file of interest. For example, we allow 1000 paths of length
1500  * 1, to emanate from each file of interest. This essentially represents the
1501  * potential wakeup paths, which need to be limited in order to avoid massive
1502  * uncontrolled wakeup storms. The common use case should be a single ep which
1503  * is connected to n file sources. In this case each file source has 1 path
1504  * of length 1. Thus, the numbers below should be more than sufficient. These
1505  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1506  * and delete can't add additional paths. Protected by the epnested_mutex.
1507  */
1508 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1509 static int path_count[PATH_ARR_SIZE];
1510 
path_count_inc(int nests)1511 static int path_count_inc(int nests)
1512 {
1513 	/* Allow an arbitrary number of depth 1 paths */
1514 	if (nests == 0)
1515 		return 0;
1516 
1517 	if (++path_count[nests] > path_limits[nests])
1518 		return -1;
1519 	return 0;
1520 }
1521 
path_count_init(void)1522 static void path_count_init(void)
1523 {
1524 	int i;
1525 
1526 	for (i = 0; i < PATH_ARR_SIZE; i++)
1527 		path_count[i] = 0;
1528 }
1529 
reverse_path_check_proc(struct hlist_head * refs,int depth)1530 static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1531 {
1532 	int error = 0;
1533 	struct epitem *epi;
1534 
1535 	if (depth > EP_MAX_NESTS) /* too deep nesting */
1536 		return -1;
1537 
1538 	/* CTL_DEL can remove links here, but that can't increase our count */
1539 	hlist_for_each_entry_rcu(epi, refs, fllink) {
1540 		struct hlist_head *refs = &epi->ep->refs;
1541 		if (hlist_empty(refs))
1542 			error = path_count_inc(depth);
1543 		else
1544 			error = reverse_path_check_proc(refs, depth + 1);
1545 		if (error != 0)
1546 			break;
1547 	}
1548 	return error;
1549 }
1550 
1551 /**
1552  * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1553  *                      links that are proposed to be newly added. We need to
1554  *                      make sure that those added links don't add too many
1555  *                      paths such that we will spend all our time waking up
1556  *                      eventpoll objects.
1557  *
1558  * Return: %zero if the proposed links don't create too many paths,
1559  *	    %-1 otherwise.
1560  */
reverse_path_check(void)1561 static int reverse_path_check(void)
1562 {
1563 	struct epitems_head *p;
1564 
1565 	for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1566 		int error;
1567 		path_count_init();
1568 		rcu_read_lock();
1569 		error = reverse_path_check_proc(&p->epitems, 0);
1570 		rcu_read_unlock();
1571 		if (error)
1572 			return error;
1573 	}
1574 	return 0;
1575 }
1576 
ep_create_wakeup_source(struct epitem * epi)1577 static int ep_create_wakeup_source(struct epitem *epi)
1578 {
1579 	struct name_snapshot n;
1580 	struct wakeup_source *ws;
1581 
1582 	if (!epi->ep->ws) {
1583 		epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1584 		if (!epi->ep->ws)
1585 			return -ENOMEM;
1586 	}
1587 
1588 	take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1589 	ws = wakeup_source_register(NULL, n.name.name);
1590 	release_dentry_name_snapshot(&n);
1591 
1592 	if (!ws)
1593 		return -ENOMEM;
1594 	rcu_assign_pointer(epi->ws, ws);
1595 
1596 	return 0;
1597 }
1598 
1599 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
ep_destroy_wakeup_source(struct epitem * epi)1600 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1601 {
1602 	struct wakeup_source *ws = ep_wakeup_source(epi);
1603 
1604 	RCU_INIT_POINTER(epi->ws, NULL);
1605 
1606 	/*
1607 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1608 	 * used internally by wakeup_source_remove, too (called by
1609 	 * wakeup_source_unregister), so we cannot use call_rcu
1610 	 */
1611 	synchronize_rcu();
1612 	wakeup_source_unregister(ws);
1613 }
1614 
attach_epitem(struct file * file,struct epitem * epi)1615 static int attach_epitem(struct file *file, struct epitem *epi)
1616 {
1617 	struct epitems_head *to_free = NULL;
1618 	struct hlist_head *head = NULL;
1619 	struct eventpoll *ep = NULL;
1620 
1621 	if (is_file_epoll(file))
1622 		ep = file->private_data;
1623 
1624 	if (ep) {
1625 		head = &ep->refs;
1626 	} else if (!READ_ONCE(file->f_ep)) {
1627 allocate:
1628 		to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1629 		if (!to_free)
1630 			return -ENOMEM;
1631 		head = &to_free->epitems;
1632 	}
1633 	spin_lock(&file->f_lock);
1634 	if (!file->f_ep) {
1635 		if (unlikely(!head)) {
1636 			spin_unlock(&file->f_lock);
1637 			goto allocate;
1638 		}
1639 		/* See eventpoll_release() for details. */
1640 		WRITE_ONCE(file->f_ep, head);
1641 		to_free = NULL;
1642 	}
1643 	hlist_add_head_rcu(&epi->fllink, file->f_ep);
1644 	spin_unlock(&file->f_lock);
1645 	free_ephead(to_free);
1646 	return 0;
1647 }
1648 
1649 /*
1650  * Must be called with "mtx" held.
1651  */
ep_insert(struct eventpoll * ep,const struct epoll_event * event,struct file * tfile,int fd,int full_check)1652 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1653 		     struct file *tfile, int fd, int full_check)
1654 {
1655 	int error, pwake = 0;
1656 	__poll_t revents;
1657 	struct epitem *epi;
1658 	struct ep_pqueue epq;
1659 	struct eventpoll *tep = NULL;
1660 
1661 	if (is_file_epoll(tfile))
1662 		tep = tfile->private_data;
1663 
1664 	lockdep_assert_irqs_enabled();
1665 
1666 	if (unlikely(percpu_counter_compare(&ep->user->epoll_watches,
1667 					    max_user_watches) >= 0))
1668 		return -ENOSPC;
1669 	percpu_counter_inc(&ep->user->epoll_watches);
1670 
1671 	if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) {
1672 		percpu_counter_dec(&ep->user->epoll_watches);
1673 		return -ENOMEM;
1674 	}
1675 
1676 	/* Item initialization follow here ... */
1677 	INIT_LIST_HEAD(&epi->rdllink);
1678 	epi->ep = ep;
1679 	ep_set_ffd(&epi->ffd, tfile, fd);
1680 	epi->event = *event;
1681 	epi->next = EP_UNACTIVE_PTR;
1682 
1683 	if (tep)
1684 		mutex_lock_nested(&tep->mtx, 1);
1685 	/* Add the current item to the list of active epoll hook for this file */
1686 	if (unlikely(attach_epitem(tfile, epi) < 0)) {
1687 		if (tep)
1688 			mutex_unlock(&tep->mtx);
1689 		kmem_cache_free(epi_cache, epi);
1690 		percpu_counter_dec(&ep->user->epoll_watches);
1691 		return -ENOMEM;
1692 	}
1693 
1694 	if (full_check && !tep)
1695 		list_file(tfile);
1696 
1697 	/*
1698 	 * Add the current item to the RB tree. All RB tree operations are
1699 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1700 	 */
1701 	ep_rbtree_insert(ep, epi);
1702 	if (tep)
1703 		mutex_unlock(&tep->mtx);
1704 
1705 	/*
1706 	 * ep_remove_safe() calls in the later error paths can't lead to
1707 	 * ep_free() as the ep file itself still holds an ep reference.
1708 	 */
1709 	ep_get(ep);
1710 
1711 	/* now check if we've created too many backpaths */
1712 	if (unlikely(full_check && reverse_path_check())) {
1713 		ep_remove_safe(ep, epi);
1714 		return -EINVAL;
1715 	}
1716 
1717 	if (epi->event.events & EPOLLWAKEUP) {
1718 		error = ep_create_wakeup_source(epi);
1719 		if (error) {
1720 			ep_remove_safe(ep, epi);
1721 			return error;
1722 		}
1723 	}
1724 
1725 	/* Initialize the poll table using the queue callback */
1726 	epq.epi = epi;
1727 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1728 
1729 	/*
1730 	 * Attach the item to the poll hooks and get current event bits.
1731 	 * We can safely use the file* here because its usage count has
1732 	 * been increased by the caller of this function. Note that after
1733 	 * this operation completes, the poll callback can start hitting
1734 	 * the new item.
1735 	 */
1736 	revents = ep_item_poll(epi, &epq.pt, 1);
1737 
1738 	/*
1739 	 * We have to check if something went wrong during the poll wait queue
1740 	 * install process. Namely an allocation for a wait queue failed due
1741 	 * high memory pressure.
1742 	 */
1743 	if (unlikely(!epq.epi)) {
1744 		ep_remove_safe(ep, epi);
1745 		return -ENOMEM;
1746 	}
1747 
1748 	/* We have to drop the new item inside our item list to keep track of it */
1749 	write_lock_irq(&ep->lock);
1750 
1751 	/* record NAPI ID of new item if present */
1752 	ep_set_busy_poll_napi_id(epi);
1753 
1754 	/* If the file is already "ready" we drop it inside the ready list */
1755 	if (revents && !ep_is_linked(epi)) {
1756 		list_add_tail(&epi->rdllink, &ep->rdllist);
1757 		ep_pm_stay_awake(epi);
1758 
1759 		/* Notify waiting tasks that events are available */
1760 		if (waitqueue_active(&ep->wq))
1761 			wake_up(&ep->wq);
1762 		if (waitqueue_active(&ep->poll_wait))
1763 			pwake++;
1764 	}
1765 
1766 	write_unlock_irq(&ep->lock);
1767 
1768 	/* We have to call this outside the lock */
1769 	if (pwake)
1770 		ep_poll_safewake(ep, NULL, 0);
1771 
1772 	return 0;
1773 }
1774 
1775 /*
1776  * Modify the interest event mask by dropping an event if the new mask
1777  * has a match in the current file status. Must be called with "mtx" held.
1778  */
ep_modify(struct eventpoll * ep,struct epitem * epi,const struct epoll_event * event)1779 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1780 		     const struct epoll_event *event)
1781 {
1782 	int pwake = 0;
1783 	poll_table pt;
1784 
1785 	lockdep_assert_irqs_enabled();
1786 
1787 	init_poll_funcptr(&pt, NULL);
1788 
1789 	/*
1790 	 * Set the new event interest mask before calling f_op->poll();
1791 	 * otherwise we might miss an event that happens between the
1792 	 * f_op->poll() call and the new event set registering.
1793 	 */
1794 	epi->event.events = event->events; /* need barrier below */
1795 	epi->event.data = event->data; /* protected by mtx */
1796 	if (epi->event.events & EPOLLWAKEUP) {
1797 		if (!ep_has_wakeup_source(epi))
1798 			ep_create_wakeup_source(epi);
1799 	} else if (ep_has_wakeup_source(epi)) {
1800 		ep_destroy_wakeup_source(epi);
1801 	}
1802 
1803 	/*
1804 	 * The following barrier has two effects:
1805 	 *
1806 	 * 1) Flush epi changes above to other CPUs.  This ensures
1807 	 *    we do not miss events from ep_poll_callback if an
1808 	 *    event occurs immediately after we call f_op->poll().
1809 	 *    We need this because we did not take ep->lock while
1810 	 *    changing epi above (but ep_poll_callback does take
1811 	 *    ep->lock).
1812 	 *
1813 	 * 2) We also need to ensure we do not miss _past_ events
1814 	 *    when calling f_op->poll().  This barrier also
1815 	 *    pairs with the barrier in wq_has_sleeper (see
1816 	 *    comments for wq_has_sleeper).
1817 	 *
1818 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1819 	 * (or both) will notice the readiness of an item.
1820 	 */
1821 	smp_mb();
1822 
1823 	/*
1824 	 * Get current event bits. We can safely use the file* here because
1825 	 * its usage count has been increased by the caller of this function.
1826 	 * If the item is "hot" and it is not registered inside the ready
1827 	 * list, push it inside.
1828 	 */
1829 	if (ep_item_poll(epi, &pt, 1)) {
1830 		write_lock_irq(&ep->lock);
1831 		if (!ep_is_linked(epi)) {
1832 			list_add_tail(&epi->rdllink, &ep->rdllist);
1833 			ep_pm_stay_awake(epi);
1834 
1835 			/* Notify waiting tasks that events are available */
1836 			if (waitqueue_active(&ep->wq))
1837 				wake_up(&ep->wq);
1838 			if (waitqueue_active(&ep->poll_wait))
1839 				pwake++;
1840 		}
1841 		write_unlock_irq(&ep->lock);
1842 	}
1843 
1844 	/* We have to call this outside the lock */
1845 	if (pwake)
1846 		ep_poll_safewake(ep, NULL, 0);
1847 
1848 	return 0;
1849 }
1850 
ep_send_events(struct eventpoll * ep,struct epoll_event __user * events,int maxevents)1851 static int ep_send_events(struct eventpoll *ep,
1852 			  struct epoll_event __user *events, int maxevents)
1853 {
1854 	struct epitem *epi, *tmp;
1855 	LIST_HEAD(txlist);
1856 	poll_table pt;
1857 	int res = 0;
1858 
1859 	/*
1860 	 * Always short-circuit for fatal signals to allow threads to make a
1861 	 * timely exit without the chance of finding more events available and
1862 	 * fetching repeatedly.
1863 	 */
1864 	if (fatal_signal_pending(current))
1865 		return -EINTR;
1866 
1867 	init_poll_funcptr(&pt, NULL);
1868 
1869 	mutex_lock(&ep->mtx);
1870 	ep_start_scan(ep, &txlist);
1871 
1872 	/*
1873 	 * We can loop without lock because we are passed a task private list.
1874 	 * Items cannot vanish during the loop we are holding ep->mtx.
1875 	 */
1876 	list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1877 		struct wakeup_source *ws;
1878 		__poll_t revents;
1879 
1880 		if (res >= maxevents)
1881 			break;
1882 
1883 		/*
1884 		 * Activate ep->ws before deactivating epi->ws to prevent
1885 		 * triggering auto-suspend here (in case we reactive epi->ws
1886 		 * below).
1887 		 *
1888 		 * This could be rearranged to delay the deactivation of epi->ws
1889 		 * instead, but then epi->ws would temporarily be out of sync
1890 		 * with ep_is_linked().
1891 		 */
1892 		ws = ep_wakeup_source(epi);
1893 		if (ws) {
1894 			if (ws->active)
1895 				__pm_stay_awake(ep->ws);
1896 			__pm_relax(ws);
1897 		}
1898 
1899 		list_del_init(&epi->rdllink);
1900 
1901 		/*
1902 		 * If the event mask intersect the caller-requested one,
1903 		 * deliver the event to userspace. Again, we are holding ep->mtx,
1904 		 * so no operations coming from userspace can change the item.
1905 		 */
1906 		revents = ep_item_poll(epi, &pt, 1);
1907 		if (!revents)
1908 			continue;
1909 
1910 		events = epoll_put_uevent(revents, epi->event.data, events);
1911 		if (!events) {
1912 			list_add(&epi->rdllink, &txlist);
1913 			ep_pm_stay_awake(epi);
1914 			if (!res)
1915 				res = -EFAULT;
1916 			break;
1917 		}
1918 		res++;
1919 		if (epi->event.events & EPOLLONESHOT)
1920 			epi->event.events &= EP_PRIVATE_BITS;
1921 		else if (!(epi->event.events & EPOLLET)) {
1922 			/*
1923 			 * If this file has been added with Level
1924 			 * Trigger mode, we need to insert back inside
1925 			 * the ready list, so that the next call to
1926 			 * epoll_wait() will check again the events
1927 			 * availability. At this point, no one can insert
1928 			 * into ep->rdllist besides us. The epoll_ctl()
1929 			 * callers are locked out by
1930 			 * ep_send_events() holding "mtx" and the
1931 			 * poll callback will queue them in ep->ovflist.
1932 			 */
1933 			list_add_tail(&epi->rdllink, &ep->rdllist);
1934 			ep_pm_stay_awake(epi);
1935 		}
1936 	}
1937 	ep_done_scan(ep, &txlist);
1938 	mutex_unlock(&ep->mtx);
1939 
1940 	return res;
1941 }
1942 
ep_timeout_to_timespec(struct timespec64 * to,long ms)1943 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
1944 {
1945 	struct timespec64 now;
1946 
1947 	if (ms < 0)
1948 		return NULL;
1949 
1950 	if (!ms) {
1951 		to->tv_sec = 0;
1952 		to->tv_nsec = 0;
1953 		return to;
1954 	}
1955 
1956 	to->tv_sec = ms / MSEC_PER_SEC;
1957 	to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
1958 
1959 	ktime_get_ts64(&now);
1960 	*to = timespec64_add_safe(now, *to);
1961 	return to;
1962 }
1963 
1964 /*
1965  * autoremove_wake_function, but remove even on failure to wake up, because we
1966  * know that default_wake_function/ttwu will only fail if the thread is already
1967  * woken, and in that case the ep_poll loop will remove the entry anyways, not
1968  * try to reuse it.
1969  */
ep_autoremove_wake_function(struct wait_queue_entry * wq_entry,unsigned int mode,int sync,void * key)1970 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1971 				       unsigned int mode, int sync, void *key)
1972 {
1973 	int ret = default_wake_function(wq_entry, mode, sync, key);
1974 
1975 	/*
1976 	 * Pairs with list_empty_careful in ep_poll, and ensures future loop
1977 	 * iterations see the cause of this wakeup.
1978 	 */
1979 	list_del_init_careful(&wq_entry->entry);
1980 	return ret;
1981 }
1982 
1983 /**
1984  * ep_poll - Retrieves ready events, and delivers them to the caller-supplied
1985  *           event buffer.
1986  *
1987  * @ep: Pointer to the eventpoll context.
1988  * @events: Pointer to the userspace buffer where the ready events should be
1989  *          stored.
1990  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1991  * @timeout: Maximum timeout for the ready events fetch operation, in
1992  *           timespec. If the timeout is zero, the function will not block,
1993  *           while if the @timeout ptr is NULL, the function will block
1994  *           until at least one event has been retrieved (or an error
1995  *           occurred).
1996  *
1997  * Return: the number of ready events which have been fetched, or an
1998  *          error code, in case of error.
1999  */
ep_poll(struct eventpoll * ep,struct epoll_event __user * events,int maxevents,struct timespec64 * timeout)2000 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
2001 		   int maxevents, struct timespec64 *timeout)
2002 {
2003 	int res, eavail, timed_out = 0;
2004 	u64 slack = 0;
2005 	wait_queue_entry_t wait;
2006 	ktime_t expires, *to = NULL;
2007 
2008 	lockdep_assert_irqs_enabled();
2009 
2010 	if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
2011 		slack = select_estimate_accuracy(timeout);
2012 		to = &expires;
2013 		*to = timespec64_to_ktime(*timeout);
2014 	} else if (timeout) {
2015 		/*
2016 		 * Avoid the unnecessary trip to the wait queue loop, if the
2017 		 * caller specified a non blocking operation.
2018 		 */
2019 		timed_out = 1;
2020 	}
2021 
2022 	/*
2023 	 * This call is racy: We may or may not see events that are being added
2024 	 * to the ready list under the lock (e.g., in IRQ callbacks). For cases
2025 	 * with a non-zero timeout, this thread will check the ready list under
2026 	 * lock and will add to the wait queue.  For cases with a zero
2027 	 * timeout, the user by definition should not care and will have to
2028 	 * recheck again.
2029 	 */
2030 	eavail = ep_events_available(ep);
2031 
2032 	while (1) {
2033 		if (eavail) {
2034 			/*
2035 			 * Try to transfer events to user space. In case we get
2036 			 * 0 events and there's still timeout left over, we go
2037 			 * trying again in search of more luck.
2038 			 */
2039 			res = ep_send_events(ep, events, maxevents);
2040 			if (res) {
2041 				if (res > 0)
2042 					ep_suspend_napi_irqs(ep);
2043 				return res;
2044 			}
2045 		}
2046 
2047 		if (timed_out)
2048 			return 0;
2049 
2050 		eavail = ep_busy_loop(ep, timed_out);
2051 		if (eavail)
2052 			continue;
2053 
2054 		if (signal_pending(current))
2055 			return -EINTR;
2056 
2057 		/*
2058 		 * Internally init_wait() uses autoremove_wake_function(),
2059 		 * thus wait entry is removed from the wait queue on each
2060 		 * wakeup. Why it is important? In case of several waiters
2061 		 * each new wakeup will hit the next waiter, giving it the
2062 		 * chance to harvest new event. Otherwise wakeup can be
2063 		 * lost. This is also good performance-wise, because on
2064 		 * normal wakeup path no need to call __remove_wait_queue()
2065 		 * explicitly, thus ep->lock is not taken, which halts the
2066 		 * event delivery.
2067 		 *
2068 		 * In fact, we now use an even more aggressive function that
2069 		 * unconditionally removes, because we don't reuse the wait
2070 		 * entry between loop iterations. This lets us also avoid the
2071 		 * performance issue if a process is killed, causing all of its
2072 		 * threads to wake up without being removed normally.
2073 		 */
2074 		init_wait(&wait);
2075 		wait.func = ep_autoremove_wake_function;
2076 
2077 		write_lock_irq(&ep->lock);
2078 		/*
2079 		 * Barrierless variant, waitqueue_active() is called under
2080 		 * the same lock on wakeup ep_poll_callback() side, so it
2081 		 * is safe to avoid an explicit barrier.
2082 		 */
2083 		__set_current_state(TASK_INTERRUPTIBLE);
2084 
2085 		/*
2086 		 * Do the final check under the lock. ep_start/done_scan()
2087 		 * plays with two lists (->rdllist and ->ovflist) and there
2088 		 * is always a race when both lists are empty for short
2089 		 * period of time although events are pending, so lock is
2090 		 * important.
2091 		 */
2092 		eavail = ep_events_available(ep);
2093 		if (!eavail)
2094 			__add_wait_queue_exclusive(&ep->wq, &wait);
2095 
2096 		write_unlock_irq(&ep->lock);
2097 
2098 		if (!eavail)
2099 			timed_out = !schedule_hrtimeout_range(to, slack,
2100 							      HRTIMER_MODE_ABS);
2101 		__set_current_state(TASK_RUNNING);
2102 
2103 		/*
2104 		 * We were woken up, thus go and try to harvest some events.
2105 		 * If timed out and still on the wait queue, recheck eavail
2106 		 * carefully under lock, below.
2107 		 */
2108 		eavail = 1;
2109 
2110 		if (!list_empty_careful(&wait.entry)) {
2111 			write_lock_irq(&ep->lock);
2112 			/*
2113 			 * If the thread timed out and is not on the wait queue,
2114 			 * it means that the thread was woken up after its
2115 			 * timeout expired before it could reacquire the lock.
2116 			 * Thus, when wait.entry is empty, it needs to harvest
2117 			 * events.
2118 			 */
2119 			if (timed_out)
2120 				eavail = list_empty(&wait.entry);
2121 			__remove_wait_queue(&ep->wq, &wait);
2122 			write_unlock_irq(&ep->lock);
2123 		}
2124 	}
2125 }
2126 
2127 /**
2128  * ep_loop_check_proc - verify that adding an epoll file inside another
2129  *                      epoll structure does not violate the constraints, in
2130  *                      terms of closed loops, or too deep chains (which can
2131  *                      result in excessive stack usage).
2132  *
2133  * @ep: the &struct eventpoll to be currently checked.
2134  * @depth: Current depth of the path being checked.
2135  *
2136  * Return: %zero if adding the epoll @file inside current epoll
2137  *          structure @ep does not violate the constraints, or %-1 otherwise.
2138  */
ep_loop_check_proc(struct eventpoll * ep,int depth)2139 static int ep_loop_check_proc(struct eventpoll *ep, int depth)
2140 {
2141 	int error = 0;
2142 	struct rb_node *rbp;
2143 	struct epitem *epi;
2144 
2145 	mutex_lock_nested(&ep->mtx, depth + 1);
2146 	ep->gen = loop_check_gen;
2147 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
2148 		epi = rb_entry(rbp, struct epitem, rbn);
2149 		if (unlikely(is_file_epoll(epi->ffd.file))) {
2150 			struct eventpoll *ep_tovisit;
2151 			ep_tovisit = epi->ffd.file->private_data;
2152 			if (ep_tovisit->gen == loop_check_gen)
2153 				continue;
2154 			if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
2155 				error = -1;
2156 			else
2157 				error = ep_loop_check_proc(ep_tovisit, depth + 1);
2158 			if (error != 0)
2159 				break;
2160 		} else {
2161 			/*
2162 			 * If we've reached a file that is not associated with
2163 			 * an ep, then we need to check if the newly added
2164 			 * links are going to add too many wakeup paths. We do
2165 			 * this by adding it to the tfile_check_list, if it's
2166 			 * not already there, and calling reverse_path_check()
2167 			 * during ep_insert().
2168 			 */
2169 			list_file(epi->ffd.file);
2170 		}
2171 	}
2172 	mutex_unlock(&ep->mtx);
2173 
2174 	return error;
2175 }
2176 
2177 /**
2178  * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
2179  *                 into another epoll file (represented by @ep) does not create
2180  *                 closed loops or too deep chains.
2181  *
2182  * @ep: Pointer to the epoll we are inserting into.
2183  * @to: Pointer to the epoll to be inserted.
2184  *
2185  * Return: %zero if adding the epoll @to inside the epoll @from
2186  * does not violate the constraints, or %-1 otherwise.
2187  */
ep_loop_check(struct eventpoll * ep,struct eventpoll * to)2188 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
2189 {
2190 	inserting_into = ep;
2191 	return ep_loop_check_proc(to, 0);
2192 }
2193 
clear_tfile_check_list(void)2194 static void clear_tfile_check_list(void)
2195 {
2196 	rcu_read_lock();
2197 	while (tfile_check_list != EP_UNACTIVE_PTR) {
2198 		struct epitems_head *head = tfile_check_list;
2199 		tfile_check_list = head->next;
2200 		unlist_file(head);
2201 	}
2202 	rcu_read_unlock();
2203 }
2204 
2205 /*
2206  * Open an eventpoll file descriptor.
2207  */
do_epoll_create(int flags)2208 static int do_epoll_create(int flags)
2209 {
2210 	int error, fd;
2211 	struct eventpoll *ep = NULL;
2212 	struct file *file;
2213 
2214 	/* Check the EPOLL_* constant for consistency.  */
2215 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2216 
2217 	if (flags & ~EPOLL_CLOEXEC)
2218 		return -EINVAL;
2219 	/*
2220 	 * Create the internal data structure ("struct eventpoll").
2221 	 */
2222 	error = ep_alloc(&ep);
2223 	if (error < 0)
2224 		return error;
2225 	/*
2226 	 * Creates all the items needed to setup an eventpoll file. That is,
2227 	 * a file structure and a free file descriptor.
2228 	 */
2229 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2230 	if (fd < 0) {
2231 		error = fd;
2232 		goto out_free_ep;
2233 	}
2234 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2235 				 O_RDWR | (flags & O_CLOEXEC));
2236 	if (IS_ERR(file)) {
2237 		error = PTR_ERR(file);
2238 		goto out_free_fd;
2239 	}
2240 	ep->file = file;
2241 	fd_install(fd, file);
2242 	return fd;
2243 
2244 out_free_fd:
2245 	put_unused_fd(fd);
2246 out_free_ep:
2247 	ep_clear_and_put(ep);
2248 	return error;
2249 }
2250 
SYSCALL_DEFINE1(epoll_create1,int,flags)2251 SYSCALL_DEFINE1(epoll_create1, int, flags)
2252 {
2253 	return do_epoll_create(flags);
2254 }
2255 
SYSCALL_DEFINE1(epoll_create,int,size)2256 SYSCALL_DEFINE1(epoll_create, int, size)
2257 {
2258 	if (size <= 0)
2259 		return -EINVAL;
2260 
2261 	return do_epoll_create(0);
2262 }
2263 
2264 #ifdef CONFIG_PM_SLEEP
ep_take_care_of_epollwakeup(struct epoll_event * epev)2265 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2266 {
2267 	if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
2268 		epev->events &= ~EPOLLWAKEUP;
2269 }
2270 #else
ep_take_care_of_epollwakeup(struct epoll_event * epev)2271 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2272 {
2273 	epev->events &= ~EPOLLWAKEUP;
2274 }
2275 #endif
2276 
epoll_mutex_lock(struct mutex * mutex,int depth,bool nonblock)2277 static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2278 				   bool nonblock)
2279 {
2280 	if (!nonblock) {
2281 		mutex_lock_nested(mutex, depth);
2282 		return 0;
2283 	}
2284 	if (mutex_trylock(mutex))
2285 		return 0;
2286 	return -EAGAIN;
2287 }
2288 
do_epoll_ctl(int epfd,int op,int fd,struct epoll_event * epds,bool nonblock)2289 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2290 		 bool nonblock)
2291 {
2292 	int error;
2293 	int full_check = 0;
2294 	struct eventpoll *ep;
2295 	struct epitem *epi;
2296 	struct eventpoll *tep = NULL;
2297 
2298 	CLASS(fd, f)(epfd);
2299 	if (fd_empty(f))
2300 		return -EBADF;
2301 
2302 	/* Get the "struct file *" for the target file */
2303 	CLASS(fd, tf)(fd);
2304 	if (fd_empty(tf))
2305 		return -EBADF;
2306 
2307 	/* The target file descriptor must support poll */
2308 	if (!file_can_poll(fd_file(tf)))
2309 		return -EPERM;
2310 
2311 	/* Check if EPOLLWAKEUP is allowed */
2312 	if (ep_op_has_event(op))
2313 		ep_take_care_of_epollwakeup(epds);
2314 
2315 	/*
2316 	 * We have to check that the file structure underneath the file descriptor
2317 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
2318 	 * adding an epoll file descriptor inside itself.
2319 	 */
2320 	error = -EINVAL;
2321 	if (fd_file(f) == fd_file(tf) || !is_file_epoll(fd_file(f)))
2322 		goto error_tgt_fput;
2323 
2324 	/*
2325 	 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2326 	 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2327 	 * Also, we do not currently supported nested exclusive wakeups.
2328 	 */
2329 	if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2330 		if (op == EPOLL_CTL_MOD)
2331 			goto error_tgt_fput;
2332 		if (op == EPOLL_CTL_ADD && (is_file_epoll(fd_file(tf)) ||
2333 				(epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2334 			goto error_tgt_fput;
2335 	}
2336 
2337 	/*
2338 	 * At this point it is safe to assume that the "private_data" contains
2339 	 * our own data structure.
2340 	 */
2341 	ep = fd_file(f)->private_data;
2342 
2343 	/*
2344 	 * When we insert an epoll file descriptor inside another epoll file
2345 	 * descriptor, there is the chance of creating closed loops, which are
2346 	 * better be handled here, than in more critical paths. While we are
2347 	 * checking for loops we also determine the list of files reachable
2348 	 * and hang them on the tfile_check_list, so we can check that we
2349 	 * haven't created too many possible wakeup paths.
2350 	 *
2351 	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2352 	 * the epoll file descriptor is attaching directly to a wakeup source,
2353 	 * unless the epoll file descriptor is nested. The purpose of taking the
2354 	 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and
2355 	 * deep wakeup paths from forming in parallel through multiple
2356 	 * EPOLL_CTL_ADD operations.
2357 	 */
2358 	error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2359 	if (error)
2360 		goto error_tgt_fput;
2361 	if (op == EPOLL_CTL_ADD) {
2362 		if (READ_ONCE(fd_file(f)->f_ep) || ep->gen == loop_check_gen ||
2363 		    is_file_epoll(fd_file(tf))) {
2364 			mutex_unlock(&ep->mtx);
2365 			error = epoll_mutex_lock(&epnested_mutex, 0, nonblock);
2366 			if (error)
2367 				goto error_tgt_fput;
2368 			loop_check_gen++;
2369 			full_check = 1;
2370 			if (is_file_epoll(fd_file(tf))) {
2371 				tep = fd_file(tf)->private_data;
2372 				error = -ELOOP;
2373 				if (ep_loop_check(ep, tep) != 0)
2374 					goto error_tgt_fput;
2375 			}
2376 			error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2377 			if (error)
2378 				goto error_tgt_fput;
2379 		}
2380 	}
2381 
2382 	/*
2383 	 * Try to lookup the file inside our RB tree. Since we grabbed "mtx"
2384 	 * above, we can be sure to be able to use the item looked up by
2385 	 * ep_find() till we release the mutex.
2386 	 */
2387 	epi = ep_find(ep, fd_file(tf), fd);
2388 
2389 	error = -EINVAL;
2390 	switch (op) {
2391 	case EPOLL_CTL_ADD:
2392 		if (!epi) {
2393 			epds->events |= EPOLLERR | EPOLLHUP;
2394 			error = ep_insert(ep, epds, fd_file(tf), fd, full_check);
2395 		} else
2396 			error = -EEXIST;
2397 		break;
2398 	case EPOLL_CTL_DEL:
2399 		if (epi) {
2400 			/*
2401 			 * The eventpoll itself is still alive: the refcount
2402 			 * can't go to zero here.
2403 			 */
2404 			ep_remove_safe(ep, epi);
2405 			error = 0;
2406 		} else {
2407 			error = -ENOENT;
2408 		}
2409 		break;
2410 	case EPOLL_CTL_MOD:
2411 		if (epi) {
2412 			if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2413 				epds->events |= EPOLLERR | EPOLLHUP;
2414 				error = ep_modify(ep, epi, epds);
2415 			}
2416 		} else
2417 			error = -ENOENT;
2418 		break;
2419 	}
2420 	mutex_unlock(&ep->mtx);
2421 
2422 error_tgt_fput:
2423 	if (full_check) {
2424 		clear_tfile_check_list();
2425 		loop_check_gen++;
2426 		mutex_unlock(&epnested_mutex);
2427 	}
2428 	return error;
2429 }
2430 
2431 /*
2432  * The following function implements the controller interface for
2433  * the eventpoll file that enables the insertion/removal/change of
2434  * file descriptors inside the interest set.
2435  */
SYSCALL_DEFINE4(epoll_ctl,int,epfd,int,op,int,fd,struct epoll_event __user *,event)2436 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2437 		struct epoll_event __user *, event)
2438 {
2439 	struct epoll_event epds;
2440 
2441 	if (ep_op_has_event(op) &&
2442 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
2443 		return -EFAULT;
2444 
2445 	return do_epoll_ctl(epfd, op, fd, &epds, false);
2446 }
2447 
2448 /*
2449  * Implement the event wait interface for the eventpoll file. It is the kernel
2450  * part of the user space epoll_wait(2).
2451  */
do_epoll_wait(int epfd,struct epoll_event __user * events,int maxevents,struct timespec64 * to)2452 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2453 			 int maxevents, struct timespec64 *to)
2454 {
2455 	struct eventpoll *ep;
2456 
2457 	/* The maximum number of event must be greater than zero */
2458 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2459 		return -EINVAL;
2460 
2461 	/* Verify that the area passed by the user is writeable */
2462 	if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2463 		return -EFAULT;
2464 
2465 	/* Get the "struct file *" for the eventpoll file */
2466 	CLASS(fd, f)(epfd);
2467 	if (fd_empty(f))
2468 		return -EBADF;
2469 
2470 	/*
2471 	 * We have to check that the file structure underneath the fd
2472 	 * the user passed to us _is_ an eventpoll file.
2473 	 */
2474 	if (!is_file_epoll(fd_file(f)))
2475 		return -EINVAL;
2476 
2477 	/*
2478 	 * At this point it is safe to assume that the "private_data" contains
2479 	 * our own data structure.
2480 	 */
2481 	ep = fd_file(f)->private_data;
2482 
2483 	/* Time to fish for events ... */
2484 	return ep_poll(ep, events, maxevents, to);
2485 }
2486 
SYSCALL_DEFINE4(epoll_wait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout)2487 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2488 		int, maxevents, int, timeout)
2489 {
2490 	struct timespec64 to;
2491 
2492 	return do_epoll_wait(epfd, events, maxevents,
2493 			     ep_timeout_to_timespec(&to, timeout));
2494 }
2495 
2496 /*
2497  * Implement the event wait interface for the eventpoll file. It is the kernel
2498  * part of the user space epoll_pwait(2).
2499  */
do_epoll_pwait(int epfd,struct epoll_event __user * events,int maxevents,struct timespec64 * to,const sigset_t __user * sigmask,size_t sigsetsize)2500 static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2501 			  int maxevents, struct timespec64 *to,
2502 			  const sigset_t __user *sigmask, size_t sigsetsize)
2503 {
2504 	int error;
2505 
2506 	/*
2507 	 * If the caller wants a certain signal mask to be set during the wait,
2508 	 * we apply it here.
2509 	 */
2510 	error = set_user_sigmask(sigmask, sigsetsize);
2511 	if (error)
2512 		return error;
2513 
2514 	error = do_epoll_wait(epfd, events, maxevents, to);
2515 
2516 	restore_saved_sigmask_unless(error == -EINTR);
2517 
2518 	return error;
2519 }
2520 
SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const sigset_t __user *,sigmask,size_t,sigsetsize)2521 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2522 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2523 		size_t, sigsetsize)
2524 {
2525 	struct timespec64 to;
2526 
2527 	return do_epoll_pwait(epfd, events, maxevents,
2528 			      ep_timeout_to_timespec(&to, timeout),
2529 			      sigmask, sigsetsize);
2530 }
2531 
SYSCALL_DEFINE6(epoll_pwait2,int,epfd,struct epoll_event __user *,events,int,maxevents,const struct __kernel_timespec __user *,timeout,const sigset_t __user *,sigmask,size_t,sigsetsize)2532 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2533 		int, maxevents, const struct __kernel_timespec __user *, timeout,
2534 		const sigset_t __user *, sigmask, size_t, sigsetsize)
2535 {
2536 	struct timespec64 ts, *to = NULL;
2537 
2538 	if (timeout) {
2539 		if (get_timespec64(&ts, timeout))
2540 			return -EFAULT;
2541 		to = &ts;
2542 		if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2543 			return -EINVAL;
2544 	}
2545 
2546 	return do_epoll_pwait(epfd, events, maxevents, to,
2547 			      sigmask, sigsetsize);
2548 }
2549 
2550 #ifdef CONFIG_COMPAT
do_compat_epoll_pwait(int epfd,struct epoll_event __user * events,int maxevents,struct timespec64 * timeout,const compat_sigset_t __user * sigmask,compat_size_t sigsetsize)2551 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2552 				 int maxevents, struct timespec64 *timeout,
2553 				 const compat_sigset_t __user *sigmask,
2554 				 compat_size_t sigsetsize)
2555 {
2556 	long err;
2557 
2558 	/*
2559 	 * If the caller wants a certain signal mask to be set during the wait,
2560 	 * we apply it here.
2561 	 */
2562 	err = set_compat_user_sigmask(sigmask, sigsetsize);
2563 	if (err)
2564 		return err;
2565 
2566 	err = do_epoll_wait(epfd, events, maxevents, timeout);
2567 
2568 	restore_saved_sigmask_unless(err == -EINTR);
2569 
2570 	return err;
2571 }
2572 
COMPAT_SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const compat_sigset_t __user *,sigmask,compat_size_t,sigsetsize)2573 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2574 		       struct epoll_event __user *, events,
2575 		       int, maxevents, int, timeout,
2576 		       const compat_sigset_t __user *, sigmask,
2577 		       compat_size_t, sigsetsize)
2578 {
2579 	struct timespec64 to;
2580 
2581 	return do_compat_epoll_pwait(epfd, events, maxevents,
2582 				     ep_timeout_to_timespec(&to, timeout),
2583 				     sigmask, sigsetsize);
2584 }
2585 
COMPAT_SYSCALL_DEFINE6(epoll_pwait2,int,epfd,struct epoll_event __user *,events,int,maxevents,const struct __kernel_timespec __user *,timeout,const compat_sigset_t __user *,sigmask,compat_size_t,sigsetsize)2586 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2587 		       struct epoll_event __user *, events,
2588 		       int, maxevents,
2589 		       const struct __kernel_timespec __user *, timeout,
2590 		       const compat_sigset_t __user *, sigmask,
2591 		       compat_size_t, sigsetsize)
2592 {
2593 	struct timespec64 ts, *to = NULL;
2594 
2595 	if (timeout) {
2596 		if (get_timespec64(&ts, timeout))
2597 			return -EFAULT;
2598 		to = &ts;
2599 		if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2600 			return -EINVAL;
2601 	}
2602 
2603 	return do_compat_epoll_pwait(epfd, events, maxevents, to,
2604 				     sigmask, sigsetsize);
2605 }
2606 
2607 #endif
2608 
eventpoll_init(void)2609 static int __init eventpoll_init(void)
2610 {
2611 	struct sysinfo si;
2612 
2613 	si_meminfo(&si);
2614 	/*
2615 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2616 	 */
2617 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2618 		EP_ITEM_COST;
2619 	BUG_ON(max_user_watches < 0);
2620 
2621 	/*
2622 	 * We can have many thousands of epitems, so prevent this from
2623 	 * using an extra cache line on 64-bit (and smaller) CPUs
2624 	 */
2625 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2626 
2627 	/* Allocates slab cache used to allocate "struct epitem" items */
2628 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2629 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2630 
2631 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2632 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2633 		sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2634 	epoll_sysctls_init();
2635 
2636 	ephead_cache = kmem_cache_create("ep_head",
2637 		sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2638 
2639 	return 0;
2640 }
2641 fs_initcall(eventpoll_init);
2642