xref: /linux/drivers/usb/gadget/function/f_fs.c (revision f5e9d31e79c1ce8ba948ecac74d75e9c8d2f0c87)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * f_fs.c -- user mode file system API for USB composite function controllers
4  *
5  * Copyright (C) 2010 Samsung Electronics
6  * Author: Michal Nazarewicz <mina86@mina86.com>
7  *
8  * Based on inode.c (GadgetFS) which was:
9  * Copyright (C) 2003-2004 David Brownell
10  * Copyright (C) 2003 Agilent Technologies
11  */
12 
13 
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16 
17 #include <linux/blkdev.h>
18 #include <linux/dma-buf.h>
19 #include <linux/dma-fence.h>
20 #include <linux/dma-resv.h>
21 #include <linux/pagemap.h>
22 #include <linux/export.h>
23 #include <linux/fs_parser.h>
24 #include <linux/hid.h>
25 #include <linux/mm.h>
26 #include <linux/module.h>
27 #include <linux/scatterlist.h>
28 #include <linux/sched/signal.h>
29 #include <linux/uio.h>
30 #include <linux/vmalloc.h>
31 #include <linux/unaligned.h>
32 
33 #include <linux/usb/ccid.h>
34 #include <linux/usb/composite.h>
35 #include <linux/usb/functionfs.h>
36 #include <linux/usb/func_utils.h>
37 
38 #include <linux/aio.h>
39 #include <linux/kthread.h>
40 #include <linux/poll.h>
41 #include <linux/eventfd.h>
42 
43 #include "u_fs.h"
44 #include "u_os_desc.h"
45 #include "configfs.h"
46 
47 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
48 #define MAX_ALT_SETTINGS	2		  /* Allow up to 2 alt settings to be set. */
49 
50 #define DMABUF_ENQUEUE_TIMEOUT_MS 5000
51 
52 MODULE_IMPORT_NS("DMA_BUF");
53 
54 /* Reference counter handling */
55 static void ffs_data_get(struct ffs_data *ffs);
56 static void ffs_data_put(struct ffs_data *ffs);
57 /* Creates new ffs_data object. */
58 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
59 	__attribute__((malloc));
60 
61 /* Opened counter handling. */
62 static void ffs_data_opened(struct ffs_data *ffs);
63 static void ffs_data_closed(struct ffs_data *ffs);
64 
65 /* Called with ffs->mutex held; take over ownership of data. */
66 static int __must_check
67 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
68 static int __must_check
69 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
70 
71 
72 /* The function structure ***************************************************/
73 
74 struct ffs_ep;
75 
76 struct ffs_function {
77 	struct usb_configuration	*conf;
78 	struct usb_gadget		*gadget;
79 	struct ffs_data			*ffs;
80 
81 	struct ffs_ep			*eps;
82 	u8				eps_revmap[16];
83 	short				*interfaces_nums;
84 
85 	struct usb_function		function;
86 	int				cur_alt[MAX_CONFIG_INTERFACES];
87 };
88 
89 
ffs_func_from_usb(struct usb_function * f)90 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
91 {
92 	return container_of(f, struct ffs_function, function);
93 }
94 
95 
96 static inline enum ffs_setup_state
ffs_setup_state_clear_cancelled(struct ffs_data * ffs)97 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
98 {
99 	return (enum ffs_setup_state)
100 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
101 }
102 
103 
104 static void ffs_func_eps_disable(struct ffs_function *func);
105 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
106 
107 static int ffs_func_bind(struct usb_configuration *,
108 			 struct usb_function *);
109 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
110 static int ffs_func_get_alt(struct usb_function *f, unsigned int intf);
111 static void ffs_func_disable(struct usb_function *);
112 static int ffs_func_setup(struct usb_function *,
113 			  const struct usb_ctrlrequest *);
114 static bool ffs_func_req_match(struct usb_function *,
115 			       const struct usb_ctrlrequest *,
116 			       bool config0);
117 static void ffs_func_suspend(struct usb_function *);
118 static void ffs_func_resume(struct usb_function *);
119 
120 
121 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
122 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
123 
124 
125 /* The endpoints structures *************************************************/
126 
127 struct ffs_ep {
128 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
129 	struct usb_request		*req;	/* P: epfile->mutex */
130 
131 	/* [0]: full speed, [1]: high speed, [2]: super speed */
132 	struct usb_endpoint_descriptor	*descs[3];
133 
134 	u8				num;
135 };
136 
137 struct ffs_dmabuf_priv {
138 	struct list_head entry;
139 	struct kref ref;
140 	struct ffs_data *ffs;
141 	struct dma_buf_attachment *attach;
142 	struct sg_table *sgt;
143 	enum dma_data_direction dir;
144 	spinlock_t lock;
145 	u64 context;
146 	struct usb_request *req;	/* P: ffs->eps_lock */
147 	struct usb_ep *ep;		/* P: ffs->eps_lock */
148 };
149 
150 struct ffs_dma_fence {
151 	struct dma_fence base;
152 	struct ffs_dmabuf_priv *priv;
153 	struct work_struct work;
154 };
155 
156 struct ffs_epfile {
157 	/* Protects ep->ep and ep->req. */
158 	struct mutex			mutex;
159 
160 	struct ffs_data			*ffs;
161 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
162 
163 	/*
164 	 * Buffer for holding data from partial reads which may happen since
165 	 * we’re rounding user read requests to a multiple of a max packet size.
166 	 *
167 	 * The pointer is initialised with NULL value and may be set by
168 	 * __ffs_epfile_read_data function to point to a temporary buffer.
169 	 *
170 	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
171 	 * data from said buffer and eventually free it.  Importantly, while the
172 	 * function is using the buffer, it sets the pointer to NULL.  This is
173 	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
174 	 * can never run concurrently (they are synchronised by epfile->mutex)
175 	 * so the latter will not assign a new value to the pointer.
176 	 *
177 	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
178 	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
179 	 * value is crux of the synchronisation between ffs_func_eps_disable and
180 	 * __ffs_epfile_read_data.
181 	 *
182 	 * Once __ffs_epfile_read_data is about to finish it will try to set the
183 	 * pointer back to its old value (as described above), but seeing as the
184 	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
185 	 * the buffer.
186 	 *
187 	 * == State transitions ==
188 	 *
189 	 * • ptr == NULL:  (initial state)
190 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
191 	 *   ◦ __ffs_epfile_read_buffered:    nop
192 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
193 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
194 	 * • ptr == DROP:
195 	 *   ◦ __ffs_epfile_read_buffer_free: nop
196 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
197 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
198 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
199 	 * • ptr == buf:
200 	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
201 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
202 	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
203 	 *                                    is always called first
204 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
205 	 * • ptr == NULL and reading:
206 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
207 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
208 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
209 	 *   ◦ reading finishes and …
210 	 *     … all data read:               free buf, go to ptr == NULL
211 	 *     … otherwise:                   go to ptr == buf and reading
212 	 * • ptr == DROP and reading:
213 	 *   ◦ __ffs_epfile_read_buffer_free: nop
214 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
215 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
216 	 *   ◦ reading finishes:              free buf, go to ptr == DROP
217 	 */
218 	struct ffs_buffer		*read_buffer;
219 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
220 
221 	char				name[5];
222 
223 	unsigned char			in;	/* P: ffs->eps_lock */
224 	unsigned char			isoc;	/* P: ffs->eps_lock */
225 
226 	unsigned char			_pad;
227 
228 	/* Protects dmabufs */
229 	struct mutex			dmabufs_mutex;
230 	struct list_head		dmabufs; /* P: dmabufs_mutex */
231 	atomic_t			seqno;
232 };
233 
234 struct ffs_buffer {
235 	size_t length;
236 	char *data;
237 	char storage[] __counted_by(length);
238 };
239 
240 /*  ffs_io_data structure ***************************************************/
241 
242 struct ffs_io_data {
243 	bool aio;
244 	bool read;
245 
246 	struct kiocb *kiocb;
247 	struct iov_iter data;
248 	const void *to_free;
249 	char *buf;
250 
251 	struct mm_struct *mm;
252 	struct work_struct work;
253 
254 	struct usb_ep *ep;
255 	struct usb_request *req;
256 	struct sg_table sgt;
257 	bool use_sg;
258 
259 	struct ffs_data *ffs;
260 
261 	int status;
262 	struct completion done;
263 };
264 
265 struct ffs_desc_helper {
266 	struct ffs_data *ffs;
267 	unsigned interfaces_count;
268 	unsigned eps_count;
269 };
270 
271 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
272 static void ffs_epfiles_destroy(struct super_block *sb,
273 				struct ffs_epfile *epfiles, unsigned count);
274 
275 static int ffs_sb_create_file(struct super_block *sb, const char *name,
276 			      void *data, const struct file_operations *fops);
277 
278 /* Devices management *******************************************************/
279 
280 DEFINE_MUTEX(ffs_lock);
281 EXPORT_SYMBOL_GPL(ffs_lock);
282 
283 static struct ffs_dev *_ffs_find_dev(const char *name);
284 static struct ffs_dev *_ffs_alloc_dev(void);
285 static void _ffs_free_dev(struct ffs_dev *dev);
286 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data);
287 static void ffs_release_dev(struct ffs_dev *ffs_dev);
288 static int ffs_ready(struct ffs_data *ffs);
289 static void ffs_closed(struct ffs_data *ffs);
290 
291 /* Misc helper functions ****************************************************/
292 
293 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
294 	__attribute__((warn_unused_result, nonnull));
295 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
296 	__attribute__((warn_unused_result, nonnull));
297 
298 
299 /* Control file aka ep0 *****************************************************/
300 
ffs_ep0_complete(struct usb_ep * ep,struct usb_request * req)301 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
302 {
303 	struct ffs_data *ffs = req->context;
304 
305 	complete(&ffs->ep0req_completion);
306 }
307 
__ffs_ep0_queue_wait(struct ffs_data * ffs,char * data,size_t len)308 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
309 	__releases(&ffs->ev.waitq.lock)
310 {
311 	struct usb_request *req = ffs->ep0req;
312 	int ret;
313 
314 	if (!req) {
315 		spin_unlock_irq(&ffs->ev.waitq.lock);
316 		return -EINVAL;
317 	}
318 
319 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
320 
321 	spin_unlock_irq(&ffs->ev.waitq.lock);
322 
323 	req->buf      = data;
324 	req->length   = len;
325 
326 	/*
327 	 * UDC layer requires to provide a buffer even for ZLP, but should
328 	 * not use it at all. Let's provide some poisoned pointer to catch
329 	 * possible bug in the driver.
330 	 */
331 	if (req->buf == NULL)
332 		req->buf = (void *)0xDEADBABE;
333 
334 	reinit_completion(&ffs->ep0req_completion);
335 
336 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
337 	if (ret < 0)
338 		return ret;
339 
340 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
341 	if (ret) {
342 		usb_ep_dequeue(ffs->gadget->ep0, req);
343 		return -EINTR;
344 	}
345 
346 	ffs->setup_state = FFS_NO_SETUP;
347 	return req->status ? req->status : req->actual;
348 }
349 
__ffs_ep0_stall(struct ffs_data * ffs)350 static int __ffs_ep0_stall(struct ffs_data *ffs)
351 {
352 	if (ffs->ev.can_stall) {
353 		pr_vdebug("ep0 stall\n");
354 		usb_ep_set_halt(ffs->gadget->ep0);
355 		ffs->setup_state = FFS_NO_SETUP;
356 		return -EL2HLT;
357 	} else {
358 		pr_debug("bogus ep0 stall!\n");
359 		return -ESRCH;
360 	}
361 }
362 
ffs_ep0_write(struct file * file,const char __user * buf,size_t len,loff_t * ptr)363 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
364 			     size_t len, loff_t *ptr)
365 {
366 	struct ffs_data *ffs = file->private_data;
367 	ssize_t ret;
368 	char *data;
369 
370 	/* Fast check if setup was canceled */
371 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
372 		return -EIDRM;
373 
374 	/* Acquire mutex */
375 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
376 	if (ret < 0)
377 		return ret;
378 
379 	/* Check state */
380 	switch (ffs->state) {
381 	case FFS_READ_DESCRIPTORS:
382 	case FFS_READ_STRINGS:
383 		/* Copy data */
384 		if (len < 16) {
385 			ret = -EINVAL;
386 			break;
387 		}
388 
389 		data = ffs_prepare_buffer(buf, len);
390 		if (IS_ERR(data)) {
391 			ret = PTR_ERR(data);
392 			break;
393 		}
394 
395 		/* Handle data */
396 		if (ffs->state == FFS_READ_DESCRIPTORS) {
397 			pr_info("read descriptors\n");
398 			ret = __ffs_data_got_descs(ffs, data, len);
399 			if (ret < 0)
400 				break;
401 
402 			ffs->state = FFS_READ_STRINGS;
403 			ret = len;
404 		} else {
405 			pr_info("read strings\n");
406 			ret = __ffs_data_got_strings(ffs, data, len);
407 			if (ret < 0)
408 				break;
409 
410 			ret = ffs_epfiles_create(ffs);
411 			if (ret) {
412 				ffs->state = FFS_CLOSING;
413 				break;
414 			}
415 
416 			ffs->state = FFS_ACTIVE;
417 			mutex_unlock(&ffs->mutex);
418 
419 			ret = ffs_ready(ffs);
420 			if (ret < 0) {
421 				ffs->state = FFS_CLOSING;
422 				return ret;
423 			}
424 
425 			return len;
426 		}
427 		break;
428 
429 	case FFS_ACTIVE:
430 		data = NULL;
431 		/*
432 		 * We're called from user space, we can use _irq
433 		 * rather then _irqsave
434 		 */
435 		spin_lock_irq(&ffs->ev.waitq.lock);
436 		switch (ffs_setup_state_clear_cancelled(ffs)) {
437 		case FFS_SETUP_CANCELLED:
438 			ret = -EIDRM;
439 			goto done_spin;
440 
441 		case FFS_NO_SETUP:
442 			ret = -ESRCH;
443 			goto done_spin;
444 
445 		case FFS_SETUP_PENDING:
446 			break;
447 		}
448 
449 		/* FFS_SETUP_PENDING */
450 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
451 			spin_unlock_irq(&ffs->ev.waitq.lock);
452 			ret = __ffs_ep0_stall(ffs);
453 			break;
454 		}
455 
456 		/* FFS_SETUP_PENDING and not stall */
457 		len = min_t(size_t, len, le16_to_cpu(ffs->ev.setup.wLength));
458 
459 		spin_unlock_irq(&ffs->ev.waitq.lock);
460 
461 		data = ffs_prepare_buffer(buf, len);
462 		if (IS_ERR(data)) {
463 			ret = PTR_ERR(data);
464 			break;
465 		}
466 
467 		spin_lock_irq(&ffs->ev.waitq.lock);
468 
469 		/*
470 		 * We are guaranteed to be still in FFS_ACTIVE state
471 		 * but the state of setup could have changed from
472 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
473 		 * to check for that.  If that happened we copied data
474 		 * from user space in vain but it's unlikely.
475 		 *
476 		 * For sure we are not in FFS_NO_SETUP since this is
477 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
478 		 * transition can be performed and it's protected by
479 		 * mutex.
480 		 */
481 		if (ffs_setup_state_clear_cancelled(ffs) ==
482 		    FFS_SETUP_CANCELLED) {
483 			ret = -EIDRM;
484 done_spin:
485 			spin_unlock_irq(&ffs->ev.waitq.lock);
486 		} else {
487 			/* unlocks spinlock */
488 			ret = __ffs_ep0_queue_wait(ffs, data, len);
489 		}
490 		kfree(data);
491 		break;
492 
493 	default:
494 		ret = -EBADFD;
495 		break;
496 	}
497 
498 	mutex_unlock(&ffs->mutex);
499 	return ret;
500 }
501 
502 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
__ffs_ep0_read_events(struct ffs_data * ffs,char __user * buf,size_t n)503 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
504 				     size_t n)
505 	__releases(&ffs->ev.waitq.lock)
506 {
507 	/*
508 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
509 	 * size of ffs->ev.types array (which is four) so that's how much space
510 	 * we reserve.
511 	 */
512 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
513 	const size_t size = n * sizeof *events;
514 	unsigned i = 0;
515 
516 	memset(events, 0, size);
517 
518 	do {
519 		events[i].type = ffs->ev.types[i];
520 		if (events[i].type == FUNCTIONFS_SETUP) {
521 			events[i].u.setup = ffs->ev.setup;
522 			ffs->setup_state = FFS_SETUP_PENDING;
523 		}
524 	} while (++i < n);
525 
526 	ffs->ev.count -= n;
527 	if (ffs->ev.count)
528 		memmove(ffs->ev.types, ffs->ev.types + n,
529 			ffs->ev.count * sizeof *ffs->ev.types);
530 
531 	spin_unlock_irq(&ffs->ev.waitq.lock);
532 	mutex_unlock(&ffs->mutex);
533 
534 	return copy_to_user(buf, events, size) ? -EFAULT : size;
535 }
536 
ffs_ep0_read(struct file * file,char __user * buf,size_t len,loff_t * ptr)537 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
538 			    size_t len, loff_t *ptr)
539 {
540 	struct ffs_data *ffs = file->private_data;
541 	char *data = NULL;
542 	size_t n;
543 	int ret;
544 
545 	/* Fast check if setup was canceled */
546 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
547 		return -EIDRM;
548 
549 	/* Acquire mutex */
550 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
551 	if (ret < 0)
552 		return ret;
553 
554 	/* Check state */
555 	if (ffs->state != FFS_ACTIVE) {
556 		ret = -EBADFD;
557 		goto done_mutex;
558 	}
559 
560 	/*
561 	 * We're called from user space, we can use _irq rather then
562 	 * _irqsave
563 	 */
564 	spin_lock_irq(&ffs->ev.waitq.lock);
565 
566 	switch (ffs_setup_state_clear_cancelled(ffs)) {
567 	case FFS_SETUP_CANCELLED:
568 		ret = -EIDRM;
569 		break;
570 
571 	case FFS_NO_SETUP:
572 		n = len / sizeof(struct usb_functionfs_event);
573 		if (!n) {
574 			ret = -EINVAL;
575 			break;
576 		}
577 
578 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
579 			ret = -EAGAIN;
580 			break;
581 		}
582 
583 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
584 							ffs->ev.count)) {
585 			ret = -EINTR;
586 			break;
587 		}
588 
589 		/* unlocks spinlock */
590 		return __ffs_ep0_read_events(ffs, buf,
591 					     min_t(size_t, n, ffs->ev.count));
592 
593 	case FFS_SETUP_PENDING:
594 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
595 			spin_unlock_irq(&ffs->ev.waitq.lock);
596 			ret = __ffs_ep0_stall(ffs);
597 			goto done_mutex;
598 		}
599 
600 		len = min_t(size_t, len, le16_to_cpu(ffs->ev.setup.wLength));
601 
602 		spin_unlock_irq(&ffs->ev.waitq.lock);
603 
604 		if (len) {
605 			data = kmalloc(len, GFP_KERNEL);
606 			if (!data) {
607 				ret = -ENOMEM;
608 				goto done_mutex;
609 			}
610 		}
611 
612 		spin_lock_irq(&ffs->ev.waitq.lock);
613 
614 		/* See ffs_ep0_write() */
615 		if (ffs_setup_state_clear_cancelled(ffs) ==
616 		    FFS_SETUP_CANCELLED) {
617 			ret = -EIDRM;
618 			break;
619 		}
620 
621 		/* unlocks spinlock */
622 		ret = __ffs_ep0_queue_wait(ffs, data, len);
623 		if ((ret > 0) && (copy_to_user(buf, data, len)))
624 			ret = -EFAULT;
625 		goto done_mutex;
626 
627 	default:
628 		ret = -EBADFD;
629 		break;
630 	}
631 
632 	spin_unlock_irq(&ffs->ev.waitq.lock);
633 done_mutex:
634 	mutex_unlock(&ffs->mutex);
635 	kfree(data);
636 	return ret;
637 }
638 
ffs_ep0_open(struct inode * inode,struct file * file)639 static int ffs_ep0_open(struct inode *inode, struct file *file)
640 {
641 	struct ffs_data *ffs = inode->i_sb->s_fs_info;
642 	int ret;
643 
644 	/* Acquire mutex */
645 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
646 	if (ret < 0)
647 		return ret;
648 
649 	ffs_data_opened(ffs);
650 	if (ffs->state == FFS_CLOSING) {
651 		ffs_data_closed(ffs);
652 		mutex_unlock(&ffs->mutex);
653 		return -EBUSY;
654 	}
655 	mutex_unlock(&ffs->mutex);
656 	file->private_data = ffs;
657 
658 	return stream_open(inode, file);
659 }
660 
ffs_ep0_release(struct inode * inode,struct file * file)661 static int ffs_ep0_release(struct inode *inode, struct file *file)
662 {
663 	struct ffs_data *ffs = file->private_data;
664 
665 	ffs_data_closed(ffs);
666 
667 	return 0;
668 }
669 
ffs_ep0_ioctl(struct file * file,unsigned code,unsigned long value)670 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
671 {
672 	struct ffs_data *ffs = file->private_data;
673 	struct usb_gadget *gadget = ffs->gadget;
674 	long ret;
675 
676 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
677 		struct ffs_function *func = ffs->func;
678 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
679 	} else if (gadget && gadget->ops->ioctl) {
680 		ret = gadget->ops->ioctl(gadget, code, value);
681 	} else {
682 		ret = -ENOTTY;
683 	}
684 
685 	return ret;
686 }
687 
ffs_ep0_poll(struct file * file,poll_table * wait)688 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
689 {
690 	struct ffs_data *ffs = file->private_data;
691 	__poll_t mask = EPOLLWRNORM;
692 	int ret;
693 
694 	poll_wait(file, &ffs->ev.waitq, wait);
695 
696 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
697 	if (ret < 0)
698 		return mask;
699 
700 	switch (ffs->state) {
701 	case FFS_READ_DESCRIPTORS:
702 	case FFS_READ_STRINGS:
703 		mask |= EPOLLOUT;
704 		break;
705 
706 	case FFS_ACTIVE:
707 		switch (ffs->setup_state) {
708 		case FFS_NO_SETUP:
709 			if (ffs->ev.count)
710 				mask |= EPOLLIN;
711 			break;
712 
713 		case FFS_SETUP_PENDING:
714 		case FFS_SETUP_CANCELLED:
715 			mask |= (EPOLLIN | EPOLLOUT);
716 			break;
717 		}
718 		break;
719 
720 	case FFS_CLOSING:
721 		break;
722 	case FFS_DEACTIVATED:
723 		break;
724 	}
725 
726 	mutex_unlock(&ffs->mutex);
727 
728 	return mask;
729 }
730 
731 static const struct file_operations ffs_ep0_operations = {
732 
733 	.open =		ffs_ep0_open,
734 	.write =	ffs_ep0_write,
735 	.read =		ffs_ep0_read,
736 	.release =	ffs_ep0_release,
737 	.unlocked_ioctl =	ffs_ep0_ioctl,
738 	.poll =		ffs_ep0_poll,
739 };
740 
741 
742 /* "Normal" endpoints operations ********************************************/
743 
ffs_epfile_io_complete(struct usb_ep * _ep,struct usb_request * req)744 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
745 {
746 	struct ffs_io_data *io_data = req->context;
747 
748 	if (req->status)
749 		io_data->status = req->status;
750 	else
751 		io_data->status = req->actual;
752 
753 	complete(&io_data->done);
754 }
755 
ffs_copy_to_iter(void * data,int data_len,struct iov_iter * iter)756 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
757 {
758 	ssize_t ret = copy_to_iter(data, data_len, iter);
759 	if (ret == data_len)
760 		return ret;
761 
762 	if (iov_iter_count(iter))
763 		return -EFAULT;
764 
765 	/*
766 	 * Dear user space developer!
767 	 *
768 	 * TL;DR: To stop getting below error message in your kernel log, change
769 	 * user space code using functionfs to align read buffers to a max
770 	 * packet size.
771 	 *
772 	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
773 	 * packet size.  When unaligned buffer is passed to functionfs, it
774 	 * internally uses a larger, aligned buffer so that such UDCs are happy.
775 	 *
776 	 * Unfortunately, this means that host may send more data than was
777 	 * requested in read(2) system call.  f_fs doesn’t know what to do with
778 	 * that excess data so it simply drops it.
779 	 *
780 	 * Was the buffer aligned in the first place, no such problem would
781 	 * happen.
782 	 *
783 	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
784 	 * by splitting a request into multiple parts.  This splitting may still
785 	 * be a problem though so it’s likely best to align the buffer
786 	 * regardless of it being AIO or not..
787 	 *
788 	 * This only affects OUT endpoints, i.e. reading data with a read(2),
789 	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
790 	 * affected.
791 	 */
792 	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
793 	       "Align read buffer size to max packet size to avoid the problem.\n",
794 	       data_len, ret);
795 
796 	return ret;
797 }
798 
799 /*
800  * allocate a virtually contiguous buffer and create a scatterlist describing it
801  * @sg_table	- pointer to a place to be filled with sg_table contents
802  * @size	- required buffer size
803  */
ffs_build_sg_list(struct sg_table * sgt,size_t sz)804 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
805 {
806 	struct page **pages;
807 	void *vaddr, *ptr;
808 	unsigned int n_pages;
809 	int i;
810 
811 	vaddr = vmalloc(sz);
812 	if (!vaddr)
813 		return NULL;
814 
815 	n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
816 	pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
817 	if (!pages) {
818 		vfree(vaddr);
819 
820 		return NULL;
821 	}
822 	for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
823 		pages[i] = vmalloc_to_page(ptr);
824 
825 	if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
826 		kvfree(pages);
827 		vfree(vaddr);
828 
829 		return NULL;
830 	}
831 	kvfree(pages);
832 
833 	return vaddr;
834 }
835 
ffs_alloc_buffer(struct ffs_io_data * io_data,size_t data_len)836 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
837 	size_t data_len)
838 {
839 	if (io_data->use_sg)
840 		return ffs_build_sg_list(&io_data->sgt, data_len);
841 
842 	return kmalloc(data_len, GFP_KERNEL);
843 }
844 
ffs_free_buffer(struct ffs_io_data * io_data)845 static inline void ffs_free_buffer(struct ffs_io_data *io_data)
846 {
847 	if (!io_data->buf)
848 		return;
849 
850 	if (io_data->use_sg) {
851 		sg_free_table(&io_data->sgt);
852 		vfree(io_data->buf);
853 	} else {
854 		kfree(io_data->buf);
855 	}
856 }
857 
ffs_user_copy_worker(struct work_struct * work)858 static void ffs_user_copy_worker(struct work_struct *work)
859 {
860 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
861 						   work);
862 	int ret = io_data->status;
863 	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
864 
865 	if (io_data->read && ret > 0) {
866 		kthread_use_mm(io_data->mm);
867 		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
868 		kthread_unuse_mm(io_data->mm);
869 	}
870 
871 	io_data->kiocb->ki_complete(io_data->kiocb, ret);
872 
873 	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
874 		eventfd_signal(io_data->ffs->ffs_eventfd);
875 
876 	usb_ep_free_request(io_data->ep, io_data->req);
877 
878 	if (io_data->read)
879 		kfree(io_data->to_free);
880 	ffs_free_buffer(io_data);
881 	kfree(io_data);
882 }
883 
ffs_epfile_async_io_complete(struct usb_ep * _ep,struct usb_request * req)884 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
885 					 struct usb_request *req)
886 {
887 	struct ffs_io_data *io_data = req->context;
888 	struct ffs_data *ffs = io_data->ffs;
889 
890 	io_data->status = req->status ? req->status : req->actual;
891 
892 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
893 	queue_work(ffs->io_completion_wq, &io_data->work);
894 }
895 
__ffs_epfile_read_buffer_free(struct ffs_epfile * epfile)896 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
897 {
898 	/*
899 	 * See comment in struct ffs_epfile for full read_buffer pointer
900 	 * synchronisation story.
901 	 */
902 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
903 	if (buf && buf != READ_BUFFER_DROP)
904 		kfree(buf);
905 }
906 
907 /* Assumes epfile->mutex is held. */
__ffs_epfile_read_buffered(struct ffs_epfile * epfile,struct iov_iter * iter)908 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
909 					  struct iov_iter *iter)
910 {
911 	/*
912 	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
913 	 * the buffer while we are using it.  See comment in struct ffs_epfile
914 	 * for full read_buffer pointer synchronisation story.
915 	 */
916 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
917 	ssize_t ret;
918 	if (!buf || buf == READ_BUFFER_DROP)
919 		return 0;
920 
921 	ret = copy_to_iter(buf->data, buf->length, iter);
922 	if (buf->length == ret) {
923 		kfree(buf);
924 		return ret;
925 	}
926 
927 	if (iov_iter_count(iter)) {
928 		ret = -EFAULT;
929 	} else {
930 		buf->length -= ret;
931 		buf->data += ret;
932 	}
933 
934 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
935 		kfree(buf);
936 
937 	return ret;
938 }
939 
940 /* Assumes epfile->mutex is held. */
__ffs_epfile_read_data(struct ffs_epfile * epfile,void * data,int data_len,struct iov_iter * iter)941 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
942 				      void *data, int data_len,
943 				      struct iov_iter *iter)
944 {
945 	struct ffs_buffer *buf;
946 
947 	ssize_t ret = copy_to_iter(data, data_len, iter);
948 	if (data_len == ret)
949 		return ret;
950 
951 	if (iov_iter_count(iter))
952 		return -EFAULT;
953 
954 	/* See ffs_copy_to_iter for more context. */
955 	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
956 		data_len, ret);
957 
958 	data_len -= ret;
959 	buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL);
960 	if (!buf)
961 		return -ENOMEM;
962 	buf->length = data_len;
963 	buf->data = buf->storage;
964 	memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len));
965 
966 	/*
967 	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
968 	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
969 	 * in struct ffs_epfile for full read_buffer pointer synchronisation
970 	 * story.
971 	 */
972 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
973 		kfree(buf);
974 
975 	return ret;
976 }
977 
ffs_epfile_wait_ep(struct file * file)978 static struct ffs_ep *ffs_epfile_wait_ep(struct file *file)
979 {
980 	struct ffs_epfile *epfile = file->private_data;
981 	struct ffs_ep *ep;
982 	int ret;
983 
984 	/* Wait for endpoint to be enabled */
985 	ep = epfile->ep;
986 	if (!ep) {
987 		if (file->f_flags & O_NONBLOCK)
988 			return ERR_PTR(-EAGAIN);
989 
990 		ret = wait_event_interruptible(
991 				epfile->ffs->wait, (ep = epfile->ep));
992 		if (ret)
993 			return ERR_PTR(-EINTR);
994 	}
995 
996 	return ep;
997 }
998 
ffs_epfile_io(struct file * file,struct ffs_io_data * io_data)999 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
1000 {
1001 	struct ffs_epfile *epfile = file->private_data;
1002 	struct usb_request *req;
1003 	struct ffs_ep *ep;
1004 	char *data = NULL;
1005 	ssize_t ret, data_len = -EINVAL;
1006 	int halt;
1007 
1008 	/* Are we still active? */
1009 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1010 		return -ENODEV;
1011 
1012 	ep = ffs_epfile_wait_ep(file);
1013 	if (IS_ERR(ep))
1014 		return PTR_ERR(ep);
1015 
1016 	/* Do we halt? */
1017 	halt = (!io_data->read == !epfile->in);
1018 	if (halt && epfile->isoc)
1019 		return -EINVAL;
1020 
1021 	/* We will be using request and read_buffer */
1022 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
1023 	if (ret)
1024 		goto error;
1025 
1026 	/* Allocate & copy */
1027 	if (!halt) {
1028 		struct usb_gadget *gadget;
1029 
1030 		/*
1031 		 * Do we have buffered data from previous partial read?  Check
1032 		 * that for synchronous case only because we do not have
1033 		 * facility to ‘wake up’ a pending asynchronous read and push
1034 		 * buffered data to it which we would need to make things behave
1035 		 * consistently.
1036 		 */
1037 		if (!io_data->aio && io_data->read) {
1038 			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
1039 			if (ret)
1040 				goto error_mutex;
1041 		}
1042 
1043 		/*
1044 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
1045 		 * before the waiting completes, so do not assign to 'gadget'
1046 		 * earlier
1047 		 */
1048 		gadget = epfile->ffs->gadget;
1049 
1050 		spin_lock_irq(&epfile->ffs->eps_lock);
1051 		/* In the meantime, endpoint got disabled or changed. */
1052 		if (epfile->ep != ep) {
1053 			ret = -ESHUTDOWN;
1054 			goto error_lock;
1055 		}
1056 		data_len = iov_iter_count(&io_data->data);
1057 		/*
1058 		 * Controller may require buffer size to be aligned to
1059 		 * maxpacketsize of an out endpoint.
1060 		 */
1061 		if (io_data->read)
1062 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1063 
1064 		io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1065 		spin_unlock_irq(&epfile->ffs->eps_lock);
1066 
1067 		data = ffs_alloc_buffer(io_data, data_len);
1068 		if (!data) {
1069 			ret = -ENOMEM;
1070 			goto error_mutex;
1071 		}
1072 		if (!io_data->read &&
1073 		    !copy_from_iter_full(data, data_len, &io_data->data)) {
1074 			ret = -EFAULT;
1075 			goto error_mutex;
1076 		}
1077 	}
1078 
1079 	spin_lock_irq(&epfile->ffs->eps_lock);
1080 
1081 	if (epfile->ep != ep) {
1082 		/* In the meantime, endpoint got disabled or changed. */
1083 		ret = -ESHUTDOWN;
1084 	} else if (halt) {
1085 		ret = usb_ep_set_halt(ep->ep);
1086 		if (!ret)
1087 			ret = -EBADMSG;
1088 	} else if (data_len == -EINVAL) {
1089 		/*
1090 		 * Sanity Check: even though data_len can't be used
1091 		 * uninitialized at the time I write this comment, some
1092 		 * compilers complain about this situation.
1093 		 * In order to keep the code clean from warnings, data_len is
1094 		 * being initialized to -EINVAL during its declaration, which
1095 		 * means we can't rely on compiler anymore to warn no future
1096 		 * changes won't result in data_len being used uninitialized.
1097 		 * For such reason, we're adding this redundant sanity check
1098 		 * here.
1099 		 */
1100 		WARN(1, "%s: data_len == -EINVAL\n", __func__);
1101 		ret = -EINVAL;
1102 	} else if (!io_data->aio) {
1103 		bool interrupted = false;
1104 
1105 		req = ep->req;
1106 		if (io_data->use_sg) {
1107 			req->buf = NULL;
1108 			req->sg	= io_data->sgt.sgl;
1109 			req->num_sgs = io_data->sgt.nents;
1110 		} else {
1111 			req->buf = data;
1112 			req->num_sgs = 0;
1113 		}
1114 		req->length = data_len;
1115 
1116 		io_data->buf = data;
1117 
1118 		init_completion(&io_data->done);
1119 		req->context  = io_data;
1120 		req->complete = ffs_epfile_io_complete;
1121 
1122 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1123 		if (ret < 0)
1124 			goto error_lock;
1125 
1126 		spin_unlock_irq(&epfile->ffs->eps_lock);
1127 
1128 		if (wait_for_completion_interruptible(&io_data->done)) {
1129 			spin_lock_irq(&epfile->ffs->eps_lock);
1130 			if (epfile->ep != ep) {
1131 				ret = -ESHUTDOWN;
1132 				goto error_lock;
1133 			}
1134 			/*
1135 			 * To avoid race condition with ffs_epfile_io_complete,
1136 			 * dequeue the request first then check
1137 			 * status. usb_ep_dequeue API should guarantee no race
1138 			 * condition with req->complete callback.
1139 			 */
1140 			usb_ep_dequeue(ep->ep, req);
1141 			spin_unlock_irq(&epfile->ffs->eps_lock);
1142 			wait_for_completion(&io_data->done);
1143 			interrupted = io_data->status < 0;
1144 		}
1145 
1146 		if (interrupted)
1147 			ret = -EINTR;
1148 		else if (io_data->read && io_data->status > 0)
1149 			ret = __ffs_epfile_read_data(epfile, data, io_data->status,
1150 						     &io_data->data);
1151 		else
1152 			ret = io_data->status;
1153 		goto error_mutex;
1154 	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1155 		ret = -ENOMEM;
1156 	} else {
1157 		if (io_data->use_sg) {
1158 			req->buf = NULL;
1159 			req->sg	= io_data->sgt.sgl;
1160 			req->num_sgs = io_data->sgt.nents;
1161 		} else {
1162 			req->buf = data;
1163 			req->num_sgs = 0;
1164 		}
1165 		req->length = data_len;
1166 
1167 		io_data->buf = data;
1168 		io_data->ep = ep->ep;
1169 		io_data->req = req;
1170 		io_data->ffs = epfile->ffs;
1171 
1172 		req->context  = io_data;
1173 		req->complete = ffs_epfile_async_io_complete;
1174 
1175 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1176 		if (ret) {
1177 			io_data->req = NULL;
1178 			usb_ep_free_request(ep->ep, req);
1179 			goto error_lock;
1180 		}
1181 
1182 		ret = -EIOCBQUEUED;
1183 		/*
1184 		 * Do not kfree the buffer in this function.  It will be freed
1185 		 * by ffs_user_copy_worker.
1186 		 */
1187 		data = NULL;
1188 	}
1189 
1190 error_lock:
1191 	spin_unlock_irq(&epfile->ffs->eps_lock);
1192 error_mutex:
1193 	mutex_unlock(&epfile->mutex);
1194 error:
1195 	if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1196 		ffs_free_buffer(io_data);
1197 	return ret;
1198 }
1199 
1200 static int
ffs_epfile_open(struct inode * inode,struct file * file)1201 ffs_epfile_open(struct inode *inode, struct file *file)
1202 {
1203 	struct ffs_data *ffs = inode->i_sb->s_fs_info;
1204 	struct ffs_epfile *epfile;
1205 	int ret;
1206 
1207 	/* Acquire mutex */
1208 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
1209 	if (ret < 0)
1210 		return ret;
1211 
1212 	if (!atomic_inc_not_zero(&ffs->opened)) {
1213 		mutex_unlock(&ffs->mutex);
1214 		return -ENODEV;
1215 	}
1216 	/*
1217 	 * we want the state to be FFS_ACTIVE; FFS_ACTIVE alone is
1218 	 * not enough, though - we might have been through FFS_CLOSING
1219 	 * and back to FFS_ACTIVE, with our file already removed.
1220 	 */
1221 	epfile = smp_load_acquire(&inode->i_private);
1222 	if (unlikely(ffs->state != FFS_ACTIVE || !epfile)) {
1223 		mutex_unlock(&ffs->mutex);
1224 		ffs_data_closed(ffs);
1225 		return -ENODEV;
1226 	}
1227 	mutex_unlock(&ffs->mutex);
1228 
1229 	file->private_data = epfile;
1230 	return stream_open(inode, file);
1231 }
1232 
ffs_aio_cancel(struct kiocb * kiocb)1233 static int ffs_aio_cancel(struct kiocb *kiocb)
1234 {
1235 	struct ffs_io_data *io_data = kiocb->private;
1236 	int value;
1237 
1238 	if (io_data && io_data->ep && io_data->req)
1239 		value = usb_ep_dequeue(io_data->ep, io_data->req);
1240 	else
1241 		value = -EINVAL;
1242 
1243 	return value;
1244 }
1245 
ffs_epfile_write_iter(struct kiocb * kiocb,struct iov_iter * from)1246 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1247 {
1248 	struct ffs_io_data io_data, *p = &io_data;
1249 	ssize_t res;
1250 
1251 	if (!is_sync_kiocb(kiocb)) {
1252 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1253 		if (!p)
1254 			return -ENOMEM;
1255 		p->aio = true;
1256 	} else {
1257 		memset(p, 0, sizeof(*p));
1258 		p->aio = false;
1259 	}
1260 
1261 	p->read = false;
1262 	p->kiocb = kiocb;
1263 	p->data = *from;
1264 	p->mm = current->mm;
1265 
1266 	kiocb->private = p;
1267 
1268 	if (p->aio)
1269 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1270 
1271 	res = ffs_epfile_io(kiocb->ki_filp, p);
1272 	if (res == -EIOCBQUEUED)
1273 		return res;
1274 	if (p->aio)
1275 		kfree(p);
1276 	else
1277 		*from = p->data;
1278 	return res;
1279 }
1280 
ffs_epfile_read_iter(struct kiocb * kiocb,struct iov_iter * to)1281 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1282 {
1283 	struct ffs_io_data io_data, *p = &io_data;
1284 	ssize_t res;
1285 
1286 	if (!is_sync_kiocb(kiocb)) {
1287 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1288 		if (!p)
1289 			return -ENOMEM;
1290 		p->aio = true;
1291 	} else {
1292 		memset(p, 0, sizeof(*p));
1293 		p->aio = false;
1294 	}
1295 
1296 	p->read = true;
1297 	p->kiocb = kiocb;
1298 	if (p->aio) {
1299 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1300 		if (!iter_is_ubuf(&p->data) && !p->to_free) {
1301 			kfree(p);
1302 			return -ENOMEM;
1303 		}
1304 	} else {
1305 		p->data = *to;
1306 		p->to_free = NULL;
1307 	}
1308 	p->mm = current->mm;
1309 
1310 	kiocb->private = p;
1311 
1312 	if (p->aio)
1313 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1314 
1315 	res = ffs_epfile_io(kiocb->ki_filp, p);
1316 	if (res == -EIOCBQUEUED)
1317 		return res;
1318 
1319 	if (p->aio) {
1320 		kfree(p->to_free);
1321 		kfree(p);
1322 	} else {
1323 		*to = p->data;
1324 	}
1325 	return res;
1326 }
1327 
ffs_dmabuf_release(struct kref * ref)1328 static void ffs_dmabuf_release(struct kref *ref)
1329 {
1330 	struct ffs_dmabuf_priv *priv = container_of(ref, struct ffs_dmabuf_priv, ref);
1331 	struct dma_buf_attachment *attach = priv->attach;
1332 	struct dma_buf *dmabuf = attach->dmabuf;
1333 
1334 	pr_vdebug("FFS DMABUF release\n");
1335 	dma_buf_unmap_attachment_unlocked(attach, priv->sgt, priv->dir);
1336 
1337 	dma_buf_detach(attach->dmabuf, attach);
1338 	dma_buf_put(dmabuf);
1339 	kfree(priv);
1340 }
1341 
ffs_dmabuf_get(struct dma_buf_attachment * attach)1342 static void ffs_dmabuf_get(struct dma_buf_attachment *attach)
1343 {
1344 	struct ffs_dmabuf_priv *priv = attach->importer_priv;
1345 
1346 	kref_get(&priv->ref);
1347 }
1348 
ffs_dmabuf_put(struct dma_buf_attachment * attach)1349 static void ffs_dmabuf_put(struct dma_buf_attachment *attach)
1350 {
1351 	struct ffs_dmabuf_priv *priv = attach->importer_priv;
1352 
1353 	kref_put(&priv->ref, ffs_dmabuf_release);
1354 }
1355 
1356 static int
ffs_epfile_release(struct inode * inode,struct file * file)1357 ffs_epfile_release(struct inode *inode, struct file *file)
1358 {
1359 	struct ffs_epfile *epfile = file->private_data;
1360 	struct ffs_dmabuf_priv *priv, *tmp;
1361 	struct ffs_data *ffs = epfile->ffs;
1362 
1363 	mutex_lock(&epfile->dmabufs_mutex);
1364 
1365 	/* Close all attached DMABUFs */
1366 	list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1367 		/* Cancel any pending transfer */
1368 		spin_lock_irq(&ffs->eps_lock);
1369 		if (priv->ep && priv->req)
1370 			usb_ep_dequeue(priv->ep, priv->req);
1371 		spin_unlock_irq(&ffs->eps_lock);
1372 
1373 		list_del(&priv->entry);
1374 		ffs_dmabuf_put(priv->attach);
1375 	}
1376 
1377 	mutex_unlock(&epfile->dmabufs_mutex);
1378 
1379 	__ffs_epfile_read_buffer_free(epfile);
1380 	ffs_data_closed(epfile->ffs);
1381 
1382 	return 0;
1383 }
1384 
ffs_dmabuf_cleanup(struct work_struct * work)1385 static void ffs_dmabuf_cleanup(struct work_struct *work)
1386 {
1387 	struct ffs_dma_fence *dma_fence =
1388 		container_of(work, struct ffs_dma_fence, work);
1389 	struct ffs_dmabuf_priv *priv = dma_fence->priv;
1390 	struct dma_buf_attachment *attach = priv->attach;
1391 	struct dma_fence *fence = &dma_fence->base;
1392 
1393 	ffs_dmabuf_put(attach);
1394 	dma_fence_put(fence);
1395 }
1396 
ffs_dmabuf_signal_done(struct ffs_dma_fence * dma_fence,int ret)1397 static void ffs_dmabuf_signal_done(struct ffs_dma_fence *dma_fence, int ret)
1398 {
1399 	struct ffs_dmabuf_priv *priv = dma_fence->priv;
1400 	struct dma_fence *fence = &dma_fence->base;
1401 	bool cookie = dma_fence_begin_signalling();
1402 
1403 	dma_fence_get(fence);
1404 	fence->error = ret;
1405 	dma_fence_signal(fence);
1406 	dma_fence_end_signalling(cookie);
1407 
1408 	/*
1409 	 * The fence will be unref'd in ffs_dmabuf_cleanup.
1410 	 * It can't be done here, as the unref functions might try to lock
1411 	 * the resv object, which would deadlock.
1412 	 */
1413 	INIT_WORK(&dma_fence->work, ffs_dmabuf_cleanup);
1414 	queue_work(priv->ffs->io_completion_wq, &dma_fence->work);
1415 }
1416 
ffs_epfile_dmabuf_io_complete(struct usb_ep * ep,struct usb_request * req)1417 static void ffs_epfile_dmabuf_io_complete(struct usb_ep *ep,
1418 					  struct usb_request *req)
1419 {
1420 	pr_vdebug("FFS: DMABUF transfer complete, status=%d\n", req->status);
1421 	ffs_dmabuf_signal_done(req->context, req->status);
1422 	usb_ep_free_request(ep, req);
1423 }
1424 
ffs_dmabuf_get_driver_name(struct dma_fence * fence)1425 static const char *ffs_dmabuf_get_driver_name(struct dma_fence *fence)
1426 {
1427 	return "functionfs";
1428 }
1429 
ffs_dmabuf_get_timeline_name(struct dma_fence * fence)1430 static const char *ffs_dmabuf_get_timeline_name(struct dma_fence *fence)
1431 {
1432 	return "";
1433 }
1434 
ffs_dmabuf_fence_release(struct dma_fence * fence)1435 static void ffs_dmabuf_fence_release(struct dma_fence *fence)
1436 {
1437 	struct ffs_dma_fence *dma_fence =
1438 		container_of(fence, struct ffs_dma_fence, base);
1439 
1440 	kfree(dma_fence);
1441 }
1442 
1443 static const struct dma_fence_ops ffs_dmabuf_fence_ops = {
1444 	.get_driver_name	= ffs_dmabuf_get_driver_name,
1445 	.get_timeline_name	= ffs_dmabuf_get_timeline_name,
1446 	.release		= ffs_dmabuf_fence_release,
1447 };
1448 
ffs_dma_resv_lock(struct dma_buf * dmabuf,bool nonblock)1449 static int ffs_dma_resv_lock(struct dma_buf *dmabuf, bool nonblock)
1450 {
1451 	if (!nonblock)
1452 		return dma_resv_lock_interruptible(dmabuf->resv, NULL);
1453 
1454 	if (!dma_resv_trylock(dmabuf->resv))
1455 		return -EBUSY;
1456 
1457 	return 0;
1458 }
1459 
1460 static struct dma_buf_attachment *
ffs_dmabuf_find_attachment(struct ffs_epfile * epfile,struct dma_buf * dmabuf)1461 ffs_dmabuf_find_attachment(struct ffs_epfile *epfile, struct dma_buf *dmabuf)
1462 {
1463 	struct device *dev = epfile->ffs->gadget->dev.parent;
1464 	struct dma_buf_attachment *attach = NULL;
1465 	struct ffs_dmabuf_priv *priv;
1466 
1467 	mutex_lock(&epfile->dmabufs_mutex);
1468 
1469 	list_for_each_entry(priv, &epfile->dmabufs, entry) {
1470 		if (priv->attach->dev == dev
1471 		    && priv->attach->dmabuf == dmabuf) {
1472 			attach = priv->attach;
1473 			break;
1474 		}
1475 	}
1476 
1477 	if (attach)
1478 		ffs_dmabuf_get(attach);
1479 
1480 	mutex_unlock(&epfile->dmabufs_mutex);
1481 
1482 	return attach ?: ERR_PTR(-EPERM);
1483 }
1484 
ffs_dmabuf_attach(struct file * file,int fd)1485 static int ffs_dmabuf_attach(struct file *file, int fd)
1486 {
1487 	bool nonblock = file->f_flags & O_NONBLOCK;
1488 	struct ffs_epfile *epfile = file->private_data;
1489 	struct usb_gadget *gadget = epfile->ffs->gadget;
1490 	struct dma_buf_attachment *attach;
1491 	struct ffs_dmabuf_priv *priv;
1492 	enum dma_data_direction dir;
1493 	struct sg_table *sg_table;
1494 	struct dma_buf *dmabuf;
1495 	int err;
1496 
1497 	if (!gadget || !gadget->sg_supported)
1498 		return -EPERM;
1499 
1500 	dmabuf = dma_buf_get(fd);
1501 	if (IS_ERR(dmabuf))
1502 		return PTR_ERR(dmabuf);
1503 
1504 	attach = dma_buf_attach(dmabuf, gadget->dev.parent);
1505 	if (IS_ERR(attach)) {
1506 		err = PTR_ERR(attach);
1507 		goto err_dmabuf_put;
1508 	}
1509 
1510 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1511 	if (!priv) {
1512 		err = -ENOMEM;
1513 		goto err_dmabuf_detach;
1514 	}
1515 
1516 	dir = epfile->in ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1517 
1518 	err = ffs_dma_resv_lock(dmabuf, nonblock);
1519 	if (err)
1520 		goto err_free_priv;
1521 
1522 	sg_table = dma_buf_map_attachment(attach, dir);
1523 	dma_resv_unlock(dmabuf->resv);
1524 
1525 	if (IS_ERR(sg_table)) {
1526 		err = PTR_ERR(sg_table);
1527 		goto err_free_priv;
1528 	}
1529 
1530 	attach->importer_priv = priv;
1531 
1532 	priv->sgt = sg_table;
1533 	priv->dir = dir;
1534 	priv->ffs = epfile->ffs;
1535 	priv->attach = attach;
1536 	spin_lock_init(&priv->lock);
1537 	kref_init(&priv->ref);
1538 	priv->context = dma_fence_context_alloc(1);
1539 
1540 	mutex_lock(&epfile->dmabufs_mutex);
1541 	list_add(&priv->entry, &epfile->dmabufs);
1542 	mutex_unlock(&epfile->dmabufs_mutex);
1543 
1544 	return 0;
1545 
1546 err_free_priv:
1547 	kfree(priv);
1548 err_dmabuf_detach:
1549 	dma_buf_detach(dmabuf, attach);
1550 err_dmabuf_put:
1551 	dma_buf_put(dmabuf);
1552 
1553 	return err;
1554 }
1555 
ffs_dmabuf_detach(struct file * file,int fd)1556 static int ffs_dmabuf_detach(struct file *file, int fd)
1557 {
1558 	struct ffs_epfile *epfile = file->private_data;
1559 	struct ffs_data *ffs = epfile->ffs;
1560 	struct device *dev = ffs->gadget->dev.parent;
1561 	struct ffs_dmabuf_priv *priv, *tmp;
1562 	struct dma_buf *dmabuf;
1563 	int ret = -EPERM;
1564 
1565 	dmabuf = dma_buf_get(fd);
1566 	if (IS_ERR(dmabuf))
1567 		return PTR_ERR(dmabuf);
1568 
1569 	mutex_lock(&epfile->dmabufs_mutex);
1570 
1571 	list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1572 		if (priv->attach->dev == dev
1573 		    && priv->attach->dmabuf == dmabuf) {
1574 			/* Cancel any pending transfer */
1575 			spin_lock_irq(&ffs->eps_lock);
1576 			if (priv->ep && priv->req)
1577 				usb_ep_dequeue(priv->ep, priv->req);
1578 			spin_unlock_irq(&ffs->eps_lock);
1579 
1580 			list_del(&priv->entry);
1581 
1582 			/* Unref the reference from ffs_dmabuf_attach() */
1583 			ffs_dmabuf_put(priv->attach);
1584 			ret = 0;
1585 			break;
1586 		}
1587 	}
1588 
1589 	mutex_unlock(&epfile->dmabufs_mutex);
1590 	dma_buf_put(dmabuf);
1591 
1592 	return ret;
1593 }
1594 
ffs_dmabuf_transfer(struct file * file,const struct usb_ffs_dmabuf_transfer_req * req)1595 static int ffs_dmabuf_transfer(struct file *file,
1596 			       const struct usb_ffs_dmabuf_transfer_req *req)
1597 {
1598 	bool nonblock = file->f_flags & O_NONBLOCK;
1599 	struct ffs_epfile *epfile = file->private_data;
1600 	struct dma_buf_attachment *attach;
1601 	struct ffs_dmabuf_priv *priv;
1602 	struct ffs_dma_fence *fence;
1603 	struct usb_request *usb_req;
1604 	enum dma_resv_usage resv_dir;
1605 	struct dma_buf *dmabuf;
1606 	unsigned long timeout;
1607 	struct ffs_ep *ep;
1608 	bool cookie;
1609 	u32 seqno;
1610 	long retl;
1611 	int ret;
1612 
1613 	if (req->flags & ~USB_FFS_DMABUF_TRANSFER_MASK)
1614 		return -EINVAL;
1615 
1616 	dmabuf = dma_buf_get(req->fd);
1617 	if (IS_ERR(dmabuf))
1618 		return PTR_ERR(dmabuf);
1619 
1620 	if (req->length > dmabuf->size || req->length == 0) {
1621 		ret = -EINVAL;
1622 		goto err_dmabuf_put;
1623 	}
1624 
1625 	attach = ffs_dmabuf_find_attachment(epfile, dmabuf);
1626 	if (IS_ERR(attach)) {
1627 		ret = PTR_ERR(attach);
1628 		goto err_dmabuf_put;
1629 	}
1630 
1631 	priv = attach->importer_priv;
1632 
1633 	ep = ffs_epfile_wait_ep(file);
1634 	if (IS_ERR(ep)) {
1635 		ret = PTR_ERR(ep);
1636 		goto err_attachment_put;
1637 	}
1638 
1639 	ret = ffs_dma_resv_lock(dmabuf, nonblock);
1640 	if (ret)
1641 		goto err_attachment_put;
1642 
1643 	/* Make sure we don't have writers */
1644 	timeout = nonblock ? 0 : msecs_to_jiffies(DMABUF_ENQUEUE_TIMEOUT_MS);
1645 	retl = dma_resv_wait_timeout(dmabuf->resv,
1646 				     dma_resv_usage_rw(epfile->in),
1647 				     true, timeout);
1648 	if (retl == 0)
1649 		retl = -EBUSY;
1650 	if (retl < 0) {
1651 		ret = (int)retl;
1652 		goto err_resv_unlock;
1653 	}
1654 
1655 	ret = dma_resv_reserve_fences(dmabuf->resv, 1);
1656 	if (ret)
1657 		goto err_resv_unlock;
1658 
1659 	fence = kmalloc(sizeof(*fence), GFP_KERNEL);
1660 	if (!fence) {
1661 		ret = -ENOMEM;
1662 		goto err_resv_unlock;
1663 	}
1664 
1665 	fence->priv = priv;
1666 
1667 	spin_lock_irq(&epfile->ffs->eps_lock);
1668 
1669 	/* In the meantime, endpoint got disabled or changed. */
1670 	if (epfile->ep != ep) {
1671 		ret = -ESHUTDOWN;
1672 		goto err_fence_put;
1673 	}
1674 
1675 	usb_req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC);
1676 	if (!usb_req) {
1677 		ret = -ENOMEM;
1678 		goto err_fence_put;
1679 	}
1680 
1681 	/*
1682 	 * usb_ep_queue() guarantees that all transfers are processed in the
1683 	 * order they are enqueued, so we can use a simple incrementing
1684 	 * sequence number for the dma_fence.
1685 	 */
1686 	seqno = atomic_add_return(1, &epfile->seqno);
1687 
1688 	dma_fence_init(&fence->base, &ffs_dmabuf_fence_ops,
1689 		       &priv->lock, priv->context, seqno);
1690 
1691 	resv_dir = epfile->in ? DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ;
1692 
1693 	dma_resv_add_fence(dmabuf->resv, &fence->base, resv_dir);
1694 	dma_resv_unlock(dmabuf->resv);
1695 
1696 	/* Now that the dma_fence is in place, queue the transfer. */
1697 
1698 	usb_req->length = req->length;
1699 	usb_req->buf = NULL;
1700 	usb_req->sg = priv->sgt->sgl;
1701 	usb_req->num_sgs = sg_nents_for_len(priv->sgt->sgl, req->length);
1702 	usb_req->sg_was_mapped = true;
1703 	usb_req->context  = fence;
1704 	usb_req->complete = ffs_epfile_dmabuf_io_complete;
1705 
1706 	cookie = dma_fence_begin_signalling();
1707 	ret = usb_ep_queue(ep->ep, usb_req, GFP_ATOMIC);
1708 	dma_fence_end_signalling(cookie);
1709 	if (!ret) {
1710 		priv->req = usb_req;
1711 		priv->ep = ep->ep;
1712 	} else {
1713 		pr_warn("FFS: Failed to queue DMABUF: %d\n", ret);
1714 		ffs_dmabuf_signal_done(fence, ret);
1715 		usb_ep_free_request(ep->ep, usb_req);
1716 	}
1717 
1718 	spin_unlock_irq(&epfile->ffs->eps_lock);
1719 	dma_buf_put(dmabuf);
1720 
1721 	return ret;
1722 
1723 err_fence_put:
1724 	spin_unlock_irq(&epfile->ffs->eps_lock);
1725 	dma_fence_put(&fence->base);
1726 err_resv_unlock:
1727 	dma_resv_unlock(dmabuf->resv);
1728 err_attachment_put:
1729 	ffs_dmabuf_put(attach);
1730 err_dmabuf_put:
1731 	dma_buf_put(dmabuf);
1732 
1733 	return ret;
1734 }
1735 
ffs_epfile_ioctl(struct file * file,unsigned code,unsigned long value)1736 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1737 			     unsigned long value)
1738 {
1739 	struct ffs_epfile *epfile = file->private_data;
1740 	struct ffs_ep *ep;
1741 	int ret;
1742 
1743 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1744 		return -ENODEV;
1745 
1746 	switch (code) {
1747 	case FUNCTIONFS_DMABUF_ATTACH:
1748 	{
1749 		int fd;
1750 
1751 		if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) {
1752 			ret = -EFAULT;
1753 			break;
1754 		}
1755 
1756 		return ffs_dmabuf_attach(file, fd);
1757 	}
1758 	case FUNCTIONFS_DMABUF_DETACH:
1759 	{
1760 		int fd;
1761 
1762 		if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) {
1763 			ret = -EFAULT;
1764 			break;
1765 		}
1766 
1767 		return ffs_dmabuf_detach(file, fd);
1768 	}
1769 	case FUNCTIONFS_DMABUF_TRANSFER:
1770 	{
1771 		struct usb_ffs_dmabuf_transfer_req req;
1772 
1773 		if (copy_from_user(&req, (void __user *)value, sizeof(req))) {
1774 			ret = -EFAULT;
1775 			break;
1776 		}
1777 
1778 		return ffs_dmabuf_transfer(file, &req);
1779 	}
1780 	default:
1781 		break;
1782 	}
1783 
1784 	/* Wait for endpoint to be enabled */
1785 	ep = ffs_epfile_wait_ep(file);
1786 	if (IS_ERR(ep))
1787 		return PTR_ERR(ep);
1788 
1789 	spin_lock_irq(&epfile->ffs->eps_lock);
1790 
1791 	/* In the meantime, endpoint got disabled or changed. */
1792 	if (epfile->ep != ep) {
1793 		spin_unlock_irq(&epfile->ffs->eps_lock);
1794 		return -ESHUTDOWN;
1795 	}
1796 
1797 	switch (code) {
1798 	case FUNCTIONFS_FIFO_STATUS:
1799 		ret = usb_ep_fifo_status(epfile->ep->ep);
1800 		break;
1801 	case FUNCTIONFS_FIFO_FLUSH:
1802 		usb_ep_fifo_flush(epfile->ep->ep);
1803 		ret = 0;
1804 		break;
1805 	case FUNCTIONFS_CLEAR_HALT:
1806 		ret = usb_ep_clear_halt(epfile->ep->ep);
1807 		break;
1808 	case FUNCTIONFS_ENDPOINT_REVMAP:
1809 		ret = epfile->ep->num;
1810 		break;
1811 	case FUNCTIONFS_ENDPOINT_DESC:
1812 	{
1813 		int desc_idx;
1814 		struct usb_endpoint_descriptor desc1, *desc;
1815 
1816 		switch (epfile->ffs->gadget->speed) {
1817 		case USB_SPEED_SUPER:
1818 		case USB_SPEED_SUPER_PLUS:
1819 			desc_idx = 2;
1820 			break;
1821 		case USB_SPEED_HIGH:
1822 			desc_idx = 1;
1823 			break;
1824 		default:
1825 			desc_idx = 0;
1826 		}
1827 
1828 		desc = epfile->ep->descs[desc_idx];
1829 		memcpy(&desc1, desc, desc->bLength);
1830 
1831 		spin_unlock_irq(&epfile->ffs->eps_lock);
1832 		ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1833 		if (ret)
1834 			ret = -EFAULT;
1835 		return ret;
1836 	}
1837 	default:
1838 		ret = -ENOTTY;
1839 	}
1840 	spin_unlock_irq(&epfile->ffs->eps_lock);
1841 
1842 	return ret;
1843 }
1844 
1845 static const struct file_operations ffs_epfile_operations = {
1846 
1847 	.open =		ffs_epfile_open,
1848 	.write_iter =	ffs_epfile_write_iter,
1849 	.read_iter =	ffs_epfile_read_iter,
1850 	.release =	ffs_epfile_release,
1851 	.unlocked_ioctl =	ffs_epfile_ioctl,
1852 	.compat_ioctl = compat_ptr_ioctl,
1853 };
1854 
1855 
1856 /* File system and super block operations ***********************************/
1857 
1858 /*
1859  * Mounting the file system creates a controller file, used first for
1860  * function configuration then later for event monitoring.
1861  */
1862 
1863 static struct inode *__must_check
ffs_sb_make_inode(struct super_block * sb,void * data,const struct file_operations * fops,const struct inode_operations * iops,struct ffs_file_perms * perms)1864 ffs_sb_make_inode(struct super_block *sb, void *data,
1865 		  const struct file_operations *fops,
1866 		  const struct inode_operations *iops,
1867 		  struct ffs_file_perms *perms)
1868 {
1869 	struct inode *inode;
1870 
1871 	inode = new_inode(sb);
1872 
1873 	if (inode) {
1874 		struct timespec64 ts = inode_set_ctime_current(inode);
1875 
1876 		inode->i_ino	 = get_next_ino();
1877 		inode->i_mode    = perms->mode;
1878 		inode->i_uid     = perms->uid;
1879 		inode->i_gid     = perms->gid;
1880 		inode_set_atime_to_ts(inode, ts);
1881 		inode_set_mtime_to_ts(inode, ts);
1882 		inode->i_private = data;
1883 		if (fops)
1884 			inode->i_fop = fops;
1885 		if (iops)
1886 			inode->i_op  = iops;
1887 	}
1888 
1889 	return inode;
1890 }
1891 
1892 /* Create "regular" file */
ffs_sb_create_file(struct super_block * sb,const char * name,void * data,const struct file_operations * fops)1893 static int ffs_sb_create_file(struct super_block *sb, const char *name,
1894 			      void *data, const struct file_operations *fops)
1895 {
1896 	struct ffs_data	*ffs = sb->s_fs_info;
1897 	struct dentry	*dentry;
1898 	struct inode	*inode;
1899 
1900 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1901 	if (!inode)
1902 		return -ENOMEM;
1903 	dentry = simple_start_creating(sb->s_root, name);
1904 	if (IS_ERR(dentry)) {
1905 		iput(inode);
1906 		return PTR_ERR(dentry);
1907 	}
1908 
1909 	d_make_persistent(dentry, inode);
1910 
1911 	simple_done_creating(dentry);
1912 	return 0;
1913 }
1914 
1915 /* Super block */
1916 static const struct super_operations ffs_sb_operations = {
1917 	.statfs =	simple_statfs,
1918 	.drop_inode =	inode_just_drop,
1919 };
1920 
1921 struct ffs_sb_fill_data {
1922 	struct ffs_file_perms perms;
1923 	umode_t root_mode;
1924 	const char *dev_name;
1925 	bool no_disconnect;
1926 	struct ffs_data *ffs_data;
1927 };
1928 
ffs_sb_fill(struct super_block * sb,struct fs_context * fc)1929 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1930 {
1931 	struct ffs_sb_fill_data *data = fc->fs_private;
1932 	struct inode	*inode;
1933 	struct ffs_data	*ffs = data->ffs_data;
1934 
1935 	ffs->sb              = sb;
1936 	data->ffs_data       = NULL;
1937 	sb->s_fs_info        = ffs;
1938 	sb->s_blocksize      = PAGE_SIZE;
1939 	sb->s_blocksize_bits = PAGE_SHIFT;
1940 	sb->s_magic          = FUNCTIONFS_MAGIC;
1941 	sb->s_op             = &ffs_sb_operations;
1942 	sb->s_time_gran      = 1;
1943 
1944 	/* Root inode */
1945 	data->perms.mode = data->root_mode;
1946 	inode = ffs_sb_make_inode(sb, NULL,
1947 				  &simple_dir_operations,
1948 				  &simple_dir_inode_operations,
1949 				  &data->perms);
1950 	sb->s_root = d_make_root(inode);
1951 	if (!sb->s_root)
1952 		return -ENOMEM;
1953 
1954 	/* EP0 file */
1955 	return ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations);
1956 }
1957 
1958 enum {
1959 	Opt_no_disconnect,
1960 	Opt_rmode,
1961 	Opt_fmode,
1962 	Opt_mode,
1963 	Opt_uid,
1964 	Opt_gid,
1965 };
1966 
1967 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1968 	fsparam_bool	("no_disconnect",	Opt_no_disconnect),
1969 	fsparam_u32	("rmode",		Opt_rmode),
1970 	fsparam_u32	("fmode",		Opt_fmode),
1971 	fsparam_u32	("mode",		Opt_mode),
1972 	fsparam_u32	("uid",			Opt_uid),
1973 	fsparam_u32	("gid",			Opt_gid),
1974 	{}
1975 };
1976 
ffs_fs_parse_param(struct fs_context * fc,struct fs_parameter * param)1977 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1978 {
1979 	struct ffs_sb_fill_data *data = fc->fs_private;
1980 	struct fs_parse_result result;
1981 	int opt;
1982 
1983 	opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1984 	if (opt < 0)
1985 		return opt;
1986 
1987 	switch (opt) {
1988 	case Opt_no_disconnect:
1989 		data->no_disconnect = result.boolean;
1990 		break;
1991 	case Opt_rmode:
1992 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1993 		break;
1994 	case Opt_fmode:
1995 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1996 		break;
1997 	case Opt_mode:
1998 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1999 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
2000 		break;
2001 
2002 	case Opt_uid:
2003 		data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
2004 		if (!uid_valid(data->perms.uid))
2005 			goto unmapped_value;
2006 		break;
2007 	case Opt_gid:
2008 		data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
2009 		if (!gid_valid(data->perms.gid))
2010 			goto unmapped_value;
2011 		break;
2012 
2013 	default:
2014 		return -ENOPARAM;
2015 	}
2016 
2017 	return 0;
2018 
2019 unmapped_value:
2020 	return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
2021 }
2022 
2023 /*
2024  * Set up the superblock for a mount.
2025  */
ffs_fs_get_tree(struct fs_context * fc)2026 static int ffs_fs_get_tree(struct fs_context *fc)
2027 {
2028 	struct ffs_sb_fill_data *ctx = fc->fs_private;
2029 	struct ffs_data	*ffs;
2030 	int ret;
2031 
2032 	if (!fc->source)
2033 		return invalf(fc, "No source specified");
2034 
2035 	ffs = ffs_data_new(fc->source);
2036 	if (!ffs)
2037 		return -ENOMEM;
2038 	ffs->file_perms = ctx->perms;
2039 	ffs->no_disconnect = ctx->no_disconnect;
2040 
2041 	ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
2042 	if (!ffs->dev_name) {
2043 		ffs_data_put(ffs);
2044 		return -ENOMEM;
2045 	}
2046 
2047 	ret = ffs_acquire_dev(ffs->dev_name, ffs);
2048 	if (ret) {
2049 		ffs_data_put(ffs);
2050 		return ret;
2051 	}
2052 
2053 	ctx->ffs_data = ffs;
2054 	return get_tree_nodev(fc, ffs_sb_fill);
2055 }
2056 
ffs_fs_free_fc(struct fs_context * fc)2057 static void ffs_fs_free_fc(struct fs_context *fc)
2058 {
2059 	struct ffs_sb_fill_data *ctx = fc->fs_private;
2060 
2061 	if (ctx) {
2062 		if (ctx->ffs_data) {
2063 			ffs_data_put(ctx->ffs_data);
2064 		}
2065 
2066 		kfree(ctx);
2067 	}
2068 }
2069 
2070 static const struct fs_context_operations ffs_fs_context_ops = {
2071 	.free		= ffs_fs_free_fc,
2072 	.parse_param	= ffs_fs_parse_param,
2073 	.get_tree	= ffs_fs_get_tree,
2074 };
2075 
ffs_fs_init_fs_context(struct fs_context * fc)2076 static int ffs_fs_init_fs_context(struct fs_context *fc)
2077 {
2078 	struct ffs_sb_fill_data *ctx;
2079 
2080 	ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
2081 	if (!ctx)
2082 		return -ENOMEM;
2083 
2084 	ctx->perms.mode = S_IFREG | 0600;
2085 	ctx->perms.uid = GLOBAL_ROOT_UID;
2086 	ctx->perms.gid = GLOBAL_ROOT_GID;
2087 	ctx->root_mode = S_IFDIR | 0500;
2088 	ctx->no_disconnect = false;
2089 
2090 	fc->fs_private = ctx;
2091 	fc->ops = &ffs_fs_context_ops;
2092 	return 0;
2093 }
2094 
2095 static void ffs_data_reset(struct ffs_data *ffs);
2096 
2097 static void
ffs_fs_kill_sb(struct super_block * sb)2098 ffs_fs_kill_sb(struct super_block *sb)
2099 {
2100 	kill_anon_super(sb);
2101 	if (sb->s_fs_info) {
2102 		struct ffs_data *ffs = sb->s_fs_info;
2103 		ffs->state = FFS_CLOSING;
2104 		ffs_data_reset(ffs);
2105 		// no configfs accesses from that point on,
2106 		// so no further schedule_work() is possible
2107 		cancel_work_sync(&ffs->reset_work);
2108 		ffs_data_put(ffs);
2109 	}
2110 }
2111 
2112 static struct file_system_type ffs_fs_type = {
2113 	.owner		= THIS_MODULE,
2114 	.name		= "functionfs",
2115 	.init_fs_context = ffs_fs_init_fs_context,
2116 	.parameters	= ffs_fs_fs_parameters,
2117 	.kill_sb	= ffs_fs_kill_sb,
2118 };
2119 MODULE_ALIAS_FS("functionfs");
2120 
2121 
2122 /* Driver's main init/cleanup functions *************************************/
2123 
functionfs_init(void)2124 static int functionfs_init(void)
2125 {
2126 	int ret;
2127 
2128 	ret = register_filesystem(&ffs_fs_type);
2129 	if (!ret)
2130 		pr_info("file system registered\n");
2131 	else
2132 		pr_err("failed registering file system (%d)\n", ret);
2133 
2134 	return ret;
2135 }
2136 
functionfs_cleanup(void)2137 static void functionfs_cleanup(void)
2138 {
2139 	pr_info("unloading\n");
2140 	unregister_filesystem(&ffs_fs_type);
2141 }
2142 
2143 
2144 /* ffs_data and ffs_function construction and destruction code **************/
2145 
2146 static void ffs_data_clear(struct ffs_data *ffs);
2147 
ffs_data_get(struct ffs_data * ffs)2148 static void ffs_data_get(struct ffs_data *ffs)
2149 {
2150 	refcount_inc(&ffs->ref);
2151 }
2152 
ffs_data_opened(struct ffs_data * ffs)2153 static void ffs_data_opened(struct ffs_data *ffs)
2154 {
2155 	if (atomic_add_return(1, &ffs->opened) == 1 &&
2156 			ffs->state == FFS_DEACTIVATED) {
2157 		ffs->state = FFS_CLOSING;
2158 		ffs_data_reset(ffs);
2159 	}
2160 }
2161 
ffs_data_put(struct ffs_data * ffs)2162 static void ffs_data_put(struct ffs_data *ffs)
2163 {
2164 	if (refcount_dec_and_test(&ffs->ref)) {
2165 		pr_info("%s(): freeing\n", __func__);
2166 		ffs_data_clear(ffs);
2167 		ffs_release_dev(ffs->private_data);
2168 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
2169 		       swait_active(&ffs->ep0req_completion.wait) ||
2170 		       waitqueue_active(&ffs->wait));
2171 		destroy_workqueue(ffs->io_completion_wq);
2172 		kfree(ffs->dev_name);
2173 		kfree(ffs);
2174 	}
2175 }
2176 
ffs_data_closed(struct ffs_data * ffs)2177 static void ffs_data_closed(struct ffs_data *ffs)
2178 {
2179 	if (atomic_dec_and_test(&ffs->opened)) {
2180 		if (ffs->no_disconnect) {
2181 			struct ffs_epfile *epfiles;
2182 			unsigned long flags;
2183 
2184 			ffs->state = FFS_DEACTIVATED;
2185 			spin_lock_irqsave(&ffs->eps_lock, flags);
2186 			epfiles = ffs->epfiles;
2187 			ffs->epfiles = NULL;
2188 			spin_unlock_irqrestore(&ffs->eps_lock,
2189 							flags);
2190 
2191 			if (epfiles)
2192 				ffs_epfiles_destroy(ffs->sb, epfiles,
2193 						 ffs->eps_count);
2194 
2195 			if (ffs->setup_state == FFS_SETUP_PENDING)
2196 				__ffs_ep0_stall(ffs);
2197 		} else {
2198 			ffs->state = FFS_CLOSING;
2199 			ffs_data_reset(ffs);
2200 		}
2201 	}
2202 }
2203 
ffs_data_new(const char * dev_name)2204 static struct ffs_data *ffs_data_new(const char *dev_name)
2205 {
2206 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
2207 	if (!ffs)
2208 		return NULL;
2209 
2210 	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
2211 	if (!ffs->io_completion_wq) {
2212 		kfree(ffs);
2213 		return NULL;
2214 	}
2215 
2216 	refcount_set(&ffs->ref, 1);
2217 	atomic_set(&ffs->opened, 0);
2218 	ffs->state = FFS_READ_DESCRIPTORS;
2219 	mutex_init(&ffs->mutex);
2220 	spin_lock_init(&ffs->eps_lock);
2221 	init_waitqueue_head(&ffs->ev.waitq);
2222 	init_waitqueue_head(&ffs->wait);
2223 	init_completion(&ffs->ep0req_completion);
2224 
2225 	/* XXX REVISIT need to update it in some places, or do we? */
2226 	ffs->ev.can_stall = 1;
2227 
2228 	return ffs;
2229 }
2230 
ffs_data_clear(struct ffs_data * ffs)2231 static void ffs_data_clear(struct ffs_data *ffs)
2232 {
2233 	struct ffs_epfile *epfiles;
2234 	unsigned long flags;
2235 
2236 	ffs_closed(ffs);
2237 
2238 	BUG_ON(ffs->gadget);
2239 
2240 	spin_lock_irqsave(&ffs->eps_lock, flags);
2241 	epfiles = ffs->epfiles;
2242 	ffs->epfiles = NULL;
2243 	spin_unlock_irqrestore(&ffs->eps_lock, flags);
2244 
2245 	/*
2246 	 * potential race possible between ffs_func_eps_disable
2247 	 * & ffs_epfile_release therefore maintaining a local
2248 	 * copy of epfile will save us from use-after-free.
2249 	 */
2250 	if (epfiles) {
2251 		ffs_epfiles_destroy(ffs->sb, epfiles, ffs->eps_count);
2252 		ffs->epfiles = NULL;
2253 	}
2254 
2255 	if (ffs->ffs_eventfd) {
2256 		eventfd_ctx_put(ffs->ffs_eventfd);
2257 		ffs->ffs_eventfd = NULL;
2258 	}
2259 
2260 	kfree(ffs->raw_descs_data);
2261 	kfree(ffs->raw_strings);
2262 	kfree(ffs->stringtabs);
2263 }
2264 
ffs_data_reset(struct ffs_data * ffs)2265 static void ffs_data_reset(struct ffs_data *ffs)
2266 {
2267 	ffs_data_clear(ffs);
2268 
2269 	ffs->raw_descs_data = NULL;
2270 	ffs->raw_descs = NULL;
2271 	ffs->raw_strings = NULL;
2272 	ffs->stringtabs = NULL;
2273 
2274 	ffs->raw_descs_length = 0;
2275 	ffs->fs_descs_count = 0;
2276 	ffs->hs_descs_count = 0;
2277 	ffs->ss_descs_count = 0;
2278 
2279 	ffs->strings_count = 0;
2280 	ffs->interfaces_count = 0;
2281 	ffs->eps_count = 0;
2282 
2283 	ffs->ev.count = 0;
2284 
2285 	ffs->state = FFS_READ_DESCRIPTORS;
2286 	ffs->setup_state = FFS_NO_SETUP;
2287 	ffs->flags = 0;
2288 
2289 	ffs->ms_os_descs_ext_prop_count = 0;
2290 	ffs->ms_os_descs_ext_prop_name_len = 0;
2291 	ffs->ms_os_descs_ext_prop_data_len = 0;
2292 }
2293 
2294 
functionfs_bind(struct ffs_data * ffs,struct usb_composite_dev * cdev)2295 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
2296 {
2297 	struct usb_gadget_strings **lang;
2298 	int first_id;
2299 
2300 	if ((ffs->state != FFS_ACTIVE
2301 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
2302 		return -EBADFD;
2303 
2304 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
2305 	if (first_id < 0)
2306 		return first_id;
2307 
2308 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
2309 	if (!ffs->ep0req)
2310 		return -ENOMEM;
2311 	ffs->ep0req->complete = ffs_ep0_complete;
2312 	ffs->ep0req->context = ffs;
2313 
2314 	lang = ffs->stringtabs;
2315 	if (lang) {
2316 		for (; *lang; ++lang) {
2317 			struct usb_string *str = (*lang)->strings;
2318 			int id = first_id;
2319 			for (; str->s; ++id, ++str)
2320 				str->id = id;
2321 		}
2322 	}
2323 
2324 	ffs->gadget = cdev->gadget;
2325 	ffs_data_get(ffs);
2326 	return 0;
2327 }
2328 
functionfs_unbind(struct ffs_data * ffs)2329 static void functionfs_unbind(struct ffs_data *ffs)
2330 {
2331 	if (!WARN_ON(!ffs->gadget)) {
2332 		/* dequeue before freeing ep0req */
2333 		usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req);
2334 		mutex_lock(&ffs->mutex);
2335 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
2336 		ffs->ep0req = NULL;
2337 		ffs->gadget = NULL;
2338 		clear_bit(FFS_FL_BOUND, &ffs->flags);
2339 		mutex_unlock(&ffs->mutex);
2340 		ffs_data_put(ffs);
2341 	}
2342 }
2343 
ffs_epfiles_create(struct ffs_data * ffs)2344 static int ffs_epfiles_create(struct ffs_data *ffs)
2345 {
2346 	struct ffs_epfile *epfile, *epfiles;
2347 	unsigned i, count;
2348 	int err;
2349 
2350 	count = ffs->eps_count;
2351 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
2352 	if (!epfiles)
2353 		return -ENOMEM;
2354 
2355 	epfile = epfiles;
2356 	for (i = 1; i <= count; ++i, ++epfile) {
2357 		epfile->ffs = ffs;
2358 		mutex_init(&epfile->mutex);
2359 		mutex_init(&epfile->dmabufs_mutex);
2360 		INIT_LIST_HEAD(&epfile->dmabufs);
2361 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2362 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
2363 		else
2364 			sprintf(epfile->name, "ep%u", i);
2365 		err = ffs_sb_create_file(ffs->sb, epfile->name,
2366 					 epfile, &ffs_epfile_operations);
2367 		if (err) {
2368 			ffs_epfiles_destroy(ffs->sb, epfiles, i - 1);
2369 			return err;
2370 		}
2371 	}
2372 
2373 	ffs->epfiles = epfiles;
2374 	return 0;
2375 }
2376 
clear_one(struct dentry * dentry)2377 static void clear_one(struct dentry *dentry)
2378 {
2379 	smp_store_release(&dentry->d_inode->i_private, NULL);
2380 }
2381 
ffs_epfiles_destroy(struct super_block * sb,struct ffs_epfile * epfiles,unsigned count)2382 static void ffs_epfiles_destroy(struct super_block *sb,
2383 				struct ffs_epfile *epfiles, unsigned count)
2384 {
2385 	struct ffs_epfile *epfile = epfiles;
2386 	struct dentry *root = sb->s_root;
2387 
2388 	for (; count; --count, ++epfile) {
2389 		BUG_ON(mutex_is_locked(&epfile->mutex));
2390 		simple_remove_by_name(root, epfile->name, clear_one);
2391 	}
2392 
2393 	kfree(epfiles);
2394 }
2395 
ffs_func_eps_disable(struct ffs_function * func)2396 static void ffs_func_eps_disable(struct ffs_function *func)
2397 {
2398 	struct ffs_ep *ep;
2399 	struct ffs_epfile *epfile;
2400 	unsigned short count;
2401 	unsigned long flags;
2402 
2403 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
2404 	count = func->ffs->eps_count;
2405 	epfile = func->ffs->epfiles;
2406 	ep = func->eps;
2407 	while (count--) {
2408 		/* pending requests get nuked */
2409 		if (ep->ep)
2410 			usb_ep_disable(ep->ep);
2411 		++ep;
2412 
2413 		if (epfile) {
2414 			epfile->ep = NULL;
2415 			__ffs_epfile_read_buffer_free(epfile);
2416 			++epfile;
2417 		}
2418 	}
2419 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2420 }
2421 
ffs_func_eps_enable(struct ffs_function * func)2422 static int ffs_func_eps_enable(struct ffs_function *func)
2423 {
2424 	struct ffs_data *ffs;
2425 	struct ffs_ep *ep;
2426 	struct ffs_epfile *epfile;
2427 	unsigned short count;
2428 	unsigned long flags;
2429 	int ret = 0;
2430 
2431 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
2432 	ffs = func->ffs;
2433 	ep = func->eps;
2434 	epfile = ffs->epfiles;
2435 	count = ffs->eps_count;
2436 	if (!epfile) {
2437 		ret = -ENOMEM;
2438 		goto done;
2439 	}
2440 
2441 	while (count--) {
2442 		ep->ep->driver_data = ep;
2443 
2444 		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
2445 		if (ret) {
2446 			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
2447 					__func__, ep->ep->name, ret);
2448 			break;
2449 		}
2450 
2451 		ret = usb_ep_enable(ep->ep);
2452 		if (!ret) {
2453 			epfile->ep = ep;
2454 			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
2455 			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
2456 		} else {
2457 			break;
2458 		}
2459 
2460 		++ep;
2461 		++epfile;
2462 	}
2463 
2464 	wake_up_interruptible(&ffs->wait);
2465 done:
2466 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2467 
2468 	return ret;
2469 }
2470 
2471 
2472 /* Parsing and building descriptors and strings *****************************/
2473 
2474 /*
2475  * This validates if data pointed by data is a valid USB descriptor as
2476  * well as record how many interfaces, endpoints and strings are
2477  * required by given configuration.  Returns address after the
2478  * descriptor or NULL if data is invalid.
2479  */
2480 
2481 enum ffs_entity_type {
2482 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
2483 };
2484 
2485 enum ffs_os_desc_type {
2486 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
2487 };
2488 
2489 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2490 				   u8 *valuep,
2491 				   struct usb_descriptor_header *desc,
2492 				   void *priv);
2493 
2494 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2495 				    struct usb_os_desc_header *h, void *data,
2496 				    unsigned len, void *priv);
2497 
ffs_do_single_desc(char * data,unsigned len,ffs_entity_callback entity,void * priv,int * current_class,int * current_subclass)2498 static int __must_check ffs_do_single_desc(char *data, unsigned len,
2499 					   ffs_entity_callback entity,
2500 					   void *priv, int *current_class, int *current_subclass)
2501 {
2502 	struct usb_descriptor_header *_ds = (void *)data;
2503 	u8 length;
2504 	int ret;
2505 
2506 	/* At least two bytes are required: length and type */
2507 	if (len < 2) {
2508 		pr_vdebug("descriptor too short\n");
2509 		return -EINVAL;
2510 	}
2511 
2512 	/* If we have at least as many bytes as the descriptor takes? */
2513 	length = _ds->bLength;
2514 	if (len < length) {
2515 		pr_vdebug("descriptor longer then available data\n");
2516 		return -EINVAL;
2517 	}
2518 
2519 #define __entity_check_INTERFACE(val)  1
2520 #define __entity_check_STRING(val)     (val)
2521 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
2522 #define __entity(type, val) do {					\
2523 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
2524 		if (!__entity_check_ ##type(val)) {			\
2525 			pr_vdebug("invalid entity's value\n");		\
2526 			return -EINVAL;					\
2527 		}							\
2528 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
2529 		if (ret < 0) {						\
2530 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
2531 				 (val), ret);				\
2532 			return ret;					\
2533 		}							\
2534 	} while (0)
2535 
2536 	/* Parse descriptor depending on type. */
2537 	switch (_ds->bDescriptorType) {
2538 	case USB_DT_DEVICE:
2539 	case USB_DT_CONFIG:
2540 	case USB_DT_STRING:
2541 	case USB_DT_DEVICE_QUALIFIER:
2542 		/* function can't have any of those */
2543 		pr_vdebug("descriptor reserved for gadget: %d\n",
2544 		      _ds->bDescriptorType);
2545 		return -EINVAL;
2546 
2547 	case USB_DT_INTERFACE: {
2548 		struct usb_interface_descriptor *ds = (void *)_ds;
2549 		pr_vdebug("interface descriptor\n");
2550 		if (length != sizeof *ds)
2551 			goto inv_length;
2552 
2553 		__entity(INTERFACE, ds->bInterfaceNumber);
2554 		if (ds->iInterface)
2555 			__entity(STRING, ds->iInterface);
2556 		*current_class = ds->bInterfaceClass;
2557 		*current_subclass = ds->bInterfaceSubClass;
2558 	}
2559 		break;
2560 
2561 	case USB_DT_ENDPOINT: {
2562 		struct usb_endpoint_descriptor *ds = (void *)_ds;
2563 		pr_vdebug("endpoint descriptor\n");
2564 		if (length != USB_DT_ENDPOINT_SIZE &&
2565 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
2566 			goto inv_length;
2567 		__entity(ENDPOINT, ds->bEndpointAddress);
2568 	}
2569 		break;
2570 
2571 	case USB_TYPE_CLASS | 0x01:
2572 		if (*current_class == USB_INTERFACE_CLASS_HID) {
2573 			pr_vdebug("hid descriptor\n");
2574 			if (length != sizeof(struct hid_descriptor))
2575 				goto inv_length;
2576 			break;
2577 		} else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2578 			pr_vdebug("ccid descriptor\n");
2579 			if (length != sizeof(struct ccid_descriptor))
2580 				goto inv_length;
2581 			break;
2582 		} else if (*current_class == USB_CLASS_APP_SPEC &&
2583 			   *current_subclass == USB_SUBCLASS_DFU) {
2584 			pr_vdebug("dfu functional descriptor\n");
2585 			if (length != sizeof(struct usb_dfu_functional_descriptor))
2586 				goto inv_length;
2587 			break;
2588 		} else {
2589 			pr_vdebug("unknown descriptor: %d for class %d\n",
2590 			      _ds->bDescriptorType, *current_class);
2591 			return -EINVAL;
2592 		}
2593 
2594 	case USB_DT_OTG:
2595 		if (length != sizeof(struct usb_otg_descriptor))
2596 			goto inv_length;
2597 		break;
2598 
2599 	case USB_DT_INTERFACE_ASSOCIATION: {
2600 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2601 		pr_vdebug("interface association descriptor\n");
2602 		if (length != sizeof *ds)
2603 			goto inv_length;
2604 		if (ds->iFunction)
2605 			__entity(STRING, ds->iFunction);
2606 	}
2607 		break;
2608 
2609 	case USB_DT_SS_ENDPOINT_COMP:
2610 		pr_vdebug("EP SS companion descriptor\n");
2611 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2612 			goto inv_length;
2613 		break;
2614 
2615 	case USB_DT_OTHER_SPEED_CONFIG:
2616 	case USB_DT_INTERFACE_POWER:
2617 	case USB_DT_DEBUG:
2618 	case USB_DT_SECURITY:
2619 	case USB_DT_CS_RADIO_CONTROL:
2620 		/* TODO */
2621 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2622 		return -EINVAL;
2623 
2624 	default:
2625 		/* We should never be here */
2626 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2627 		return -EINVAL;
2628 
2629 inv_length:
2630 		pr_vdebug("invalid length: %d (descriptor %d)\n",
2631 			  _ds->bLength, _ds->bDescriptorType);
2632 		return -EINVAL;
2633 	}
2634 
2635 #undef __entity
2636 #undef __entity_check_DESCRIPTOR
2637 #undef __entity_check_INTERFACE
2638 #undef __entity_check_STRING
2639 #undef __entity_check_ENDPOINT
2640 
2641 	return length;
2642 }
2643 
ffs_do_descs(unsigned count,char * data,unsigned len,ffs_entity_callback entity,void * priv)2644 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2645 				     ffs_entity_callback entity, void *priv)
2646 {
2647 	const unsigned _len = len;
2648 	unsigned long num = 0;
2649 	int current_class = -1;
2650 	int current_subclass = -1;
2651 
2652 	for (;;) {
2653 		int ret;
2654 
2655 		if (num == count)
2656 			data = NULL;
2657 
2658 		/* Record "descriptor" entity */
2659 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2660 		if (ret < 0) {
2661 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2662 				 num, ret);
2663 			return ret;
2664 		}
2665 
2666 		if (!data)
2667 			return _len - len;
2668 
2669 		ret = ffs_do_single_desc(data, len, entity, priv,
2670 			&current_class, &current_subclass);
2671 		if (ret < 0) {
2672 			pr_debug("%s returns %d\n", __func__, ret);
2673 			return ret;
2674 		}
2675 
2676 		len -= ret;
2677 		data += ret;
2678 		++num;
2679 	}
2680 }
2681 
__ffs_data_do_entity(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2682 static int __ffs_data_do_entity(enum ffs_entity_type type,
2683 				u8 *valuep, struct usb_descriptor_header *desc,
2684 				void *priv)
2685 {
2686 	struct ffs_desc_helper *helper = priv;
2687 	struct usb_endpoint_descriptor *d;
2688 
2689 	switch (type) {
2690 	case FFS_DESCRIPTOR:
2691 		break;
2692 
2693 	case FFS_INTERFACE:
2694 		/*
2695 		 * Interfaces are indexed from zero so if we
2696 		 * encountered interface "n" then there are at least
2697 		 * "n+1" interfaces.
2698 		 */
2699 		if (*valuep >= helper->interfaces_count)
2700 			helper->interfaces_count = *valuep + 1;
2701 		break;
2702 
2703 	case FFS_STRING:
2704 		/*
2705 		 * Strings are indexed from 1 (0 is reserved
2706 		 * for languages list)
2707 		 */
2708 		if (*valuep > helper->ffs->strings_count)
2709 			helper->ffs->strings_count = *valuep;
2710 		break;
2711 
2712 	case FFS_ENDPOINT:
2713 		d = (void *)desc;
2714 		helper->eps_count++;
2715 		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2716 			return -EINVAL;
2717 		/* Check if descriptors for any speed were already parsed */
2718 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2719 			helper->ffs->eps_addrmap[helper->eps_count] =
2720 				d->bEndpointAddress;
2721 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2722 				d->bEndpointAddress)
2723 			return -EINVAL;
2724 		break;
2725 	}
2726 
2727 	return 0;
2728 }
2729 
__ffs_do_os_desc_header(enum ffs_os_desc_type * next_type,struct usb_os_desc_header * desc)2730 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2731 				   struct usb_os_desc_header *desc)
2732 {
2733 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2734 	u16 w_index = le16_to_cpu(desc->wIndex);
2735 
2736 	if (bcd_version == 0x1) {
2737 		pr_warn("bcdVersion must be 0x0100, stored in Little Endian order. "
2738 			"Userspace driver should be fixed, accepting 0x0001 for compatibility.\n");
2739 	} else if (bcd_version != 0x100) {
2740 		pr_vdebug("unsupported os descriptors version: 0x%x\n",
2741 			  bcd_version);
2742 		return -EINVAL;
2743 	}
2744 	switch (w_index) {
2745 	case 0x4:
2746 		*next_type = FFS_OS_DESC_EXT_COMPAT;
2747 		break;
2748 	case 0x5:
2749 		*next_type = FFS_OS_DESC_EXT_PROP;
2750 		break;
2751 	default:
2752 		pr_vdebug("unsupported os descriptor type: %d", w_index);
2753 		return -EINVAL;
2754 	}
2755 
2756 	return sizeof(*desc);
2757 }
2758 
2759 /*
2760  * Process all extended compatibility/extended property descriptors
2761  * of a feature descriptor
2762  */
ffs_do_single_os_desc(char * data,unsigned len,enum ffs_os_desc_type type,u16 feature_count,ffs_os_desc_callback entity,void * priv,struct usb_os_desc_header * h)2763 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2764 					      enum ffs_os_desc_type type,
2765 					      u16 feature_count,
2766 					      ffs_os_desc_callback entity,
2767 					      void *priv,
2768 					      struct usb_os_desc_header *h)
2769 {
2770 	int ret;
2771 	const unsigned _len = len;
2772 
2773 	/* loop over all ext compat/ext prop descriptors */
2774 	while (feature_count--) {
2775 		ret = entity(type, h, data, len, priv);
2776 		if (ret < 0) {
2777 			pr_debug("bad OS descriptor, type: %d\n", type);
2778 			return ret;
2779 		}
2780 		data += ret;
2781 		len -= ret;
2782 	}
2783 	return _len - len;
2784 }
2785 
2786 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
ffs_do_os_descs(unsigned count,char * data,unsigned len,ffs_os_desc_callback entity,void * priv)2787 static int __must_check ffs_do_os_descs(unsigned count,
2788 					char *data, unsigned len,
2789 					ffs_os_desc_callback entity, void *priv)
2790 {
2791 	const unsigned _len = len;
2792 	unsigned long num = 0;
2793 
2794 	for (num = 0; num < count; ++num) {
2795 		int ret;
2796 		enum ffs_os_desc_type type;
2797 		u16 feature_count;
2798 		struct usb_os_desc_header *desc = (void *)data;
2799 
2800 		if (len < sizeof(*desc))
2801 			return -EINVAL;
2802 
2803 		/*
2804 		 * Record "descriptor" entity.
2805 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2806 		 * Move the data pointer to the beginning of extended
2807 		 * compatibilities proper or extended properties proper
2808 		 * portions of the data
2809 		 */
2810 		if (le32_to_cpu(desc->dwLength) > len)
2811 			return -EINVAL;
2812 
2813 		ret = __ffs_do_os_desc_header(&type, desc);
2814 		if (ret < 0) {
2815 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2816 				 num, ret);
2817 			return ret;
2818 		}
2819 		/*
2820 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2821 		 */
2822 		feature_count = le16_to_cpu(desc->wCount);
2823 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2824 		    (feature_count > 255 || desc->Reserved))
2825 				return -EINVAL;
2826 		len -= ret;
2827 		data += ret;
2828 
2829 		/*
2830 		 * Process all function/property descriptors
2831 		 * of this Feature Descriptor
2832 		 */
2833 		ret = ffs_do_single_os_desc(data, len, type,
2834 					    feature_count, entity, priv, desc);
2835 		if (ret < 0) {
2836 			pr_debug("%s returns %d\n", __func__, ret);
2837 			return ret;
2838 		}
2839 
2840 		len -= ret;
2841 		data += ret;
2842 	}
2843 	return _len - len;
2844 }
2845 
2846 /*
2847  * Validate contents of the buffer from userspace related to OS descriptors.
2848  */
__ffs_data_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)2849 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2850 				 struct usb_os_desc_header *h, void *data,
2851 				 unsigned len, void *priv)
2852 {
2853 	struct ffs_data *ffs = priv;
2854 	u8 length;
2855 
2856 	switch (type) {
2857 	case FFS_OS_DESC_EXT_COMPAT: {
2858 		struct usb_ext_compat_desc *d = data;
2859 		int i;
2860 
2861 		if (len < sizeof(*d) ||
2862 		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2863 			return -EINVAL;
2864 		if (d->Reserved1 != 1) {
2865 			/*
2866 			 * According to the spec, Reserved1 must be set to 1
2867 			 * but older kernels incorrectly rejected non-zero
2868 			 * values.  We fix it here to avoid returning EINVAL
2869 			 * in response to values we used to accept.
2870 			 */
2871 			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2872 			d->Reserved1 = 1;
2873 		}
2874 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2875 			if (d->Reserved2[i])
2876 				return -EINVAL;
2877 
2878 		length = sizeof(struct usb_ext_compat_desc);
2879 	}
2880 		break;
2881 	case FFS_OS_DESC_EXT_PROP: {
2882 		struct usb_ext_prop_desc *d = data;
2883 		u32 type, pdl;
2884 		u16 pnl;
2885 
2886 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2887 			return -EINVAL;
2888 		length = le32_to_cpu(d->dwSize);
2889 		if (len < length)
2890 			return -EINVAL;
2891 		type = le32_to_cpu(d->dwPropertyDataType);
2892 		if (type < USB_EXT_PROP_UNICODE ||
2893 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2894 			pr_vdebug("unsupported os descriptor property type: %d",
2895 				  type);
2896 			return -EINVAL;
2897 		}
2898 		pnl = le16_to_cpu(d->wPropertyNameLength);
2899 		if (length < 14 + pnl) {
2900 			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2901 				  length, pnl, type);
2902 			return -EINVAL;
2903 		}
2904 		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2905 		if (length != 14 + pnl + pdl) {
2906 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2907 				  length, pnl, pdl, type);
2908 			return -EINVAL;
2909 		}
2910 		++ffs->ms_os_descs_ext_prop_count;
2911 		/* property name reported to the host as "WCHAR"s */
2912 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2913 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2914 	}
2915 		break;
2916 	default:
2917 		pr_vdebug("unknown descriptor: %d\n", type);
2918 		return -EINVAL;
2919 	}
2920 	return length;
2921 }
2922 
__ffs_data_got_descs(struct ffs_data * ffs,char * const _data,size_t len)2923 static int __ffs_data_got_descs(struct ffs_data *ffs,
2924 				char *const _data, size_t len)
2925 {
2926 	char *data = _data, *raw_descs;
2927 	unsigned os_descs_count = 0, counts[3], flags;
2928 	int ret = -EINVAL, i;
2929 	struct ffs_desc_helper helper;
2930 
2931 	if (get_unaligned_le32(data + 4) != len)
2932 		goto error;
2933 
2934 	switch (get_unaligned_le32(data)) {
2935 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2936 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2937 		data += 8;
2938 		len  -= 8;
2939 		break;
2940 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2941 		flags = get_unaligned_le32(data + 8);
2942 		ffs->user_flags = flags;
2943 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2944 			      FUNCTIONFS_HAS_HS_DESC |
2945 			      FUNCTIONFS_HAS_SS_DESC |
2946 			      FUNCTIONFS_HAS_MS_OS_DESC |
2947 			      FUNCTIONFS_VIRTUAL_ADDR |
2948 			      FUNCTIONFS_EVENTFD |
2949 			      FUNCTIONFS_ALL_CTRL_RECIP |
2950 			      FUNCTIONFS_CONFIG0_SETUP)) {
2951 			ret = -ENOSYS;
2952 			goto error;
2953 		}
2954 		data += 12;
2955 		len  -= 12;
2956 		break;
2957 	default:
2958 		goto error;
2959 	}
2960 
2961 	if (flags & FUNCTIONFS_EVENTFD) {
2962 		if (len < 4)
2963 			goto error;
2964 		ffs->ffs_eventfd =
2965 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2966 		if (IS_ERR(ffs->ffs_eventfd)) {
2967 			ret = PTR_ERR(ffs->ffs_eventfd);
2968 			ffs->ffs_eventfd = NULL;
2969 			goto error;
2970 		}
2971 		data += 4;
2972 		len  -= 4;
2973 	}
2974 
2975 	/* Read fs_count, hs_count and ss_count (if present) */
2976 	for (i = 0; i < 3; ++i) {
2977 		if (!(flags & (1 << i))) {
2978 			counts[i] = 0;
2979 		} else if (len < 4) {
2980 			goto error;
2981 		} else {
2982 			counts[i] = get_unaligned_le32(data);
2983 			data += 4;
2984 			len  -= 4;
2985 		}
2986 	}
2987 	if (flags & (1 << i)) {
2988 		if (len < 4) {
2989 			goto error;
2990 		}
2991 		os_descs_count = get_unaligned_le32(data);
2992 		data += 4;
2993 		len -= 4;
2994 	}
2995 
2996 	/* Read descriptors */
2997 	raw_descs = data;
2998 	helper.ffs = ffs;
2999 	for (i = 0; i < 3; ++i) {
3000 		if (!counts[i])
3001 			continue;
3002 		helper.interfaces_count = 0;
3003 		helper.eps_count = 0;
3004 		ret = ffs_do_descs(counts[i], data, len,
3005 				   __ffs_data_do_entity, &helper);
3006 		if (ret < 0)
3007 			goto error;
3008 		if (!ffs->eps_count && !ffs->interfaces_count) {
3009 			ffs->eps_count = helper.eps_count;
3010 			ffs->interfaces_count = helper.interfaces_count;
3011 		} else {
3012 			if (ffs->eps_count != helper.eps_count) {
3013 				ret = -EINVAL;
3014 				goto error;
3015 			}
3016 			if (ffs->interfaces_count != helper.interfaces_count) {
3017 				ret = -EINVAL;
3018 				goto error;
3019 			}
3020 		}
3021 		data += ret;
3022 		len  -= ret;
3023 	}
3024 	if (os_descs_count) {
3025 		ret = ffs_do_os_descs(os_descs_count, data, len,
3026 				      __ffs_data_do_os_desc, ffs);
3027 		if (ret < 0)
3028 			goto error;
3029 		data += ret;
3030 		len -= ret;
3031 	}
3032 
3033 	if (raw_descs == data || len) {
3034 		ret = -EINVAL;
3035 		goto error;
3036 	}
3037 
3038 	ffs->raw_descs_data	= _data;
3039 	ffs->raw_descs		= raw_descs;
3040 	ffs->raw_descs_length	= data - raw_descs;
3041 	ffs->fs_descs_count	= counts[0];
3042 	ffs->hs_descs_count	= counts[1];
3043 	ffs->ss_descs_count	= counts[2];
3044 	ffs->ms_os_descs_count	= os_descs_count;
3045 
3046 	return 0;
3047 
3048 error:
3049 	kfree(_data);
3050 	return ret;
3051 }
3052 
__ffs_data_got_strings(struct ffs_data * ffs,char * const _data,size_t len)3053 static int __ffs_data_got_strings(struct ffs_data *ffs,
3054 				  char *const _data, size_t len)
3055 {
3056 	u32 str_count, needed_count, lang_count;
3057 	struct usb_gadget_strings **stringtabs, *t;
3058 	const char *data = _data;
3059 	struct usb_string *s;
3060 
3061 	if (len < 16 ||
3062 	    get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
3063 	    get_unaligned_le32(data + 4) != len)
3064 		goto error;
3065 	str_count  = get_unaligned_le32(data + 8);
3066 	lang_count = get_unaligned_le32(data + 12);
3067 
3068 	/* if one is zero the other must be zero */
3069 	if (!str_count != !lang_count)
3070 		goto error;
3071 
3072 	/* Do we have at least as many strings as descriptors need? */
3073 	needed_count = ffs->strings_count;
3074 	if (str_count < needed_count)
3075 		goto error;
3076 
3077 	/*
3078 	 * If we don't need any strings just return and free all
3079 	 * memory.
3080 	 */
3081 	if (!needed_count) {
3082 		kfree(_data);
3083 		return 0;
3084 	}
3085 
3086 	/* Allocate everything in one chunk so there's less maintenance. */
3087 	{
3088 		unsigned i = 0;
3089 		vla_group(d);
3090 		vla_item(d, struct usb_gadget_strings *, stringtabs,
3091 			size_add(lang_count, 1));
3092 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
3093 		vla_item(d, struct usb_string, strings,
3094 			size_mul(lang_count, (needed_count + 1)));
3095 
3096 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
3097 
3098 		if (!vlabuf) {
3099 			kfree(_data);
3100 			return -ENOMEM;
3101 		}
3102 
3103 		/* Initialize the VLA pointers */
3104 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
3105 		t = vla_ptr(vlabuf, d, stringtab);
3106 		i = lang_count;
3107 		do {
3108 			*stringtabs++ = t++;
3109 		} while (--i);
3110 		*stringtabs = NULL;
3111 
3112 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
3113 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
3114 		t = vla_ptr(vlabuf, d, stringtab);
3115 		s = vla_ptr(vlabuf, d, strings);
3116 	}
3117 
3118 	/* For each language */
3119 	data += 16;
3120 	len -= 16;
3121 
3122 	do { /* lang_count > 0 so we can use do-while */
3123 		unsigned needed = needed_count;
3124 		u32 str_per_lang = str_count;
3125 
3126 		if (len < 3)
3127 			goto error_free;
3128 		t->language = get_unaligned_le16(data);
3129 		t->strings  = s;
3130 		++t;
3131 
3132 		data += 2;
3133 		len -= 2;
3134 
3135 		/* For each string */
3136 		do { /* str_count > 0 so we can use do-while */
3137 			size_t length = strnlen(data, len);
3138 
3139 			if (length == len)
3140 				goto error_free;
3141 
3142 			/*
3143 			 * User may provide more strings then we need,
3144 			 * if that's the case we simply ignore the
3145 			 * rest
3146 			 */
3147 			if (needed) {
3148 				/*
3149 				 * s->id will be set while adding
3150 				 * function to configuration so for
3151 				 * now just leave garbage here.
3152 				 */
3153 				s->s = data;
3154 				--needed;
3155 				++s;
3156 			}
3157 
3158 			data += length + 1;
3159 			len -= length + 1;
3160 		} while (--str_per_lang);
3161 
3162 		s->id = 0;   /* terminator */
3163 		s->s = NULL;
3164 		++s;
3165 
3166 	} while (--lang_count);
3167 
3168 	/* Some garbage left? */
3169 	if (len)
3170 		goto error_free;
3171 
3172 	/* Done! */
3173 	ffs->stringtabs = stringtabs;
3174 	ffs->raw_strings = _data;
3175 
3176 	return 0;
3177 
3178 error_free:
3179 	kfree(stringtabs);
3180 error:
3181 	kfree(_data);
3182 	return -EINVAL;
3183 }
3184 
3185 
3186 /* Events handling and management *******************************************/
3187 
__ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)3188 static void __ffs_event_add(struct ffs_data *ffs,
3189 			    enum usb_functionfs_event_type type)
3190 {
3191 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
3192 	int neg = 0;
3193 
3194 	/*
3195 	 * Abort any unhandled setup
3196 	 *
3197 	 * We do not need to worry about some cmpxchg() changing value
3198 	 * of ffs->setup_state without holding the lock because when
3199 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
3200 	 * the source does nothing.
3201 	 */
3202 	if (ffs->setup_state == FFS_SETUP_PENDING)
3203 		ffs->setup_state = FFS_SETUP_CANCELLED;
3204 
3205 	/*
3206 	 * Logic of this function guarantees that there are at most four pending
3207 	 * evens on ffs->ev.types queue.  This is important because the queue
3208 	 * has space for four elements only and __ffs_ep0_read_events function
3209 	 * depends on that limit as well.  If more event types are added, those
3210 	 * limits have to be revisited or guaranteed to still hold.
3211 	 */
3212 	switch (type) {
3213 	case FUNCTIONFS_RESUME:
3214 		rem_type2 = FUNCTIONFS_SUSPEND;
3215 		fallthrough;
3216 	case FUNCTIONFS_SUSPEND:
3217 	case FUNCTIONFS_SETUP:
3218 		rem_type1 = type;
3219 		/* Discard all similar events */
3220 		break;
3221 
3222 	case FUNCTIONFS_BIND:
3223 	case FUNCTIONFS_UNBIND:
3224 	case FUNCTIONFS_DISABLE:
3225 	case FUNCTIONFS_ENABLE:
3226 		/* Discard everything other then power management. */
3227 		rem_type1 = FUNCTIONFS_SUSPEND;
3228 		rem_type2 = FUNCTIONFS_RESUME;
3229 		neg = 1;
3230 		break;
3231 
3232 	default:
3233 		WARN(1, "%d: unknown event, this should not happen\n", type);
3234 		return;
3235 	}
3236 
3237 	{
3238 		u8 *ev  = ffs->ev.types, *out = ev;
3239 		unsigned n = ffs->ev.count;
3240 		for (; n; --n, ++ev)
3241 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
3242 				*out++ = *ev;
3243 			else
3244 				pr_vdebug("purging event %d\n", *ev);
3245 		ffs->ev.count = out - ffs->ev.types;
3246 	}
3247 
3248 	pr_vdebug("adding event %d\n", type);
3249 	ffs->ev.types[ffs->ev.count++] = type;
3250 	wake_up_locked(&ffs->ev.waitq);
3251 	if (ffs->ffs_eventfd)
3252 		eventfd_signal(ffs->ffs_eventfd);
3253 }
3254 
ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)3255 static void ffs_event_add(struct ffs_data *ffs,
3256 			  enum usb_functionfs_event_type type)
3257 {
3258 	unsigned long flags;
3259 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3260 	__ffs_event_add(ffs, type);
3261 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3262 }
3263 
3264 /* Bind/unbind USB function hooks *******************************************/
3265 
ffs_ep_addr2idx(struct ffs_data * ffs,u8 endpoint_address)3266 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
3267 {
3268 	int i;
3269 
3270 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
3271 		if (ffs->eps_addrmap[i] == endpoint_address)
3272 			return i;
3273 	return -ENOENT;
3274 }
3275 
__ffs_func_bind_do_descs(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)3276 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
3277 				    struct usb_descriptor_header *desc,
3278 				    void *priv)
3279 {
3280 	struct usb_endpoint_descriptor *ds = (void *)desc;
3281 	struct ffs_function *func = priv;
3282 	struct ffs_ep *ffs_ep;
3283 	unsigned ep_desc_id;
3284 	int idx;
3285 	static const char *speed_names[] = { "full", "high", "super" };
3286 
3287 	if (type != FFS_DESCRIPTOR)
3288 		return 0;
3289 
3290 	/*
3291 	 * If ss_descriptors is not NULL, we are reading super speed
3292 	 * descriptors; if hs_descriptors is not NULL, we are reading high
3293 	 * speed descriptors; otherwise, we are reading full speed
3294 	 * descriptors.
3295 	 */
3296 	if (func->function.ss_descriptors) {
3297 		ep_desc_id = 2;
3298 		func->function.ss_descriptors[(long)valuep] = desc;
3299 	} else if (func->function.hs_descriptors) {
3300 		ep_desc_id = 1;
3301 		func->function.hs_descriptors[(long)valuep] = desc;
3302 	} else {
3303 		ep_desc_id = 0;
3304 		func->function.fs_descriptors[(long)valuep]    = desc;
3305 	}
3306 
3307 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
3308 		return 0;
3309 
3310 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
3311 	if (idx < 0)
3312 		return idx;
3313 
3314 	ffs_ep = func->eps + idx;
3315 
3316 	if (ffs_ep->descs[ep_desc_id]) {
3317 		pr_err("two %sspeed descriptors for EP %d\n",
3318 			  speed_names[ep_desc_id],
3319 			  usb_endpoint_num(ds));
3320 		return -EINVAL;
3321 	}
3322 	ffs_ep->descs[ep_desc_id] = ds;
3323 
3324 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
3325 	if (ffs_ep->ep) {
3326 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
3327 		if (!ds->wMaxPacketSize)
3328 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
3329 	} else {
3330 		struct usb_request *req;
3331 		struct usb_ep *ep;
3332 		u8 bEndpointAddress;
3333 		u16 wMaxPacketSize;
3334 
3335 		/*
3336 		 * We back up bEndpointAddress because autoconfig overwrites
3337 		 * it with physical endpoint address.
3338 		 */
3339 		bEndpointAddress = ds->bEndpointAddress;
3340 		/*
3341 		 * We back up wMaxPacketSize because autoconfig treats
3342 		 * endpoint descriptors as if they were full speed.
3343 		 */
3344 		wMaxPacketSize = ds->wMaxPacketSize;
3345 		pr_vdebug("autoconfig\n");
3346 		ep = usb_ep_autoconfig(func->gadget, ds);
3347 		if (!ep)
3348 			return -ENOTSUPP;
3349 		ep->driver_data = func->eps + idx;
3350 
3351 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
3352 		if (!req)
3353 			return -ENOMEM;
3354 
3355 		ffs_ep->ep  = ep;
3356 		ffs_ep->req = req;
3357 		func->eps_revmap[ds->bEndpointAddress &
3358 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
3359 		/*
3360 		 * If we use virtual address mapping, we restore
3361 		 * original bEndpointAddress value.
3362 		 */
3363 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3364 			ds->bEndpointAddress = bEndpointAddress;
3365 		/*
3366 		 * Restore wMaxPacketSize which was potentially
3367 		 * overwritten by autoconfig.
3368 		 */
3369 		ds->wMaxPacketSize = wMaxPacketSize;
3370 	}
3371 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
3372 
3373 	return 0;
3374 }
3375 
__ffs_func_bind_do_nums(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)3376 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
3377 				   struct usb_descriptor_header *desc,
3378 				   void *priv)
3379 {
3380 	struct ffs_function *func = priv;
3381 	unsigned idx;
3382 	u8 newValue;
3383 
3384 	switch (type) {
3385 	default:
3386 	case FFS_DESCRIPTOR:
3387 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
3388 		return 0;
3389 
3390 	case FFS_INTERFACE:
3391 		idx = *valuep;
3392 		if (func->interfaces_nums[idx] < 0) {
3393 			int id = usb_interface_id(func->conf, &func->function);
3394 			if (id < 0)
3395 				return id;
3396 			func->interfaces_nums[idx] = id;
3397 		}
3398 		newValue = func->interfaces_nums[idx];
3399 		break;
3400 
3401 	case FFS_STRING:
3402 		/* String' IDs are allocated when fsf_data is bound to cdev */
3403 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
3404 		break;
3405 
3406 	case FFS_ENDPOINT:
3407 		/*
3408 		 * USB_DT_ENDPOINT are handled in
3409 		 * __ffs_func_bind_do_descs().
3410 		 */
3411 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
3412 			return 0;
3413 
3414 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
3415 		if (!func->eps[idx].ep)
3416 			return -EINVAL;
3417 
3418 		{
3419 			struct usb_endpoint_descriptor **descs;
3420 			descs = func->eps[idx].descs;
3421 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
3422 		}
3423 		break;
3424 	}
3425 
3426 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
3427 	*valuep = newValue;
3428 	return 0;
3429 }
3430 
__ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)3431 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
3432 				      struct usb_os_desc_header *h, void *data,
3433 				      unsigned len, void *priv)
3434 {
3435 	struct ffs_function *func = priv;
3436 	u8 length = 0;
3437 
3438 	switch (type) {
3439 	case FFS_OS_DESC_EXT_COMPAT: {
3440 		struct usb_ext_compat_desc *desc = data;
3441 		struct usb_os_desc_table *t;
3442 
3443 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
3444 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
3445 		memcpy(t->os_desc->ext_compat_id, &desc->IDs,
3446 		       sizeof_field(struct usb_ext_compat_desc, IDs));
3447 		length = sizeof(*desc);
3448 	}
3449 		break;
3450 	case FFS_OS_DESC_EXT_PROP: {
3451 		struct usb_ext_prop_desc *desc = data;
3452 		struct usb_os_desc_table *t;
3453 		struct usb_os_desc_ext_prop *ext_prop;
3454 		char *ext_prop_name;
3455 		char *ext_prop_data;
3456 
3457 		t = &func->function.os_desc_table[h->interface];
3458 		t->if_id = func->interfaces_nums[h->interface];
3459 
3460 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
3461 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
3462 
3463 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
3464 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
3465 		ext_prop->data_len = le32_to_cpu(*(__le32 *)
3466 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
3467 		length = ext_prop->name_len + ext_prop->data_len + 14;
3468 
3469 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
3470 		func->ffs->ms_os_descs_ext_prop_name_avail +=
3471 			ext_prop->name_len;
3472 
3473 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
3474 		func->ffs->ms_os_descs_ext_prop_data_avail +=
3475 			ext_prop->data_len;
3476 		memcpy(ext_prop_data,
3477 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
3478 		       ext_prop->data_len);
3479 		/* unicode data reported to the host as "WCHAR"s */
3480 		switch (ext_prop->type) {
3481 		case USB_EXT_PROP_UNICODE:
3482 		case USB_EXT_PROP_UNICODE_ENV:
3483 		case USB_EXT_PROP_UNICODE_LINK:
3484 		case USB_EXT_PROP_UNICODE_MULTI:
3485 			ext_prop->data_len *= 2;
3486 			break;
3487 		}
3488 		ext_prop->data = ext_prop_data;
3489 
3490 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3491 		       ext_prop->name_len);
3492 		/* property name reported to the host as "WCHAR"s */
3493 		ext_prop->name_len *= 2;
3494 		ext_prop->name = ext_prop_name;
3495 
3496 		t->os_desc->ext_prop_len +=
3497 			ext_prop->name_len + ext_prop->data_len + 14;
3498 		++t->os_desc->ext_prop_count;
3499 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3500 	}
3501 		break;
3502 	default:
3503 		pr_vdebug("unknown descriptor: %d\n", type);
3504 	}
3505 
3506 	return length;
3507 }
3508 
ffs_do_functionfs_bind(struct usb_function * f,struct usb_configuration * c)3509 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3510 						struct usb_configuration *c)
3511 {
3512 	struct ffs_function *func = ffs_func_from_usb(f);
3513 	struct f_fs_opts *ffs_opts =
3514 		container_of(f->fi, struct f_fs_opts, func_inst);
3515 	struct ffs_data *ffs_data;
3516 	int ret;
3517 
3518 	/*
3519 	 * Legacy gadget triggers binding in functionfs_ready_callback,
3520 	 * which already uses locking; taking the same lock here would
3521 	 * cause a deadlock.
3522 	 *
3523 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
3524 	 */
3525 	if (!ffs_opts->no_configfs)
3526 		ffs_dev_lock();
3527 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3528 	ffs_data = ffs_opts->dev->ffs_data;
3529 	if (!ffs_opts->no_configfs)
3530 		ffs_dev_unlock();
3531 	if (ret)
3532 		return ERR_PTR(ret);
3533 
3534 	func->ffs = ffs_data;
3535 	func->conf = c;
3536 	func->gadget = c->cdev->gadget;
3537 
3538 	/*
3539 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3540 	 * configurations are bound in sequence with list_for_each_entry,
3541 	 * in each configuration its functions are bound in sequence
3542 	 * with list_for_each_entry, so we assume no race condition
3543 	 * with regard to ffs_opts->bound access
3544 	 */
3545 	if (!ffs_opts->refcnt) {
3546 		ret = functionfs_bind(func->ffs, c->cdev);
3547 		if (ret)
3548 			return ERR_PTR(ret);
3549 	}
3550 	ffs_opts->refcnt++;
3551 	func->function.strings = func->ffs->stringtabs;
3552 
3553 	return ffs_opts;
3554 }
3555 
_ffs_func_bind(struct usb_configuration * c,struct usb_function * f)3556 static int _ffs_func_bind(struct usb_configuration *c,
3557 			  struct usb_function *f)
3558 {
3559 	struct ffs_function *func = ffs_func_from_usb(f);
3560 	struct ffs_data *ffs = func->ffs;
3561 
3562 	const int full = !!func->ffs->fs_descs_count;
3563 	const int high = !!func->ffs->hs_descs_count;
3564 	const int super = !!func->ffs->ss_descs_count;
3565 
3566 	int fs_len, hs_len, ss_len, ret, i;
3567 	struct ffs_ep *eps_ptr;
3568 
3569 	/* Make it a single chunk, less management later on */
3570 	vla_group(d);
3571 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3572 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3573 		full ? ffs->fs_descs_count + 1 : 0);
3574 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3575 		high ? ffs->hs_descs_count + 1 : 0);
3576 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3577 		super ? ffs->ss_descs_count + 1 : 0);
3578 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3579 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3580 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3581 	vla_item_with_sz(d, char[16], ext_compat,
3582 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3583 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
3584 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3585 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3586 			 ffs->ms_os_descs_ext_prop_count);
3587 	vla_item_with_sz(d, char, ext_prop_name,
3588 			 ffs->ms_os_descs_ext_prop_name_len);
3589 	vla_item_with_sz(d, char, ext_prop_data,
3590 			 ffs->ms_os_descs_ext_prop_data_len);
3591 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3592 	char *vlabuf;
3593 
3594 	/* Has descriptors only for speeds gadget does not support */
3595 	if (!(full | high | super))
3596 		return -ENOTSUPP;
3597 
3598 	/* Allocate a single chunk, less management later on */
3599 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3600 	if (!vlabuf)
3601 		return -ENOMEM;
3602 
3603 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3604 	ffs->ms_os_descs_ext_prop_name_avail =
3605 		vla_ptr(vlabuf, d, ext_prop_name);
3606 	ffs->ms_os_descs_ext_prop_data_avail =
3607 		vla_ptr(vlabuf, d, ext_prop_data);
3608 
3609 	/* Copy descriptors  */
3610 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3611 	       ffs->raw_descs_length);
3612 
3613 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3614 	eps_ptr = vla_ptr(vlabuf, d, eps);
3615 	for (i = 0; i < ffs->eps_count; i++)
3616 		eps_ptr[i].num = -1;
3617 
3618 	/* Save pointers
3619 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3620 	*/
3621 	func->eps             = vla_ptr(vlabuf, d, eps);
3622 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3623 
3624 	/*
3625 	 * Go through all the endpoint descriptors and allocate
3626 	 * endpoints first, so that later we can rewrite the endpoint
3627 	 * numbers without worrying that it may be described later on.
3628 	 */
3629 	if (full) {
3630 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3631 		fs_len = ffs_do_descs(ffs->fs_descs_count,
3632 				      vla_ptr(vlabuf, d, raw_descs),
3633 				      d_raw_descs__sz,
3634 				      __ffs_func_bind_do_descs, func);
3635 		if (fs_len < 0) {
3636 			ret = fs_len;
3637 			goto error;
3638 		}
3639 	} else {
3640 		fs_len = 0;
3641 	}
3642 
3643 	if (high) {
3644 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3645 		hs_len = ffs_do_descs(ffs->hs_descs_count,
3646 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3647 				      d_raw_descs__sz - fs_len,
3648 				      __ffs_func_bind_do_descs, func);
3649 		if (hs_len < 0) {
3650 			ret = hs_len;
3651 			goto error;
3652 		}
3653 	} else {
3654 		hs_len = 0;
3655 	}
3656 
3657 	if (super) {
3658 		func->function.ss_descriptors = func->function.ssp_descriptors =
3659 			vla_ptr(vlabuf, d, ss_descs);
3660 		ss_len = ffs_do_descs(ffs->ss_descs_count,
3661 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3662 				d_raw_descs__sz - fs_len - hs_len,
3663 				__ffs_func_bind_do_descs, func);
3664 		if (ss_len < 0) {
3665 			ret = ss_len;
3666 			goto error;
3667 		}
3668 	} else {
3669 		ss_len = 0;
3670 	}
3671 
3672 	/*
3673 	 * Now handle interface numbers allocation and interface and
3674 	 * endpoint numbers rewriting.  We can do that in one go
3675 	 * now.
3676 	 */
3677 	ret = ffs_do_descs(ffs->fs_descs_count +
3678 			   (high ? ffs->hs_descs_count : 0) +
3679 			   (super ? ffs->ss_descs_count : 0),
3680 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3681 			   __ffs_func_bind_do_nums, func);
3682 	if (ret < 0)
3683 		goto error;
3684 
3685 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3686 	if (c->cdev->use_os_string) {
3687 		for (i = 0; i < ffs->interfaces_count; ++i) {
3688 			struct usb_os_desc *desc;
3689 
3690 			desc = func->function.os_desc_table[i].os_desc =
3691 				vla_ptr(vlabuf, d, os_desc) +
3692 				i * sizeof(struct usb_os_desc);
3693 			desc->ext_compat_id =
3694 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3695 			INIT_LIST_HEAD(&desc->ext_prop);
3696 		}
3697 		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3698 				      vla_ptr(vlabuf, d, raw_descs) +
3699 				      fs_len + hs_len + ss_len,
3700 				      d_raw_descs__sz - fs_len - hs_len -
3701 				      ss_len,
3702 				      __ffs_func_bind_do_os_desc, func);
3703 		if (ret < 0)
3704 			goto error;
3705 	}
3706 	func->function.os_desc_n =
3707 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3708 
3709 	/* And we're done */
3710 	ffs_event_add(ffs, FUNCTIONFS_BIND);
3711 	return 0;
3712 
3713 error:
3714 	/* XXX Do we need to release all claimed endpoints here? */
3715 	return ret;
3716 }
3717 
ffs_func_bind(struct usb_configuration * c,struct usb_function * f)3718 static int ffs_func_bind(struct usb_configuration *c,
3719 			 struct usb_function *f)
3720 {
3721 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3722 	struct ffs_function *func = ffs_func_from_usb(f);
3723 	int ret;
3724 
3725 	if (IS_ERR(ffs_opts))
3726 		return PTR_ERR(ffs_opts);
3727 
3728 	ret = _ffs_func_bind(c, f);
3729 	if (ret && !--ffs_opts->refcnt)
3730 		functionfs_unbind(func->ffs);
3731 
3732 	return ret;
3733 }
3734 
3735 
3736 /* Other USB function hooks *************************************************/
3737 
ffs_reset_work(struct work_struct * work)3738 static void ffs_reset_work(struct work_struct *work)
3739 {
3740 	struct ffs_data *ffs = container_of(work,
3741 		struct ffs_data, reset_work);
3742 	ffs_data_reset(ffs);
3743 }
3744 
ffs_func_get_alt(struct usb_function * f,unsigned int interface)3745 static int ffs_func_get_alt(struct usb_function *f,
3746 			    unsigned int interface)
3747 {
3748 	struct ffs_function *func = ffs_func_from_usb(f);
3749 	int intf = ffs_func_revmap_intf(func, interface);
3750 
3751 	return (intf < 0) ? intf : func->cur_alt[interface];
3752 }
3753 
ffs_func_set_alt(struct usb_function * f,unsigned interface,unsigned alt)3754 static int ffs_func_set_alt(struct usb_function *f,
3755 			    unsigned interface, unsigned alt)
3756 {
3757 	struct ffs_function *func = ffs_func_from_usb(f);
3758 	struct ffs_data *ffs = func->ffs;
3759 	int ret = 0, intf;
3760 
3761 	if (alt > MAX_ALT_SETTINGS)
3762 		return -EINVAL;
3763 
3764 	intf = ffs_func_revmap_intf(func, interface);
3765 	if (intf < 0)
3766 		return intf;
3767 
3768 	if (ffs->func)
3769 		ffs_func_eps_disable(ffs->func);
3770 
3771 	if (ffs->state == FFS_DEACTIVATED) {
3772 		ffs->state = FFS_CLOSING;
3773 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3774 		schedule_work(&ffs->reset_work);
3775 		return -ENODEV;
3776 	}
3777 
3778 	if (ffs->state != FFS_ACTIVE)
3779 		return -ENODEV;
3780 
3781 	ffs->func = func;
3782 	ret = ffs_func_eps_enable(func);
3783 	if (ret >= 0) {
3784 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3785 		func->cur_alt[interface] = alt;
3786 	}
3787 	return ret;
3788 }
3789 
ffs_func_disable(struct usb_function * f)3790 static void ffs_func_disable(struct usb_function *f)
3791 {
3792 	struct ffs_function *func = ffs_func_from_usb(f);
3793 	struct ffs_data *ffs = func->ffs;
3794 
3795 	if (ffs->func)
3796 		ffs_func_eps_disable(ffs->func);
3797 
3798 	if (ffs->state == FFS_DEACTIVATED) {
3799 		ffs->state = FFS_CLOSING;
3800 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3801 		schedule_work(&ffs->reset_work);
3802 		return;
3803 	}
3804 
3805 	if (ffs->state == FFS_ACTIVE) {
3806 		ffs->func = NULL;
3807 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3808 	}
3809 }
3810 
ffs_func_setup(struct usb_function * f,const struct usb_ctrlrequest * creq)3811 static int ffs_func_setup(struct usb_function *f,
3812 			  const struct usb_ctrlrequest *creq)
3813 {
3814 	struct ffs_function *func = ffs_func_from_usb(f);
3815 	struct ffs_data *ffs = func->ffs;
3816 	unsigned long flags;
3817 	int ret;
3818 
3819 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3820 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3821 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3822 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3823 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3824 
3825 	/*
3826 	 * Most requests directed to interface go through here
3827 	 * (notable exceptions are set/get interface) so we need to
3828 	 * handle them.  All other either handled by composite or
3829 	 * passed to usb_configuration->setup() (if one is set).  No
3830 	 * matter, we will handle requests directed to endpoint here
3831 	 * as well (as it's straightforward).  Other request recipient
3832 	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3833 	 * is being used.
3834 	 */
3835 	if (ffs->state != FFS_ACTIVE)
3836 		return -ENODEV;
3837 
3838 	switch (creq->bRequestType & USB_RECIP_MASK) {
3839 	case USB_RECIP_INTERFACE:
3840 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3841 		if (ret < 0)
3842 			return ret;
3843 		break;
3844 
3845 	case USB_RECIP_ENDPOINT:
3846 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3847 		if (ret < 0)
3848 			return ret;
3849 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3850 			ret = func->ffs->eps_addrmap[ret];
3851 		break;
3852 
3853 	default:
3854 		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3855 			ret = le16_to_cpu(creq->wIndex);
3856 		else
3857 			return -EOPNOTSUPP;
3858 	}
3859 
3860 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3861 	ffs->ev.setup = *creq;
3862 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3863 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3864 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3865 
3866 	return ffs->ev.setup.wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3867 }
3868 
ffs_func_req_match(struct usb_function * f,const struct usb_ctrlrequest * creq,bool config0)3869 static bool ffs_func_req_match(struct usb_function *f,
3870 			       const struct usb_ctrlrequest *creq,
3871 			       bool config0)
3872 {
3873 	struct ffs_function *func = ffs_func_from_usb(f);
3874 
3875 	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3876 		return false;
3877 
3878 	switch (creq->bRequestType & USB_RECIP_MASK) {
3879 	case USB_RECIP_INTERFACE:
3880 		return (ffs_func_revmap_intf(func,
3881 					     le16_to_cpu(creq->wIndex)) >= 0);
3882 	case USB_RECIP_ENDPOINT:
3883 		return (ffs_func_revmap_ep(func,
3884 					   le16_to_cpu(creq->wIndex)) >= 0);
3885 	default:
3886 		return (bool) (func->ffs->user_flags &
3887 			       FUNCTIONFS_ALL_CTRL_RECIP);
3888 	}
3889 }
3890 
ffs_func_suspend(struct usb_function * f)3891 static void ffs_func_suspend(struct usb_function *f)
3892 {
3893 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3894 }
3895 
ffs_func_resume(struct usb_function * f)3896 static void ffs_func_resume(struct usb_function *f)
3897 {
3898 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3899 }
3900 
3901 
3902 /* Endpoint and interface numbers reverse mapping ***************************/
3903 
ffs_func_revmap_ep(struct ffs_function * func,u8 num)3904 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3905 {
3906 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3907 	return num ? num : -EDOM;
3908 }
3909 
ffs_func_revmap_intf(struct ffs_function * func,u8 intf)3910 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3911 {
3912 	short *nums = func->interfaces_nums;
3913 	unsigned count = func->ffs->interfaces_count;
3914 
3915 	for (; count; --count, ++nums) {
3916 		if (*nums >= 0 && *nums == intf)
3917 			return nums - func->interfaces_nums;
3918 	}
3919 
3920 	return -EDOM;
3921 }
3922 
3923 
3924 /* Devices management *******************************************************/
3925 
3926 static LIST_HEAD(ffs_devices);
3927 
_ffs_do_find_dev(const char * name)3928 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3929 {
3930 	struct ffs_dev *dev;
3931 
3932 	if (!name)
3933 		return NULL;
3934 
3935 	list_for_each_entry(dev, &ffs_devices, entry) {
3936 		if (strcmp(dev->name, name) == 0)
3937 			return dev;
3938 	}
3939 
3940 	return NULL;
3941 }
3942 
3943 /*
3944  * ffs_lock must be taken by the caller of this function
3945  */
_ffs_get_single_dev(void)3946 static struct ffs_dev *_ffs_get_single_dev(void)
3947 {
3948 	struct ffs_dev *dev;
3949 
3950 	if (list_is_singular(&ffs_devices)) {
3951 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3952 		if (dev->single)
3953 			return dev;
3954 	}
3955 
3956 	return NULL;
3957 }
3958 
3959 /*
3960  * ffs_lock must be taken by the caller of this function
3961  */
_ffs_find_dev(const char * name)3962 static struct ffs_dev *_ffs_find_dev(const char *name)
3963 {
3964 	struct ffs_dev *dev;
3965 
3966 	dev = _ffs_get_single_dev();
3967 	if (dev)
3968 		return dev;
3969 
3970 	return _ffs_do_find_dev(name);
3971 }
3972 
3973 /* Configfs support *********************************************************/
3974 
to_ffs_opts(struct config_item * item)3975 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3976 {
3977 	return container_of(to_config_group(item), struct f_fs_opts,
3978 			    func_inst.group);
3979 }
3980 
f_fs_opts_ready_show(struct config_item * item,char * page)3981 static ssize_t f_fs_opts_ready_show(struct config_item *item, char *page)
3982 {
3983 	struct f_fs_opts *opts = to_ffs_opts(item);
3984 	int ready;
3985 
3986 	ffs_dev_lock();
3987 	ready = opts->dev->desc_ready;
3988 	ffs_dev_unlock();
3989 
3990 	return sprintf(page, "%d\n", ready);
3991 }
3992 
3993 CONFIGFS_ATTR_RO(f_fs_opts_, ready);
3994 
3995 static struct configfs_attribute *ffs_attrs[] = {
3996 	&f_fs_opts_attr_ready,
3997 	NULL,
3998 };
3999 
ffs_attr_release(struct config_item * item)4000 static void ffs_attr_release(struct config_item *item)
4001 {
4002 	struct f_fs_opts *opts = to_ffs_opts(item);
4003 
4004 	usb_put_function_instance(&opts->func_inst);
4005 }
4006 
4007 static struct configfs_item_operations ffs_item_ops = {
4008 	.release	= ffs_attr_release,
4009 };
4010 
4011 static const struct config_item_type ffs_func_type = {
4012 	.ct_item_ops	= &ffs_item_ops,
4013 	.ct_attrs	= ffs_attrs,
4014 	.ct_owner	= THIS_MODULE,
4015 };
4016 
4017 
4018 /* Function registration interface ******************************************/
4019 
ffs_free_inst(struct usb_function_instance * f)4020 static void ffs_free_inst(struct usb_function_instance *f)
4021 {
4022 	struct f_fs_opts *opts;
4023 
4024 	opts = to_f_fs_opts(f);
4025 	ffs_release_dev(opts->dev);
4026 	ffs_dev_lock();
4027 	_ffs_free_dev(opts->dev);
4028 	ffs_dev_unlock();
4029 	kfree(opts);
4030 }
4031 
ffs_set_inst_name(struct usb_function_instance * fi,const char * name)4032 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
4033 {
4034 	if (strlen(name) >= sizeof_field(struct ffs_dev, name))
4035 		return -ENAMETOOLONG;
4036 	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
4037 }
4038 
ffs_alloc_inst(void)4039 static struct usb_function_instance *ffs_alloc_inst(void)
4040 {
4041 	struct f_fs_opts *opts;
4042 	struct ffs_dev *dev;
4043 
4044 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
4045 	if (!opts)
4046 		return ERR_PTR(-ENOMEM);
4047 
4048 	opts->func_inst.set_inst_name = ffs_set_inst_name;
4049 	opts->func_inst.free_func_inst = ffs_free_inst;
4050 	ffs_dev_lock();
4051 	dev = _ffs_alloc_dev();
4052 	ffs_dev_unlock();
4053 	if (IS_ERR(dev)) {
4054 		kfree(opts);
4055 		return ERR_CAST(dev);
4056 	}
4057 	opts->dev = dev;
4058 	dev->opts = opts;
4059 
4060 	config_group_init_type_name(&opts->func_inst.group, "",
4061 				    &ffs_func_type);
4062 	return &opts->func_inst;
4063 }
4064 
ffs_free(struct usb_function * f)4065 static void ffs_free(struct usb_function *f)
4066 {
4067 	kfree(ffs_func_from_usb(f));
4068 }
4069 
ffs_func_unbind(struct usb_configuration * c,struct usb_function * f)4070 static void ffs_func_unbind(struct usb_configuration *c,
4071 			    struct usb_function *f)
4072 {
4073 	struct ffs_function *func = ffs_func_from_usb(f);
4074 	struct ffs_data *ffs = func->ffs;
4075 	struct f_fs_opts *opts =
4076 		container_of(f->fi, struct f_fs_opts, func_inst);
4077 	struct ffs_ep *ep = func->eps;
4078 	unsigned count = ffs->eps_count;
4079 	unsigned long flags;
4080 
4081 	if (ffs->func == func) {
4082 		ffs_func_eps_disable(func);
4083 		ffs->func = NULL;
4084 	}
4085 
4086 	/* Drain any pending AIO completions */
4087 	drain_workqueue(ffs->io_completion_wq);
4088 
4089 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
4090 	if (!--opts->refcnt)
4091 		functionfs_unbind(ffs);
4092 
4093 	/* cleanup after autoconfig */
4094 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
4095 	while (count--) {
4096 		if (ep->ep && ep->req)
4097 			usb_ep_free_request(ep->ep, ep->req);
4098 		ep->req = NULL;
4099 		++ep;
4100 	}
4101 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
4102 	kfree(func->eps);
4103 	func->eps = NULL;
4104 	/*
4105 	 * eps, descriptors and interfaces_nums are allocated in the
4106 	 * same chunk so only one free is required.
4107 	 */
4108 	func->function.fs_descriptors = NULL;
4109 	func->function.hs_descriptors = NULL;
4110 	func->function.ss_descriptors = NULL;
4111 	func->function.ssp_descriptors = NULL;
4112 	func->interfaces_nums = NULL;
4113 
4114 }
4115 
ffs_alloc(struct usb_function_instance * fi)4116 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
4117 {
4118 	struct ffs_function *func;
4119 
4120 	func = kzalloc(sizeof(*func), GFP_KERNEL);
4121 	if (!func)
4122 		return ERR_PTR(-ENOMEM);
4123 
4124 	func->function.name    = "Function FS Gadget";
4125 
4126 	func->function.bind    = ffs_func_bind;
4127 	func->function.unbind  = ffs_func_unbind;
4128 	func->function.set_alt = ffs_func_set_alt;
4129 	func->function.get_alt = ffs_func_get_alt;
4130 	func->function.disable = ffs_func_disable;
4131 	func->function.setup   = ffs_func_setup;
4132 	func->function.req_match = ffs_func_req_match;
4133 	func->function.suspend = ffs_func_suspend;
4134 	func->function.resume  = ffs_func_resume;
4135 	func->function.free_func = ffs_free;
4136 
4137 	return &func->function;
4138 }
4139 
4140 /*
4141  * ffs_lock must be taken by the caller of this function
4142  */
_ffs_alloc_dev(void)4143 static struct ffs_dev *_ffs_alloc_dev(void)
4144 {
4145 	struct ffs_dev *dev;
4146 	int ret;
4147 
4148 	if (_ffs_get_single_dev())
4149 			return ERR_PTR(-EBUSY);
4150 
4151 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4152 	if (!dev)
4153 		return ERR_PTR(-ENOMEM);
4154 
4155 	if (list_empty(&ffs_devices)) {
4156 		ret = functionfs_init();
4157 		if (ret) {
4158 			kfree(dev);
4159 			return ERR_PTR(ret);
4160 		}
4161 	}
4162 
4163 	list_add(&dev->entry, &ffs_devices);
4164 
4165 	return dev;
4166 }
4167 
ffs_name_dev(struct ffs_dev * dev,const char * name)4168 int ffs_name_dev(struct ffs_dev *dev, const char *name)
4169 {
4170 	struct ffs_dev *existing;
4171 	int ret = 0;
4172 
4173 	ffs_dev_lock();
4174 
4175 	existing = _ffs_do_find_dev(name);
4176 	if (!existing)
4177 		strscpy(dev->name, name, ARRAY_SIZE(dev->name));
4178 	else if (existing != dev)
4179 		ret = -EBUSY;
4180 
4181 	ffs_dev_unlock();
4182 
4183 	return ret;
4184 }
4185 EXPORT_SYMBOL_GPL(ffs_name_dev);
4186 
ffs_single_dev(struct ffs_dev * dev)4187 int ffs_single_dev(struct ffs_dev *dev)
4188 {
4189 	int ret;
4190 
4191 	ret = 0;
4192 	ffs_dev_lock();
4193 
4194 	if (!list_is_singular(&ffs_devices))
4195 		ret = -EBUSY;
4196 	else
4197 		dev->single = true;
4198 
4199 	ffs_dev_unlock();
4200 	return ret;
4201 }
4202 EXPORT_SYMBOL_GPL(ffs_single_dev);
4203 
4204 /*
4205  * ffs_lock must be taken by the caller of this function
4206  */
_ffs_free_dev(struct ffs_dev * dev)4207 static void _ffs_free_dev(struct ffs_dev *dev)
4208 {
4209 	list_del(&dev->entry);
4210 
4211 	kfree(dev);
4212 	if (list_empty(&ffs_devices))
4213 		functionfs_cleanup();
4214 }
4215 
ffs_acquire_dev(const char * dev_name,struct ffs_data * ffs_data)4216 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data)
4217 {
4218 	int ret = 0;
4219 	struct ffs_dev *ffs_dev;
4220 
4221 	ffs_dev_lock();
4222 
4223 	ffs_dev = _ffs_find_dev(dev_name);
4224 	if (!ffs_dev) {
4225 		ret = -ENOENT;
4226 	} else if (ffs_dev->mounted) {
4227 		ret = -EBUSY;
4228 	} else if (ffs_dev->ffs_acquire_dev_callback &&
4229 		   ffs_dev->ffs_acquire_dev_callback(ffs_dev)) {
4230 		ret = -ENOENT;
4231 	} else {
4232 		ffs_dev->mounted = true;
4233 		ffs_dev->ffs_data = ffs_data;
4234 		ffs_data->private_data = ffs_dev;
4235 	}
4236 
4237 	ffs_dev_unlock();
4238 	return ret;
4239 }
4240 
ffs_release_dev(struct ffs_dev * ffs_dev)4241 static void ffs_release_dev(struct ffs_dev *ffs_dev)
4242 {
4243 	ffs_dev_lock();
4244 
4245 	if (ffs_dev && ffs_dev->mounted) {
4246 		ffs_dev->mounted = false;
4247 		if (ffs_dev->ffs_data) {
4248 			ffs_dev->ffs_data->private_data = NULL;
4249 			ffs_dev->ffs_data = NULL;
4250 		}
4251 
4252 		if (ffs_dev->ffs_release_dev_callback)
4253 			ffs_dev->ffs_release_dev_callback(ffs_dev);
4254 	}
4255 
4256 	ffs_dev_unlock();
4257 }
4258 
ffs_ready(struct ffs_data * ffs)4259 static int ffs_ready(struct ffs_data *ffs)
4260 {
4261 	struct ffs_dev *ffs_obj;
4262 	int ret = 0;
4263 
4264 	ffs_dev_lock();
4265 
4266 	ffs_obj = ffs->private_data;
4267 	if (!ffs_obj) {
4268 		ret = -EINVAL;
4269 		goto done;
4270 	}
4271 	if (WARN_ON(ffs_obj->desc_ready)) {
4272 		ret = -EBUSY;
4273 		goto done;
4274 	}
4275 
4276 	ffs_obj->desc_ready = true;
4277 
4278 	if (ffs_obj->ffs_ready_callback) {
4279 		ret = ffs_obj->ffs_ready_callback(ffs);
4280 		if (ret)
4281 			goto done;
4282 	}
4283 
4284 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
4285 done:
4286 	ffs_dev_unlock();
4287 	return ret;
4288 }
4289 
ffs_closed(struct ffs_data * ffs)4290 static void ffs_closed(struct ffs_data *ffs)
4291 {
4292 	struct ffs_dev *ffs_obj;
4293 	struct f_fs_opts *opts;
4294 	struct config_item *ci;
4295 
4296 	ffs_dev_lock();
4297 
4298 	ffs_obj = ffs->private_data;
4299 	if (!ffs_obj)
4300 		goto done;
4301 
4302 	ffs_obj->desc_ready = false;
4303 
4304 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
4305 	    ffs_obj->ffs_closed_callback)
4306 		ffs_obj->ffs_closed_callback(ffs);
4307 
4308 	if (ffs_obj->opts)
4309 		opts = ffs_obj->opts;
4310 	else
4311 		goto done;
4312 
4313 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
4314 	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
4315 		goto done;
4316 
4317 	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
4318 	ffs_dev_unlock();
4319 
4320 	if (test_bit(FFS_FL_BOUND, &ffs->flags))
4321 		unregister_gadget_item(ci);
4322 	return;
4323 done:
4324 	ffs_dev_unlock();
4325 }
4326 
4327 /* Misc helper functions ****************************************************/
4328 
ffs_mutex_lock(struct mutex * mutex,unsigned nonblock)4329 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
4330 {
4331 	return nonblock
4332 		? mutex_trylock(mutex) ? 0 : -EAGAIN
4333 		: mutex_lock_interruptible(mutex);
4334 }
4335 
ffs_prepare_buffer(const char __user * buf,size_t len)4336 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
4337 {
4338 	char *data;
4339 
4340 	if (!len)
4341 		return NULL;
4342 
4343 	data = memdup_user(buf, len);
4344 	if (IS_ERR(data))
4345 		return data;
4346 
4347 	pr_vdebug("Buffer from user space:\n");
4348 	ffs_dump_mem("", data, len);
4349 
4350 	return data;
4351 }
4352 
4353 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
4354 MODULE_DESCRIPTION("user mode file system API for USB composite function controllers");
4355 MODULE_LICENSE("GPL");
4356 MODULE_AUTHOR("Michal Nazarewicz");
4357