1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/prio.h>
41
42 #include <linux/cpuidle.h>
43 #include <linux/interrupt.h>
44 #include <linux/memory-tiers.h>
45 #include <linux/mempolicy.h>
46 #include <linux/mutex_api.h>
47 #include <linux/profile.h>
48 #include <linux/psi.h>
49 #include <linux/ratelimit.h>
50 #include <linux/task_work.h>
51 #include <linux/rbtree_augmented.h>
52
53 #include <asm/switch_to.h>
54
55 #include <uapi/linux/sched/types.h>
56
57 #include "sched.h"
58 #include "stats.h"
59 #include "autogroup.h"
60
61 /*
62 * The initial- and re-scaling of tunables is configurable
63 *
64 * Options are:
65 *
66 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
67 * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus)
68 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
69 *
70 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
71 */
72 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
73
74 /*
75 * Minimal preemption granularity for CPU-bound tasks:
76 *
77 * (default: 0.70 msec * (1 + ilog(ncpus)), units: nanoseconds)
78 */
79 unsigned int sysctl_sched_base_slice = 700000ULL;
80 static unsigned int normalized_sysctl_sched_base_slice = 700000ULL;
81
82 __read_mostly unsigned int sysctl_sched_migration_cost = 500000UL;
83
setup_sched_thermal_decay_shift(char * str)84 static int __init setup_sched_thermal_decay_shift(char *str)
85 {
86 pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n");
87 return 1;
88 }
89 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
90
91 #ifdef CONFIG_SMP
92 /*
93 * For asym packing, by default the lower numbered CPU has higher priority.
94 */
arch_asym_cpu_priority(int cpu)95 int __weak arch_asym_cpu_priority(int cpu)
96 {
97 return -cpu;
98 }
99
100 /*
101 * The margin used when comparing utilization with CPU capacity.
102 *
103 * (default: ~20%)
104 */
105 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
106
107 /*
108 * The margin used when comparing CPU capacities.
109 * is 'cap1' noticeably greater than 'cap2'
110 *
111 * (default: ~5%)
112 */
113 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
114 #endif
115
116 #ifdef CONFIG_CFS_BANDWIDTH
117 /*
118 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
119 * each time a cfs_rq requests quota.
120 *
121 * Note: in the case that the slice exceeds the runtime remaining (either due
122 * to consumption or the quota being specified to be smaller than the slice)
123 * we will always only issue the remaining available time.
124 *
125 * (default: 5 msec, units: microseconds)
126 */
127 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
128 #endif
129
130 #ifdef CONFIG_NUMA_BALANCING
131 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
132 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
133 #endif
134
135 #ifdef CONFIG_SYSCTL
136 static const struct ctl_table sched_fair_sysctls[] = {
137 #ifdef CONFIG_CFS_BANDWIDTH
138 {
139 .procname = "sched_cfs_bandwidth_slice_us",
140 .data = &sysctl_sched_cfs_bandwidth_slice,
141 .maxlen = sizeof(unsigned int),
142 .mode = 0644,
143 .proc_handler = proc_dointvec_minmax,
144 .extra1 = SYSCTL_ONE,
145 },
146 #endif
147 #ifdef CONFIG_NUMA_BALANCING
148 {
149 .procname = "numa_balancing_promote_rate_limit_MBps",
150 .data = &sysctl_numa_balancing_promote_rate_limit,
151 .maxlen = sizeof(unsigned int),
152 .mode = 0644,
153 .proc_handler = proc_dointvec_minmax,
154 .extra1 = SYSCTL_ZERO,
155 },
156 #endif /* CONFIG_NUMA_BALANCING */
157 };
158
sched_fair_sysctl_init(void)159 static int __init sched_fair_sysctl_init(void)
160 {
161 register_sysctl_init("kernel", sched_fair_sysctls);
162 return 0;
163 }
164 late_initcall(sched_fair_sysctl_init);
165 #endif
166
update_load_add(struct load_weight * lw,unsigned long inc)167 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
168 {
169 lw->weight += inc;
170 lw->inv_weight = 0;
171 }
172
update_load_sub(struct load_weight * lw,unsigned long dec)173 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
174 {
175 lw->weight -= dec;
176 lw->inv_weight = 0;
177 }
178
update_load_set(struct load_weight * lw,unsigned long w)179 static inline void update_load_set(struct load_weight *lw, unsigned long w)
180 {
181 lw->weight = w;
182 lw->inv_weight = 0;
183 }
184
185 /*
186 * Increase the granularity value when there are more CPUs,
187 * because with more CPUs the 'effective latency' as visible
188 * to users decreases. But the relationship is not linear,
189 * so pick a second-best guess by going with the log2 of the
190 * number of CPUs.
191 *
192 * This idea comes from the SD scheduler of Con Kolivas:
193 */
get_update_sysctl_factor(void)194 static unsigned int get_update_sysctl_factor(void)
195 {
196 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
197 unsigned int factor;
198
199 switch (sysctl_sched_tunable_scaling) {
200 case SCHED_TUNABLESCALING_NONE:
201 factor = 1;
202 break;
203 case SCHED_TUNABLESCALING_LINEAR:
204 factor = cpus;
205 break;
206 case SCHED_TUNABLESCALING_LOG:
207 default:
208 factor = 1 + ilog2(cpus);
209 break;
210 }
211
212 return factor;
213 }
214
update_sysctl(void)215 static void update_sysctl(void)
216 {
217 unsigned int factor = get_update_sysctl_factor();
218
219 #define SET_SYSCTL(name) \
220 (sysctl_##name = (factor) * normalized_sysctl_##name)
221 SET_SYSCTL(sched_base_slice);
222 #undef SET_SYSCTL
223 }
224
sched_init_granularity(void)225 void __init sched_init_granularity(void)
226 {
227 update_sysctl();
228 }
229
230 #define WMULT_CONST (~0U)
231 #define WMULT_SHIFT 32
232
__update_inv_weight(struct load_weight * lw)233 static void __update_inv_weight(struct load_weight *lw)
234 {
235 unsigned long w;
236
237 if (likely(lw->inv_weight))
238 return;
239
240 w = scale_load_down(lw->weight);
241
242 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
243 lw->inv_weight = 1;
244 else if (unlikely(!w))
245 lw->inv_weight = WMULT_CONST;
246 else
247 lw->inv_weight = WMULT_CONST / w;
248 }
249
250 /*
251 * delta_exec * weight / lw.weight
252 * OR
253 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
254 *
255 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
256 * we're guaranteed shift stays positive because inv_weight is guaranteed to
257 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
258 *
259 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
260 * weight/lw.weight <= 1, and therefore our shift will also be positive.
261 */
__calc_delta(u64 delta_exec,unsigned long weight,struct load_weight * lw)262 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
263 {
264 u64 fact = scale_load_down(weight);
265 u32 fact_hi = (u32)(fact >> 32);
266 int shift = WMULT_SHIFT;
267 int fs;
268
269 __update_inv_weight(lw);
270
271 if (unlikely(fact_hi)) {
272 fs = fls(fact_hi);
273 shift -= fs;
274 fact >>= fs;
275 }
276
277 fact = mul_u32_u32(fact, lw->inv_weight);
278
279 fact_hi = (u32)(fact >> 32);
280 if (fact_hi) {
281 fs = fls(fact_hi);
282 shift -= fs;
283 fact >>= fs;
284 }
285
286 return mul_u64_u32_shr(delta_exec, fact, shift);
287 }
288
289 /*
290 * delta /= w
291 */
calc_delta_fair(u64 delta,struct sched_entity * se)292 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
293 {
294 if (unlikely(se->load.weight != NICE_0_LOAD))
295 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
296
297 return delta;
298 }
299
300 const struct sched_class fair_sched_class;
301
302 /**************************************************************
303 * CFS operations on generic schedulable entities:
304 */
305
306 #ifdef CONFIG_FAIR_GROUP_SCHED
307
308 /* Walk up scheduling entities hierarchy */
309 #define for_each_sched_entity(se) \
310 for (; se; se = se->parent)
311
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)312 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313 {
314 struct rq *rq = rq_of(cfs_rq);
315 int cpu = cpu_of(rq);
316
317 if (cfs_rq->on_list)
318 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
319
320 cfs_rq->on_list = 1;
321
322 /*
323 * Ensure we either appear before our parent (if already
324 * enqueued) or force our parent to appear after us when it is
325 * enqueued. The fact that we always enqueue bottom-up
326 * reduces this to two cases and a special case for the root
327 * cfs_rq. Furthermore, it also means that we will always reset
328 * tmp_alone_branch either when the branch is connected
329 * to a tree or when we reach the top of the tree
330 */
331 if (cfs_rq->tg->parent &&
332 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
333 /*
334 * If parent is already on the list, we add the child
335 * just before. Thanks to circular linked property of
336 * the list, this means to put the child at the tail
337 * of the list that starts by parent.
338 */
339 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
340 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
341 /*
342 * The branch is now connected to its tree so we can
343 * reset tmp_alone_branch to the beginning of the
344 * list.
345 */
346 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
347 return true;
348 }
349
350 if (!cfs_rq->tg->parent) {
351 /*
352 * cfs rq without parent should be put
353 * at the tail of the list.
354 */
355 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
356 &rq->leaf_cfs_rq_list);
357 /*
358 * We have reach the top of a tree so we can reset
359 * tmp_alone_branch to the beginning of the list.
360 */
361 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
362 return true;
363 }
364
365 /*
366 * The parent has not already been added so we want to
367 * make sure that it will be put after us.
368 * tmp_alone_branch points to the begin of the branch
369 * where we will add parent.
370 */
371 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
372 /*
373 * update tmp_alone_branch to points to the new begin
374 * of the branch
375 */
376 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
377 return false;
378 }
379
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)380 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
381 {
382 if (cfs_rq->on_list) {
383 struct rq *rq = rq_of(cfs_rq);
384
385 /*
386 * With cfs_rq being unthrottled/throttled during an enqueue,
387 * it can happen the tmp_alone_branch points to the leaf that
388 * we finally want to delete. In this case, tmp_alone_branch moves
389 * to the prev element but it will point to rq->leaf_cfs_rq_list
390 * at the end of the enqueue.
391 */
392 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
393 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
394
395 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
396 cfs_rq->on_list = 0;
397 }
398 }
399
assert_list_leaf_cfs_rq(struct rq * rq)400 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
401 {
402 WARN_ON_ONCE(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
403 }
404
405 /* Iterate through all leaf cfs_rq's on a runqueue */
406 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
407 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
408 leaf_cfs_rq_list)
409
410 /* Do the two (enqueued) entities belong to the same group ? */
411 static inline struct cfs_rq *
is_same_group(struct sched_entity * se,struct sched_entity * pse)412 is_same_group(struct sched_entity *se, struct sched_entity *pse)
413 {
414 if (se->cfs_rq == pse->cfs_rq)
415 return se->cfs_rq;
416
417 return NULL;
418 }
419
parent_entity(const struct sched_entity * se)420 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
421 {
422 return se->parent;
423 }
424
425 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)426 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
427 {
428 int se_depth, pse_depth;
429
430 /*
431 * preemption test can be made between sibling entities who are in the
432 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
433 * both tasks until we find their ancestors who are siblings of common
434 * parent.
435 */
436
437 /* First walk up until both entities are at same depth */
438 se_depth = (*se)->depth;
439 pse_depth = (*pse)->depth;
440
441 while (se_depth > pse_depth) {
442 se_depth--;
443 *se = parent_entity(*se);
444 }
445
446 while (pse_depth > se_depth) {
447 pse_depth--;
448 *pse = parent_entity(*pse);
449 }
450
451 while (!is_same_group(*se, *pse)) {
452 *se = parent_entity(*se);
453 *pse = parent_entity(*pse);
454 }
455 }
456
tg_is_idle(struct task_group * tg)457 static int tg_is_idle(struct task_group *tg)
458 {
459 return tg->idle > 0;
460 }
461
cfs_rq_is_idle(struct cfs_rq * cfs_rq)462 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
463 {
464 return cfs_rq->idle > 0;
465 }
466
se_is_idle(struct sched_entity * se)467 static int se_is_idle(struct sched_entity *se)
468 {
469 if (entity_is_task(se))
470 return task_has_idle_policy(task_of(se));
471 return cfs_rq_is_idle(group_cfs_rq(se));
472 }
473
474 #else /* !CONFIG_FAIR_GROUP_SCHED */
475
476 #define for_each_sched_entity(se) \
477 for (; se; se = NULL)
478
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)479 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
480 {
481 return true;
482 }
483
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)484 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
485 {
486 }
487
assert_list_leaf_cfs_rq(struct rq * rq)488 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
489 {
490 }
491
492 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
493 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
494
parent_entity(struct sched_entity * se)495 static inline struct sched_entity *parent_entity(struct sched_entity *se)
496 {
497 return NULL;
498 }
499
500 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)501 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
502 {
503 }
504
tg_is_idle(struct task_group * tg)505 static inline int tg_is_idle(struct task_group *tg)
506 {
507 return 0;
508 }
509
cfs_rq_is_idle(struct cfs_rq * cfs_rq)510 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
511 {
512 return 0;
513 }
514
se_is_idle(struct sched_entity * se)515 static int se_is_idle(struct sched_entity *se)
516 {
517 return task_has_idle_policy(task_of(se));
518 }
519
520 #endif /* CONFIG_FAIR_GROUP_SCHED */
521
522 static __always_inline
523 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
524
525 /**************************************************************
526 * Scheduling class tree data structure manipulation methods:
527 */
528
max_vruntime(u64 max_vruntime,u64 vruntime)529 static inline __maybe_unused u64 max_vruntime(u64 max_vruntime, u64 vruntime)
530 {
531 s64 delta = (s64)(vruntime - max_vruntime);
532 if (delta > 0)
533 max_vruntime = vruntime;
534
535 return max_vruntime;
536 }
537
min_vruntime(u64 min_vruntime,u64 vruntime)538 static inline __maybe_unused u64 min_vruntime(u64 min_vruntime, u64 vruntime)
539 {
540 s64 delta = (s64)(vruntime - min_vruntime);
541 if (delta < 0)
542 min_vruntime = vruntime;
543
544 return min_vruntime;
545 }
546
entity_before(const struct sched_entity * a,const struct sched_entity * b)547 static inline bool entity_before(const struct sched_entity *a,
548 const struct sched_entity *b)
549 {
550 /*
551 * Tiebreak on vruntime seems unnecessary since it can
552 * hardly happen.
553 */
554 return (s64)(a->deadline - b->deadline) < 0;
555 }
556
entity_key(struct cfs_rq * cfs_rq,struct sched_entity * se)557 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
558 {
559 return (s64)(se->vruntime - cfs_rq->min_vruntime);
560 }
561
562 #define __node_2_se(node) \
563 rb_entry((node), struct sched_entity, run_node)
564
565 /*
566 * Compute virtual time from the per-task service numbers:
567 *
568 * Fair schedulers conserve lag:
569 *
570 * \Sum lag_i = 0
571 *
572 * Where lag_i is given by:
573 *
574 * lag_i = S - s_i = w_i * (V - v_i)
575 *
576 * Where S is the ideal service time and V is it's virtual time counterpart.
577 * Therefore:
578 *
579 * \Sum lag_i = 0
580 * \Sum w_i * (V - v_i) = 0
581 * \Sum w_i * V - w_i * v_i = 0
582 *
583 * From which we can solve an expression for V in v_i (which we have in
584 * se->vruntime):
585 *
586 * \Sum v_i * w_i \Sum v_i * w_i
587 * V = -------------- = --------------
588 * \Sum w_i W
589 *
590 * Specifically, this is the weighted average of all entity virtual runtimes.
591 *
592 * [[ NOTE: this is only equal to the ideal scheduler under the condition
593 * that join/leave operations happen at lag_i = 0, otherwise the
594 * virtual time has non-contiguous motion equivalent to:
595 *
596 * V +-= lag_i / W
597 *
598 * Also see the comment in place_entity() that deals with this. ]]
599 *
600 * However, since v_i is u64, and the multiplication could easily overflow
601 * transform it into a relative form that uses smaller quantities:
602 *
603 * Substitute: v_i == (v_i - v0) + v0
604 *
605 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i
606 * V = ---------------------------- = --------------------- + v0
607 * W W
608 *
609 * Which we track using:
610 *
611 * v0 := cfs_rq->min_vruntime
612 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
613 * \Sum w_i := cfs_rq->avg_load
614 *
615 * Since min_vruntime is a monotonic increasing variable that closely tracks
616 * the per-task service, these deltas: (v_i - v), will be in the order of the
617 * maximal (virtual) lag induced in the system due to quantisation.
618 *
619 * Also, we use scale_load_down() to reduce the size.
620 *
621 * As measured, the max (key * weight) value was ~44 bits for a kernel build.
622 */
623 static void
avg_vruntime_add(struct cfs_rq * cfs_rq,struct sched_entity * se)624 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
625 {
626 unsigned long weight = scale_load_down(se->load.weight);
627 s64 key = entity_key(cfs_rq, se);
628
629 cfs_rq->avg_vruntime += key * weight;
630 cfs_rq->avg_load += weight;
631 }
632
633 static void
avg_vruntime_sub(struct cfs_rq * cfs_rq,struct sched_entity * se)634 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
635 {
636 unsigned long weight = scale_load_down(se->load.weight);
637 s64 key = entity_key(cfs_rq, se);
638
639 cfs_rq->avg_vruntime -= key * weight;
640 cfs_rq->avg_load -= weight;
641 }
642
643 static inline
avg_vruntime_update(struct cfs_rq * cfs_rq,s64 delta)644 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
645 {
646 /*
647 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
648 */
649 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
650 }
651
652 /*
653 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
654 * For this to be so, the result of this function must have a left bias.
655 */
avg_vruntime(struct cfs_rq * cfs_rq)656 u64 avg_vruntime(struct cfs_rq *cfs_rq)
657 {
658 struct sched_entity *curr = cfs_rq->curr;
659 s64 avg = cfs_rq->avg_vruntime;
660 long load = cfs_rq->avg_load;
661
662 if (curr && curr->on_rq) {
663 unsigned long weight = scale_load_down(curr->load.weight);
664
665 avg += entity_key(cfs_rq, curr) * weight;
666 load += weight;
667 }
668
669 if (load) {
670 /* sign flips effective floor / ceiling */
671 if (avg < 0)
672 avg -= (load - 1);
673 avg = div_s64(avg, load);
674 }
675
676 return cfs_rq->min_vruntime + avg;
677 }
678
679 /*
680 * lag_i = S - s_i = w_i * (V - v_i)
681 *
682 * However, since V is approximated by the weighted average of all entities it
683 * is possible -- by addition/removal/reweight to the tree -- to move V around
684 * and end up with a larger lag than we started with.
685 *
686 * Limit this to either double the slice length with a minimum of TICK_NSEC
687 * since that is the timing granularity.
688 *
689 * EEVDF gives the following limit for a steady state system:
690 *
691 * -r_max < lag < max(r_max, q)
692 *
693 * XXX could add max_slice to the augmented data to track this.
694 */
update_entity_lag(struct cfs_rq * cfs_rq,struct sched_entity * se)695 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
696 {
697 s64 vlag, limit;
698
699 WARN_ON_ONCE(!se->on_rq);
700
701 vlag = avg_vruntime(cfs_rq) - se->vruntime;
702 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
703
704 se->vlag = clamp(vlag, -limit, limit);
705 }
706
707 /*
708 * Entity is eligible once it received less service than it ought to have,
709 * eg. lag >= 0.
710 *
711 * lag_i = S - s_i = w_i*(V - v_i)
712 *
713 * lag_i >= 0 -> V >= v_i
714 *
715 * \Sum (v_i - v)*w_i
716 * V = ------------------ + v
717 * \Sum w_i
718 *
719 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
720 *
721 * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due
722 * to the loss in precision caused by the division.
723 */
vruntime_eligible(struct cfs_rq * cfs_rq,u64 vruntime)724 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
725 {
726 struct sched_entity *curr = cfs_rq->curr;
727 s64 avg = cfs_rq->avg_vruntime;
728 long load = cfs_rq->avg_load;
729
730 if (curr && curr->on_rq) {
731 unsigned long weight = scale_load_down(curr->load.weight);
732
733 avg += entity_key(cfs_rq, curr) * weight;
734 load += weight;
735 }
736
737 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load;
738 }
739
entity_eligible(struct cfs_rq * cfs_rq,struct sched_entity * se)740 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
741 {
742 return vruntime_eligible(cfs_rq, se->vruntime);
743 }
744
__update_min_vruntime(struct cfs_rq * cfs_rq,u64 vruntime)745 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
746 {
747 u64 min_vruntime = cfs_rq->min_vruntime;
748 /*
749 * open coded max_vruntime() to allow updating avg_vruntime
750 */
751 s64 delta = (s64)(vruntime - min_vruntime);
752 if (delta > 0) {
753 avg_vruntime_update(cfs_rq, delta);
754 min_vruntime = vruntime;
755 }
756 return min_vruntime;
757 }
758
update_min_vruntime(struct cfs_rq * cfs_rq)759 static void update_min_vruntime(struct cfs_rq *cfs_rq)
760 {
761 struct sched_entity *se = __pick_root_entity(cfs_rq);
762 struct sched_entity *curr = cfs_rq->curr;
763 u64 vruntime = cfs_rq->min_vruntime;
764
765 if (curr) {
766 if (curr->on_rq)
767 vruntime = curr->vruntime;
768 else
769 curr = NULL;
770 }
771
772 if (se) {
773 if (!curr)
774 vruntime = se->min_vruntime;
775 else
776 vruntime = min_vruntime(vruntime, se->min_vruntime);
777 }
778
779 /* ensure we never gain time by being placed backwards. */
780 cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime);
781 }
782
cfs_rq_min_slice(struct cfs_rq * cfs_rq)783 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq)
784 {
785 struct sched_entity *root = __pick_root_entity(cfs_rq);
786 struct sched_entity *curr = cfs_rq->curr;
787 u64 min_slice = ~0ULL;
788
789 if (curr && curr->on_rq)
790 min_slice = curr->slice;
791
792 if (root)
793 min_slice = min(min_slice, root->min_slice);
794
795 return min_slice;
796 }
797
__entity_less(struct rb_node * a,const struct rb_node * b)798 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
799 {
800 return entity_before(__node_2_se(a), __node_2_se(b));
801 }
802
803 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
804
__min_vruntime_update(struct sched_entity * se,struct rb_node * node)805 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node)
806 {
807 if (node) {
808 struct sched_entity *rse = __node_2_se(node);
809 if (vruntime_gt(min_vruntime, se, rse))
810 se->min_vruntime = rse->min_vruntime;
811 }
812 }
813
__min_slice_update(struct sched_entity * se,struct rb_node * node)814 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node)
815 {
816 if (node) {
817 struct sched_entity *rse = __node_2_se(node);
818 if (rse->min_slice < se->min_slice)
819 se->min_slice = rse->min_slice;
820 }
821 }
822
823 /*
824 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
825 */
min_vruntime_update(struct sched_entity * se,bool exit)826 static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
827 {
828 u64 old_min_vruntime = se->min_vruntime;
829 u64 old_min_slice = se->min_slice;
830 struct rb_node *node = &se->run_node;
831
832 se->min_vruntime = se->vruntime;
833 __min_vruntime_update(se, node->rb_right);
834 __min_vruntime_update(se, node->rb_left);
835
836 se->min_slice = se->slice;
837 __min_slice_update(se, node->rb_right);
838 __min_slice_update(se, node->rb_left);
839
840 return se->min_vruntime == old_min_vruntime &&
841 se->min_slice == old_min_slice;
842 }
843
844 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
845 run_node, min_vruntime, min_vruntime_update);
846
847 /*
848 * Enqueue an entity into the rb-tree:
849 */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)850 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
851 {
852 avg_vruntime_add(cfs_rq, se);
853 se->min_vruntime = se->vruntime;
854 se->min_slice = se->slice;
855 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
856 __entity_less, &min_vruntime_cb);
857 }
858
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)859 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
860 {
861 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
862 &min_vruntime_cb);
863 avg_vruntime_sub(cfs_rq, se);
864 }
865
__pick_root_entity(struct cfs_rq * cfs_rq)866 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq)
867 {
868 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node;
869
870 if (!root)
871 return NULL;
872
873 return __node_2_se(root);
874 }
875
__pick_first_entity(struct cfs_rq * cfs_rq)876 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
877 {
878 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
879
880 if (!left)
881 return NULL;
882
883 return __node_2_se(left);
884 }
885
886 /*
887 * HACK, stash a copy of deadline at the point of pick in vlag,
888 * which isn't used until dequeue.
889 */
set_protect_slice(struct sched_entity * se)890 static inline void set_protect_slice(struct sched_entity *se)
891 {
892 se->vlag = se->deadline;
893 }
894
protect_slice(struct sched_entity * se)895 static inline bool protect_slice(struct sched_entity *se)
896 {
897 return se->vlag == se->deadline;
898 }
899
cancel_protect_slice(struct sched_entity * se)900 static inline void cancel_protect_slice(struct sched_entity *se)
901 {
902 if (protect_slice(se))
903 se->vlag = se->deadline + 1;
904 }
905
906 /*
907 * Earliest Eligible Virtual Deadline First
908 *
909 * In order to provide latency guarantees for different request sizes
910 * EEVDF selects the best runnable task from two criteria:
911 *
912 * 1) the task must be eligible (must be owed service)
913 *
914 * 2) from those tasks that meet 1), we select the one
915 * with the earliest virtual deadline.
916 *
917 * We can do this in O(log n) time due to an augmented RB-tree. The
918 * tree keeps the entries sorted on deadline, but also functions as a
919 * heap based on the vruntime by keeping:
920 *
921 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
922 *
923 * Which allows tree pruning through eligibility.
924 */
pick_eevdf(struct cfs_rq * cfs_rq)925 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
926 {
927 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
928 struct sched_entity *se = __pick_first_entity(cfs_rq);
929 struct sched_entity *curr = cfs_rq->curr;
930 struct sched_entity *best = NULL;
931
932 /*
933 * We can safely skip eligibility check if there is only one entity
934 * in this cfs_rq, saving some cycles.
935 */
936 if (cfs_rq->nr_queued == 1)
937 return curr && curr->on_rq ? curr : se;
938
939 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
940 curr = NULL;
941
942 if (sched_feat(RUN_TO_PARITY) && curr && protect_slice(curr))
943 return curr;
944
945 /* Pick the leftmost entity if it's eligible */
946 if (se && entity_eligible(cfs_rq, se)) {
947 best = se;
948 goto found;
949 }
950
951 /* Heap search for the EEVD entity */
952 while (node) {
953 struct rb_node *left = node->rb_left;
954
955 /*
956 * Eligible entities in left subtree are always better
957 * choices, since they have earlier deadlines.
958 */
959 if (left && vruntime_eligible(cfs_rq,
960 __node_2_se(left)->min_vruntime)) {
961 node = left;
962 continue;
963 }
964
965 se = __node_2_se(node);
966
967 /*
968 * The left subtree either is empty or has no eligible
969 * entity, so check the current node since it is the one
970 * with earliest deadline that might be eligible.
971 */
972 if (entity_eligible(cfs_rq, se)) {
973 best = se;
974 break;
975 }
976
977 node = node->rb_right;
978 }
979 found:
980 if (!best || (curr && entity_before(curr, best)))
981 best = curr;
982
983 return best;
984 }
985
__pick_last_entity(struct cfs_rq * cfs_rq)986 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
987 {
988 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
989
990 if (!last)
991 return NULL;
992
993 return __node_2_se(last);
994 }
995
996 /**************************************************************
997 * Scheduling class statistics methods:
998 */
999 #ifdef CONFIG_SMP
sched_update_scaling(void)1000 int sched_update_scaling(void)
1001 {
1002 unsigned int factor = get_update_sysctl_factor();
1003
1004 #define WRT_SYSCTL(name) \
1005 (normalized_sysctl_##name = sysctl_##name / (factor))
1006 WRT_SYSCTL(sched_base_slice);
1007 #undef WRT_SYSCTL
1008
1009 return 0;
1010 }
1011 #endif
1012
1013 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
1014
1015 /*
1016 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1017 * this is probably good enough.
1018 */
update_deadline(struct cfs_rq * cfs_rq,struct sched_entity * se)1019 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1020 {
1021 if ((s64)(se->vruntime - se->deadline) < 0)
1022 return false;
1023
1024 /*
1025 * For EEVDF the virtual time slope is determined by w_i (iow.
1026 * nice) while the request time r_i is determined by
1027 * sysctl_sched_base_slice.
1028 */
1029 if (!se->custom_slice)
1030 se->slice = sysctl_sched_base_slice;
1031
1032 /*
1033 * EEVDF: vd_i = ve_i + r_i / w_i
1034 */
1035 se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1036
1037 /*
1038 * The task has consumed its request, reschedule.
1039 */
1040 return true;
1041 }
1042
1043 #include "pelt.h"
1044 #ifdef CONFIG_SMP
1045
1046 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1047 static unsigned long task_h_load(struct task_struct *p);
1048 static unsigned long capacity_of(int cpu);
1049
1050 /* Give new sched_entity start runnable values to heavy its load in infant time */
init_entity_runnable_average(struct sched_entity * se)1051 void init_entity_runnable_average(struct sched_entity *se)
1052 {
1053 struct sched_avg *sa = &se->avg;
1054
1055 memset(sa, 0, sizeof(*sa));
1056
1057 /*
1058 * Tasks are initialized with full load to be seen as heavy tasks until
1059 * they get a chance to stabilize to their real load level.
1060 * Group entities are initialized with zero load to reflect the fact that
1061 * nothing has been attached to the task group yet.
1062 */
1063 if (entity_is_task(se))
1064 sa->load_avg = scale_load_down(se->load.weight);
1065
1066 /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */
1067 }
1068
1069 /*
1070 * With new tasks being created, their initial util_avgs are extrapolated
1071 * based on the cfs_rq's current util_avg:
1072 *
1073 * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1)
1074 * * se_weight(se)
1075 *
1076 * However, in many cases, the above util_avg does not give a desired
1077 * value. Moreover, the sum of the util_avgs may be divergent, such
1078 * as when the series is a harmonic series.
1079 *
1080 * To solve this problem, we also cap the util_avg of successive tasks to
1081 * only 1/2 of the left utilization budget:
1082 *
1083 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1084 *
1085 * where n denotes the nth task and cpu_scale the CPU capacity.
1086 *
1087 * For example, for a CPU with 1024 of capacity, a simplest series from
1088 * the beginning would be like:
1089 *
1090 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
1091 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1092 *
1093 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1094 * if util_avg > util_avg_cap.
1095 */
post_init_entity_util_avg(struct task_struct * p)1096 void post_init_entity_util_avg(struct task_struct *p)
1097 {
1098 struct sched_entity *se = &p->se;
1099 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1100 struct sched_avg *sa = &se->avg;
1101 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1102 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1103
1104 if (p->sched_class != &fair_sched_class) {
1105 /*
1106 * For !fair tasks do:
1107 *
1108 update_cfs_rq_load_avg(now, cfs_rq);
1109 attach_entity_load_avg(cfs_rq, se);
1110 switched_from_fair(rq, p);
1111 *
1112 * such that the next switched_to_fair() has the
1113 * expected state.
1114 */
1115 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1116 return;
1117 }
1118
1119 if (cap > 0) {
1120 if (cfs_rq->avg.util_avg != 0) {
1121 sa->util_avg = cfs_rq->avg.util_avg * se_weight(se);
1122 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1123
1124 if (sa->util_avg > cap)
1125 sa->util_avg = cap;
1126 } else {
1127 sa->util_avg = cap;
1128 }
1129 }
1130
1131 sa->runnable_avg = sa->util_avg;
1132 }
1133
1134 #else /* !CONFIG_SMP */
init_entity_runnable_average(struct sched_entity * se)1135 void init_entity_runnable_average(struct sched_entity *se)
1136 {
1137 }
post_init_entity_util_avg(struct task_struct * p)1138 void post_init_entity_util_avg(struct task_struct *p)
1139 {
1140 }
update_tg_load_avg(struct cfs_rq * cfs_rq)1141 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1142 {
1143 }
1144 #endif /* CONFIG_SMP */
1145
update_curr_se(struct rq * rq,struct sched_entity * curr)1146 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr)
1147 {
1148 u64 now = rq_clock_task(rq);
1149 s64 delta_exec;
1150
1151 delta_exec = now - curr->exec_start;
1152 if (unlikely(delta_exec <= 0))
1153 return delta_exec;
1154
1155 curr->exec_start = now;
1156 curr->sum_exec_runtime += delta_exec;
1157
1158 if (schedstat_enabled()) {
1159 struct sched_statistics *stats;
1160
1161 stats = __schedstats_from_se(curr);
1162 __schedstat_set(stats->exec_max,
1163 max(delta_exec, stats->exec_max));
1164 }
1165
1166 return delta_exec;
1167 }
1168
update_curr_task(struct task_struct * p,s64 delta_exec)1169 static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
1170 {
1171 trace_sched_stat_runtime(p, delta_exec);
1172 account_group_exec_runtime(p, delta_exec);
1173 cgroup_account_cputime(p, delta_exec);
1174 }
1175
did_preempt_short(struct cfs_rq * cfs_rq,struct sched_entity * curr)1176 static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1177 {
1178 if (!sched_feat(PREEMPT_SHORT))
1179 return false;
1180
1181 if (curr->vlag == curr->deadline)
1182 return false;
1183
1184 return !entity_eligible(cfs_rq, curr);
1185 }
1186
do_preempt_short(struct cfs_rq * cfs_rq,struct sched_entity * pse,struct sched_entity * se)1187 static inline bool do_preempt_short(struct cfs_rq *cfs_rq,
1188 struct sched_entity *pse, struct sched_entity *se)
1189 {
1190 if (!sched_feat(PREEMPT_SHORT))
1191 return false;
1192
1193 if (pse->slice >= se->slice)
1194 return false;
1195
1196 if (!entity_eligible(cfs_rq, pse))
1197 return false;
1198
1199 if (entity_before(pse, se))
1200 return true;
1201
1202 if (!entity_eligible(cfs_rq, se))
1203 return true;
1204
1205 return false;
1206 }
1207
1208 /*
1209 * Used by other classes to account runtime.
1210 */
update_curr_common(struct rq * rq)1211 s64 update_curr_common(struct rq *rq)
1212 {
1213 struct task_struct *donor = rq->donor;
1214 s64 delta_exec;
1215
1216 delta_exec = update_curr_se(rq, &donor->se);
1217 if (likely(delta_exec > 0))
1218 update_curr_task(donor, delta_exec);
1219
1220 return delta_exec;
1221 }
1222
1223 /*
1224 * Update the current task's runtime statistics.
1225 */
update_curr(struct cfs_rq * cfs_rq)1226 static void update_curr(struct cfs_rq *cfs_rq)
1227 {
1228 struct sched_entity *curr = cfs_rq->curr;
1229 struct rq *rq = rq_of(cfs_rq);
1230 s64 delta_exec;
1231 bool resched;
1232
1233 if (unlikely(!curr))
1234 return;
1235
1236 delta_exec = update_curr_se(rq, curr);
1237 if (unlikely(delta_exec <= 0))
1238 return;
1239
1240 curr->vruntime += calc_delta_fair(delta_exec, curr);
1241 resched = update_deadline(cfs_rq, curr);
1242 update_min_vruntime(cfs_rq);
1243
1244 if (entity_is_task(curr)) {
1245 struct task_struct *p = task_of(curr);
1246
1247 update_curr_task(p, delta_exec);
1248
1249 /*
1250 * If the fair_server is active, we need to account for the
1251 * fair_server time whether or not the task is running on
1252 * behalf of fair_server or not:
1253 * - If the task is running on behalf of fair_server, we need
1254 * to limit its time based on the assigned runtime.
1255 * - Fair task that runs outside of fair_server should account
1256 * against fair_server such that it can account for this time
1257 * and possibly avoid running this period.
1258 */
1259 if (dl_server_active(&rq->fair_server))
1260 dl_server_update(&rq->fair_server, delta_exec);
1261 }
1262
1263 account_cfs_rq_runtime(cfs_rq, delta_exec);
1264
1265 if (cfs_rq->nr_queued == 1)
1266 return;
1267
1268 if (resched || did_preempt_short(cfs_rq, curr)) {
1269 resched_curr_lazy(rq);
1270 clear_buddies(cfs_rq, curr);
1271 }
1272 }
1273
update_curr_fair(struct rq * rq)1274 static void update_curr_fair(struct rq *rq)
1275 {
1276 update_curr(cfs_rq_of(&rq->donor->se));
1277 }
1278
1279 static inline void
update_stats_wait_start_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1280 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1281 {
1282 struct sched_statistics *stats;
1283 struct task_struct *p = NULL;
1284
1285 if (!schedstat_enabled())
1286 return;
1287
1288 stats = __schedstats_from_se(se);
1289
1290 if (entity_is_task(se))
1291 p = task_of(se);
1292
1293 __update_stats_wait_start(rq_of(cfs_rq), p, stats);
1294 }
1295
1296 static inline void
update_stats_wait_end_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1297 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1298 {
1299 struct sched_statistics *stats;
1300 struct task_struct *p = NULL;
1301
1302 if (!schedstat_enabled())
1303 return;
1304
1305 stats = __schedstats_from_se(se);
1306
1307 /*
1308 * When the sched_schedstat changes from 0 to 1, some sched se
1309 * maybe already in the runqueue, the se->statistics.wait_start
1310 * will be 0.So it will let the delta wrong. We need to avoid this
1311 * scenario.
1312 */
1313 if (unlikely(!schedstat_val(stats->wait_start)))
1314 return;
1315
1316 if (entity_is_task(se))
1317 p = task_of(se);
1318
1319 __update_stats_wait_end(rq_of(cfs_rq), p, stats);
1320 }
1321
1322 static inline void
update_stats_enqueue_sleeper_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1323 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1324 {
1325 struct sched_statistics *stats;
1326 struct task_struct *tsk = NULL;
1327
1328 if (!schedstat_enabled())
1329 return;
1330
1331 stats = __schedstats_from_se(se);
1332
1333 if (entity_is_task(se))
1334 tsk = task_of(se);
1335
1336 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1337 }
1338
1339 /*
1340 * Task is being enqueued - update stats:
1341 */
1342 static inline void
update_stats_enqueue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1343 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1344 {
1345 if (!schedstat_enabled())
1346 return;
1347
1348 /*
1349 * Are we enqueueing a waiting task? (for current tasks
1350 * a dequeue/enqueue event is a NOP)
1351 */
1352 if (se != cfs_rq->curr)
1353 update_stats_wait_start_fair(cfs_rq, se);
1354
1355 if (flags & ENQUEUE_WAKEUP)
1356 update_stats_enqueue_sleeper_fair(cfs_rq, se);
1357 }
1358
1359 static inline void
update_stats_dequeue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1360 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1361 {
1362
1363 if (!schedstat_enabled())
1364 return;
1365
1366 /*
1367 * Mark the end of the wait period if dequeueing a
1368 * waiting task:
1369 */
1370 if (se != cfs_rq->curr)
1371 update_stats_wait_end_fair(cfs_rq, se);
1372
1373 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1374 struct task_struct *tsk = task_of(se);
1375 unsigned int state;
1376
1377 /* XXX racy against TTWU */
1378 state = READ_ONCE(tsk->__state);
1379 if (state & TASK_INTERRUPTIBLE)
1380 __schedstat_set(tsk->stats.sleep_start,
1381 rq_clock(rq_of(cfs_rq)));
1382 if (state & TASK_UNINTERRUPTIBLE)
1383 __schedstat_set(tsk->stats.block_start,
1384 rq_clock(rq_of(cfs_rq)));
1385 }
1386 }
1387
1388 /*
1389 * We are picking a new current task - update its stats:
1390 */
1391 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)1392 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1393 {
1394 /*
1395 * We are starting a new run period:
1396 */
1397 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1398 }
1399
1400 /**************************************************
1401 * Scheduling class queueing methods:
1402 */
1403
is_core_idle(int cpu)1404 static inline bool is_core_idle(int cpu)
1405 {
1406 #ifdef CONFIG_SCHED_SMT
1407 int sibling;
1408
1409 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1410 if (cpu == sibling)
1411 continue;
1412
1413 if (!idle_cpu(sibling))
1414 return false;
1415 }
1416 #endif
1417
1418 return true;
1419 }
1420
1421 #ifdef CONFIG_NUMA
1422 #define NUMA_IMBALANCE_MIN 2
1423
1424 static inline long
adjust_numa_imbalance(int imbalance,int dst_running,int imb_numa_nr)1425 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1426 {
1427 /*
1428 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1429 * threshold. Above this threshold, individual tasks may be contending
1430 * for both memory bandwidth and any shared HT resources. This is an
1431 * approximation as the number of running tasks may not be related to
1432 * the number of busy CPUs due to sched_setaffinity.
1433 */
1434 if (dst_running > imb_numa_nr)
1435 return imbalance;
1436
1437 /*
1438 * Allow a small imbalance based on a simple pair of communicating
1439 * tasks that remain local when the destination is lightly loaded.
1440 */
1441 if (imbalance <= NUMA_IMBALANCE_MIN)
1442 return 0;
1443
1444 return imbalance;
1445 }
1446 #endif /* CONFIG_NUMA */
1447
1448 #ifdef CONFIG_NUMA_BALANCING
1449 /*
1450 * Approximate time to scan a full NUMA task in ms. The task scan period is
1451 * calculated based on the tasks virtual memory size and
1452 * numa_balancing_scan_size.
1453 */
1454 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1455 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1456
1457 /* Portion of address space to scan in MB */
1458 unsigned int sysctl_numa_balancing_scan_size = 256;
1459
1460 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1461 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1462
1463 /* The page with hint page fault latency < threshold in ms is considered hot */
1464 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1465
1466 struct numa_group {
1467 refcount_t refcount;
1468
1469 spinlock_t lock; /* nr_tasks, tasks */
1470 int nr_tasks;
1471 pid_t gid;
1472 int active_nodes;
1473
1474 struct rcu_head rcu;
1475 unsigned long total_faults;
1476 unsigned long max_faults_cpu;
1477 /*
1478 * faults[] array is split into two regions: faults_mem and faults_cpu.
1479 *
1480 * Faults_cpu is used to decide whether memory should move
1481 * towards the CPU. As a consequence, these stats are weighted
1482 * more by CPU use than by memory faults.
1483 */
1484 unsigned long faults[];
1485 };
1486
1487 /*
1488 * For functions that can be called in multiple contexts that permit reading
1489 * ->numa_group (see struct task_struct for locking rules).
1490 */
deref_task_numa_group(struct task_struct * p)1491 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1492 {
1493 return rcu_dereference_check(p->numa_group, p == current ||
1494 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1495 }
1496
deref_curr_numa_group(struct task_struct * p)1497 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1498 {
1499 return rcu_dereference_protected(p->numa_group, p == current);
1500 }
1501
1502 static inline unsigned long group_faults_priv(struct numa_group *ng);
1503 static inline unsigned long group_faults_shared(struct numa_group *ng);
1504
task_nr_scan_windows(struct task_struct * p)1505 static unsigned int task_nr_scan_windows(struct task_struct *p)
1506 {
1507 unsigned long rss = 0;
1508 unsigned long nr_scan_pages;
1509
1510 /*
1511 * Calculations based on RSS as non-present and empty pages are skipped
1512 * by the PTE scanner and NUMA hinting faults should be trapped based
1513 * on resident pages
1514 */
1515 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1516 rss = get_mm_rss(p->mm);
1517 if (!rss)
1518 rss = nr_scan_pages;
1519
1520 rss = round_up(rss, nr_scan_pages);
1521 return rss / nr_scan_pages;
1522 }
1523
1524 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1525 #define MAX_SCAN_WINDOW 2560
1526
task_scan_min(struct task_struct * p)1527 static unsigned int task_scan_min(struct task_struct *p)
1528 {
1529 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1530 unsigned int scan, floor;
1531 unsigned int windows = 1;
1532
1533 if (scan_size < MAX_SCAN_WINDOW)
1534 windows = MAX_SCAN_WINDOW / scan_size;
1535 floor = 1000 / windows;
1536
1537 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1538 return max_t(unsigned int, floor, scan);
1539 }
1540
task_scan_start(struct task_struct * p)1541 static unsigned int task_scan_start(struct task_struct *p)
1542 {
1543 unsigned long smin = task_scan_min(p);
1544 unsigned long period = smin;
1545 struct numa_group *ng;
1546
1547 /* Scale the maximum scan period with the amount of shared memory. */
1548 rcu_read_lock();
1549 ng = rcu_dereference(p->numa_group);
1550 if (ng) {
1551 unsigned long shared = group_faults_shared(ng);
1552 unsigned long private = group_faults_priv(ng);
1553
1554 period *= refcount_read(&ng->refcount);
1555 period *= shared + 1;
1556 period /= private + shared + 1;
1557 }
1558 rcu_read_unlock();
1559
1560 return max(smin, period);
1561 }
1562
task_scan_max(struct task_struct * p)1563 static unsigned int task_scan_max(struct task_struct *p)
1564 {
1565 unsigned long smin = task_scan_min(p);
1566 unsigned long smax;
1567 struct numa_group *ng;
1568
1569 /* Watch for min being lower than max due to floor calculations */
1570 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1571
1572 /* Scale the maximum scan period with the amount of shared memory. */
1573 ng = deref_curr_numa_group(p);
1574 if (ng) {
1575 unsigned long shared = group_faults_shared(ng);
1576 unsigned long private = group_faults_priv(ng);
1577 unsigned long period = smax;
1578
1579 period *= refcount_read(&ng->refcount);
1580 period *= shared + 1;
1581 period /= private + shared + 1;
1582
1583 smax = max(smax, period);
1584 }
1585
1586 return max(smin, smax);
1587 }
1588
account_numa_enqueue(struct rq * rq,struct task_struct * p)1589 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1590 {
1591 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1592 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1593 }
1594
account_numa_dequeue(struct rq * rq,struct task_struct * p)1595 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1596 {
1597 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1598 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1599 }
1600
1601 /* Shared or private faults. */
1602 #define NR_NUMA_HINT_FAULT_TYPES 2
1603
1604 /* Memory and CPU locality */
1605 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1606
1607 /* Averaged statistics, and temporary buffers. */
1608 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1609
task_numa_group_id(struct task_struct * p)1610 pid_t task_numa_group_id(struct task_struct *p)
1611 {
1612 struct numa_group *ng;
1613 pid_t gid = 0;
1614
1615 rcu_read_lock();
1616 ng = rcu_dereference(p->numa_group);
1617 if (ng)
1618 gid = ng->gid;
1619 rcu_read_unlock();
1620
1621 return gid;
1622 }
1623
1624 /*
1625 * The averaged statistics, shared & private, memory & CPU,
1626 * occupy the first half of the array. The second half of the
1627 * array is for current counters, which are averaged into the
1628 * first set by task_numa_placement.
1629 */
task_faults_idx(enum numa_faults_stats s,int nid,int priv)1630 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1631 {
1632 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1633 }
1634
task_faults(struct task_struct * p,int nid)1635 static inline unsigned long task_faults(struct task_struct *p, int nid)
1636 {
1637 if (!p->numa_faults)
1638 return 0;
1639
1640 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1641 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1642 }
1643
group_faults(struct task_struct * p,int nid)1644 static inline unsigned long group_faults(struct task_struct *p, int nid)
1645 {
1646 struct numa_group *ng = deref_task_numa_group(p);
1647
1648 if (!ng)
1649 return 0;
1650
1651 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1652 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1653 }
1654
group_faults_cpu(struct numa_group * group,int nid)1655 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1656 {
1657 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1658 group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1659 }
1660
group_faults_priv(struct numa_group * ng)1661 static inline unsigned long group_faults_priv(struct numa_group *ng)
1662 {
1663 unsigned long faults = 0;
1664 int node;
1665
1666 for_each_online_node(node) {
1667 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1668 }
1669
1670 return faults;
1671 }
1672
group_faults_shared(struct numa_group * ng)1673 static inline unsigned long group_faults_shared(struct numa_group *ng)
1674 {
1675 unsigned long faults = 0;
1676 int node;
1677
1678 for_each_online_node(node) {
1679 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1680 }
1681
1682 return faults;
1683 }
1684
1685 /*
1686 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1687 * considered part of a numa group's pseudo-interleaving set. Migrations
1688 * between these nodes are slowed down, to allow things to settle down.
1689 */
1690 #define ACTIVE_NODE_FRACTION 3
1691
numa_is_active_node(int nid,struct numa_group * ng)1692 static bool numa_is_active_node(int nid, struct numa_group *ng)
1693 {
1694 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1695 }
1696
1697 /* Handle placement on systems where not all nodes are directly connected. */
score_nearby_nodes(struct task_struct * p,int nid,int lim_dist,bool task)1698 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1699 int lim_dist, bool task)
1700 {
1701 unsigned long score = 0;
1702 int node, max_dist;
1703
1704 /*
1705 * All nodes are directly connected, and the same distance
1706 * from each other. No need for fancy placement algorithms.
1707 */
1708 if (sched_numa_topology_type == NUMA_DIRECT)
1709 return 0;
1710
1711 /* sched_max_numa_distance may be changed in parallel. */
1712 max_dist = READ_ONCE(sched_max_numa_distance);
1713 /*
1714 * This code is called for each node, introducing N^2 complexity,
1715 * which should be OK given the number of nodes rarely exceeds 8.
1716 */
1717 for_each_online_node(node) {
1718 unsigned long faults;
1719 int dist = node_distance(nid, node);
1720
1721 /*
1722 * The furthest away nodes in the system are not interesting
1723 * for placement; nid was already counted.
1724 */
1725 if (dist >= max_dist || node == nid)
1726 continue;
1727
1728 /*
1729 * On systems with a backplane NUMA topology, compare groups
1730 * of nodes, and move tasks towards the group with the most
1731 * memory accesses. When comparing two nodes at distance
1732 * "hoplimit", only nodes closer by than "hoplimit" are part
1733 * of each group. Skip other nodes.
1734 */
1735 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1736 continue;
1737
1738 /* Add up the faults from nearby nodes. */
1739 if (task)
1740 faults = task_faults(p, node);
1741 else
1742 faults = group_faults(p, node);
1743
1744 /*
1745 * On systems with a glueless mesh NUMA topology, there are
1746 * no fixed "groups of nodes". Instead, nodes that are not
1747 * directly connected bounce traffic through intermediate
1748 * nodes; a numa_group can occupy any set of nodes.
1749 * The further away a node is, the less the faults count.
1750 * This seems to result in good task placement.
1751 */
1752 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1753 faults *= (max_dist - dist);
1754 faults /= (max_dist - LOCAL_DISTANCE);
1755 }
1756
1757 score += faults;
1758 }
1759
1760 return score;
1761 }
1762
1763 /*
1764 * These return the fraction of accesses done by a particular task, or
1765 * task group, on a particular numa node. The group weight is given a
1766 * larger multiplier, in order to group tasks together that are almost
1767 * evenly spread out between numa nodes.
1768 */
task_weight(struct task_struct * p,int nid,int dist)1769 static inline unsigned long task_weight(struct task_struct *p, int nid,
1770 int dist)
1771 {
1772 unsigned long faults, total_faults;
1773
1774 if (!p->numa_faults)
1775 return 0;
1776
1777 total_faults = p->total_numa_faults;
1778
1779 if (!total_faults)
1780 return 0;
1781
1782 faults = task_faults(p, nid);
1783 faults += score_nearby_nodes(p, nid, dist, true);
1784
1785 return 1000 * faults / total_faults;
1786 }
1787
group_weight(struct task_struct * p,int nid,int dist)1788 static inline unsigned long group_weight(struct task_struct *p, int nid,
1789 int dist)
1790 {
1791 struct numa_group *ng = deref_task_numa_group(p);
1792 unsigned long faults, total_faults;
1793
1794 if (!ng)
1795 return 0;
1796
1797 total_faults = ng->total_faults;
1798
1799 if (!total_faults)
1800 return 0;
1801
1802 faults = group_faults(p, nid);
1803 faults += score_nearby_nodes(p, nid, dist, false);
1804
1805 return 1000 * faults / total_faults;
1806 }
1807
1808 /*
1809 * If memory tiering mode is enabled, cpupid of slow memory page is
1810 * used to record scan time instead of CPU and PID. When tiering mode
1811 * is disabled at run time, the scan time (in cpupid) will be
1812 * interpreted as CPU and PID. So CPU needs to be checked to avoid to
1813 * access out of array bound.
1814 */
cpupid_valid(int cpupid)1815 static inline bool cpupid_valid(int cpupid)
1816 {
1817 return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1818 }
1819
1820 /*
1821 * For memory tiering mode, if there are enough free pages (more than
1822 * enough watermark defined here) in fast memory node, to take full
1823 * advantage of fast memory capacity, all recently accessed slow
1824 * memory pages will be migrated to fast memory node without
1825 * considering hot threshold.
1826 */
pgdat_free_space_enough(struct pglist_data * pgdat)1827 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1828 {
1829 int z;
1830 unsigned long enough_wmark;
1831
1832 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1833 pgdat->node_present_pages >> 4);
1834 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1835 struct zone *zone = pgdat->node_zones + z;
1836
1837 if (!populated_zone(zone))
1838 continue;
1839
1840 if (zone_watermark_ok(zone, 0,
1841 promo_wmark_pages(zone) + enough_wmark,
1842 ZONE_MOVABLE, 0))
1843 return true;
1844 }
1845 return false;
1846 }
1847
1848 /*
1849 * For memory tiering mode, when page tables are scanned, the scan
1850 * time will be recorded in struct page in addition to make page
1851 * PROT_NONE for slow memory page. So when the page is accessed, in
1852 * hint page fault handler, the hint page fault latency is calculated
1853 * via,
1854 *
1855 * hint page fault latency = hint page fault time - scan time
1856 *
1857 * The smaller the hint page fault latency, the higher the possibility
1858 * for the page to be hot.
1859 */
numa_hint_fault_latency(struct folio * folio)1860 static int numa_hint_fault_latency(struct folio *folio)
1861 {
1862 int last_time, time;
1863
1864 time = jiffies_to_msecs(jiffies);
1865 last_time = folio_xchg_access_time(folio, time);
1866
1867 return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1868 }
1869
1870 /*
1871 * For memory tiering mode, too high promotion/demotion throughput may
1872 * hurt application latency. So we provide a mechanism to rate limit
1873 * the number of pages that are tried to be promoted.
1874 */
numa_promotion_rate_limit(struct pglist_data * pgdat,unsigned long rate_limit,int nr)1875 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1876 unsigned long rate_limit, int nr)
1877 {
1878 unsigned long nr_cand;
1879 unsigned int now, start;
1880
1881 now = jiffies_to_msecs(jiffies);
1882 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1883 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1884 start = pgdat->nbp_rl_start;
1885 if (now - start > MSEC_PER_SEC &&
1886 cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1887 pgdat->nbp_rl_nr_cand = nr_cand;
1888 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1889 return true;
1890 return false;
1891 }
1892
1893 #define NUMA_MIGRATION_ADJUST_STEPS 16
1894
numa_promotion_adjust_threshold(struct pglist_data * pgdat,unsigned long rate_limit,unsigned int ref_th)1895 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1896 unsigned long rate_limit,
1897 unsigned int ref_th)
1898 {
1899 unsigned int now, start, th_period, unit_th, th;
1900 unsigned long nr_cand, ref_cand, diff_cand;
1901
1902 now = jiffies_to_msecs(jiffies);
1903 th_period = sysctl_numa_balancing_scan_period_max;
1904 start = pgdat->nbp_th_start;
1905 if (now - start > th_period &&
1906 cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1907 ref_cand = rate_limit *
1908 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1909 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1910 diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1911 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1912 th = pgdat->nbp_threshold ? : ref_th;
1913 if (diff_cand > ref_cand * 11 / 10)
1914 th = max(th - unit_th, unit_th);
1915 else if (diff_cand < ref_cand * 9 / 10)
1916 th = min(th + unit_th, ref_th * 2);
1917 pgdat->nbp_th_nr_cand = nr_cand;
1918 pgdat->nbp_threshold = th;
1919 }
1920 }
1921
should_numa_migrate_memory(struct task_struct * p,struct folio * folio,int src_nid,int dst_cpu)1922 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
1923 int src_nid, int dst_cpu)
1924 {
1925 struct numa_group *ng = deref_curr_numa_group(p);
1926 int dst_nid = cpu_to_node(dst_cpu);
1927 int last_cpupid, this_cpupid;
1928
1929 /*
1930 * Cannot migrate to memoryless nodes.
1931 */
1932 if (!node_state(dst_nid, N_MEMORY))
1933 return false;
1934
1935 /*
1936 * The pages in slow memory node should be migrated according
1937 * to hot/cold instead of private/shared.
1938 */
1939 if (folio_use_access_time(folio)) {
1940 struct pglist_data *pgdat;
1941 unsigned long rate_limit;
1942 unsigned int latency, th, def_th;
1943
1944 pgdat = NODE_DATA(dst_nid);
1945 if (pgdat_free_space_enough(pgdat)) {
1946 /* workload changed, reset hot threshold */
1947 pgdat->nbp_threshold = 0;
1948 return true;
1949 }
1950
1951 def_th = sysctl_numa_balancing_hot_threshold;
1952 rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1953 (20 - PAGE_SHIFT);
1954 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1955
1956 th = pgdat->nbp_threshold ? : def_th;
1957 latency = numa_hint_fault_latency(folio);
1958 if (latency >= th)
1959 return false;
1960
1961 return !numa_promotion_rate_limit(pgdat, rate_limit,
1962 folio_nr_pages(folio));
1963 }
1964
1965 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1966 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
1967
1968 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1969 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1970 return false;
1971
1972 /*
1973 * Allow first faults or private faults to migrate immediately early in
1974 * the lifetime of a task. The magic number 4 is based on waiting for
1975 * two full passes of the "multi-stage node selection" test that is
1976 * executed below.
1977 */
1978 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1979 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1980 return true;
1981
1982 /*
1983 * Multi-stage node selection is used in conjunction with a periodic
1984 * migration fault to build a temporal task<->page relation. By using
1985 * a two-stage filter we remove short/unlikely relations.
1986 *
1987 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1988 * a task's usage of a particular page (n_p) per total usage of this
1989 * page (n_t) (in a given time-span) to a probability.
1990 *
1991 * Our periodic faults will sample this probability and getting the
1992 * same result twice in a row, given these samples are fully
1993 * independent, is then given by P(n)^2, provided our sample period
1994 * is sufficiently short compared to the usage pattern.
1995 *
1996 * This quadric squishes small probabilities, making it less likely we
1997 * act on an unlikely task<->page relation.
1998 */
1999 if (!cpupid_pid_unset(last_cpupid) &&
2000 cpupid_to_nid(last_cpupid) != dst_nid)
2001 return false;
2002
2003 /* Always allow migrate on private faults */
2004 if (cpupid_match_pid(p, last_cpupid))
2005 return true;
2006
2007 /* A shared fault, but p->numa_group has not been set up yet. */
2008 if (!ng)
2009 return true;
2010
2011 /*
2012 * Destination node is much more heavily used than the source
2013 * node? Allow migration.
2014 */
2015 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
2016 ACTIVE_NODE_FRACTION)
2017 return true;
2018
2019 /*
2020 * Distribute memory according to CPU & memory use on each node,
2021 * with 3/4 hysteresis to avoid unnecessary memory migrations:
2022 *
2023 * faults_cpu(dst) 3 faults_cpu(src)
2024 * --------------- * - > ---------------
2025 * faults_mem(dst) 4 faults_mem(src)
2026 */
2027 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
2028 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
2029 }
2030
2031 /*
2032 * 'numa_type' describes the node at the moment of load balancing.
2033 */
2034 enum numa_type {
2035 /* The node has spare capacity that can be used to run more tasks. */
2036 node_has_spare = 0,
2037 /*
2038 * The node is fully used and the tasks don't compete for more CPU
2039 * cycles. Nevertheless, some tasks might wait before running.
2040 */
2041 node_fully_busy,
2042 /*
2043 * The node is overloaded and can't provide expected CPU cycles to all
2044 * tasks.
2045 */
2046 node_overloaded
2047 };
2048
2049 /* Cached statistics for all CPUs within a node */
2050 struct numa_stats {
2051 unsigned long load;
2052 unsigned long runnable;
2053 unsigned long util;
2054 /* Total compute capacity of CPUs on a node */
2055 unsigned long compute_capacity;
2056 unsigned int nr_running;
2057 unsigned int weight;
2058 enum numa_type node_type;
2059 int idle_cpu;
2060 };
2061
2062 struct task_numa_env {
2063 struct task_struct *p;
2064
2065 int src_cpu, src_nid;
2066 int dst_cpu, dst_nid;
2067 int imb_numa_nr;
2068
2069 struct numa_stats src_stats, dst_stats;
2070
2071 int imbalance_pct;
2072 int dist;
2073
2074 struct task_struct *best_task;
2075 long best_imp;
2076 int best_cpu;
2077 };
2078
2079 static unsigned long cpu_load(struct rq *rq);
2080 static unsigned long cpu_runnable(struct rq *rq);
2081
2082 static inline enum
numa_classify(unsigned int imbalance_pct,struct numa_stats * ns)2083 numa_type numa_classify(unsigned int imbalance_pct,
2084 struct numa_stats *ns)
2085 {
2086 if ((ns->nr_running > ns->weight) &&
2087 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
2088 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2089 return node_overloaded;
2090
2091 if ((ns->nr_running < ns->weight) ||
2092 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2093 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2094 return node_has_spare;
2095
2096 return node_fully_busy;
2097 }
2098
2099 #ifdef CONFIG_SCHED_SMT
2100 /* Forward declarations of select_idle_sibling helpers */
2101 static inline bool test_idle_cores(int cpu);
numa_idle_core(int idle_core,int cpu)2102 static inline int numa_idle_core(int idle_core, int cpu)
2103 {
2104 if (!static_branch_likely(&sched_smt_present) ||
2105 idle_core >= 0 || !test_idle_cores(cpu))
2106 return idle_core;
2107
2108 /*
2109 * Prefer cores instead of packing HT siblings
2110 * and triggering future load balancing.
2111 */
2112 if (is_core_idle(cpu))
2113 idle_core = cpu;
2114
2115 return idle_core;
2116 }
2117 #else
numa_idle_core(int idle_core,int cpu)2118 static inline int numa_idle_core(int idle_core, int cpu)
2119 {
2120 return idle_core;
2121 }
2122 #endif
2123
2124 /*
2125 * Gather all necessary information to make NUMA balancing placement
2126 * decisions that are compatible with standard load balancer. This
2127 * borrows code and logic from update_sg_lb_stats but sharing a
2128 * common implementation is impractical.
2129 */
update_numa_stats(struct task_numa_env * env,struct numa_stats * ns,int nid,bool find_idle)2130 static void update_numa_stats(struct task_numa_env *env,
2131 struct numa_stats *ns, int nid,
2132 bool find_idle)
2133 {
2134 int cpu, idle_core = -1;
2135
2136 memset(ns, 0, sizeof(*ns));
2137 ns->idle_cpu = -1;
2138
2139 rcu_read_lock();
2140 for_each_cpu(cpu, cpumask_of_node(nid)) {
2141 struct rq *rq = cpu_rq(cpu);
2142
2143 ns->load += cpu_load(rq);
2144 ns->runnable += cpu_runnable(rq);
2145 ns->util += cpu_util_cfs(cpu);
2146 ns->nr_running += rq->cfs.h_nr_runnable;
2147 ns->compute_capacity += capacity_of(cpu);
2148
2149 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2150 if (READ_ONCE(rq->numa_migrate_on) ||
2151 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2152 continue;
2153
2154 if (ns->idle_cpu == -1)
2155 ns->idle_cpu = cpu;
2156
2157 idle_core = numa_idle_core(idle_core, cpu);
2158 }
2159 }
2160 rcu_read_unlock();
2161
2162 ns->weight = cpumask_weight(cpumask_of_node(nid));
2163
2164 ns->node_type = numa_classify(env->imbalance_pct, ns);
2165
2166 if (idle_core >= 0)
2167 ns->idle_cpu = idle_core;
2168 }
2169
task_numa_assign(struct task_numa_env * env,struct task_struct * p,long imp)2170 static void task_numa_assign(struct task_numa_env *env,
2171 struct task_struct *p, long imp)
2172 {
2173 struct rq *rq = cpu_rq(env->dst_cpu);
2174
2175 /* Check if run-queue part of active NUMA balance. */
2176 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2177 int cpu;
2178 int start = env->dst_cpu;
2179
2180 /* Find alternative idle CPU. */
2181 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2182 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2183 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2184 continue;
2185 }
2186
2187 env->dst_cpu = cpu;
2188 rq = cpu_rq(env->dst_cpu);
2189 if (!xchg(&rq->numa_migrate_on, 1))
2190 goto assign;
2191 }
2192
2193 /* Failed to find an alternative idle CPU */
2194 return;
2195 }
2196
2197 assign:
2198 /*
2199 * Clear previous best_cpu/rq numa-migrate flag, since task now
2200 * found a better CPU to move/swap.
2201 */
2202 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2203 rq = cpu_rq(env->best_cpu);
2204 WRITE_ONCE(rq->numa_migrate_on, 0);
2205 }
2206
2207 if (env->best_task)
2208 put_task_struct(env->best_task);
2209 if (p)
2210 get_task_struct(p);
2211
2212 env->best_task = p;
2213 env->best_imp = imp;
2214 env->best_cpu = env->dst_cpu;
2215 }
2216
load_too_imbalanced(long src_load,long dst_load,struct task_numa_env * env)2217 static bool load_too_imbalanced(long src_load, long dst_load,
2218 struct task_numa_env *env)
2219 {
2220 long imb, old_imb;
2221 long orig_src_load, orig_dst_load;
2222 long src_capacity, dst_capacity;
2223
2224 /*
2225 * The load is corrected for the CPU capacity available on each node.
2226 *
2227 * src_load dst_load
2228 * ------------ vs ---------
2229 * src_capacity dst_capacity
2230 */
2231 src_capacity = env->src_stats.compute_capacity;
2232 dst_capacity = env->dst_stats.compute_capacity;
2233
2234 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2235
2236 orig_src_load = env->src_stats.load;
2237 orig_dst_load = env->dst_stats.load;
2238
2239 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2240
2241 /* Would this change make things worse? */
2242 return (imb > old_imb);
2243 }
2244
2245 /*
2246 * Maximum NUMA importance can be 1998 (2*999);
2247 * SMALLIMP @ 30 would be close to 1998/64.
2248 * Used to deter task migration.
2249 */
2250 #define SMALLIMP 30
2251
2252 /*
2253 * This checks if the overall compute and NUMA accesses of the system would
2254 * be improved if the source tasks was migrated to the target dst_cpu taking
2255 * into account that it might be best if task running on the dst_cpu should
2256 * be exchanged with the source task
2257 */
task_numa_compare(struct task_numa_env * env,long taskimp,long groupimp,bool maymove)2258 static bool task_numa_compare(struct task_numa_env *env,
2259 long taskimp, long groupimp, bool maymove)
2260 {
2261 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2262 struct rq *dst_rq = cpu_rq(env->dst_cpu);
2263 long imp = p_ng ? groupimp : taskimp;
2264 struct task_struct *cur;
2265 long src_load, dst_load;
2266 int dist = env->dist;
2267 long moveimp = imp;
2268 long load;
2269 bool stopsearch = false;
2270
2271 if (READ_ONCE(dst_rq->numa_migrate_on))
2272 return false;
2273
2274 rcu_read_lock();
2275 cur = rcu_dereference(dst_rq->curr);
2276 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2277 cur = NULL;
2278
2279 /*
2280 * Because we have preemption enabled we can get migrated around and
2281 * end try selecting ourselves (current == env->p) as a swap candidate.
2282 */
2283 if (cur == env->p) {
2284 stopsearch = true;
2285 goto unlock;
2286 }
2287
2288 if (!cur) {
2289 if (maymove && moveimp >= env->best_imp)
2290 goto assign;
2291 else
2292 goto unlock;
2293 }
2294
2295 /* Skip this swap candidate if cannot move to the source cpu. */
2296 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2297 goto unlock;
2298
2299 /*
2300 * Skip this swap candidate if it is not moving to its preferred
2301 * node and the best task is.
2302 */
2303 if (env->best_task &&
2304 env->best_task->numa_preferred_nid == env->src_nid &&
2305 cur->numa_preferred_nid != env->src_nid) {
2306 goto unlock;
2307 }
2308
2309 /*
2310 * "imp" is the fault differential for the source task between the
2311 * source and destination node. Calculate the total differential for
2312 * the source task and potential destination task. The more negative
2313 * the value is, the more remote accesses that would be expected to
2314 * be incurred if the tasks were swapped.
2315 *
2316 * If dst and source tasks are in the same NUMA group, or not
2317 * in any group then look only at task weights.
2318 */
2319 cur_ng = rcu_dereference(cur->numa_group);
2320 if (cur_ng == p_ng) {
2321 /*
2322 * Do not swap within a group or between tasks that have
2323 * no group if there is spare capacity. Swapping does
2324 * not address the load imbalance and helps one task at
2325 * the cost of punishing another.
2326 */
2327 if (env->dst_stats.node_type == node_has_spare)
2328 goto unlock;
2329
2330 imp = taskimp + task_weight(cur, env->src_nid, dist) -
2331 task_weight(cur, env->dst_nid, dist);
2332 /*
2333 * Add some hysteresis to prevent swapping the
2334 * tasks within a group over tiny differences.
2335 */
2336 if (cur_ng)
2337 imp -= imp / 16;
2338 } else {
2339 /*
2340 * Compare the group weights. If a task is all by itself
2341 * (not part of a group), use the task weight instead.
2342 */
2343 if (cur_ng && p_ng)
2344 imp += group_weight(cur, env->src_nid, dist) -
2345 group_weight(cur, env->dst_nid, dist);
2346 else
2347 imp += task_weight(cur, env->src_nid, dist) -
2348 task_weight(cur, env->dst_nid, dist);
2349 }
2350
2351 /* Discourage picking a task already on its preferred node */
2352 if (cur->numa_preferred_nid == env->dst_nid)
2353 imp -= imp / 16;
2354
2355 /*
2356 * Encourage picking a task that moves to its preferred node.
2357 * This potentially makes imp larger than it's maximum of
2358 * 1998 (see SMALLIMP and task_weight for why) but in this
2359 * case, it does not matter.
2360 */
2361 if (cur->numa_preferred_nid == env->src_nid)
2362 imp += imp / 8;
2363
2364 if (maymove && moveimp > imp && moveimp > env->best_imp) {
2365 imp = moveimp;
2366 cur = NULL;
2367 goto assign;
2368 }
2369
2370 /*
2371 * Prefer swapping with a task moving to its preferred node over a
2372 * task that is not.
2373 */
2374 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2375 env->best_task->numa_preferred_nid != env->src_nid) {
2376 goto assign;
2377 }
2378
2379 /*
2380 * If the NUMA importance is less than SMALLIMP,
2381 * task migration might only result in ping pong
2382 * of tasks and also hurt performance due to cache
2383 * misses.
2384 */
2385 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2386 goto unlock;
2387
2388 /*
2389 * In the overloaded case, try and keep the load balanced.
2390 */
2391 load = task_h_load(env->p) - task_h_load(cur);
2392 if (!load)
2393 goto assign;
2394
2395 dst_load = env->dst_stats.load + load;
2396 src_load = env->src_stats.load - load;
2397
2398 if (load_too_imbalanced(src_load, dst_load, env))
2399 goto unlock;
2400
2401 assign:
2402 /* Evaluate an idle CPU for a task numa move. */
2403 if (!cur) {
2404 int cpu = env->dst_stats.idle_cpu;
2405
2406 /* Nothing cached so current CPU went idle since the search. */
2407 if (cpu < 0)
2408 cpu = env->dst_cpu;
2409
2410 /*
2411 * If the CPU is no longer truly idle and the previous best CPU
2412 * is, keep using it.
2413 */
2414 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2415 idle_cpu(env->best_cpu)) {
2416 cpu = env->best_cpu;
2417 }
2418
2419 env->dst_cpu = cpu;
2420 }
2421
2422 task_numa_assign(env, cur, imp);
2423
2424 /*
2425 * If a move to idle is allowed because there is capacity or load
2426 * balance improves then stop the search. While a better swap
2427 * candidate may exist, a search is not free.
2428 */
2429 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2430 stopsearch = true;
2431
2432 /*
2433 * If a swap candidate must be identified and the current best task
2434 * moves its preferred node then stop the search.
2435 */
2436 if (!maymove && env->best_task &&
2437 env->best_task->numa_preferred_nid == env->src_nid) {
2438 stopsearch = true;
2439 }
2440 unlock:
2441 rcu_read_unlock();
2442
2443 return stopsearch;
2444 }
2445
task_numa_find_cpu(struct task_numa_env * env,long taskimp,long groupimp)2446 static void task_numa_find_cpu(struct task_numa_env *env,
2447 long taskimp, long groupimp)
2448 {
2449 bool maymove = false;
2450 int cpu;
2451
2452 /*
2453 * If dst node has spare capacity, then check if there is an
2454 * imbalance that would be overruled by the load balancer.
2455 */
2456 if (env->dst_stats.node_type == node_has_spare) {
2457 unsigned int imbalance;
2458 int src_running, dst_running;
2459
2460 /*
2461 * Would movement cause an imbalance? Note that if src has
2462 * more running tasks that the imbalance is ignored as the
2463 * move improves the imbalance from the perspective of the
2464 * CPU load balancer.
2465 * */
2466 src_running = env->src_stats.nr_running - 1;
2467 dst_running = env->dst_stats.nr_running + 1;
2468 imbalance = max(0, dst_running - src_running);
2469 imbalance = adjust_numa_imbalance(imbalance, dst_running,
2470 env->imb_numa_nr);
2471
2472 /* Use idle CPU if there is no imbalance */
2473 if (!imbalance) {
2474 maymove = true;
2475 if (env->dst_stats.idle_cpu >= 0) {
2476 env->dst_cpu = env->dst_stats.idle_cpu;
2477 task_numa_assign(env, NULL, 0);
2478 return;
2479 }
2480 }
2481 } else {
2482 long src_load, dst_load, load;
2483 /*
2484 * If the improvement from just moving env->p direction is better
2485 * than swapping tasks around, check if a move is possible.
2486 */
2487 load = task_h_load(env->p);
2488 dst_load = env->dst_stats.load + load;
2489 src_load = env->src_stats.load - load;
2490 maymove = !load_too_imbalanced(src_load, dst_load, env);
2491 }
2492
2493 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2494 /* Skip this CPU if the source task cannot migrate */
2495 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2496 continue;
2497
2498 env->dst_cpu = cpu;
2499 if (task_numa_compare(env, taskimp, groupimp, maymove))
2500 break;
2501 }
2502 }
2503
task_numa_migrate(struct task_struct * p)2504 static int task_numa_migrate(struct task_struct *p)
2505 {
2506 struct task_numa_env env = {
2507 .p = p,
2508
2509 .src_cpu = task_cpu(p),
2510 .src_nid = task_node(p),
2511
2512 .imbalance_pct = 112,
2513
2514 .best_task = NULL,
2515 .best_imp = 0,
2516 .best_cpu = -1,
2517 };
2518 unsigned long taskweight, groupweight;
2519 struct sched_domain *sd;
2520 long taskimp, groupimp;
2521 struct numa_group *ng;
2522 struct rq *best_rq;
2523 int nid, ret, dist;
2524
2525 /*
2526 * Pick the lowest SD_NUMA domain, as that would have the smallest
2527 * imbalance and would be the first to start moving tasks about.
2528 *
2529 * And we want to avoid any moving of tasks about, as that would create
2530 * random movement of tasks -- counter the numa conditions we're trying
2531 * to satisfy here.
2532 */
2533 rcu_read_lock();
2534 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2535 if (sd) {
2536 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2537 env.imb_numa_nr = sd->imb_numa_nr;
2538 }
2539 rcu_read_unlock();
2540
2541 /*
2542 * Cpusets can break the scheduler domain tree into smaller
2543 * balance domains, some of which do not cross NUMA boundaries.
2544 * Tasks that are "trapped" in such domains cannot be migrated
2545 * elsewhere, so there is no point in (re)trying.
2546 */
2547 if (unlikely(!sd)) {
2548 sched_setnuma(p, task_node(p));
2549 return -EINVAL;
2550 }
2551
2552 env.dst_nid = p->numa_preferred_nid;
2553 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2554 taskweight = task_weight(p, env.src_nid, dist);
2555 groupweight = group_weight(p, env.src_nid, dist);
2556 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2557 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2558 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2559 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2560
2561 /* Try to find a spot on the preferred nid. */
2562 task_numa_find_cpu(&env, taskimp, groupimp);
2563
2564 /*
2565 * Look at other nodes in these cases:
2566 * - there is no space available on the preferred_nid
2567 * - the task is part of a numa_group that is interleaved across
2568 * multiple NUMA nodes; in order to better consolidate the group,
2569 * we need to check other locations.
2570 */
2571 ng = deref_curr_numa_group(p);
2572 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2573 for_each_node_state(nid, N_CPU) {
2574 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2575 continue;
2576
2577 dist = node_distance(env.src_nid, env.dst_nid);
2578 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2579 dist != env.dist) {
2580 taskweight = task_weight(p, env.src_nid, dist);
2581 groupweight = group_weight(p, env.src_nid, dist);
2582 }
2583
2584 /* Only consider nodes where both task and groups benefit */
2585 taskimp = task_weight(p, nid, dist) - taskweight;
2586 groupimp = group_weight(p, nid, dist) - groupweight;
2587 if (taskimp < 0 && groupimp < 0)
2588 continue;
2589
2590 env.dist = dist;
2591 env.dst_nid = nid;
2592 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2593 task_numa_find_cpu(&env, taskimp, groupimp);
2594 }
2595 }
2596
2597 /*
2598 * If the task is part of a workload that spans multiple NUMA nodes,
2599 * and is migrating into one of the workload's active nodes, remember
2600 * this node as the task's preferred numa node, so the workload can
2601 * settle down.
2602 * A task that migrated to a second choice node will be better off
2603 * trying for a better one later. Do not set the preferred node here.
2604 */
2605 if (ng) {
2606 if (env.best_cpu == -1)
2607 nid = env.src_nid;
2608 else
2609 nid = cpu_to_node(env.best_cpu);
2610
2611 if (nid != p->numa_preferred_nid)
2612 sched_setnuma(p, nid);
2613 }
2614
2615 /* No better CPU than the current one was found. */
2616 if (env.best_cpu == -1) {
2617 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2618 return -EAGAIN;
2619 }
2620
2621 best_rq = cpu_rq(env.best_cpu);
2622 if (env.best_task == NULL) {
2623 ret = migrate_task_to(p, env.best_cpu);
2624 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2625 if (ret != 0)
2626 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2627 return ret;
2628 }
2629
2630 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2631 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2632
2633 if (ret != 0)
2634 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2635 put_task_struct(env.best_task);
2636 return ret;
2637 }
2638
2639 /* Attempt to migrate a task to a CPU on the preferred node. */
numa_migrate_preferred(struct task_struct * p)2640 static void numa_migrate_preferred(struct task_struct *p)
2641 {
2642 unsigned long interval = HZ;
2643
2644 /* This task has no NUMA fault statistics yet */
2645 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2646 return;
2647
2648 /* Periodically retry migrating the task to the preferred node */
2649 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2650 p->numa_migrate_retry = jiffies + interval;
2651
2652 /* Success if task is already running on preferred CPU */
2653 if (task_node(p) == p->numa_preferred_nid)
2654 return;
2655
2656 /* Otherwise, try migrate to a CPU on the preferred node */
2657 task_numa_migrate(p);
2658 }
2659
2660 /*
2661 * Find out how many nodes the workload is actively running on. Do this by
2662 * tracking the nodes from which NUMA hinting faults are triggered. This can
2663 * be different from the set of nodes where the workload's memory is currently
2664 * located.
2665 */
numa_group_count_active_nodes(struct numa_group * numa_group)2666 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2667 {
2668 unsigned long faults, max_faults = 0;
2669 int nid, active_nodes = 0;
2670
2671 for_each_node_state(nid, N_CPU) {
2672 faults = group_faults_cpu(numa_group, nid);
2673 if (faults > max_faults)
2674 max_faults = faults;
2675 }
2676
2677 for_each_node_state(nid, N_CPU) {
2678 faults = group_faults_cpu(numa_group, nid);
2679 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2680 active_nodes++;
2681 }
2682
2683 numa_group->max_faults_cpu = max_faults;
2684 numa_group->active_nodes = active_nodes;
2685 }
2686
2687 /*
2688 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2689 * increments. The more local the fault statistics are, the higher the scan
2690 * period will be for the next scan window. If local/(local+remote) ratio is
2691 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2692 * the scan period will decrease. Aim for 70% local accesses.
2693 */
2694 #define NUMA_PERIOD_SLOTS 10
2695 #define NUMA_PERIOD_THRESHOLD 7
2696
2697 /*
2698 * Increase the scan period (slow down scanning) if the majority of
2699 * our memory is already on our local node, or if the majority of
2700 * the page accesses are shared with other processes.
2701 * Otherwise, decrease the scan period.
2702 */
update_task_scan_period(struct task_struct * p,unsigned long shared,unsigned long private)2703 static void update_task_scan_period(struct task_struct *p,
2704 unsigned long shared, unsigned long private)
2705 {
2706 unsigned int period_slot;
2707 int lr_ratio, ps_ratio;
2708 int diff;
2709
2710 unsigned long remote = p->numa_faults_locality[0];
2711 unsigned long local = p->numa_faults_locality[1];
2712
2713 /*
2714 * If there were no record hinting faults then either the task is
2715 * completely idle or all activity is in areas that are not of interest
2716 * to automatic numa balancing. Related to that, if there were failed
2717 * migration then it implies we are migrating too quickly or the local
2718 * node is overloaded. In either case, scan slower
2719 */
2720 if (local + shared == 0 || p->numa_faults_locality[2]) {
2721 p->numa_scan_period = min(p->numa_scan_period_max,
2722 p->numa_scan_period << 1);
2723
2724 p->mm->numa_next_scan = jiffies +
2725 msecs_to_jiffies(p->numa_scan_period);
2726
2727 return;
2728 }
2729
2730 /*
2731 * Prepare to scale scan period relative to the current period.
2732 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2733 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2734 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2735 */
2736 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2737 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2738 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2739
2740 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2741 /*
2742 * Most memory accesses are local. There is no need to
2743 * do fast NUMA scanning, since memory is already local.
2744 */
2745 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2746 if (!slot)
2747 slot = 1;
2748 diff = slot * period_slot;
2749 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2750 /*
2751 * Most memory accesses are shared with other tasks.
2752 * There is no point in continuing fast NUMA scanning,
2753 * since other tasks may just move the memory elsewhere.
2754 */
2755 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2756 if (!slot)
2757 slot = 1;
2758 diff = slot * period_slot;
2759 } else {
2760 /*
2761 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2762 * yet they are not on the local NUMA node. Speed up
2763 * NUMA scanning to get the memory moved over.
2764 */
2765 int ratio = max(lr_ratio, ps_ratio);
2766 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2767 }
2768
2769 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2770 task_scan_min(p), task_scan_max(p));
2771 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2772 }
2773
2774 /*
2775 * Get the fraction of time the task has been running since the last
2776 * NUMA placement cycle. The scheduler keeps similar statistics, but
2777 * decays those on a 32ms period, which is orders of magnitude off
2778 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2779 * stats only if the task is so new there are no NUMA statistics yet.
2780 */
numa_get_avg_runtime(struct task_struct * p,u64 * period)2781 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2782 {
2783 u64 runtime, delta, now;
2784 /* Use the start of this time slice to avoid calculations. */
2785 now = p->se.exec_start;
2786 runtime = p->se.sum_exec_runtime;
2787
2788 if (p->last_task_numa_placement) {
2789 delta = runtime - p->last_sum_exec_runtime;
2790 *period = now - p->last_task_numa_placement;
2791
2792 /* Avoid time going backwards, prevent potential divide error: */
2793 if (unlikely((s64)*period < 0))
2794 *period = 0;
2795 } else {
2796 delta = p->se.avg.load_sum;
2797 *period = LOAD_AVG_MAX;
2798 }
2799
2800 p->last_sum_exec_runtime = runtime;
2801 p->last_task_numa_placement = now;
2802
2803 return delta;
2804 }
2805
2806 /*
2807 * Determine the preferred nid for a task in a numa_group. This needs to
2808 * be done in a way that produces consistent results with group_weight,
2809 * otherwise workloads might not converge.
2810 */
preferred_group_nid(struct task_struct * p,int nid)2811 static int preferred_group_nid(struct task_struct *p, int nid)
2812 {
2813 nodemask_t nodes;
2814 int dist;
2815
2816 /* Direct connections between all NUMA nodes. */
2817 if (sched_numa_topology_type == NUMA_DIRECT)
2818 return nid;
2819
2820 /*
2821 * On a system with glueless mesh NUMA topology, group_weight
2822 * scores nodes according to the number of NUMA hinting faults on
2823 * both the node itself, and on nearby nodes.
2824 */
2825 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2826 unsigned long score, max_score = 0;
2827 int node, max_node = nid;
2828
2829 dist = sched_max_numa_distance;
2830
2831 for_each_node_state(node, N_CPU) {
2832 score = group_weight(p, node, dist);
2833 if (score > max_score) {
2834 max_score = score;
2835 max_node = node;
2836 }
2837 }
2838 return max_node;
2839 }
2840
2841 /*
2842 * Finding the preferred nid in a system with NUMA backplane
2843 * interconnect topology is more involved. The goal is to locate
2844 * tasks from numa_groups near each other in the system, and
2845 * untangle workloads from different sides of the system. This requires
2846 * searching down the hierarchy of node groups, recursively searching
2847 * inside the highest scoring group of nodes. The nodemask tricks
2848 * keep the complexity of the search down.
2849 */
2850 nodes = node_states[N_CPU];
2851 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2852 unsigned long max_faults = 0;
2853 nodemask_t max_group = NODE_MASK_NONE;
2854 int a, b;
2855
2856 /* Are there nodes at this distance from each other? */
2857 if (!find_numa_distance(dist))
2858 continue;
2859
2860 for_each_node_mask(a, nodes) {
2861 unsigned long faults = 0;
2862 nodemask_t this_group;
2863 nodes_clear(this_group);
2864
2865 /* Sum group's NUMA faults; includes a==b case. */
2866 for_each_node_mask(b, nodes) {
2867 if (node_distance(a, b) < dist) {
2868 faults += group_faults(p, b);
2869 node_set(b, this_group);
2870 node_clear(b, nodes);
2871 }
2872 }
2873
2874 /* Remember the top group. */
2875 if (faults > max_faults) {
2876 max_faults = faults;
2877 max_group = this_group;
2878 /*
2879 * subtle: at the smallest distance there is
2880 * just one node left in each "group", the
2881 * winner is the preferred nid.
2882 */
2883 nid = a;
2884 }
2885 }
2886 /* Next round, evaluate the nodes within max_group. */
2887 if (!max_faults)
2888 break;
2889 nodes = max_group;
2890 }
2891 return nid;
2892 }
2893
task_numa_placement(struct task_struct * p)2894 static void task_numa_placement(struct task_struct *p)
2895 {
2896 int seq, nid, max_nid = NUMA_NO_NODE;
2897 unsigned long max_faults = 0;
2898 unsigned long fault_types[2] = { 0, 0 };
2899 unsigned long total_faults;
2900 u64 runtime, period;
2901 spinlock_t *group_lock = NULL;
2902 struct numa_group *ng;
2903
2904 /*
2905 * The p->mm->numa_scan_seq field gets updated without
2906 * exclusive access. Use READ_ONCE() here to ensure
2907 * that the field is read in a single access:
2908 */
2909 seq = READ_ONCE(p->mm->numa_scan_seq);
2910 if (p->numa_scan_seq == seq)
2911 return;
2912 p->numa_scan_seq = seq;
2913 p->numa_scan_period_max = task_scan_max(p);
2914
2915 total_faults = p->numa_faults_locality[0] +
2916 p->numa_faults_locality[1];
2917 runtime = numa_get_avg_runtime(p, &period);
2918
2919 /* If the task is part of a group prevent parallel updates to group stats */
2920 ng = deref_curr_numa_group(p);
2921 if (ng) {
2922 group_lock = &ng->lock;
2923 spin_lock_irq(group_lock);
2924 }
2925
2926 /* Find the node with the highest number of faults */
2927 for_each_online_node(nid) {
2928 /* Keep track of the offsets in numa_faults array */
2929 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2930 unsigned long faults = 0, group_faults = 0;
2931 int priv;
2932
2933 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2934 long diff, f_diff, f_weight;
2935
2936 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2937 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2938 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2939 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2940
2941 /* Decay existing window, copy faults since last scan */
2942 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2943 fault_types[priv] += p->numa_faults[membuf_idx];
2944 p->numa_faults[membuf_idx] = 0;
2945
2946 /*
2947 * Normalize the faults_from, so all tasks in a group
2948 * count according to CPU use, instead of by the raw
2949 * number of faults. Tasks with little runtime have
2950 * little over-all impact on throughput, and thus their
2951 * faults are less important.
2952 */
2953 f_weight = div64_u64(runtime << 16, period + 1);
2954 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2955 (total_faults + 1);
2956 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2957 p->numa_faults[cpubuf_idx] = 0;
2958
2959 p->numa_faults[mem_idx] += diff;
2960 p->numa_faults[cpu_idx] += f_diff;
2961 faults += p->numa_faults[mem_idx];
2962 p->total_numa_faults += diff;
2963 if (ng) {
2964 /*
2965 * safe because we can only change our own group
2966 *
2967 * mem_idx represents the offset for a given
2968 * nid and priv in a specific region because it
2969 * is at the beginning of the numa_faults array.
2970 */
2971 ng->faults[mem_idx] += diff;
2972 ng->faults[cpu_idx] += f_diff;
2973 ng->total_faults += diff;
2974 group_faults += ng->faults[mem_idx];
2975 }
2976 }
2977
2978 if (!ng) {
2979 if (faults > max_faults) {
2980 max_faults = faults;
2981 max_nid = nid;
2982 }
2983 } else if (group_faults > max_faults) {
2984 max_faults = group_faults;
2985 max_nid = nid;
2986 }
2987 }
2988
2989 /* Cannot migrate task to CPU-less node */
2990 max_nid = numa_nearest_node(max_nid, N_CPU);
2991
2992 if (ng) {
2993 numa_group_count_active_nodes(ng);
2994 spin_unlock_irq(group_lock);
2995 max_nid = preferred_group_nid(p, max_nid);
2996 }
2997
2998 if (max_faults) {
2999 /* Set the new preferred node */
3000 if (max_nid != p->numa_preferred_nid)
3001 sched_setnuma(p, max_nid);
3002 }
3003
3004 update_task_scan_period(p, fault_types[0], fault_types[1]);
3005 }
3006
get_numa_group(struct numa_group * grp)3007 static inline int get_numa_group(struct numa_group *grp)
3008 {
3009 return refcount_inc_not_zero(&grp->refcount);
3010 }
3011
put_numa_group(struct numa_group * grp)3012 static inline void put_numa_group(struct numa_group *grp)
3013 {
3014 if (refcount_dec_and_test(&grp->refcount))
3015 kfree_rcu(grp, rcu);
3016 }
3017
task_numa_group(struct task_struct * p,int cpupid,int flags,int * priv)3018 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
3019 int *priv)
3020 {
3021 struct numa_group *grp, *my_grp;
3022 struct task_struct *tsk;
3023 bool join = false;
3024 int cpu = cpupid_to_cpu(cpupid);
3025 int i;
3026
3027 if (unlikely(!deref_curr_numa_group(p))) {
3028 unsigned int size = sizeof(struct numa_group) +
3029 NR_NUMA_HINT_FAULT_STATS *
3030 nr_node_ids * sizeof(unsigned long);
3031
3032 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
3033 if (!grp)
3034 return;
3035
3036 refcount_set(&grp->refcount, 1);
3037 grp->active_nodes = 1;
3038 grp->max_faults_cpu = 0;
3039 spin_lock_init(&grp->lock);
3040 grp->gid = p->pid;
3041
3042 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3043 grp->faults[i] = p->numa_faults[i];
3044
3045 grp->total_faults = p->total_numa_faults;
3046
3047 grp->nr_tasks++;
3048 rcu_assign_pointer(p->numa_group, grp);
3049 }
3050
3051 rcu_read_lock();
3052 tsk = READ_ONCE(cpu_rq(cpu)->curr);
3053
3054 if (!cpupid_match_pid(tsk, cpupid))
3055 goto no_join;
3056
3057 grp = rcu_dereference(tsk->numa_group);
3058 if (!grp)
3059 goto no_join;
3060
3061 my_grp = deref_curr_numa_group(p);
3062 if (grp == my_grp)
3063 goto no_join;
3064
3065 /*
3066 * Only join the other group if its bigger; if we're the bigger group,
3067 * the other task will join us.
3068 */
3069 if (my_grp->nr_tasks > grp->nr_tasks)
3070 goto no_join;
3071
3072 /*
3073 * Tie-break on the grp address.
3074 */
3075 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3076 goto no_join;
3077
3078 /* Always join threads in the same process. */
3079 if (tsk->mm == current->mm)
3080 join = true;
3081
3082 /* Simple filter to avoid false positives due to PID collisions */
3083 if (flags & TNF_SHARED)
3084 join = true;
3085
3086 /* Update priv based on whether false sharing was detected */
3087 *priv = !join;
3088
3089 if (join && !get_numa_group(grp))
3090 goto no_join;
3091
3092 rcu_read_unlock();
3093
3094 if (!join)
3095 return;
3096
3097 WARN_ON_ONCE(irqs_disabled());
3098 double_lock_irq(&my_grp->lock, &grp->lock);
3099
3100 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3101 my_grp->faults[i] -= p->numa_faults[i];
3102 grp->faults[i] += p->numa_faults[i];
3103 }
3104 my_grp->total_faults -= p->total_numa_faults;
3105 grp->total_faults += p->total_numa_faults;
3106
3107 my_grp->nr_tasks--;
3108 grp->nr_tasks++;
3109
3110 spin_unlock(&my_grp->lock);
3111 spin_unlock_irq(&grp->lock);
3112
3113 rcu_assign_pointer(p->numa_group, grp);
3114
3115 put_numa_group(my_grp);
3116 return;
3117
3118 no_join:
3119 rcu_read_unlock();
3120 return;
3121 }
3122
3123 /*
3124 * Get rid of NUMA statistics associated with a task (either current or dead).
3125 * If @final is set, the task is dead and has reached refcount zero, so we can
3126 * safely free all relevant data structures. Otherwise, there might be
3127 * concurrent reads from places like load balancing and procfs, and we should
3128 * reset the data back to default state without freeing ->numa_faults.
3129 */
task_numa_free(struct task_struct * p,bool final)3130 void task_numa_free(struct task_struct *p, bool final)
3131 {
3132 /* safe: p either is current or is being freed by current */
3133 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3134 unsigned long *numa_faults = p->numa_faults;
3135 unsigned long flags;
3136 int i;
3137
3138 if (!numa_faults)
3139 return;
3140
3141 if (grp) {
3142 spin_lock_irqsave(&grp->lock, flags);
3143 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3144 grp->faults[i] -= p->numa_faults[i];
3145 grp->total_faults -= p->total_numa_faults;
3146
3147 grp->nr_tasks--;
3148 spin_unlock_irqrestore(&grp->lock, flags);
3149 RCU_INIT_POINTER(p->numa_group, NULL);
3150 put_numa_group(grp);
3151 }
3152
3153 if (final) {
3154 p->numa_faults = NULL;
3155 kfree(numa_faults);
3156 } else {
3157 p->total_numa_faults = 0;
3158 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3159 numa_faults[i] = 0;
3160 }
3161 }
3162
3163 /*
3164 * Got a PROT_NONE fault for a page on @node.
3165 */
task_numa_fault(int last_cpupid,int mem_node,int pages,int flags)3166 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3167 {
3168 struct task_struct *p = current;
3169 bool migrated = flags & TNF_MIGRATED;
3170 int cpu_node = task_node(current);
3171 int local = !!(flags & TNF_FAULT_LOCAL);
3172 struct numa_group *ng;
3173 int priv;
3174
3175 if (!static_branch_likely(&sched_numa_balancing))
3176 return;
3177
3178 /* for example, ksmd faulting in a user's mm */
3179 if (!p->mm)
3180 return;
3181
3182 /*
3183 * NUMA faults statistics are unnecessary for the slow memory
3184 * node for memory tiering mode.
3185 */
3186 if (!node_is_toptier(mem_node) &&
3187 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3188 !cpupid_valid(last_cpupid)))
3189 return;
3190
3191 /* Allocate buffer to track faults on a per-node basis */
3192 if (unlikely(!p->numa_faults)) {
3193 int size = sizeof(*p->numa_faults) *
3194 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3195
3196 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3197 if (!p->numa_faults)
3198 return;
3199
3200 p->total_numa_faults = 0;
3201 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3202 }
3203
3204 /*
3205 * First accesses are treated as private, otherwise consider accesses
3206 * to be private if the accessing pid has not changed
3207 */
3208 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3209 priv = 1;
3210 } else {
3211 priv = cpupid_match_pid(p, last_cpupid);
3212 if (!priv && !(flags & TNF_NO_GROUP))
3213 task_numa_group(p, last_cpupid, flags, &priv);
3214 }
3215
3216 /*
3217 * If a workload spans multiple NUMA nodes, a shared fault that
3218 * occurs wholly within the set of nodes that the workload is
3219 * actively using should be counted as local. This allows the
3220 * scan rate to slow down when a workload has settled down.
3221 */
3222 ng = deref_curr_numa_group(p);
3223 if (!priv && !local && ng && ng->active_nodes > 1 &&
3224 numa_is_active_node(cpu_node, ng) &&
3225 numa_is_active_node(mem_node, ng))
3226 local = 1;
3227
3228 /*
3229 * Retry to migrate task to preferred node periodically, in case it
3230 * previously failed, or the scheduler moved us.
3231 */
3232 if (time_after(jiffies, p->numa_migrate_retry)) {
3233 task_numa_placement(p);
3234 numa_migrate_preferred(p);
3235 }
3236
3237 if (migrated)
3238 p->numa_pages_migrated += pages;
3239 if (flags & TNF_MIGRATE_FAIL)
3240 p->numa_faults_locality[2] += pages;
3241
3242 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3243 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3244 p->numa_faults_locality[local] += pages;
3245 }
3246
reset_ptenuma_scan(struct task_struct * p)3247 static void reset_ptenuma_scan(struct task_struct *p)
3248 {
3249 /*
3250 * We only did a read acquisition of the mmap sem, so
3251 * p->mm->numa_scan_seq is written to without exclusive access
3252 * and the update is not guaranteed to be atomic. That's not
3253 * much of an issue though, since this is just used for
3254 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3255 * expensive, to avoid any form of compiler optimizations:
3256 */
3257 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3258 p->mm->numa_scan_offset = 0;
3259 }
3260
vma_is_accessed(struct mm_struct * mm,struct vm_area_struct * vma)3261 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3262 {
3263 unsigned long pids;
3264 /*
3265 * Allow unconditional access first two times, so that all the (pages)
3266 * of VMAs get prot_none fault introduced irrespective of accesses.
3267 * This is also done to avoid any side effect of task scanning
3268 * amplifying the unfairness of disjoint set of VMAs' access.
3269 */
3270 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3271 return true;
3272
3273 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3274 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3275 return true;
3276
3277 /*
3278 * Complete a scan that has already started regardless of PID access, or
3279 * some VMAs may never be scanned in multi-threaded applications:
3280 */
3281 if (mm->numa_scan_offset > vma->vm_start) {
3282 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3283 return true;
3284 }
3285
3286 /*
3287 * This vma has not been accessed for a while, and if the number
3288 * the threads in the same process is low, which means no other
3289 * threads can help scan this vma, force a vma scan.
3290 */
3291 if (READ_ONCE(mm->numa_scan_seq) >
3292 (vma->numab_state->prev_scan_seq + get_nr_threads(current)))
3293 return true;
3294
3295 return false;
3296 }
3297
3298 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3299
3300 /*
3301 * The expensive part of numa migration is done from task_work context.
3302 * Triggered from task_tick_numa().
3303 */
task_numa_work(struct callback_head * work)3304 static void task_numa_work(struct callback_head *work)
3305 {
3306 unsigned long migrate, next_scan, now = jiffies;
3307 struct task_struct *p = current;
3308 struct mm_struct *mm = p->mm;
3309 u64 runtime = p->se.sum_exec_runtime;
3310 struct vm_area_struct *vma;
3311 unsigned long start, end;
3312 unsigned long nr_pte_updates = 0;
3313 long pages, virtpages;
3314 struct vma_iterator vmi;
3315 bool vma_pids_skipped;
3316 bool vma_pids_forced = false;
3317
3318 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
3319
3320 work->next = work;
3321 /*
3322 * Who cares about NUMA placement when they're dying.
3323 *
3324 * NOTE: make sure not to dereference p->mm before this check,
3325 * exit_task_work() happens _after_ exit_mm() so we could be called
3326 * without p->mm even though we still had it when we enqueued this
3327 * work.
3328 */
3329 if (p->flags & PF_EXITING)
3330 return;
3331
3332 if (!mm->numa_next_scan) {
3333 mm->numa_next_scan = now +
3334 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3335 }
3336
3337 /*
3338 * Enforce maximal scan/migration frequency..
3339 */
3340 migrate = mm->numa_next_scan;
3341 if (time_before(now, migrate))
3342 return;
3343
3344 if (p->numa_scan_period == 0) {
3345 p->numa_scan_period_max = task_scan_max(p);
3346 p->numa_scan_period = task_scan_start(p);
3347 }
3348
3349 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3350 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3351 return;
3352
3353 /*
3354 * Delay this task enough that another task of this mm will likely win
3355 * the next time around.
3356 */
3357 p->node_stamp += 2 * TICK_NSEC;
3358
3359 pages = sysctl_numa_balancing_scan_size;
3360 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3361 virtpages = pages * 8; /* Scan up to this much virtual space */
3362 if (!pages)
3363 return;
3364
3365
3366 if (!mmap_read_trylock(mm))
3367 return;
3368
3369 /*
3370 * VMAs are skipped if the current PID has not trapped a fault within
3371 * the VMA recently. Allow scanning to be forced if there is no
3372 * suitable VMA remaining.
3373 */
3374 vma_pids_skipped = false;
3375
3376 retry_pids:
3377 start = mm->numa_scan_offset;
3378 vma_iter_init(&vmi, mm, start);
3379 vma = vma_next(&vmi);
3380 if (!vma) {
3381 reset_ptenuma_scan(p);
3382 start = 0;
3383 vma_iter_set(&vmi, start);
3384 vma = vma_next(&vmi);
3385 }
3386
3387 for (; vma; vma = vma_next(&vmi)) {
3388 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3389 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3390 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3391 continue;
3392 }
3393
3394 /*
3395 * Shared library pages mapped by multiple processes are not
3396 * migrated as it is expected they are cache replicated. Avoid
3397 * hinting faults in read-only file-backed mappings or the vDSO
3398 * as migrating the pages will be of marginal benefit.
3399 */
3400 if (!vma->vm_mm ||
3401 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3402 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3403 continue;
3404 }
3405
3406 /*
3407 * Skip inaccessible VMAs to avoid any confusion between
3408 * PROT_NONE and NUMA hinting PTEs
3409 */
3410 if (!vma_is_accessible(vma)) {
3411 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3412 continue;
3413 }
3414
3415 /* Initialise new per-VMA NUMAB state. */
3416 if (!vma->numab_state) {
3417 struct vma_numab_state *ptr;
3418
3419 ptr = kzalloc(sizeof(*ptr), GFP_KERNEL);
3420 if (!ptr)
3421 continue;
3422
3423 if (cmpxchg(&vma->numab_state, NULL, ptr)) {
3424 kfree(ptr);
3425 continue;
3426 }
3427
3428 vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3429
3430 vma->numab_state->next_scan = now +
3431 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3432
3433 /* Reset happens after 4 times scan delay of scan start */
3434 vma->numab_state->pids_active_reset = vma->numab_state->next_scan +
3435 msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3436
3437 /*
3438 * Ensure prev_scan_seq does not match numa_scan_seq,
3439 * to prevent VMAs being skipped prematurely on the
3440 * first scan:
3441 */
3442 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3443 }
3444
3445 /*
3446 * Scanning the VMAs of short lived tasks add more overhead. So
3447 * delay the scan for new VMAs.
3448 */
3449 if (mm->numa_scan_seq && time_before(jiffies,
3450 vma->numab_state->next_scan)) {
3451 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3452 continue;
3453 }
3454
3455 /* RESET access PIDs regularly for old VMAs. */
3456 if (mm->numa_scan_seq &&
3457 time_after(jiffies, vma->numab_state->pids_active_reset)) {
3458 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3459 msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3460 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3461 vma->numab_state->pids_active[1] = 0;
3462 }
3463
3464 /* Do not rescan VMAs twice within the same sequence. */
3465 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3466 mm->numa_scan_offset = vma->vm_end;
3467 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3468 continue;
3469 }
3470
3471 /*
3472 * Do not scan the VMA if task has not accessed it, unless no other
3473 * VMA candidate exists.
3474 */
3475 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3476 vma_pids_skipped = true;
3477 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3478 continue;
3479 }
3480
3481 do {
3482 start = max(start, vma->vm_start);
3483 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3484 end = min(end, vma->vm_end);
3485 nr_pte_updates = change_prot_numa(vma, start, end);
3486
3487 /*
3488 * Try to scan sysctl_numa_balancing_size worth of
3489 * hpages that have at least one present PTE that
3490 * is not already PTE-numa. If the VMA contains
3491 * areas that are unused or already full of prot_numa
3492 * PTEs, scan up to virtpages, to skip through those
3493 * areas faster.
3494 */
3495 if (nr_pte_updates)
3496 pages -= (end - start) >> PAGE_SHIFT;
3497 virtpages -= (end - start) >> PAGE_SHIFT;
3498
3499 start = end;
3500 if (pages <= 0 || virtpages <= 0)
3501 goto out;
3502
3503 cond_resched();
3504 } while (end != vma->vm_end);
3505
3506 /* VMA scan is complete, do not scan until next sequence. */
3507 vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3508
3509 /*
3510 * Only force scan within one VMA at a time, to limit the
3511 * cost of scanning a potentially uninteresting VMA.
3512 */
3513 if (vma_pids_forced)
3514 break;
3515 }
3516
3517 /*
3518 * If no VMAs are remaining and VMAs were skipped due to the PID
3519 * not accessing the VMA previously, then force a scan to ensure
3520 * forward progress:
3521 */
3522 if (!vma && !vma_pids_forced && vma_pids_skipped) {
3523 vma_pids_forced = true;
3524 goto retry_pids;
3525 }
3526
3527 out:
3528 /*
3529 * It is possible to reach the end of the VMA list but the last few
3530 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3531 * would find the !migratable VMA on the next scan but not reset the
3532 * scanner to the start so check it now.
3533 */
3534 if (vma)
3535 mm->numa_scan_offset = start;
3536 else
3537 reset_ptenuma_scan(p);
3538 mmap_read_unlock(mm);
3539
3540 /*
3541 * Make sure tasks use at least 32x as much time to run other code
3542 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3543 * Usually update_task_scan_period slows down scanning enough; on an
3544 * overloaded system we need to limit overhead on a per task basis.
3545 */
3546 if (unlikely(p->se.sum_exec_runtime != runtime)) {
3547 u64 diff = p->se.sum_exec_runtime - runtime;
3548 p->node_stamp += 32 * diff;
3549 }
3550 }
3551
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)3552 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3553 {
3554 int mm_users = 0;
3555 struct mm_struct *mm = p->mm;
3556
3557 if (mm) {
3558 mm_users = atomic_read(&mm->mm_users);
3559 if (mm_users == 1) {
3560 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3561 mm->numa_scan_seq = 0;
3562 }
3563 }
3564 p->node_stamp = 0;
3565 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
3566 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
3567 p->numa_migrate_retry = 0;
3568 /* Protect against double add, see task_tick_numa and task_numa_work */
3569 p->numa_work.next = &p->numa_work;
3570 p->numa_faults = NULL;
3571 p->numa_pages_migrated = 0;
3572 p->total_numa_faults = 0;
3573 RCU_INIT_POINTER(p->numa_group, NULL);
3574 p->last_task_numa_placement = 0;
3575 p->last_sum_exec_runtime = 0;
3576
3577 init_task_work(&p->numa_work, task_numa_work);
3578
3579 /* New address space, reset the preferred nid */
3580 if (!(clone_flags & CLONE_VM)) {
3581 p->numa_preferred_nid = NUMA_NO_NODE;
3582 return;
3583 }
3584
3585 /*
3586 * New thread, keep existing numa_preferred_nid which should be copied
3587 * already by arch_dup_task_struct but stagger when scans start.
3588 */
3589 if (mm) {
3590 unsigned int delay;
3591
3592 delay = min_t(unsigned int, task_scan_max(current),
3593 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3594 delay += 2 * TICK_NSEC;
3595 p->node_stamp = delay;
3596 }
3597 }
3598
3599 /*
3600 * Drive the periodic memory faults..
3601 */
task_tick_numa(struct rq * rq,struct task_struct * curr)3602 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3603 {
3604 struct callback_head *work = &curr->numa_work;
3605 u64 period, now;
3606
3607 /*
3608 * We don't care about NUMA placement if we don't have memory.
3609 */
3610 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3611 return;
3612
3613 /*
3614 * Using runtime rather than walltime has the dual advantage that
3615 * we (mostly) drive the selection from busy threads and that the
3616 * task needs to have done some actual work before we bother with
3617 * NUMA placement.
3618 */
3619 now = curr->se.sum_exec_runtime;
3620 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3621
3622 if (now > curr->node_stamp + period) {
3623 if (!curr->node_stamp)
3624 curr->numa_scan_period = task_scan_start(curr);
3625 curr->node_stamp += period;
3626
3627 if (!time_before(jiffies, curr->mm->numa_next_scan))
3628 task_work_add(curr, work, TWA_RESUME);
3629 }
3630 }
3631
update_scan_period(struct task_struct * p,int new_cpu)3632 static void update_scan_period(struct task_struct *p, int new_cpu)
3633 {
3634 int src_nid = cpu_to_node(task_cpu(p));
3635 int dst_nid = cpu_to_node(new_cpu);
3636
3637 if (!static_branch_likely(&sched_numa_balancing))
3638 return;
3639
3640 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3641 return;
3642
3643 if (src_nid == dst_nid)
3644 return;
3645
3646 /*
3647 * Allow resets if faults have been trapped before one scan
3648 * has completed. This is most likely due to a new task that
3649 * is pulled cross-node due to wakeups or load balancing.
3650 */
3651 if (p->numa_scan_seq) {
3652 /*
3653 * Avoid scan adjustments if moving to the preferred
3654 * node or if the task was not previously running on
3655 * the preferred node.
3656 */
3657 if (dst_nid == p->numa_preferred_nid ||
3658 (p->numa_preferred_nid != NUMA_NO_NODE &&
3659 src_nid != p->numa_preferred_nid))
3660 return;
3661 }
3662
3663 p->numa_scan_period = task_scan_start(p);
3664 }
3665
3666 #else
task_tick_numa(struct rq * rq,struct task_struct * curr)3667 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3668 {
3669 }
3670
account_numa_enqueue(struct rq * rq,struct task_struct * p)3671 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3672 {
3673 }
3674
account_numa_dequeue(struct rq * rq,struct task_struct * p)3675 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3676 {
3677 }
3678
update_scan_period(struct task_struct * p,int new_cpu)3679 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3680 {
3681 }
3682
3683 #endif /* CONFIG_NUMA_BALANCING */
3684
3685 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)3686 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3687 {
3688 update_load_add(&cfs_rq->load, se->load.weight);
3689 #ifdef CONFIG_SMP
3690 if (entity_is_task(se)) {
3691 struct rq *rq = rq_of(cfs_rq);
3692
3693 account_numa_enqueue(rq, task_of(se));
3694 list_add(&se->group_node, &rq->cfs_tasks);
3695 }
3696 #endif
3697 cfs_rq->nr_queued++;
3698 }
3699
3700 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)3701 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3702 {
3703 update_load_sub(&cfs_rq->load, se->load.weight);
3704 #ifdef CONFIG_SMP
3705 if (entity_is_task(se)) {
3706 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3707 list_del_init(&se->group_node);
3708 }
3709 #endif
3710 cfs_rq->nr_queued--;
3711 }
3712
3713 /*
3714 * Signed add and clamp on underflow.
3715 *
3716 * Explicitly do a load-store to ensure the intermediate value never hits
3717 * memory. This allows lockless observations without ever seeing the negative
3718 * values.
3719 */
3720 #define add_positive(_ptr, _val) do { \
3721 typeof(_ptr) ptr = (_ptr); \
3722 typeof(_val) val = (_val); \
3723 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3724 \
3725 res = var + val; \
3726 \
3727 if (val < 0 && res > var) \
3728 res = 0; \
3729 \
3730 WRITE_ONCE(*ptr, res); \
3731 } while (0)
3732
3733 /*
3734 * Unsigned subtract and clamp on underflow.
3735 *
3736 * Explicitly do a load-store to ensure the intermediate value never hits
3737 * memory. This allows lockless observations without ever seeing the negative
3738 * values.
3739 */
3740 #define sub_positive(_ptr, _val) do { \
3741 typeof(_ptr) ptr = (_ptr); \
3742 typeof(*ptr) val = (_val); \
3743 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3744 res = var - val; \
3745 if (res > var) \
3746 res = 0; \
3747 WRITE_ONCE(*ptr, res); \
3748 } while (0)
3749
3750 /*
3751 * Remove and clamp on negative, from a local variable.
3752 *
3753 * A variant of sub_positive(), which does not use explicit load-store
3754 * and is thus optimized for local variable updates.
3755 */
3756 #define lsub_positive(_ptr, _val) do { \
3757 typeof(_ptr) ptr = (_ptr); \
3758 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3759 } while (0)
3760
3761 #ifdef CONFIG_SMP
3762 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3763 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3764 {
3765 cfs_rq->avg.load_avg += se->avg.load_avg;
3766 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3767 }
3768
3769 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3770 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3771 {
3772 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3773 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3774 /* See update_cfs_rq_load_avg() */
3775 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3776 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3777 }
3778 #else
3779 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3780 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3781 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3782 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3783 #endif
3784
3785 static void place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags);
3786
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)3787 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3788 unsigned long weight)
3789 {
3790 bool curr = cfs_rq->curr == se;
3791
3792 if (se->on_rq) {
3793 /* commit outstanding execution time */
3794 update_curr(cfs_rq);
3795 update_entity_lag(cfs_rq, se);
3796 se->deadline -= se->vruntime;
3797 se->rel_deadline = 1;
3798 if (!curr)
3799 __dequeue_entity(cfs_rq, se);
3800 update_load_sub(&cfs_rq->load, se->load.weight);
3801 }
3802 dequeue_load_avg(cfs_rq, se);
3803
3804 /*
3805 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3806 * we need to scale se->vlag when w_i changes.
3807 */
3808 se->vlag = div_s64(se->vlag * se->load.weight, weight);
3809 if (se->rel_deadline)
3810 se->deadline = div_s64(se->deadline * se->load.weight, weight);
3811
3812 update_load_set(&se->load, weight);
3813
3814 #ifdef CONFIG_SMP
3815 do {
3816 u32 divider = get_pelt_divider(&se->avg);
3817
3818 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3819 } while (0);
3820 #endif
3821
3822 enqueue_load_avg(cfs_rq, se);
3823 if (se->on_rq) {
3824 update_load_add(&cfs_rq->load, se->load.weight);
3825 place_entity(cfs_rq, se, 0);
3826 if (!curr)
3827 __enqueue_entity(cfs_rq, se);
3828
3829 /*
3830 * The entity's vruntime has been adjusted, so let's check
3831 * whether the rq-wide min_vruntime needs updated too. Since
3832 * the calculations above require stable min_vruntime rather
3833 * than up-to-date one, we do the update at the end of the
3834 * reweight process.
3835 */
3836 update_min_vruntime(cfs_rq);
3837 }
3838 }
3839
reweight_task_fair(struct rq * rq,struct task_struct * p,const struct load_weight * lw)3840 static void reweight_task_fair(struct rq *rq, struct task_struct *p,
3841 const struct load_weight *lw)
3842 {
3843 struct sched_entity *se = &p->se;
3844 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3845 struct load_weight *load = &se->load;
3846
3847 reweight_entity(cfs_rq, se, lw->weight);
3848 load->inv_weight = lw->inv_weight;
3849 }
3850
3851 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3852
3853 #ifdef CONFIG_FAIR_GROUP_SCHED
3854 #ifdef CONFIG_SMP
3855 /*
3856 * All this does is approximate the hierarchical proportion which includes that
3857 * global sum we all love to hate.
3858 *
3859 * That is, the weight of a group entity, is the proportional share of the
3860 * group weight based on the group runqueue weights. That is:
3861 *
3862 * tg->weight * grq->load.weight
3863 * ge->load.weight = ----------------------------- (1)
3864 * \Sum grq->load.weight
3865 *
3866 * Now, because computing that sum is prohibitively expensive to compute (been
3867 * there, done that) we approximate it with this average stuff. The average
3868 * moves slower and therefore the approximation is cheaper and more stable.
3869 *
3870 * So instead of the above, we substitute:
3871 *
3872 * grq->load.weight -> grq->avg.load_avg (2)
3873 *
3874 * which yields the following:
3875 *
3876 * tg->weight * grq->avg.load_avg
3877 * ge->load.weight = ------------------------------ (3)
3878 * tg->load_avg
3879 *
3880 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3881 *
3882 * That is shares_avg, and it is right (given the approximation (2)).
3883 *
3884 * The problem with it is that because the average is slow -- it was designed
3885 * to be exactly that of course -- this leads to transients in boundary
3886 * conditions. In specific, the case where the group was idle and we start the
3887 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3888 * yielding bad latency etc..
3889 *
3890 * Now, in that special case (1) reduces to:
3891 *
3892 * tg->weight * grq->load.weight
3893 * ge->load.weight = ----------------------------- = tg->weight (4)
3894 * grp->load.weight
3895 *
3896 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3897 *
3898 * So what we do is modify our approximation (3) to approach (4) in the (near)
3899 * UP case, like:
3900 *
3901 * ge->load.weight =
3902 *
3903 * tg->weight * grq->load.weight
3904 * --------------------------------------------------- (5)
3905 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3906 *
3907 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3908 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3909 *
3910 *
3911 * tg->weight * grq->load.weight
3912 * ge->load.weight = ----------------------------- (6)
3913 * tg_load_avg'
3914 *
3915 * Where:
3916 *
3917 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3918 * max(grq->load.weight, grq->avg.load_avg)
3919 *
3920 * And that is shares_weight and is icky. In the (near) UP case it approaches
3921 * (4) while in the normal case it approaches (3). It consistently
3922 * overestimates the ge->load.weight and therefore:
3923 *
3924 * \Sum ge->load.weight >= tg->weight
3925 *
3926 * hence icky!
3927 */
calc_group_shares(struct cfs_rq * cfs_rq)3928 static long calc_group_shares(struct cfs_rq *cfs_rq)
3929 {
3930 long tg_weight, tg_shares, load, shares;
3931 struct task_group *tg = cfs_rq->tg;
3932
3933 tg_shares = READ_ONCE(tg->shares);
3934
3935 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3936
3937 tg_weight = atomic_long_read(&tg->load_avg);
3938
3939 /* Ensure tg_weight >= load */
3940 tg_weight -= cfs_rq->tg_load_avg_contrib;
3941 tg_weight += load;
3942
3943 shares = (tg_shares * load);
3944 if (tg_weight)
3945 shares /= tg_weight;
3946
3947 /*
3948 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3949 * of a group with small tg->shares value. It is a floor value which is
3950 * assigned as a minimum load.weight to the sched_entity representing
3951 * the group on a CPU.
3952 *
3953 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3954 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3955 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3956 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3957 * instead of 0.
3958 */
3959 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3960 }
3961 #endif /* CONFIG_SMP */
3962
3963 /*
3964 * Recomputes the group entity based on the current state of its group
3965 * runqueue.
3966 */
update_cfs_group(struct sched_entity * se)3967 static void update_cfs_group(struct sched_entity *se)
3968 {
3969 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3970 long shares;
3971
3972 /*
3973 * When a group becomes empty, preserve its weight. This matters for
3974 * DELAY_DEQUEUE.
3975 */
3976 if (!gcfs_rq || !gcfs_rq->load.weight)
3977 return;
3978
3979 if (throttled_hierarchy(gcfs_rq))
3980 return;
3981
3982 #ifndef CONFIG_SMP
3983 shares = READ_ONCE(gcfs_rq->tg->shares);
3984 #else
3985 shares = calc_group_shares(gcfs_rq);
3986 #endif
3987 if (unlikely(se->load.weight != shares))
3988 reweight_entity(cfs_rq_of(se), se, shares);
3989 }
3990
3991 #else /* CONFIG_FAIR_GROUP_SCHED */
update_cfs_group(struct sched_entity * se)3992 static inline void update_cfs_group(struct sched_entity *se)
3993 {
3994 }
3995 #endif /* CONFIG_FAIR_GROUP_SCHED */
3996
cfs_rq_util_change(struct cfs_rq * cfs_rq,int flags)3997 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3998 {
3999 struct rq *rq = rq_of(cfs_rq);
4000
4001 if (&rq->cfs == cfs_rq) {
4002 /*
4003 * There are a few boundary cases this might miss but it should
4004 * get called often enough that that should (hopefully) not be
4005 * a real problem.
4006 *
4007 * It will not get called when we go idle, because the idle
4008 * thread is a different class (!fair), nor will the utilization
4009 * number include things like RT tasks.
4010 *
4011 * As is, the util number is not freq-invariant (we'd have to
4012 * implement arch_scale_freq_capacity() for that).
4013 *
4014 * See cpu_util_cfs().
4015 */
4016 cpufreq_update_util(rq, flags);
4017 }
4018 }
4019
4020 #ifdef CONFIG_SMP
load_avg_is_decayed(struct sched_avg * sa)4021 static inline bool load_avg_is_decayed(struct sched_avg *sa)
4022 {
4023 if (sa->load_sum)
4024 return false;
4025
4026 if (sa->util_sum)
4027 return false;
4028
4029 if (sa->runnable_sum)
4030 return false;
4031
4032 /*
4033 * _avg must be null when _sum are null because _avg = _sum / divider
4034 * Make sure that rounding and/or propagation of PELT values never
4035 * break this.
4036 */
4037 WARN_ON_ONCE(sa->load_avg ||
4038 sa->util_avg ||
4039 sa->runnable_avg);
4040
4041 return true;
4042 }
4043
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)4044 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4045 {
4046 return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4047 cfs_rq->last_update_time_copy);
4048 }
4049 #ifdef CONFIG_FAIR_GROUP_SCHED
4050 /*
4051 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4052 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4053 * bottom-up, we only have to test whether the cfs_rq before us on the list
4054 * is our child.
4055 * If cfs_rq is not on the list, test whether a child needs its to be added to
4056 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details).
4057 */
child_cfs_rq_on_list(struct cfs_rq * cfs_rq)4058 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4059 {
4060 struct cfs_rq *prev_cfs_rq;
4061 struct list_head *prev;
4062 struct rq *rq = rq_of(cfs_rq);
4063
4064 if (cfs_rq->on_list) {
4065 prev = cfs_rq->leaf_cfs_rq_list.prev;
4066 } else {
4067 prev = rq->tmp_alone_branch;
4068 }
4069
4070 if (prev == &rq->leaf_cfs_rq_list)
4071 return false;
4072
4073 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4074
4075 return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4076 }
4077
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)4078 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4079 {
4080 if (cfs_rq->load.weight)
4081 return false;
4082
4083 if (!load_avg_is_decayed(&cfs_rq->avg))
4084 return false;
4085
4086 if (child_cfs_rq_on_list(cfs_rq))
4087 return false;
4088
4089 return true;
4090 }
4091
4092 /**
4093 * update_tg_load_avg - update the tg's load avg
4094 * @cfs_rq: the cfs_rq whose avg changed
4095 *
4096 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4097 * However, because tg->load_avg is a global value there are performance
4098 * considerations.
4099 *
4100 * In order to avoid having to look at the other cfs_rq's, we use a
4101 * differential update where we store the last value we propagated. This in
4102 * turn allows skipping updates if the differential is 'small'.
4103 *
4104 * Updating tg's load_avg is necessary before update_cfs_share().
4105 */
update_tg_load_avg(struct cfs_rq * cfs_rq)4106 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4107 {
4108 long delta;
4109 u64 now;
4110
4111 /*
4112 * No need to update load_avg for root_task_group as it is not used.
4113 */
4114 if (cfs_rq->tg == &root_task_group)
4115 return;
4116
4117 /* rq has been offline and doesn't contribute to the share anymore: */
4118 if (!cpu_active(cpu_of(rq_of(cfs_rq))))
4119 return;
4120
4121 /*
4122 * For migration heavy workloads, access to tg->load_avg can be
4123 * unbound. Limit the update rate to at most once per ms.
4124 */
4125 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4126 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
4127 return;
4128
4129 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4130 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4131 atomic_long_add(delta, &cfs_rq->tg->load_avg);
4132 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4133 cfs_rq->last_update_tg_load_avg = now;
4134 }
4135 }
4136
clear_tg_load_avg(struct cfs_rq * cfs_rq)4137 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq)
4138 {
4139 long delta;
4140 u64 now;
4141
4142 /*
4143 * No need to update load_avg for root_task_group, as it is not used.
4144 */
4145 if (cfs_rq->tg == &root_task_group)
4146 return;
4147
4148 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4149 delta = 0 - cfs_rq->tg_load_avg_contrib;
4150 atomic_long_add(delta, &cfs_rq->tg->load_avg);
4151 cfs_rq->tg_load_avg_contrib = 0;
4152 cfs_rq->last_update_tg_load_avg = now;
4153 }
4154
4155 /* CPU offline callback: */
clear_tg_offline_cfs_rqs(struct rq * rq)4156 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq)
4157 {
4158 struct task_group *tg;
4159
4160 lockdep_assert_rq_held(rq);
4161
4162 /*
4163 * The rq clock has already been updated in
4164 * set_rq_offline(), so we should skip updating
4165 * the rq clock again in unthrottle_cfs_rq().
4166 */
4167 rq_clock_start_loop_update(rq);
4168
4169 rcu_read_lock();
4170 list_for_each_entry_rcu(tg, &task_groups, list) {
4171 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4172
4173 clear_tg_load_avg(cfs_rq);
4174 }
4175 rcu_read_unlock();
4176
4177 rq_clock_stop_loop_update(rq);
4178 }
4179
4180 /*
4181 * Called within set_task_rq() right before setting a task's CPU. The
4182 * caller only guarantees p->pi_lock is held; no other assumptions,
4183 * including the state of rq->lock, should be made.
4184 */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)4185 void set_task_rq_fair(struct sched_entity *se,
4186 struct cfs_rq *prev, struct cfs_rq *next)
4187 {
4188 u64 p_last_update_time;
4189 u64 n_last_update_time;
4190
4191 if (!sched_feat(ATTACH_AGE_LOAD))
4192 return;
4193
4194 /*
4195 * We are supposed to update the task to "current" time, then its up to
4196 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4197 * getting what current time is, so simply throw away the out-of-date
4198 * time. This will result in the wakee task is less decayed, but giving
4199 * the wakee more load sounds not bad.
4200 */
4201 if (!(se->avg.last_update_time && prev))
4202 return;
4203
4204 p_last_update_time = cfs_rq_last_update_time(prev);
4205 n_last_update_time = cfs_rq_last_update_time(next);
4206
4207 __update_load_avg_blocked_se(p_last_update_time, se);
4208 se->avg.last_update_time = n_last_update_time;
4209 }
4210
4211 /*
4212 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4213 * propagate its contribution. The key to this propagation is the invariant
4214 * that for each group:
4215 *
4216 * ge->avg == grq->avg (1)
4217 *
4218 * _IFF_ we look at the pure running and runnable sums. Because they
4219 * represent the very same entity, just at different points in the hierarchy.
4220 *
4221 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4222 * and simply copies the running/runnable sum over (but still wrong, because
4223 * the group entity and group rq do not have their PELT windows aligned).
4224 *
4225 * However, update_tg_cfs_load() is more complex. So we have:
4226 *
4227 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
4228 *
4229 * And since, like util, the runnable part should be directly transferable,
4230 * the following would _appear_ to be the straight forward approach:
4231 *
4232 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
4233 *
4234 * And per (1) we have:
4235 *
4236 * ge->avg.runnable_avg == grq->avg.runnable_avg
4237 *
4238 * Which gives:
4239 *
4240 * ge->load.weight * grq->avg.load_avg
4241 * ge->avg.load_avg = ----------------------------------- (4)
4242 * grq->load.weight
4243 *
4244 * Except that is wrong!
4245 *
4246 * Because while for entities historical weight is not important and we
4247 * really only care about our future and therefore can consider a pure
4248 * runnable sum, runqueues can NOT do this.
4249 *
4250 * We specifically want runqueues to have a load_avg that includes
4251 * historical weights. Those represent the blocked load, the load we expect
4252 * to (shortly) return to us. This only works by keeping the weights as
4253 * integral part of the sum. We therefore cannot decompose as per (3).
4254 *
4255 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4256 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4257 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4258 * runnable section of these tasks overlap (or not). If they were to perfectly
4259 * align the rq as a whole would be runnable 2/3 of the time. If however we
4260 * always have at least 1 runnable task, the rq as a whole is always runnable.
4261 *
4262 * So we'll have to approximate.. :/
4263 *
4264 * Given the constraint:
4265 *
4266 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4267 *
4268 * We can construct a rule that adds runnable to a rq by assuming minimal
4269 * overlap.
4270 *
4271 * On removal, we'll assume each task is equally runnable; which yields:
4272 *
4273 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4274 *
4275 * XXX: only do this for the part of runnable > running ?
4276 *
4277 */
4278 static inline void
update_tg_cfs_util(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4279 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4280 {
4281 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4282 u32 new_sum, divider;
4283
4284 /* Nothing to update */
4285 if (!delta_avg)
4286 return;
4287
4288 /*
4289 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4290 * See ___update_load_avg() for details.
4291 */
4292 divider = get_pelt_divider(&cfs_rq->avg);
4293
4294
4295 /* Set new sched_entity's utilization */
4296 se->avg.util_avg = gcfs_rq->avg.util_avg;
4297 new_sum = se->avg.util_avg * divider;
4298 delta_sum = (long)new_sum - (long)se->avg.util_sum;
4299 se->avg.util_sum = new_sum;
4300
4301 /* Update parent cfs_rq utilization */
4302 add_positive(&cfs_rq->avg.util_avg, delta_avg);
4303 add_positive(&cfs_rq->avg.util_sum, delta_sum);
4304
4305 /* See update_cfs_rq_load_avg() */
4306 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4307 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4308 }
4309
4310 static inline void
update_tg_cfs_runnable(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4311 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4312 {
4313 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4314 u32 new_sum, divider;
4315
4316 /* Nothing to update */
4317 if (!delta_avg)
4318 return;
4319
4320 /*
4321 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4322 * See ___update_load_avg() for details.
4323 */
4324 divider = get_pelt_divider(&cfs_rq->avg);
4325
4326 /* Set new sched_entity's runnable */
4327 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4328 new_sum = se->avg.runnable_avg * divider;
4329 delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4330 se->avg.runnable_sum = new_sum;
4331
4332 /* Update parent cfs_rq runnable */
4333 add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4334 add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4335 /* See update_cfs_rq_load_avg() */
4336 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4337 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4338 }
4339
4340 static inline void
update_tg_cfs_load(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4341 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4342 {
4343 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4344 unsigned long load_avg;
4345 u64 load_sum = 0;
4346 s64 delta_sum;
4347 u32 divider;
4348
4349 if (!runnable_sum)
4350 return;
4351
4352 gcfs_rq->prop_runnable_sum = 0;
4353
4354 /*
4355 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4356 * See ___update_load_avg() for details.
4357 */
4358 divider = get_pelt_divider(&cfs_rq->avg);
4359
4360 if (runnable_sum >= 0) {
4361 /*
4362 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4363 * the CPU is saturated running == runnable.
4364 */
4365 runnable_sum += se->avg.load_sum;
4366 runnable_sum = min_t(long, runnable_sum, divider);
4367 } else {
4368 /*
4369 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4370 * assuming all tasks are equally runnable.
4371 */
4372 if (scale_load_down(gcfs_rq->load.weight)) {
4373 load_sum = div_u64(gcfs_rq->avg.load_sum,
4374 scale_load_down(gcfs_rq->load.weight));
4375 }
4376
4377 /* But make sure to not inflate se's runnable */
4378 runnable_sum = min(se->avg.load_sum, load_sum);
4379 }
4380
4381 /*
4382 * runnable_sum can't be lower than running_sum
4383 * Rescale running sum to be in the same range as runnable sum
4384 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
4385 * runnable_sum is in [0 : LOAD_AVG_MAX]
4386 */
4387 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4388 runnable_sum = max(runnable_sum, running_sum);
4389
4390 load_sum = se_weight(se) * runnable_sum;
4391 load_avg = div_u64(load_sum, divider);
4392
4393 delta_avg = load_avg - se->avg.load_avg;
4394 if (!delta_avg)
4395 return;
4396
4397 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4398
4399 se->avg.load_sum = runnable_sum;
4400 se->avg.load_avg = load_avg;
4401 add_positive(&cfs_rq->avg.load_avg, delta_avg);
4402 add_positive(&cfs_rq->avg.load_sum, delta_sum);
4403 /* See update_cfs_rq_load_avg() */
4404 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4405 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4406 }
4407
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4408 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4409 {
4410 cfs_rq->propagate = 1;
4411 cfs_rq->prop_runnable_sum += runnable_sum;
4412 }
4413
4414 /* Update task and its cfs_rq load average */
propagate_entity_load_avg(struct sched_entity * se)4415 static inline int propagate_entity_load_avg(struct sched_entity *se)
4416 {
4417 struct cfs_rq *cfs_rq, *gcfs_rq;
4418
4419 if (entity_is_task(se))
4420 return 0;
4421
4422 gcfs_rq = group_cfs_rq(se);
4423 if (!gcfs_rq->propagate)
4424 return 0;
4425
4426 gcfs_rq->propagate = 0;
4427
4428 cfs_rq = cfs_rq_of(se);
4429
4430 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4431
4432 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4433 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4434 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4435
4436 trace_pelt_cfs_tp(cfs_rq);
4437 trace_pelt_se_tp(se);
4438
4439 return 1;
4440 }
4441
4442 /*
4443 * Check if we need to update the load and the utilization of a blocked
4444 * group_entity:
4445 */
skip_blocked_update(struct sched_entity * se)4446 static inline bool skip_blocked_update(struct sched_entity *se)
4447 {
4448 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4449
4450 /*
4451 * If sched_entity still have not zero load or utilization, we have to
4452 * decay it:
4453 */
4454 if (se->avg.load_avg || se->avg.util_avg)
4455 return false;
4456
4457 /*
4458 * If there is a pending propagation, we have to update the load and
4459 * the utilization of the sched_entity:
4460 */
4461 if (gcfs_rq->propagate)
4462 return false;
4463
4464 /*
4465 * Otherwise, the load and the utilization of the sched_entity is
4466 * already zero and there is no pending propagation, so it will be a
4467 * waste of time to try to decay it:
4468 */
4469 return true;
4470 }
4471
4472 #else /* CONFIG_FAIR_GROUP_SCHED */
4473
update_tg_load_avg(struct cfs_rq * cfs_rq)4474 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4475
clear_tg_offline_cfs_rqs(struct rq * rq)4476 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {}
4477
propagate_entity_load_avg(struct sched_entity * se)4478 static inline int propagate_entity_load_avg(struct sched_entity *se)
4479 {
4480 return 0;
4481 }
4482
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4483 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4484
4485 #endif /* CONFIG_FAIR_GROUP_SCHED */
4486
4487 #ifdef CONFIG_NO_HZ_COMMON
migrate_se_pelt_lag(struct sched_entity * se)4488 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4489 {
4490 u64 throttled = 0, now, lut;
4491 struct cfs_rq *cfs_rq;
4492 struct rq *rq;
4493 bool is_idle;
4494
4495 if (load_avg_is_decayed(&se->avg))
4496 return;
4497
4498 cfs_rq = cfs_rq_of(se);
4499 rq = rq_of(cfs_rq);
4500
4501 rcu_read_lock();
4502 is_idle = is_idle_task(rcu_dereference(rq->curr));
4503 rcu_read_unlock();
4504
4505 /*
4506 * The lag estimation comes with a cost we don't want to pay all the
4507 * time. Hence, limiting to the case where the source CPU is idle and
4508 * we know we are at the greatest risk to have an outdated clock.
4509 */
4510 if (!is_idle)
4511 return;
4512
4513 /*
4514 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4515 *
4516 * last_update_time (the cfs_rq's last_update_time)
4517 * = cfs_rq_clock_pelt()@cfs_rq_idle
4518 * = rq_clock_pelt()@cfs_rq_idle
4519 * - cfs->throttled_clock_pelt_time@cfs_rq_idle
4520 *
4521 * cfs_idle_lag (delta between rq's update and cfs_rq's update)
4522 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4523 *
4524 * rq_idle_lag (delta between now and rq's update)
4525 * = sched_clock_cpu() - rq_clock()@rq_idle
4526 *
4527 * We can then write:
4528 *
4529 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4530 * sched_clock_cpu() - rq_clock()@rq_idle
4531 * Where:
4532 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4533 * rq_clock()@rq_idle is rq->clock_idle
4534 * cfs->throttled_clock_pelt_time@cfs_rq_idle
4535 * is cfs_rq->throttled_pelt_idle
4536 */
4537
4538 #ifdef CONFIG_CFS_BANDWIDTH
4539 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4540 /* The clock has been stopped for throttling */
4541 if (throttled == U64_MAX)
4542 return;
4543 #endif
4544 now = u64_u32_load(rq->clock_pelt_idle);
4545 /*
4546 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4547 * is observed the old clock_pelt_idle value and the new clock_idle,
4548 * which lead to an underestimation. The opposite would lead to an
4549 * overestimation.
4550 */
4551 smp_rmb();
4552 lut = cfs_rq_last_update_time(cfs_rq);
4553
4554 now -= throttled;
4555 if (now < lut)
4556 /*
4557 * cfs_rq->avg.last_update_time is more recent than our
4558 * estimation, let's use it.
4559 */
4560 now = lut;
4561 else
4562 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4563
4564 __update_load_avg_blocked_se(now, se);
4565 }
4566 #else
migrate_se_pelt_lag(struct sched_entity * se)4567 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4568 #endif
4569
4570 /**
4571 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4572 * @now: current time, as per cfs_rq_clock_pelt()
4573 * @cfs_rq: cfs_rq to update
4574 *
4575 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4576 * avg. The immediate corollary is that all (fair) tasks must be attached.
4577 *
4578 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4579 *
4580 * Return: true if the load decayed or we removed load.
4581 *
4582 * Since both these conditions indicate a changed cfs_rq->avg.load we should
4583 * call update_tg_load_avg() when this function returns true.
4584 */
4585 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)4586 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4587 {
4588 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4589 struct sched_avg *sa = &cfs_rq->avg;
4590 int decayed = 0;
4591
4592 if (cfs_rq->removed.nr) {
4593 unsigned long r;
4594 u32 divider = get_pelt_divider(&cfs_rq->avg);
4595
4596 raw_spin_lock(&cfs_rq->removed.lock);
4597 swap(cfs_rq->removed.util_avg, removed_util);
4598 swap(cfs_rq->removed.load_avg, removed_load);
4599 swap(cfs_rq->removed.runnable_avg, removed_runnable);
4600 cfs_rq->removed.nr = 0;
4601 raw_spin_unlock(&cfs_rq->removed.lock);
4602
4603 r = removed_load;
4604 sub_positive(&sa->load_avg, r);
4605 sub_positive(&sa->load_sum, r * divider);
4606 /* See sa->util_sum below */
4607 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4608
4609 r = removed_util;
4610 sub_positive(&sa->util_avg, r);
4611 sub_positive(&sa->util_sum, r * divider);
4612 /*
4613 * Because of rounding, se->util_sum might ends up being +1 more than
4614 * cfs->util_sum. Although this is not a problem by itself, detaching
4615 * a lot of tasks with the rounding problem between 2 updates of
4616 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4617 * cfs_util_avg is not.
4618 * Check that util_sum is still above its lower bound for the new
4619 * util_avg. Given that period_contrib might have moved since the last
4620 * sync, we are only sure that util_sum must be above or equal to
4621 * util_avg * minimum possible divider
4622 */
4623 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4624
4625 r = removed_runnable;
4626 sub_positive(&sa->runnable_avg, r);
4627 sub_positive(&sa->runnable_sum, r * divider);
4628 /* See sa->util_sum above */
4629 sa->runnable_sum = max_t(u32, sa->runnable_sum,
4630 sa->runnable_avg * PELT_MIN_DIVIDER);
4631
4632 /*
4633 * removed_runnable is the unweighted version of removed_load so we
4634 * can use it to estimate removed_load_sum.
4635 */
4636 add_tg_cfs_propagate(cfs_rq,
4637 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4638
4639 decayed = 1;
4640 }
4641
4642 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4643 u64_u32_store_copy(sa->last_update_time,
4644 cfs_rq->last_update_time_copy,
4645 sa->last_update_time);
4646 return decayed;
4647 }
4648
4649 /**
4650 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4651 * @cfs_rq: cfs_rq to attach to
4652 * @se: sched_entity to attach
4653 *
4654 * Must call update_cfs_rq_load_avg() before this, since we rely on
4655 * cfs_rq->avg.last_update_time being current.
4656 */
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4657 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4658 {
4659 /*
4660 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4661 * See ___update_load_avg() for details.
4662 */
4663 u32 divider = get_pelt_divider(&cfs_rq->avg);
4664
4665 /*
4666 * When we attach the @se to the @cfs_rq, we must align the decay
4667 * window because without that, really weird and wonderful things can
4668 * happen.
4669 *
4670 * XXX illustrate
4671 */
4672 se->avg.last_update_time = cfs_rq->avg.last_update_time;
4673 se->avg.period_contrib = cfs_rq->avg.period_contrib;
4674
4675 /*
4676 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4677 * period_contrib. This isn't strictly correct, but since we're
4678 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4679 * _sum a little.
4680 */
4681 se->avg.util_sum = se->avg.util_avg * divider;
4682
4683 se->avg.runnable_sum = se->avg.runnable_avg * divider;
4684
4685 se->avg.load_sum = se->avg.load_avg * divider;
4686 if (se_weight(se) < se->avg.load_sum)
4687 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4688 else
4689 se->avg.load_sum = 1;
4690
4691 enqueue_load_avg(cfs_rq, se);
4692 cfs_rq->avg.util_avg += se->avg.util_avg;
4693 cfs_rq->avg.util_sum += se->avg.util_sum;
4694 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4695 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4696
4697 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4698
4699 cfs_rq_util_change(cfs_rq, 0);
4700
4701 trace_pelt_cfs_tp(cfs_rq);
4702 }
4703
4704 /**
4705 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4706 * @cfs_rq: cfs_rq to detach from
4707 * @se: sched_entity to detach
4708 *
4709 * Must call update_cfs_rq_load_avg() before this, since we rely on
4710 * cfs_rq->avg.last_update_time being current.
4711 */
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4712 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4713 {
4714 dequeue_load_avg(cfs_rq, se);
4715 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4716 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4717 /* See update_cfs_rq_load_avg() */
4718 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4719 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4720
4721 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4722 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4723 /* See update_cfs_rq_load_avg() */
4724 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4725 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4726
4727 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4728
4729 cfs_rq_util_change(cfs_rq, 0);
4730
4731 trace_pelt_cfs_tp(cfs_rq);
4732 }
4733
4734 /*
4735 * Optional action to be done while updating the load average
4736 */
4737 #define UPDATE_TG 0x1
4738 #define SKIP_AGE_LOAD 0x2
4739 #define DO_ATTACH 0x4
4740 #define DO_DETACH 0x8
4741
4742 /* Update task and its cfs_rq load average */
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4743 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4744 {
4745 u64 now = cfs_rq_clock_pelt(cfs_rq);
4746 int decayed;
4747
4748 /*
4749 * Track task load average for carrying it to new CPU after migrated, and
4750 * track group sched_entity load average for task_h_load calculation in migration
4751 */
4752 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4753 __update_load_avg_se(now, cfs_rq, se);
4754
4755 decayed = update_cfs_rq_load_avg(now, cfs_rq);
4756 decayed |= propagate_entity_load_avg(se);
4757
4758 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4759
4760 /*
4761 * DO_ATTACH means we're here from enqueue_entity().
4762 * !last_update_time means we've passed through
4763 * migrate_task_rq_fair() indicating we migrated.
4764 *
4765 * IOW we're enqueueing a task on a new CPU.
4766 */
4767 attach_entity_load_avg(cfs_rq, se);
4768 update_tg_load_avg(cfs_rq);
4769
4770 } else if (flags & DO_DETACH) {
4771 /*
4772 * DO_DETACH means we're here from dequeue_entity()
4773 * and we are migrating task out of the CPU.
4774 */
4775 detach_entity_load_avg(cfs_rq, se);
4776 update_tg_load_avg(cfs_rq);
4777 } else if (decayed) {
4778 cfs_rq_util_change(cfs_rq, 0);
4779
4780 if (flags & UPDATE_TG)
4781 update_tg_load_avg(cfs_rq);
4782 }
4783 }
4784
4785 /*
4786 * Synchronize entity load avg of dequeued entity without locking
4787 * the previous rq.
4788 */
sync_entity_load_avg(struct sched_entity * se)4789 static void sync_entity_load_avg(struct sched_entity *se)
4790 {
4791 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4792 u64 last_update_time;
4793
4794 last_update_time = cfs_rq_last_update_time(cfs_rq);
4795 __update_load_avg_blocked_se(last_update_time, se);
4796 }
4797
4798 /*
4799 * Task first catches up with cfs_rq, and then subtract
4800 * itself from the cfs_rq (task must be off the queue now).
4801 */
remove_entity_load_avg(struct sched_entity * se)4802 static void remove_entity_load_avg(struct sched_entity *se)
4803 {
4804 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4805 unsigned long flags;
4806
4807 /*
4808 * tasks cannot exit without having gone through wake_up_new_task() ->
4809 * enqueue_task_fair() which will have added things to the cfs_rq,
4810 * so we can remove unconditionally.
4811 */
4812
4813 sync_entity_load_avg(se);
4814
4815 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4816 ++cfs_rq->removed.nr;
4817 cfs_rq->removed.util_avg += se->avg.util_avg;
4818 cfs_rq->removed.load_avg += se->avg.load_avg;
4819 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
4820 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4821 }
4822
cfs_rq_runnable_avg(struct cfs_rq * cfs_rq)4823 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4824 {
4825 return cfs_rq->avg.runnable_avg;
4826 }
4827
cfs_rq_load_avg(struct cfs_rq * cfs_rq)4828 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4829 {
4830 return cfs_rq->avg.load_avg;
4831 }
4832
4833 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf);
4834
task_util(struct task_struct * p)4835 static inline unsigned long task_util(struct task_struct *p)
4836 {
4837 return READ_ONCE(p->se.avg.util_avg);
4838 }
4839
task_runnable(struct task_struct * p)4840 static inline unsigned long task_runnable(struct task_struct *p)
4841 {
4842 return READ_ONCE(p->se.avg.runnable_avg);
4843 }
4844
_task_util_est(struct task_struct * p)4845 static inline unsigned long _task_util_est(struct task_struct *p)
4846 {
4847 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED;
4848 }
4849
task_util_est(struct task_struct * p)4850 static inline unsigned long task_util_est(struct task_struct *p)
4851 {
4852 return max(task_util(p), _task_util_est(p));
4853 }
4854
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)4855 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4856 struct task_struct *p)
4857 {
4858 unsigned int enqueued;
4859
4860 if (!sched_feat(UTIL_EST))
4861 return;
4862
4863 /* Update root cfs_rq's estimated utilization */
4864 enqueued = cfs_rq->avg.util_est;
4865 enqueued += _task_util_est(p);
4866 WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4867
4868 trace_sched_util_est_cfs_tp(cfs_rq);
4869 }
4870
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4871 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4872 struct task_struct *p)
4873 {
4874 unsigned int enqueued;
4875
4876 if (!sched_feat(UTIL_EST))
4877 return;
4878
4879 /* Update root cfs_rq's estimated utilization */
4880 enqueued = cfs_rq->avg.util_est;
4881 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4882 WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4883
4884 trace_sched_util_est_cfs_tp(cfs_rq);
4885 }
4886
4887 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4888
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4889 static inline void util_est_update(struct cfs_rq *cfs_rq,
4890 struct task_struct *p,
4891 bool task_sleep)
4892 {
4893 unsigned int ewma, dequeued, last_ewma_diff;
4894
4895 if (!sched_feat(UTIL_EST))
4896 return;
4897
4898 /*
4899 * Skip update of task's estimated utilization when the task has not
4900 * yet completed an activation, e.g. being migrated.
4901 */
4902 if (!task_sleep)
4903 return;
4904
4905 /* Get current estimate of utilization */
4906 ewma = READ_ONCE(p->se.avg.util_est);
4907
4908 /*
4909 * If the PELT values haven't changed since enqueue time,
4910 * skip the util_est update.
4911 */
4912 if (ewma & UTIL_AVG_UNCHANGED)
4913 return;
4914
4915 /* Get utilization at dequeue */
4916 dequeued = task_util(p);
4917
4918 /*
4919 * Reset EWMA on utilization increases, the moving average is used only
4920 * to smooth utilization decreases.
4921 */
4922 if (ewma <= dequeued) {
4923 ewma = dequeued;
4924 goto done;
4925 }
4926
4927 /*
4928 * Skip update of task's estimated utilization when its members are
4929 * already ~1% close to its last activation value.
4930 */
4931 last_ewma_diff = ewma - dequeued;
4932 if (last_ewma_diff < UTIL_EST_MARGIN)
4933 goto done;
4934
4935 /*
4936 * To avoid overestimation of actual task utilization, skip updates if
4937 * we cannot grant there is idle time in this CPU.
4938 */
4939 if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))))
4940 return;
4941
4942 /*
4943 * To avoid underestimate of task utilization, skip updates of EWMA if
4944 * we cannot grant that thread got all CPU time it wanted.
4945 */
4946 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p))
4947 goto done;
4948
4949
4950 /*
4951 * Update Task's estimated utilization
4952 *
4953 * When *p completes an activation we can consolidate another sample
4954 * of the task size. This is done by using this value to update the
4955 * Exponential Weighted Moving Average (EWMA):
4956 *
4957 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4958 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4959 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4960 * = w * ( -last_ewma_diff ) + ewma(t-1)
4961 * = w * (-last_ewma_diff + ewma(t-1) / w)
4962 *
4963 * Where 'w' is the weight of new samples, which is configured to be
4964 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4965 */
4966 ewma <<= UTIL_EST_WEIGHT_SHIFT;
4967 ewma -= last_ewma_diff;
4968 ewma >>= UTIL_EST_WEIGHT_SHIFT;
4969 done:
4970 ewma |= UTIL_AVG_UNCHANGED;
4971 WRITE_ONCE(p->se.avg.util_est, ewma);
4972
4973 trace_sched_util_est_se_tp(&p->se);
4974 }
4975
get_actual_cpu_capacity(int cpu)4976 static inline unsigned long get_actual_cpu_capacity(int cpu)
4977 {
4978 unsigned long capacity = arch_scale_cpu_capacity(cpu);
4979
4980 capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu));
4981
4982 return capacity;
4983 }
4984
util_fits_cpu(unsigned long util,unsigned long uclamp_min,unsigned long uclamp_max,int cpu)4985 static inline int util_fits_cpu(unsigned long util,
4986 unsigned long uclamp_min,
4987 unsigned long uclamp_max,
4988 int cpu)
4989 {
4990 unsigned long capacity = capacity_of(cpu);
4991 unsigned long capacity_orig;
4992 bool fits, uclamp_max_fits;
4993
4994 /*
4995 * Check if the real util fits without any uclamp boost/cap applied.
4996 */
4997 fits = fits_capacity(util, capacity);
4998
4999 if (!uclamp_is_used())
5000 return fits;
5001
5002 /*
5003 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
5004 * uclamp_max. We only care about capacity pressure (by using
5005 * capacity_of()) for comparing against the real util.
5006 *
5007 * If a task is boosted to 1024 for example, we don't want a tiny
5008 * pressure to skew the check whether it fits a CPU or not.
5009 *
5010 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
5011 * should fit a little cpu even if there's some pressure.
5012 *
5013 * Only exception is for HW or cpufreq pressure since it has a direct impact
5014 * on available OPP of the system.
5015 *
5016 * We honour it for uclamp_min only as a drop in performance level
5017 * could result in not getting the requested minimum performance level.
5018 *
5019 * For uclamp_max, we can tolerate a drop in performance level as the
5020 * goal is to cap the task. So it's okay if it's getting less.
5021 */
5022 capacity_orig = arch_scale_cpu_capacity(cpu);
5023
5024 /*
5025 * We want to force a task to fit a cpu as implied by uclamp_max.
5026 * But we do have some corner cases to cater for..
5027 *
5028 *
5029 * C=z
5030 * | ___
5031 * | C=y | |
5032 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5033 * | C=x | | | |
5034 * | ___ | | | |
5035 * | | | | | | | (util somewhere in this region)
5036 * | | | | | | |
5037 * | | | | | | |
5038 * +----------------------------------------
5039 * CPU0 CPU1 CPU2
5040 *
5041 * In the above example if a task is capped to a specific performance
5042 * point, y, then when:
5043 *
5044 * * util = 80% of x then it does not fit on CPU0 and should migrate
5045 * to CPU1
5046 * * util = 80% of y then it is forced to fit on CPU1 to honour
5047 * uclamp_max request.
5048 *
5049 * which is what we're enforcing here. A task always fits if
5050 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5051 * the normal upmigration rules should withhold still.
5052 *
5053 * Only exception is when we are on max capacity, then we need to be
5054 * careful not to block overutilized state. This is so because:
5055 *
5056 * 1. There's no concept of capping at max_capacity! We can't go
5057 * beyond this performance level anyway.
5058 * 2. The system is being saturated when we're operating near
5059 * max capacity, it doesn't make sense to block overutilized.
5060 */
5061 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5062 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5063 fits = fits || uclamp_max_fits;
5064
5065 /*
5066 *
5067 * C=z
5068 * | ___ (region a, capped, util >= uclamp_max)
5069 * | C=y | |
5070 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5071 * | C=x | | | |
5072 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max)
5073 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5074 * | | | | | | |
5075 * | | | | | | | (region c, boosted, util < uclamp_min)
5076 * +----------------------------------------
5077 * CPU0 CPU1 CPU2
5078 *
5079 * a) If util > uclamp_max, then we're capped, we don't care about
5080 * actual fitness value here. We only care if uclamp_max fits
5081 * capacity without taking margin/pressure into account.
5082 * See comment above.
5083 *
5084 * b) If uclamp_min <= util <= uclamp_max, then the normal
5085 * fits_capacity() rules apply. Except we need to ensure that we
5086 * enforce we remain within uclamp_max, see comment above.
5087 *
5088 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5089 * need to take into account the boosted value fits the CPU without
5090 * taking margin/pressure into account.
5091 *
5092 * Cases (a) and (b) are handled in the 'fits' variable already. We
5093 * just need to consider an extra check for case (c) after ensuring we
5094 * handle the case uclamp_min > uclamp_max.
5095 */
5096 uclamp_min = min(uclamp_min, uclamp_max);
5097 if (fits && (util < uclamp_min) &&
5098 (uclamp_min > get_actual_cpu_capacity(cpu)))
5099 return -1;
5100
5101 return fits;
5102 }
5103
task_fits_cpu(struct task_struct * p,int cpu)5104 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5105 {
5106 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5107 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5108 unsigned long util = task_util_est(p);
5109 /*
5110 * Return true only if the cpu fully fits the task requirements, which
5111 * include the utilization but also the performance hints.
5112 */
5113 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5114 }
5115
update_misfit_status(struct task_struct * p,struct rq * rq)5116 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5117 {
5118 int cpu = cpu_of(rq);
5119
5120 if (!sched_asym_cpucap_active())
5121 return;
5122
5123 /*
5124 * Affinity allows us to go somewhere higher? Or are we on biggest
5125 * available CPU already? Or do we fit into this CPU ?
5126 */
5127 if (!p || (p->nr_cpus_allowed == 1) ||
5128 (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) ||
5129 task_fits_cpu(p, cpu)) {
5130
5131 rq->misfit_task_load = 0;
5132 return;
5133 }
5134
5135 /*
5136 * Make sure that misfit_task_load will not be null even if
5137 * task_h_load() returns 0.
5138 */
5139 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5140 }
5141
5142 #else /* CONFIG_SMP */
5143
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)5144 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5145 {
5146 return !cfs_rq->nr_queued;
5147 }
5148
5149 #define UPDATE_TG 0x0
5150 #define SKIP_AGE_LOAD 0x0
5151 #define DO_ATTACH 0x0
5152 #define DO_DETACH 0x0
5153
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int not_used1)5154 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5155 {
5156 cfs_rq_util_change(cfs_rq, 0);
5157 }
5158
remove_entity_load_avg(struct sched_entity * se)5159 static inline void remove_entity_load_avg(struct sched_entity *se) {}
5160
5161 static inline void
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)5162 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5163 static inline void
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)5164 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5165
sched_balance_newidle(struct rq * rq,struct rq_flags * rf)5166 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf)
5167 {
5168 return 0;
5169 }
5170
5171 static inline void
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)5172 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5173
5174 static inline void
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)5175 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5176
5177 static inline void
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)5178 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5179 bool task_sleep) {}
update_misfit_status(struct task_struct * p,struct rq * rq)5180 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5181
5182 #endif /* CONFIG_SMP */
5183
__setparam_fair(struct task_struct * p,const struct sched_attr * attr)5184 void __setparam_fair(struct task_struct *p, const struct sched_attr *attr)
5185 {
5186 struct sched_entity *se = &p->se;
5187
5188 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5189 if (attr->sched_runtime) {
5190 se->custom_slice = 1;
5191 se->slice = clamp_t(u64, attr->sched_runtime,
5192 NSEC_PER_MSEC/10, /* HZ=1000 * 10 */
5193 NSEC_PER_MSEC*100); /* HZ=100 / 10 */
5194 } else {
5195 se->custom_slice = 0;
5196 se->slice = sysctl_sched_base_slice;
5197 }
5198 }
5199
5200 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5201 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5202 {
5203 u64 vslice, vruntime = avg_vruntime(cfs_rq);
5204 s64 lag = 0;
5205
5206 if (!se->custom_slice)
5207 se->slice = sysctl_sched_base_slice;
5208 vslice = calc_delta_fair(se->slice, se);
5209
5210 /*
5211 * Due to how V is constructed as the weighted average of entities,
5212 * adding tasks with positive lag, or removing tasks with negative lag
5213 * will move 'time' backwards, this can screw around with the lag of
5214 * other tasks.
5215 *
5216 * EEVDF: placement strategy #1 / #2
5217 */
5218 if (sched_feat(PLACE_LAG) && cfs_rq->nr_queued && se->vlag) {
5219 struct sched_entity *curr = cfs_rq->curr;
5220 unsigned long load;
5221
5222 lag = se->vlag;
5223
5224 /*
5225 * If we want to place a task and preserve lag, we have to
5226 * consider the effect of the new entity on the weighted
5227 * average and compensate for this, otherwise lag can quickly
5228 * evaporate.
5229 *
5230 * Lag is defined as:
5231 *
5232 * lag_i = S - s_i = w_i * (V - v_i)
5233 *
5234 * To avoid the 'w_i' term all over the place, we only track
5235 * the virtual lag:
5236 *
5237 * vl_i = V - v_i <=> v_i = V - vl_i
5238 *
5239 * And we take V to be the weighted average of all v:
5240 *
5241 * V = (\Sum w_j*v_j) / W
5242 *
5243 * Where W is: \Sum w_j
5244 *
5245 * Then, the weighted average after adding an entity with lag
5246 * vl_i is given by:
5247 *
5248 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5249 * = (W*V + w_i*(V - vl_i)) / (W + w_i)
5250 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5251 * = (V*(W + w_i) - w_i*l) / (W + w_i)
5252 * = V - w_i*vl_i / (W + w_i)
5253 *
5254 * And the actual lag after adding an entity with vl_i is:
5255 *
5256 * vl'_i = V' - v_i
5257 * = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5258 * = vl_i - w_i*vl_i / (W + w_i)
5259 *
5260 * Which is strictly less than vl_i. So in order to preserve lag
5261 * we should inflate the lag before placement such that the
5262 * effective lag after placement comes out right.
5263 *
5264 * As such, invert the above relation for vl'_i to get the vl_i
5265 * we need to use such that the lag after placement is the lag
5266 * we computed before dequeue.
5267 *
5268 * vl'_i = vl_i - w_i*vl_i / (W + w_i)
5269 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5270 *
5271 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5272 * = W*vl_i
5273 *
5274 * vl_i = (W + w_i)*vl'_i / W
5275 */
5276 load = cfs_rq->avg_load;
5277 if (curr && curr->on_rq)
5278 load += scale_load_down(curr->load.weight);
5279
5280 lag *= load + scale_load_down(se->load.weight);
5281 if (WARN_ON_ONCE(!load))
5282 load = 1;
5283 lag = div_s64(lag, load);
5284 }
5285
5286 se->vruntime = vruntime - lag;
5287
5288 if (se->rel_deadline) {
5289 se->deadline += se->vruntime;
5290 se->rel_deadline = 0;
5291 return;
5292 }
5293
5294 /*
5295 * When joining the competition; the existing tasks will be,
5296 * on average, halfway through their slice, as such start tasks
5297 * off with half a slice to ease into the competition.
5298 */
5299 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5300 vslice /= 2;
5301
5302 /*
5303 * EEVDF: vd_i = ve_i + r_i/w_i
5304 */
5305 se->deadline = se->vruntime + vslice;
5306 }
5307
5308 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5309 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5310
5311 static void
5312 requeue_delayed_entity(struct sched_entity *se);
5313
5314 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5315 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5316 {
5317 bool curr = cfs_rq->curr == se;
5318
5319 /*
5320 * If we're the current task, we must renormalise before calling
5321 * update_curr().
5322 */
5323 if (curr)
5324 place_entity(cfs_rq, se, flags);
5325
5326 update_curr(cfs_rq);
5327
5328 /*
5329 * When enqueuing a sched_entity, we must:
5330 * - Update loads to have both entity and cfs_rq synced with now.
5331 * - For group_entity, update its runnable_weight to reflect the new
5332 * h_nr_runnable of its group cfs_rq.
5333 * - For group_entity, update its weight to reflect the new share of
5334 * its group cfs_rq
5335 * - Add its new weight to cfs_rq->load.weight
5336 */
5337 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5338 se_update_runnable(se);
5339 /*
5340 * XXX update_load_avg() above will have attached us to the pelt sum;
5341 * but update_cfs_group() here will re-adjust the weight and have to
5342 * undo/redo all that. Seems wasteful.
5343 */
5344 update_cfs_group(se);
5345
5346 /*
5347 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5348 * we can place the entity.
5349 */
5350 if (!curr)
5351 place_entity(cfs_rq, se, flags);
5352
5353 account_entity_enqueue(cfs_rq, se);
5354
5355 /* Entity has migrated, no longer consider this task hot */
5356 if (flags & ENQUEUE_MIGRATED)
5357 se->exec_start = 0;
5358
5359 check_schedstat_required();
5360 update_stats_enqueue_fair(cfs_rq, se, flags);
5361 if (!curr)
5362 __enqueue_entity(cfs_rq, se);
5363 se->on_rq = 1;
5364
5365 if (cfs_rq->nr_queued == 1) {
5366 check_enqueue_throttle(cfs_rq);
5367 if (!throttled_hierarchy(cfs_rq)) {
5368 list_add_leaf_cfs_rq(cfs_rq);
5369 } else {
5370 #ifdef CONFIG_CFS_BANDWIDTH
5371 struct rq *rq = rq_of(cfs_rq);
5372
5373 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5374 cfs_rq->throttled_clock = rq_clock(rq);
5375 if (!cfs_rq->throttled_clock_self)
5376 cfs_rq->throttled_clock_self = rq_clock(rq);
5377 #endif
5378 }
5379 }
5380 }
5381
__clear_buddies_next(struct sched_entity * se)5382 static void __clear_buddies_next(struct sched_entity *se)
5383 {
5384 for_each_sched_entity(se) {
5385 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5386 if (cfs_rq->next != se)
5387 break;
5388
5389 cfs_rq->next = NULL;
5390 }
5391 }
5392
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)5393 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5394 {
5395 if (cfs_rq->next == se)
5396 __clear_buddies_next(se);
5397 }
5398
5399 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5400
set_delayed(struct sched_entity * se)5401 static void set_delayed(struct sched_entity *se)
5402 {
5403 se->sched_delayed = 1;
5404
5405 /*
5406 * Delayed se of cfs_rq have no tasks queued on them.
5407 * Do not adjust h_nr_runnable since dequeue_entities()
5408 * will account it for blocked tasks.
5409 */
5410 if (!entity_is_task(se))
5411 return;
5412
5413 for_each_sched_entity(se) {
5414 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5415
5416 cfs_rq->h_nr_runnable--;
5417 if (cfs_rq_throttled(cfs_rq))
5418 break;
5419 }
5420 }
5421
clear_delayed(struct sched_entity * se)5422 static void clear_delayed(struct sched_entity *se)
5423 {
5424 se->sched_delayed = 0;
5425
5426 /*
5427 * Delayed se of cfs_rq have no tasks queued on them.
5428 * Do not adjust h_nr_runnable since a dequeue has
5429 * already accounted for it or an enqueue of a task
5430 * below it will account for it in enqueue_task_fair().
5431 */
5432 if (!entity_is_task(se))
5433 return;
5434
5435 for_each_sched_entity(se) {
5436 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5437
5438 cfs_rq->h_nr_runnable++;
5439 if (cfs_rq_throttled(cfs_rq))
5440 break;
5441 }
5442 }
5443
finish_delayed_dequeue_entity(struct sched_entity * se)5444 static inline void finish_delayed_dequeue_entity(struct sched_entity *se)
5445 {
5446 clear_delayed(se);
5447 if (sched_feat(DELAY_ZERO) && se->vlag > 0)
5448 se->vlag = 0;
5449 }
5450
5451 static bool
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5452 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5453 {
5454 bool sleep = flags & DEQUEUE_SLEEP;
5455 int action = UPDATE_TG;
5456
5457 update_curr(cfs_rq);
5458 clear_buddies(cfs_rq, se);
5459
5460 if (flags & DEQUEUE_DELAYED) {
5461 WARN_ON_ONCE(!se->sched_delayed);
5462 } else {
5463 bool delay = sleep;
5464 /*
5465 * DELAY_DEQUEUE relies on spurious wakeups, special task
5466 * states must not suffer spurious wakeups, excempt them.
5467 */
5468 if (flags & DEQUEUE_SPECIAL)
5469 delay = false;
5470
5471 WARN_ON_ONCE(delay && se->sched_delayed);
5472
5473 if (sched_feat(DELAY_DEQUEUE) && delay &&
5474 !entity_eligible(cfs_rq, se)) {
5475 update_load_avg(cfs_rq, se, 0);
5476 set_delayed(se);
5477 return false;
5478 }
5479 }
5480
5481 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5482 action |= DO_DETACH;
5483
5484 /*
5485 * When dequeuing a sched_entity, we must:
5486 * - Update loads to have both entity and cfs_rq synced with now.
5487 * - For group_entity, update its runnable_weight to reflect the new
5488 * h_nr_runnable of its group cfs_rq.
5489 * - Subtract its previous weight from cfs_rq->load.weight.
5490 * - For group entity, update its weight to reflect the new share
5491 * of its group cfs_rq.
5492 */
5493 update_load_avg(cfs_rq, se, action);
5494 se_update_runnable(se);
5495
5496 update_stats_dequeue_fair(cfs_rq, se, flags);
5497
5498 update_entity_lag(cfs_rq, se);
5499 if (sched_feat(PLACE_REL_DEADLINE) && !sleep) {
5500 se->deadline -= se->vruntime;
5501 se->rel_deadline = 1;
5502 }
5503
5504 if (se != cfs_rq->curr)
5505 __dequeue_entity(cfs_rq, se);
5506 se->on_rq = 0;
5507 account_entity_dequeue(cfs_rq, se);
5508
5509 /* return excess runtime on last dequeue */
5510 return_cfs_rq_runtime(cfs_rq);
5511
5512 update_cfs_group(se);
5513
5514 /*
5515 * Now advance min_vruntime if @se was the entity holding it back,
5516 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5517 * put back on, and if we advance min_vruntime, we'll be placed back
5518 * further than we started -- i.e. we'll be penalized.
5519 */
5520 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5521 update_min_vruntime(cfs_rq);
5522
5523 if (flags & DEQUEUE_DELAYED)
5524 finish_delayed_dequeue_entity(se);
5525
5526 if (cfs_rq->nr_queued == 0)
5527 update_idle_cfs_rq_clock_pelt(cfs_rq);
5528
5529 return true;
5530 }
5531
5532 static void
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)5533 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5534 {
5535 clear_buddies(cfs_rq, se);
5536
5537 /* 'current' is not kept within the tree. */
5538 if (se->on_rq) {
5539 /*
5540 * Any task has to be enqueued before it get to execute on
5541 * a CPU. So account for the time it spent waiting on the
5542 * runqueue.
5543 */
5544 update_stats_wait_end_fair(cfs_rq, se);
5545 __dequeue_entity(cfs_rq, se);
5546 update_load_avg(cfs_rq, se, UPDATE_TG);
5547
5548 set_protect_slice(se);
5549 }
5550
5551 update_stats_curr_start(cfs_rq, se);
5552 WARN_ON_ONCE(cfs_rq->curr);
5553 cfs_rq->curr = se;
5554
5555 /*
5556 * Track our maximum slice length, if the CPU's load is at
5557 * least twice that of our own weight (i.e. don't track it
5558 * when there are only lesser-weight tasks around):
5559 */
5560 if (schedstat_enabled() &&
5561 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5562 struct sched_statistics *stats;
5563
5564 stats = __schedstats_from_se(se);
5565 __schedstat_set(stats->slice_max,
5566 max((u64)stats->slice_max,
5567 se->sum_exec_runtime - se->prev_sum_exec_runtime));
5568 }
5569
5570 se->prev_sum_exec_runtime = se->sum_exec_runtime;
5571 }
5572
5573 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags);
5574
5575 /*
5576 * Pick the next process, keeping these things in mind, in this order:
5577 * 1) keep things fair between processes/task groups
5578 * 2) pick the "next" process, since someone really wants that to run
5579 * 3) pick the "last" process, for cache locality
5580 * 4) do not run the "skip" process, if something else is available
5581 */
5582 static struct sched_entity *
pick_next_entity(struct rq * rq,struct cfs_rq * cfs_rq)5583 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq)
5584 {
5585 struct sched_entity *se;
5586
5587 /*
5588 * Picking the ->next buddy will affect latency but not fairness.
5589 */
5590 if (sched_feat(PICK_BUDDY) &&
5591 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) {
5592 /* ->next will never be delayed */
5593 WARN_ON_ONCE(cfs_rq->next->sched_delayed);
5594 return cfs_rq->next;
5595 }
5596
5597 se = pick_eevdf(cfs_rq);
5598 if (se->sched_delayed) {
5599 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
5600 /*
5601 * Must not reference @se again, see __block_task().
5602 */
5603 return NULL;
5604 }
5605 return se;
5606 }
5607
5608 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5609
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)5610 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5611 {
5612 /*
5613 * If still on the runqueue then deactivate_task()
5614 * was not called and update_curr() has to be done:
5615 */
5616 if (prev->on_rq)
5617 update_curr(cfs_rq);
5618
5619 /* throttle cfs_rqs exceeding runtime */
5620 check_cfs_rq_runtime(cfs_rq);
5621
5622 if (prev->on_rq) {
5623 update_stats_wait_start_fair(cfs_rq, prev);
5624 /* Put 'current' back into the tree. */
5625 __enqueue_entity(cfs_rq, prev);
5626 /* in !on_rq case, update occurred at dequeue */
5627 update_load_avg(cfs_rq, prev, 0);
5628 }
5629 WARN_ON_ONCE(cfs_rq->curr != prev);
5630 cfs_rq->curr = NULL;
5631 }
5632
5633 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)5634 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5635 {
5636 /*
5637 * Update run-time statistics of the 'current'.
5638 */
5639 update_curr(cfs_rq);
5640
5641 /*
5642 * Ensure that runnable average is periodically updated.
5643 */
5644 update_load_avg(cfs_rq, curr, UPDATE_TG);
5645 update_cfs_group(curr);
5646
5647 #ifdef CONFIG_SCHED_HRTICK
5648 /*
5649 * queued ticks are scheduled to match the slice, so don't bother
5650 * validating it and just reschedule.
5651 */
5652 if (queued) {
5653 resched_curr_lazy(rq_of(cfs_rq));
5654 return;
5655 }
5656 #endif
5657 }
5658
5659
5660 /**************************************************
5661 * CFS bandwidth control machinery
5662 */
5663
5664 #ifdef CONFIG_CFS_BANDWIDTH
5665
5666 #ifdef CONFIG_JUMP_LABEL
5667 static struct static_key __cfs_bandwidth_used;
5668
cfs_bandwidth_used(void)5669 static inline bool cfs_bandwidth_used(void)
5670 {
5671 return static_key_false(&__cfs_bandwidth_used);
5672 }
5673
cfs_bandwidth_usage_inc(void)5674 void cfs_bandwidth_usage_inc(void)
5675 {
5676 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5677 }
5678
cfs_bandwidth_usage_dec(void)5679 void cfs_bandwidth_usage_dec(void)
5680 {
5681 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5682 }
5683 #else /* CONFIG_JUMP_LABEL */
cfs_bandwidth_used(void)5684 static bool cfs_bandwidth_used(void)
5685 {
5686 return true;
5687 }
5688
cfs_bandwidth_usage_inc(void)5689 void cfs_bandwidth_usage_inc(void) {}
cfs_bandwidth_usage_dec(void)5690 void cfs_bandwidth_usage_dec(void) {}
5691 #endif /* CONFIG_JUMP_LABEL */
5692
5693 /*
5694 * default period for cfs group bandwidth.
5695 * default: 0.1s, units: nanoseconds
5696 */
default_cfs_period(void)5697 static inline u64 default_cfs_period(void)
5698 {
5699 return 100000000ULL;
5700 }
5701
sched_cfs_bandwidth_slice(void)5702 static inline u64 sched_cfs_bandwidth_slice(void)
5703 {
5704 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5705 }
5706
5707 /*
5708 * Replenish runtime according to assigned quota. We use sched_clock_cpu
5709 * directly instead of rq->clock to avoid adding additional synchronization
5710 * around rq->lock.
5711 *
5712 * requires cfs_b->lock
5713 */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)5714 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5715 {
5716 s64 runtime;
5717
5718 if (unlikely(cfs_b->quota == RUNTIME_INF))
5719 return;
5720
5721 cfs_b->runtime += cfs_b->quota;
5722 runtime = cfs_b->runtime_snap - cfs_b->runtime;
5723 if (runtime > 0) {
5724 cfs_b->burst_time += runtime;
5725 cfs_b->nr_burst++;
5726 }
5727
5728 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5729 cfs_b->runtime_snap = cfs_b->runtime;
5730 }
5731
tg_cfs_bandwidth(struct task_group * tg)5732 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5733 {
5734 return &tg->cfs_bandwidth;
5735 }
5736
5737 /* returns 0 on failure to allocate runtime */
__assign_cfs_rq_runtime(struct cfs_bandwidth * cfs_b,struct cfs_rq * cfs_rq,u64 target_runtime)5738 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5739 struct cfs_rq *cfs_rq, u64 target_runtime)
5740 {
5741 u64 min_amount, amount = 0;
5742
5743 lockdep_assert_held(&cfs_b->lock);
5744
5745 /* note: this is a positive sum as runtime_remaining <= 0 */
5746 min_amount = target_runtime - cfs_rq->runtime_remaining;
5747
5748 if (cfs_b->quota == RUNTIME_INF)
5749 amount = min_amount;
5750 else {
5751 start_cfs_bandwidth(cfs_b);
5752
5753 if (cfs_b->runtime > 0) {
5754 amount = min(cfs_b->runtime, min_amount);
5755 cfs_b->runtime -= amount;
5756 cfs_b->idle = 0;
5757 }
5758 }
5759
5760 cfs_rq->runtime_remaining += amount;
5761
5762 return cfs_rq->runtime_remaining > 0;
5763 }
5764
5765 /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)5766 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5767 {
5768 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5769 int ret;
5770
5771 raw_spin_lock(&cfs_b->lock);
5772 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5773 raw_spin_unlock(&cfs_b->lock);
5774
5775 return ret;
5776 }
5777
__account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5778 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5779 {
5780 /* dock delta_exec before expiring quota (as it could span periods) */
5781 cfs_rq->runtime_remaining -= delta_exec;
5782
5783 if (likely(cfs_rq->runtime_remaining > 0))
5784 return;
5785
5786 if (cfs_rq->throttled)
5787 return;
5788 /*
5789 * if we're unable to extend our runtime we resched so that the active
5790 * hierarchy can be throttled
5791 */
5792 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5793 resched_curr(rq_of(cfs_rq));
5794 }
5795
5796 static __always_inline
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5797 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5798 {
5799 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5800 return;
5801
5802 __account_cfs_rq_runtime(cfs_rq, delta_exec);
5803 }
5804
cfs_rq_throttled(struct cfs_rq * cfs_rq)5805 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5806 {
5807 return cfs_bandwidth_used() && cfs_rq->throttled;
5808 }
5809
5810 /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)5811 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5812 {
5813 return cfs_bandwidth_used() && cfs_rq->throttle_count;
5814 }
5815
5816 /*
5817 * Ensure that neither of the group entities corresponding to src_cpu or
5818 * dest_cpu are members of a throttled hierarchy when performing group
5819 * load-balance operations.
5820 */
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)5821 static inline int throttled_lb_pair(struct task_group *tg,
5822 int src_cpu, int dest_cpu)
5823 {
5824 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5825
5826 src_cfs_rq = tg->cfs_rq[src_cpu];
5827 dest_cfs_rq = tg->cfs_rq[dest_cpu];
5828
5829 return throttled_hierarchy(src_cfs_rq) ||
5830 throttled_hierarchy(dest_cfs_rq);
5831 }
5832
tg_unthrottle_up(struct task_group * tg,void * data)5833 static int tg_unthrottle_up(struct task_group *tg, void *data)
5834 {
5835 struct rq *rq = data;
5836 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5837
5838 cfs_rq->throttle_count--;
5839 if (!cfs_rq->throttle_count) {
5840 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5841 cfs_rq->throttled_clock_pelt;
5842
5843 /* Add cfs_rq with load or one or more already running entities to the list */
5844 if (!cfs_rq_is_decayed(cfs_rq))
5845 list_add_leaf_cfs_rq(cfs_rq);
5846
5847 if (cfs_rq->throttled_clock_self) {
5848 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5849
5850 cfs_rq->throttled_clock_self = 0;
5851
5852 if (WARN_ON_ONCE((s64)delta < 0))
5853 delta = 0;
5854
5855 cfs_rq->throttled_clock_self_time += delta;
5856 }
5857 }
5858
5859 return 0;
5860 }
5861
tg_throttle_down(struct task_group * tg,void * data)5862 static int tg_throttle_down(struct task_group *tg, void *data)
5863 {
5864 struct rq *rq = data;
5865 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5866
5867 /* group is entering throttled state, stop time */
5868 if (!cfs_rq->throttle_count) {
5869 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5870 list_del_leaf_cfs_rq(cfs_rq);
5871
5872 WARN_ON_ONCE(cfs_rq->throttled_clock_self);
5873 if (cfs_rq->nr_queued)
5874 cfs_rq->throttled_clock_self = rq_clock(rq);
5875 }
5876 cfs_rq->throttle_count++;
5877
5878 return 0;
5879 }
5880
throttle_cfs_rq(struct cfs_rq * cfs_rq)5881 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5882 {
5883 struct rq *rq = rq_of(cfs_rq);
5884 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5885 struct sched_entity *se;
5886 long queued_delta, runnable_delta, idle_delta, dequeue = 1;
5887 long rq_h_nr_queued = rq->cfs.h_nr_queued;
5888
5889 raw_spin_lock(&cfs_b->lock);
5890 /* This will start the period timer if necessary */
5891 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5892 /*
5893 * We have raced with bandwidth becoming available, and if we
5894 * actually throttled the timer might not unthrottle us for an
5895 * entire period. We additionally needed to make sure that any
5896 * subsequent check_cfs_rq_runtime calls agree not to throttle
5897 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5898 * for 1ns of runtime rather than just check cfs_b.
5899 */
5900 dequeue = 0;
5901 } else {
5902 list_add_tail_rcu(&cfs_rq->throttled_list,
5903 &cfs_b->throttled_cfs_rq);
5904 }
5905 raw_spin_unlock(&cfs_b->lock);
5906
5907 if (!dequeue)
5908 return false; /* Throttle no longer required. */
5909
5910 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5911
5912 /* freeze hierarchy runnable averages while throttled */
5913 rcu_read_lock();
5914 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5915 rcu_read_unlock();
5916
5917 queued_delta = cfs_rq->h_nr_queued;
5918 runnable_delta = cfs_rq->h_nr_runnable;
5919 idle_delta = cfs_rq->h_nr_idle;
5920 for_each_sched_entity(se) {
5921 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5922 int flags;
5923
5924 /* throttled entity or throttle-on-deactivate */
5925 if (!se->on_rq)
5926 goto done;
5927
5928 /*
5929 * Abuse SPECIAL to avoid delayed dequeue in this instance.
5930 * This avoids teaching dequeue_entities() about throttled
5931 * entities and keeps things relatively simple.
5932 */
5933 flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL;
5934 if (se->sched_delayed)
5935 flags |= DEQUEUE_DELAYED;
5936 dequeue_entity(qcfs_rq, se, flags);
5937
5938 if (cfs_rq_is_idle(group_cfs_rq(se)))
5939 idle_delta = cfs_rq->h_nr_queued;
5940
5941 qcfs_rq->h_nr_queued -= queued_delta;
5942 qcfs_rq->h_nr_runnable -= runnable_delta;
5943 qcfs_rq->h_nr_idle -= idle_delta;
5944
5945 if (qcfs_rq->load.weight) {
5946 /* Avoid re-evaluating load for this entity: */
5947 se = parent_entity(se);
5948 break;
5949 }
5950 }
5951
5952 for_each_sched_entity(se) {
5953 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5954 /* throttled entity or throttle-on-deactivate */
5955 if (!se->on_rq)
5956 goto done;
5957
5958 update_load_avg(qcfs_rq, se, 0);
5959 se_update_runnable(se);
5960
5961 if (cfs_rq_is_idle(group_cfs_rq(se)))
5962 idle_delta = cfs_rq->h_nr_queued;
5963
5964 qcfs_rq->h_nr_queued -= queued_delta;
5965 qcfs_rq->h_nr_runnable -= runnable_delta;
5966 qcfs_rq->h_nr_idle -= idle_delta;
5967 }
5968
5969 /* At this point se is NULL and we are at root level*/
5970 sub_nr_running(rq, queued_delta);
5971
5972 /* Stop the fair server if throttling resulted in no runnable tasks */
5973 if (rq_h_nr_queued && !rq->cfs.h_nr_queued)
5974 dl_server_stop(&rq->fair_server);
5975 done:
5976 /*
5977 * Note: distribution will already see us throttled via the
5978 * throttled-list. rq->lock protects completion.
5979 */
5980 cfs_rq->throttled = 1;
5981 WARN_ON_ONCE(cfs_rq->throttled_clock);
5982 if (cfs_rq->nr_queued)
5983 cfs_rq->throttled_clock = rq_clock(rq);
5984 return true;
5985 }
5986
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)5987 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5988 {
5989 struct rq *rq = rq_of(cfs_rq);
5990 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5991 struct sched_entity *se;
5992 long queued_delta, runnable_delta, idle_delta;
5993 long rq_h_nr_queued = rq->cfs.h_nr_queued;
5994
5995 se = cfs_rq->tg->se[cpu_of(rq)];
5996
5997 cfs_rq->throttled = 0;
5998
5999 update_rq_clock(rq);
6000
6001 raw_spin_lock(&cfs_b->lock);
6002 if (cfs_rq->throttled_clock) {
6003 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
6004 cfs_rq->throttled_clock = 0;
6005 }
6006 list_del_rcu(&cfs_rq->throttled_list);
6007 raw_spin_unlock(&cfs_b->lock);
6008
6009 /* update hierarchical throttle state */
6010 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
6011
6012 if (!cfs_rq->load.weight) {
6013 if (!cfs_rq->on_list)
6014 return;
6015 /*
6016 * Nothing to run but something to decay (on_list)?
6017 * Complete the branch.
6018 */
6019 for_each_sched_entity(se) {
6020 if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
6021 break;
6022 }
6023 goto unthrottle_throttle;
6024 }
6025
6026 queued_delta = cfs_rq->h_nr_queued;
6027 runnable_delta = cfs_rq->h_nr_runnable;
6028 idle_delta = cfs_rq->h_nr_idle;
6029 for_each_sched_entity(se) {
6030 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6031
6032 /* Handle any unfinished DELAY_DEQUEUE business first. */
6033 if (se->sched_delayed) {
6034 int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED;
6035
6036 dequeue_entity(qcfs_rq, se, flags);
6037 } else if (se->on_rq)
6038 break;
6039 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
6040
6041 if (cfs_rq_is_idle(group_cfs_rq(se)))
6042 idle_delta = cfs_rq->h_nr_queued;
6043
6044 qcfs_rq->h_nr_queued += queued_delta;
6045 qcfs_rq->h_nr_runnable += runnable_delta;
6046 qcfs_rq->h_nr_idle += idle_delta;
6047
6048 /* end evaluation on encountering a throttled cfs_rq */
6049 if (cfs_rq_throttled(qcfs_rq))
6050 goto unthrottle_throttle;
6051 }
6052
6053 for_each_sched_entity(se) {
6054 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6055
6056 update_load_avg(qcfs_rq, se, UPDATE_TG);
6057 se_update_runnable(se);
6058
6059 if (cfs_rq_is_idle(group_cfs_rq(se)))
6060 idle_delta = cfs_rq->h_nr_queued;
6061
6062 qcfs_rq->h_nr_queued += queued_delta;
6063 qcfs_rq->h_nr_runnable += runnable_delta;
6064 qcfs_rq->h_nr_idle += idle_delta;
6065
6066 /* end evaluation on encountering a throttled cfs_rq */
6067 if (cfs_rq_throttled(qcfs_rq))
6068 goto unthrottle_throttle;
6069 }
6070
6071 /* Start the fair server if un-throttling resulted in new runnable tasks */
6072 if (!rq_h_nr_queued && rq->cfs.h_nr_queued)
6073 dl_server_start(&rq->fair_server);
6074
6075 /* At this point se is NULL and we are at root level*/
6076 add_nr_running(rq, queued_delta);
6077
6078 unthrottle_throttle:
6079 assert_list_leaf_cfs_rq(rq);
6080
6081 /* Determine whether we need to wake up potentially idle CPU: */
6082 if (rq->curr == rq->idle && rq->cfs.nr_queued)
6083 resched_curr(rq);
6084 }
6085
6086 #ifdef CONFIG_SMP
__cfsb_csd_unthrottle(void * arg)6087 static void __cfsb_csd_unthrottle(void *arg)
6088 {
6089 struct cfs_rq *cursor, *tmp;
6090 struct rq *rq = arg;
6091 struct rq_flags rf;
6092
6093 rq_lock(rq, &rf);
6094
6095 /*
6096 * Iterating over the list can trigger several call to
6097 * update_rq_clock() in unthrottle_cfs_rq().
6098 * Do it once and skip the potential next ones.
6099 */
6100 update_rq_clock(rq);
6101 rq_clock_start_loop_update(rq);
6102
6103 /*
6104 * Since we hold rq lock we're safe from concurrent manipulation of
6105 * the CSD list. However, this RCU critical section annotates the
6106 * fact that we pair with sched_free_group_rcu(), so that we cannot
6107 * race with group being freed in the window between removing it
6108 * from the list and advancing to the next entry in the list.
6109 */
6110 rcu_read_lock();
6111
6112 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
6113 throttled_csd_list) {
6114 list_del_init(&cursor->throttled_csd_list);
6115
6116 if (cfs_rq_throttled(cursor))
6117 unthrottle_cfs_rq(cursor);
6118 }
6119
6120 rcu_read_unlock();
6121
6122 rq_clock_stop_loop_update(rq);
6123 rq_unlock(rq, &rf);
6124 }
6125
__unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6126 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6127 {
6128 struct rq *rq = rq_of(cfs_rq);
6129 bool first;
6130
6131 if (rq == this_rq()) {
6132 unthrottle_cfs_rq(cfs_rq);
6133 return;
6134 }
6135
6136 /* Already enqueued */
6137 if (WARN_ON_ONCE(!list_empty(&cfs_rq->throttled_csd_list)))
6138 return;
6139
6140 first = list_empty(&rq->cfsb_csd_list);
6141 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
6142 if (first)
6143 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
6144 }
6145 #else
__unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6146 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6147 {
6148 unthrottle_cfs_rq(cfs_rq);
6149 }
6150 #endif
6151
unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6152 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6153 {
6154 lockdep_assert_rq_held(rq_of(cfs_rq));
6155
6156 if (WARN_ON_ONCE(!cfs_rq_throttled(cfs_rq) ||
6157 cfs_rq->runtime_remaining <= 0))
6158 return;
6159
6160 __unthrottle_cfs_rq_async(cfs_rq);
6161 }
6162
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b)6163 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
6164 {
6165 int this_cpu = smp_processor_id();
6166 u64 runtime, remaining = 1;
6167 bool throttled = false;
6168 struct cfs_rq *cfs_rq, *tmp;
6169 struct rq_flags rf;
6170 struct rq *rq;
6171 LIST_HEAD(local_unthrottle);
6172
6173 rcu_read_lock();
6174 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6175 throttled_list) {
6176 rq = rq_of(cfs_rq);
6177
6178 if (!remaining) {
6179 throttled = true;
6180 break;
6181 }
6182
6183 rq_lock_irqsave(rq, &rf);
6184 if (!cfs_rq_throttled(cfs_rq))
6185 goto next;
6186
6187 /* Already queued for async unthrottle */
6188 if (!list_empty(&cfs_rq->throttled_csd_list))
6189 goto next;
6190
6191 /* By the above checks, this should never be true */
6192 WARN_ON_ONCE(cfs_rq->runtime_remaining > 0);
6193
6194 raw_spin_lock(&cfs_b->lock);
6195 runtime = -cfs_rq->runtime_remaining + 1;
6196 if (runtime > cfs_b->runtime)
6197 runtime = cfs_b->runtime;
6198 cfs_b->runtime -= runtime;
6199 remaining = cfs_b->runtime;
6200 raw_spin_unlock(&cfs_b->lock);
6201
6202 cfs_rq->runtime_remaining += runtime;
6203
6204 /* we check whether we're throttled above */
6205 if (cfs_rq->runtime_remaining > 0) {
6206 if (cpu_of(rq) != this_cpu) {
6207 unthrottle_cfs_rq_async(cfs_rq);
6208 } else {
6209 /*
6210 * We currently only expect to be unthrottling
6211 * a single cfs_rq locally.
6212 */
6213 WARN_ON_ONCE(!list_empty(&local_unthrottle));
6214 list_add_tail(&cfs_rq->throttled_csd_list,
6215 &local_unthrottle);
6216 }
6217 } else {
6218 throttled = true;
6219 }
6220
6221 next:
6222 rq_unlock_irqrestore(rq, &rf);
6223 }
6224
6225 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
6226 throttled_csd_list) {
6227 struct rq *rq = rq_of(cfs_rq);
6228
6229 rq_lock_irqsave(rq, &rf);
6230
6231 list_del_init(&cfs_rq->throttled_csd_list);
6232
6233 if (cfs_rq_throttled(cfs_rq))
6234 unthrottle_cfs_rq(cfs_rq);
6235
6236 rq_unlock_irqrestore(rq, &rf);
6237 }
6238 WARN_ON_ONCE(!list_empty(&local_unthrottle));
6239
6240 rcu_read_unlock();
6241
6242 return throttled;
6243 }
6244
6245 /*
6246 * Responsible for refilling a task_group's bandwidth and unthrottling its
6247 * cfs_rqs as appropriate. If there has been no activity within the last
6248 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6249 * used to track this state.
6250 */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun,unsigned long flags)6251 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6252 {
6253 int throttled;
6254
6255 /* no need to continue the timer with no bandwidth constraint */
6256 if (cfs_b->quota == RUNTIME_INF)
6257 goto out_deactivate;
6258
6259 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6260 cfs_b->nr_periods += overrun;
6261
6262 /* Refill extra burst quota even if cfs_b->idle */
6263 __refill_cfs_bandwidth_runtime(cfs_b);
6264
6265 /*
6266 * idle depends on !throttled (for the case of a large deficit), and if
6267 * we're going inactive then everything else can be deferred
6268 */
6269 if (cfs_b->idle && !throttled)
6270 goto out_deactivate;
6271
6272 if (!throttled) {
6273 /* mark as potentially idle for the upcoming period */
6274 cfs_b->idle = 1;
6275 return 0;
6276 }
6277
6278 /* account preceding periods in which throttling occurred */
6279 cfs_b->nr_throttled += overrun;
6280
6281 /*
6282 * This check is repeated as we release cfs_b->lock while we unthrottle.
6283 */
6284 while (throttled && cfs_b->runtime > 0) {
6285 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6286 /* we can't nest cfs_b->lock while distributing bandwidth */
6287 throttled = distribute_cfs_runtime(cfs_b);
6288 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6289 }
6290
6291 /*
6292 * While we are ensured activity in the period following an
6293 * unthrottle, this also covers the case in which the new bandwidth is
6294 * insufficient to cover the existing bandwidth deficit. (Forcing the
6295 * timer to remain active while there are any throttled entities.)
6296 */
6297 cfs_b->idle = 0;
6298
6299 return 0;
6300
6301 out_deactivate:
6302 return 1;
6303 }
6304
6305 /* a cfs_rq won't donate quota below this amount */
6306 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6307 /* minimum remaining period time to redistribute slack quota */
6308 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6309 /* how long we wait to gather additional slack before distributing */
6310 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6311
6312 /*
6313 * Are we near the end of the current quota period?
6314 *
6315 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6316 * hrtimer base being cleared by hrtimer_start. In the case of
6317 * migrate_hrtimers, base is never cleared, so we are fine.
6318 */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)6319 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6320 {
6321 struct hrtimer *refresh_timer = &cfs_b->period_timer;
6322 s64 remaining;
6323
6324 /* if the call-back is running a quota refresh is already occurring */
6325 if (hrtimer_callback_running(refresh_timer))
6326 return 1;
6327
6328 /* is a quota refresh about to occur? */
6329 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6330 if (remaining < (s64)min_expire)
6331 return 1;
6332
6333 return 0;
6334 }
6335
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)6336 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6337 {
6338 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6339
6340 /* if there's a quota refresh soon don't bother with slack */
6341 if (runtime_refresh_within(cfs_b, min_left))
6342 return;
6343
6344 /* don't push forwards an existing deferred unthrottle */
6345 if (cfs_b->slack_started)
6346 return;
6347 cfs_b->slack_started = true;
6348
6349 hrtimer_start(&cfs_b->slack_timer,
6350 ns_to_ktime(cfs_bandwidth_slack_period),
6351 HRTIMER_MODE_REL);
6352 }
6353
6354 /* we know any runtime found here is valid as update_curr() precedes return */
__return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6355 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6356 {
6357 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6358 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6359
6360 if (slack_runtime <= 0)
6361 return;
6362
6363 raw_spin_lock(&cfs_b->lock);
6364 if (cfs_b->quota != RUNTIME_INF) {
6365 cfs_b->runtime += slack_runtime;
6366
6367 /* we are under rq->lock, defer unthrottling using a timer */
6368 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6369 !list_empty(&cfs_b->throttled_cfs_rq))
6370 start_cfs_slack_bandwidth(cfs_b);
6371 }
6372 raw_spin_unlock(&cfs_b->lock);
6373
6374 /* even if it's not valid for return we don't want to try again */
6375 cfs_rq->runtime_remaining -= slack_runtime;
6376 }
6377
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6378 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6379 {
6380 if (!cfs_bandwidth_used())
6381 return;
6382
6383 if (!cfs_rq->runtime_enabled || cfs_rq->nr_queued)
6384 return;
6385
6386 __return_cfs_rq_runtime(cfs_rq);
6387 }
6388
6389 /*
6390 * This is done with a timer (instead of inline with bandwidth return) since
6391 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6392 */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)6393 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6394 {
6395 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6396 unsigned long flags;
6397
6398 /* confirm we're still not at a refresh boundary */
6399 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6400 cfs_b->slack_started = false;
6401
6402 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6403 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6404 return;
6405 }
6406
6407 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6408 runtime = cfs_b->runtime;
6409
6410 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6411
6412 if (!runtime)
6413 return;
6414
6415 distribute_cfs_runtime(cfs_b);
6416 }
6417
6418 /*
6419 * When a group wakes up we want to make sure that its quota is not already
6420 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6421 * runtime as update_curr() throttling can not trigger until it's on-rq.
6422 */
check_enqueue_throttle(struct cfs_rq * cfs_rq)6423 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6424 {
6425 if (!cfs_bandwidth_used())
6426 return;
6427
6428 /* an active group must be handled by the update_curr()->put() path */
6429 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6430 return;
6431
6432 /* ensure the group is not already throttled */
6433 if (cfs_rq_throttled(cfs_rq))
6434 return;
6435
6436 /* update runtime allocation */
6437 account_cfs_rq_runtime(cfs_rq, 0);
6438 if (cfs_rq->runtime_remaining <= 0)
6439 throttle_cfs_rq(cfs_rq);
6440 }
6441
sync_throttle(struct task_group * tg,int cpu)6442 static void sync_throttle(struct task_group *tg, int cpu)
6443 {
6444 struct cfs_rq *pcfs_rq, *cfs_rq;
6445
6446 if (!cfs_bandwidth_used())
6447 return;
6448
6449 if (!tg->parent)
6450 return;
6451
6452 cfs_rq = tg->cfs_rq[cpu];
6453 pcfs_rq = tg->parent->cfs_rq[cpu];
6454
6455 cfs_rq->throttle_count = pcfs_rq->throttle_count;
6456 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6457 }
6458
6459 /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6460 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6461 {
6462 if (!cfs_bandwidth_used())
6463 return false;
6464
6465 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6466 return false;
6467
6468 /*
6469 * it's possible for a throttled entity to be forced into a running
6470 * state (e.g. set_curr_task), in this case we're finished.
6471 */
6472 if (cfs_rq_throttled(cfs_rq))
6473 return true;
6474
6475 return throttle_cfs_rq(cfs_rq);
6476 }
6477
sched_cfs_slack_timer(struct hrtimer * timer)6478 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6479 {
6480 struct cfs_bandwidth *cfs_b =
6481 container_of(timer, struct cfs_bandwidth, slack_timer);
6482
6483 do_sched_cfs_slack_timer(cfs_b);
6484
6485 return HRTIMER_NORESTART;
6486 }
6487
6488 extern const u64 max_cfs_quota_period;
6489
sched_cfs_period_timer(struct hrtimer * timer)6490 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6491 {
6492 struct cfs_bandwidth *cfs_b =
6493 container_of(timer, struct cfs_bandwidth, period_timer);
6494 unsigned long flags;
6495 int overrun;
6496 int idle = 0;
6497 int count = 0;
6498
6499 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6500 for (;;) {
6501 overrun = hrtimer_forward_now(timer, cfs_b->period);
6502 if (!overrun)
6503 break;
6504
6505 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6506
6507 if (++count > 3) {
6508 u64 new, old = ktime_to_ns(cfs_b->period);
6509
6510 /*
6511 * Grow period by a factor of 2 to avoid losing precision.
6512 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6513 * to fail.
6514 */
6515 new = old * 2;
6516 if (new < max_cfs_quota_period) {
6517 cfs_b->period = ns_to_ktime(new);
6518 cfs_b->quota *= 2;
6519 cfs_b->burst *= 2;
6520
6521 pr_warn_ratelimited(
6522 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6523 smp_processor_id(),
6524 div_u64(new, NSEC_PER_USEC),
6525 div_u64(cfs_b->quota, NSEC_PER_USEC));
6526 } else {
6527 pr_warn_ratelimited(
6528 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6529 smp_processor_id(),
6530 div_u64(old, NSEC_PER_USEC),
6531 div_u64(cfs_b->quota, NSEC_PER_USEC));
6532 }
6533
6534 /* reset count so we don't come right back in here */
6535 count = 0;
6536 }
6537 }
6538 if (idle)
6539 cfs_b->period_active = 0;
6540 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6541
6542 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6543 }
6544
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6545 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6546 {
6547 raw_spin_lock_init(&cfs_b->lock);
6548 cfs_b->runtime = 0;
6549 cfs_b->quota = RUNTIME_INF;
6550 cfs_b->period = ns_to_ktime(default_cfs_period());
6551 cfs_b->burst = 0;
6552 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6553
6554 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6555 hrtimer_setup(&cfs_b->period_timer, sched_cfs_period_timer, CLOCK_MONOTONIC,
6556 HRTIMER_MODE_ABS_PINNED);
6557
6558 /* Add a random offset so that timers interleave */
6559 hrtimer_set_expires(&cfs_b->period_timer,
6560 get_random_u32_below(cfs_b->period));
6561 hrtimer_setup(&cfs_b->slack_timer, sched_cfs_slack_timer, CLOCK_MONOTONIC,
6562 HRTIMER_MODE_REL);
6563 cfs_b->slack_started = false;
6564 }
6565
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6566 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6567 {
6568 cfs_rq->runtime_enabled = 0;
6569 INIT_LIST_HEAD(&cfs_rq->throttled_list);
6570 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6571 }
6572
start_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6573 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6574 {
6575 lockdep_assert_held(&cfs_b->lock);
6576
6577 if (cfs_b->period_active)
6578 return;
6579
6580 cfs_b->period_active = 1;
6581 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6582 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6583 }
6584
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6585 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6586 {
6587 int __maybe_unused i;
6588
6589 /* init_cfs_bandwidth() was not called */
6590 if (!cfs_b->throttled_cfs_rq.next)
6591 return;
6592
6593 hrtimer_cancel(&cfs_b->period_timer);
6594 hrtimer_cancel(&cfs_b->slack_timer);
6595
6596 /*
6597 * It is possible that we still have some cfs_rq's pending on a CSD
6598 * list, though this race is very rare. In order for this to occur, we
6599 * must have raced with the last task leaving the group while there
6600 * exist throttled cfs_rq(s), and the period_timer must have queued the
6601 * CSD item but the remote cpu has not yet processed it. To handle this,
6602 * we can simply flush all pending CSD work inline here. We're
6603 * guaranteed at this point that no additional cfs_rq of this group can
6604 * join a CSD list.
6605 */
6606 #ifdef CONFIG_SMP
6607 for_each_possible_cpu(i) {
6608 struct rq *rq = cpu_rq(i);
6609 unsigned long flags;
6610
6611 if (list_empty(&rq->cfsb_csd_list))
6612 continue;
6613
6614 local_irq_save(flags);
6615 __cfsb_csd_unthrottle(rq);
6616 local_irq_restore(flags);
6617 }
6618 #endif
6619 }
6620
6621 /*
6622 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6623 *
6624 * The race is harmless, since modifying bandwidth settings of unhooked group
6625 * bits doesn't do much.
6626 */
6627
6628 /* cpu online callback */
update_runtime_enabled(struct rq * rq)6629 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6630 {
6631 struct task_group *tg;
6632
6633 lockdep_assert_rq_held(rq);
6634
6635 rcu_read_lock();
6636 list_for_each_entry_rcu(tg, &task_groups, list) {
6637 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6638 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6639
6640 raw_spin_lock(&cfs_b->lock);
6641 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6642 raw_spin_unlock(&cfs_b->lock);
6643 }
6644 rcu_read_unlock();
6645 }
6646
6647 /* cpu offline callback */
unthrottle_offline_cfs_rqs(struct rq * rq)6648 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6649 {
6650 struct task_group *tg;
6651
6652 lockdep_assert_rq_held(rq);
6653
6654 // Do not unthrottle for an active CPU
6655 if (cpumask_test_cpu(cpu_of(rq), cpu_active_mask))
6656 return;
6657
6658 /*
6659 * The rq clock has already been updated in the
6660 * set_rq_offline(), so we should skip updating
6661 * the rq clock again in unthrottle_cfs_rq().
6662 */
6663 rq_clock_start_loop_update(rq);
6664
6665 rcu_read_lock();
6666 list_for_each_entry_rcu(tg, &task_groups, list) {
6667 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6668
6669 if (!cfs_rq->runtime_enabled)
6670 continue;
6671
6672 /*
6673 * Offline rq is schedulable till CPU is completely disabled
6674 * in take_cpu_down(), so we prevent new cfs throttling here.
6675 */
6676 cfs_rq->runtime_enabled = 0;
6677
6678 if (!cfs_rq_throttled(cfs_rq))
6679 continue;
6680
6681 /*
6682 * clock_task is not advancing so we just need to make sure
6683 * there's some valid quota amount
6684 */
6685 cfs_rq->runtime_remaining = 1;
6686 unthrottle_cfs_rq(cfs_rq);
6687 }
6688 rcu_read_unlock();
6689
6690 rq_clock_stop_loop_update(rq);
6691 }
6692
cfs_task_bw_constrained(struct task_struct * p)6693 bool cfs_task_bw_constrained(struct task_struct *p)
6694 {
6695 struct cfs_rq *cfs_rq = task_cfs_rq(p);
6696
6697 if (!cfs_bandwidth_used())
6698 return false;
6699
6700 if (cfs_rq->runtime_enabled ||
6701 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6702 return true;
6703
6704 return false;
6705 }
6706
6707 #ifdef CONFIG_NO_HZ_FULL
6708 /* called from pick_next_task_fair() */
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6709 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6710 {
6711 int cpu = cpu_of(rq);
6712
6713 if (!cfs_bandwidth_used())
6714 return;
6715
6716 if (!tick_nohz_full_cpu(cpu))
6717 return;
6718
6719 if (rq->nr_running != 1)
6720 return;
6721
6722 /*
6723 * We know there is only one task runnable and we've just picked it. The
6724 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6725 * be otherwise able to stop the tick. Just need to check if we are using
6726 * bandwidth control.
6727 */
6728 if (cfs_task_bw_constrained(p))
6729 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6730 }
6731 #endif
6732
6733 #else /* CONFIG_CFS_BANDWIDTH */
6734
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)6735 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6736 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
check_enqueue_throttle(struct cfs_rq * cfs_rq)6737 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
sync_throttle(struct task_group * tg,int cpu)6738 static inline void sync_throttle(struct task_group *tg, int cpu) {}
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6739 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6740
cfs_rq_throttled(struct cfs_rq * cfs_rq)6741 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6742 {
6743 return 0;
6744 }
6745
throttled_hierarchy(struct cfs_rq * cfs_rq)6746 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6747 {
6748 return 0;
6749 }
6750
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)6751 static inline int throttled_lb_pair(struct task_group *tg,
6752 int src_cpu, int dest_cpu)
6753 {
6754 return 0;
6755 }
6756
6757 #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6758 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6759 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6760 #endif
6761
tg_cfs_bandwidth(struct task_group * tg)6762 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6763 {
6764 return NULL;
6765 }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6766 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
update_runtime_enabled(struct rq * rq)6767 static inline void update_runtime_enabled(struct rq *rq) {}
unthrottle_offline_cfs_rqs(struct rq * rq)6768 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6769 #ifdef CONFIG_CGROUP_SCHED
cfs_task_bw_constrained(struct task_struct * p)6770 bool cfs_task_bw_constrained(struct task_struct *p)
6771 {
6772 return false;
6773 }
6774 #endif
6775 #endif /* CONFIG_CFS_BANDWIDTH */
6776
6777 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6778 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6779 #endif
6780
6781 /**************************************************
6782 * CFS operations on tasks:
6783 */
6784
6785 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)6786 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6787 {
6788 struct sched_entity *se = &p->se;
6789
6790 WARN_ON_ONCE(task_rq(p) != rq);
6791
6792 if (rq->cfs.h_nr_queued > 1) {
6793 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6794 u64 slice = se->slice;
6795 s64 delta = slice - ran;
6796
6797 if (delta < 0) {
6798 if (task_current_donor(rq, p))
6799 resched_curr(rq);
6800 return;
6801 }
6802 hrtick_start(rq, delta);
6803 }
6804 }
6805
6806 /*
6807 * called from enqueue/dequeue and updates the hrtick when the
6808 * current task is from our class and nr_running is low enough
6809 * to matter.
6810 */
hrtick_update(struct rq * rq)6811 static void hrtick_update(struct rq *rq)
6812 {
6813 struct task_struct *donor = rq->donor;
6814
6815 if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class)
6816 return;
6817
6818 hrtick_start_fair(rq, donor);
6819 }
6820 #else /* !CONFIG_SCHED_HRTICK */
6821 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)6822 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6823 {
6824 }
6825
hrtick_update(struct rq * rq)6826 static inline void hrtick_update(struct rq *rq)
6827 {
6828 }
6829 #endif
6830
6831 #ifdef CONFIG_SMP
cpu_overutilized(int cpu)6832 static inline bool cpu_overutilized(int cpu)
6833 {
6834 unsigned long rq_util_min, rq_util_max;
6835
6836 if (!sched_energy_enabled())
6837 return false;
6838
6839 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6840 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6841
6842 /* Return true only if the utilization doesn't fit CPU's capacity */
6843 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6844 }
6845
6846 /*
6847 * overutilized value make sense only if EAS is enabled
6848 */
is_rd_overutilized(struct root_domain * rd)6849 static inline bool is_rd_overutilized(struct root_domain *rd)
6850 {
6851 return !sched_energy_enabled() || READ_ONCE(rd->overutilized);
6852 }
6853
set_rd_overutilized(struct root_domain * rd,bool flag)6854 static inline void set_rd_overutilized(struct root_domain *rd, bool flag)
6855 {
6856 if (!sched_energy_enabled())
6857 return;
6858
6859 WRITE_ONCE(rd->overutilized, flag);
6860 trace_sched_overutilized_tp(rd, flag);
6861 }
6862
check_update_overutilized_status(struct rq * rq)6863 static inline void check_update_overutilized_status(struct rq *rq)
6864 {
6865 /*
6866 * overutilized field is used for load balancing decisions only
6867 * if energy aware scheduler is being used
6868 */
6869
6870 if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu))
6871 set_rd_overutilized(rq->rd, 1);
6872 }
6873 #else
check_update_overutilized_status(struct rq * rq)6874 static inline void check_update_overutilized_status(struct rq *rq) { }
6875 #endif
6876
6877 /* Runqueue only has SCHED_IDLE tasks enqueued */
sched_idle_rq(struct rq * rq)6878 static int sched_idle_rq(struct rq *rq)
6879 {
6880 return unlikely(rq->nr_running == rq->cfs.h_nr_idle &&
6881 rq->nr_running);
6882 }
6883
6884 #ifdef CONFIG_SMP
sched_idle_cpu(int cpu)6885 static int sched_idle_cpu(int cpu)
6886 {
6887 return sched_idle_rq(cpu_rq(cpu));
6888 }
6889 #endif
6890
6891 static void
requeue_delayed_entity(struct sched_entity * se)6892 requeue_delayed_entity(struct sched_entity *se)
6893 {
6894 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6895
6896 /*
6897 * se->sched_delayed should imply: se->on_rq == 1.
6898 * Because a delayed entity is one that is still on
6899 * the runqueue competing until elegibility.
6900 */
6901 WARN_ON_ONCE(!se->sched_delayed);
6902 WARN_ON_ONCE(!se->on_rq);
6903
6904 if (sched_feat(DELAY_ZERO)) {
6905 update_entity_lag(cfs_rq, se);
6906 if (se->vlag > 0) {
6907 cfs_rq->nr_queued--;
6908 if (se != cfs_rq->curr)
6909 __dequeue_entity(cfs_rq, se);
6910 se->vlag = 0;
6911 place_entity(cfs_rq, se, 0);
6912 if (se != cfs_rq->curr)
6913 __enqueue_entity(cfs_rq, se);
6914 cfs_rq->nr_queued++;
6915 }
6916 }
6917
6918 update_load_avg(cfs_rq, se, 0);
6919 clear_delayed(se);
6920 }
6921
6922 /*
6923 * The enqueue_task method is called before nr_running is
6924 * increased. Here we update the fair scheduling stats and
6925 * then put the task into the rbtree:
6926 */
6927 static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)6928 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6929 {
6930 struct cfs_rq *cfs_rq;
6931 struct sched_entity *se = &p->se;
6932 int h_nr_idle = task_has_idle_policy(p);
6933 int h_nr_runnable = 1;
6934 int task_new = !(flags & ENQUEUE_WAKEUP);
6935 int rq_h_nr_queued = rq->cfs.h_nr_queued;
6936 u64 slice = 0;
6937
6938 /*
6939 * The code below (indirectly) updates schedutil which looks at
6940 * the cfs_rq utilization to select a frequency.
6941 * Let's add the task's estimated utilization to the cfs_rq's
6942 * estimated utilization, before we update schedutil.
6943 */
6944 if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & ENQUEUE_RESTORE))))
6945 util_est_enqueue(&rq->cfs, p);
6946
6947 if (flags & ENQUEUE_DELAYED) {
6948 requeue_delayed_entity(se);
6949 return;
6950 }
6951
6952 /*
6953 * If in_iowait is set, the code below may not trigger any cpufreq
6954 * utilization updates, so do it here explicitly with the IOWAIT flag
6955 * passed.
6956 */
6957 if (p->in_iowait)
6958 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6959
6960 if (task_new && se->sched_delayed)
6961 h_nr_runnable = 0;
6962
6963 for_each_sched_entity(se) {
6964 if (se->on_rq) {
6965 if (se->sched_delayed)
6966 requeue_delayed_entity(se);
6967 break;
6968 }
6969 cfs_rq = cfs_rq_of(se);
6970
6971 /*
6972 * Basically set the slice of group entries to the min_slice of
6973 * their respective cfs_rq. This ensures the group can service
6974 * its entities in the desired time-frame.
6975 */
6976 if (slice) {
6977 se->slice = slice;
6978 se->custom_slice = 1;
6979 }
6980 enqueue_entity(cfs_rq, se, flags);
6981 slice = cfs_rq_min_slice(cfs_rq);
6982
6983 cfs_rq->h_nr_runnable += h_nr_runnable;
6984 cfs_rq->h_nr_queued++;
6985 cfs_rq->h_nr_idle += h_nr_idle;
6986
6987 if (cfs_rq_is_idle(cfs_rq))
6988 h_nr_idle = 1;
6989
6990 /* end evaluation on encountering a throttled cfs_rq */
6991 if (cfs_rq_throttled(cfs_rq))
6992 goto enqueue_throttle;
6993
6994 flags = ENQUEUE_WAKEUP;
6995 }
6996
6997 for_each_sched_entity(se) {
6998 cfs_rq = cfs_rq_of(se);
6999
7000 update_load_avg(cfs_rq, se, UPDATE_TG);
7001 se_update_runnable(se);
7002 update_cfs_group(se);
7003
7004 se->slice = slice;
7005 if (se != cfs_rq->curr)
7006 min_vruntime_cb_propagate(&se->run_node, NULL);
7007 slice = cfs_rq_min_slice(cfs_rq);
7008
7009 cfs_rq->h_nr_runnable += h_nr_runnable;
7010 cfs_rq->h_nr_queued++;
7011 cfs_rq->h_nr_idle += h_nr_idle;
7012
7013 if (cfs_rq_is_idle(cfs_rq))
7014 h_nr_idle = 1;
7015
7016 /* end evaluation on encountering a throttled cfs_rq */
7017 if (cfs_rq_throttled(cfs_rq))
7018 goto enqueue_throttle;
7019 }
7020
7021 if (!rq_h_nr_queued && rq->cfs.h_nr_queued) {
7022 /* Account for idle runtime */
7023 if (!rq->nr_running)
7024 dl_server_update_idle_time(rq, rq->curr);
7025 dl_server_start(&rq->fair_server);
7026 }
7027
7028 /* At this point se is NULL and we are at root level*/
7029 add_nr_running(rq, 1);
7030
7031 /*
7032 * Since new tasks are assigned an initial util_avg equal to
7033 * half of the spare capacity of their CPU, tiny tasks have the
7034 * ability to cross the overutilized threshold, which will
7035 * result in the load balancer ruining all the task placement
7036 * done by EAS. As a way to mitigate that effect, do not account
7037 * for the first enqueue operation of new tasks during the
7038 * overutilized flag detection.
7039 *
7040 * A better way of solving this problem would be to wait for
7041 * the PELT signals of tasks to converge before taking them
7042 * into account, but that is not straightforward to implement,
7043 * and the following generally works well enough in practice.
7044 */
7045 if (!task_new)
7046 check_update_overutilized_status(rq);
7047
7048 enqueue_throttle:
7049 assert_list_leaf_cfs_rq(rq);
7050
7051 hrtick_update(rq);
7052 }
7053
7054 static void set_next_buddy(struct sched_entity *se);
7055
7056 /*
7057 * Basically dequeue_task_fair(), except it can deal with dequeue_entity()
7058 * failing half-way through and resume the dequeue later.
7059 *
7060 * Returns:
7061 * -1 - dequeue delayed
7062 * 0 - dequeue throttled
7063 * 1 - dequeue complete
7064 */
dequeue_entities(struct rq * rq,struct sched_entity * se,int flags)7065 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags)
7066 {
7067 bool was_sched_idle = sched_idle_rq(rq);
7068 int rq_h_nr_queued = rq->cfs.h_nr_queued;
7069 bool task_sleep = flags & DEQUEUE_SLEEP;
7070 bool task_delayed = flags & DEQUEUE_DELAYED;
7071 struct task_struct *p = NULL;
7072 int h_nr_idle = 0;
7073 int h_nr_queued = 0;
7074 int h_nr_runnable = 0;
7075 struct cfs_rq *cfs_rq;
7076 u64 slice = 0;
7077
7078 if (entity_is_task(se)) {
7079 p = task_of(se);
7080 h_nr_queued = 1;
7081 h_nr_idle = task_has_idle_policy(p);
7082 if (task_sleep || task_delayed || !se->sched_delayed)
7083 h_nr_runnable = 1;
7084 } else {
7085 cfs_rq = group_cfs_rq(se);
7086 slice = cfs_rq_min_slice(cfs_rq);
7087 }
7088
7089 for_each_sched_entity(se) {
7090 cfs_rq = cfs_rq_of(se);
7091
7092 if (!dequeue_entity(cfs_rq, se, flags)) {
7093 if (p && &p->se == se)
7094 return -1;
7095
7096 break;
7097 }
7098
7099 cfs_rq->h_nr_runnable -= h_nr_runnable;
7100 cfs_rq->h_nr_queued -= h_nr_queued;
7101 cfs_rq->h_nr_idle -= h_nr_idle;
7102
7103 if (cfs_rq_is_idle(cfs_rq))
7104 h_nr_idle = h_nr_queued;
7105
7106 /* end evaluation on encountering a throttled cfs_rq */
7107 if (cfs_rq_throttled(cfs_rq))
7108 return 0;
7109
7110 /* Don't dequeue parent if it has other entities besides us */
7111 if (cfs_rq->load.weight) {
7112 slice = cfs_rq_min_slice(cfs_rq);
7113
7114 /* Avoid re-evaluating load for this entity: */
7115 se = parent_entity(se);
7116 /*
7117 * Bias pick_next to pick a task from this cfs_rq, as
7118 * p is sleeping when it is within its sched_slice.
7119 */
7120 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
7121 set_next_buddy(se);
7122 break;
7123 }
7124 flags |= DEQUEUE_SLEEP;
7125 flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL);
7126 }
7127
7128 for_each_sched_entity(se) {
7129 cfs_rq = cfs_rq_of(se);
7130
7131 update_load_avg(cfs_rq, se, UPDATE_TG);
7132 se_update_runnable(se);
7133 update_cfs_group(se);
7134
7135 se->slice = slice;
7136 if (se != cfs_rq->curr)
7137 min_vruntime_cb_propagate(&se->run_node, NULL);
7138 slice = cfs_rq_min_slice(cfs_rq);
7139
7140 cfs_rq->h_nr_runnable -= h_nr_runnable;
7141 cfs_rq->h_nr_queued -= h_nr_queued;
7142 cfs_rq->h_nr_idle -= h_nr_idle;
7143
7144 if (cfs_rq_is_idle(cfs_rq))
7145 h_nr_idle = h_nr_queued;
7146
7147 /* end evaluation on encountering a throttled cfs_rq */
7148 if (cfs_rq_throttled(cfs_rq))
7149 return 0;
7150 }
7151
7152 sub_nr_running(rq, h_nr_queued);
7153
7154 if (rq_h_nr_queued && !rq->cfs.h_nr_queued)
7155 dl_server_stop(&rq->fair_server);
7156
7157 /* balance early to pull high priority tasks */
7158 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
7159 rq->next_balance = jiffies;
7160
7161 if (p && task_delayed) {
7162 WARN_ON_ONCE(!task_sleep);
7163 WARN_ON_ONCE(p->on_rq != 1);
7164
7165 /* Fix-up what dequeue_task_fair() skipped */
7166 hrtick_update(rq);
7167
7168 /*
7169 * Fix-up what block_task() skipped.
7170 *
7171 * Must be last, @p might not be valid after this.
7172 */
7173 __block_task(rq, p);
7174 }
7175
7176 return 1;
7177 }
7178
7179 /*
7180 * The dequeue_task method is called before nr_running is
7181 * decreased. We remove the task from the rbtree and
7182 * update the fair scheduling stats:
7183 */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)7184 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
7185 {
7186 if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & DEQUEUE_SAVE))))
7187 util_est_dequeue(&rq->cfs, p);
7188
7189 util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP);
7190 if (dequeue_entities(rq, &p->se, flags) < 0)
7191 return false;
7192
7193 /*
7194 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED).
7195 */
7196
7197 hrtick_update(rq);
7198 return true;
7199 }
7200
7201 #ifdef CONFIG_SMP
7202
7203 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */
7204 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7205 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
7206 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
7207
7208 #ifdef CONFIG_NO_HZ_COMMON
7209
7210 static struct {
7211 cpumask_var_t idle_cpus_mask;
7212 atomic_t nr_cpus;
7213 int has_blocked; /* Idle CPUS has blocked load */
7214 int needs_update; /* Newly idle CPUs need their next_balance collated */
7215 unsigned long next_balance; /* in jiffy units */
7216 unsigned long next_blocked; /* Next update of blocked load in jiffies */
7217 } nohz ____cacheline_aligned;
7218
7219 #endif /* CONFIG_NO_HZ_COMMON */
7220
cpu_load(struct rq * rq)7221 static unsigned long cpu_load(struct rq *rq)
7222 {
7223 return cfs_rq_load_avg(&rq->cfs);
7224 }
7225
7226 /*
7227 * cpu_load_without - compute CPU load without any contributions from *p
7228 * @cpu: the CPU which load is requested
7229 * @p: the task which load should be discounted
7230 *
7231 * The load of a CPU is defined by the load of tasks currently enqueued on that
7232 * CPU as well as tasks which are currently sleeping after an execution on that
7233 * CPU.
7234 *
7235 * This method returns the load of the specified CPU by discounting the load of
7236 * the specified task, whenever the task is currently contributing to the CPU
7237 * load.
7238 */
cpu_load_without(struct rq * rq,struct task_struct * p)7239 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
7240 {
7241 struct cfs_rq *cfs_rq;
7242 unsigned int load;
7243
7244 /* Task has no contribution or is new */
7245 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7246 return cpu_load(rq);
7247
7248 cfs_rq = &rq->cfs;
7249 load = READ_ONCE(cfs_rq->avg.load_avg);
7250
7251 /* Discount task's util from CPU's util */
7252 lsub_positive(&load, task_h_load(p));
7253
7254 return load;
7255 }
7256
cpu_runnable(struct rq * rq)7257 static unsigned long cpu_runnable(struct rq *rq)
7258 {
7259 return cfs_rq_runnable_avg(&rq->cfs);
7260 }
7261
cpu_runnable_without(struct rq * rq,struct task_struct * p)7262 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
7263 {
7264 struct cfs_rq *cfs_rq;
7265 unsigned int runnable;
7266
7267 /* Task has no contribution or is new */
7268 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7269 return cpu_runnable(rq);
7270
7271 cfs_rq = &rq->cfs;
7272 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7273
7274 /* Discount task's runnable from CPU's runnable */
7275 lsub_positive(&runnable, p->se.avg.runnable_avg);
7276
7277 return runnable;
7278 }
7279
capacity_of(int cpu)7280 static unsigned long capacity_of(int cpu)
7281 {
7282 return cpu_rq(cpu)->cpu_capacity;
7283 }
7284
record_wakee(struct task_struct * p)7285 static void record_wakee(struct task_struct *p)
7286 {
7287 /*
7288 * Only decay a single time; tasks that have less then 1 wakeup per
7289 * jiffy will not have built up many flips.
7290 */
7291 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
7292 current->wakee_flips >>= 1;
7293 current->wakee_flip_decay_ts = jiffies;
7294 }
7295
7296 if (current->last_wakee != p) {
7297 current->last_wakee = p;
7298 current->wakee_flips++;
7299 }
7300 }
7301
7302 /*
7303 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
7304 *
7305 * A waker of many should wake a different task than the one last awakened
7306 * at a frequency roughly N times higher than one of its wakees.
7307 *
7308 * In order to determine whether we should let the load spread vs consolidating
7309 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
7310 * partner, and a factor of lls_size higher frequency in the other.
7311 *
7312 * With both conditions met, we can be relatively sure that the relationship is
7313 * non-monogamous, with partner count exceeding socket size.
7314 *
7315 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
7316 * whatever is irrelevant, spread criteria is apparent partner count exceeds
7317 * socket size.
7318 */
wake_wide(struct task_struct * p)7319 static int wake_wide(struct task_struct *p)
7320 {
7321 unsigned int master = current->wakee_flips;
7322 unsigned int slave = p->wakee_flips;
7323 int factor = __this_cpu_read(sd_llc_size);
7324
7325 if (master < slave)
7326 swap(master, slave);
7327 if (slave < factor || master < slave * factor)
7328 return 0;
7329 return 1;
7330 }
7331
7332 /*
7333 * The purpose of wake_affine() is to quickly determine on which CPU we can run
7334 * soonest. For the purpose of speed we only consider the waking and previous
7335 * CPU.
7336 *
7337 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7338 * cache-affine and is (or will be) idle.
7339 *
7340 * wake_affine_weight() - considers the weight to reflect the average
7341 * scheduling latency of the CPUs. This seems to work
7342 * for the overloaded case.
7343 */
7344 static int
wake_affine_idle(int this_cpu,int prev_cpu,int sync)7345 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7346 {
7347 /*
7348 * If this_cpu is idle, it implies the wakeup is from interrupt
7349 * context. Only allow the move if cache is shared. Otherwise an
7350 * interrupt intensive workload could force all tasks onto one
7351 * node depending on the IO topology or IRQ affinity settings.
7352 *
7353 * If the prev_cpu is idle and cache affine then avoid a migration.
7354 * There is no guarantee that the cache hot data from an interrupt
7355 * is more important than cache hot data on the prev_cpu and from
7356 * a cpufreq perspective, it's better to have higher utilisation
7357 * on one CPU.
7358 */
7359 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7360 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7361
7362 if (sync && cpu_rq(this_cpu)->nr_running == 1)
7363 return this_cpu;
7364
7365 if (available_idle_cpu(prev_cpu))
7366 return prev_cpu;
7367
7368 return nr_cpumask_bits;
7369 }
7370
7371 static int
wake_affine_weight(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7372 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7373 int this_cpu, int prev_cpu, int sync)
7374 {
7375 s64 this_eff_load, prev_eff_load;
7376 unsigned long task_load;
7377
7378 this_eff_load = cpu_load(cpu_rq(this_cpu));
7379
7380 if (sync) {
7381 unsigned long current_load = task_h_load(current);
7382
7383 if (current_load > this_eff_load)
7384 return this_cpu;
7385
7386 this_eff_load -= current_load;
7387 }
7388
7389 task_load = task_h_load(p);
7390
7391 this_eff_load += task_load;
7392 if (sched_feat(WA_BIAS))
7393 this_eff_load *= 100;
7394 this_eff_load *= capacity_of(prev_cpu);
7395
7396 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7397 prev_eff_load -= task_load;
7398 if (sched_feat(WA_BIAS))
7399 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7400 prev_eff_load *= capacity_of(this_cpu);
7401
7402 /*
7403 * If sync, adjust the weight of prev_eff_load such that if
7404 * prev_eff == this_eff that select_idle_sibling() will consider
7405 * stacking the wakee on top of the waker if no other CPU is
7406 * idle.
7407 */
7408 if (sync)
7409 prev_eff_load += 1;
7410
7411 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7412 }
7413
wake_affine(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7414 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7415 int this_cpu, int prev_cpu, int sync)
7416 {
7417 int target = nr_cpumask_bits;
7418
7419 if (sched_feat(WA_IDLE))
7420 target = wake_affine_idle(this_cpu, prev_cpu, sync);
7421
7422 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7423 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7424
7425 schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7426 if (target != this_cpu)
7427 return prev_cpu;
7428
7429 schedstat_inc(sd->ttwu_move_affine);
7430 schedstat_inc(p->stats.nr_wakeups_affine);
7431 return target;
7432 }
7433
7434 static struct sched_group *
7435 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7436
7437 /*
7438 * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group.
7439 */
7440 static int
sched_balance_find_dst_group_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)7441 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7442 {
7443 unsigned long load, min_load = ULONG_MAX;
7444 unsigned int min_exit_latency = UINT_MAX;
7445 u64 latest_idle_timestamp = 0;
7446 int least_loaded_cpu = this_cpu;
7447 int shallowest_idle_cpu = -1;
7448 int i;
7449
7450 /* Check if we have any choice: */
7451 if (group->group_weight == 1)
7452 return cpumask_first(sched_group_span(group));
7453
7454 /* Traverse only the allowed CPUs */
7455 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7456 struct rq *rq = cpu_rq(i);
7457
7458 if (!sched_core_cookie_match(rq, p))
7459 continue;
7460
7461 if (sched_idle_cpu(i))
7462 return i;
7463
7464 if (available_idle_cpu(i)) {
7465 struct cpuidle_state *idle = idle_get_state(rq);
7466 if (idle && idle->exit_latency < min_exit_latency) {
7467 /*
7468 * We give priority to a CPU whose idle state
7469 * has the smallest exit latency irrespective
7470 * of any idle timestamp.
7471 */
7472 min_exit_latency = idle->exit_latency;
7473 latest_idle_timestamp = rq->idle_stamp;
7474 shallowest_idle_cpu = i;
7475 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
7476 rq->idle_stamp > latest_idle_timestamp) {
7477 /*
7478 * If equal or no active idle state, then
7479 * the most recently idled CPU might have
7480 * a warmer cache.
7481 */
7482 latest_idle_timestamp = rq->idle_stamp;
7483 shallowest_idle_cpu = i;
7484 }
7485 } else if (shallowest_idle_cpu == -1) {
7486 load = cpu_load(cpu_rq(i));
7487 if (load < min_load) {
7488 min_load = load;
7489 least_loaded_cpu = i;
7490 }
7491 }
7492 }
7493
7494 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7495 }
7496
sched_balance_find_dst_cpu(struct sched_domain * sd,struct task_struct * p,int cpu,int prev_cpu,int sd_flag)7497 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p,
7498 int cpu, int prev_cpu, int sd_flag)
7499 {
7500 int new_cpu = cpu;
7501
7502 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7503 return prev_cpu;
7504
7505 /*
7506 * We need task's util for cpu_util_without, sync it up to
7507 * prev_cpu's last_update_time.
7508 */
7509 if (!(sd_flag & SD_BALANCE_FORK))
7510 sync_entity_load_avg(&p->se);
7511
7512 while (sd) {
7513 struct sched_group *group;
7514 struct sched_domain *tmp;
7515 int weight;
7516
7517 if (!(sd->flags & sd_flag)) {
7518 sd = sd->child;
7519 continue;
7520 }
7521
7522 group = sched_balance_find_dst_group(sd, p, cpu);
7523 if (!group) {
7524 sd = sd->child;
7525 continue;
7526 }
7527
7528 new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu);
7529 if (new_cpu == cpu) {
7530 /* Now try balancing at a lower domain level of 'cpu': */
7531 sd = sd->child;
7532 continue;
7533 }
7534
7535 /* Now try balancing at a lower domain level of 'new_cpu': */
7536 cpu = new_cpu;
7537 weight = sd->span_weight;
7538 sd = NULL;
7539 for_each_domain(cpu, tmp) {
7540 if (weight <= tmp->span_weight)
7541 break;
7542 if (tmp->flags & sd_flag)
7543 sd = tmp;
7544 }
7545 }
7546
7547 return new_cpu;
7548 }
7549
__select_idle_cpu(int cpu,struct task_struct * p)7550 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7551 {
7552 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7553 sched_cpu_cookie_match(cpu_rq(cpu), p))
7554 return cpu;
7555
7556 return -1;
7557 }
7558
7559 #ifdef CONFIG_SCHED_SMT
7560 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7561 EXPORT_SYMBOL_GPL(sched_smt_present);
7562
set_idle_cores(int cpu,int val)7563 static inline void set_idle_cores(int cpu, int val)
7564 {
7565 struct sched_domain_shared *sds;
7566
7567 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7568 if (sds)
7569 WRITE_ONCE(sds->has_idle_cores, val);
7570 }
7571
test_idle_cores(int cpu)7572 static inline bool test_idle_cores(int cpu)
7573 {
7574 struct sched_domain_shared *sds;
7575
7576 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7577 if (sds)
7578 return READ_ONCE(sds->has_idle_cores);
7579
7580 return false;
7581 }
7582
7583 /*
7584 * Scans the local SMT mask to see if the entire core is idle, and records this
7585 * information in sd_llc_shared->has_idle_cores.
7586 *
7587 * Since SMT siblings share all cache levels, inspecting this limited remote
7588 * state should be fairly cheap.
7589 */
__update_idle_core(struct rq * rq)7590 void __update_idle_core(struct rq *rq)
7591 {
7592 int core = cpu_of(rq);
7593 int cpu;
7594
7595 rcu_read_lock();
7596 if (test_idle_cores(core))
7597 goto unlock;
7598
7599 for_each_cpu(cpu, cpu_smt_mask(core)) {
7600 if (cpu == core)
7601 continue;
7602
7603 if (!available_idle_cpu(cpu))
7604 goto unlock;
7605 }
7606
7607 set_idle_cores(core, 1);
7608 unlock:
7609 rcu_read_unlock();
7610 }
7611
7612 /*
7613 * Scan the entire LLC domain for idle cores; this dynamically switches off if
7614 * there are no idle cores left in the system; tracked through
7615 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7616 */
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7617 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7618 {
7619 bool idle = true;
7620 int cpu;
7621
7622 for_each_cpu(cpu, cpu_smt_mask(core)) {
7623 if (!available_idle_cpu(cpu)) {
7624 idle = false;
7625 if (*idle_cpu == -1) {
7626 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7627 *idle_cpu = cpu;
7628 break;
7629 }
7630 continue;
7631 }
7632 break;
7633 }
7634 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7635 *idle_cpu = cpu;
7636 }
7637
7638 if (idle)
7639 return core;
7640
7641 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7642 return -1;
7643 }
7644
7645 /*
7646 * Scan the local SMT mask for idle CPUs.
7647 */
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7648 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7649 {
7650 int cpu;
7651
7652 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7653 if (cpu == target)
7654 continue;
7655 /*
7656 * Check if the CPU is in the LLC scheduling domain of @target.
7657 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7658 */
7659 if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7660 continue;
7661 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7662 return cpu;
7663 }
7664
7665 return -1;
7666 }
7667
7668 #else /* CONFIG_SCHED_SMT */
7669
set_idle_cores(int cpu,int val)7670 static inline void set_idle_cores(int cpu, int val)
7671 {
7672 }
7673
test_idle_cores(int cpu)7674 static inline bool test_idle_cores(int cpu)
7675 {
7676 return false;
7677 }
7678
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7679 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7680 {
7681 return __select_idle_cpu(core, p);
7682 }
7683
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7684 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7685 {
7686 return -1;
7687 }
7688
7689 #endif /* CONFIG_SCHED_SMT */
7690
7691 /*
7692 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7693 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7694 * average idle time for this rq (as found in rq->avg_idle).
7695 */
select_idle_cpu(struct task_struct * p,struct sched_domain * sd,bool has_idle_core,int target)7696 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7697 {
7698 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7699 int i, cpu, idle_cpu = -1, nr = INT_MAX;
7700 struct sched_domain_shared *sd_share;
7701
7702 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7703
7704 if (sched_feat(SIS_UTIL)) {
7705 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7706 if (sd_share) {
7707 /* because !--nr is the condition to stop scan */
7708 nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7709 /* overloaded LLC is unlikely to have idle cpu/core */
7710 if (nr == 1)
7711 return -1;
7712 }
7713 }
7714
7715 if (static_branch_unlikely(&sched_cluster_active)) {
7716 struct sched_group *sg = sd->groups;
7717
7718 if (sg->flags & SD_CLUSTER) {
7719 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
7720 if (!cpumask_test_cpu(cpu, cpus))
7721 continue;
7722
7723 if (has_idle_core) {
7724 i = select_idle_core(p, cpu, cpus, &idle_cpu);
7725 if ((unsigned int)i < nr_cpumask_bits)
7726 return i;
7727 } else {
7728 if (--nr <= 0)
7729 return -1;
7730 idle_cpu = __select_idle_cpu(cpu, p);
7731 if ((unsigned int)idle_cpu < nr_cpumask_bits)
7732 return idle_cpu;
7733 }
7734 }
7735 cpumask_andnot(cpus, cpus, sched_group_span(sg));
7736 }
7737 }
7738
7739 for_each_cpu_wrap(cpu, cpus, target + 1) {
7740 if (has_idle_core) {
7741 i = select_idle_core(p, cpu, cpus, &idle_cpu);
7742 if ((unsigned int)i < nr_cpumask_bits)
7743 return i;
7744
7745 } else {
7746 if (--nr <= 0)
7747 return -1;
7748 idle_cpu = __select_idle_cpu(cpu, p);
7749 if ((unsigned int)idle_cpu < nr_cpumask_bits)
7750 break;
7751 }
7752 }
7753
7754 if (has_idle_core)
7755 set_idle_cores(target, false);
7756
7757 return idle_cpu;
7758 }
7759
7760 /*
7761 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7762 * the task fits. If no CPU is big enough, but there are idle ones, try to
7763 * maximize capacity.
7764 */
7765 static int
select_idle_capacity(struct task_struct * p,struct sched_domain * sd,int target)7766 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7767 {
7768 unsigned long task_util, util_min, util_max, best_cap = 0;
7769 int fits, best_fits = 0;
7770 int cpu, best_cpu = -1;
7771 struct cpumask *cpus;
7772
7773 cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7774 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7775
7776 task_util = task_util_est(p);
7777 util_min = uclamp_eff_value(p, UCLAMP_MIN);
7778 util_max = uclamp_eff_value(p, UCLAMP_MAX);
7779
7780 for_each_cpu_wrap(cpu, cpus, target) {
7781 unsigned long cpu_cap = capacity_of(cpu);
7782
7783 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7784 continue;
7785
7786 fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7787
7788 /* This CPU fits with all requirements */
7789 if (fits > 0)
7790 return cpu;
7791 /*
7792 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7793 * Look for the CPU with best capacity.
7794 */
7795 else if (fits < 0)
7796 cpu_cap = get_actual_cpu_capacity(cpu);
7797
7798 /*
7799 * First, select CPU which fits better (-1 being better than 0).
7800 * Then, select the one with best capacity at same level.
7801 */
7802 if ((fits < best_fits) ||
7803 ((fits == best_fits) && (cpu_cap > best_cap))) {
7804 best_cap = cpu_cap;
7805 best_cpu = cpu;
7806 best_fits = fits;
7807 }
7808 }
7809
7810 return best_cpu;
7811 }
7812
asym_fits_cpu(unsigned long util,unsigned long util_min,unsigned long util_max,int cpu)7813 static inline bool asym_fits_cpu(unsigned long util,
7814 unsigned long util_min,
7815 unsigned long util_max,
7816 int cpu)
7817 {
7818 if (sched_asym_cpucap_active())
7819 /*
7820 * Return true only if the cpu fully fits the task requirements
7821 * which include the utilization and the performance hints.
7822 */
7823 return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7824
7825 return true;
7826 }
7827
7828 /*
7829 * Try and locate an idle core/thread in the LLC cache domain.
7830 */
select_idle_sibling(struct task_struct * p,int prev,int target)7831 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7832 {
7833 bool has_idle_core = false;
7834 struct sched_domain *sd;
7835 unsigned long task_util, util_min, util_max;
7836 int i, recent_used_cpu, prev_aff = -1;
7837
7838 /*
7839 * On asymmetric system, update task utilization because we will check
7840 * that the task fits with CPU's capacity.
7841 */
7842 if (sched_asym_cpucap_active()) {
7843 sync_entity_load_avg(&p->se);
7844 task_util = task_util_est(p);
7845 util_min = uclamp_eff_value(p, UCLAMP_MIN);
7846 util_max = uclamp_eff_value(p, UCLAMP_MAX);
7847 }
7848
7849 /*
7850 * per-cpu select_rq_mask usage
7851 */
7852 lockdep_assert_irqs_disabled();
7853
7854 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7855 asym_fits_cpu(task_util, util_min, util_max, target))
7856 return target;
7857
7858 /*
7859 * If the previous CPU is cache affine and idle, don't be stupid:
7860 */
7861 if (prev != target && cpus_share_cache(prev, target) &&
7862 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7863 asym_fits_cpu(task_util, util_min, util_max, prev)) {
7864
7865 if (!static_branch_unlikely(&sched_cluster_active) ||
7866 cpus_share_resources(prev, target))
7867 return prev;
7868
7869 prev_aff = prev;
7870 }
7871
7872 /*
7873 * Allow a per-cpu kthread to stack with the wakee if the
7874 * kworker thread and the tasks previous CPUs are the same.
7875 * The assumption is that the wakee queued work for the
7876 * per-cpu kthread that is now complete and the wakeup is
7877 * essentially a sync wakeup. An obvious example of this
7878 * pattern is IO completions.
7879 */
7880 if (is_per_cpu_kthread(current) &&
7881 in_task() &&
7882 prev == smp_processor_id() &&
7883 this_rq()->nr_running <= 1 &&
7884 asym_fits_cpu(task_util, util_min, util_max, prev)) {
7885 return prev;
7886 }
7887
7888 /* Check a recently used CPU as a potential idle candidate: */
7889 recent_used_cpu = p->recent_used_cpu;
7890 p->recent_used_cpu = prev;
7891 if (recent_used_cpu != prev &&
7892 recent_used_cpu != target &&
7893 cpus_share_cache(recent_used_cpu, target) &&
7894 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7895 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7896 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7897
7898 if (!static_branch_unlikely(&sched_cluster_active) ||
7899 cpus_share_resources(recent_used_cpu, target))
7900 return recent_used_cpu;
7901
7902 } else {
7903 recent_used_cpu = -1;
7904 }
7905
7906 /*
7907 * For asymmetric CPU capacity systems, our domain of interest is
7908 * sd_asym_cpucapacity rather than sd_llc.
7909 */
7910 if (sched_asym_cpucap_active()) {
7911 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7912 /*
7913 * On an asymmetric CPU capacity system where an exclusive
7914 * cpuset defines a symmetric island (i.e. one unique
7915 * capacity_orig value through the cpuset), the key will be set
7916 * but the CPUs within that cpuset will not have a domain with
7917 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7918 * capacity path.
7919 */
7920 if (sd) {
7921 i = select_idle_capacity(p, sd, target);
7922 return ((unsigned)i < nr_cpumask_bits) ? i : target;
7923 }
7924 }
7925
7926 sd = rcu_dereference(per_cpu(sd_llc, target));
7927 if (!sd)
7928 return target;
7929
7930 if (sched_smt_active()) {
7931 has_idle_core = test_idle_cores(target);
7932
7933 if (!has_idle_core && cpus_share_cache(prev, target)) {
7934 i = select_idle_smt(p, sd, prev);
7935 if ((unsigned int)i < nr_cpumask_bits)
7936 return i;
7937 }
7938 }
7939
7940 i = select_idle_cpu(p, sd, has_idle_core, target);
7941 if ((unsigned)i < nr_cpumask_bits)
7942 return i;
7943
7944 /*
7945 * For cluster machines which have lower sharing cache like L2 or
7946 * LLC Tag, we tend to find an idle CPU in the target's cluster
7947 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
7948 * use them if possible when no idle CPU found in select_idle_cpu().
7949 */
7950 if ((unsigned int)prev_aff < nr_cpumask_bits)
7951 return prev_aff;
7952 if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
7953 return recent_used_cpu;
7954
7955 return target;
7956 }
7957
7958 /**
7959 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7960 * @cpu: the CPU to get the utilization for
7961 * @p: task for which the CPU utilization should be predicted or NULL
7962 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7963 * @boost: 1 to enable boosting, otherwise 0
7964 *
7965 * The unit of the return value must be the same as the one of CPU capacity
7966 * so that CPU utilization can be compared with CPU capacity.
7967 *
7968 * CPU utilization is the sum of running time of runnable tasks plus the
7969 * recent utilization of currently non-runnable tasks on that CPU.
7970 * It represents the amount of CPU capacity currently used by CFS tasks in
7971 * the range [0..max CPU capacity] with max CPU capacity being the CPU
7972 * capacity at f_max.
7973 *
7974 * The estimated CPU utilization is defined as the maximum between CPU
7975 * utilization and sum of the estimated utilization of the currently
7976 * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7977 * previously-executed tasks, which helps better deduce how busy a CPU will
7978 * be when a long-sleeping task wakes up. The contribution to CPU utilization
7979 * of such a task would be significantly decayed at this point of time.
7980 *
7981 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7982 * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7983 * utilization. Boosting is implemented in cpu_util() so that internal
7984 * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7985 * latter via cpu_util_cfs_boost().
7986 *
7987 * CPU utilization can be higher than the current CPU capacity
7988 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7989 * of rounding errors as well as task migrations or wakeups of new tasks.
7990 * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7991 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7992 * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7993 * capacity. CPU utilization is allowed to overshoot current CPU capacity
7994 * though since this is useful for predicting the CPU capacity required
7995 * after task migrations (scheduler-driven DVFS).
7996 *
7997 * Return: (Boosted) (estimated) utilization for the specified CPU.
7998 */
7999 static unsigned long
cpu_util(int cpu,struct task_struct * p,int dst_cpu,int boost)8000 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
8001 {
8002 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
8003 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
8004 unsigned long runnable;
8005
8006 if (boost) {
8007 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
8008 util = max(util, runnable);
8009 }
8010
8011 /*
8012 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
8013 * contribution. If @p migrates from another CPU to @cpu add its
8014 * contribution. In all the other cases @cpu is not impacted by the
8015 * migration so its util_avg is already correct.
8016 */
8017 if (p && task_cpu(p) == cpu && dst_cpu != cpu)
8018 lsub_positive(&util, task_util(p));
8019 else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
8020 util += task_util(p);
8021
8022 if (sched_feat(UTIL_EST)) {
8023 unsigned long util_est;
8024
8025 util_est = READ_ONCE(cfs_rq->avg.util_est);
8026
8027 /*
8028 * During wake-up @p isn't enqueued yet and doesn't contribute
8029 * to any cpu_rq(cpu)->cfs.avg.util_est.
8030 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
8031 * has been enqueued.
8032 *
8033 * During exec (@dst_cpu = -1) @p is enqueued and does
8034 * contribute to cpu_rq(cpu)->cfs.util_est.
8035 * Remove it to "simulate" cpu_util without @p's contribution.
8036 *
8037 * Despite the task_on_rq_queued(@p) check there is still a
8038 * small window for a possible race when an exec
8039 * select_task_rq_fair() races with LB's detach_task().
8040 *
8041 * detach_task()
8042 * deactivate_task()
8043 * p->on_rq = TASK_ON_RQ_MIGRATING;
8044 * -------------------------------- A
8045 * dequeue_task() \
8046 * dequeue_task_fair() + Race Time
8047 * util_est_dequeue() /
8048 * -------------------------------- B
8049 *
8050 * The additional check "current == p" is required to further
8051 * reduce the race window.
8052 */
8053 if (dst_cpu == cpu)
8054 util_est += _task_util_est(p);
8055 else if (p && unlikely(task_on_rq_queued(p) || current == p))
8056 lsub_positive(&util_est, _task_util_est(p));
8057
8058 util = max(util, util_est);
8059 }
8060
8061 return min(util, arch_scale_cpu_capacity(cpu));
8062 }
8063
cpu_util_cfs(int cpu)8064 unsigned long cpu_util_cfs(int cpu)
8065 {
8066 return cpu_util(cpu, NULL, -1, 0);
8067 }
8068
cpu_util_cfs_boost(int cpu)8069 unsigned long cpu_util_cfs_boost(int cpu)
8070 {
8071 return cpu_util(cpu, NULL, -1, 1);
8072 }
8073
8074 /*
8075 * cpu_util_without: compute cpu utilization without any contributions from *p
8076 * @cpu: the CPU which utilization is requested
8077 * @p: the task which utilization should be discounted
8078 *
8079 * The utilization of a CPU is defined by the utilization of tasks currently
8080 * enqueued on that CPU as well as tasks which are currently sleeping after an
8081 * execution on that CPU.
8082 *
8083 * This method returns the utilization of the specified CPU by discounting the
8084 * utilization of the specified task, whenever the task is currently
8085 * contributing to the CPU utilization.
8086 */
cpu_util_without(int cpu,struct task_struct * p)8087 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
8088 {
8089 /* Task has no contribution or is new */
8090 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8091 p = NULL;
8092
8093 return cpu_util(cpu, p, -1, 0);
8094 }
8095
8096 /*
8097 * This function computes an effective utilization for the given CPU, to be
8098 * used for frequency selection given the linear relation: f = u * f_max.
8099 *
8100 * The scheduler tracks the following metrics:
8101 *
8102 * cpu_util_{cfs,rt,dl,irq}()
8103 * cpu_bw_dl()
8104 *
8105 * Where the cfs,rt and dl util numbers are tracked with the same metric and
8106 * synchronized windows and are thus directly comparable.
8107 *
8108 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
8109 * which excludes things like IRQ and steal-time. These latter are then accrued
8110 * in the IRQ utilization.
8111 *
8112 * The DL bandwidth number OTOH is not a measured metric but a value computed
8113 * based on the task model parameters and gives the minimal utilization
8114 * required to meet deadlines.
8115 */
effective_cpu_util(int cpu,unsigned long util_cfs,unsigned long * min,unsigned long * max)8116 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
8117 unsigned long *min,
8118 unsigned long *max)
8119 {
8120 unsigned long util, irq, scale;
8121 struct rq *rq = cpu_rq(cpu);
8122
8123 scale = arch_scale_cpu_capacity(cpu);
8124
8125 /*
8126 * Early check to see if IRQ/steal time saturates the CPU, can be
8127 * because of inaccuracies in how we track these -- see
8128 * update_irq_load_avg().
8129 */
8130 irq = cpu_util_irq(rq);
8131 if (unlikely(irq >= scale)) {
8132 if (min)
8133 *min = scale;
8134 if (max)
8135 *max = scale;
8136 return scale;
8137 }
8138
8139 if (min) {
8140 /*
8141 * The minimum utilization returns the highest level between:
8142 * - the computed DL bandwidth needed with the IRQ pressure which
8143 * steals time to the deadline task.
8144 * - The minimum performance requirement for CFS and/or RT.
8145 */
8146 *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
8147
8148 /*
8149 * When an RT task is runnable and uclamp is not used, we must
8150 * ensure that the task will run at maximum compute capacity.
8151 */
8152 if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
8153 *min = max(*min, scale);
8154 }
8155
8156 /*
8157 * Because the time spend on RT/DL tasks is visible as 'lost' time to
8158 * CFS tasks and we use the same metric to track the effective
8159 * utilization (PELT windows are synchronized) we can directly add them
8160 * to obtain the CPU's actual utilization.
8161 */
8162 util = util_cfs + cpu_util_rt(rq);
8163 util += cpu_util_dl(rq);
8164
8165 /*
8166 * The maximum hint is a soft bandwidth requirement, which can be lower
8167 * than the actual utilization because of uclamp_max requirements.
8168 */
8169 if (max)
8170 *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
8171
8172 if (util >= scale)
8173 return scale;
8174
8175 /*
8176 * There is still idle time; further improve the number by using the
8177 * IRQ metric. Because IRQ/steal time is hidden from the task clock we
8178 * need to scale the task numbers:
8179 *
8180 * max - irq
8181 * U' = irq + --------- * U
8182 * max
8183 */
8184 util = scale_irq_capacity(util, irq, scale);
8185 util += irq;
8186
8187 return min(scale, util);
8188 }
8189
sched_cpu_util(int cpu)8190 unsigned long sched_cpu_util(int cpu)
8191 {
8192 return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
8193 }
8194
8195 /*
8196 * energy_env - Utilization landscape for energy estimation.
8197 * @task_busy_time: Utilization contribution by the task for which we test the
8198 * placement. Given by eenv_task_busy_time().
8199 * @pd_busy_time: Utilization of the whole perf domain without the task
8200 * contribution. Given by eenv_pd_busy_time().
8201 * @cpu_cap: Maximum CPU capacity for the perf domain.
8202 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
8203 */
8204 struct energy_env {
8205 unsigned long task_busy_time;
8206 unsigned long pd_busy_time;
8207 unsigned long cpu_cap;
8208 unsigned long pd_cap;
8209 };
8210
8211 /*
8212 * Compute the task busy time for compute_energy(). This time cannot be
8213 * injected directly into effective_cpu_util() because of the IRQ scaling.
8214 * The latter only makes sense with the most recent CPUs where the task has
8215 * run.
8216 */
eenv_task_busy_time(struct energy_env * eenv,struct task_struct * p,int prev_cpu)8217 static inline void eenv_task_busy_time(struct energy_env *eenv,
8218 struct task_struct *p, int prev_cpu)
8219 {
8220 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
8221 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
8222
8223 if (unlikely(irq >= max_cap))
8224 busy_time = max_cap;
8225 else
8226 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
8227
8228 eenv->task_busy_time = busy_time;
8229 }
8230
8231 /*
8232 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
8233 * utilization for each @pd_cpus, it however doesn't take into account
8234 * clamping since the ratio (utilization / cpu_capacity) is already enough to
8235 * scale the EM reported power consumption at the (eventually clamped)
8236 * cpu_capacity.
8237 *
8238 * The contribution of the task @p for which we want to estimate the
8239 * energy cost is removed (by cpu_util()) and must be calculated
8240 * separately (see eenv_task_busy_time). This ensures:
8241 *
8242 * - A stable PD utilization, no matter which CPU of that PD we want to place
8243 * the task on.
8244 *
8245 * - A fair comparison between CPUs as the task contribution (task_util())
8246 * will always be the same no matter which CPU utilization we rely on
8247 * (util_avg or util_est).
8248 *
8249 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
8250 * exceed @eenv->pd_cap.
8251 */
eenv_pd_busy_time(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p)8252 static inline void eenv_pd_busy_time(struct energy_env *eenv,
8253 struct cpumask *pd_cpus,
8254 struct task_struct *p)
8255 {
8256 unsigned long busy_time = 0;
8257 int cpu;
8258
8259 for_each_cpu(cpu, pd_cpus) {
8260 unsigned long util = cpu_util(cpu, p, -1, 0);
8261
8262 busy_time += effective_cpu_util(cpu, util, NULL, NULL);
8263 }
8264
8265 eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
8266 }
8267
8268 /*
8269 * Compute the maximum utilization for compute_energy() when the task @p
8270 * is placed on the cpu @dst_cpu.
8271 *
8272 * Returns the maximum utilization among @eenv->cpus. This utilization can't
8273 * exceed @eenv->cpu_cap.
8274 */
8275 static inline unsigned long
eenv_pd_max_util(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)8276 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
8277 struct task_struct *p, int dst_cpu)
8278 {
8279 unsigned long max_util = 0;
8280 int cpu;
8281
8282 for_each_cpu(cpu, pd_cpus) {
8283 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
8284 unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
8285 unsigned long eff_util, min, max;
8286
8287 /*
8288 * Performance domain frequency: utilization clamping
8289 * must be considered since it affects the selection
8290 * of the performance domain frequency.
8291 * NOTE: in case RT tasks are running, by default the min
8292 * utilization can be max OPP.
8293 */
8294 eff_util = effective_cpu_util(cpu, util, &min, &max);
8295
8296 /* Task's uclamp can modify min and max value */
8297 if (tsk && uclamp_is_used()) {
8298 min = max(min, uclamp_eff_value(p, UCLAMP_MIN));
8299
8300 /*
8301 * If there is no active max uclamp constraint,
8302 * directly use task's one, otherwise keep max.
8303 */
8304 if (uclamp_rq_is_idle(cpu_rq(cpu)))
8305 max = uclamp_eff_value(p, UCLAMP_MAX);
8306 else
8307 max = max(max, uclamp_eff_value(p, UCLAMP_MAX));
8308 }
8309
8310 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max);
8311 max_util = max(max_util, eff_util);
8312 }
8313
8314 return min(max_util, eenv->cpu_cap);
8315 }
8316
8317 /*
8318 * compute_energy(): Use the Energy Model to estimate the energy that @pd would
8319 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
8320 * contribution is ignored.
8321 */
8322 static inline unsigned long
compute_energy(struct energy_env * eenv,struct perf_domain * pd,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)8323 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
8324 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
8325 {
8326 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
8327 unsigned long busy_time = eenv->pd_busy_time;
8328 unsigned long energy;
8329
8330 if (dst_cpu >= 0)
8331 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
8332
8333 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
8334
8335 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
8336
8337 return energy;
8338 }
8339
8340 /*
8341 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
8342 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
8343 * spare capacity in each performance domain and uses it as a potential
8344 * candidate to execute the task. Then, it uses the Energy Model to figure
8345 * out which of the CPU candidates is the most energy-efficient.
8346 *
8347 * The rationale for this heuristic is as follows. In a performance domain,
8348 * all the most energy efficient CPU candidates (according to the Energy
8349 * Model) are those for which we'll request a low frequency. When there are
8350 * several CPUs for which the frequency request will be the same, we don't
8351 * have enough data to break the tie between them, because the Energy Model
8352 * only includes active power costs. With this model, if we assume that
8353 * frequency requests follow utilization (e.g. using schedutil), the CPU with
8354 * the maximum spare capacity in a performance domain is guaranteed to be among
8355 * the best candidates of the performance domain.
8356 *
8357 * In practice, it could be preferable from an energy standpoint to pack
8358 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
8359 * but that could also hurt our chances to go cluster idle, and we have no
8360 * ways to tell with the current Energy Model if this is actually a good
8361 * idea or not. So, find_energy_efficient_cpu() basically favors
8362 * cluster-packing, and spreading inside a cluster. That should at least be
8363 * a good thing for latency, and this is consistent with the idea that most
8364 * of the energy savings of EAS come from the asymmetry of the system, and
8365 * not so much from breaking the tie between identical CPUs. That's also the
8366 * reason why EAS is enabled in the topology code only for systems where
8367 * SD_ASYM_CPUCAPACITY is set.
8368 *
8369 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
8370 * they don't have any useful utilization data yet and it's not possible to
8371 * forecast their impact on energy consumption. Consequently, they will be
8372 * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out
8373 * to be energy-inefficient in some use-cases. The alternative would be to
8374 * bias new tasks towards specific types of CPUs first, or to try to infer
8375 * their util_avg from the parent task, but those heuristics could hurt
8376 * other use-cases too. So, until someone finds a better way to solve this,
8377 * let's keep things simple by re-using the existing slow path.
8378 */
find_energy_efficient_cpu(struct task_struct * p,int prev_cpu)8379 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
8380 {
8381 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
8382 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
8383 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
8384 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
8385 struct root_domain *rd = this_rq()->rd;
8386 int cpu, best_energy_cpu, target = -1;
8387 int prev_fits = -1, best_fits = -1;
8388 unsigned long best_actual_cap = 0;
8389 unsigned long prev_actual_cap = 0;
8390 struct sched_domain *sd;
8391 struct perf_domain *pd;
8392 struct energy_env eenv;
8393
8394 rcu_read_lock();
8395 pd = rcu_dereference(rd->pd);
8396 if (!pd)
8397 goto unlock;
8398
8399 /*
8400 * Energy-aware wake-up happens on the lowest sched_domain starting
8401 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
8402 */
8403 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
8404 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
8405 sd = sd->parent;
8406 if (!sd)
8407 goto unlock;
8408
8409 target = prev_cpu;
8410
8411 sync_entity_load_avg(&p->se);
8412 if (!task_util_est(p) && p_util_min == 0)
8413 goto unlock;
8414
8415 eenv_task_busy_time(&eenv, p, prev_cpu);
8416
8417 for (; pd; pd = pd->next) {
8418 unsigned long util_min = p_util_min, util_max = p_util_max;
8419 unsigned long cpu_cap, cpu_actual_cap, util;
8420 long prev_spare_cap = -1, max_spare_cap = -1;
8421 unsigned long rq_util_min, rq_util_max;
8422 unsigned long cur_delta, base_energy;
8423 int max_spare_cap_cpu = -1;
8424 int fits, max_fits = -1;
8425
8426 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
8427
8428 if (cpumask_empty(cpus))
8429 continue;
8430
8431 /* Account external pressure for the energy estimation */
8432 cpu = cpumask_first(cpus);
8433 cpu_actual_cap = get_actual_cpu_capacity(cpu);
8434
8435 eenv.cpu_cap = cpu_actual_cap;
8436 eenv.pd_cap = 0;
8437
8438 for_each_cpu(cpu, cpus) {
8439 struct rq *rq = cpu_rq(cpu);
8440
8441 eenv.pd_cap += cpu_actual_cap;
8442
8443 if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8444 continue;
8445
8446 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8447 continue;
8448
8449 util = cpu_util(cpu, p, cpu, 0);
8450 cpu_cap = capacity_of(cpu);
8451
8452 /*
8453 * Skip CPUs that cannot satisfy the capacity request.
8454 * IOW, placing the task there would make the CPU
8455 * overutilized. Take uclamp into account to see how
8456 * much capacity we can get out of the CPU; this is
8457 * aligned with sched_cpu_util().
8458 */
8459 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8460 /*
8461 * Open code uclamp_rq_util_with() except for
8462 * the clamp() part. I.e.: apply max aggregation
8463 * only. util_fits_cpu() logic requires to
8464 * operate on non clamped util but must use the
8465 * max-aggregated uclamp_{min, max}.
8466 */
8467 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8468 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8469
8470 util_min = max(rq_util_min, p_util_min);
8471 util_max = max(rq_util_max, p_util_max);
8472 }
8473
8474 fits = util_fits_cpu(util, util_min, util_max, cpu);
8475 if (!fits)
8476 continue;
8477
8478 lsub_positive(&cpu_cap, util);
8479
8480 if (cpu == prev_cpu) {
8481 /* Always use prev_cpu as a candidate. */
8482 prev_spare_cap = cpu_cap;
8483 prev_fits = fits;
8484 } else if ((fits > max_fits) ||
8485 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8486 /*
8487 * Find the CPU with the maximum spare capacity
8488 * among the remaining CPUs in the performance
8489 * domain.
8490 */
8491 max_spare_cap = cpu_cap;
8492 max_spare_cap_cpu = cpu;
8493 max_fits = fits;
8494 }
8495 }
8496
8497 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8498 continue;
8499
8500 eenv_pd_busy_time(&eenv, cpus, p);
8501 /* Compute the 'base' energy of the pd, without @p */
8502 base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8503
8504 /* Evaluate the energy impact of using prev_cpu. */
8505 if (prev_spare_cap > -1) {
8506 prev_delta = compute_energy(&eenv, pd, cpus, p,
8507 prev_cpu);
8508 /* CPU utilization has changed */
8509 if (prev_delta < base_energy)
8510 goto unlock;
8511 prev_delta -= base_energy;
8512 prev_actual_cap = cpu_actual_cap;
8513 best_delta = min(best_delta, prev_delta);
8514 }
8515
8516 /* Evaluate the energy impact of using max_spare_cap_cpu. */
8517 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8518 /* Current best energy cpu fits better */
8519 if (max_fits < best_fits)
8520 continue;
8521
8522 /*
8523 * Both don't fit performance hint (i.e. uclamp_min)
8524 * but best energy cpu has better capacity.
8525 */
8526 if ((max_fits < 0) &&
8527 (cpu_actual_cap <= best_actual_cap))
8528 continue;
8529
8530 cur_delta = compute_energy(&eenv, pd, cpus, p,
8531 max_spare_cap_cpu);
8532 /* CPU utilization has changed */
8533 if (cur_delta < base_energy)
8534 goto unlock;
8535 cur_delta -= base_energy;
8536
8537 /*
8538 * Both fit for the task but best energy cpu has lower
8539 * energy impact.
8540 */
8541 if ((max_fits > 0) && (best_fits > 0) &&
8542 (cur_delta >= best_delta))
8543 continue;
8544
8545 best_delta = cur_delta;
8546 best_energy_cpu = max_spare_cap_cpu;
8547 best_fits = max_fits;
8548 best_actual_cap = cpu_actual_cap;
8549 }
8550 }
8551 rcu_read_unlock();
8552
8553 if ((best_fits > prev_fits) ||
8554 ((best_fits > 0) && (best_delta < prev_delta)) ||
8555 ((best_fits < 0) && (best_actual_cap > prev_actual_cap)))
8556 target = best_energy_cpu;
8557
8558 return target;
8559
8560 unlock:
8561 rcu_read_unlock();
8562
8563 return target;
8564 }
8565
8566 /*
8567 * select_task_rq_fair: Select target runqueue for the waking task in domains
8568 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8569 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8570 *
8571 * Balances load by selecting the idlest CPU in the idlest group, or under
8572 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8573 *
8574 * Returns the target CPU number.
8575 */
8576 static int
select_task_rq_fair(struct task_struct * p,int prev_cpu,int wake_flags)8577 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8578 {
8579 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8580 struct sched_domain *tmp, *sd = NULL;
8581 int cpu = smp_processor_id();
8582 int new_cpu = prev_cpu;
8583 int want_affine = 0;
8584 /* SD_flags and WF_flags share the first nibble */
8585 int sd_flag = wake_flags & 0xF;
8586
8587 /*
8588 * required for stable ->cpus_allowed
8589 */
8590 lockdep_assert_held(&p->pi_lock);
8591 if (wake_flags & WF_TTWU) {
8592 record_wakee(p);
8593
8594 if ((wake_flags & WF_CURRENT_CPU) &&
8595 cpumask_test_cpu(cpu, p->cpus_ptr))
8596 return cpu;
8597
8598 if (!is_rd_overutilized(this_rq()->rd)) {
8599 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8600 if (new_cpu >= 0)
8601 return new_cpu;
8602 new_cpu = prev_cpu;
8603 }
8604
8605 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8606 }
8607
8608 rcu_read_lock();
8609 for_each_domain(cpu, tmp) {
8610 /*
8611 * If both 'cpu' and 'prev_cpu' are part of this domain,
8612 * cpu is a valid SD_WAKE_AFFINE target.
8613 */
8614 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8615 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8616 if (cpu != prev_cpu)
8617 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8618
8619 sd = NULL; /* Prefer wake_affine over balance flags */
8620 break;
8621 }
8622
8623 /*
8624 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8625 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8626 * will usually go to the fast path.
8627 */
8628 if (tmp->flags & sd_flag)
8629 sd = tmp;
8630 else if (!want_affine)
8631 break;
8632 }
8633
8634 if (unlikely(sd)) {
8635 /* Slow path */
8636 new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag);
8637 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
8638 /* Fast path */
8639 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8640 }
8641 rcu_read_unlock();
8642
8643 return new_cpu;
8644 }
8645
8646 /*
8647 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8648 * cfs_rq_of(p) references at time of call are still valid and identify the
8649 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8650 */
migrate_task_rq_fair(struct task_struct * p,int new_cpu)8651 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8652 {
8653 struct sched_entity *se = &p->se;
8654
8655 if (!task_on_rq_migrating(p)) {
8656 remove_entity_load_avg(se);
8657
8658 /*
8659 * Here, the task's PELT values have been updated according to
8660 * the current rq's clock. But if that clock hasn't been
8661 * updated in a while, a substantial idle time will be missed,
8662 * leading to an inflation after wake-up on the new rq.
8663 *
8664 * Estimate the missing time from the cfs_rq last_update_time
8665 * and update sched_avg to improve the PELT continuity after
8666 * migration.
8667 */
8668 migrate_se_pelt_lag(se);
8669 }
8670
8671 /* Tell new CPU we are migrated */
8672 se->avg.last_update_time = 0;
8673
8674 update_scan_period(p, new_cpu);
8675 }
8676
task_dead_fair(struct task_struct * p)8677 static void task_dead_fair(struct task_struct *p)
8678 {
8679 struct sched_entity *se = &p->se;
8680
8681 if (se->sched_delayed) {
8682 struct rq_flags rf;
8683 struct rq *rq;
8684
8685 rq = task_rq_lock(p, &rf);
8686 if (se->sched_delayed) {
8687 update_rq_clock(rq);
8688 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
8689 }
8690 task_rq_unlock(rq, p, &rf);
8691 }
8692
8693 remove_entity_load_avg(se);
8694 }
8695
8696 /*
8697 * Set the max capacity the task is allowed to run at for misfit detection.
8698 */
set_task_max_allowed_capacity(struct task_struct * p)8699 static void set_task_max_allowed_capacity(struct task_struct *p)
8700 {
8701 struct asym_cap_data *entry;
8702
8703 if (!sched_asym_cpucap_active())
8704 return;
8705
8706 rcu_read_lock();
8707 list_for_each_entry_rcu(entry, &asym_cap_list, link) {
8708 cpumask_t *cpumask;
8709
8710 cpumask = cpu_capacity_span(entry);
8711 if (!cpumask_intersects(p->cpus_ptr, cpumask))
8712 continue;
8713
8714 p->max_allowed_capacity = entry->capacity;
8715 break;
8716 }
8717 rcu_read_unlock();
8718 }
8719
set_cpus_allowed_fair(struct task_struct * p,struct affinity_context * ctx)8720 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx)
8721 {
8722 set_cpus_allowed_common(p, ctx);
8723 set_task_max_allowed_capacity(p);
8724 }
8725
8726 static int
balance_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8727 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8728 {
8729 if (sched_fair_runnable(rq))
8730 return 1;
8731
8732 return sched_balance_newidle(rq, rf) != 0;
8733 }
8734 #else
set_task_max_allowed_capacity(struct task_struct * p)8735 static inline void set_task_max_allowed_capacity(struct task_struct *p) {}
8736 #endif /* CONFIG_SMP */
8737
set_next_buddy(struct sched_entity * se)8738 static void set_next_buddy(struct sched_entity *se)
8739 {
8740 for_each_sched_entity(se) {
8741 if (WARN_ON_ONCE(!se->on_rq))
8742 return;
8743 if (se_is_idle(se))
8744 return;
8745 cfs_rq_of(se)->next = se;
8746 }
8747 }
8748
8749 /*
8750 * Preempt the current task with a newly woken task if needed:
8751 */
check_preempt_wakeup_fair(struct rq * rq,struct task_struct * p,int wake_flags)8752 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8753 {
8754 struct task_struct *donor = rq->donor;
8755 struct sched_entity *se = &donor->se, *pse = &p->se;
8756 struct cfs_rq *cfs_rq = task_cfs_rq(donor);
8757 int cse_is_idle, pse_is_idle;
8758
8759 if (unlikely(se == pse))
8760 return;
8761
8762 /*
8763 * This is possible from callers such as attach_tasks(), in which we
8764 * unconditionally wakeup_preempt() after an enqueue (which may have
8765 * lead to a throttle). This both saves work and prevents false
8766 * next-buddy nomination below.
8767 */
8768 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8769 return;
8770
8771 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK) && !pse->sched_delayed) {
8772 set_next_buddy(pse);
8773 }
8774
8775 /*
8776 * We can come here with TIF_NEED_RESCHED already set from new task
8777 * wake up path.
8778 *
8779 * Note: this also catches the edge-case of curr being in a throttled
8780 * group (e.g. via set_curr_task), since update_curr() (in the
8781 * enqueue of curr) will have resulted in resched being set. This
8782 * prevents us from potentially nominating it as a false LAST_BUDDY
8783 * below.
8784 */
8785 if (test_tsk_need_resched(rq->curr))
8786 return;
8787
8788 if (!sched_feat(WAKEUP_PREEMPTION))
8789 return;
8790
8791 find_matching_se(&se, &pse);
8792 WARN_ON_ONCE(!pse);
8793
8794 cse_is_idle = se_is_idle(se);
8795 pse_is_idle = se_is_idle(pse);
8796
8797 /*
8798 * Preempt an idle entity in favor of a non-idle entity (and don't preempt
8799 * in the inverse case).
8800 */
8801 if (cse_is_idle && !pse_is_idle) {
8802 /*
8803 * When non-idle entity preempt an idle entity,
8804 * don't give idle entity slice protection.
8805 */
8806 cancel_protect_slice(se);
8807 goto preempt;
8808 }
8809
8810 if (cse_is_idle != pse_is_idle)
8811 return;
8812
8813 /*
8814 * BATCH and IDLE tasks do not preempt others.
8815 */
8816 if (unlikely(!normal_policy(p->policy)))
8817 return;
8818
8819 cfs_rq = cfs_rq_of(se);
8820 update_curr(cfs_rq);
8821 /*
8822 * If @p has a shorter slice than current and @p is eligible, override
8823 * current's slice protection in order to allow preemption.
8824 *
8825 * Note that even if @p does not turn out to be the most eligible
8826 * task at this moment, current's slice protection will be lost.
8827 */
8828 if (do_preempt_short(cfs_rq, pse, se))
8829 cancel_protect_slice(se);
8830
8831 /*
8832 * If @p has become the most eligible task, force preemption.
8833 */
8834 if (pick_eevdf(cfs_rq) == pse)
8835 goto preempt;
8836
8837 return;
8838
8839 preempt:
8840 resched_curr_lazy(rq);
8841 }
8842
pick_task_fair(struct rq * rq)8843 static struct task_struct *pick_task_fair(struct rq *rq)
8844 {
8845 struct sched_entity *se;
8846 struct cfs_rq *cfs_rq;
8847
8848 again:
8849 cfs_rq = &rq->cfs;
8850 if (!cfs_rq->nr_queued)
8851 return NULL;
8852
8853 do {
8854 /* Might not have done put_prev_entity() */
8855 if (cfs_rq->curr && cfs_rq->curr->on_rq)
8856 update_curr(cfs_rq);
8857
8858 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8859 goto again;
8860
8861 se = pick_next_entity(rq, cfs_rq);
8862 if (!se)
8863 goto again;
8864 cfs_rq = group_cfs_rq(se);
8865 } while (cfs_rq);
8866
8867 return task_of(se);
8868 }
8869
8870 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8871 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8872
8873 struct task_struct *
pick_next_task_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8874 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8875 {
8876 struct sched_entity *se;
8877 struct task_struct *p;
8878 int new_tasks;
8879
8880 again:
8881 p = pick_task_fair(rq);
8882 if (!p)
8883 goto idle;
8884 se = &p->se;
8885
8886 #ifdef CONFIG_FAIR_GROUP_SCHED
8887 if (prev->sched_class != &fair_sched_class)
8888 goto simple;
8889
8890 __put_prev_set_next_dl_server(rq, prev, p);
8891
8892 /*
8893 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8894 * likely that a next task is from the same cgroup as the current.
8895 *
8896 * Therefore attempt to avoid putting and setting the entire cgroup
8897 * hierarchy, only change the part that actually changes.
8898 *
8899 * Since we haven't yet done put_prev_entity and if the selected task
8900 * is a different task than we started out with, try and touch the
8901 * least amount of cfs_rqs.
8902 */
8903 if (prev != p) {
8904 struct sched_entity *pse = &prev->se;
8905 struct cfs_rq *cfs_rq;
8906
8907 while (!(cfs_rq = is_same_group(se, pse))) {
8908 int se_depth = se->depth;
8909 int pse_depth = pse->depth;
8910
8911 if (se_depth <= pse_depth) {
8912 put_prev_entity(cfs_rq_of(pse), pse);
8913 pse = parent_entity(pse);
8914 }
8915 if (se_depth >= pse_depth) {
8916 set_next_entity(cfs_rq_of(se), se);
8917 se = parent_entity(se);
8918 }
8919 }
8920
8921 put_prev_entity(cfs_rq, pse);
8922 set_next_entity(cfs_rq, se);
8923
8924 __set_next_task_fair(rq, p, true);
8925 }
8926
8927 return p;
8928
8929 simple:
8930 #endif
8931 put_prev_set_next_task(rq, prev, p);
8932 return p;
8933
8934 idle:
8935 if (!rf)
8936 return NULL;
8937
8938 new_tasks = sched_balance_newidle(rq, rf);
8939
8940 /*
8941 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is
8942 * possible for any higher priority task to appear. In that case we
8943 * must re-start the pick_next_entity() loop.
8944 */
8945 if (new_tasks < 0)
8946 return RETRY_TASK;
8947
8948 if (new_tasks > 0)
8949 goto again;
8950
8951 /*
8952 * rq is about to be idle, check if we need to update the
8953 * lost_idle_time of clock_pelt
8954 */
8955 update_idle_rq_clock_pelt(rq);
8956
8957 return NULL;
8958 }
8959
__pick_next_task_fair(struct rq * rq,struct task_struct * prev)8960 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev)
8961 {
8962 return pick_next_task_fair(rq, prev, NULL);
8963 }
8964
fair_server_has_tasks(struct sched_dl_entity * dl_se)8965 static bool fair_server_has_tasks(struct sched_dl_entity *dl_se)
8966 {
8967 return !!dl_se->rq->cfs.nr_queued;
8968 }
8969
fair_server_pick_task(struct sched_dl_entity * dl_se)8970 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se)
8971 {
8972 return pick_task_fair(dl_se->rq);
8973 }
8974
fair_server_init(struct rq * rq)8975 void fair_server_init(struct rq *rq)
8976 {
8977 struct sched_dl_entity *dl_se = &rq->fair_server;
8978
8979 init_dl_entity(dl_se);
8980
8981 dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task);
8982 }
8983
8984 /*
8985 * Account for a descheduled task:
8986 */
put_prev_task_fair(struct rq * rq,struct task_struct * prev,struct task_struct * next)8987 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next)
8988 {
8989 struct sched_entity *se = &prev->se;
8990 struct cfs_rq *cfs_rq;
8991
8992 for_each_sched_entity(se) {
8993 cfs_rq = cfs_rq_of(se);
8994 put_prev_entity(cfs_rq, se);
8995 }
8996 }
8997
8998 /*
8999 * sched_yield() is very simple
9000 */
yield_task_fair(struct rq * rq)9001 static void yield_task_fair(struct rq *rq)
9002 {
9003 struct task_struct *curr = rq->curr;
9004 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
9005 struct sched_entity *se = &curr->se;
9006
9007 /*
9008 * Are we the only task in the tree?
9009 */
9010 if (unlikely(rq->nr_running == 1))
9011 return;
9012
9013 clear_buddies(cfs_rq, se);
9014
9015 update_rq_clock(rq);
9016 /*
9017 * Update run-time statistics of the 'current'.
9018 */
9019 update_curr(cfs_rq);
9020 /*
9021 * Tell update_rq_clock() that we've just updated,
9022 * so we don't do microscopic update in schedule()
9023 * and double the fastpath cost.
9024 */
9025 rq_clock_skip_update(rq);
9026
9027 se->deadline += calc_delta_fair(se->slice, se);
9028 }
9029
yield_to_task_fair(struct rq * rq,struct task_struct * p)9030 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
9031 {
9032 struct sched_entity *se = &p->se;
9033
9034 /* throttled hierarchies are not runnable */
9035 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
9036 return false;
9037
9038 /* Tell the scheduler that we'd really like se to run next. */
9039 set_next_buddy(se);
9040
9041 yield_task_fair(rq);
9042
9043 return true;
9044 }
9045
9046 #ifdef CONFIG_SMP
9047 /**************************************************
9048 * Fair scheduling class load-balancing methods.
9049 *
9050 * BASICS
9051 *
9052 * The purpose of load-balancing is to achieve the same basic fairness the
9053 * per-CPU scheduler provides, namely provide a proportional amount of compute
9054 * time to each task. This is expressed in the following equation:
9055 *
9056 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
9057 *
9058 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
9059 * W_i,0 is defined as:
9060 *
9061 * W_i,0 = \Sum_j w_i,j (2)
9062 *
9063 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
9064 * is derived from the nice value as per sched_prio_to_weight[].
9065 *
9066 * The weight average is an exponential decay average of the instantaneous
9067 * weight:
9068 *
9069 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
9070 *
9071 * C_i is the compute capacity of CPU i, typically it is the
9072 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
9073 * can also include other factors [XXX].
9074 *
9075 * To achieve this balance we define a measure of imbalance which follows
9076 * directly from (1):
9077 *
9078 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
9079 *
9080 * We them move tasks around to minimize the imbalance. In the continuous
9081 * function space it is obvious this converges, in the discrete case we get
9082 * a few fun cases generally called infeasible weight scenarios.
9083 *
9084 * [XXX expand on:
9085 * - infeasible weights;
9086 * - local vs global optima in the discrete case. ]
9087 *
9088 *
9089 * SCHED DOMAINS
9090 *
9091 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
9092 * for all i,j solution, we create a tree of CPUs that follows the hardware
9093 * topology where each level pairs two lower groups (or better). This results
9094 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
9095 * tree to only the first of the previous level and we decrease the frequency
9096 * of load-balance at each level inversely proportional to the number of CPUs in
9097 * the groups.
9098 *
9099 * This yields:
9100 *
9101 * log_2 n 1 n
9102 * \Sum { --- * --- * 2^i } = O(n) (5)
9103 * i = 0 2^i 2^i
9104 * `- size of each group
9105 * | | `- number of CPUs doing load-balance
9106 * | `- freq
9107 * `- sum over all levels
9108 *
9109 * Coupled with a limit on how many tasks we can migrate every balance pass,
9110 * this makes (5) the runtime complexity of the balancer.
9111 *
9112 * An important property here is that each CPU is still (indirectly) connected
9113 * to every other CPU in at most O(log n) steps:
9114 *
9115 * The adjacency matrix of the resulting graph is given by:
9116 *
9117 * log_2 n
9118 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
9119 * k = 0
9120 *
9121 * And you'll find that:
9122 *
9123 * A^(log_2 n)_i,j != 0 for all i,j (7)
9124 *
9125 * Showing there's indeed a path between every CPU in at most O(log n) steps.
9126 * The task movement gives a factor of O(m), giving a convergence complexity
9127 * of:
9128 *
9129 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
9130 *
9131 *
9132 * WORK CONSERVING
9133 *
9134 * In order to avoid CPUs going idle while there's still work to do, new idle
9135 * balancing is more aggressive and has the newly idle CPU iterate up the domain
9136 * tree itself instead of relying on other CPUs to bring it work.
9137 *
9138 * This adds some complexity to both (5) and (8) but it reduces the total idle
9139 * time.
9140 *
9141 * [XXX more?]
9142 *
9143 *
9144 * CGROUPS
9145 *
9146 * Cgroups make a horror show out of (2), instead of a simple sum we get:
9147 *
9148 * s_k,i
9149 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
9150 * S_k
9151 *
9152 * Where
9153 *
9154 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
9155 *
9156 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
9157 *
9158 * The big problem is S_k, its a global sum needed to compute a local (W_i)
9159 * property.
9160 *
9161 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
9162 * rewrite all of this once again.]
9163 */
9164
9165 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
9166
9167 enum fbq_type { regular, remote, all };
9168
9169 /*
9170 * 'group_type' describes the group of CPUs at the moment of load balancing.
9171 *
9172 * The enum is ordered by pulling priority, with the group with lowest priority
9173 * first so the group_type can simply be compared when selecting the busiest
9174 * group. See update_sd_pick_busiest().
9175 */
9176 enum group_type {
9177 /* The group has spare capacity that can be used to run more tasks. */
9178 group_has_spare = 0,
9179 /*
9180 * The group is fully used and the tasks don't compete for more CPU
9181 * cycles. Nevertheless, some tasks might wait before running.
9182 */
9183 group_fully_busy,
9184 /*
9185 * One task doesn't fit with CPU's capacity and must be migrated to a
9186 * more powerful CPU.
9187 */
9188 group_misfit_task,
9189 /*
9190 * Balance SMT group that's fully busy. Can benefit from migration
9191 * a task on SMT with busy sibling to another CPU on idle core.
9192 */
9193 group_smt_balance,
9194 /*
9195 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
9196 * and the task should be migrated to it instead of running on the
9197 * current CPU.
9198 */
9199 group_asym_packing,
9200 /*
9201 * The tasks' affinity constraints previously prevented the scheduler
9202 * from balancing the load across the system.
9203 */
9204 group_imbalanced,
9205 /*
9206 * The CPU is overloaded and can't provide expected CPU cycles to all
9207 * tasks.
9208 */
9209 group_overloaded
9210 };
9211
9212 enum migration_type {
9213 migrate_load = 0,
9214 migrate_util,
9215 migrate_task,
9216 migrate_misfit
9217 };
9218
9219 #define LBF_ALL_PINNED 0x01
9220 #define LBF_NEED_BREAK 0x02
9221 #define LBF_DST_PINNED 0x04
9222 #define LBF_SOME_PINNED 0x08
9223 #define LBF_ACTIVE_LB 0x10
9224
9225 struct lb_env {
9226 struct sched_domain *sd;
9227
9228 struct rq *src_rq;
9229 int src_cpu;
9230
9231 int dst_cpu;
9232 struct rq *dst_rq;
9233
9234 struct cpumask *dst_grpmask;
9235 int new_dst_cpu;
9236 enum cpu_idle_type idle;
9237 long imbalance;
9238 /* The set of CPUs under consideration for load-balancing */
9239 struct cpumask *cpus;
9240
9241 unsigned int flags;
9242
9243 unsigned int loop;
9244 unsigned int loop_break;
9245 unsigned int loop_max;
9246
9247 enum fbq_type fbq_type;
9248 enum migration_type migration_type;
9249 struct list_head tasks;
9250 };
9251
9252 /*
9253 * Is this task likely cache-hot:
9254 */
task_hot(struct task_struct * p,struct lb_env * env)9255 static int task_hot(struct task_struct *p, struct lb_env *env)
9256 {
9257 s64 delta;
9258
9259 lockdep_assert_rq_held(env->src_rq);
9260
9261 if (p->sched_class != &fair_sched_class)
9262 return 0;
9263
9264 if (unlikely(task_has_idle_policy(p)))
9265 return 0;
9266
9267 /* SMT siblings share cache */
9268 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
9269 return 0;
9270
9271 /*
9272 * Buddy candidates are cache hot:
9273 */
9274 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
9275 (&p->se == cfs_rq_of(&p->se)->next))
9276 return 1;
9277
9278 if (sysctl_sched_migration_cost == -1)
9279 return 1;
9280
9281 /*
9282 * Don't migrate task if the task's cookie does not match
9283 * with the destination CPU's core cookie.
9284 */
9285 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
9286 return 1;
9287
9288 if (sysctl_sched_migration_cost == 0)
9289 return 0;
9290
9291 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
9292
9293 return delta < (s64)sysctl_sched_migration_cost;
9294 }
9295
9296 #ifdef CONFIG_NUMA_BALANCING
9297 /*
9298 * Returns a positive value, if task migration degrades locality.
9299 * Returns 0, if task migration is not affected by locality.
9300 * Returns a negative value, if task migration improves locality i.e migration preferred.
9301 */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)9302 static long migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
9303 {
9304 struct numa_group *numa_group = rcu_dereference(p->numa_group);
9305 unsigned long src_weight, dst_weight;
9306 int src_nid, dst_nid, dist;
9307
9308 if (!static_branch_likely(&sched_numa_balancing))
9309 return 0;
9310
9311 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
9312 return 0;
9313
9314 src_nid = cpu_to_node(env->src_cpu);
9315 dst_nid = cpu_to_node(env->dst_cpu);
9316
9317 if (src_nid == dst_nid)
9318 return 0;
9319
9320 /* Migrating away from the preferred node is always bad. */
9321 if (src_nid == p->numa_preferred_nid) {
9322 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
9323 return 1;
9324 else
9325 return 0;
9326 }
9327
9328 /* Encourage migration to the preferred node. */
9329 if (dst_nid == p->numa_preferred_nid)
9330 return -1;
9331
9332 /* Leaving a core idle is often worse than degrading locality. */
9333 if (env->idle == CPU_IDLE)
9334 return 0;
9335
9336 dist = node_distance(src_nid, dst_nid);
9337 if (numa_group) {
9338 src_weight = group_weight(p, src_nid, dist);
9339 dst_weight = group_weight(p, dst_nid, dist);
9340 } else {
9341 src_weight = task_weight(p, src_nid, dist);
9342 dst_weight = task_weight(p, dst_nid, dist);
9343 }
9344
9345 return src_weight - dst_weight;
9346 }
9347
9348 #else
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)9349 static inline long migrate_degrades_locality(struct task_struct *p,
9350 struct lb_env *env)
9351 {
9352 return 0;
9353 }
9354 #endif
9355
9356 /*
9357 * Check whether the task is ineligible on the destination cpu
9358 *
9359 * When the PLACE_LAG scheduling feature is enabled and
9360 * dst_cfs_rq->nr_queued is greater than 1, if the task
9361 * is ineligible, it will also be ineligible when
9362 * it is migrated to the destination cpu.
9363 */
task_is_ineligible_on_dst_cpu(struct task_struct * p,int dest_cpu)9364 static inline int task_is_ineligible_on_dst_cpu(struct task_struct *p, int dest_cpu)
9365 {
9366 struct cfs_rq *dst_cfs_rq;
9367
9368 #ifdef CONFIG_FAIR_GROUP_SCHED
9369 dst_cfs_rq = task_group(p)->cfs_rq[dest_cpu];
9370 #else
9371 dst_cfs_rq = &cpu_rq(dest_cpu)->cfs;
9372 #endif
9373 if (sched_feat(PLACE_LAG) && dst_cfs_rq->nr_queued &&
9374 !entity_eligible(task_cfs_rq(p), &p->se))
9375 return 1;
9376
9377 return 0;
9378 }
9379
9380 /*
9381 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
9382 */
9383 static
can_migrate_task(struct task_struct * p,struct lb_env * env)9384 int can_migrate_task(struct task_struct *p, struct lb_env *env)
9385 {
9386 long degrades, hot;
9387
9388 lockdep_assert_rq_held(env->src_rq);
9389 if (p->sched_task_hot)
9390 p->sched_task_hot = 0;
9391
9392 /*
9393 * We do not migrate tasks that are:
9394 * 1) delayed dequeued unless we migrate load, or
9395 * 2) throttled_lb_pair, or
9396 * 3) cannot be migrated to this CPU due to cpus_ptr, or
9397 * 4) running (obviously), or
9398 * 5) are cache-hot on their current CPU.
9399 */
9400 if ((p->se.sched_delayed) && (env->migration_type != migrate_load))
9401 return 0;
9402
9403 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
9404 return 0;
9405
9406 /*
9407 * We want to prioritize the migration of eligible tasks.
9408 * For ineligible tasks we soft-limit them and only allow
9409 * them to migrate when nr_balance_failed is non-zero to
9410 * avoid load-balancing trying very hard to balance the load.
9411 */
9412 if (!env->sd->nr_balance_failed &&
9413 task_is_ineligible_on_dst_cpu(p, env->dst_cpu))
9414 return 0;
9415
9416 /* Disregard percpu kthreads; they are where they need to be. */
9417 if (kthread_is_per_cpu(p))
9418 return 0;
9419
9420 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
9421 int cpu;
9422
9423 schedstat_inc(p->stats.nr_failed_migrations_affine);
9424
9425 env->flags |= LBF_SOME_PINNED;
9426
9427 /*
9428 * Remember if this task can be migrated to any other CPU in
9429 * our sched_group. We may want to revisit it if we couldn't
9430 * meet load balance goals by pulling other tasks on src_cpu.
9431 *
9432 * Avoid computing new_dst_cpu
9433 * - for NEWLY_IDLE
9434 * - if we have already computed one in current iteration
9435 * - if it's an active balance
9436 */
9437 if (env->idle == CPU_NEWLY_IDLE ||
9438 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
9439 return 0;
9440
9441 /* Prevent to re-select dst_cpu via env's CPUs: */
9442 cpu = cpumask_first_and_and(env->dst_grpmask, env->cpus, p->cpus_ptr);
9443
9444 if (cpu < nr_cpu_ids) {
9445 env->flags |= LBF_DST_PINNED;
9446 env->new_dst_cpu = cpu;
9447 }
9448
9449 return 0;
9450 }
9451
9452 /* Record that we found at least one task that could run on dst_cpu */
9453 env->flags &= ~LBF_ALL_PINNED;
9454
9455 if (task_on_cpu(env->src_rq, p)) {
9456 schedstat_inc(p->stats.nr_failed_migrations_running);
9457 return 0;
9458 }
9459
9460 /*
9461 * Aggressive migration if:
9462 * 1) active balance
9463 * 2) destination numa is preferred
9464 * 3) task is cache cold, or
9465 * 4) too many balance attempts have failed.
9466 */
9467 if (env->flags & LBF_ACTIVE_LB)
9468 return 1;
9469
9470 degrades = migrate_degrades_locality(p, env);
9471 if (!degrades)
9472 hot = task_hot(p, env);
9473 else
9474 hot = degrades > 0;
9475
9476 if (!hot || env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
9477 if (hot)
9478 p->sched_task_hot = 1;
9479 return 1;
9480 }
9481
9482 schedstat_inc(p->stats.nr_failed_migrations_hot);
9483 return 0;
9484 }
9485
9486 /*
9487 * detach_task() -- detach the task for the migration specified in env
9488 */
detach_task(struct task_struct * p,struct lb_env * env)9489 static void detach_task(struct task_struct *p, struct lb_env *env)
9490 {
9491 lockdep_assert_rq_held(env->src_rq);
9492
9493 if (p->sched_task_hot) {
9494 p->sched_task_hot = 0;
9495 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
9496 schedstat_inc(p->stats.nr_forced_migrations);
9497 }
9498
9499 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9500 set_task_cpu(p, env->dst_cpu);
9501 }
9502
9503 /*
9504 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9505 * part of active balancing operations within "domain".
9506 *
9507 * Returns a task if successful and NULL otherwise.
9508 */
detach_one_task(struct lb_env * env)9509 static struct task_struct *detach_one_task(struct lb_env *env)
9510 {
9511 struct task_struct *p;
9512
9513 lockdep_assert_rq_held(env->src_rq);
9514
9515 list_for_each_entry_reverse(p,
9516 &env->src_rq->cfs_tasks, se.group_node) {
9517 if (!can_migrate_task(p, env))
9518 continue;
9519
9520 detach_task(p, env);
9521
9522 /*
9523 * Right now, this is only the second place where
9524 * lb_gained[env->idle] is updated (other is detach_tasks)
9525 * so we can safely collect stats here rather than
9526 * inside detach_tasks().
9527 */
9528 schedstat_inc(env->sd->lb_gained[env->idle]);
9529 return p;
9530 }
9531 return NULL;
9532 }
9533
9534 /*
9535 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9536 * busiest_rq, as part of a balancing operation within domain "sd".
9537 *
9538 * Returns number of detached tasks if successful and 0 otherwise.
9539 */
detach_tasks(struct lb_env * env)9540 static int detach_tasks(struct lb_env *env)
9541 {
9542 struct list_head *tasks = &env->src_rq->cfs_tasks;
9543 unsigned long util, load;
9544 struct task_struct *p;
9545 int detached = 0;
9546
9547 lockdep_assert_rq_held(env->src_rq);
9548
9549 /*
9550 * Source run queue has been emptied by another CPU, clear
9551 * LBF_ALL_PINNED flag as we will not test any task.
9552 */
9553 if (env->src_rq->nr_running <= 1) {
9554 env->flags &= ~LBF_ALL_PINNED;
9555 return 0;
9556 }
9557
9558 if (env->imbalance <= 0)
9559 return 0;
9560
9561 while (!list_empty(tasks)) {
9562 /*
9563 * We don't want to steal all, otherwise we may be treated likewise,
9564 * which could at worst lead to a livelock crash.
9565 */
9566 if (env->idle && env->src_rq->nr_running <= 1)
9567 break;
9568
9569 env->loop++;
9570 /* We've more or less seen every task there is, call it quits */
9571 if (env->loop > env->loop_max)
9572 break;
9573
9574 /* take a breather every nr_migrate tasks */
9575 if (env->loop > env->loop_break) {
9576 env->loop_break += SCHED_NR_MIGRATE_BREAK;
9577 env->flags |= LBF_NEED_BREAK;
9578 break;
9579 }
9580
9581 p = list_last_entry(tasks, struct task_struct, se.group_node);
9582
9583 if (!can_migrate_task(p, env))
9584 goto next;
9585
9586 switch (env->migration_type) {
9587 case migrate_load:
9588 /*
9589 * Depending of the number of CPUs and tasks and the
9590 * cgroup hierarchy, task_h_load() can return a null
9591 * value. Make sure that env->imbalance decreases
9592 * otherwise detach_tasks() will stop only after
9593 * detaching up to loop_max tasks.
9594 */
9595 load = max_t(unsigned long, task_h_load(p), 1);
9596
9597 if (sched_feat(LB_MIN) &&
9598 load < 16 && !env->sd->nr_balance_failed)
9599 goto next;
9600
9601 /*
9602 * Make sure that we don't migrate too much load.
9603 * Nevertheless, let relax the constraint if
9604 * scheduler fails to find a good waiting task to
9605 * migrate.
9606 */
9607 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9608 goto next;
9609
9610 env->imbalance -= load;
9611 break;
9612
9613 case migrate_util:
9614 util = task_util_est(p);
9615
9616 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance)
9617 goto next;
9618
9619 env->imbalance -= util;
9620 break;
9621
9622 case migrate_task:
9623 env->imbalance--;
9624 break;
9625
9626 case migrate_misfit:
9627 /* This is not a misfit task */
9628 if (task_fits_cpu(p, env->src_cpu))
9629 goto next;
9630
9631 env->imbalance = 0;
9632 break;
9633 }
9634
9635 detach_task(p, env);
9636 list_add(&p->se.group_node, &env->tasks);
9637
9638 detached++;
9639
9640 #ifdef CONFIG_PREEMPTION
9641 /*
9642 * NEWIDLE balancing is a source of latency, so preemptible
9643 * kernels will stop after the first task is detached to minimize
9644 * the critical section.
9645 */
9646 if (env->idle == CPU_NEWLY_IDLE)
9647 break;
9648 #endif
9649
9650 /*
9651 * We only want to steal up to the prescribed amount of
9652 * load/util/tasks.
9653 */
9654 if (env->imbalance <= 0)
9655 break;
9656
9657 continue;
9658 next:
9659 if (p->sched_task_hot)
9660 schedstat_inc(p->stats.nr_failed_migrations_hot);
9661
9662 list_move(&p->se.group_node, tasks);
9663 }
9664
9665 /*
9666 * Right now, this is one of only two places we collect this stat
9667 * so we can safely collect detach_one_task() stats here rather
9668 * than inside detach_one_task().
9669 */
9670 schedstat_add(env->sd->lb_gained[env->idle], detached);
9671
9672 return detached;
9673 }
9674
9675 /*
9676 * attach_task() -- attach the task detached by detach_task() to its new rq.
9677 */
attach_task(struct rq * rq,struct task_struct * p)9678 static void attach_task(struct rq *rq, struct task_struct *p)
9679 {
9680 lockdep_assert_rq_held(rq);
9681
9682 WARN_ON_ONCE(task_rq(p) != rq);
9683 activate_task(rq, p, ENQUEUE_NOCLOCK);
9684 wakeup_preempt(rq, p, 0);
9685 }
9686
9687 /*
9688 * attach_one_task() -- attaches the task returned from detach_one_task() to
9689 * its new rq.
9690 */
attach_one_task(struct rq * rq,struct task_struct * p)9691 static void attach_one_task(struct rq *rq, struct task_struct *p)
9692 {
9693 struct rq_flags rf;
9694
9695 rq_lock(rq, &rf);
9696 update_rq_clock(rq);
9697 attach_task(rq, p);
9698 rq_unlock(rq, &rf);
9699 }
9700
9701 /*
9702 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9703 * new rq.
9704 */
attach_tasks(struct lb_env * env)9705 static void attach_tasks(struct lb_env *env)
9706 {
9707 struct list_head *tasks = &env->tasks;
9708 struct task_struct *p;
9709 struct rq_flags rf;
9710
9711 rq_lock(env->dst_rq, &rf);
9712 update_rq_clock(env->dst_rq);
9713
9714 while (!list_empty(tasks)) {
9715 p = list_first_entry(tasks, struct task_struct, se.group_node);
9716 list_del_init(&p->se.group_node);
9717
9718 attach_task(env->dst_rq, p);
9719 }
9720
9721 rq_unlock(env->dst_rq, &rf);
9722 }
9723
9724 #ifdef CONFIG_NO_HZ_COMMON
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9725 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9726 {
9727 if (cfs_rq->avg.load_avg)
9728 return true;
9729
9730 if (cfs_rq->avg.util_avg)
9731 return true;
9732
9733 return false;
9734 }
9735
others_have_blocked(struct rq * rq)9736 static inline bool others_have_blocked(struct rq *rq)
9737 {
9738 if (cpu_util_rt(rq))
9739 return true;
9740
9741 if (cpu_util_dl(rq))
9742 return true;
9743
9744 if (hw_load_avg(rq))
9745 return true;
9746
9747 if (cpu_util_irq(rq))
9748 return true;
9749
9750 return false;
9751 }
9752
update_blocked_load_tick(struct rq * rq)9753 static inline void update_blocked_load_tick(struct rq *rq)
9754 {
9755 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9756 }
9757
update_blocked_load_status(struct rq * rq,bool has_blocked)9758 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9759 {
9760 if (!has_blocked)
9761 rq->has_blocked_load = 0;
9762 }
9763 #else
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9764 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
others_have_blocked(struct rq * rq)9765 static inline bool others_have_blocked(struct rq *rq) { return false; }
update_blocked_load_tick(struct rq * rq)9766 static inline void update_blocked_load_tick(struct rq *rq) {}
update_blocked_load_status(struct rq * rq,bool has_blocked)9767 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9768 #endif
9769
__update_blocked_others(struct rq * rq,bool * done)9770 static bool __update_blocked_others(struct rq *rq, bool *done)
9771 {
9772 bool updated;
9773
9774 /*
9775 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9776 * DL and IRQ signals have been updated before updating CFS.
9777 */
9778 updated = update_other_load_avgs(rq);
9779
9780 if (others_have_blocked(rq))
9781 *done = false;
9782
9783 return updated;
9784 }
9785
9786 #ifdef CONFIG_FAIR_GROUP_SCHED
9787
__update_blocked_fair(struct rq * rq,bool * done)9788 static bool __update_blocked_fair(struct rq *rq, bool *done)
9789 {
9790 struct cfs_rq *cfs_rq, *pos;
9791 bool decayed = false;
9792 int cpu = cpu_of(rq);
9793
9794 /*
9795 * Iterates the task_group tree in a bottom up fashion, see
9796 * list_add_leaf_cfs_rq() for details.
9797 */
9798 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9799 struct sched_entity *se;
9800
9801 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9802 update_tg_load_avg(cfs_rq);
9803
9804 if (cfs_rq->nr_queued == 0)
9805 update_idle_cfs_rq_clock_pelt(cfs_rq);
9806
9807 if (cfs_rq == &rq->cfs)
9808 decayed = true;
9809 }
9810
9811 /* Propagate pending load changes to the parent, if any: */
9812 se = cfs_rq->tg->se[cpu];
9813 if (se && !skip_blocked_update(se))
9814 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9815
9816 /*
9817 * There can be a lot of idle CPU cgroups. Don't let fully
9818 * decayed cfs_rqs linger on the list.
9819 */
9820 if (cfs_rq_is_decayed(cfs_rq))
9821 list_del_leaf_cfs_rq(cfs_rq);
9822
9823 /* Don't need periodic decay once load/util_avg are null */
9824 if (cfs_rq_has_blocked(cfs_rq))
9825 *done = false;
9826 }
9827
9828 return decayed;
9829 }
9830
9831 /*
9832 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9833 * This needs to be done in a top-down fashion because the load of a child
9834 * group is a fraction of its parents load.
9835 */
update_cfs_rq_h_load(struct cfs_rq * cfs_rq)9836 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9837 {
9838 struct rq *rq = rq_of(cfs_rq);
9839 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9840 unsigned long now = jiffies;
9841 unsigned long load;
9842
9843 if (cfs_rq->last_h_load_update == now)
9844 return;
9845
9846 WRITE_ONCE(cfs_rq->h_load_next, NULL);
9847 for_each_sched_entity(se) {
9848 cfs_rq = cfs_rq_of(se);
9849 WRITE_ONCE(cfs_rq->h_load_next, se);
9850 if (cfs_rq->last_h_load_update == now)
9851 break;
9852 }
9853
9854 if (!se) {
9855 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9856 cfs_rq->last_h_load_update = now;
9857 }
9858
9859 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9860 load = cfs_rq->h_load;
9861 load = div64_ul(load * se->avg.load_avg,
9862 cfs_rq_load_avg(cfs_rq) + 1);
9863 cfs_rq = group_cfs_rq(se);
9864 cfs_rq->h_load = load;
9865 cfs_rq->last_h_load_update = now;
9866 }
9867 }
9868
task_h_load(struct task_struct * p)9869 static unsigned long task_h_load(struct task_struct *p)
9870 {
9871 struct cfs_rq *cfs_rq = task_cfs_rq(p);
9872
9873 update_cfs_rq_h_load(cfs_rq);
9874 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9875 cfs_rq_load_avg(cfs_rq) + 1);
9876 }
9877 #else
__update_blocked_fair(struct rq * rq,bool * done)9878 static bool __update_blocked_fair(struct rq *rq, bool *done)
9879 {
9880 struct cfs_rq *cfs_rq = &rq->cfs;
9881 bool decayed;
9882
9883 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9884 if (cfs_rq_has_blocked(cfs_rq))
9885 *done = false;
9886
9887 return decayed;
9888 }
9889
task_h_load(struct task_struct * p)9890 static unsigned long task_h_load(struct task_struct *p)
9891 {
9892 return p->se.avg.load_avg;
9893 }
9894 #endif
9895
sched_balance_update_blocked_averages(int cpu)9896 static void sched_balance_update_blocked_averages(int cpu)
9897 {
9898 bool decayed = false, done = true;
9899 struct rq *rq = cpu_rq(cpu);
9900 struct rq_flags rf;
9901
9902 rq_lock_irqsave(rq, &rf);
9903 update_blocked_load_tick(rq);
9904 update_rq_clock(rq);
9905
9906 decayed |= __update_blocked_others(rq, &done);
9907 decayed |= __update_blocked_fair(rq, &done);
9908
9909 update_blocked_load_status(rq, !done);
9910 if (decayed)
9911 cpufreq_update_util(rq, 0);
9912 rq_unlock_irqrestore(rq, &rf);
9913 }
9914
9915 /********** Helpers for sched_balance_find_src_group ************************/
9916
9917 /*
9918 * sg_lb_stats - stats of a sched_group required for load-balancing:
9919 */
9920 struct sg_lb_stats {
9921 unsigned long avg_load; /* Avg load over the CPUs of the group */
9922 unsigned long group_load; /* Total load over the CPUs of the group */
9923 unsigned long group_capacity; /* Capacity over the CPUs of the group */
9924 unsigned long group_util; /* Total utilization over the CPUs of the group */
9925 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
9926 unsigned int sum_nr_running; /* Nr of all tasks running in the group */
9927 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
9928 unsigned int idle_cpus; /* Nr of idle CPUs in the group */
9929 unsigned int group_weight;
9930 enum group_type group_type;
9931 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
9932 unsigned int group_smt_balance; /* Task on busy SMT be moved */
9933 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
9934 #ifdef CONFIG_NUMA_BALANCING
9935 unsigned int nr_numa_running;
9936 unsigned int nr_preferred_running;
9937 #endif
9938 };
9939
9940 /*
9941 * sd_lb_stats - stats of a sched_domain required for load-balancing:
9942 */
9943 struct sd_lb_stats {
9944 struct sched_group *busiest; /* Busiest group in this sd */
9945 struct sched_group *local; /* Local group in this sd */
9946 unsigned long total_load; /* Total load of all groups in sd */
9947 unsigned long total_capacity; /* Total capacity of all groups in sd */
9948 unsigned long avg_load; /* Average load across all groups in sd */
9949 unsigned int prefer_sibling; /* Tasks should go to sibling first */
9950
9951 struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */
9952 struct sg_lb_stats local_stat; /* Statistics of the local group */
9953 };
9954
init_sd_lb_stats(struct sd_lb_stats * sds)9955 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9956 {
9957 /*
9958 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9959 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9960 * We must however set busiest_stat::group_type and
9961 * busiest_stat::idle_cpus to the worst busiest group because
9962 * update_sd_pick_busiest() reads these before assignment.
9963 */
9964 *sds = (struct sd_lb_stats){
9965 .busiest = NULL,
9966 .local = NULL,
9967 .total_load = 0UL,
9968 .total_capacity = 0UL,
9969 .busiest_stat = {
9970 .idle_cpus = UINT_MAX,
9971 .group_type = group_has_spare,
9972 },
9973 };
9974 }
9975
scale_rt_capacity(int cpu)9976 static unsigned long scale_rt_capacity(int cpu)
9977 {
9978 unsigned long max = get_actual_cpu_capacity(cpu);
9979 struct rq *rq = cpu_rq(cpu);
9980 unsigned long used, free;
9981 unsigned long irq;
9982
9983 irq = cpu_util_irq(rq);
9984
9985 if (unlikely(irq >= max))
9986 return 1;
9987
9988 /*
9989 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9990 * (running and not running) with weights 0 and 1024 respectively.
9991 */
9992 used = cpu_util_rt(rq);
9993 used += cpu_util_dl(rq);
9994
9995 if (unlikely(used >= max))
9996 return 1;
9997
9998 free = max - used;
9999
10000 return scale_irq_capacity(free, irq, max);
10001 }
10002
update_cpu_capacity(struct sched_domain * sd,int cpu)10003 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
10004 {
10005 unsigned long capacity = scale_rt_capacity(cpu);
10006 struct sched_group *sdg = sd->groups;
10007
10008 if (!capacity)
10009 capacity = 1;
10010
10011 cpu_rq(cpu)->cpu_capacity = capacity;
10012 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
10013
10014 sdg->sgc->capacity = capacity;
10015 sdg->sgc->min_capacity = capacity;
10016 sdg->sgc->max_capacity = capacity;
10017 }
10018
update_group_capacity(struct sched_domain * sd,int cpu)10019 void update_group_capacity(struct sched_domain *sd, int cpu)
10020 {
10021 struct sched_domain *child = sd->child;
10022 struct sched_group *group, *sdg = sd->groups;
10023 unsigned long capacity, min_capacity, max_capacity;
10024 unsigned long interval;
10025
10026 interval = msecs_to_jiffies(sd->balance_interval);
10027 interval = clamp(interval, 1UL, max_load_balance_interval);
10028 sdg->sgc->next_update = jiffies + interval;
10029
10030 if (!child) {
10031 update_cpu_capacity(sd, cpu);
10032 return;
10033 }
10034
10035 capacity = 0;
10036 min_capacity = ULONG_MAX;
10037 max_capacity = 0;
10038
10039 if (child->flags & SD_OVERLAP) {
10040 /*
10041 * SD_OVERLAP domains cannot assume that child groups
10042 * span the current group.
10043 */
10044
10045 for_each_cpu(cpu, sched_group_span(sdg)) {
10046 unsigned long cpu_cap = capacity_of(cpu);
10047
10048 capacity += cpu_cap;
10049 min_capacity = min(cpu_cap, min_capacity);
10050 max_capacity = max(cpu_cap, max_capacity);
10051 }
10052 } else {
10053 /*
10054 * !SD_OVERLAP domains can assume that child groups
10055 * span the current group.
10056 */
10057
10058 group = child->groups;
10059 do {
10060 struct sched_group_capacity *sgc = group->sgc;
10061
10062 capacity += sgc->capacity;
10063 min_capacity = min(sgc->min_capacity, min_capacity);
10064 max_capacity = max(sgc->max_capacity, max_capacity);
10065 group = group->next;
10066 } while (group != child->groups);
10067 }
10068
10069 sdg->sgc->capacity = capacity;
10070 sdg->sgc->min_capacity = min_capacity;
10071 sdg->sgc->max_capacity = max_capacity;
10072 }
10073
10074 /*
10075 * Check whether the capacity of the rq has been noticeably reduced by side
10076 * activity. The imbalance_pct is used for the threshold.
10077 * Return true is the capacity is reduced
10078 */
10079 static inline int
check_cpu_capacity(struct rq * rq,struct sched_domain * sd)10080 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
10081 {
10082 return ((rq->cpu_capacity * sd->imbalance_pct) <
10083 (arch_scale_cpu_capacity(cpu_of(rq)) * 100));
10084 }
10085
10086 /* Check if the rq has a misfit task */
check_misfit_status(struct rq * rq)10087 static inline bool check_misfit_status(struct rq *rq)
10088 {
10089 return rq->misfit_task_load;
10090 }
10091
10092 /*
10093 * Group imbalance indicates (and tries to solve) the problem where balancing
10094 * groups is inadequate due to ->cpus_ptr constraints.
10095 *
10096 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
10097 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
10098 * Something like:
10099 *
10100 * { 0 1 2 3 } { 4 5 6 7 }
10101 * * * * *
10102 *
10103 * If we were to balance group-wise we'd place two tasks in the first group and
10104 * two tasks in the second group. Clearly this is undesired as it will overload
10105 * cpu 3 and leave one of the CPUs in the second group unused.
10106 *
10107 * The current solution to this issue is detecting the skew in the first group
10108 * by noticing the lower domain failed to reach balance and had difficulty
10109 * moving tasks due to affinity constraints.
10110 *
10111 * When this is so detected; this group becomes a candidate for busiest; see
10112 * update_sd_pick_busiest(). And calculate_imbalance() and
10113 * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it
10114 * to create an effective group imbalance.
10115 *
10116 * This is a somewhat tricky proposition since the next run might not find the
10117 * group imbalance and decide the groups need to be balanced again. A most
10118 * subtle and fragile situation.
10119 */
10120
sg_imbalanced(struct sched_group * group)10121 static inline int sg_imbalanced(struct sched_group *group)
10122 {
10123 return group->sgc->imbalance;
10124 }
10125
10126 /*
10127 * group_has_capacity returns true if the group has spare capacity that could
10128 * be used by some tasks.
10129 * We consider that a group has spare capacity if the number of task is
10130 * smaller than the number of CPUs or if the utilization is lower than the
10131 * available capacity for CFS tasks.
10132 * For the latter, we use a threshold to stabilize the state, to take into
10133 * account the variance of the tasks' load and to return true if the available
10134 * capacity in meaningful for the load balancer.
10135 * As an example, an available capacity of 1% can appear but it doesn't make
10136 * any benefit for the load balance.
10137 */
10138 static inline bool
group_has_capacity(unsigned int imbalance_pct,struct sg_lb_stats * sgs)10139 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10140 {
10141 if (sgs->sum_nr_running < sgs->group_weight)
10142 return true;
10143
10144 if ((sgs->group_capacity * imbalance_pct) <
10145 (sgs->group_runnable * 100))
10146 return false;
10147
10148 if ((sgs->group_capacity * 100) >
10149 (sgs->group_util * imbalance_pct))
10150 return true;
10151
10152 return false;
10153 }
10154
10155 /*
10156 * group_is_overloaded returns true if the group has more tasks than it can
10157 * handle.
10158 * group_is_overloaded is not equals to !group_has_capacity because a group
10159 * with the exact right number of tasks, has no more spare capacity but is not
10160 * overloaded so both group_has_capacity and group_is_overloaded return
10161 * false.
10162 */
10163 static inline bool
group_is_overloaded(unsigned int imbalance_pct,struct sg_lb_stats * sgs)10164 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10165 {
10166 if (sgs->sum_nr_running <= sgs->group_weight)
10167 return false;
10168
10169 if ((sgs->group_capacity * 100) <
10170 (sgs->group_util * imbalance_pct))
10171 return true;
10172
10173 if ((sgs->group_capacity * imbalance_pct) <
10174 (sgs->group_runnable * 100))
10175 return true;
10176
10177 return false;
10178 }
10179
10180 static inline enum
group_classify(unsigned int imbalance_pct,struct sched_group * group,struct sg_lb_stats * sgs)10181 group_type group_classify(unsigned int imbalance_pct,
10182 struct sched_group *group,
10183 struct sg_lb_stats *sgs)
10184 {
10185 if (group_is_overloaded(imbalance_pct, sgs))
10186 return group_overloaded;
10187
10188 if (sg_imbalanced(group))
10189 return group_imbalanced;
10190
10191 if (sgs->group_asym_packing)
10192 return group_asym_packing;
10193
10194 if (sgs->group_smt_balance)
10195 return group_smt_balance;
10196
10197 if (sgs->group_misfit_task_load)
10198 return group_misfit_task;
10199
10200 if (!group_has_capacity(imbalance_pct, sgs))
10201 return group_fully_busy;
10202
10203 return group_has_spare;
10204 }
10205
10206 /**
10207 * sched_use_asym_prio - Check whether asym_packing priority must be used
10208 * @sd: The scheduling domain of the load balancing
10209 * @cpu: A CPU
10210 *
10211 * Always use CPU priority when balancing load between SMT siblings. When
10212 * balancing load between cores, it is not sufficient that @cpu is idle. Only
10213 * use CPU priority if the whole core is idle.
10214 *
10215 * Returns: True if the priority of @cpu must be followed. False otherwise.
10216 */
sched_use_asym_prio(struct sched_domain * sd,int cpu)10217 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
10218 {
10219 if (!(sd->flags & SD_ASYM_PACKING))
10220 return false;
10221
10222 if (!sched_smt_active())
10223 return true;
10224
10225 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
10226 }
10227
sched_asym(struct sched_domain * sd,int dst_cpu,int src_cpu)10228 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu)
10229 {
10230 /*
10231 * First check if @dst_cpu can do asym_packing load balance. Only do it
10232 * if it has higher priority than @src_cpu.
10233 */
10234 return sched_use_asym_prio(sd, dst_cpu) &&
10235 sched_asym_prefer(dst_cpu, src_cpu);
10236 }
10237
10238 /**
10239 * sched_group_asym - Check if the destination CPU can do asym_packing balance
10240 * @env: The load balancing environment
10241 * @sgs: Load-balancing statistics of the candidate busiest group
10242 * @group: The candidate busiest group
10243 *
10244 * @env::dst_cpu can do asym_packing if it has higher priority than the
10245 * preferred CPU of @group.
10246 *
10247 * Return: true if @env::dst_cpu can do with asym_packing load balance. False
10248 * otherwise.
10249 */
10250 static inline bool
sched_group_asym(struct lb_env * env,struct sg_lb_stats * sgs,struct sched_group * group)10251 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group)
10252 {
10253 /*
10254 * CPU priorities do not make sense for SMT cores with more than one
10255 * busy sibling.
10256 */
10257 if ((group->flags & SD_SHARE_CPUCAPACITY) &&
10258 (sgs->group_weight - sgs->idle_cpus != 1))
10259 return false;
10260
10261 return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu);
10262 }
10263
10264 /* One group has more than one SMT CPU while the other group does not */
smt_vs_nonsmt_groups(struct sched_group * sg1,struct sched_group * sg2)10265 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
10266 struct sched_group *sg2)
10267 {
10268 if (!sg1 || !sg2)
10269 return false;
10270
10271 return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
10272 (sg2->flags & SD_SHARE_CPUCAPACITY);
10273 }
10274
smt_balance(struct lb_env * env,struct sg_lb_stats * sgs,struct sched_group * group)10275 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
10276 struct sched_group *group)
10277 {
10278 if (!env->idle)
10279 return false;
10280
10281 /*
10282 * For SMT source group, it is better to move a task
10283 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
10284 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
10285 * will not be on.
10286 */
10287 if (group->flags & SD_SHARE_CPUCAPACITY &&
10288 sgs->sum_h_nr_running > 1)
10289 return true;
10290
10291 return false;
10292 }
10293
sibling_imbalance(struct lb_env * env,struct sd_lb_stats * sds,struct sg_lb_stats * busiest,struct sg_lb_stats * local)10294 static inline long sibling_imbalance(struct lb_env *env,
10295 struct sd_lb_stats *sds,
10296 struct sg_lb_stats *busiest,
10297 struct sg_lb_stats *local)
10298 {
10299 int ncores_busiest, ncores_local;
10300 long imbalance;
10301
10302 if (!env->idle || !busiest->sum_nr_running)
10303 return 0;
10304
10305 ncores_busiest = sds->busiest->cores;
10306 ncores_local = sds->local->cores;
10307
10308 if (ncores_busiest == ncores_local) {
10309 imbalance = busiest->sum_nr_running;
10310 lsub_positive(&imbalance, local->sum_nr_running);
10311 return imbalance;
10312 }
10313
10314 /* Balance such that nr_running/ncores ratio are same on both groups */
10315 imbalance = ncores_local * busiest->sum_nr_running;
10316 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
10317 /* Normalize imbalance and do rounding on normalization */
10318 imbalance = 2 * imbalance + ncores_local + ncores_busiest;
10319 imbalance /= ncores_local + ncores_busiest;
10320
10321 /* Take advantage of resource in an empty sched group */
10322 if (imbalance <= 1 && local->sum_nr_running == 0 &&
10323 busiest->sum_nr_running > 1)
10324 imbalance = 2;
10325
10326 return imbalance;
10327 }
10328
10329 static inline bool
sched_reduced_capacity(struct rq * rq,struct sched_domain * sd)10330 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
10331 {
10332 /*
10333 * When there is more than 1 task, the group_overloaded case already
10334 * takes care of cpu with reduced capacity
10335 */
10336 if (rq->cfs.h_nr_runnable != 1)
10337 return false;
10338
10339 return check_cpu_capacity(rq, sd);
10340 }
10341
10342 /**
10343 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
10344 * @env: The load balancing environment.
10345 * @sds: Load-balancing data with statistics of the local group.
10346 * @group: sched_group whose statistics are to be updated.
10347 * @sgs: variable to hold the statistics for this group.
10348 * @sg_overloaded: sched_group is overloaded
10349 * @sg_overutilized: sched_group is overutilized
10350 */
update_sg_lb_stats(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * group,struct sg_lb_stats * sgs,bool * sg_overloaded,bool * sg_overutilized)10351 static inline void update_sg_lb_stats(struct lb_env *env,
10352 struct sd_lb_stats *sds,
10353 struct sched_group *group,
10354 struct sg_lb_stats *sgs,
10355 bool *sg_overloaded,
10356 bool *sg_overutilized)
10357 {
10358 int i, nr_running, local_group, sd_flags = env->sd->flags;
10359 bool balancing_at_rd = !env->sd->parent;
10360
10361 memset(sgs, 0, sizeof(*sgs));
10362
10363 local_group = group == sds->local;
10364
10365 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10366 struct rq *rq = cpu_rq(i);
10367 unsigned long load = cpu_load(rq);
10368
10369 sgs->group_load += load;
10370 sgs->group_util += cpu_util_cfs(i);
10371 sgs->group_runnable += cpu_runnable(rq);
10372 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable;
10373
10374 nr_running = rq->nr_running;
10375 sgs->sum_nr_running += nr_running;
10376
10377 if (cpu_overutilized(i))
10378 *sg_overutilized = 1;
10379
10380 /*
10381 * No need to call idle_cpu() if nr_running is not 0
10382 */
10383 if (!nr_running && idle_cpu(i)) {
10384 sgs->idle_cpus++;
10385 /* Idle cpu can't have misfit task */
10386 continue;
10387 }
10388
10389 /* Overload indicator is only updated at root domain */
10390 if (balancing_at_rd && nr_running > 1)
10391 *sg_overloaded = 1;
10392
10393 #ifdef CONFIG_NUMA_BALANCING
10394 /* Only fbq_classify_group() uses this to classify NUMA groups */
10395 if (sd_flags & SD_NUMA) {
10396 sgs->nr_numa_running += rq->nr_numa_running;
10397 sgs->nr_preferred_running += rq->nr_preferred_running;
10398 }
10399 #endif
10400 if (local_group)
10401 continue;
10402
10403 if (sd_flags & SD_ASYM_CPUCAPACITY) {
10404 /* Check for a misfit task on the cpu */
10405 if (sgs->group_misfit_task_load < rq->misfit_task_load) {
10406 sgs->group_misfit_task_load = rq->misfit_task_load;
10407 *sg_overloaded = 1;
10408 }
10409 } else if (env->idle && sched_reduced_capacity(rq, env->sd)) {
10410 /* Check for a task running on a CPU with reduced capacity */
10411 if (sgs->group_misfit_task_load < load)
10412 sgs->group_misfit_task_load = load;
10413 }
10414 }
10415
10416 sgs->group_capacity = group->sgc->capacity;
10417
10418 sgs->group_weight = group->group_weight;
10419
10420 /* Check if dst CPU is idle and preferred to this group */
10421 if (!local_group && env->idle && sgs->sum_h_nr_running &&
10422 sched_group_asym(env, sgs, group))
10423 sgs->group_asym_packing = 1;
10424
10425 /* Check for loaded SMT group to be balanced to dst CPU */
10426 if (!local_group && smt_balance(env, sgs, group))
10427 sgs->group_smt_balance = 1;
10428
10429 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
10430
10431 /* Computing avg_load makes sense only when group is overloaded */
10432 if (sgs->group_type == group_overloaded)
10433 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10434 sgs->group_capacity;
10435 }
10436
10437 /**
10438 * update_sd_pick_busiest - return 1 on busiest group
10439 * @env: The load balancing environment.
10440 * @sds: sched_domain statistics
10441 * @sg: sched_group candidate to be checked for being the busiest
10442 * @sgs: sched_group statistics
10443 *
10444 * Determine if @sg is a busier group than the previously selected
10445 * busiest group.
10446 *
10447 * Return: %true if @sg is a busier group than the previously selected
10448 * busiest group. %false otherwise.
10449 */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)10450 static bool update_sd_pick_busiest(struct lb_env *env,
10451 struct sd_lb_stats *sds,
10452 struct sched_group *sg,
10453 struct sg_lb_stats *sgs)
10454 {
10455 struct sg_lb_stats *busiest = &sds->busiest_stat;
10456
10457 /* Make sure that there is at least one task to pull */
10458 if (!sgs->sum_h_nr_running)
10459 return false;
10460
10461 /*
10462 * Don't try to pull misfit tasks we can't help.
10463 * We can use max_capacity here as reduction in capacity on some
10464 * CPUs in the group should either be possible to resolve
10465 * internally or be covered by avg_load imbalance (eventually).
10466 */
10467 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10468 (sgs->group_type == group_misfit_task) &&
10469 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
10470 sds->local_stat.group_type != group_has_spare))
10471 return false;
10472
10473 if (sgs->group_type > busiest->group_type)
10474 return true;
10475
10476 if (sgs->group_type < busiest->group_type)
10477 return false;
10478
10479 /*
10480 * The candidate and the current busiest group are the same type of
10481 * group. Let check which one is the busiest according to the type.
10482 */
10483
10484 switch (sgs->group_type) {
10485 case group_overloaded:
10486 /* Select the overloaded group with highest avg_load. */
10487 return sgs->avg_load > busiest->avg_load;
10488
10489 case group_imbalanced:
10490 /*
10491 * Select the 1st imbalanced group as we don't have any way to
10492 * choose one more than another.
10493 */
10494 return false;
10495
10496 case group_asym_packing:
10497 /* Prefer to move from lowest priority CPU's work */
10498 return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu);
10499
10500 case group_misfit_task:
10501 /*
10502 * If we have more than one misfit sg go with the biggest
10503 * misfit.
10504 */
10505 return sgs->group_misfit_task_load > busiest->group_misfit_task_load;
10506
10507 case group_smt_balance:
10508 /*
10509 * Check if we have spare CPUs on either SMT group to
10510 * choose has spare or fully busy handling.
10511 */
10512 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10513 goto has_spare;
10514
10515 fallthrough;
10516
10517 case group_fully_busy:
10518 /*
10519 * Select the fully busy group with highest avg_load. In
10520 * theory, there is no need to pull task from such kind of
10521 * group because tasks have all compute capacity that they need
10522 * but we can still improve the overall throughput by reducing
10523 * contention when accessing shared HW resources.
10524 *
10525 * XXX for now avg_load is not computed and always 0 so we
10526 * select the 1st one, except if @sg is composed of SMT
10527 * siblings.
10528 */
10529
10530 if (sgs->avg_load < busiest->avg_load)
10531 return false;
10532
10533 if (sgs->avg_load == busiest->avg_load) {
10534 /*
10535 * SMT sched groups need more help than non-SMT groups.
10536 * If @sg happens to also be SMT, either choice is good.
10537 */
10538 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10539 return false;
10540 }
10541
10542 break;
10543
10544 case group_has_spare:
10545 /*
10546 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10547 * as we do not want to pull task off SMT core with one task
10548 * and make the core idle.
10549 */
10550 if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10551 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10552 return false;
10553 else
10554 return true;
10555 }
10556 has_spare:
10557
10558 /*
10559 * Select not overloaded group with lowest number of idle CPUs
10560 * and highest number of running tasks. We could also compare
10561 * the spare capacity which is more stable but it can end up
10562 * that the group has less spare capacity but finally more idle
10563 * CPUs which means less opportunity to pull tasks.
10564 */
10565 if (sgs->idle_cpus > busiest->idle_cpus)
10566 return false;
10567 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10568 (sgs->sum_nr_running <= busiest->sum_nr_running))
10569 return false;
10570
10571 break;
10572 }
10573
10574 /*
10575 * Candidate sg has no more than one task per CPU and has higher
10576 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10577 * throughput. Maximize throughput, power/energy consequences are not
10578 * considered.
10579 */
10580 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10581 (sgs->group_type <= group_fully_busy) &&
10582 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10583 return false;
10584
10585 return true;
10586 }
10587
10588 #ifdef CONFIG_NUMA_BALANCING
fbq_classify_group(struct sg_lb_stats * sgs)10589 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10590 {
10591 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10592 return regular;
10593 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10594 return remote;
10595 return all;
10596 }
10597
fbq_classify_rq(struct rq * rq)10598 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10599 {
10600 if (rq->nr_running > rq->nr_numa_running)
10601 return regular;
10602 if (rq->nr_running > rq->nr_preferred_running)
10603 return remote;
10604 return all;
10605 }
10606 #else
fbq_classify_group(struct sg_lb_stats * sgs)10607 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10608 {
10609 return all;
10610 }
10611
fbq_classify_rq(struct rq * rq)10612 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10613 {
10614 return regular;
10615 }
10616 #endif /* CONFIG_NUMA_BALANCING */
10617
10618
10619 struct sg_lb_stats;
10620
10621 /*
10622 * task_running_on_cpu - return 1 if @p is running on @cpu.
10623 */
10624
task_running_on_cpu(int cpu,struct task_struct * p)10625 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10626 {
10627 /* Task has no contribution or is new */
10628 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10629 return 0;
10630
10631 if (task_on_rq_queued(p))
10632 return 1;
10633
10634 return 0;
10635 }
10636
10637 /**
10638 * idle_cpu_without - would a given CPU be idle without p ?
10639 * @cpu: the processor on which idleness is tested.
10640 * @p: task which should be ignored.
10641 *
10642 * Return: 1 if the CPU would be idle. 0 otherwise.
10643 */
idle_cpu_without(int cpu,struct task_struct * p)10644 static int idle_cpu_without(int cpu, struct task_struct *p)
10645 {
10646 struct rq *rq = cpu_rq(cpu);
10647
10648 if (rq->curr != rq->idle && rq->curr != p)
10649 return 0;
10650
10651 /*
10652 * rq->nr_running can't be used but an updated version without the
10653 * impact of p on cpu must be used instead. The updated nr_running
10654 * be computed and tested before calling idle_cpu_without().
10655 */
10656
10657 if (rq->ttwu_pending)
10658 return 0;
10659
10660 return 1;
10661 }
10662
10663 /*
10664 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10665 * @sd: The sched_domain level to look for idlest group.
10666 * @group: sched_group whose statistics are to be updated.
10667 * @sgs: variable to hold the statistics for this group.
10668 * @p: The task for which we look for the idlest group/CPU.
10669 */
update_sg_wakeup_stats(struct sched_domain * sd,struct sched_group * group,struct sg_lb_stats * sgs,struct task_struct * p)10670 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10671 struct sched_group *group,
10672 struct sg_lb_stats *sgs,
10673 struct task_struct *p)
10674 {
10675 int i, nr_running;
10676
10677 memset(sgs, 0, sizeof(*sgs));
10678
10679 /* Assume that task can't fit any CPU of the group */
10680 if (sd->flags & SD_ASYM_CPUCAPACITY)
10681 sgs->group_misfit_task_load = 1;
10682
10683 for_each_cpu(i, sched_group_span(group)) {
10684 struct rq *rq = cpu_rq(i);
10685 unsigned int local;
10686
10687 sgs->group_load += cpu_load_without(rq, p);
10688 sgs->group_util += cpu_util_without(i, p);
10689 sgs->group_runnable += cpu_runnable_without(rq, p);
10690 local = task_running_on_cpu(i, p);
10691 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable - local;
10692
10693 nr_running = rq->nr_running - local;
10694 sgs->sum_nr_running += nr_running;
10695
10696 /*
10697 * No need to call idle_cpu_without() if nr_running is not 0
10698 */
10699 if (!nr_running && idle_cpu_without(i, p))
10700 sgs->idle_cpus++;
10701
10702 /* Check if task fits in the CPU */
10703 if (sd->flags & SD_ASYM_CPUCAPACITY &&
10704 sgs->group_misfit_task_load &&
10705 task_fits_cpu(p, i))
10706 sgs->group_misfit_task_load = 0;
10707
10708 }
10709
10710 sgs->group_capacity = group->sgc->capacity;
10711
10712 sgs->group_weight = group->group_weight;
10713
10714 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10715
10716 /*
10717 * Computing avg_load makes sense only when group is fully busy or
10718 * overloaded
10719 */
10720 if (sgs->group_type == group_fully_busy ||
10721 sgs->group_type == group_overloaded)
10722 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10723 sgs->group_capacity;
10724 }
10725
update_pick_idlest(struct sched_group * idlest,struct sg_lb_stats * idlest_sgs,struct sched_group * group,struct sg_lb_stats * sgs)10726 static bool update_pick_idlest(struct sched_group *idlest,
10727 struct sg_lb_stats *idlest_sgs,
10728 struct sched_group *group,
10729 struct sg_lb_stats *sgs)
10730 {
10731 if (sgs->group_type < idlest_sgs->group_type)
10732 return true;
10733
10734 if (sgs->group_type > idlest_sgs->group_type)
10735 return false;
10736
10737 /*
10738 * The candidate and the current idlest group are the same type of
10739 * group. Let check which one is the idlest according to the type.
10740 */
10741
10742 switch (sgs->group_type) {
10743 case group_overloaded:
10744 case group_fully_busy:
10745 /* Select the group with lowest avg_load. */
10746 if (idlest_sgs->avg_load <= sgs->avg_load)
10747 return false;
10748 break;
10749
10750 case group_imbalanced:
10751 case group_asym_packing:
10752 case group_smt_balance:
10753 /* Those types are not used in the slow wakeup path */
10754 return false;
10755
10756 case group_misfit_task:
10757 /* Select group with the highest max capacity */
10758 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10759 return false;
10760 break;
10761
10762 case group_has_spare:
10763 /* Select group with most idle CPUs */
10764 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10765 return false;
10766
10767 /* Select group with lowest group_util */
10768 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10769 idlest_sgs->group_util <= sgs->group_util)
10770 return false;
10771
10772 break;
10773 }
10774
10775 return true;
10776 }
10777
10778 /*
10779 * sched_balance_find_dst_group() finds and returns the least busy CPU group within the
10780 * domain.
10781 *
10782 * Assumes p is allowed on at least one CPU in sd.
10783 */
10784 static struct sched_group *
sched_balance_find_dst_group(struct sched_domain * sd,struct task_struct * p,int this_cpu)10785 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10786 {
10787 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10788 struct sg_lb_stats local_sgs, tmp_sgs;
10789 struct sg_lb_stats *sgs;
10790 unsigned long imbalance;
10791 struct sg_lb_stats idlest_sgs = {
10792 .avg_load = UINT_MAX,
10793 .group_type = group_overloaded,
10794 };
10795
10796 do {
10797 int local_group;
10798
10799 /* Skip over this group if it has no CPUs allowed */
10800 if (!cpumask_intersects(sched_group_span(group),
10801 p->cpus_ptr))
10802 continue;
10803
10804 /* Skip over this group if no cookie matched */
10805 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10806 continue;
10807
10808 local_group = cpumask_test_cpu(this_cpu,
10809 sched_group_span(group));
10810
10811 if (local_group) {
10812 sgs = &local_sgs;
10813 local = group;
10814 } else {
10815 sgs = &tmp_sgs;
10816 }
10817
10818 update_sg_wakeup_stats(sd, group, sgs, p);
10819
10820 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10821 idlest = group;
10822 idlest_sgs = *sgs;
10823 }
10824
10825 } while (group = group->next, group != sd->groups);
10826
10827
10828 /* There is no idlest group to push tasks to */
10829 if (!idlest)
10830 return NULL;
10831
10832 /* The local group has been skipped because of CPU affinity */
10833 if (!local)
10834 return idlest;
10835
10836 /*
10837 * If the local group is idler than the selected idlest group
10838 * don't try and push the task.
10839 */
10840 if (local_sgs.group_type < idlest_sgs.group_type)
10841 return NULL;
10842
10843 /*
10844 * If the local group is busier than the selected idlest group
10845 * try and push the task.
10846 */
10847 if (local_sgs.group_type > idlest_sgs.group_type)
10848 return idlest;
10849
10850 switch (local_sgs.group_type) {
10851 case group_overloaded:
10852 case group_fully_busy:
10853
10854 /* Calculate allowed imbalance based on load */
10855 imbalance = scale_load_down(NICE_0_LOAD) *
10856 (sd->imbalance_pct-100) / 100;
10857
10858 /*
10859 * When comparing groups across NUMA domains, it's possible for
10860 * the local domain to be very lightly loaded relative to the
10861 * remote domains but "imbalance" skews the comparison making
10862 * remote CPUs look much more favourable. When considering
10863 * cross-domain, add imbalance to the load on the remote node
10864 * and consider staying local.
10865 */
10866
10867 if ((sd->flags & SD_NUMA) &&
10868 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10869 return NULL;
10870
10871 /*
10872 * If the local group is less loaded than the selected
10873 * idlest group don't try and push any tasks.
10874 */
10875 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10876 return NULL;
10877
10878 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10879 return NULL;
10880 break;
10881
10882 case group_imbalanced:
10883 case group_asym_packing:
10884 case group_smt_balance:
10885 /* Those type are not used in the slow wakeup path */
10886 return NULL;
10887
10888 case group_misfit_task:
10889 /* Select group with the highest max capacity */
10890 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10891 return NULL;
10892 break;
10893
10894 case group_has_spare:
10895 #ifdef CONFIG_NUMA
10896 if (sd->flags & SD_NUMA) {
10897 int imb_numa_nr = sd->imb_numa_nr;
10898 #ifdef CONFIG_NUMA_BALANCING
10899 int idlest_cpu;
10900 /*
10901 * If there is spare capacity at NUMA, try to select
10902 * the preferred node
10903 */
10904 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10905 return NULL;
10906
10907 idlest_cpu = cpumask_first(sched_group_span(idlest));
10908 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10909 return idlest;
10910 #endif /* CONFIG_NUMA_BALANCING */
10911 /*
10912 * Otherwise, keep the task close to the wakeup source
10913 * and improve locality if the number of running tasks
10914 * would remain below threshold where an imbalance is
10915 * allowed while accounting for the possibility the
10916 * task is pinned to a subset of CPUs. If there is a
10917 * real need of migration, periodic load balance will
10918 * take care of it.
10919 */
10920 if (p->nr_cpus_allowed != NR_CPUS) {
10921 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10922
10923 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10924 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10925 }
10926
10927 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10928 if (!adjust_numa_imbalance(imbalance,
10929 local_sgs.sum_nr_running + 1,
10930 imb_numa_nr)) {
10931 return NULL;
10932 }
10933 }
10934 #endif /* CONFIG_NUMA */
10935
10936 /*
10937 * Select group with highest number of idle CPUs. We could also
10938 * compare the utilization which is more stable but it can end
10939 * up that the group has less spare capacity but finally more
10940 * idle CPUs which means more opportunity to run task.
10941 */
10942 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10943 return NULL;
10944 break;
10945 }
10946
10947 return idlest;
10948 }
10949
update_idle_cpu_scan(struct lb_env * env,unsigned long sum_util)10950 static void update_idle_cpu_scan(struct lb_env *env,
10951 unsigned long sum_util)
10952 {
10953 struct sched_domain_shared *sd_share;
10954 int llc_weight, pct;
10955 u64 x, y, tmp;
10956 /*
10957 * Update the number of CPUs to scan in LLC domain, which could
10958 * be used as a hint in select_idle_cpu(). The update of sd_share
10959 * could be expensive because it is within a shared cache line.
10960 * So the write of this hint only occurs during periodic load
10961 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10962 * can fire way more frequently than the former.
10963 */
10964 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10965 return;
10966
10967 llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10968 if (env->sd->span_weight != llc_weight)
10969 return;
10970
10971 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10972 if (!sd_share)
10973 return;
10974
10975 /*
10976 * The number of CPUs to search drops as sum_util increases, when
10977 * sum_util hits 85% or above, the scan stops.
10978 * The reason to choose 85% as the threshold is because this is the
10979 * imbalance_pct(117) when a LLC sched group is overloaded.
10980 *
10981 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1]
10982 * and y'= y / SCHED_CAPACITY_SCALE
10983 *
10984 * x is the ratio of sum_util compared to the CPU capacity:
10985 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10986 * y' is the ratio of CPUs to be scanned in the LLC domain,
10987 * and the number of CPUs to scan is calculated by:
10988 *
10989 * nr_scan = llc_weight * y' [2]
10990 *
10991 * When x hits the threshold of overloaded, AKA, when
10992 * x = 100 / pct, y drops to 0. According to [1],
10993 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10994 *
10995 * Scale x by SCHED_CAPACITY_SCALE:
10996 * x' = sum_util / llc_weight; [3]
10997 *
10998 * and finally [1] becomes:
10999 * y = SCHED_CAPACITY_SCALE -
11000 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4]
11001 *
11002 */
11003 /* equation [3] */
11004 x = sum_util;
11005 do_div(x, llc_weight);
11006
11007 /* equation [4] */
11008 pct = env->sd->imbalance_pct;
11009 tmp = x * x * pct * pct;
11010 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
11011 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
11012 y = SCHED_CAPACITY_SCALE - tmp;
11013
11014 /* equation [2] */
11015 y *= llc_weight;
11016 do_div(y, SCHED_CAPACITY_SCALE);
11017 if ((int)y != sd_share->nr_idle_scan)
11018 WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
11019 }
11020
11021 /**
11022 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
11023 * @env: The load balancing environment.
11024 * @sds: variable to hold the statistics for this sched_domain.
11025 */
11026
update_sd_lb_stats(struct lb_env * env,struct sd_lb_stats * sds)11027 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
11028 {
11029 struct sched_group *sg = env->sd->groups;
11030 struct sg_lb_stats *local = &sds->local_stat;
11031 struct sg_lb_stats tmp_sgs;
11032 unsigned long sum_util = 0;
11033 bool sg_overloaded = 0, sg_overutilized = 0;
11034
11035 do {
11036 struct sg_lb_stats *sgs = &tmp_sgs;
11037 int local_group;
11038
11039 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
11040 if (local_group) {
11041 sds->local = sg;
11042 sgs = local;
11043
11044 if (env->idle != CPU_NEWLY_IDLE ||
11045 time_after_eq(jiffies, sg->sgc->next_update))
11046 update_group_capacity(env->sd, env->dst_cpu);
11047 }
11048
11049 update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized);
11050
11051 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) {
11052 sds->busiest = sg;
11053 sds->busiest_stat = *sgs;
11054 }
11055
11056 /* Now, start updating sd_lb_stats */
11057 sds->total_load += sgs->group_load;
11058 sds->total_capacity += sgs->group_capacity;
11059
11060 sum_util += sgs->group_util;
11061 sg = sg->next;
11062 } while (sg != env->sd->groups);
11063
11064 /*
11065 * Indicate that the child domain of the busiest group prefers tasks
11066 * go to a child's sibling domains first. NB the flags of a sched group
11067 * are those of the child domain.
11068 */
11069 if (sds->busiest)
11070 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
11071
11072
11073 if (env->sd->flags & SD_NUMA)
11074 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
11075
11076 if (!env->sd->parent) {
11077 /* update overload indicator if we are at root domain */
11078 set_rd_overloaded(env->dst_rq->rd, sg_overloaded);
11079
11080 /* Update over-utilization (tipping point, U >= 0) indicator */
11081 set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11082 } else if (sg_overutilized) {
11083 set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11084 }
11085
11086 update_idle_cpu_scan(env, sum_util);
11087 }
11088
11089 /**
11090 * calculate_imbalance - Calculate the amount of imbalance present within the
11091 * groups of a given sched_domain during load balance.
11092 * @env: load balance environment
11093 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
11094 */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)11095 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
11096 {
11097 struct sg_lb_stats *local, *busiest;
11098
11099 local = &sds->local_stat;
11100 busiest = &sds->busiest_stat;
11101
11102 if (busiest->group_type == group_misfit_task) {
11103 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
11104 /* Set imbalance to allow misfit tasks to be balanced. */
11105 env->migration_type = migrate_misfit;
11106 env->imbalance = 1;
11107 } else {
11108 /*
11109 * Set load imbalance to allow moving task from cpu
11110 * with reduced capacity.
11111 */
11112 env->migration_type = migrate_load;
11113 env->imbalance = busiest->group_misfit_task_load;
11114 }
11115 return;
11116 }
11117
11118 if (busiest->group_type == group_asym_packing) {
11119 /*
11120 * In case of asym capacity, we will try to migrate all load to
11121 * the preferred CPU.
11122 */
11123 env->migration_type = migrate_task;
11124 env->imbalance = busiest->sum_h_nr_running;
11125 return;
11126 }
11127
11128 if (busiest->group_type == group_smt_balance) {
11129 /* Reduce number of tasks sharing CPU capacity */
11130 env->migration_type = migrate_task;
11131 env->imbalance = 1;
11132 return;
11133 }
11134
11135 if (busiest->group_type == group_imbalanced) {
11136 /*
11137 * In the group_imb case we cannot rely on group-wide averages
11138 * to ensure CPU-load equilibrium, try to move any task to fix
11139 * the imbalance. The next load balance will take care of
11140 * balancing back the system.
11141 */
11142 env->migration_type = migrate_task;
11143 env->imbalance = 1;
11144 return;
11145 }
11146
11147 /*
11148 * Try to use spare capacity of local group without overloading it or
11149 * emptying busiest.
11150 */
11151 if (local->group_type == group_has_spare) {
11152 if ((busiest->group_type > group_fully_busy) &&
11153 !(env->sd->flags & SD_SHARE_LLC)) {
11154 /*
11155 * If busiest is overloaded, try to fill spare
11156 * capacity. This might end up creating spare capacity
11157 * in busiest or busiest still being overloaded but
11158 * there is no simple way to directly compute the
11159 * amount of load to migrate in order to balance the
11160 * system.
11161 */
11162 env->migration_type = migrate_util;
11163 env->imbalance = max(local->group_capacity, local->group_util) -
11164 local->group_util;
11165
11166 /*
11167 * In some cases, the group's utilization is max or even
11168 * higher than capacity because of migrations but the
11169 * local CPU is (newly) idle. There is at least one
11170 * waiting task in this overloaded busiest group. Let's
11171 * try to pull it.
11172 */
11173 if (env->idle && env->imbalance == 0) {
11174 env->migration_type = migrate_task;
11175 env->imbalance = 1;
11176 }
11177
11178 return;
11179 }
11180
11181 if (busiest->group_weight == 1 || sds->prefer_sibling) {
11182 /*
11183 * When prefer sibling, evenly spread running tasks on
11184 * groups.
11185 */
11186 env->migration_type = migrate_task;
11187 env->imbalance = sibling_imbalance(env, sds, busiest, local);
11188 } else {
11189
11190 /*
11191 * If there is no overload, we just want to even the number of
11192 * idle CPUs.
11193 */
11194 env->migration_type = migrate_task;
11195 env->imbalance = max_t(long, 0,
11196 (local->idle_cpus - busiest->idle_cpus));
11197 }
11198
11199 #ifdef CONFIG_NUMA
11200 /* Consider allowing a small imbalance between NUMA groups */
11201 if (env->sd->flags & SD_NUMA) {
11202 env->imbalance = adjust_numa_imbalance(env->imbalance,
11203 local->sum_nr_running + 1,
11204 env->sd->imb_numa_nr);
11205 }
11206 #endif
11207
11208 /* Number of tasks to move to restore balance */
11209 env->imbalance >>= 1;
11210
11211 return;
11212 }
11213
11214 /*
11215 * Local is fully busy but has to take more load to relieve the
11216 * busiest group
11217 */
11218 if (local->group_type < group_overloaded) {
11219 /*
11220 * Local will become overloaded so the avg_load metrics are
11221 * finally needed.
11222 */
11223
11224 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
11225 local->group_capacity;
11226
11227 /*
11228 * If the local group is more loaded than the selected
11229 * busiest group don't try to pull any tasks.
11230 */
11231 if (local->avg_load >= busiest->avg_load) {
11232 env->imbalance = 0;
11233 return;
11234 }
11235
11236 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
11237 sds->total_capacity;
11238
11239 /*
11240 * If the local group is more loaded than the average system
11241 * load, don't try to pull any tasks.
11242 */
11243 if (local->avg_load >= sds->avg_load) {
11244 env->imbalance = 0;
11245 return;
11246 }
11247
11248 }
11249
11250 /*
11251 * Both group are or will become overloaded and we're trying to get all
11252 * the CPUs to the average_load, so we don't want to push ourselves
11253 * above the average load, nor do we wish to reduce the max loaded CPU
11254 * below the average load. At the same time, we also don't want to
11255 * reduce the group load below the group capacity. Thus we look for
11256 * the minimum possible imbalance.
11257 */
11258 env->migration_type = migrate_load;
11259 env->imbalance = min(
11260 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
11261 (sds->avg_load - local->avg_load) * local->group_capacity
11262 ) / SCHED_CAPACITY_SCALE;
11263 }
11264
11265 /******* sched_balance_find_src_group() helpers end here *********************/
11266
11267 /*
11268 * Decision matrix according to the local and busiest group type:
11269 *
11270 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
11271 * has_spare nr_idle balanced N/A N/A balanced balanced
11272 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
11273 * misfit_task force N/A N/A N/A N/A N/A
11274 * asym_packing force force N/A N/A force force
11275 * imbalanced force force N/A N/A force force
11276 * overloaded force force N/A N/A force avg_load
11277 *
11278 * N/A : Not Applicable because already filtered while updating
11279 * statistics.
11280 * balanced : The system is balanced for these 2 groups.
11281 * force : Calculate the imbalance as load migration is probably needed.
11282 * avg_load : Only if imbalance is significant enough.
11283 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
11284 * different in groups.
11285 */
11286
11287 /**
11288 * sched_balance_find_src_group - Returns the busiest group within the sched_domain
11289 * if there is an imbalance.
11290 * @env: The load balancing environment.
11291 *
11292 * Also calculates the amount of runnable load which should be moved
11293 * to restore balance.
11294 *
11295 * Return: - The busiest group if imbalance exists.
11296 */
sched_balance_find_src_group(struct lb_env * env)11297 static struct sched_group *sched_balance_find_src_group(struct lb_env *env)
11298 {
11299 struct sg_lb_stats *local, *busiest;
11300 struct sd_lb_stats sds;
11301
11302 init_sd_lb_stats(&sds);
11303
11304 /*
11305 * Compute the various statistics relevant for load balancing at
11306 * this level.
11307 */
11308 update_sd_lb_stats(env, &sds);
11309
11310 /* There is no busy sibling group to pull tasks from */
11311 if (!sds.busiest)
11312 goto out_balanced;
11313
11314 busiest = &sds.busiest_stat;
11315
11316 /* Misfit tasks should be dealt with regardless of the avg load */
11317 if (busiest->group_type == group_misfit_task)
11318 goto force_balance;
11319
11320 if (!is_rd_overutilized(env->dst_rq->rd) &&
11321 rcu_dereference(env->dst_rq->rd->pd))
11322 goto out_balanced;
11323
11324 /* ASYM feature bypasses nice load balance check */
11325 if (busiest->group_type == group_asym_packing)
11326 goto force_balance;
11327
11328 /*
11329 * If the busiest group is imbalanced the below checks don't
11330 * work because they assume all things are equal, which typically
11331 * isn't true due to cpus_ptr constraints and the like.
11332 */
11333 if (busiest->group_type == group_imbalanced)
11334 goto force_balance;
11335
11336 local = &sds.local_stat;
11337 /*
11338 * If the local group is busier than the selected busiest group
11339 * don't try and pull any tasks.
11340 */
11341 if (local->group_type > busiest->group_type)
11342 goto out_balanced;
11343
11344 /*
11345 * When groups are overloaded, use the avg_load to ensure fairness
11346 * between tasks.
11347 */
11348 if (local->group_type == group_overloaded) {
11349 /*
11350 * If the local group is more loaded than the selected
11351 * busiest group don't try to pull any tasks.
11352 */
11353 if (local->avg_load >= busiest->avg_load)
11354 goto out_balanced;
11355
11356 /* XXX broken for overlapping NUMA groups */
11357 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
11358 sds.total_capacity;
11359
11360 /*
11361 * Don't pull any tasks if this group is already above the
11362 * domain average load.
11363 */
11364 if (local->avg_load >= sds.avg_load)
11365 goto out_balanced;
11366
11367 /*
11368 * If the busiest group is more loaded, use imbalance_pct to be
11369 * conservative.
11370 */
11371 if (100 * busiest->avg_load <=
11372 env->sd->imbalance_pct * local->avg_load)
11373 goto out_balanced;
11374 }
11375
11376 /*
11377 * Try to move all excess tasks to a sibling domain of the busiest
11378 * group's child domain.
11379 */
11380 if (sds.prefer_sibling && local->group_type == group_has_spare &&
11381 sibling_imbalance(env, &sds, busiest, local) > 1)
11382 goto force_balance;
11383
11384 if (busiest->group_type != group_overloaded) {
11385 if (!env->idle) {
11386 /*
11387 * If the busiest group is not overloaded (and as a
11388 * result the local one too) but this CPU is already
11389 * busy, let another idle CPU try to pull task.
11390 */
11391 goto out_balanced;
11392 }
11393
11394 if (busiest->group_type == group_smt_balance &&
11395 smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
11396 /* Let non SMT CPU pull from SMT CPU sharing with sibling */
11397 goto force_balance;
11398 }
11399
11400 if (busiest->group_weight > 1 &&
11401 local->idle_cpus <= (busiest->idle_cpus + 1)) {
11402 /*
11403 * If the busiest group is not overloaded
11404 * and there is no imbalance between this and busiest
11405 * group wrt idle CPUs, it is balanced. The imbalance
11406 * becomes significant if the diff is greater than 1
11407 * otherwise we might end up to just move the imbalance
11408 * on another group. Of course this applies only if
11409 * there is more than 1 CPU per group.
11410 */
11411 goto out_balanced;
11412 }
11413
11414 if (busiest->sum_h_nr_running == 1) {
11415 /*
11416 * busiest doesn't have any tasks waiting to run
11417 */
11418 goto out_balanced;
11419 }
11420 }
11421
11422 force_balance:
11423 /* Looks like there is an imbalance. Compute it */
11424 calculate_imbalance(env, &sds);
11425 return env->imbalance ? sds.busiest : NULL;
11426
11427 out_balanced:
11428 env->imbalance = 0;
11429 return NULL;
11430 }
11431
11432 /*
11433 * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group.
11434 */
sched_balance_find_src_rq(struct lb_env * env,struct sched_group * group)11435 static struct rq *sched_balance_find_src_rq(struct lb_env *env,
11436 struct sched_group *group)
11437 {
11438 struct rq *busiest = NULL, *rq;
11439 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
11440 unsigned int busiest_nr = 0;
11441 int i;
11442
11443 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
11444 unsigned long capacity, load, util;
11445 unsigned int nr_running;
11446 enum fbq_type rt;
11447
11448 rq = cpu_rq(i);
11449 rt = fbq_classify_rq(rq);
11450
11451 /*
11452 * We classify groups/runqueues into three groups:
11453 * - regular: there are !numa tasks
11454 * - remote: there are numa tasks that run on the 'wrong' node
11455 * - all: there is no distinction
11456 *
11457 * In order to avoid migrating ideally placed numa tasks,
11458 * ignore those when there's better options.
11459 *
11460 * If we ignore the actual busiest queue to migrate another
11461 * task, the next balance pass can still reduce the busiest
11462 * queue by moving tasks around inside the node.
11463 *
11464 * If we cannot move enough load due to this classification
11465 * the next pass will adjust the group classification and
11466 * allow migration of more tasks.
11467 *
11468 * Both cases only affect the total convergence complexity.
11469 */
11470 if (rt > env->fbq_type)
11471 continue;
11472
11473 nr_running = rq->cfs.h_nr_runnable;
11474 if (!nr_running)
11475 continue;
11476
11477 capacity = capacity_of(i);
11478
11479 /*
11480 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11481 * eventually lead to active_balancing high->low capacity.
11482 * Higher per-CPU capacity is considered better than balancing
11483 * average load.
11484 */
11485 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11486 !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11487 nr_running == 1)
11488 continue;
11489
11490 /*
11491 * Make sure we only pull tasks from a CPU of lower priority
11492 * when balancing between SMT siblings.
11493 *
11494 * If balancing between cores, let lower priority CPUs help
11495 * SMT cores with more than one busy sibling.
11496 */
11497 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1)
11498 continue;
11499
11500 switch (env->migration_type) {
11501 case migrate_load:
11502 /*
11503 * When comparing with load imbalance, use cpu_load()
11504 * which is not scaled with the CPU capacity.
11505 */
11506 load = cpu_load(rq);
11507
11508 if (nr_running == 1 && load > env->imbalance &&
11509 !check_cpu_capacity(rq, env->sd))
11510 break;
11511
11512 /*
11513 * For the load comparisons with the other CPUs,
11514 * consider the cpu_load() scaled with the CPU
11515 * capacity, so that the load can be moved away
11516 * from the CPU that is potentially running at a
11517 * lower capacity.
11518 *
11519 * Thus we're looking for max(load_i / capacity_i),
11520 * crosswise multiplication to rid ourselves of the
11521 * division works out to:
11522 * load_i * capacity_j > load_j * capacity_i;
11523 * where j is our previous maximum.
11524 */
11525 if (load * busiest_capacity > busiest_load * capacity) {
11526 busiest_load = load;
11527 busiest_capacity = capacity;
11528 busiest = rq;
11529 }
11530 break;
11531
11532 case migrate_util:
11533 util = cpu_util_cfs_boost(i);
11534
11535 /*
11536 * Don't try to pull utilization from a CPU with one
11537 * running task. Whatever its utilization, we will fail
11538 * detach the task.
11539 */
11540 if (nr_running <= 1)
11541 continue;
11542
11543 if (busiest_util < util) {
11544 busiest_util = util;
11545 busiest = rq;
11546 }
11547 break;
11548
11549 case migrate_task:
11550 if (busiest_nr < nr_running) {
11551 busiest_nr = nr_running;
11552 busiest = rq;
11553 }
11554 break;
11555
11556 case migrate_misfit:
11557 /*
11558 * For ASYM_CPUCAPACITY domains with misfit tasks we
11559 * simply seek the "biggest" misfit task.
11560 */
11561 if (rq->misfit_task_load > busiest_load) {
11562 busiest_load = rq->misfit_task_load;
11563 busiest = rq;
11564 }
11565
11566 break;
11567
11568 }
11569 }
11570
11571 return busiest;
11572 }
11573
11574 /*
11575 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11576 * so long as it is large enough.
11577 */
11578 #define MAX_PINNED_INTERVAL 512
11579
11580 static inline bool
asym_active_balance(struct lb_env * env)11581 asym_active_balance(struct lb_env *env)
11582 {
11583 /*
11584 * ASYM_PACKING needs to force migrate tasks from busy but lower
11585 * priority CPUs in order to pack all tasks in the highest priority
11586 * CPUs. When done between cores, do it only if the whole core if the
11587 * whole core is idle.
11588 *
11589 * If @env::src_cpu is an SMT core with busy siblings, let
11590 * the lower priority @env::dst_cpu help it. Do not follow
11591 * CPU priority.
11592 */
11593 return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) &&
11594 (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11595 !sched_use_asym_prio(env->sd, env->src_cpu));
11596 }
11597
11598 static inline bool
imbalanced_active_balance(struct lb_env * env)11599 imbalanced_active_balance(struct lb_env *env)
11600 {
11601 struct sched_domain *sd = env->sd;
11602
11603 /*
11604 * The imbalanced case includes the case of pinned tasks preventing a fair
11605 * distribution of the load on the system but also the even distribution of the
11606 * threads on a system with spare capacity
11607 */
11608 if ((env->migration_type == migrate_task) &&
11609 (sd->nr_balance_failed > sd->cache_nice_tries+2))
11610 return 1;
11611
11612 return 0;
11613 }
11614
need_active_balance(struct lb_env * env)11615 static int need_active_balance(struct lb_env *env)
11616 {
11617 struct sched_domain *sd = env->sd;
11618
11619 if (asym_active_balance(env))
11620 return 1;
11621
11622 if (imbalanced_active_balance(env))
11623 return 1;
11624
11625 /*
11626 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11627 * It's worth migrating the task if the src_cpu's capacity is reduced
11628 * because of other sched_class or IRQs if more capacity stays
11629 * available on dst_cpu.
11630 */
11631 if (env->idle &&
11632 (env->src_rq->cfs.h_nr_runnable == 1)) {
11633 if ((check_cpu_capacity(env->src_rq, sd)) &&
11634 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11635 return 1;
11636 }
11637
11638 if (env->migration_type == migrate_misfit)
11639 return 1;
11640
11641 return 0;
11642 }
11643
11644 static int active_load_balance_cpu_stop(void *data);
11645
should_we_balance(struct lb_env * env)11646 static int should_we_balance(struct lb_env *env)
11647 {
11648 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11649 struct sched_group *sg = env->sd->groups;
11650 int cpu, idle_smt = -1;
11651
11652 /*
11653 * Ensure the balancing environment is consistent; can happen
11654 * when the softirq triggers 'during' hotplug.
11655 */
11656 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11657 return 0;
11658
11659 /*
11660 * In the newly idle case, we will allow all the CPUs
11661 * to do the newly idle load balance.
11662 *
11663 * However, we bail out if we already have tasks or a wakeup pending,
11664 * to optimize wakeup latency.
11665 */
11666 if (env->idle == CPU_NEWLY_IDLE) {
11667 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11668 return 0;
11669 return 1;
11670 }
11671
11672 cpumask_copy(swb_cpus, group_balance_mask(sg));
11673 /* Try to find first idle CPU */
11674 for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11675 if (!idle_cpu(cpu))
11676 continue;
11677
11678 /*
11679 * Don't balance to idle SMT in busy core right away when
11680 * balancing cores, but remember the first idle SMT CPU for
11681 * later consideration. Find CPU on an idle core first.
11682 */
11683 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11684 if (idle_smt == -1)
11685 idle_smt = cpu;
11686 /*
11687 * If the core is not idle, and first SMT sibling which is
11688 * idle has been found, then its not needed to check other
11689 * SMT siblings for idleness:
11690 */
11691 #ifdef CONFIG_SCHED_SMT
11692 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11693 #endif
11694 continue;
11695 }
11696
11697 /*
11698 * Are we the first idle core in a non-SMT domain or higher,
11699 * or the first idle CPU in a SMT domain?
11700 */
11701 return cpu == env->dst_cpu;
11702 }
11703
11704 /* Are we the first idle CPU with busy siblings? */
11705 if (idle_smt != -1)
11706 return idle_smt == env->dst_cpu;
11707
11708 /* Are we the first CPU of this group ? */
11709 return group_balance_cpu(sg) == env->dst_cpu;
11710 }
11711
update_lb_imbalance_stat(struct lb_env * env,struct sched_domain * sd,enum cpu_idle_type idle)11712 static void update_lb_imbalance_stat(struct lb_env *env, struct sched_domain *sd,
11713 enum cpu_idle_type idle)
11714 {
11715 if (!schedstat_enabled())
11716 return;
11717
11718 switch (env->migration_type) {
11719 case migrate_load:
11720 __schedstat_add(sd->lb_imbalance_load[idle], env->imbalance);
11721 break;
11722 case migrate_util:
11723 __schedstat_add(sd->lb_imbalance_util[idle], env->imbalance);
11724 break;
11725 case migrate_task:
11726 __schedstat_add(sd->lb_imbalance_task[idle], env->imbalance);
11727 break;
11728 case migrate_misfit:
11729 __schedstat_add(sd->lb_imbalance_misfit[idle], env->imbalance);
11730 break;
11731 }
11732 }
11733
11734 /*
11735 * Check this_cpu to ensure it is balanced within domain. Attempt to move
11736 * tasks if there is an imbalance.
11737 */
sched_balance_rq(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * continue_balancing)11738 static int sched_balance_rq(int this_cpu, struct rq *this_rq,
11739 struct sched_domain *sd, enum cpu_idle_type idle,
11740 int *continue_balancing)
11741 {
11742 int ld_moved, cur_ld_moved, active_balance = 0;
11743 struct sched_domain *sd_parent = sd->parent;
11744 struct sched_group *group;
11745 struct rq *busiest;
11746 struct rq_flags rf;
11747 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11748 struct lb_env env = {
11749 .sd = sd,
11750 .dst_cpu = this_cpu,
11751 .dst_rq = this_rq,
11752 .dst_grpmask = group_balance_mask(sd->groups),
11753 .idle = idle,
11754 .loop_break = SCHED_NR_MIGRATE_BREAK,
11755 .cpus = cpus,
11756 .fbq_type = all,
11757 .tasks = LIST_HEAD_INIT(env.tasks),
11758 };
11759
11760 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11761
11762 schedstat_inc(sd->lb_count[idle]);
11763
11764 redo:
11765 if (!should_we_balance(&env)) {
11766 *continue_balancing = 0;
11767 goto out_balanced;
11768 }
11769
11770 group = sched_balance_find_src_group(&env);
11771 if (!group) {
11772 schedstat_inc(sd->lb_nobusyg[idle]);
11773 goto out_balanced;
11774 }
11775
11776 busiest = sched_balance_find_src_rq(&env, group);
11777 if (!busiest) {
11778 schedstat_inc(sd->lb_nobusyq[idle]);
11779 goto out_balanced;
11780 }
11781
11782 WARN_ON_ONCE(busiest == env.dst_rq);
11783
11784 update_lb_imbalance_stat(&env, sd, idle);
11785
11786 env.src_cpu = busiest->cpu;
11787 env.src_rq = busiest;
11788
11789 ld_moved = 0;
11790 /* Clear this flag as soon as we find a pullable task */
11791 env.flags |= LBF_ALL_PINNED;
11792 if (busiest->nr_running > 1) {
11793 /*
11794 * Attempt to move tasks. If sched_balance_find_src_group has found
11795 * an imbalance but busiest->nr_running <= 1, the group is
11796 * still unbalanced. ld_moved simply stays zero, so it is
11797 * correctly treated as an imbalance.
11798 */
11799 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
11800
11801 more_balance:
11802 rq_lock_irqsave(busiest, &rf);
11803 update_rq_clock(busiest);
11804
11805 /*
11806 * cur_ld_moved - load moved in current iteration
11807 * ld_moved - cumulative load moved across iterations
11808 */
11809 cur_ld_moved = detach_tasks(&env);
11810
11811 /*
11812 * We've detached some tasks from busiest_rq. Every
11813 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11814 * unlock busiest->lock, and we are able to be sure
11815 * that nobody can manipulate the tasks in parallel.
11816 * See task_rq_lock() family for the details.
11817 */
11818
11819 rq_unlock(busiest, &rf);
11820
11821 if (cur_ld_moved) {
11822 attach_tasks(&env);
11823 ld_moved += cur_ld_moved;
11824 }
11825
11826 local_irq_restore(rf.flags);
11827
11828 if (env.flags & LBF_NEED_BREAK) {
11829 env.flags &= ~LBF_NEED_BREAK;
11830 goto more_balance;
11831 }
11832
11833 /*
11834 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11835 * us and move them to an alternate dst_cpu in our sched_group
11836 * where they can run. The upper limit on how many times we
11837 * iterate on same src_cpu is dependent on number of CPUs in our
11838 * sched_group.
11839 *
11840 * This changes load balance semantics a bit on who can move
11841 * load to a given_cpu. In addition to the given_cpu itself
11842 * (or a ilb_cpu acting on its behalf where given_cpu is
11843 * nohz-idle), we now have balance_cpu in a position to move
11844 * load to given_cpu. In rare situations, this may cause
11845 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11846 * _independently_ and at _same_ time to move some load to
11847 * given_cpu) causing excess load to be moved to given_cpu.
11848 * This however should not happen so much in practice and
11849 * moreover subsequent load balance cycles should correct the
11850 * excess load moved.
11851 */
11852 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11853
11854 /* Prevent to re-select dst_cpu via env's CPUs */
11855 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
11856
11857 env.dst_rq = cpu_rq(env.new_dst_cpu);
11858 env.dst_cpu = env.new_dst_cpu;
11859 env.flags &= ~LBF_DST_PINNED;
11860 env.loop = 0;
11861 env.loop_break = SCHED_NR_MIGRATE_BREAK;
11862
11863 /*
11864 * Go back to "more_balance" rather than "redo" since we
11865 * need to continue with same src_cpu.
11866 */
11867 goto more_balance;
11868 }
11869
11870 /*
11871 * We failed to reach balance because of affinity.
11872 */
11873 if (sd_parent) {
11874 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11875
11876 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11877 *group_imbalance = 1;
11878 }
11879
11880 /* All tasks on this runqueue were pinned by CPU affinity */
11881 if (unlikely(env.flags & LBF_ALL_PINNED)) {
11882 __cpumask_clear_cpu(cpu_of(busiest), cpus);
11883 /*
11884 * Attempting to continue load balancing at the current
11885 * sched_domain level only makes sense if there are
11886 * active CPUs remaining as possible busiest CPUs to
11887 * pull load from which are not contained within the
11888 * destination group that is receiving any migrated
11889 * load.
11890 */
11891 if (!cpumask_subset(cpus, env.dst_grpmask)) {
11892 env.loop = 0;
11893 env.loop_break = SCHED_NR_MIGRATE_BREAK;
11894 goto redo;
11895 }
11896 goto out_all_pinned;
11897 }
11898 }
11899
11900 if (!ld_moved) {
11901 schedstat_inc(sd->lb_failed[idle]);
11902 /*
11903 * Increment the failure counter only on periodic balance.
11904 * We do not want newidle balance, which can be very
11905 * frequent, pollute the failure counter causing
11906 * excessive cache_hot migrations and active balances.
11907 *
11908 * Similarly for migration_misfit which is not related to
11909 * load/util migration, don't pollute nr_balance_failed.
11910 */
11911 if (idle != CPU_NEWLY_IDLE &&
11912 env.migration_type != migrate_misfit)
11913 sd->nr_balance_failed++;
11914
11915 if (need_active_balance(&env)) {
11916 unsigned long flags;
11917
11918 raw_spin_rq_lock_irqsave(busiest, flags);
11919
11920 /*
11921 * Don't kick the active_load_balance_cpu_stop,
11922 * if the curr task on busiest CPU can't be
11923 * moved to this_cpu:
11924 */
11925 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11926 raw_spin_rq_unlock_irqrestore(busiest, flags);
11927 goto out_one_pinned;
11928 }
11929
11930 /* Record that we found at least one task that could run on this_cpu */
11931 env.flags &= ~LBF_ALL_PINNED;
11932
11933 /*
11934 * ->active_balance synchronizes accesses to
11935 * ->active_balance_work. Once set, it's cleared
11936 * only after active load balance is finished.
11937 */
11938 if (!busiest->active_balance) {
11939 busiest->active_balance = 1;
11940 busiest->push_cpu = this_cpu;
11941 active_balance = 1;
11942 }
11943
11944 preempt_disable();
11945 raw_spin_rq_unlock_irqrestore(busiest, flags);
11946 if (active_balance) {
11947 stop_one_cpu_nowait(cpu_of(busiest),
11948 active_load_balance_cpu_stop, busiest,
11949 &busiest->active_balance_work);
11950 }
11951 preempt_enable();
11952 }
11953 } else {
11954 sd->nr_balance_failed = 0;
11955 }
11956
11957 if (likely(!active_balance) || need_active_balance(&env)) {
11958 /* We were unbalanced, so reset the balancing interval */
11959 sd->balance_interval = sd->min_interval;
11960 }
11961
11962 goto out;
11963
11964 out_balanced:
11965 /*
11966 * We reach balance although we may have faced some affinity
11967 * constraints. Clear the imbalance flag only if other tasks got
11968 * a chance to move and fix the imbalance.
11969 */
11970 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11971 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11972
11973 if (*group_imbalance)
11974 *group_imbalance = 0;
11975 }
11976
11977 out_all_pinned:
11978 /*
11979 * We reach balance because all tasks are pinned at this level so
11980 * we can't migrate them. Let the imbalance flag set so parent level
11981 * can try to migrate them.
11982 */
11983 schedstat_inc(sd->lb_balanced[idle]);
11984
11985 sd->nr_balance_failed = 0;
11986
11987 out_one_pinned:
11988 ld_moved = 0;
11989
11990 /*
11991 * sched_balance_newidle() disregards balance intervals, so we could
11992 * repeatedly reach this code, which would lead to balance_interval
11993 * skyrocketing in a short amount of time. Skip the balance_interval
11994 * increase logic to avoid that.
11995 *
11996 * Similarly misfit migration which is not necessarily an indication of
11997 * the system being busy and requires lb to backoff to let it settle
11998 * down.
11999 */
12000 if (env.idle == CPU_NEWLY_IDLE ||
12001 env.migration_type == migrate_misfit)
12002 goto out;
12003
12004 /* tune up the balancing interval */
12005 if ((env.flags & LBF_ALL_PINNED &&
12006 sd->balance_interval < MAX_PINNED_INTERVAL) ||
12007 sd->balance_interval < sd->max_interval)
12008 sd->balance_interval *= 2;
12009 out:
12010 return ld_moved;
12011 }
12012
12013 static inline unsigned long
get_sd_balance_interval(struct sched_domain * sd,int cpu_busy)12014 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
12015 {
12016 unsigned long interval = sd->balance_interval;
12017
12018 if (cpu_busy)
12019 interval *= sd->busy_factor;
12020
12021 /* scale ms to jiffies */
12022 interval = msecs_to_jiffies(interval);
12023
12024 /*
12025 * Reduce likelihood of busy balancing at higher domains racing with
12026 * balancing at lower domains by preventing their balancing periods
12027 * from being multiples of each other.
12028 */
12029 if (cpu_busy)
12030 interval -= 1;
12031
12032 interval = clamp(interval, 1UL, max_load_balance_interval);
12033
12034 return interval;
12035 }
12036
12037 static inline void
update_next_balance(struct sched_domain * sd,unsigned long * next_balance)12038 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
12039 {
12040 unsigned long interval, next;
12041
12042 /* used by idle balance, so cpu_busy = 0 */
12043 interval = get_sd_balance_interval(sd, 0);
12044 next = sd->last_balance + interval;
12045
12046 if (time_after(*next_balance, next))
12047 *next_balance = next;
12048 }
12049
12050 /*
12051 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
12052 * running tasks off the busiest CPU onto idle CPUs. It requires at
12053 * least 1 task to be running on each physical CPU where possible, and
12054 * avoids physical / logical imbalances.
12055 */
active_load_balance_cpu_stop(void * data)12056 static int active_load_balance_cpu_stop(void *data)
12057 {
12058 struct rq *busiest_rq = data;
12059 int busiest_cpu = cpu_of(busiest_rq);
12060 int target_cpu = busiest_rq->push_cpu;
12061 struct rq *target_rq = cpu_rq(target_cpu);
12062 struct sched_domain *sd;
12063 struct task_struct *p = NULL;
12064 struct rq_flags rf;
12065
12066 rq_lock_irq(busiest_rq, &rf);
12067 /*
12068 * Between queueing the stop-work and running it is a hole in which
12069 * CPUs can become inactive. We should not move tasks from or to
12070 * inactive CPUs.
12071 */
12072 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
12073 goto out_unlock;
12074
12075 /* Make sure the requested CPU hasn't gone down in the meantime: */
12076 if (unlikely(busiest_cpu != smp_processor_id() ||
12077 !busiest_rq->active_balance))
12078 goto out_unlock;
12079
12080 /* Is there any task to move? */
12081 if (busiest_rq->nr_running <= 1)
12082 goto out_unlock;
12083
12084 /*
12085 * This condition is "impossible", if it occurs
12086 * we need to fix it. Originally reported by
12087 * Bjorn Helgaas on a 128-CPU setup.
12088 */
12089 WARN_ON_ONCE(busiest_rq == target_rq);
12090
12091 /* Search for an sd spanning us and the target CPU. */
12092 rcu_read_lock();
12093 for_each_domain(target_cpu, sd) {
12094 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
12095 break;
12096 }
12097
12098 if (likely(sd)) {
12099 struct lb_env env = {
12100 .sd = sd,
12101 .dst_cpu = target_cpu,
12102 .dst_rq = target_rq,
12103 .src_cpu = busiest_rq->cpu,
12104 .src_rq = busiest_rq,
12105 .idle = CPU_IDLE,
12106 .flags = LBF_ACTIVE_LB,
12107 };
12108
12109 schedstat_inc(sd->alb_count);
12110 update_rq_clock(busiest_rq);
12111
12112 p = detach_one_task(&env);
12113 if (p) {
12114 schedstat_inc(sd->alb_pushed);
12115 /* Active balancing done, reset the failure counter. */
12116 sd->nr_balance_failed = 0;
12117 } else {
12118 schedstat_inc(sd->alb_failed);
12119 }
12120 }
12121 rcu_read_unlock();
12122 out_unlock:
12123 busiest_rq->active_balance = 0;
12124 rq_unlock(busiest_rq, &rf);
12125
12126 if (p)
12127 attach_one_task(target_rq, p);
12128
12129 local_irq_enable();
12130
12131 return 0;
12132 }
12133
12134 /*
12135 * This flag serializes load-balancing passes over large domains
12136 * (above the NODE topology level) - only one load-balancing instance
12137 * may run at a time, to reduce overhead on very large systems with
12138 * lots of CPUs and large NUMA distances.
12139 *
12140 * - Note that load-balancing passes triggered while another one
12141 * is executing are skipped and not re-tried.
12142 *
12143 * - Also note that this does not serialize rebalance_domains()
12144 * execution, as non-SD_SERIALIZE domains will still be
12145 * load-balanced in parallel.
12146 */
12147 static atomic_t sched_balance_running = ATOMIC_INIT(0);
12148
12149 /*
12150 * Scale the max sched_balance_rq interval with the number of CPUs in the system.
12151 * This trades load-balance latency on larger machines for less cross talk.
12152 */
update_max_interval(void)12153 void update_max_interval(void)
12154 {
12155 max_load_balance_interval = HZ*num_online_cpus()/10;
12156 }
12157
update_newidle_cost(struct sched_domain * sd,u64 cost)12158 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
12159 {
12160 if (cost > sd->max_newidle_lb_cost) {
12161 /*
12162 * Track max cost of a domain to make sure to not delay the
12163 * next wakeup on the CPU.
12164 */
12165 sd->max_newidle_lb_cost = cost;
12166 sd->last_decay_max_lb_cost = jiffies;
12167 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
12168 /*
12169 * Decay the newidle max times by ~1% per second to ensure that
12170 * it is not outdated and the current max cost is actually
12171 * shorter.
12172 */
12173 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
12174 sd->last_decay_max_lb_cost = jiffies;
12175
12176 return true;
12177 }
12178
12179 return false;
12180 }
12181
12182 /*
12183 * It checks each scheduling domain to see if it is due to be balanced,
12184 * and initiates a balancing operation if so.
12185 *
12186 * Balancing parameters are set up in init_sched_domains.
12187 */
sched_balance_domains(struct rq * rq,enum cpu_idle_type idle)12188 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle)
12189 {
12190 int continue_balancing = 1;
12191 int cpu = rq->cpu;
12192 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
12193 unsigned long interval;
12194 struct sched_domain *sd;
12195 /* Earliest time when we have to do rebalance again */
12196 unsigned long next_balance = jiffies + 60*HZ;
12197 int update_next_balance = 0;
12198 int need_serialize, need_decay = 0;
12199 u64 max_cost = 0;
12200
12201 rcu_read_lock();
12202 for_each_domain(cpu, sd) {
12203 /*
12204 * Decay the newidle max times here because this is a regular
12205 * visit to all the domains.
12206 */
12207 need_decay = update_newidle_cost(sd, 0);
12208 max_cost += sd->max_newidle_lb_cost;
12209
12210 /*
12211 * Stop the load balance at this level. There is another
12212 * CPU in our sched group which is doing load balancing more
12213 * actively.
12214 */
12215 if (!continue_balancing) {
12216 if (need_decay)
12217 continue;
12218 break;
12219 }
12220
12221 interval = get_sd_balance_interval(sd, busy);
12222
12223 need_serialize = sd->flags & SD_SERIALIZE;
12224 if (need_serialize) {
12225 if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1))
12226 goto out;
12227 }
12228
12229 if (time_after_eq(jiffies, sd->last_balance + interval)) {
12230 if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) {
12231 /*
12232 * The LBF_DST_PINNED logic could have changed
12233 * env->dst_cpu, so we can't know our idle
12234 * state even if we migrated tasks. Update it.
12235 */
12236 idle = idle_cpu(cpu);
12237 busy = !idle && !sched_idle_cpu(cpu);
12238 }
12239 sd->last_balance = jiffies;
12240 interval = get_sd_balance_interval(sd, busy);
12241 }
12242 if (need_serialize)
12243 atomic_set_release(&sched_balance_running, 0);
12244 out:
12245 if (time_after(next_balance, sd->last_balance + interval)) {
12246 next_balance = sd->last_balance + interval;
12247 update_next_balance = 1;
12248 }
12249 }
12250 if (need_decay) {
12251 /*
12252 * Ensure the rq-wide value also decays but keep it at a
12253 * reasonable floor to avoid funnies with rq->avg_idle.
12254 */
12255 rq->max_idle_balance_cost =
12256 max((u64)sysctl_sched_migration_cost, max_cost);
12257 }
12258 rcu_read_unlock();
12259
12260 /*
12261 * next_balance will be updated only when there is a need.
12262 * When the cpu is attached to null domain for ex, it will not be
12263 * updated.
12264 */
12265 if (likely(update_next_balance))
12266 rq->next_balance = next_balance;
12267
12268 }
12269
on_null_domain(struct rq * rq)12270 static inline int on_null_domain(struct rq *rq)
12271 {
12272 return unlikely(!rcu_dereference_sched(rq->sd));
12273 }
12274
12275 #ifdef CONFIG_NO_HZ_COMMON
12276 /*
12277 * NOHZ idle load balancing (ILB) details:
12278 *
12279 * - When one of the busy CPUs notices that there may be an idle rebalancing
12280 * needed, they will kick the idle load balancer, which then does idle
12281 * load balancing for all the idle CPUs.
12282 */
find_new_ilb(void)12283 static inline int find_new_ilb(void)
12284 {
12285 const struct cpumask *hk_mask;
12286 int ilb_cpu;
12287
12288 hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE);
12289
12290 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
12291
12292 if (ilb_cpu == smp_processor_id())
12293 continue;
12294
12295 if (idle_cpu(ilb_cpu))
12296 return ilb_cpu;
12297 }
12298
12299 return -1;
12300 }
12301
12302 /*
12303 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
12304 * SMP function call (IPI).
12305 *
12306 * We pick the first idle CPU in the HK_TYPE_KERNEL_NOISE housekeeping set
12307 * (if there is one).
12308 */
kick_ilb(unsigned int flags)12309 static void kick_ilb(unsigned int flags)
12310 {
12311 int ilb_cpu;
12312
12313 /*
12314 * Increase nohz.next_balance only when if full ilb is triggered but
12315 * not if we only update stats.
12316 */
12317 if (flags & NOHZ_BALANCE_KICK)
12318 nohz.next_balance = jiffies+1;
12319
12320 ilb_cpu = find_new_ilb();
12321 if (ilb_cpu < 0)
12322 return;
12323
12324 /*
12325 * Don't bother if no new NOHZ balance work items for ilb_cpu,
12326 * i.e. all bits in flags are already set in ilb_cpu.
12327 */
12328 if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags)
12329 return;
12330
12331 /*
12332 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
12333 * the first flag owns it; cleared by nohz_csd_func().
12334 */
12335 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
12336 if (flags & NOHZ_KICK_MASK)
12337 return;
12338
12339 /*
12340 * This way we generate an IPI on the target CPU which
12341 * is idle, and the softirq performing NOHZ idle load balancing
12342 * will be run before returning from the IPI.
12343 */
12344 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
12345 }
12346
12347 /*
12348 * Current decision point for kicking the idle load balancer in the presence
12349 * of idle CPUs in the system.
12350 */
nohz_balancer_kick(struct rq * rq)12351 static void nohz_balancer_kick(struct rq *rq)
12352 {
12353 unsigned long now = jiffies;
12354 struct sched_domain_shared *sds;
12355 struct sched_domain *sd;
12356 int nr_busy, i, cpu = rq->cpu;
12357 unsigned int flags = 0;
12358
12359 if (unlikely(rq->idle_balance))
12360 return;
12361
12362 /*
12363 * We may be recently in ticked or tickless idle mode. At the first
12364 * busy tick after returning from idle, we will update the busy stats.
12365 */
12366 nohz_balance_exit_idle(rq);
12367
12368 /*
12369 * None are in tickless mode and hence no need for NOHZ idle load
12370 * balancing:
12371 */
12372 if (likely(!atomic_read(&nohz.nr_cpus)))
12373 return;
12374
12375 if (READ_ONCE(nohz.has_blocked) &&
12376 time_after(now, READ_ONCE(nohz.next_blocked)))
12377 flags = NOHZ_STATS_KICK;
12378
12379 if (time_before(now, nohz.next_balance))
12380 goto out;
12381
12382 if (rq->nr_running >= 2) {
12383 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12384 goto out;
12385 }
12386
12387 rcu_read_lock();
12388
12389 sd = rcu_dereference(rq->sd);
12390 if (sd) {
12391 /*
12392 * If there's a runnable CFS task and the current CPU has reduced
12393 * capacity, kick the ILB to see if there's a better CPU to run on:
12394 */
12395 if (rq->cfs.h_nr_runnable >= 1 && check_cpu_capacity(rq, sd)) {
12396 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12397 goto unlock;
12398 }
12399 }
12400
12401 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
12402 if (sd) {
12403 /*
12404 * When ASYM_PACKING; see if there's a more preferred CPU
12405 * currently idle; in which case, kick the ILB to move tasks
12406 * around.
12407 *
12408 * When balancing between cores, all the SMT siblings of the
12409 * preferred CPU must be idle.
12410 */
12411 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
12412 if (sched_asym(sd, i, cpu)) {
12413 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12414 goto unlock;
12415 }
12416 }
12417 }
12418
12419 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
12420 if (sd) {
12421 /*
12422 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
12423 * to run the misfit task on.
12424 */
12425 if (check_misfit_status(rq)) {
12426 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12427 goto unlock;
12428 }
12429
12430 /*
12431 * For asymmetric systems, we do not want to nicely balance
12432 * cache use, instead we want to embrace asymmetry and only
12433 * ensure tasks have enough CPU capacity.
12434 *
12435 * Skip the LLC logic because it's not relevant in that case.
12436 */
12437 goto unlock;
12438 }
12439
12440 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
12441 if (sds) {
12442 /*
12443 * If there is an imbalance between LLC domains (IOW we could
12444 * increase the overall cache utilization), we need a less-loaded LLC
12445 * domain to pull some load from. Likewise, we may need to spread
12446 * load within the current LLC domain (e.g. packed SMT cores but
12447 * other CPUs are idle). We can't really know from here how busy
12448 * the others are - so just get a NOHZ balance going if it looks
12449 * like this LLC domain has tasks we could move.
12450 */
12451 nr_busy = atomic_read(&sds->nr_busy_cpus);
12452 if (nr_busy > 1) {
12453 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12454 goto unlock;
12455 }
12456 }
12457 unlock:
12458 rcu_read_unlock();
12459 out:
12460 if (READ_ONCE(nohz.needs_update))
12461 flags |= NOHZ_NEXT_KICK;
12462
12463 if (flags)
12464 kick_ilb(flags);
12465 }
12466
set_cpu_sd_state_busy(int cpu)12467 static void set_cpu_sd_state_busy(int cpu)
12468 {
12469 struct sched_domain *sd;
12470
12471 rcu_read_lock();
12472 sd = rcu_dereference(per_cpu(sd_llc, cpu));
12473
12474 if (!sd || !sd->nohz_idle)
12475 goto unlock;
12476 sd->nohz_idle = 0;
12477
12478 atomic_inc(&sd->shared->nr_busy_cpus);
12479 unlock:
12480 rcu_read_unlock();
12481 }
12482
nohz_balance_exit_idle(struct rq * rq)12483 void nohz_balance_exit_idle(struct rq *rq)
12484 {
12485 WARN_ON_ONCE(rq != this_rq());
12486
12487 if (likely(!rq->nohz_tick_stopped))
12488 return;
12489
12490 rq->nohz_tick_stopped = 0;
12491 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
12492 atomic_dec(&nohz.nr_cpus);
12493
12494 set_cpu_sd_state_busy(rq->cpu);
12495 }
12496
set_cpu_sd_state_idle(int cpu)12497 static void set_cpu_sd_state_idle(int cpu)
12498 {
12499 struct sched_domain *sd;
12500
12501 rcu_read_lock();
12502 sd = rcu_dereference(per_cpu(sd_llc, cpu));
12503
12504 if (!sd || sd->nohz_idle)
12505 goto unlock;
12506 sd->nohz_idle = 1;
12507
12508 atomic_dec(&sd->shared->nr_busy_cpus);
12509 unlock:
12510 rcu_read_unlock();
12511 }
12512
12513 /*
12514 * This routine will record that the CPU is going idle with tick stopped.
12515 * This info will be used in performing idle load balancing in the future.
12516 */
nohz_balance_enter_idle(int cpu)12517 void nohz_balance_enter_idle(int cpu)
12518 {
12519 struct rq *rq = cpu_rq(cpu);
12520
12521 WARN_ON_ONCE(cpu != smp_processor_id());
12522
12523 /* If this CPU is going down, then nothing needs to be done: */
12524 if (!cpu_active(cpu))
12525 return;
12526
12527 /*
12528 * Can be set safely without rq->lock held
12529 * If a clear happens, it will have evaluated last additions because
12530 * rq->lock is held during the check and the clear
12531 */
12532 rq->has_blocked_load = 1;
12533
12534 /*
12535 * The tick is still stopped but load could have been added in the
12536 * meantime. We set the nohz.has_blocked flag to trig a check of the
12537 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12538 * of nohz.has_blocked can only happen after checking the new load
12539 */
12540 if (rq->nohz_tick_stopped)
12541 goto out;
12542
12543 /* If we're a completely isolated CPU, we don't play: */
12544 if (on_null_domain(rq))
12545 return;
12546
12547 rq->nohz_tick_stopped = 1;
12548
12549 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12550 atomic_inc(&nohz.nr_cpus);
12551
12552 /*
12553 * Ensures that if nohz_idle_balance() fails to observe our
12554 * @idle_cpus_mask store, it must observe the @has_blocked
12555 * and @needs_update stores.
12556 */
12557 smp_mb__after_atomic();
12558
12559 set_cpu_sd_state_idle(cpu);
12560
12561 WRITE_ONCE(nohz.needs_update, 1);
12562 out:
12563 /*
12564 * Each time a cpu enter idle, we assume that it has blocked load and
12565 * enable the periodic update of the load of idle CPUs
12566 */
12567 WRITE_ONCE(nohz.has_blocked, 1);
12568 }
12569
update_nohz_stats(struct rq * rq)12570 static bool update_nohz_stats(struct rq *rq)
12571 {
12572 unsigned int cpu = rq->cpu;
12573
12574 if (!rq->has_blocked_load)
12575 return false;
12576
12577 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12578 return false;
12579
12580 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12581 return true;
12582
12583 sched_balance_update_blocked_averages(cpu);
12584
12585 return rq->has_blocked_load;
12586 }
12587
12588 /*
12589 * Internal function that runs load balance for all idle CPUs. The load balance
12590 * can be a simple update of blocked load or a complete load balance with
12591 * tasks movement depending of flags.
12592 */
_nohz_idle_balance(struct rq * this_rq,unsigned int flags)12593 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12594 {
12595 /* Earliest time when we have to do rebalance again */
12596 unsigned long now = jiffies;
12597 unsigned long next_balance = now + 60*HZ;
12598 bool has_blocked_load = false;
12599 int update_next_balance = 0;
12600 int this_cpu = this_rq->cpu;
12601 int balance_cpu;
12602 struct rq *rq;
12603
12604 WARN_ON_ONCE((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12605
12606 /*
12607 * We assume there will be no idle load after this update and clear
12608 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12609 * set the has_blocked flag and trigger another update of idle load.
12610 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12611 * setting the flag, we are sure to not clear the state and not
12612 * check the load of an idle cpu.
12613 *
12614 * Same applies to idle_cpus_mask vs needs_update.
12615 */
12616 if (flags & NOHZ_STATS_KICK)
12617 WRITE_ONCE(nohz.has_blocked, 0);
12618 if (flags & NOHZ_NEXT_KICK)
12619 WRITE_ONCE(nohz.needs_update, 0);
12620
12621 /*
12622 * Ensures that if we miss the CPU, we must see the has_blocked
12623 * store from nohz_balance_enter_idle().
12624 */
12625 smp_mb();
12626
12627 /*
12628 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12629 * chance for other idle cpu to pull load.
12630 */
12631 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) {
12632 if (!idle_cpu(balance_cpu))
12633 continue;
12634
12635 /*
12636 * If this CPU gets work to do, stop the load balancing
12637 * work being done for other CPUs. Next load
12638 * balancing owner will pick it up.
12639 */
12640 if (!idle_cpu(this_cpu) && need_resched()) {
12641 if (flags & NOHZ_STATS_KICK)
12642 has_blocked_load = true;
12643 if (flags & NOHZ_NEXT_KICK)
12644 WRITE_ONCE(nohz.needs_update, 1);
12645 goto abort;
12646 }
12647
12648 rq = cpu_rq(balance_cpu);
12649
12650 if (flags & NOHZ_STATS_KICK)
12651 has_blocked_load |= update_nohz_stats(rq);
12652
12653 /*
12654 * If time for next balance is due,
12655 * do the balance.
12656 */
12657 if (time_after_eq(jiffies, rq->next_balance)) {
12658 struct rq_flags rf;
12659
12660 rq_lock_irqsave(rq, &rf);
12661 update_rq_clock(rq);
12662 rq_unlock_irqrestore(rq, &rf);
12663
12664 if (flags & NOHZ_BALANCE_KICK)
12665 sched_balance_domains(rq, CPU_IDLE);
12666 }
12667
12668 if (time_after(next_balance, rq->next_balance)) {
12669 next_balance = rq->next_balance;
12670 update_next_balance = 1;
12671 }
12672 }
12673
12674 /*
12675 * next_balance will be updated only when there is a need.
12676 * When the CPU is attached to null domain for ex, it will not be
12677 * updated.
12678 */
12679 if (likely(update_next_balance))
12680 nohz.next_balance = next_balance;
12681
12682 if (flags & NOHZ_STATS_KICK)
12683 WRITE_ONCE(nohz.next_blocked,
12684 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12685
12686 abort:
12687 /* There is still blocked load, enable periodic update */
12688 if (has_blocked_load)
12689 WRITE_ONCE(nohz.has_blocked, 1);
12690 }
12691
12692 /*
12693 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12694 * rebalancing for all the CPUs for whom scheduler ticks are stopped.
12695 */
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12696 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12697 {
12698 unsigned int flags = this_rq->nohz_idle_balance;
12699
12700 if (!flags)
12701 return false;
12702
12703 this_rq->nohz_idle_balance = 0;
12704
12705 if (idle != CPU_IDLE)
12706 return false;
12707
12708 _nohz_idle_balance(this_rq, flags);
12709
12710 return true;
12711 }
12712
12713 /*
12714 * Check if we need to directly run the ILB for updating blocked load before
12715 * entering idle state. Here we run ILB directly without issuing IPIs.
12716 *
12717 * Note that when this function is called, the tick may not yet be stopped on
12718 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
12719 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
12720 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
12721 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
12722 * called from this function on (this) CPU that's not yet in the mask. That's
12723 * OK because the goal of nohz_run_idle_balance() is to run ILB only for
12724 * updating the blocked load of already idle CPUs without waking up one of
12725 * those idle CPUs and outside the preempt disable / IRQ off phase of the local
12726 * cpu about to enter idle, because it can take a long time.
12727 */
nohz_run_idle_balance(int cpu)12728 void nohz_run_idle_balance(int cpu)
12729 {
12730 unsigned int flags;
12731
12732 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12733
12734 /*
12735 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12736 * (i.e. NOHZ_STATS_KICK set) and will do the same.
12737 */
12738 if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12739 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12740 }
12741
nohz_newidle_balance(struct rq * this_rq)12742 static void nohz_newidle_balance(struct rq *this_rq)
12743 {
12744 int this_cpu = this_rq->cpu;
12745
12746 /* Will wake up very soon. No time for doing anything else*/
12747 if (this_rq->avg_idle < sysctl_sched_migration_cost)
12748 return;
12749
12750 /* Don't need to update blocked load of idle CPUs*/
12751 if (!READ_ONCE(nohz.has_blocked) ||
12752 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12753 return;
12754
12755 /*
12756 * Set the need to trigger ILB in order to update blocked load
12757 * before entering idle state.
12758 */
12759 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12760 }
12761
12762 #else /* !CONFIG_NO_HZ_COMMON */
nohz_balancer_kick(struct rq * rq)12763 static inline void nohz_balancer_kick(struct rq *rq) { }
12764
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12765 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12766 {
12767 return false;
12768 }
12769
nohz_newidle_balance(struct rq * this_rq)12770 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12771 #endif /* CONFIG_NO_HZ_COMMON */
12772
12773 /*
12774 * sched_balance_newidle is called by schedule() if this_cpu is about to become
12775 * idle. Attempts to pull tasks from other CPUs.
12776 *
12777 * Returns:
12778 * < 0 - we released the lock and there are !fair tasks present
12779 * 0 - failed, no new tasks
12780 * > 0 - success, new (fair) tasks present
12781 */
sched_balance_newidle(struct rq * this_rq,struct rq_flags * rf)12782 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf)
12783 {
12784 unsigned long next_balance = jiffies + HZ;
12785 int this_cpu = this_rq->cpu;
12786 int continue_balancing = 1;
12787 u64 t0, t1, curr_cost = 0;
12788 struct sched_domain *sd;
12789 int pulled_task = 0;
12790
12791 update_misfit_status(NULL, this_rq);
12792
12793 /*
12794 * There is a task waiting to run. No need to search for one.
12795 * Return 0; the task will be enqueued when switching to idle.
12796 */
12797 if (this_rq->ttwu_pending)
12798 return 0;
12799
12800 /*
12801 * We must set idle_stamp _before_ calling sched_balance_rq()
12802 * for CPU_NEWLY_IDLE, such that we measure the this duration
12803 * as idle time.
12804 */
12805 this_rq->idle_stamp = rq_clock(this_rq);
12806
12807 /*
12808 * Do not pull tasks towards !active CPUs...
12809 */
12810 if (!cpu_active(this_cpu))
12811 return 0;
12812
12813 /*
12814 * This is OK, because current is on_cpu, which avoids it being picked
12815 * for load-balance and preemption/IRQs are still disabled avoiding
12816 * further scheduler activity on it and we're being very careful to
12817 * re-start the picking loop.
12818 */
12819 rq_unpin_lock(this_rq, rf);
12820
12821 rcu_read_lock();
12822 sd = rcu_dereference_check_sched_domain(this_rq->sd);
12823
12824 if (!get_rd_overloaded(this_rq->rd) ||
12825 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12826
12827 if (sd)
12828 update_next_balance(sd, &next_balance);
12829 rcu_read_unlock();
12830
12831 goto out;
12832 }
12833 rcu_read_unlock();
12834
12835 raw_spin_rq_unlock(this_rq);
12836
12837 t0 = sched_clock_cpu(this_cpu);
12838 sched_balance_update_blocked_averages(this_cpu);
12839
12840 rcu_read_lock();
12841 for_each_domain(this_cpu, sd) {
12842 u64 domain_cost;
12843
12844 update_next_balance(sd, &next_balance);
12845
12846 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12847 break;
12848
12849 if (sd->flags & SD_BALANCE_NEWIDLE) {
12850
12851 pulled_task = sched_balance_rq(this_cpu, this_rq,
12852 sd, CPU_NEWLY_IDLE,
12853 &continue_balancing);
12854
12855 t1 = sched_clock_cpu(this_cpu);
12856 domain_cost = t1 - t0;
12857 update_newidle_cost(sd, domain_cost);
12858
12859 curr_cost += domain_cost;
12860 t0 = t1;
12861 }
12862
12863 /*
12864 * Stop searching for tasks to pull if there are
12865 * now runnable tasks on this rq.
12866 */
12867 if (pulled_task || !continue_balancing)
12868 break;
12869 }
12870 rcu_read_unlock();
12871
12872 raw_spin_rq_lock(this_rq);
12873
12874 if (curr_cost > this_rq->max_idle_balance_cost)
12875 this_rq->max_idle_balance_cost = curr_cost;
12876
12877 /*
12878 * While browsing the domains, we released the rq lock, a task could
12879 * have been enqueued in the meantime. Since we're not going idle,
12880 * pretend we pulled a task.
12881 */
12882 if (this_rq->cfs.h_nr_queued && !pulled_task)
12883 pulled_task = 1;
12884
12885 /* Is there a task of a high priority class? */
12886 if (this_rq->nr_running != this_rq->cfs.h_nr_queued)
12887 pulled_task = -1;
12888
12889 out:
12890 /* Move the next balance forward */
12891 if (time_after(this_rq->next_balance, next_balance))
12892 this_rq->next_balance = next_balance;
12893
12894 if (pulled_task)
12895 this_rq->idle_stamp = 0;
12896 else
12897 nohz_newidle_balance(this_rq);
12898
12899 rq_repin_lock(this_rq, rf);
12900
12901 return pulled_task;
12902 }
12903
12904 /*
12905 * This softirq handler is triggered via SCHED_SOFTIRQ from two places:
12906 *
12907 * - directly from the local sched_tick() for periodic load balancing
12908 *
12909 * - indirectly from a remote sched_tick() for NOHZ idle balancing
12910 * through the SMP cross-call nohz_csd_func()
12911 */
sched_balance_softirq(void)12912 static __latent_entropy void sched_balance_softirq(void)
12913 {
12914 struct rq *this_rq = this_rq();
12915 enum cpu_idle_type idle = this_rq->idle_balance;
12916 /*
12917 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the
12918 * balancing on behalf of the other idle CPUs whose ticks are
12919 * stopped. Do nohz_idle_balance *before* sched_balance_domains to
12920 * give the idle CPUs a chance to load balance. Else we may
12921 * load balance only within the local sched_domain hierarchy
12922 * and abort nohz_idle_balance altogether if we pull some load.
12923 */
12924 if (nohz_idle_balance(this_rq, idle))
12925 return;
12926
12927 /* normal load balance */
12928 sched_balance_update_blocked_averages(this_rq->cpu);
12929 sched_balance_domains(this_rq, idle);
12930 }
12931
12932 /*
12933 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12934 */
sched_balance_trigger(struct rq * rq)12935 void sched_balance_trigger(struct rq *rq)
12936 {
12937 /*
12938 * Don't need to rebalance while attached to NULL domain or
12939 * runqueue CPU is not active
12940 */
12941 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12942 return;
12943
12944 if (time_after_eq(jiffies, rq->next_balance))
12945 raise_softirq(SCHED_SOFTIRQ);
12946
12947 nohz_balancer_kick(rq);
12948 }
12949
rq_online_fair(struct rq * rq)12950 static void rq_online_fair(struct rq *rq)
12951 {
12952 update_sysctl();
12953
12954 update_runtime_enabled(rq);
12955 }
12956
rq_offline_fair(struct rq * rq)12957 static void rq_offline_fair(struct rq *rq)
12958 {
12959 update_sysctl();
12960
12961 /* Ensure any throttled groups are reachable by pick_next_task */
12962 unthrottle_offline_cfs_rqs(rq);
12963
12964 /* Ensure that we remove rq contribution to group share: */
12965 clear_tg_offline_cfs_rqs(rq);
12966 }
12967
12968 #endif /* CONFIG_SMP */
12969
12970 #ifdef CONFIG_SCHED_CORE
12971 static inline bool
__entity_slice_used(struct sched_entity * se,int min_nr_tasks)12972 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12973 {
12974 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12975 u64 slice = se->slice;
12976
12977 return (rtime * min_nr_tasks > slice);
12978 }
12979
12980 #define MIN_NR_TASKS_DURING_FORCEIDLE 2
task_tick_core(struct rq * rq,struct task_struct * curr)12981 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12982 {
12983 if (!sched_core_enabled(rq))
12984 return;
12985
12986 /*
12987 * If runqueue has only one task which used up its slice and
12988 * if the sibling is forced idle, then trigger schedule to
12989 * give forced idle task a chance.
12990 *
12991 * sched_slice() considers only this active rq and it gets the
12992 * whole slice. But during force idle, we have siblings acting
12993 * like a single runqueue and hence we need to consider runnable
12994 * tasks on this CPU and the forced idle CPU. Ideally, we should
12995 * go through the forced idle rq, but that would be a perf hit.
12996 * We can assume that the forced idle CPU has at least
12997 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12998 * if we need to give up the CPU.
12999 */
13000 if (rq->core->core_forceidle_count && rq->cfs.nr_queued == 1 &&
13001 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
13002 resched_curr(rq);
13003 }
13004
13005 /*
13006 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
13007 */
se_fi_update(const struct sched_entity * se,unsigned int fi_seq,bool forceidle)13008 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
13009 bool forceidle)
13010 {
13011 for_each_sched_entity(se) {
13012 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13013
13014 if (forceidle) {
13015 if (cfs_rq->forceidle_seq == fi_seq)
13016 break;
13017 cfs_rq->forceidle_seq = fi_seq;
13018 }
13019
13020 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
13021 }
13022 }
13023
task_vruntime_update(struct rq * rq,struct task_struct * p,bool in_fi)13024 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
13025 {
13026 struct sched_entity *se = &p->se;
13027
13028 if (p->sched_class != &fair_sched_class)
13029 return;
13030
13031 se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
13032 }
13033
cfs_prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)13034 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
13035 bool in_fi)
13036 {
13037 struct rq *rq = task_rq(a);
13038 const struct sched_entity *sea = &a->se;
13039 const struct sched_entity *seb = &b->se;
13040 struct cfs_rq *cfs_rqa;
13041 struct cfs_rq *cfs_rqb;
13042 s64 delta;
13043
13044 WARN_ON_ONCE(task_rq(b)->core != rq->core);
13045
13046 #ifdef CONFIG_FAIR_GROUP_SCHED
13047 /*
13048 * Find an se in the hierarchy for tasks a and b, such that the se's
13049 * are immediate siblings.
13050 */
13051 while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
13052 int sea_depth = sea->depth;
13053 int seb_depth = seb->depth;
13054
13055 if (sea_depth >= seb_depth)
13056 sea = parent_entity(sea);
13057 if (sea_depth <= seb_depth)
13058 seb = parent_entity(seb);
13059 }
13060
13061 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
13062 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
13063
13064 cfs_rqa = sea->cfs_rq;
13065 cfs_rqb = seb->cfs_rq;
13066 #else
13067 cfs_rqa = &task_rq(a)->cfs;
13068 cfs_rqb = &task_rq(b)->cfs;
13069 #endif
13070
13071 /*
13072 * Find delta after normalizing se's vruntime with its cfs_rq's
13073 * min_vruntime_fi, which would have been updated in prior calls
13074 * to se_fi_update().
13075 */
13076 delta = (s64)(sea->vruntime - seb->vruntime) +
13077 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
13078
13079 return delta > 0;
13080 }
13081
task_is_throttled_fair(struct task_struct * p,int cpu)13082 static int task_is_throttled_fair(struct task_struct *p, int cpu)
13083 {
13084 struct cfs_rq *cfs_rq;
13085
13086 #ifdef CONFIG_FAIR_GROUP_SCHED
13087 cfs_rq = task_group(p)->cfs_rq[cpu];
13088 #else
13089 cfs_rq = &cpu_rq(cpu)->cfs;
13090 #endif
13091 return throttled_hierarchy(cfs_rq);
13092 }
13093 #else
task_tick_core(struct rq * rq,struct task_struct * curr)13094 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
13095 #endif
13096
13097 /*
13098 * scheduler tick hitting a task of our scheduling class.
13099 *
13100 * NOTE: This function can be called remotely by the tick offload that
13101 * goes along full dynticks. Therefore no local assumption can be made
13102 * and everything must be accessed through the @rq and @curr passed in
13103 * parameters.
13104 */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)13105 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
13106 {
13107 struct cfs_rq *cfs_rq;
13108 struct sched_entity *se = &curr->se;
13109
13110 for_each_sched_entity(se) {
13111 cfs_rq = cfs_rq_of(se);
13112 entity_tick(cfs_rq, se, queued);
13113 }
13114
13115 if (static_branch_unlikely(&sched_numa_balancing))
13116 task_tick_numa(rq, curr);
13117
13118 update_misfit_status(curr, rq);
13119 check_update_overutilized_status(task_rq(curr));
13120
13121 task_tick_core(rq, curr);
13122 }
13123
13124 /*
13125 * called on fork with the child task as argument from the parent's context
13126 * - child not yet on the tasklist
13127 * - preemption disabled
13128 */
task_fork_fair(struct task_struct * p)13129 static void task_fork_fair(struct task_struct *p)
13130 {
13131 set_task_max_allowed_capacity(p);
13132 }
13133
13134 /*
13135 * Priority of the task has changed. Check to see if we preempt
13136 * the current task.
13137 */
13138 static void
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)13139 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
13140 {
13141 if (!task_on_rq_queued(p))
13142 return;
13143
13144 if (rq->cfs.nr_queued == 1)
13145 return;
13146
13147 /*
13148 * Reschedule if we are currently running on this runqueue and
13149 * our priority decreased, or if we are not currently running on
13150 * this runqueue and our priority is higher than the current's
13151 */
13152 if (task_current_donor(rq, p)) {
13153 if (p->prio > oldprio)
13154 resched_curr(rq);
13155 } else
13156 wakeup_preempt(rq, p, 0);
13157 }
13158
13159 #ifdef CONFIG_FAIR_GROUP_SCHED
13160 /*
13161 * Propagate the changes of the sched_entity across the tg tree to make it
13162 * visible to the root
13163 */
propagate_entity_cfs_rq(struct sched_entity * se)13164 static void propagate_entity_cfs_rq(struct sched_entity *se)
13165 {
13166 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13167
13168 if (cfs_rq_throttled(cfs_rq))
13169 return;
13170
13171 if (!throttled_hierarchy(cfs_rq))
13172 list_add_leaf_cfs_rq(cfs_rq);
13173
13174 /* Start to propagate at parent */
13175 se = se->parent;
13176
13177 for_each_sched_entity(se) {
13178 cfs_rq = cfs_rq_of(se);
13179
13180 update_load_avg(cfs_rq, se, UPDATE_TG);
13181
13182 if (cfs_rq_throttled(cfs_rq))
13183 break;
13184
13185 if (!throttled_hierarchy(cfs_rq))
13186 list_add_leaf_cfs_rq(cfs_rq);
13187 }
13188 }
13189 #else
propagate_entity_cfs_rq(struct sched_entity * se)13190 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
13191 #endif
13192
detach_entity_cfs_rq(struct sched_entity * se)13193 static void detach_entity_cfs_rq(struct sched_entity *se)
13194 {
13195 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13196
13197 #ifdef CONFIG_SMP
13198 /*
13199 * In case the task sched_avg hasn't been attached:
13200 * - A forked task which hasn't been woken up by wake_up_new_task().
13201 * - A task which has been woken up by try_to_wake_up() but is
13202 * waiting for actually being woken up by sched_ttwu_pending().
13203 */
13204 if (!se->avg.last_update_time)
13205 return;
13206 #endif
13207
13208 /* Catch up with the cfs_rq and remove our load when we leave */
13209 update_load_avg(cfs_rq, se, 0);
13210 detach_entity_load_avg(cfs_rq, se);
13211 update_tg_load_avg(cfs_rq);
13212 propagate_entity_cfs_rq(se);
13213 }
13214
attach_entity_cfs_rq(struct sched_entity * se)13215 static void attach_entity_cfs_rq(struct sched_entity *se)
13216 {
13217 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13218
13219 /* Synchronize entity with its cfs_rq */
13220 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
13221 attach_entity_load_avg(cfs_rq, se);
13222 update_tg_load_avg(cfs_rq);
13223 propagate_entity_cfs_rq(se);
13224 }
13225
detach_task_cfs_rq(struct task_struct * p)13226 static void detach_task_cfs_rq(struct task_struct *p)
13227 {
13228 struct sched_entity *se = &p->se;
13229
13230 detach_entity_cfs_rq(se);
13231 }
13232
attach_task_cfs_rq(struct task_struct * p)13233 static void attach_task_cfs_rq(struct task_struct *p)
13234 {
13235 struct sched_entity *se = &p->se;
13236
13237 attach_entity_cfs_rq(se);
13238 }
13239
switched_from_fair(struct rq * rq,struct task_struct * p)13240 static void switched_from_fair(struct rq *rq, struct task_struct *p)
13241 {
13242 detach_task_cfs_rq(p);
13243 }
13244
switched_to_fair(struct rq * rq,struct task_struct * p)13245 static void switched_to_fair(struct rq *rq, struct task_struct *p)
13246 {
13247 WARN_ON_ONCE(p->se.sched_delayed);
13248
13249 attach_task_cfs_rq(p);
13250
13251 set_task_max_allowed_capacity(p);
13252
13253 if (task_on_rq_queued(p)) {
13254 /*
13255 * We were most likely switched from sched_rt, so
13256 * kick off the schedule if running, otherwise just see
13257 * if we can still preempt the current task.
13258 */
13259 if (task_current_donor(rq, p))
13260 resched_curr(rq);
13261 else
13262 wakeup_preempt(rq, p, 0);
13263 }
13264 }
13265
__set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)13266 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13267 {
13268 struct sched_entity *se = &p->se;
13269
13270 #ifdef CONFIG_SMP
13271 if (task_on_rq_queued(p)) {
13272 /*
13273 * Move the next running task to the front of the list, so our
13274 * cfs_tasks list becomes MRU one.
13275 */
13276 list_move(&se->group_node, &rq->cfs_tasks);
13277 }
13278 #endif
13279 if (!first)
13280 return;
13281
13282 WARN_ON_ONCE(se->sched_delayed);
13283
13284 if (hrtick_enabled_fair(rq))
13285 hrtick_start_fair(rq, p);
13286
13287 update_misfit_status(p, rq);
13288 sched_fair_update_stop_tick(rq, p);
13289 }
13290
13291 /*
13292 * Account for a task changing its policy or group.
13293 *
13294 * This routine is mostly called to set cfs_rq->curr field when a task
13295 * migrates between groups/classes.
13296 */
set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)13297 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13298 {
13299 struct sched_entity *se = &p->se;
13300
13301 for_each_sched_entity(se) {
13302 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13303
13304 set_next_entity(cfs_rq, se);
13305 /* ensure bandwidth has been allocated on our new cfs_rq */
13306 account_cfs_rq_runtime(cfs_rq, 0);
13307 }
13308
13309 __set_next_task_fair(rq, p, first);
13310 }
13311
init_cfs_rq(struct cfs_rq * cfs_rq)13312 void init_cfs_rq(struct cfs_rq *cfs_rq)
13313 {
13314 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
13315 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
13316 #ifdef CONFIG_SMP
13317 raw_spin_lock_init(&cfs_rq->removed.lock);
13318 #endif
13319 }
13320
13321 #ifdef CONFIG_FAIR_GROUP_SCHED
task_change_group_fair(struct task_struct * p)13322 static void task_change_group_fair(struct task_struct *p)
13323 {
13324 /*
13325 * We couldn't detach or attach a forked task which
13326 * hasn't been woken up by wake_up_new_task().
13327 */
13328 if (READ_ONCE(p->__state) == TASK_NEW)
13329 return;
13330
13331 detach_task_cfs_rq(p);
13332
13333 #ifdef CONFIG_SMP
13334 /* Tell se's cfs_rq has been changed -- migrated */
13335 p->se.avg.last_update_time = 0;
13336 #endif
13337 set_task_rq(p, task_cpu(p));
13338 attach_task_cfs_rq(p);
13339 }
13340
free_fair_sched_group(struct task_group * tg)13341 void free_fair_sched_group(struct task_group *tg)
13342 {
13343 int i;
13344
13345 for_each_possible_cpu(i) {
13346 if (tg->cfs_rq)
13347 kfree(tg->cfs_rq[i]);
13348 if (tg->se)
13349 kfree(tg->se[i]);
13350 }
13351
13352 kfree(tg->cfs_rq);
13353 kfree(tg->se);
13354 }
13355
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)13356 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
13357 {
13358 struct sched_entity *se;
13359 struct cfs_rq *cfs_rq;
13360 int i;
13361
13362 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
13363 if (!tg->cfs_rq)
13364 goto err;
13365 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
13366 if (!tg->se)
13367 goto err;
13368
13369 tg->shares = NICE_0_LOAD;
13370
13371 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
13372
13373 for_each_possible_cpu(i) {
13374 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
13375 GFP_KERNEL, cpu_to_node(i));
13376 if (!cfs_rq)
13377 goto err;
13378
13379 se = kzalloc_node(sizeof(struct sched_entity_stats),
13380 GFP_KERNEL, cpu_to_node(i));
13381 if (!se)
13382 goto err_free_rq;
13383
13384 init_cfs_rq(cfs_rq);
13385 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
13386 init_entity_runnable_average(se);
13387 }
13388
13389 return 1;
13390
13391 err_free_rq:
13392 kfree(cfs_rq);
13393 err:
13394 return 0;
13395 }
13396
online_fair_sched_group(struct task_group * tg)13397 void online_fair_sched_group(struct task_group *tg)
13398 {
13399 struct sched_entity *se;
13400 struct rq_flags rf;
13401 struct rq *rq;
13402 int i;
13403
13404 for_each_possible_cpu(i) {
13405 rq = cpu_rq(i);
13406 se = tg->se[i];
13407 rq_lock_irq(rq, &rf);
13408 update_rq_clock(rq);
13409 attach_entity_cfs_rq(se);
13410 sync_throttle(tg, i);
13411 rq_unlock_irq(rq, &rf);
13412 }
13413 }
13414
unregister_fair_sched_group(struct task_group * tg)13415 void unregister_fair_sched_group(struct task_group *tg)
13416 {
13417 int cpu;
13418
13419 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
13420
13421 for_each_possible_cpu(cpu) {
13422 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
13423 struct sched_entity *se = tg->se[cpu];
13424 struct rq *rq = cpu_rq(cpu);
13425
13426 if (se) {
13427 if (se->sched_delayed) {
13428 guard(rq_lock_irqsave)(rq);
13429 if (se->sched_delayed) {
13430 update_rq_clock(rq);
13431 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
13432 }
13433 list_del_leaf_cfs_rq(cfs_rq);
13434 }
13435 remove_entity_load_avg(se);
13436 }
13437
13438 /*
13439 * Only empty task groups can be destroyed; so we can speculatively
13440 * check on_list without danger of it being re-added.
13441 */
13442 if (cfs_rq->on_list) {
13443 guard(rq_lock_irqsave)(rq);
13444 list_del_leaf_cfs_rq(cfs_rq);
13445 }
13446 }
13447 }
13448
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)13449 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
13450 struct sched_entity *se, int cpu,
13451 struct sched_entity *parent)
13452 {
13453 struct rq *rq = cpu_rq(cpu);
13454
13455 cfs_rq->tg = tg;
13456 cfs_rq->rq = rq;
13457 init_cfs_rq_runtime(cfs_rq);
13458
13459 tg->cfs_rq[cpu] = cfs_rq;
13460 tg->se[cpu] = se;
13461
13462 /* se could be NULL for root_task_group */
13463 if (!se)
13464 return;
13465
13466 if (!parent) {
13467 se->cfs_rq = &rq->cfs;
13468 se->depth = 0;
13469 } else {
13470 se->cfs_rq = parent->my_q;
13471 se->depth = parent->depth + 1;
13472 }
13473
13474 se->my_q = cfs_rq;
13475 /* guarantee group entities always have weight */
13476 update_load_set(&se->load, NICE_0_LOAD);
13477 se->parent = parent;
13478 }
13479
13480 static DEFINE_MUTEX(shares_mutex);
13481
__sched_group_set_shares(struct task_group * tg,unsigned long shares)13482 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
13483 {
13484 int i;
13485
13486 lockdep_assert_held(&shares_mutex);
13487
13488 /*
13489 * We can't change the weight of the root cgroup.
13490 */
13491 if (!tg->se[0])
13492 return -EINVAL;
13493
13494 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
13495
13496 if (tg->shares == shares)
13497 return 0;
13498
13499 tg->shares = shares;
13500 for_each_possible_cpu(i) {
13501 struct rq *rq = cpu_rq(i);
13502 struct sched_entity *se = tg->se[i];
13503 struct rq_flags rf;
13504
13505 /* Propagate contribution to hierarchy */
13506 rq_lock_irqsave(rq, &rf);
13507 update_rq_clock(rq);
13508 for_each_sched_entity(se) {
13509 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
13510 update_cfs_group(se);
13511 }
13512 rq_unlock_irqrestore(rq, &rf);
13513 }
13514
13515 return 0;
13516 }
13517
sched_group_set_shares(struct task_group * tg,unsigned long shares)13518 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13519 {
13520 int ret;
13521
13522 mutex_lock(&shares_mutex);
13523 if (tg_is_idle(tg))
13524 ret = -EINVAL;
13525 else
13526 ret = __sched_group_set_shares(tg, shares);
13527 mutex_unlock(&shares_mutex);
13528
13529 return ret;
13530 }
13531
sched_group_set_idle(struct task_group * tg,long idle)13532 int sched_group_set_idle(struct task_group *tg, long idle)
13533 {
13534 int i;
13535
13536 if (tg == &root_task_group)
13537 return -EINVAL;
13538
13539 if (idle < 0 || idle > 1)
13540 return -EINVAL;
13541
13542 mutex_lock(&shares_mutex);
13543
13544 if (tg->idle == idle) {
13545 mutex_unlock(&shares_mutex);
13546 return 0;
13547 }
13548
13549 tg->idle = idle;
13550
13551 for_each_possible_cpu(i) {
13552 struct rq *rq = cpu_rq(i);
13553 struct sched_entity *se = tg->se[i];
13554 struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i];
13555 bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13556 long idle_task_delta;
13557 struct rq_flags rf;
13558
13559 rq_lock_irqsave(rq, &rf);
13560
13561 grp_cfs_rq->idle = idle;
13562 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13563 goto next_cpu;
13564
13565 idle_task_delta = grp_cfs_rq->h_nr_queued -
13566 grp_cfs_rq->h_nr_idle;
13567 if (!cfs_rq_is_idle(grp_cfs_rq))
13568 idle_task_delta *= -1;
13569
13570 for_each_sched_entity(se) {
13571 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13572
13573 if (!se->on_rq)
13574 break;
13575
13576 cfs_rq->h_nr_idle += idle_task_delta;
13577
13578 /* Already accounted at parent level and above. */
13579 if (cfs_rq_is_idle(cfs_rq))
13580 break;
13581 }
13582
13583 next_cpu:
13584 rq_unlock_irqrestore(rq, &rf);
13585 }
13586
13587 /* Idle groups have minimum weight. */
13588 if (tg_is_idle(tg))
13589 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13590 else
13591 __sched_group_set_shares(tg, NICE_0_LOAD);
13592
13593 mutex_unlock(&shares_mutex);
13594 return 0;
13595 }
13596
13597 #endif /* CONFIG_FAIR_GROUP_SCHED */
13598
13599
get_rr_interval_fair(struct rq * rq,struct task_struct * task)13600 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13601 {
13602 struct sched_entity *se = &task->se;
13603 unsigned int rr_interval = 0;
13604
13605 /*
13606 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13607 * idle runqueue:
13608 */
13609 if (rq->cfs.load.weight)
13610 rr_interval = NS_TO_JIFFIES(se->slice);
13611
13612 return rr_interval;
13613 }
13614
13615 /*
13616 * All the scheduling class methods:
13617 */
13618 DEFINE_SCHED_CLASS(fair) = {
13619
13620 .enqueue_task = enqueue_task_fair,
13621 .dequeue_task = dequeue_task_fair,
13622 .yield_task = yield_task_fair,
13623 .yield_to_task = yield_to_task_fair,
13624
13625 .wakeup_preempt = check_preempt_wakeup_fair,
13626
13627 .pick_task = pick_task_fair,
13628 .pick_next_task = __pick_next_task_fair,
13629 .put_prev_task = put_prev_task_fair,
13630 .set_next_task = set_next_task_fair,
13631
13632 #ifdef CONFIG_SMP
13633 .balance = balance_fair,
13634 .select_task_rq = select_task_rq_fair,
13635 .migrate_task_rq = migrate_task_rq_fair,
13636
13637 .rq_online = rq_online_fair,
13638 .rq_offline = rq_offline_fair,
13639
13640 .task_dead = task_dead_fair,
13641 .set_cpus_allowed = set_cpus_allowed_fair,
13642 #endif
13643
13644 .task_tick = task_tick_fair,
13645 .task_fork = task_fork_fair,
13646
13647 .reweight_task = reweight_task_fair,
13648 .prio_changed = prio_changed_fair,
13649 .switched_from = switched_from_fair,
13650 .switched_to = switched_to_fair,
13651
13652 .get_rr_interval = get_rr_interval_fair,
13653
13654 .update_curr = update_curr_fair,
13655
13656 #ifdef CONFIG_FAIR_GROUP_SCHED
13657 .task_change_group = task_change_group_fair,
13658 #endif
13659
13660 #ifdef CONFIG_SCHED_CORE
13661 .task_is_throttled = task_is_throttled_fair,
13662 #endif
13663
13664 #ifdef CONFIG_UCLAMP_TASK
13665 .uclamp_enabled = 1,
13666 #endif
13667 };
13668
print_cfs_stats(struct seq_file * m,int cpu)13669 void print_cfs_stats(struct seq_file *m, int cpu)
13670 {
13671 struct cfs_rq *cfs_rq, *pos;
13672
13673 rcu_read_lock();
13674 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13675 print_cfs_rq(m, cpu, cfs_rq);
13676 rcu_read_unlock();
13677 }
13678
13679 #ifdef CONFIG_NUMA_BALANCING
show_numa_stats(struct task_struct * p,struct seq_file * m)13680 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13681 {
13682 int node;
13683 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13684 struct numa_group *ng;
13685
13686 rcu_read_lock();
13687 ng = rcu_dereference(p->numa_group);
13688 for_each_online_node(node) {
13689 if (p->numa_faults) {
13690 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13691 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13692 }
13693 if (ng) {
13694 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13695 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13696 }
13697 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13698 }
13699 rcu_read_unlock();
13700 }
13701 #endif /* CONFIG_NUMA_BALANCING */
13702
init_sched_fair_class(void)13703 __init void init_sched_fair_class(void)
13704 {
13705 #ifdef CONFIG_SMP
13706 int i;
13707
13708 for_each_possible_cpu(i) {
13709 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13710 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i));
13711 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13712 GFP_KERNEL, cpu_to_node(i));
13713
13714 #ifdef CONFIG_CFS_BANDWIDTH
13715 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13716 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13717 #endif
13718 }
13719
13720 open_softirq(SCHED_SOFTIRQ, sched_balance_softirq);
13721
13722 #ifdef CONFIG_NO_HZ_COMMON
13723 nohz.next_balance = jiffies;
13724 nohz.next_blocked = jiffies;
13725 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13726 #endif
13727 #endif /* SMP */
13728
13729 }
13730