xref: /linux/kernel/sched/deadline.c (revision fe3ad7a58b581859a1a7c237b670f8bcbf5b253c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Deadline Scheduling Class (SCHED_DEADLINE)
4  *
5  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6  *
7  * Tasks that periodically executes their instances for less than their
8  * runtime won't miss any of their deadlines.
9  * Tasks that are not periodic or sporadic or that tries to execute more
10  * than their reserved bandwidth will be slowed down (and may potentially
11  * miss some of their deadlines), and won't affect any other task.
12  *
13  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14  *                    Juri Lelli <juri.lelli@gmail.com>,
15  *                    Michael Trimarchi <michael@amarulasolutions.com>,
16  *                    Fabio Checconi <fchecconi@gmail.com>
17  */
18 
19 #include <linux/cpuset.h>
20 #include <linux/sched/clock.h>
21 #include <uapi/linux/sched/types.h>
22 #include "sched.h"
23 #include "pelt.h"
24 
25 /*
26  * Default limits for DL period; on the top end we guard against small util
27  * tasks still getting ridiculously long effective runtimes, on the bottom end we
28  * guard against timer DoS.
29  */
30 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
31 static unsigned int sysctl_sched_dl_period_min = 100;     /* 100 us */
32 #ifdef CONFIG_SYSCTL
33 static const struct ctl_table sched_dl_sysctls[] = {
34 	{
35 		.procname       = "sched_deadline_period_max_us",
36 		.data           = &sysctl_sched_dl_period_max,
37 		.maxlen         = sizeof(unsigned int),
38 		.mode           = 0644,
39 		.proc_handler   = proc_douintvec_minmax,
40 		.extra1         = (void *)&sysctl_sched_dl_period_min,
41 	},
42 	{
43 		.procname       = "sched_deadline_period_min_us",
44 		.data           = &sysctl_sched_dl_period_min,
45 		.maxlen         = sizeof(unsigned int),
46 		.mode           = 0644,
47 		.proc_handler   = proc_douintvec_minmax,
48 		.extra2         = (void *)&sysctl_sched_dl_period_max,
49 	},
50 };
51 
sched_dl_sysctl_init(void)52 static int __init sched_dl_sysctl_init(void)
53 {
54 	register_sysctl_init("kernel", sched_dl_sysctls);
55 	return 0;
56 }
57 late_initcall(sched_dl_sysctl_init);
58 #endif /* CONFIG_SYSCTL */
59 
dl_server(struct sched_dl_entity * dl_se)60 static bool dl_server(struct sched_dl_entity *dl_se)
61 {
62 	return dl_se->dl_server;
63 }
64 
dl_task_of(struct sched_dl_entity * dl_se)65 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
66 {
67 	BUG_ON(dl_server(dl_se));
68 	return container_of(dl_se, struct task_struct, dl);
69 }
70 
rq_of_dl_rq(struct dl_rq * dl_rq)71 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
72 {
73 	return container_of(dl_rq, struct rq, dl);
74 }
75 
rq_of_dl_se(struct sched_dl_entity * dl_se)76 static inline struct rq *rq_of_dl_se(struct sched_dl_entity *dl_se)
77 {
78 	struct rq *rq = dl_se->rq;
79 
80 	if (!dl_server(dl_se))
81 		rq = task_rq(dl_task_of(dl_se));
82 
83 	return rq;
84 }
85 
dl_rq_of_se(struct sched_dl_entity * dl_se)86 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
87 {
88 	return &rq_of_dl_se(dl_se)->dl;
89 }
90 
on_dl_rq(struct sched_dl_entity * dl_se)91 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
92 {
93 	return !RB_EMPTY_NODE(&dl_se->rb_node);
94 }
95 
96 #ifdef CONFIG_RT_MUTEXES
pi_of(struct sched_dl_entity * dl_se)97 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
98 {
99 	return dl_se->pi_se;
100 }
101 
is_dl_boosted(struct sched_dl_entity * dl_se)102 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
103 {
104 	return pi_of(dl_se) != dl_se;
105 }
106 #else /* !CONFIG_RT_MUTEXES: */
pi_of(struct sched_dl_entity * dl_se)107 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
108 {
109 	return dl_se;
110 }
111 
is_dl_boosted(struct sched_dl_entity * dl_se)112 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
113 {
114 	return false;
115 }
116 #endif /* !CONFIG_RT_MUTEXES */
117 
dl_bw_of(int i)118 static inline struct dl_bw *dl_bw_of(int i)
119 {
120 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
121 			 "sched RCU must be held");
122 	return &cpu_rq(i)->rd->dl_bw;
123 }
124 
dl_bw_cpus(int i)125 static inline int dl_bw_cpus(int i)
126 {
127 	struct root_domain *rd = cpu_rq(i)->rd;
128 	int cpus;
129 
130 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
131 			 "sched RCU must be held");
132 
133 	if (cpumask_subset(rd->span, cpu_active_mask))
134 		return cpumask_weight(rd->span);
135 
136 	cpus = 0;
137 
138 	for_each_cpu_and(i, rd->span, cpu_active_mask)
139 		cpus++;
140 
141 	return cpus;
142 }
143 
__dl_bw_capacity(const struct cpumask * mask)144 static inline unsigned long __dl_bw_capacity(const struct cpumask *mask)
145 {
146 	unsigned long cap = 0;
147 	int i;
148 
149 	for_each_cpu_and(i, mask, cpu_active_mask)
150 		cap += arch_scale_cpu_capacity(i);
151 
152 	return cap;
153 }
154 
155 /*
156  * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
157  * of the CPU the task is running on rather rd's \Sum CPU capacity.
158  */
dl_bw_capacity(int i)159 static inline unsigned long dl_bw_capacity(int i)
160 {
161 	if (!sched_asym_cpucap_active() &&
162 	    arch_scale_cpu_capacity(i) == SCHED_CAPACITY_SCALE) {
163 		return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
164 	} else {
165 		RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
166 				 "sched RCU must be held");
167 
168 		return __dl_bw_capacity(cpu_rq(i)->rd->span);
169 	}
170 }
171 
dl_bw_visited(int cpu,u64 cookie)172 bool dl_bw_visited(int cpu, u64 cookie)
173 {
174 	struct root_domain *rd = cpu_rq(cpu)->rd;
175 
176 	if (rd->visit_cookie == cookie)
177 		return true;
178 
179 	rd->visit_cookie = cookie;
180 	return false;
181 }
182 
183 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)184 void __dl_update(struct dl_bw *dl_b, s64 bw)
185 {
186 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
187 	int i;
188 
189 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
190 			 "sched RCU must be held");
191 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
192 		struct rq *rq = cpu_rq(i);
193 
194 		rq->dl.extra_bw += bw;
195 	}
196 }
197 
198 static inline
__dl_sub(struct dl_bw * dl_b,u64 tsk_bw,int cpus)199 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
200 {
201 	dl_b->total_bw -= tsk_bw;
202 	__dl_update(dl_b, (s32)tsk_bw / cpus);
203 }
204 
205 static inline
__dl_add(struct dl_bw * dl_b,u64 tsk_bw,int cpus)206 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
207 {
208 	dl_b->total_bw += tsk_bw;
209 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
210 }
211 
212 static inline bool
__dl_overflow(struct dl_bw * dl_b,unsigned long cap,u64 old_bw,u64 new_bw)213 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
214 {
215 	return dl_b->bw != -1 &&
216 	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
217 }
218 
219 static inline
__add_running_bw(u64 dl_bw,struct dl_rq * dl_rq)220 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
221 {
222 	u64 old = dl_rq->running_bw;
223 
224 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
225 	dl_rq->running_bw += dl_bw;
226 	WARN_ON_ONCE(dl_rq->running_bw < old); /* overflow */
227 	WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw);
228 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
229 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
230 }
231 
232 static inline
__sub_running_bw(u64 dl_bw,struct dl_rq * dl_rq)233 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
234 {
235 	u64 old = dl_rq->running_bw;
236 
237 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
238 	dl_rq->running_bw -= dl_bw;
239 	WARN_ON_ONCE(dl_rq->running_bw > old); /* underflow */
240 	if (dl_rq->running_bw > old)
241 		dl_rq->running_bw = 0;
242 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
243 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
244 }
245 
246 static inline
__add_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)247 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
248 {
249 	u64 old = dl_rq->this_bw;
250 
251 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
252 	dl_rq->this_bw += dl_bw;
253 	WARN_ON_ONCE(dl_rq->this_bw < old); /* overflow */
254 }
255 
256 static inline
__sub_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)257 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
258 {
259 	u64 old = dl_rq->this_bw;
260 
261 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
262 	dl_rq->this_bw -= dl_bw;
263 	WARN_ON_ONCE(dl_rq->this_bw > old); /* underflow */
264 	if (dl_rq->this_bw > old)
265 		dl_rq->this_bw = 0;
266 	WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw);
267 }
268 
269 static inline
add_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)270 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
271 {
272 	if (!dl_entity_is_special(dl_se))
273 		__add_rq_bw(dl_se->dl_bw, dl_rq);
274 }
275 
276 static inline
sub_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)277 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
278 {
279 	if (!dl_entity_is_special(dl_se))
280 		__sub_rq_bw(dl_se->dl_bw, dl_rq);
281 }
282 
283 static inline
add_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)284 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
285 {
286 	if (!dl_entity_is_special(dl_se))
287 		__add_running_bw(dl_se->dl_bw, dl_rq);
288 }
289 
290 static inline
sub_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)291 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
292 {
293 	if (!dl_entity_is_special(dl_se))
294 		__sub_running_bw(dl_se->dl_bw, dl_rq);
295 }
296 
dl_rq_change_utilization(struct rq * rq,struct sched_dl_entity * dl_se,u64 new_bw)297 static void dl_rq_change_utilization(struct rq *rq, struct sched_dl_entity *dl_se, u64 new_bw)
298 {
299 	if (dl_se->dl_non_contending) {
300 		sub_running_bw(dl_se, &rq->dl);
301 		dl_se->dl_non_contending = 0;
302 
303 		/*
304 		 * If the timer handler is currently running and the
305 		 * timer cannot be canceled, inactive_task_timer()
306 		 * will see that dl_not_contending is not set, and
307 		 * will not touch the rq's active utilization,
308 		 * so we are still safe.
309 		 */
310 		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) {
311 			if (!dl_server(dl_se))
312 				put_task_struct(dl_task_of(dl_se));
313 		}
314 	}
315 	__sub_rq_bw(dl_se->dl_bw, &rq->dl);
316 	__add_rq_bw(new_bw, &rq->dl);
317 }
318 
319 static __always_inline
cancel_dl_timer(struct sched_dl_entity * dl_se,struct hrtimer * timer)320 void cancel_dl_timer(struct sched_dl_entity *dl_se, struct hrtimer *timer)
321 {
322 	/*
323 	 * If the timer callback was running (hrtimer_try_to_cancel == -1),
324 	 * it will eventually call put_task_struct().
325 	 */
326 	if (hrtimer_try_to_cancel(timer) == 1 && !dl_server(dl_se))
327 		put_task_struct(dl_task_of(dl_se));
328 }
329 
330 static __always_inline
cancel_replenish_timer(struct sched_dl_entity * dl_se)331 void cancel_replenish_timer(struct sched_dl_entity *dl_se)
332 {
333 	cancel_dl_timer(dl_se, &dl_se->dl_timer);
334 }
335 
336 static __always_inline
cancel_inactive_timer(struct sched_dl_entity * dl_se)337 void cancel_inactive_timer(struct sched_dl_entity *dl_se)
338 {
339 	cancel_dl_timer(dl_se, &dl_se->inactive_timer);
340 }
341 
dl_change_utilization(struct task_struct * p,u64 new_bw)342 static void dl_change_utilization(struct task_struct *p, u64 new_bw)
343 {
344 	WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV);
345 
346 	if (task_on_rq_queued(p))
347 		return;
348 
349 	dl_rq_change_utilization(task_rq(p), &p->dl, new_bw);
350 }
351 
352 static void __dl_clear_params(struct sched_dl_entity *dl_se);
353 
354 /*
355  * The utilization of a task cannot be immediately removed from
356  * the rq active utilization (running_bw) when the task blocks.
357  * Instead, we have to wait for the so called "0-lag time".
358  *
359  * If a task blocks before the "0-lag time", a timer (the inactive
360  * timer) is armed, and running_bw is decreased when the timer
361  * fires.
362  *
363  * If the task wakes up again before the inactive timer fires,
364  * the timer is canceled, whereas if the task wakes up after the
365  * inactive timer fired (and running_bw has been decreased) the
366  * task's utilization has to be added to running_bw again.
367  * A flag in the deadline scheduling entity (dl_non_contending)
368  * is used to avoid race conditions between the inactive timer handler
369  * and task wakeups.
370  *
371  * The following diagram shows how running_bw is updated. A task is
372  * "ACTIVE" when its utilization contributes to running_bw; an
373  * "ACTIVE contending" task is in the TASK_RUNNING state, while an
374  * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
375  * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
376  * time already passed, which does not contribute to running_bw anymore.
377  *                              +------------------+
378  *             wakeup           |    ACTIVE        |
379  *          +------------------>+   contending     |
380  *          | add_running_bw    |                  |
381  *          |                   +----+------+------+
382  *          |                        |      ^
383  *          |                dequeue |      |
384  * +--------+-------+                |      |
385  * |                |   t >= 0-lag   |      | wakeup
386  * |    INACTIVE    |<---------------+      |
387  * |                | sub_running_bw |      |
388  * +--------+-------+                |      |
389  *          ^                        |      |
390  *          |              t < 0-lag |      |
391  *          |                        |      |
392  *          |                        V      |
393  *          |                   +----+------+------+
394  *          | sub_running_bw    |    ACTIVE        |
395  *          +-------------------+                  |
396  *            inactive timer    |  non contending  |
397  *            fired             +------------------+
398  *
399  * The task_non_contending() function is invoked when a task
400  * blocks, and checks if the 0-lag time already passed or
401  * not (in the first case, it directly updates running_bw;
402  * in the second case, it arms the inactive timer).
403  *
404  * The task_contending() function is invoked when a task wakes
405  * up, and checks if the task is still in the "ACTIVE non contending"
406  * state or not (in the second case, it updates running_bw).
407  */
task_non_contending(struct sched_dl_entity * dl_se)408 static void task_non_contending(struct sched_dl_entity *dl_se)
409 {
410 	struct hrtimer *timer = &dl_se->inactive_timer;
411 	struct rq *rq = rq_of_dl_se(dl_se);
412 	struct dl_rq *dl_rq = &rq->dl;
413 	s64 zerolag_time;
414 
415 	/*
416 	 * If this is a non-deadline task that has been boosted,
417 	 * do nothing
418 	 */
419 	if (dl_se->dl_runtime == 0)
420 		return;
421 
422 	if (dl_entity_is_special(dl_se))
423 		return;
424 
425 	WARN_ON(dl_se->dl_non_contending);
426 
427 	zerolag_time = dl_se->deadline -
428 		 div64_long((dl_se->runtime * dl_se->dl_period),
429 			dl_se->dl_runtime);
430 
431 	/*
432 	 * Using relative times instead of the absolute "0-lag time"
433 	 * allows to simplify the code
434 	 */
435 	zerolag_time -= rq_clock(rq);
436 
437 	/*
438 	 * If the "0-lag time" already passed, decrease the active
439 	 * utilization now, instead of starting a timer
440 	 */
441 	if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
442 		if (dl_server(dl_se)) {
443 			sub_running_bw(dl_se, dl_rq);
444 		} else {
445 			struct task_struct *p = dl_task_of(dl_se);
446 
447 			if (dl_task(p))
448 				sub_running_bw(dl_se, dl_rq);
449 
450 			if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
451 				struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
452 
453 				if (READ_ONCE(p->__state) == TASK_DEAD)
454 					sub_rq_bw(dl_se, &rq->dl);
455 				raw_spin_lock(&dl_b->lock);
456 				__dl_sub(dl_b, dl_se->dl_bw, dl_bw_cpus(task_cpu(p)));
457 				raw_spin_unlock(&dl_b->lock);
458 				__dl_clear_params(dl_se);
459 			}
460 		}
461 
462 		return;
463 	}
464 
465 	dl_se->dl_non_contending = 1;
466 	if (!dl_server(dl_se))
467 		get_task_struct(dl_task_of(dl_se));
468 
469 	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
470 }
471 
task_contending(struct sched_dl_entity * dl_se,int flags)472 static void task_contending(struct sched_dl_entity *dl_se, int flags)
473 {
474 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
475 
476 	/*
477 	 * If this is a non-deadline task that has been boosted,
478 	 * do nothing
479 	 */
480 	if (dl_se->dl_runtime == 0)
481 		return;
482 
483 	if (flags & ENQUEUE_MIGRATED)
484 		add_rq_bw(dl_se, dl_rq);
485 
486 	if (dl_se->dl_non_contending) {
487 		dl_se->dl_non_contending = 0;
488 		/*
489 		 * If the timer handler is currently running and the
490 		 * timer cannot be canceled, inactive_task_timer()
491 		 * will see that dl_not_contending is not set, and
492 		 * will not touch the rq's active utilization,
493 		 * so we are still safe.
494 		 */
495 		cancel_inactive_timer(dl_se);
496 	} else {
497 		/*
498 		 * Since "dl_non_contending" is not set, the
499 		 * task's utilization has already been removed from
500 		 * active utilization (either when the task blocked,
501 		 * when the "inactive timer" fired).
502 		 * So, add it back.
503 		 */
504 		add_running_bw(dl_se, dl_rq);
505 	}
506 }
507 
is_leftmost(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)508 static inline int is_leftmost(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
509 {
510 	return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
511 }
512 
513 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
514 
init_dl_bw(struct dl_bw * dl_b)515 void init_dl_bw(struct dl_bw *dl_b)
516 {
517 	raw_spin_lock_init(&dl_b->lock);
518 	if (global_rt_runtime() == RUNTIME_INF)
519 		dl_b->bw = -1;
520 	else
521 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
522 	dl_b->total_bw = 0;
523 }
524 
init_dl_rq(struct dl_rq * dl_rq)525 void init_dl_rq(struct dl_rq *dl_rq)
526 {
527 	dl_rq->root = RB_ROOT_CACHED;
528 
529 	/* zero means no -deadline tasks */
530 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
531 
532 	dl_rq->overloaded = 0;
533 	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
534 
535 	dl_rq->running_bw = 0;
536 	dl_rq->this_bw = 0;
537 	init_dl_rq_bw_ratio(dl_rq);
538 }
539 
dl_overloaded(struct rq * rq)540 static inline int dl_overloaded(struct rq *rq)
541 {
542 	return atomic_read(&rq->rd->dlo_count);
543 }
544 
dl_set_overload(struct rq * rq)545 static inline void dl_set_overload(struct rq *rq)
546 {
547 	if (!rq->online)
548 		return;
549 
550 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
551 	/*
552 	 * Must be visible before the overload count is
553 	 * set (as in sched_rt.c).
554 	 *
555 	 * Matched by the barrier in pull_dl_task().
556 	 */
557 	smp_wmb();
558 	atomic_inc(&rq->rd->dlo_count);
559 }
560 
dl_clear_overload(struct rq * rq)561 static inline void dl_clear_overload(struct rq *rq)
562 {
563 	if (!rq->online)
564 		return;
565 
566 	atomic_dec(&rq->rd->dlo_count);
567 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
568 }
569 
570 #define __node_2_pdl(node) \
571 	rb_entry((node), struct task_struct, pushable_dl_tasks)
572 
__pushable_less(struct rb_node * a,const struct rb_node * b)573 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
574 {
575 	return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
576 }
577 
has_pushable_dl_tasks(struct rq * rq)578 static inline int has_pushable_dl_tasks(struct rq *rq)
579 {
580 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
581 }
582 
583 /*
584  * The list of pushable -deadline task is not a plist, like in
585  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
586  */
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)587 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
588 {
589 	struct rb_node *leftmost;
590 
591 	WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
592 
593 	leftmost = rb_add_cached(&p->pushable_dl_tasks,
594 				 &rq->dl.pushable_dl_tasks_root,
595 				 __pushable_less);
596 	if (leftmost)
597 		rq->dl.earliest_dl.next = p->dl.deadline;
598 
599 	if (!rq->dl.overloaded) {
600 		dl_set_overload(rq);
601 		rq->dl.overloaded = 1;
602 	}
603 }
604 
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)605 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
606 {
607 	struct dl_rq *dl_rq = &rq->dl;
608 	struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
609 	struct rb_node *leftmost;
610 
611 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
612 		return;
613 
614 	leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
615 	if (leftmost)
616 		dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
617 
618 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
619 
620 	if (!has_pushable_dl_tasks(rq) && rq->dl.overloaded) {
621 		dl_clear_overload(rq);
622 		rq->dl.overloaded = 0;
623 	}
624 }
625 
626 static int push_dl_task(struct rq *rq);
627 
need_pull_dl_task(struct rq * rq,struct task_struct * prev)628 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
629 {
630 	return rq->online && dl_task(prev);
631 }
632 
633 static DEFINE_PER_CPU(struct balance_callback, dl_push_head);
634 static DEFINE_PER_CPU(struct balance_callback, dl_pull_head);
635 
636 static void push_dl_tasks(struct rq *);
637 static void pull_dl_task(struct rq *);
638 
deadline_queue_push_tasks(struct rq * rq)639 static inline void deadline_queue_push_tasks(struct rq *rq)
640 {
641 	if (!has_pushable_dl_tasks(rq))
642 		return;
643 
644 	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
645 }
646 
deadline_queue_pull_task(struct rq * rq)647 static inline void deadline_queue_pull_task(struct rq *rq)
648 {
649 	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
650 }
651 
652 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
653 
dl_task_offline_migration(struct rq * rq,struct task_struct * p)654 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
655 {
656 	struct rq *later_rq = NULL;
657 	struct dl_bw *dl_b;
658 
659 	later_rq = find_lock_later_rq(p, rq);
660 	if (!later_rq) {
661 		int cpu;
662 
663 		/*
664 		 * If we cannot preempt any rq, fall back to pick any
665 		 * online CPU:
666 		 */
667 		cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
668 		if (cpu >= nr_cpu_ids) {
669 			/*
670 			 * Failed to find any suitable CPU.
671 			 * The task will never come back!
672 			 */
673 			WARN_ON_ONCE(dl_bandwidth_enabled());
674 
675 			/*
676 			 * If admission control is disabled we
677 			 * try a little harder to let the task
678 			 * run.
679 			 */
680 			cpu = cpumask_any(cpu_active_mask);
681 		}
682 		later_rq = cpu_rq(cpu);
683 		double_lock_balance(rq, later_rq);
684 	}
685 
686 	if (p->dl.dl_non_contending || p->dl.dl_throttled) {
687 		/*
688 		 * Inactive timer is armed (or callback is running, but
689 		 * waiting for us to release rq locks). In any case, when it
690 		 * will fire (or continue), it will see running_bw of this
691 		 * task migrated to later_rq (and correctly handle it).
692 		 */
693 		sub_running_bw(&p->dl, &rq->dl);
694 		sub_rq_bw(&p->dl, &rq->dl);
695 
696 		add_rq_bw(&p->dl, &later_rq->dl);
697 		add_running_bw(&p->dl, &later_rq->dl);
698 	} else {
699 		sub_rq_bw(&p->dl, &rq->dl);
700 		add_rq_bw(&p->dl, &later_rq->dl);
701 	}
702 
703 	/*
704 	 * And we finally need to fix up root_domain(s) bandwidth accounting,
705 	 * since p is still hanging out in the old (now moved to default) root
706 	 * domain.
707 	 */
708 	dl_b = &rq->rd->dl_bw;
709 	raw_spin_lock(&dl_b->lock);
710 	__dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
711 	raw_spin_unlock(&dl_b->lock);
712 
713 	dl_b = &later_rq->rd->dl_bw;
714 	raw_spin_lock(&dl_b->lock);
715 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
716 	raw_spin_unlock(&dl_b->lock);
717 
718 	set_task_cpu(p, later_rq->cpu);
719 	double_unlock_balance(later_rq, rq);
720 
721 	return later_rq;
722 }
723 
724 static void
725 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags);
726 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
727 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags);
728 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags);
729 
replenish_dl_new_period(struct sched_dl_entity * dl_se,struct rq * rq)730 static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se,
731 					    struct rq *rq)
732 {
733 	/* for non-boosted task, pi_of(dl_se) == dl_se */
734 	dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
735 	dl_se->runtime = pi_of(dl_se)->dl_runtime;
736 
737 	/*
738 	 * If it is a deferred reservation, and the server
739 	 * is not handling an starvation case, defer it.
740 	 */
741 	if (dl_se->dl_defer && !dl_se->dl_defer_running) {
742 		dl_se->dl_throttled = 1;
743 		dl_se->dl_defer_armed = 1;
744 	}
745 }
746 
747 /*
748  * We are being explicitly informed that a new instance is starting,
749  * and this means that:
750  *  - the absolute deadline of the entity has to be placed at
751  *    current time + relative deadline;
752  *  - the runtime of the entity has to be set to the maximum value.
753  *
754  * The capability of specifying such event is useful whenever a -deadline
755  * entity wants to (try to!) synchronize its behaviour with the scheduler's
756  * one, and to (try to!) reconcile itself with its own scheduling
757  * parameters.
758  */
setup_new_dl_entity(struct sched_dl_entity * dl_se)759 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
760 {
761 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
762 	struct rq *rq = rq_of_dl_rq(dl_rq);
763 
764 	update_rq_clock(rq);
765 
766 	WARN_ON(is_dl_boosted(dl_se));
767 	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
768 
769 	/*
770 	 * We are racing with the deadline timer. So, do nothing because
771 	 * the deadline timer handler will take care of properly recharging
772 	 * the runtime and postponing the deadline
773 	 */
774 	if (dl_se->dl_throttled)
775 		return;
776 
777 	/*
778 	 * We use the regular wall clock time to set deadlines in the
779 	 * future; in fact, we must consider execution overheads (time
780 	 * spent on hardirq context, etc.).
781 	 */
782 	replenish_dl_new_period(dl_se, rq);
783 }
784 
785 static int start_dl_timer(struct sched_dl_entity *dl_se);
786 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t);
787 
788 /*
789  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
790  * possibility of a entity lasting more than what it declared, and thus
791  * exhausting its runtime.
792  *
793  * Here we are interested in making runtime overrun possible, but we do
794  * not want a entity which is misbehaving to affect the scheduling of all
795  * other entities.
796  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
797  * is used, in order to confine each entity within its own bandwidth.
798  *
799  * This function deals exactly with that, and ensures that when the runtime
800  * of a entity is replenished, its deadline is also postponed. That ensures
801  * the overrunning entity can't interfere with other entity in the system and
802  * can't make them miss their deadlines. Reasons why this kind of overruns
803  * could happen are, typically, a entity voluntarily trying to overcome its
804  * runtime, or it just underestimated it during sched_setattr().
805  */
replenish_dl_entity(struct sched_dl_entity * dl_se)806 static void replenish_dl_entity(struct sched_dl_entity *dl_se)
807 {
808 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
809 	struct rq *rq = rq_of_dl_rq(dl_rq);
810 
811 	WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0);
812 
813 	/*
814 	 * This could be the case for a !-dl task that is boosted.
815 	 * Just go with full inherited parameters.
816 	 *
817 	 * Or, it could be the case of a deferred reservation that
818 	 * was not able to consume its runtime in background and
819 	 * reached this point with current u > U.
820 	 *
821 	 * In both cases, set a new period.
822 	 */
823 	if (dl_se->dl_deadline == 0 ||
824 	    (dl_se->dl_defer_armed && dl_entity_overflow(dl_se, rq_clock(rq)))) {
825 		dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
826 		dl_se->runtime = pi_of(dl_se)->dl_runtime;
827 	}
828 
829 	if (dl_se->dl_yielded && dl_se->runtime > 0)
830 		dl_se->runtime = 0;
831 
832 	/*
833 	 * We keep moving the deadline away until we get some
834 	 * available runtime for the entity. This ensures correct
835 	 * handling of situations where the runtime overrun is
836 	 * arbitrary large.
837 	 */
838 	while (dl_se->runtime <= 0) {
839 		dl_se->deadline += pi_of(dl_se)->dl_period;
840 		dl_se->runtime += pi_of(dl_se)->dl_runtime;
841 	}
842 
843 	/*
844 	 * At this point, the deadline really should be "in
845 	 * the future" with respect to rq->clock. If it's
846 	 * not, we are, for some reason, lagging too much!
847 	 * Anyway, after having warn userspace abut that,
848 	 * we still try to keep the things running by
849 	 * resetting the deadline and the budget of the
850 	 * entity.
851 	 */
852 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
853 		printk_deferred_once("sched: DL replenish lagged too much\n");
854 		replenish_dl_new_period(dl_se, rq);
855 	}
856 
857 	if (dl_se->dl_yielded)
858 		dl_se->dl_yielded = 0;
859 	if (dl_se->dl_throttled)
860 		dl_se->dl_throttled = 0;
861 
862 	/*
863 	 * If this is the replenishment of a deferred reservation,
864 	 * clear the flag and return.
865 	 */
866 	if (dl_se->dl_defer_armed) {
867 		dl_se->dl_defer_armed = 0;
868 		return;
869 	}
870 
871 	/*
872 	 * A this point, if the deferred server is not armed, and the deadline
873 	 * is in the future, if it is not running already, throttle the server
874 	 * and arm the defer timer.
875 	 */
876 	if (dl_se->dl_defer && !dl_se->dl_defer_running &&
877 	    dl_time_before(rq_clock(dl_se->rq), dl_se->deadline - dl_se->runtime)) {
878 		if (!is_dl_boosted(dl_se) && dl_se->server_has_tasks(dl_se)) {
879 
880 			/*
881 			 * Set dl_se->dl_defer_armed and dl_throttled variables to
882 			 * inform the start_dl_timer() that this is a deferred
883 			 * activation.
884 			 */
885 			dl_se->dl_defer_armed = 1;
886 			dl_se->dl_throttled = 1;
887 			if (!start_dl_timer(dl_se)) {
888 				/*
889 				 * If for whatever reason (delays), a previous timer was
890 				 * queued but not serviced, cancel it and clean the
891 				 * deferrable server variables intended for start_dl_timer().
892 				 */
893 				hrtimer_try_to_cancel(&dl_se->dl_timer);
894 				dl_se->dl_defer_armed = 0;
895 				dl_se->dl_throttled = 0;
896 			}
897 		}
898 	}
899 }
900 
901 /*
902  * Here we check if --at time t-- an entity (which is probably being
903  * [re]activated or, in general, enqueued) can use its remaining runtime
904  * and its current deadline _without_ exceeding the bandwidth it is
905  * assigned (function returns true if it can't). We are in fact applying
906  * one of the CBS rules: when a task wakes up, if the residual runtime
907  * over residual deadline fits within the allocated bandwidth, then we
908  * can keep the current (absolute) deadline and residual budget without
909  * disrupting the schedulability of the system. Otherwise, we should
910  * refill the runtime and set the deadline a period in the future,
911  * because keeping the current (absolute) deadline of the task would
912  * result in breaking guarantees promised to other tasks (refer to
913  * Documentation/scheduler/sched-deadline.rst for more information).
914  *
915  * This function returns true if:
916  *
917  *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
918  *
919  * IOW we can't recycle current parameters.
920  *
921  * Notice that the bandwidth check is done against the deadline. For
922  * task with deadline equal to period this is the same of using
923  * dl_period instead of dl_deadline in the equation above.
924  */
dl_entity_overflow(struct sched_dl_entity * dl_se,u64 t)925 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
926 {
927 	u64 left, right;
928 
929 	/*
930 	 * left and right are the two sides of the equation above,
931 	 * after a bit of shuffling to use multiplications instead
932 	 * of divisions.
933 	 *
934 	 * Note that none of the time values involved in the two
935 	 * multiplications are absolute: dl_deadline and dl_runtime
936 	 * are the relative deadline and the maximum runtime of each
937 	 * instance, runtime is the runtime left for the last instance
938 	 * and (deadline - t), since t is rq->clock, is the time left
939 	 * to the (absolute) deadline. Even if overflowing the u64 type
940 	 * is very unlikely to occur in both cases, here we scale down
941 	 * as we want to avoid that risk at all. Scaling down by 10
942 	 * means that we reduce granularity to 1us. We are fine with it,
943 	 * since this is only a true/false check and, anyway, thinking
944 	 * of anything below microseconds resolution is actually fiction
945 	 * (but still we want to give the user that illusion >;).
946 	 */
947 	left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
948 	right = ((dl_se->deadline - t) >> DL_SCALE) *
949 		(pi_of(dl_se)->dl_runtime >> DL_SCALE);
950 
951 	return dl_time_before(right, left);
952 }
953 
954 /*
955  * Revised wakeup rule [1]: For self-suspending tasks, rather then
956  * re-initializing task's runtime and deadline, the revised wakeup
957  * rule adjusts the task's runtime to avoid the task to overrun its
958  * density.
959  *
960  * Reasoning: a task may overrun the density if:
961  *    runtime / (deadline - t) > dl_runtime / dl_deadline
962  *
963  * Therefore, runtime can be adjusted to:
964  *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
965  *
966  * In such way that runtime will be equal to the maximum density
967  * the task can use without breaking any rule.
968  *
969  * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
970  * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
971  */
972 static void
update_dl_revised_wakeup(struct sched_dl_entity * dl_se,struct rq * rq)973 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
974 {
975 	u64 laxity = dl_se->deadline - rq_clock(rq);
976 
977 	/*
978 	 * If the task has deadline < period, and the deadline is in the past,
979 	 * it should already be throttled before this check.
980 	 *
981 	 * See update_dl_entity() comments for further details.
982 	 */
983 	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
984 
985 	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
986 }
987 
988 /*
989  * Regarding the deadline, a task with implicit deadline has a relative
990  * deadline == relative period. A task with constrained deadline has a
991  * relative deadline <= relative period.
992  *
993  * We support constrained deadline tasks. However, there are some restrictions
994  * applied only for tasks which do not have an implicit deadline. See
995  * update_dl_entity() to know more about such restrictions.
996  *
997  * The dl_is_implicit() returns true if the task has an implicit deadline.
998  */
dl_is_implicit(struct sched_dl_entity * dl_se)999 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
1000 {
1001 	return dl_se->dl_deadline == dl_se->dl_period;
1002 }
1003 
1004 /*
1005  * When a deadline entity is placed in the runqueue, its runtime and deadline
1006  * might need to be updated. This is done by a CBS wake up rule. There are two
1007  * different rules: 1) the original CBS; and 2) the Revisited CBS.
1008  *
1009  * When the task is starting a new period, the Original CBS is used. In this
1010  * case, the runtime is replenished and a new absolute deadline is set.
1011  *
1012  * When a task is queued before the begin of the next period, using the
1013  * remaining runtime and deadline could make the entity to overflow, see
1014  * dl_entity_overflow() to find more about runtime overflow. When such case
1015  * is detected, the runtime and deadline need to be updated.
1016  *
1017  * If the task has an implicit deadline, i.e., deadline == period, the Original
1018  * CBS is applied. The runtime is replenished and a new absolute deadline is
1019  * set, as in the previous cases.
1020  *
1021  * However, the Original CBS does not work properly for tasks with
1022  * deadline < period, which are said to have a constrained deadline. By
1023  * applying the Original CBS, a constrained deadline task would be able to run
1024  * runtime/deadline in a period. With deadline < period, the task would
1025  * overrun the runtime/period allowed bandwidth, breaking the admission test.
1026  *
1027  * In order to prevent this misbehave, the Revisited CBS is used for
1028  * constrained deadline tasks when a runtime overflow is detected. In the
1029  * Revisited CBS, rather than replenishing & setting a new absolute deadline,
1030  * the remaining runtime of the task is reduced to avoid runtime overflow.
1031  * Please refer to the comments update_dl_revised_wakeup() function to find
1032  * more about the Revised CBS rule.
1033  */
update_dl_entity(struct sched_dl_entity * dl_se)1034 static void update_dl_entity(struct sched_dl_entity *dl_se)
1035 {
1036 	struct rq *rq = rq_of_dl_se(dl_se);
1037 
1038 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
1039 	    dl_entity_overflow(dl_se, rq_clock(rq))) {
1040 
1041 		if (unlikely(!dl_is_implicit(dl_se) &&
1042 			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1043 			     !is_dl_boosted(dl_se))) {
1044 			update_dl_revised_wakeup(dl_se, rq);
1045 			return;
1046 		}
1047 
1048 		replenish_dl_new_period(dl_se, rq);
1049 	} else if (dl_server(dl_se) && dl_se->dl_defer) {
1050 		/*
1051 		 * The server can still use its previous deadline, so check if
1052 		 * it left the dl_defer_running state.
1053 		 */
1054 		if (!dl_se->dl_defer_running) {
1055 			dl_se->dl_defer_armed = 1;
1056 			dl_se->dl_throttled = 1;
1057 		}
1058 	}
1059 }
1060 
dl_next_period(struct sched_dl_entity * dl_se)1061 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
1062 {
1063 	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
1064 }
1065 
1066 /*
1067  * If the entity depleted all its runtime, and if we want it to sleep
1068  * while waiting for some new execution time to become available, we
1069  * set the bandwidth replenishment timer to the replenishment instant
1070  * and try to activate it.
1071  *
1072  * Notice that it is important for the caller to know if the timer
1073  * actually started or not (i.e., the replenishment instant is in
1074  * the future or in the past).
1075  */
start_dl_timer(struct sched_dl_entity * dl_se)1076 static int start_dl_timer(struct sched_dl_entity *dl_se)
1077 {
1078 	struct hrtimer *timer = &dl_se->dl_timer;
1079 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1080 	struct rq *rq = rq_of_dl_rq(dl_rq);
1081 	ktime_t now, act;
1082 	s64 delta;
1083 
1084 	lockdep_assert_rq_held(rq);
1085 
1086 	/*
1087 	 * We want the timer to fire at the deadline, but considering
1088 	 * that it is actually coming from rq->clock and not from
1089 	 * hrtimer's time base reading.
1090 	 *
1091 	 * The deferred reservation will have its timer set to
1092 	 * (deadline - runtime). At that point, the CBS rule will decide
1093 	 * if the current deadline can be used, or if a replenishment is
1094 	 * required to avoid add too much pressure on the system
1095 	 * (current u > U).
1096 	 */
1097 	if (dl_se->dl_defer_armed) {
1098 		WARN_ON_ONCE(!dl_se->dl_throttled);
1099 		act = ns_to_ktime(dl_se->deadline - dl_se->runtime);
1100 	} else {
1101 		/* act = deadline - rel-deadline + period */
1102 		act = ns_to_ktime(dl_next_period(dl_se));
1103 	}
1104 
1105 	now = hrtimer_cb_get_time(timer);
1106 	delta = ktime_to_ns(now) - rq_clock(rq);
1107 	act = ktime_add_ns(act, delta);
1108 
1109 	/*
1110 	 * If the expiry time already passed, e.g., because the value
1111 	 * chosen as the deadline is too small, don't even try to
1112 	 * start the timer in the past!
1113 	 */
1114 	if (ktime_us_delta(act, now) < 0)
1115 		return 0;
1116 
1117 	/*
1118 	 * !enqueued will guarantee another callback; even if one is already in
1119 	 * progress. This ensures a balanced {get,put}_task_struct().
1120 	 *
1121 	 * The race against __run_timer() clearing the enqueued state is
1122 	 * harmless because we're holding task_rq()->lock, therefore the timer
1123 	 * expiring after we've done the check will wait on its task_rq_lock()
1124 	 * and observe our state.
1125 	 */
1126 	if (!hrtimer_is_queued(timer)) {
1127 		if (!dl_server(dl_se))
1128 			get_task_struct(dl_task_of(dl_se));
1129 		hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1130 	}
1131 
1132 	return 1;
1133 }
1134 
__push_dl_task(struct rq * rq,struct rq_flags * rf)1135 static void __push_dl_task(struct rq *rq, struct rq_flags *rf)
1136 {
1137 	/*
1138 	 * Queueing this task back might have overloaded rq, check if we need
1139 	 * to kick someone away.
1140 	 */
1141 	if (has_pushable_dl_tasks(rq)) {
1142 		/*
1143 		 * Nothing relies on rq->lock after this, so its safe to drop
1144 		 * rq->lock.
1145 		 */
1146 		rq_unpin_lock(rq, rf);
1147 		push_dl_task(rq);
1148 		rq_repin_lock(rq, rf);
1149 	}
1150 }
1151 
1152 /* a defer timer will not be reset if the runtime consumed was < dl_server_min_res */
1153 static const u64 dl_server_min_res = 1 * NSEC_PER_MSEC;
1154 
1155 static bool dl_server_stopped(struct sched_dl_entity *dl_se);
1156 
dl_server_timer(struct hrtimer * timer,struct sched_dl_entity * dl_se)1157 static enum hrtimer_restart dl_server_timer(struct hrtimer *timer, struct sched_dl_entity *dl_se)
1158 {
1159 	struct rq *rq = rq_of_dl_se(dl_se);
1160 	u64 fw;
1161 
1162 	scoped_guard (rq_lock, rq) {
1163 		struct rq_flags *rf = &scope.rf;
1164 
1165 		if (!dl_se->dl_throttled || !dl_se->dl_runtime)
1166 			return HRTIMER_NORESTART;
1167 
1168 		sched_clock_tick();
1169 		update_rq_clock(rq);
1170 
1171 		if (!dl_se->dl_runtime)
1172 			return HRTIMER_NORESTART;
1173 
1174 		if (!dl_se->server_has_tasks(dl_se)) {
1175 			replenish_dl_entity(dl_se);
1176 			dl_server_stopped(dl_se);
1177 			return HRTIMER_NORESTART;
1178 		}
1179 
1180 		if (dl_se->dl_defer_armed) {
1181 			/*
1182 			 * First check if the server could consume runtime in background.
1183 			 * If so, it is possible to push the defer timer for this amount
1184 			 * of time. The dl_server_min_res serves as a limit to avoid
1185 			 * forwarding the timer for a too small amount of time.
1186 			 */
1187 			if (dl_time_before(rq_clock(dl_se->rq),
1188 					   (dl_se->deadline - dl_se->runtime - dl_server_min_res))) {
1189 
1190 				/* reset the defer timer */
1191 				fw = dl_se->deadline - rq_clock(dl_se->rq) - dl_se->runtime;
1192 
1193 				hrtimer_forward_now(timer, ns_to_ktime(fw));
1194 				return HRTIMER_RESTART;
1195 			}
1196 
1197 			dl_se->dl_defer_running = 1;
1198 		}
1199 
1200 		enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
1201 
1202 		if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &dl_se->rq->curr->dl))
1203 			resched_curr(rq);
1204 
1205 		__push_dl_task(rq, rf);
1206 	}
1207 
1208 	return HRTIMER_NORESTART;
1209 }
1210 
1211 /*
1212  * This is the bandwidth enforcement timer callback. If here, we know
1213  * a task is not on its dl_rq, since the fact that the timer was running
1214  * means the task is throttled and needs a runtime replenishment.
1215  *
1216  * However, what we actually do depends on the fact the task is active,
1217  * (it is on its rq) or has been removed from there by a call to
1218  * dequeue_task_dl(). In the former case we must issue the runtime
1219  * replenishment and add the task back to the dl_rq; in the latter, we just
1220  * do nothing but clearing dl_throttled, so that runtime and deadline
1221  * updating (and the queueing back to dl_rq) will be done by the
1222  * next call to enqueue_task_dl().
1223  */
dl_task_timer(struct hrtimer * timer)1224 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1225 {
1226 	struct sched_dl_entity *dl_se = container_of(timer,
1227 						     struct sched_dl_entity,
1228 						     dl_timer);
1229 	struct task_struct *p;
1230 	struct rq_flags rf;
1231 	struct rq *rq;
1232 
1233 	if (dl_server(dl_se))
1234 		return dl_server_timer(timer, dl_se);
1235 
1236 	p = dl_task_of(dl_se);
1237 	rq = task_rq_lock(p, &rf);
1238 
1239 	/*
1240 	 * The task might have changed its scheduling policy to something
1241 	 * different than SCHED_DEADLINE (through switched_from_dl()).
1242 	 */
1243 	if (!dl_task(p))
1244 		goto unlock;
1245 
1246 	/*
1247 	 * The task might have been boosted by someone else and might be in the
1248 	 * boosting/deboosting path, its not throttled.
1249 	 */
1250 	if (is_dl_boosted(dl_se))
1251 		goto unlock;
1252 
1253 	/*
1254 	 * Spurious timer due to start_dl_timer() race; or we already received
1255 	 * a replenishment from rt_mutex_setprio().
1256 	 */
1257 	if (!dl_se->dl_throttled)
1258 		goto unlock;
1259 
1260 	sched_clock_tick();
1261 	update_rq_clock(rq);
1262 
1263 	/*
1264 	 * If the throttle happened during sched-out; like:
1265 	 *
1266 	 *   schedule()
1267 	 *     deactivate_task()
1268 	 *       dequeue_task_dl()
1269 	 *         update_curr_dl()
1270 	 *           start_dl_timer()
1271 	 *         __dequeue_task_dl()
1272 	 *     prev->on_rq = 0;
1273 	 *
1274 	 * We can be both throttled and !queued. Replenish the counter
1275 	 * but do not enqueue -- wait for our wakeup to do that.
1276 	 */
1277 	if (!task_on_rq_queued(p)) {
1278 		replenish_dl_entity(dl_se);
1279 		goto unlock;
1280 	}
1281 
1282 	if (unlikely(!rq->online)) {
1283 		/*
1284 		 * If the runqueue is no longer available, migrate the
1285 		 * task elsewhere. This necessarily changes rq.
1286 		 */
1287 		lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1288 		rq = dl_task_offline_migration(rq, p);
1289 		rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1290 		update_rq_clock(rq);
1291 
1292 		/*
1293 		 * Now that the task has been migrated to the new RQ and we
1294 		 * have that locked, proceed as normal and enqueue the task
1295 		 * there.
1296 		 */
1297 	}
1298 
1299 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1300 	if (dl_task(rq->donor))
1301 		wakeup_preempt_dl(rq, p, 0);
1302 	else
1303 		resched_curr(rq);
1304 
1305 	__push_dl_task(rq, &rf);
1306 
1307 unlock:
1308 	task_rq_unlock(rq, p, &rf);
1309 
1310 	/*
1311 	 * This can free the task_struct, including this hrtimer, do not touch
1312 	 * anything related to that after this.
1313 	 */
1314 	put_task_struct(p);
1315 
1316 	return HRTIMER_NORESTART;
1317 }
1318 
init_dl_task_timer(struct sched_dl_entity * dl_se)1319 static void init_dl_task_timer(struct sched_dl_entity *dl_se)
1320 {
1321 	struct hrtimer *timer = &dl_se->dl_timer;
1322 
1323 	hrtimer_setup(timer, dl_task_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1324 }
1325 
1326 /*
1327  * During the activation, CBS checks if it can reuse the current task's
1328  * runtime and period. If the deadline of the task is in the past, CBS
1329  * cannot use the runtime, and so it replenishes the task. This rule
1330  * works fine for implicit deadline tasks (deadline == period), and the
1331  * CBS was designed for implicit deadline tasks. However, a task with
1332  * constrained deadline (deadline < period) might be awakened after the
1333  * deadline, but before the next period. In this case, replenishing the
1334  * task would allow it to run for runtime / deadline. As in this case
1335  * deadline < period, CBS enables a task to run for more than the
1336  * runtime / period. In a very loaded system, this can cause a domino
1337  * effect, making other tasks miss their deadlines.
1338  *
1339  * To avoid this problem, in the activation of a constrained deadline
1340  * task after the deadline but before the next period, throttle the
1341  * task and set the replenishing timer to the begin of the next period,
1342  * unless it is boosted.
1343  */
dl_check_constrained_dl(struct sched_dl_entity * dl_se)1344 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1345 {
1346 	struct rq *rq = rq_of_dl_se(dl_se);
1347 
1348 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1349 	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1350 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se)))
1351 			return;
1352 		dl_se->dl_throttled = 1;
1353 		if (dl_se->runtime > 0)
1354 			dl_se->runtime = 0;
1355 	}
1356 }
1357 
1358 static
dl_runtime_exceeded(struct sched_dl_entity * dl_se)1359 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1360 {
1361 	return (dl_se->runtime <= 0);
1362 }
1363 
1364 /*
1365  * This function implements the GRUB accounting rule. According to the
1366  * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt",
1367  * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt",
1368  * where u is the utilization of the task, Umax is the maximum reclaimable
1369  * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1370  * as the difference between the "total runqueue utilization" and the
1371  * "runqueue active utilization", and Uextra is the (per runqueue) extra
1372  * reclaimable utilization.
1373  * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied
1374  * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT.
1375  * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw
1376  * is multiplied by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1377  * Since delta is a 64 bit variable, to have an overflow its value should be
1378  * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is
1379  * not an issue here.
1380  */
grub_reclaim(u64 delta,struct rq * rq,struct sched_dl_entity * dl_se)1381 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1382 {
1383 	u64 u_act;
1384 	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1385 
1386 	/*
1387 	 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we
1388 	 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra
1389 	 * can be larger than u_max. So, u_max - u_inact - u_extra would be
1390 	 * negative leading to wrong results.
1391 	 */
1392 	if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw)
1393 		u_act = dl_se->dl_bw;
1394 	else
1395 		u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw;
1396 
1397 	u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT;
1398 	return (delta * u_act) >> BW_SHIFT;
1399 }
1400 
dl_scaled_delta_exec(struct rq * rq,struct sched_dl_entity * dl_se,s64 delta_exec)1401 s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
1402 {
1403 	s64 scaled_delta_exec;
1404 
1405 	/*
1406 	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1407 	 * spare reclaimed bandwidth is used to clock down frequency.
1408 	 *
1409 	 * For the others, we still need to scale reservation parameters
1410 	 * according to current frequency and CPU maximum capacity.
1411 	 */
1412 	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1413 		scaled_delta_exec = grub_reclaim(delta_exec, rq, dl_se);
1414 	} else {
1415 		int cpu = cpu_of(rq);
1416 		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1417 		unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1418 
1419 		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1420 		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1421 	}
1422 
1423 	return scaled_delta_exec;
1424 }
1425 
1426 static inline void
1427 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1428 			int flags);
update_curr_dl_se(struct rq * rq,struct sched_dl_entity * dl_se,s64 delta_exec)1429 static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
1430 {
1431 	s64 scaled_delta_exec;
1432 
1433 	if (unlikely(delta_exec <= 0)) {
1434 		if (unlikely(dl_se->dl_yielded))
1435 			goto throttle;
1436 		return;
1437 	}
1438 
1439 	if (dl_server(dl_se) && dl_se->dl_throttled && !dl_se->dl_defer)
1440 		return;
1441 
1442 	if (dl_entity_is_special(dl_se))
1443 		return;
1444 
1445 	scaled_delta_exec = delta_exec;
1446 	if (!dl_server(dl_se))
1447 		scaled_delta_exec = dl_scaled_delta_exec(rq, dl_se, delta_exec);
1448 
1449 	dl_se->runtime -= scaled_delta_exec;
1450 
1451 	/*
1452 	 * The fair server can consume its runtime while throttled (not queued/
1453 	 * running as regular CFS).
1454 	 *
1455 	 * If the server consumes its entire runtime in this state. The server
1456 	 * is not required for the current period. Thus, reset the server by
1457 	 * starting a new period, pushing the activation.
1458 	 */
1459 	if (dl_se->dl_defer && dl_se->dl_throttled && dl_runtime_exceeded(dl_se)) {
1460 		/*
1461 		 * If the server was previously activated - the starving condition
1462 		 * took place, it this point it went away because the fair scheduler
1463 		 * was able to get runtime in background. So return to the initial
1464 		 * state.
1465 		 */
1466 		dl_se->dl_defer_running = 0;
1467 
1468 		hrtimer_try_to_cancel(&dl_se->dl_timer);
1469 
1470 		replenish_dl_new_period(dl_se, dl_se->rq);
1471 
1472 		/*
1473 		 * Not being able to start the timer seems problematic. If it could not
1474 		 * be started for whatever reason, we need to "unthrottle" the DL server
1475 		 * and queue right away. Otherwise nothing might queue it. That's similar
1476 		 * to what enqueue_dl_entity() does on start_dl_timer==0. For now, just warn.
1477 		 */
1478 		WARN_ON_ONCE(!start_dl_timer(dl_se));
1479 
1480 		return;
1481 	}
1482 
1483 throttle:
1484 	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1485 		dl_se->dl_throttled = 1;
1486 
1487 		/* If requested, inform the user about runtime overruns. */
1488 		if (dl_runtime_exceeded(dl_se) &&
1489 		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1490 			dl_se->dl_overrun = 1;
1491 
1492 		dequeue_dl_entity(dl_se, 0);
1493 		if (!dl_server(dl_se)) {
1494 			update_stats_dequeue_dl(&rq->dl, dl_se, 0);
1495 			dequeue_pushable_dl_task(rq, dl_task_of(dl_se));
1496 		}
1497 
1498 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) {
1499 			if (dl_server(dl_se)) {
1500 				replenish_dl_new_period(dl_se, rq);
1501 				start_dl_timer(dl_se);
1502 			} else {
1503 				enqueue_task_dl(rq, dl_task_of(dl_se), ENQUEUE_REPLENISH);
1504 			}
1505 		}
1506 
1507 		if (!is_leftmost(dl_se, &rq->dl))
1508 			resched_curr(rq);
1509 	}
1510 
1511 	/*
1512 	 * The fair server (sole dl_server) does not account for real-time
1513 	 * workload because it is running fair work.
1514 	 */
1515 	if (dl_se == &rq->fair_server)
1516 		return;
1517 
1518 #ifdef CONFIG_RT_GROUP_SCHED
1519 	/*
1520 	 * Because -- for now -- we share the rt bandwidth, we need to
1521 	 * account our runtime there too, otherwise actual rt tasks
1522 	 * would be able to exceed the shared quota.
1523 	 *
1524 	 * Account to the root rt group for now.
1525 	 *
1526 	 * The solution we're working towards is having the RT groups scheduled
1527 	 * using deadline servers -- however there's a few nasties to figure
1528 	 * out before that can happen.
1529 	 */
1530 	if (rt_bandwidth_enabled()) {
1531 		struct rt_rq *rt_rq = &rq->rt;
1532 
1533 		raw_spin_lock(&rt_rq->rt_runtime_lock);
1534 		/*
1535 		 * We'll let actual RT tasks worry about the overflow here, we
1536 		 * have our own CBS to keep us inline; only account when RT
1537 		 * bandwidth is relevant.
1538 		 */
1539 		if (sched_rt_bandwidth_account(rt_rq))
1540 			rt_rq->rt_time += delta_exec;
1541 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1542 	}
1543 #endif /* CONFIG_RT_GROUP_SCHED */
1544 }
1545 
1546 /*
1547  * In the non-defer mode, the idle time is not accounted, as the
1548  * server provides a guarantee.
1549  *
1550  * If the dl_server is in defer mode, the idle time is also considered
1551  * as time available for the fair server, avoiding a penalty for the
1552  * rt scheduler that did not consumed that time.
1553  */
dl_server_update_idle_time(struct rq * rq,struct task_struct * p)1554 void dl_server_update_idle_time(struct rq *rq, struct task_struct *p)
1555 {
1556 	s64 delta_exec;
1557 
1558 	if (!rq->fair_server.dl_defer)
1559 		return;
1560 
1561 	/* no need to discount more */
1562 	if (rq->fair_server.runtime < 0)
1563 		return;
1564 
1565 	delta_exec = rq_clock_task(rq) - p->se.exec_start;
1566 	if (delta_exec < 0)
1567 		return;
1568 
1569 	rq->fair_server.runtime -= delta_exec;
1570 
1571 	if (rq->fair_server.runtime < 0) {
1572 		rq->fair_server.dl_defer_running = 0;
1573 		rq->fair_server.runtime = 0;
1574 	}
1575 
1576 	p->se.exec_start = rq_clock_task(rq);
1577 }
1578 
dl_server_update(struct sched_dl_entity * dl_se,s64 delta_exec)1579 void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec)
1580 {
1581 	/* 0 runtime = fair server disabled */
1582 	if (dl_se->dl_runtime) {
1583 		dl_se->dl_server_idle = 0;
1584 		update_curr_dl_se(dl_se->rq, dl_se, delta_exec);
1585 	}
1586 }
1587 
dl_server_start(struct sched_dl_entity * dl_se)1588 void dl_server_start(struct sched_dl_entity *dl_se)
1589 {
1590 	struct rq *rq = dl_se->rq;
1591 
1592 	if (!dl_server(dl_se) || dl_se->dl_server_active)
1593 		return;
1594 
1595 	dl_se->dl_server_active = 1;
1596 	enqueue_dl_entity(dl_se, ENQUEUE_WAKEUP);
1597 	if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &rq->curr->dl))
1598 		resched_curr(dl_se->rq);
1599 }
1600 
dl_server_stop(struct sched_dl_entity * dl_se)1601 void dl_server_stop(struct sched_dl_entity *dl_se)
1602 {
1603 	if (!dl_server(dl_se) || !dl_server_active(dl_se))
1604 		return;
1605 
1606 	dequeue_dl_entity(dl_se, DEQUEUE_SLEEP);
1607 	hrtimer_try_to_cancel(&dl_se->dl_timer);
1608 	dl_se->dl_defer_armed = 0;
1609 	dl_se->dl_throttled = 0;
1610 	dl_se->dl_server_active = 0;
1611 }
1612 
dl_server_stopped(struct sched_dl_entity * dl_se)1613 static bool dl_server_stopped(struct sched_dl_entity *dl_se)
1614 {
1615 	if (!dl_se->dl_server_active)
1616 		return true;
1617 
1618 	if (dl_se->dl_server_idle) {
1619 		dl_server_stop(dl_se);
1620 		return true;
1621 	}
1622 
1623 	dl_se->dl_server_idle = 1;
1624 	return false;
1625 }
1626 
dl_server_init(struct sched_dl_entity * dl_se,struct rq * rq,dl_server_has_tasks_f has_tasks,dl_server_pick_f pick_task)1627 void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
1628 		    dl_server_has_tasks_f has_tasks,
1629 		    dl_server_pick_f pick_task)
1630 {
1631 	dl_se->rq = rq;
1632 	dl_se->server_has_tasks = has_tasks;
1633 	dl_se->server_pick_task = pick_task;
1634 }
1635 
sched_init_dl_servers(void)1636 void sched_init_dl_servers(void)
1637 {
1638 	int cpu;
1639 	struct rq *rq;
1640 	struct sched_dl_entity *dl_se;
1641 
1642 	for_each_online_cpu(cpu) {
1643 		u64 runtime =  50 * NSEC_PER_MSEC;
1644 		u64 period = 1000 * NSEC_PER_MSEC;
1645 
1646 		rq = cpu_rq(cpu);
1647 
1648 		guard(rq_lock_irq)(rq);
1649 
1650 		dl_se = &rq->fair_server;
1651 
1652 		WARN_ON(dl_server(dl_se));
1653 
1654 		dl_server_apply_params(dl_se, runtime, period, 1);
1655 
1656 		dl_se->dl_server = 1;
1657 		dl_se->dl_defer = 1;
1658 		setup_new_dl_entity(dl_se);
1659 	}
1660 }
1661 
__dl_server_attach_root(struct sched_dl_entity * dl_se,struct rq * rq)1662 void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq)
1663 {
1664 	u64 new_bw = dl_se->dl_bw;
1665 	int cpu = cpu_of(rq);
1666 	struct dl_bw *dl_b;
1667 
1668 	dl_b = dl_bw_of(cpu_of(rq));
1669 	guard(raw_spinlock)(&dl_b->lock);
1670 
1671 	if (!dl_bw_cpus(cpu))
1672 		return;
1673 
1674 	__dl_add(dl_b, new_bw, dl_bw_cpus(cpu));
1675 }
1676 
dl_server_apply_params(struct sched_dl_entity * dl_se,u64 runtime,u64 period,bool init)1677 int dl_server_apply_params(struct sched_dl_entity *dl_se, u64 runtime, u64 period, bool init)
1678 {
1679 	u64 old_bw = init ? 0 : to_ratio(dl_se->dl_period, dl_se->dl_runtime);
1680 	u64 new_bw = to_ratio(period, runtime);
1681 	struct rq *rq = dl_se->rq;
1682 	int cpu = cpu_of(rq);
1683 	struct dl_bw *dl_b;
1684 	unsigned long cap;
1685 	int retval = 0;
1686 	int cpus;
1687 
1688 	dl_b = dl_bw_of(cpu);
1689 	guard(raw_spinlock)(&dl_b->lock);
1690 
1691 	cpus = dl_bw_cpus(cpu);
1692 	cap = dl_bw_capacity(cpu);
1693 
1694 	if (__dl_overflow(dl_b, cap, old_bw, new_bw))
1695 		return -EBUSY;
1696 
1697 	if (init) {
1698 		__add_rq_bw(new_bw, &rq->dl);
1699 		__dl_add(dl_b, new_bw, cpus);
1700 	} else {
1701 		__dl_sub(dl_b, dl_se->dl_bw, cpus);
1702 		__dl_add(dl_b, new_bw, cpus);
1703 
1704 		dl_rq_change_utilization(rq, dl_se, new_bw);
1705 	}
1706 
1707 	dl_se->dl_runtime = runtime;
1708 	dl_se->dl_deadline = period;
1709 	dl_se->dl_period = period;
1710 
1711 	dl_se->runtime = 0;
1712 	dl_se->deadline = 0;
1713 
1714 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
1715 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
1716 
1717 	return retval;
1718 }
1719 
1720 /*
1721  * Update the current task's runtime statistics (provided it is still
1722  * a -deadline task and has not been removed from the dl_rq).
1723  */
update_curr_dl(struct rq * rq)1724 static void update_curr_dl(struct rq *rq)
1725 {
1726 	struct task_struct *donor = rq->donor;
1727 	struct sched_dl_entity *dl_se = &donor->dl;
1728 	s64 delta_exec;
1729 
1730 	if (!dl_task(donor) || !on_dl_rq(dl_se))
1731 		return;
1732 
1733 	/*
1734 	 * Consumed budget is computed considering the time as
1735 	 * observed by schedulable tasks (excluding time spent
1736 	 * in hardirq context, etc.). Deadlines are instead
1737 	 * computed using hard walltime. This seems to be the more
1738 	 * natural solution, but the full ramifications of this
1739 	 * approach need further study.
1740 	 */
1741 	delta_exec = update_curr_common(rq);
1742 	update_curr_dl_se(rq, dl_se, delta_exec);
1743 }
1744 
inactive_task_timer(struct hrtimer * timer)1745 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1746 {
1747 	struct sched_dl_entity *dl_se = container_of(timer,
1748 						     struct sched_dl_entity,
1749 						     inactive_timer);
1750 	struct task_struct *p = NULL;
1751 	struct rq_flags rf;
1752 	struct rq *rq;
1753 
1754 	if (!dl_server(dl_se)) {
1755 		p = dl_task_of(dl_se);
1756 		rq = task_rq_lock(p, &rf);
1757 	} else {
1758 		rq = dl_se->rq;
1759 		rq_lock(rq, &rf);
1760 	}
1761 
1762 	sched_clock_tick();
1763 	update_rq_clock(rq);
1764 
1765 	if (dl_server(dl_se))
1766 		goto no_task;
1767 
1768 	if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1769 		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1770 
1771 		if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1772 			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1773 			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1774 			dl_se->dl_non_contending = 0;
1775 		}
1776 
1777 		raw_spin_lock(&dl_b->lock);
1778 		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1779 		raw_spin_unlock(&dl_b->lock);
1780 		__dl_clear_params(dl_se);
1781 
1782 		goto unlock;
1783 	}
1784 
1785 no_task:
1786 	if (dl_se->dl_non_contending == 0)
1787 		goto unlock;
1788 
1789 	sub_running_bw(dl_se, &rq->dl);
1790 	dl_se->dl_non_contending = 0;
1791 unlock:
1792 
1793 	if (!dl_server(dl_se)) {
1794 		task_rq_unlock(rq, p, &rf);
1795 		put_task_struct(p);
1796 	} else {
1797 		rq_unlock(rq, &rf);
1798 	}
1799 
1800 	return HRTIMER_NORESTART;
1801 }
1802 
init_dl_inactive_task_timer(struct sched_dl_entity * dl_se)1803 static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1804 {
1805 	struct hrtimer *timer = &dl_se->inactive_timer;
1806 
1807 	hrtimer_setup(timer, inactive_task_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1808 }
1809 
1810 #define __node_2_dle(node) \
1811 	rb_entry((node), struct sched_dl_entity, rb_node)
1812 
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1813 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1814 {
1815 	struct rq *rq = rq_of_dl_rq(dl_rq);
1816 
1817 	if (dl_rq->earliest_dl.curr == 0 ||
1818 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1819 		if (dl_rq->earliest_dl.curr == 0)
1820 			cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
1821 		dl_rq->earliest_dl.curr = deadline;
1822 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1823 	}
1824 }
1825 
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1826 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1827 {
1828 	struct rq *rq = rq_of_dl_rq(dl_rq);
1829 
1830 	/*
1831 	 * Since we may have removed our earliest (and/or next earliest)
1832 	 * task we must recompute them.
1833 	 */
1834 	if (!dl_rq->dl_nr_running) {
1835 		dl_rq->earliest_dl.curr = 0;
1836 		dl_rq->earliest_dl.next = 0;
1837 		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1838 		cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1839 	} else {
1840 		struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
1841 		struct sched_dl_entity *entry = __node_2_dle(leftmost);
1842 
1843 		dl_rq->earliest_dl.curr = entry->deadline;
1844 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1845 	}
1846 }
1847 
1848 static inline
inc_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1849 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1850 {
1851 	u64 deadline = dl_se->deadline;
1852 
1853 	dl_rq->dl_nr_running++;
1854 
1855 	if (!dl_server(dl_se))
1856 		add_nr_running(rq_of_dl_rq(dl_rq), 1);
1857 
1858 	inc_dl_deadline(dl_rq, deadline);
1859 }
1860 
1861 static inline
dec_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1862 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1863 {
1864 	WARN_ON(!dl_rq->dl_nr_running);
1865 	dl_rq->dl_nr_running--;
1866 
1867 	if (!dl_server(dl_se))
1868 		sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1869 
1870 	dec_dl_deadline(dl_rq, dl_se->deadline);
1871 }
1872 
__dl_less(struct rb_node * a,const struct rb_node * b)1873 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
1874 {
1875 	return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
1876 }
1877 
1878 static __always_inline struct sched_statistics *
__schedstats_from_dl_se(struct sched_dl_entity * dl_se)1879 __schedstats_from_dl_se(struct sched_dl_entity *dl_se)
1880 {
1881 	if (!schedstat_enabled())
1882 		return NULL;
1883 
1884 	if (dl_server(dl_se))
1885 		return NULL;
1886 
1887 	return &dl_task_of(dl_se)->stats;
1888 }
1889 
1890 static inline void
update_stats_wait_start_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1891 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1892 {
1893 	struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1894 	if (stats)
1895 		__update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1896 }
1897 
1898 static inline void
update_stats_wait_end_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1899 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1900 {
1901 	struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1902 	if (stats)
1903 		__update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1904 }
1905 
1906 static inline void
update_stats_enqueue_sleeper_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1907 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1908 {
1909 	struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1910 	if (stats)
1911 		__update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1912 }
1913 
1914 static inline void
update_stats_enqueue_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se,int flags)1915 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1916 			int flags)
1917 {
1918 	if (!schedstat_enabled())
1919 		return;
1920 
1921 	if (flags & ENQUEUE_WAKEUP)
1922 		update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
1923 }
1924 
1925 static inline void
update_stats_dequeue_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se,int flags)1926 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1927 			int flags)
1928 {
1929 	struct task_struct *p = dl_task_of(dl_se);
1930 
1931 	if (!schedstat_enabled())
1932 		return;
1933 
1934 	if ((flags & DEQUEUE_SLEEP)) {
1935 		unsigned int state;
1936 
1937 		state = READ_ONCE(p->__state);
1938 		if (state & TASK_INTERRUPTIBLE)
1939 			__schedstat_set(p->stats.sleep_start,
1940 					rq_clock(rq_of_dl_rq(dl_rq)));
1941 
1942 		if (state & TASK_UNINTERRUPTIBLE)
1943 			__schedstat_set(p->stats.block_start,
1944 					rq_clock(rq_of_dl_rq(dl_rq)));
1945 	}
1946 }
1947 
__enqueue_dl_entity(struct sched_dl_entity * dl_se)1948 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1949 {
1950 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1951 
1952 	WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node));
1953 
1954 	rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
1955 
1956 	inc_dl_tasks(dl_se, dl_rq);
1957 }
1958 
__dequeue_dl_entity(struct sched_dl_entity * dl_se)1959 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1960 {
1961 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1962 
1963 	if (RB_EMPTY_NODE(&dl_se->rb_node))
1964 		return;
1965 
1966 	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1967 
1968 	RB_CLEAR_NODE(&dl_se->rb_node);
1969 
1970 	dec_dl_tasks(dl_se, dl_rq);
1971 }
1972 
1973 static void
enqueue_dl_entity(struct sched_dl_entity * dl_se,int flags)1974 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1975 {
1976 	WARN_ON_ONCE(on_dl_rq(dl_se));
1977 
1978 	update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
1979 
1980 	/*
1981 	 * Check if a constrained deadline task was activated
1982 	 * after the deadline but before the next period.
1983 	 * If that is the case, the task will be throttled and
1984 	 * the replenishment timer will be set to the next period.
1985 	 */
1986 	if (!dl_se->dl_throttled && !dl_is_implicit(dl_se))
1987 		dl_check_constrained_dl(dl_se);
1988 
1989 	if (flags & (ENQUEUE_RESTORE|ENQUEUE_MIGRATING)) {
1990 		struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1991 
1992 		add_rq_bw(dl_se, dl_rq);
1993 		add_running_bw(dl_se, dl_rq);
1994 	}
1995 
1996 	/*
1997 	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1998 	 * its budget it needs a replenishment and, since it now is on
1999 	 * its rq, the bandwidth timer callback (which clearly has not
2000 	 * run yet) will take care of this.
2001 	 * However, the active utilization does not depend on the fact
2002 	 * that the task is on the runqueue or not (but depends on the
2003 	 * task's state - in GRUB parlance, "inactive" vs "active contending").
2004 	 * In other words, even if a task is throttled its utilization must
2005 	 * be counted in the active utilization; hence, we need to call
2006 	 * add_running_bw().
2007 	 */
2008 	if (!dl_se->dl_defer && dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
2009 		if (flags & ENQUEUE_WAKEUP)
2010 			task_contending(dl_se, flags);
2011 
2012 		return;
2013 	}
2014 
2015 	/*
2016 	 * If this is a wakeup or a new instance, the scheduling
2017 	 * parameters of the task might need updating. Otherwise,
2018 	 * we want a replenishment of its runtime.
2019 	 */
2020 	if (flags & ENQUEUE_WAKEUP) {
2021 		task_contending(dl_se, flags);
2022 		update_dl_entity(dl_se);
2023 	} else if (flags & ENQUEUE_REPLENISH) {
2024 		replenish_dl_entity(dl_se);
2025 	} else if ((flags & ENQUEUE_RESTORE) &&
2026 		   !is_dl_boosted(dl_se) &&
2027 		   dl_time_before(dl_se->deadline, rq_clock(rq_of_dl_se(dl_se)))) {
2028 		setup_new_dl_entity(dl_se);
2029 	}
2030 
2031 	/*
2032 	 * If the reservation is still throttled, e.g., it got replenished but is a
2033 	 * deferred task and still got to wait, don't enqueue.
2034 	 */
2035 	if (dl_se->dl_throttled && start_dl_timer(dl_se))
2036 		return;
2037 
2038 	/*
2039 	 * We're about to enqueue, make sure we're not ->dl_throttled!
2040 	 * In case the timer was not started, say because the defer time
2041 	 * has passed, mark as not throttled and mark unarmed.
2042 	 * Also cancel earlier timers, since letting those run is pointless.
2043 	 */
2044 	if (dl_se->dl_throttled) {
2045 		hrtimer_try_to_cancel(&dl_se->dl_timer);
2046 		dl_se->dl_defer_armed = 0;
2047 		dl_se->dl_throttled = 0;
2048 	}
2049 
2050 	__enqueue_dl_entity(dl_se);
2051 }
2052 
dequeue_dl_entity(struct sched_dl_entity * dl_se,int flags)2053 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags)
2054 {
2055 	__dequeue_dl_entity(dl_se);
2056 
2057 	if (flags & (DEQUEUE_SAVE|DEQUEUE_MIGRATING)) {
2058 		struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2059 
2060 		sub_running_bw(dl_se, dl_rq);
2061 		sub_rq_bw(dl_se, dl_rq);
2062 	}
2063 
2064 	/*
2065 	 * This check allows to start the inactive timer (or to immediately
2066 	 * decrease the active utilization, if needed) in two cases:
2067 	 * when the task blocks and when it is terminating
2068 	 * (p->state == TASK_DEAD). We can handle the two cases in the same
2069 	 * way, because from GRUB's point of view the same thing is happening
2070 	 * (the task moves from "active contending" to "active non contending"
2071 	 * or "inactive")
2072 	 */
2073 	if (flags & DEQUEUE_SLEEP)
2074 		task_non_contending(dl_se);
2075 }
2076 
enqueue_task_dl(struct rq * rq,struct task_struct * p,int flags)2077 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
2078 {
2079 	if (is_dl_boosted(&p->dl)) {
2080 		/*
2081 		 * Because of delays in the detection of the overrun of a
2082 		 * thread's runtime, it might be the case that a thread
2083 		 * goes to sleep in a rt mutex with negative runtime. As
2084 		 * a consequence, the thread will be throttled.
2085 		 *
2086 		 * While waiting for the mutex, this thread can also be
2087 		 * boosted via PI, resulting in a thread that is throttled
2088 		 * and boosted at the same time.
2089 		 *
2090 		 * In this case, the boost overrides the throttle.
2091 		 */
2092 		if (p->dl.dl_throttled) {
2093 			/*
2094 			 * The replenish timer needs to be canceled. No
2095 			 * problem if it fires concurrently: boosted threads
2096 			 * are ignored in dl_task_timer().
2097 			 */
2098 			cancel_replenish_timer(&p->dl);
2099 			p->dl.dl_throttled = 0;
2100 		}
2101 	} else if (!dl_prio(p->normal_prio)) {
2102 		/*
2103 		 * Special case in which we have a !SCHED_DEADLINE task that is going
2104 		 * to be deboosted, but exceeds its runtime while doing so. No point in
2105 		 * replenishing it, as it's going to return back to its original
2106 		 * scheduling class after this. If it has been throttled, we need to
2107 		 * clear the flag, otherwise the task may wake up as throttled after
2108 		 * being boosted again with no means to replenish the runtime and clear
2109 		 * the throttle.
2110 		 */
2111 		p->dl.dl_throttled = 0;
2112 		if (!(flags & ENQUEUE_REPLENISH))
2113 			printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
2114 					     task_pid_nr(p));
2115 
2116 		return;
2117 	}
2118 
2119 	check_schedstat_required();
2120 	update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
2121 
2122 	if (p->on_rq == TASK_ON_RQ_MIGRATING)
2123 		flags |= ENQUEUE_MIGRATING;
2124 
2125 	enqueue_dl_entity(&p->dl, flags);
2126 
2127 	if (dl_server(&p->dl))
2128 		return;
2129 
2130 	if (task_is_blocked(p))
2131 		return;
2132 
2133 	if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1)
2134 		enqueue_pushable_dl_task(rq, p);
2135 }
2136 
dequeue_task_dl(struct rq * rq,struct task_struct * p,int flags)2137 static bool dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
2138 {
2139 	update_curr_dl(rq);
2140 
2141 	if (p->on_rq == TASK_ON_RQ_MIGRATING)
2142 		flags |= DEQUEUE_MIGRATING;
2143 
2144 	dequeue_dl_entity(&p->dl, flags);
2145 	if (!p->dl.dl_throttled && !dl_server(&p->dl))
2146 		dequeue_pushable_dl_task(rq, p);
2147 
2148 	return true;
2149 }
2150 
2151 /*
2152  * Yield task semantic for -deadline tasks is:
2153  *
2154  *   get off from the CPU until our next instance, with
2155  *   a new runtime. This is of little use now, since we
2156  *   don't have a bandwidth reclaiming mechanism. Anyway,
2157  *   bandwidth reclaiming is planned for the future, and
2158  *   yield_task_dl will indicate that some spare budget
2159  *   is available for other task instances to use it.
2160  */
yield_task_dl(struct rq * rq)2161 static void yield_task_dl(struct rq *rq)
2162 {
2163 	/*
2164 	 * We make the task go to sleep until its current deadline by
2165 	 * forcing its runtime to zero. This way, update_curr_dl() stops
2166 	 * it and the bandwidth timer will wake it up and will give it
2167 	 * new scheduling parameters (thanks to dl_yielded=1).
2168 	 */
2169 	rq->curr->dl.dl_yielded = 1;
2170 
2171 	update_rq_clock(rq);
2172 	update_curr_dl(rq);
2173 	/*
2174 	 * Tell update_rq_clock() that we've just updated,
2175 	 * so we don't do microscopic update in schedule()
2176 	 * and double the fastpath cost.
2177 	 */
2178 	rq_clock_skip_update(rq);
2179 }
2180 
dl_task_is_earliest_deadline(struct task_struct * p,struct rq * rq)2181 static inline bool dl_task_is_earliest_deadline(struct task_struct *p,
2182 						 struct rq *rq)
2183 {
2184 	return (!rq->dl.dl_nr_running ||
2185 		dl_time_before(p->dl.deadline,
2186 			       rq->dl.earliest_dl.curr));
2187 }
2188 
2189 static int find_later_rq(struct task_struct *task);
2190 
2191 static int
select_task_rq_dl(struct task_struct * p,int cpu,int flags)2192 select_task_rq_dl(struct task_struct *p, int cpu, int flags)
2193 {
2194 	struct task_struct *curr, *donor;
2195 	bool select_rq;
2196 	struct rq *rq;
2197 
2198 	if (!(flags & WF_TTWU))
2199 		goto out;
2200 
2201 	rq = cpu_rq(cpu);
2202 
2203 	rcu_read_lock();
2204 	curr = READ_ONCE(rq->curr); /* unlocked access */
2205 	donor = READ_ONCE(rq->donor);
2206 
2207 	/*
2208 	 * If we are dealing with a -deadline task, we must
2209 	 * decide where to wake it up.
2210 	 * If it has a later deadline and the current task
2211 	 * on this rq can't move (provided the waking task
2212 	 * can!) we prefer to send it somewhere else. On the
2213 	 * other hand, if it has a shorter deadline, we
2214 	 * try to make it stay here, it might be important.
2215 	 */
2216 	select_rq = unlikely(dl_task(donor)) &&
2217 		    (curr->nr_cpus_allowed < 2 ||
2218 		     !dl_entity_preempt(&p->dl, &donor->dl)) &&
2219 		    p->nr_cpus_allowed > 1;
2220 
2221 	/*
2222 	 * Take the capacity of the CPU into account to
2223 	 * ensure it fits the requirement of the task.
2224 	 */
2225 	if (sched_asym_cpucap_active())
2226 		select_rq |= !dl_task_fits_capacity(p, cpu);
2227 
2228 	if (select_rq) {
2229 		int target = find_later_rq(p);
2230 
2231 		if (target != -1 &&
2232 		    dl_task_is_earliest_deadline(p, cpu_rq(target)))
2233 			cpu = target;
2234 	}
2235 	rcu_read_unlock();
2236 
2237 out:
2238 	return cpu;
2239 }
2240 
migrate_task_rq_dl(struct task_struct * p,int new_cpu __maybe_unused)2241 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
2242 {
2243 	struct rq_flags rf;
2244 	struct rq *rq;
2245 
2246 	if (READ_ONCE(p->__state) != TASK_WAKING)
2247 		return;
2248 
2249 	rq = task_rq(p);
2250 	/*
2251 	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
2252 	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
2253 	 * rq->lock is not... So, lock it
2254 	 */
2255 	rq_lock(rq, &rf);
2256 	if (p->dl.dl_non_contending) {
2257 		update_rq_clock(rq);
2258 		sub_running_bw(&p->dl, &rq->dl);
2259 		p->dl.dl_non_contending = 0;
2260 		/*
2261 		 * If the timer handler is currently running and the
2262 		 * timer cannot be canceled, inactive_task_timer()
2263 		 * will see that dl_not_contending is not set, and
2264 		 * will not touch the rq's active utilization,
2265 		 * so we are still safe.
2266 		 */
2267 		cancel_inactive_timer(&p->dl);
2268 	}
2269 	sub_rq_bw(&p->dl, &rq->dl);
2270 	rq_unlock(rq, &rf);
2271 }
2272 
check_preempt_equal_dl(struct rq * rq,struct task_struct * p)2273 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
2274 {
2275 	/*
2276 	 * Current can't be migrated, useless to reschedule,
2277 	 * let's hope p can move out.
2278 	 */
2279 	if (rq->curr->nr_cpus_allowed == 1 ||
2280 	    !cpudl_find(&rq->rd->cpudl, rq->donor, NULL))
2281 		return;
2282 
2283 	/*
2284 	 * p is migratable, so let's not schedule it and
2285 	 * see if it is pushed or pulled somewhere else.
2286 	 */
2287 	if (p->nr_cpus_allowed != 1 &&
2288 	    cpudl_find(&rq->rd->cpudl, p, NULL))
2289 		return;
2290 
2291 	resched_curr(rq);
2292 }
2293 
balance_dl(struct rq * rq,struct task_struct * p,struct rq_flags * rf)2294 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
2295 {
2296 	if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
2297 		/*
2298 		 * This is OK, because current is on_cpu, which avoids it being
2299 		 * picked for load-balance and preemption/IRQs are still
2300 		 * disabled avoiding further scheduler activity on it and we've
2301 		 * not yet started the picking loop.
2302 		 */
2303 		rq_unpin_lock(rq, rf);
2304 		pull_dl_task(rq);
2305 		rq_repin_lock(rq, rf);
2306 	}
2307 
2308 	return sched_stop_runnable(rq) || sched_dl_runnable(rq);
2309 }
2310 
2311 /*
2312  * Only called when both the current and waking task are -deadline
2313  * tasks.
2314  */
wakeup_preempt_dl(struct rq * rq,struct task_struct * p,int flags)2315 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p,
2316 				  int flags)
2317 {
2318 	if (dl_entity_preempt(&p->dl, &rq->donor->dl)) {
2319 		resched_curr(rq);
2320 		return;
2321 	}
2322 
2323 	/*
2324 	 * In the unlikely case current and p have the same deadline
2325 	 * let us try to decide what's the best thing to do...
2326 	 */
2327 	if ((p->dl.deadline == rq->donor->dl.deadline) &&
2328 	    !test_tsk_need_resched(rq->curr))
2329 		check_preempt_equal_dl(rq, p);
2330 }
2331 
2332 #ifdef CONFIG_SCHED_HRTICK
start_hrtick_dl(struct rq * rq,struct sched_dl_entity * dl_se)2333 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2334 {
2335 	hrtick_start(rq, dl_se->runtime);
2336 }
2337 #else /* !CONFIG_SCHED_HRTICK: */
start_hrtick_dl(struct rq * rq,struct sched_dl_entity * dl_se)2338 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2339 {
2340 }
2341 #endif /* !CONFIG_SCHED_HRTICK */
2342 
set_next_task_dl(struct rq * rq,struct task_struct * p,bool first)2343 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
2344 {
2345 	struct sched_dl_entity *dl_se = &p->dl;
2346 	struct dl_rq *dl_rq = &rq->dl;
2347 
2348 	p->se.exec_start = rq_clock_task(rq);
2349 	if (on_dl_rq(&p->dl))
2350 		update_stats_wait_end_dl(dl_rq, dl_se);
2351 
2352 	/* You can't push away the running task */
2353 	dequeue_pushable_dl_task(rq, p);
2354 
2355 	if (!first)
2356 		return;
2357 
2358 	if (rq->donor->sched_class != &dl_sched_class)
2359 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2360 
2361 	deadline_queue_push_tasks(rq);
2362 
2363 	if (hrtick_enabled_dl(rq))
2364 		start_hrtick_dl(rq, &p->dl);
2365 }
2366 
pick_next_dl_entity(struct dl_rq * dl_rq)2367 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
2368 {
2369 	struct rb_node *left = rb_first_cached(&dl_rq->root);
2370 
2371 	if (!left)
2372 		return NULL;
2373 
2374 	return __node_2_dle(left);
2375 }
2376 
2377 /*
2378  * __pick_next_task_dl - Helper to pick the next -deadline task to run.
2379  * @rq: The runqueue to pick the next task from.
2380  */
__pick_task_dl(struct rq * rq)2381 static struct task_struct *__pick_task_dl(struct rq *rq)
2382 {
2383 	struct sched_dl_entity *dl_se;
2384 	struct dl_rq *dl_rq = &rq->dl;
2385 	struct task_struct *p;
2386 
2387 again:
2388 	if (!sched_dl_runnable(rq))
2389 		return NULL;
2390 
2391 	dl_se = pick_next_dl_entity(dl_rq);
2392 	WARN_ON_ONCE(!dl_se);
2393 
2394 	if (dl_server(dl_se)) {
2395 		p = dl_se->server_pick_task(dl_se);
2396 		if (!p) {
2397 			if (!dl_server_stopped(dl_se)) {
2398 				dl_se->dl_yielded = 1;
2399 				update_curr_dl_se(rq, dl_se, 0);
2400 			}
2401 			goto again;
2402 		}
2403 		rq->dl_server = dl_se;
2404 	} else {
2405 		p = dl_task_of(dl_se);
2406 	}
2407 
2408 	return p;
2409 }
2410 
pick_task_dl(struct rq * rq)2411 static struct task_struct *pick_task_dl(struct rq *rq)
2412 {
2413 	return __pick_task_dl(rq);
2414 }
2415 
put_prev_task_dl(struct rq * rq,struct task_struct * p,struct task_struct * next)2416 static void put_prev_task_dl(struct rq *rq, struct task_struct *p, struct task_struct *next)
2417 {
2418 	struct sched_dl_entity *dl_se = &p->dl;
2419 	struct dl_rq *dl_rq = &rq->dl;
2420 
2421 	if (on_dl_rq(&p->dl))
2422 		update_stats_wait_start_dl(dl_rq, dl_se);
2423 
2424 	update_curr_dl(rq);
2425 
2426 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2427 
2428 	if (task_is_blocked(p))
2429 		return;
2430 
2431 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
2432 		enqueue_pushable_dl_task(rq, p);
2433 }
2434 
2435 /*
2436  * scheduler tick hitting a task of our scheduling class.
2437  *
2438  * NOTE: This function can be called remotely by the tick offload that
2439  * goes along full dynticks. Therefore no local assumption can be made
2440  * and everything must be accessed through the @rq and @curr passed in
2441  * parameters.
2442  */
task_tick_dl(struct rq * rq,struct task_struct * p,int queued)2443 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
2444 {
2445 	update_curr_dl(rq);
2446 
2447 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2448 	/*
2449 	 * Even when we have runtime, update_curr_dl() might have resulted in us
2450 	 * not being the leftmost task anymore. In that case NEED_RESCHED will
2451 	 * be set and schedule() will start a new hrtick for the next task.
2452 	 */
2453 	if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
2454 	    is_leftmost(&p->dl, &rq->dl))
2455 		start_hrtick_dl(rq, &p->dl);
2456 }
2457 
task_fork_dl(struct task_struct * p)2458 static void task_fork_dl(struct task_struct *p)
2459 {
2460 	/*
2461 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
2462 	 * sched_fork()
2463 	 */
2464 }
2465 
2466 /* Only try algorithms three times */
2467 #define DL_MAX_TRIES 3
2468 
2469 /*
2470  * Return the earliest pushable rq's task, which is suitable to be executed
2471  * on the CPU, NULL otherwise:
2472  */
pick_earliest_pushable_dl_task(struct rq * rq,int cpu)2473 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
2474 {
2475 	struct task_struct *p = NULL;
2476 	struct rb_node *next_node;
2477 
2478 	if (!has_pushable_dl_tasks(rq))
2479 		return NULL;
2480 
2481 	next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
2482 	while (next_node) {
2483 		p = __node_2_pdl(next_node);
2484 
2485 		if (task_is_pushable(rq, p, cpu))
2486 			return p;
2487 
2488 		next_node = rb_next(next_node);
2489 	}
2490 
2491 	return NULL;
2492 }
2493 
2494 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
2495 
find_later_rq(struct task_struct * task)2496 static int find_later_rq(struct task_struct *task)
2497 {
2498 	struct sched_domain *sd;
2499 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
2500 	int this_cpu = smp_processor_id();
2501 	int cpu = task_cpu(task);
2502 
2503 	/* Make sure the mask is initialized first */
2504 	if (unlikely(!later_mask))
2505 		return -1;
2506 
2507 	if (task->nr_cpus_allowed == 1)
2508 		return -1;
2509 
2510 	/*
2511 	 * We have to consider system topology and task affinity
2512 	 * first, then we can look for a suitable CPU.
2513 	 */
2514 	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
2515 		return -1;
2516 
2517 	/*
2518 	 * If we are here, some targets have been found, including
2519 	 * the most suitable which is, among the runqueues where the
2520 	 * current tasks have later deadlines than the task's one, the
2521 	 * rq with the latest possible one.
2522 	 *
2523 	 * Now we check how well this matches with task's
2524 	 * affinity and system topology.
2525 	 *
2526 	 * The last CPU where the task run is our first
2527 	 * guess, since it is most likely cache-hot there.
2528 	 */
2529 	if (cpumask_test_cpu(cpu, later_mask))
2530 		return cpu;
2531 	/*
2532 	 * Check if this_cpu is to be skipped (i.e., it is
2533 	 * not in the mask) or not.
2534 	 */
2535 	if (!cpumask_test_cpu(this_cpu, later_mask))
2536 		this_cpu = -1;
2537 
2538 	rcu_read_lock();
2539 	for_each_domain(cpu, sd) {
2540 		if (sd->flags & SD_WAKE_AFFINE) {
2541 			int best_cpu;
2542 
2543 			/*
2544 			 * If possible, preempting this_cpu is
2545 			 * cheaper than migrating.
2546 			 */
2547 			if (this_cpu != -1 &&
2548 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2549 				rcu_read_unlock();
2550 				return this_cpu;
2551 			}
2552 
2553 			best_cpu = cpumask_any_and_distribute(later_mask,
2554 							      sched_domain_span(sd));
2555 			/*
2556 			 * Last chance: if a CPU being in both later_mask
2557 			 * and current sd span is valid, that becomes our
2558 			 * choice. Of course, the latest possible CPU is
2559 			 * already under consideration through later_mask.
2560 			 */
2561 			if (best_cpu < nr_cpu_ids) {
2562 				rcu_read_unlock();
2563 				return best_cpu;
2564 			}
2565 		}
2566 	}
2567 	rcu_read_unlock();
2568 
2569 	/*
2570 	 * At this point, all our guesses failed, we just return
2571 	 * 'something', and let the caller sort the things out.
2572 	 */
2573 	if (this_cpu != -1)
2574 		return this_cpu;
2575 
2576 	cpu = cpumask_any_distribute(later_mask);
2577 	if (cpu < nr_cpu_ids)
2578 		return cpu;
2579 
2580 	return -1;
2581 }
2582 
2583 /* Locks the rq it finds */
find_lock_later_rq(struct task_struct * task,struct rq * rq)2584 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2585 {
2586 	struct rq *later_rq = NULL;
2587 	int tries;
2588 	int cpu;
2589 
2590 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2591 		cpu = find_later_rq(task);
2592 
2593 		if ((cpu == -1) || (cpu == rq->cpu))
2594 			break;
2595 
2596 		later_rq = cpu_rq(cpu);
2597 
2598 		if (!dl_task_is_earliest_deadline(task, later_rq)) {
2599 			/*
2600 			 * Target rq has tasks of equal or earlier deadline,
2601 			 * retrying does not release any lock and is unlikely
2602 			 * to yield a different result.
2603 			 */
2604 			later_rq = NULL;
2605 			break;
2606 		}
2607 
2608 		/* Retry if something changed. */
2609 		if (double_lock_balance(rq, later_rq)) {
2610 			if (unlikely(task_rq(task) != rq ||
2611 				     !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2612 				     task_on_cpu(rq, task) ||
2613 				     !dl_task(task) ||
2614 				     is_migration_disabled(task) ||
2615 				     !task_on_rq_queued(task))) {
2616 				double_unlock_balance(rq, later_rq);
2617 				later_rq = NULL;
2618 				break;
2619 			}
2620 		}
2621 
2622 		/*
2623 		 * If the rq we found has no -deadline task, or
2624 		 * its earliest one has a later deadline than our
2625 		 * task, the rq is a good one.
2626 		 */
2627 		if (dl_task_is_earliest_deadline(task, later_rq))
2628 			break;
2629 
2630 		/* Otherwise we try again. */
2631 		double_unlock_balance(rq, later_rq);
2632 		later_rq = NULL;
2633 	}
2634 
2635 	return later_rq;
2636 }
2637 
pick_next_pushable_dl_task(struct rq * rq)2638 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2639 {
2640 	struct task_struct *p;
2641 
2642 	if (!has_pushable_dl_tasks(rq))
2643 		return NULL;
2644 
2645 	p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
2646 
2647 	WARN_ON_ONCE(rq->cpu != task_cpu(p));
2648 	WARN_ON_ONCE(task_current(rq, p));
2649 	WARN_ON_ONCE(p->nr_cpus_allowed <= 1);
2650 
2651 	WARN_ON_ONCE(!task_on_rq_queued(p));
2652 	WARN_ON_ONCE(!dl_task(p));
2653 
2654 	return p;
2655 }
2656 
2657 /*
2658  * See if the non running -deadline tasks on this rq
2659  * can be sent to some other CPU where they can preempt
2660  * and start executing.
2661  */
push_dl_task(struct rq * rq)2662 static int push_dl_task(struct rq *rq)
2663 {
2664 	struct task_struct *next_task;
2665 	struct rq *later_rq;
2666 	int ret = 0;
2667 
2668 	next_task = pick_next_pushable_dl_task(rq);
2669 	if (!next_task)
2670 		return 0;
2671 
2672 retry:
2673 	/*
2674 	 * If next_task preempts rq->curr, and rq->curr
2675 	 * can move away, it makes sense to just reschedule
2676 	 * without going further in pushing next_task.
2677 	 */
2678 	if (dl_task(rq->donor) &&
2679 	    dl_time_before(next_task->dl.deadline, rq->donor->dl.deadline) &&
2680 	    rq->curr->nr_cpus_allowed > 1) {
2681 		resched_curr(rq);
2682 		return 0;
2683 	}
2684 
2685 	if (is_migration_disabled(next_task))
2686 		return 0;
2687 
2688 	if (WARN_ON(next_task == rq->curr))
2689 		return 0;
2690 
2691 	/* We might release rq lock */
2692 	get_task_struct(next_task);
2693 
2694 	/* Will lock the rq it'll find */
2695 	later_rq = find_lock_later_rq(next_task, rq);
2696 	if (!later_rq) {
2697 		struct task_struct *task;
2698 
2699 		/*
2700 		 * We must check all this again, since
2701 		 * find_lock_later_rq releases rq->lock and it is
2702 		 * then possible that next_task has migrated.
2703 		 */
2704 		task = pick_next_pushable_dl_task(rq);
2705 		if (task == next_task) {
2706 			/*
2707 			 * The task is still there. We don't try
2708 			 * again, some other CPU will pull it when ready.
2709 			 */
2710 			goto out;
2711 		}
2712 
2713 		if (!task)
2714 			/* No more tasks */
2715 			goto out;
2716 
2717 		put_task_struct(next_task);
2718 		next_task = task;
2719 		goto retry;
2720 	}
2721 
2722 	move_queued_task_locked(rq, later_rq, next_task);
2723 	ret = 1;
2724 
2725 	resched_curr(later_rq);
2726 
2727 	double_unlock_balance(rq, later_rq);
2728 
2729 out:
2730 	put_task_struct(next_task);
2731 
2732 	return ret;
2733 }
2734 
push_dl_tasks(struct rq * rq)2735 static void push_dl_tasks(struct rq *rq)
2736 {
2737 	/* push_dl_task() will return true if it moved a -deadline task */
2738 	while (push_dl_task(rq))
2739 		;
2740 }
2741 
pull_dl_task(struct rq * this_rq)2742 static void pull_dl_task(struct rq *this_rq)
2743 {
2744 	int this_cpu = this_rq->cpu, cpu;
2745 	struct task_struct *p, *push_task;
2746 	bool resched = false;
2747 	struct rq *src_rq;
2748 	u64 dmin = LONG_MAX;
2749 
2750 	if (likely(!dl_overloaded(this_rq)))
2751 		return;
2752 
2753 	/*
2754 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2755 	 * see overloaded we must also see the dlo_mask bit.
2756 	 */
2757 	smp_rmb();
2758 
2759 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2760 		if (this_cpu == cpu)
2761 			continue;
2762 
2763 		src_rq = cpu_rq(cpu);
2764 
2765 		/*
2766 		 * It looks racy, and it is! However, as in sched_rt.c,
2767 		 * we are fine with this.
2768 		 */
2769 		if (this_rq->dl.dl_nr_running &&
2770 		    dl_time_before(this_rq->dl.earliest_dl.curr,
2771 				   src_rq->dl.earliest_dl.next))
2772 			continue;
2773 
2774 		/* Might drop this_rq->lock */
2775 		push_task = NULL;
2776 		double_lock_balance(this_rq, src_rq);
2777 
2778 		/*
2779 		 * If there are no more pullable tasks on the
2780 		 * rq, we're done with it.
2781 		 */
2782 		if (src_rq->dl.dl_nr_running <= 1)
2783 			goto skip;
2784 
2785 		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2786 
2787 		/*
2788 		 * We found a task to be pulled if:
2789 		 *  - it preempts our current (if there's one),
2790 		 *  - it will preempt the last one we pulled (if any).
2791 		 */
2792 		if (p && dl_time_before(p->dl.deadline, dmin) &&
2793 		    dl_task_is_earliest_deadline(p, this_rq)) {
2794 			WARN_ON(p == src_rq->curr);
2795 			WARN_ON(!task_on_rq_queued(p));
2796 
2797 			/*
2798 			 * Then we pull iff p has actually an earlier
2799 			 * deadline than the current task of its runqueue.
2800 			 */
2801 			if (dl_time_before(p->dl.deadline,
2802 					   src_rq->donor->dl.deadline))
2803 				goto skip;
2804 
2805 			if (is_migration_disabled(p)) {
2806 				push_task = get_push_task(src_rq);
2807 			} else {
2808 				move_queued_task_locked(src_rq, this_rq, p);
2809 				dmin = p->dl.deadline;
2810 				resched = true;
2811 			}
2812 
2813 			/* Is there any other task even earlier? */
2814 		}
2815 skip:
2816 		double_unlock_balance(this_rq, src_rq);
2817 
2818 		if (push_task) {
2819 			preempt_disable();
2820 			raw_spin_rq_unlock(this_rq);
2821 			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2822 					    push_task, &src_rq->push_work);
2823 			preempt_enable();
2824 			raw_spin_rq_lock(this_rq);
2825 		}
2826 	}
2827 
2828 	if (resched)
2829 		resched_curr(this_rq);
2830 }
2831 
2832 /*
2833  * Since the task is not running and a reschedule is not going to happen
2834  * anytime soon on its runqueue, we try pushing it away now.
2835  */
task_woken_dl(struct rq * rq,struct task_struct * p)2836 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2837 {
2838 	if (!task_on_cpu(rq, p) &&
2839 	    !test_tsk_need_resched(rq->curr) &&
2840 	    p->nr_cpus_allowed > 1 &&
2841 	    dl_task(rq->donor) &&
2842 	    (rq->curr->nr_cpus_allowed < 2 ||
2843 	     !dl_entity_preempt(&p->dl, &rq->donor->dl))) {
2844 		push_dl_tasks(rq);
2845 	}
2846 }
2847 
set_cpus_allowed_dl(struct task_struct * p,struct affinity_context * ctx)2848 static void set_cpus_allowed_dl(struct task_struct *p,
2849 				struct affinity_context *ctx)
2850 {
2851 	struct root_domain *src_rd;
2852 	struct rq *rq;
2853 
2854 	WARN_ON_ONCE(!dl_task(p));
2855 
2856 	rq = task_rq(p);
2857 	src_rd = rq->rd;
2858 	/*
2859 	 * Migrating a SCHED_DEADLINE task between exclusive
2860 	 * cpusets (different root_domains) entails a bandwidth
2861 	 * update. We already made space for us in the destination
2862 	 * domain (see cpuset_can_attach()).
2863 	 */
2864 	if (!cpumask_intersects(src_rd->span, ctx->new_mask)) {
2865 		struct dl_bw *src_dl_b;
2866 
2867 		src_dl_b = dl_bw_of(cpu_of(rq));
2868 		/*
2869 		 * We now free resources of the root_domain we are migrating
2870 		 * off. In the worst case, sched_setattr() may temporary fail
2871 		 * until we complete the update.
2872 		 */
2873 		raw_spin_lock(&src_dl_b->lock);
2874 		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2875 		raw_spin_unlock(&src_dl_b->lock);
2876 	}
2877 
2878 	set_cpus_allowed_common(p, ctx);
2879 }
2880 
2881 /* Assumes rq->lock is held */
rq_online_dl(struct rq * rq)2882 static void rq_online_dl(struct rq *rq)
2883 {
2884 	if (rq->dl.overloaded)
2885 		dl_set_overload(rq);
2886 
2887 	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2888 	if (rq->dl.dl_nr_running > 0)
2889 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2890 }
2891 
2892 /* Assumes rq->lock is held */
rq_offline_dl(struct rq * rq)2893 static void rq_offline_dl(struct rq *rq)
2894 {
2895 	if (rq->dl.overloaded)
2896 		dl_clear_overload(rq);
2897 
2898 	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2899 	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2900 }
2901 
init_sched_dl_class(void)2902 void __init init_sched_dl_class(void)
2903 {
2904 	unsigned int i;
2905 
2906 	for_each_possible_cpu(i)
2907 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2908 					GFP_KERNEL, cpu_to_node(i));
2909 }
2910 
dl_add_task_root_domain(struct task_struct * p)2911 void dl_add_task_root_domain(struct task_struct *p)
2912 {
2913 	struct rq_flags rf;
2914 	struct rq *rq;
2915 	struct dl_bw *dl_b;
2916 
2917 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2918 	if (!dl_task(p) || dl_entity_is_special(&p->dl)) {
2919 		raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2920 		return;
2921 	}
2922 
2923 	rq = __task_rq_lock(p, &rf);
2924 
2925 	dl_b = &rq->rd->dl_bw;
2926 	raw_spin_lock(&dl_b->lock);
2927 
2928 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2929 
2930 	raw_spin_unlock(&dl_b->lock);
2931 
2932 	task_rq_unlock(rq, p, &rf);
2933 }
2934 
dl_clear_root_domain(struct root_domain * rd)2935 void dl_clear_root_domain(struct root_domain *rd)
2936 {
2937 	int i;
2938 
2939 	guard(raw_spinlock_irqsave)(&rd->dl_bw.lock);
2940 
2941 	/*
2942 	 * Reset total_bw to zero and extra_bw to max_bw so that next
2943 	 * loop will add dl-servers contributions back properly,
2944 	 */
2945 	rd->dl_bw.total_bw = 0;
2946 	for_each_cpu(i, rd->span)
2947 		cpu_rq(i)->dl.extra_bw = cpu_rq(i)->dl.max_bw;
2948 
2949 	/*
2950 	 * dl_servers are not tasks. Since dl_add_task_root_domain ignores
2951 	 * them, we need to account for them here explicitly.
2952 	 */
2953 	for_each_cpu(i, rd->span) {
2954 		struct sched_dl_entity *dl_se = &cpu_rq(i)->fair_server;
2955 
2956 		if (dl_server(dl_se) && cpu_active(i))
2957 			__dl_add(&rd->dl_bw, dl_se->dl_bw, dl_bw_cpus(i));
2958 	}
2959 }
2960 
dl_clear_root_domain_cpu(int cpu)2961 void dl_clear_root_domain_cpu(int cpu)
2962 {
2963 	dl_clear_root_domain(cpu_rq(cpu)->rd);
2964 }
2965 
switched_from_dl(struct rq * rq,struct task_struct * p)2966 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2967 {
2968 	/*
2969 	 * task_non_contending() can start the "inactive timer" (if the 0-lag
2970 	 * time is in the future). If the task switches back to dl before
2971 	 * the "inactive timer" fires, it can continue to consume its current
2972 	 * runtime using its current deadline. If it stays outside of
2973 	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2974 	 * will reset the task parameters.
2975 	 */
2976 	if (task_on_rq_queued(p) && p->dl.dl_runtime)
2977 		task_non_contending(&p->dl);
2978 
2979 	/*
2980 	 * In case a task is setscheduled out from SCHED_DEADLINE we need to
2981 	 * keep track of that on its cpuset (for correct bandwidth tracking).
2982 	 */
2983 	dec_dl_tasks_cs(p);
2984 
2985 	if (!task_on_rq_queued(p)) {
2986 		/*
2987 		 * Inactive timer is armed. However, p is leaving DEADLINE and
2988 		 * might migrate away from this rq while continuing to run on
2989 		 * some other class. We need to remove its contribution from
2990 		 * this rq running_bw now, or sub_rq_bw (below) will complain.
2991 		 */
2992 		if (p->dl.dl_non_contending)
2993 			sub_running_bw(&p->dl, &rq->dl);
2994 		sub_rq_bw(&p->dl, &rq->dl);
2995 	}
2996 
2997 	/*
2998 	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2999 	 * at the 0-lag time, because the task could have been migrated
3000 	 * while SCHED_OTHER in the meanwhile.
3001 	 */
3002 	if (p->dl.dl_non_contending)
3003 		p->dl.dl_non_contending = 0;
3004 
3005 	/*
3006 	 * Since this might be the only -deadline task on the rq,
3007 	 * this is the right place to try to pull some other one
3008 	 * from an overloaded CPU, if any.
3009 	 */
3010 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
3011 		return;
3012 
3013 	deadline_queue_pull_task(rq);
3014 }
3015 
3016 /*
3017  * When switching to -deadline, we may overload the rq, then
3018  * we try to push someone off, if possible.
3019  */
switched_to_dl(struct rq * rq,struct task_struct * p)3020 static void switched_to_dl(struct rq *rq, struct task_struct *p)
3021 {
3022 	cancel_inactive_timer(&p->dl);
3023 
3024 	/*
3025 	 * In case a task is setscheduled to SCHED_DEADLINE we need to keep
3026 	 * track of that on its cpuset (for correct bandwidth tracking).
3027 	 */
3028 	inc_dl_tasks_cs(p);
3029 
3030 	/* If p is not queued we will update its parameters at next wakeup. */
3031 	if (!task_on_rq_queued(p)) {
3032 		add_rq_bw(&p->dl, &rq->dl);
3033 
3034 		return;
3035 	}
3036 
3037 	if (rq->donor != p) {
3038 		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
3039 			deadline_queue_push_tasks(rq);
3040 		if (dl_task(rq->donor))
3041 			wakeup_preempt_dl(rq, p, 0);
3042 		else
3043 			resched_curr(rq);
3044 	} else {
3045 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
3046 	}
3047 }
3048 
3049 /*
3050  * If the scheduling parameters of a -deadline task changed,
3051  * a push or pull operation might be needed.
3052  */
prio_changed_dl(struct rq * rq,struct task_struct * p,int oldprio)3053 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
3054 			    int oldprio)
3055 {
3056 	if (!task_on_rq_queued(p))
3057 		return;
3058 
3059 	/*
3060 	 * This might be too much, but unfortunately
3061 	 * we don't have the old deadline value, and
3062 	 * we can't argue if the task is increasing
3063 	 * or lowering its prio, so...
3064 	 */
3065 	if (!rq->dl.overloaded)
3066 		deadline_queue_pull_task(rq);
3067 
3068 	if (task_current_donor(rq, p)) {
3069 		/*
3070 		 * If we now have a earlier deadline task than p,
3071 		 * then reschedule, provided p is still on this
3072 		 * runqueue.
3073 		 */
3074 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
3075 			resched_curr(rq);
3076 	} else {
3077 		/*
3078 		 * Current may not be deadline in case p was throttled but we
3079 		 * have just replenished it (e.g. rt_mutex_setprio()).
3080 		 *
3081 		 * Otherwise, if p was given an earlier deadline, reschedule.
3082 		 */
3083 		if (!dl_task(rq->curr) ||
3084 		    dl_time_before(p->dl.deadline, rq->curr->dl.deadline))
3085 			resched_curr(rq);
3086 	}
3087 }
3088 
3089 #ifdef CONFIG_SCHED_CORE
task_is_throttled_dl(struct task_struct * p,int cpu)3090 static int task_is_throttled_dl(struct task_struct *p, int cpu)
3091 {
3092 	return p->dl.dl_throttled;
3093 }
3094 #endif
3095 
3096 DEFINE_SCHED_CLASS(dl) = {
3097 
3098 	.enqueue_task		= enqueue_task_dl,
3099 	.dequeue_task		= dequeue_task_dl,
3100 	.yield_task		= yield_task_dl,
3101 
3102 	.wakeup_preempt		= wakeup_preempt_dl,
3103 
3104 	.pick_task		= pick_task_dl,
3105 	.put_prev_task		= put_prev_task_dl,
3106 	.set_next_task		= set_next_task_dl,
3107 
3108 	.balance		= balance_dl,
3109 	.select_task_rq		= select_task_rq_dl,
3110 	.migrate_task_rq	= migrate_task_rq_dl,
3111 	.set_cpus_allowed       = set_cpus_allowed_dl,
3112 	.rq_online              = rq_online_dl,
3113 	.rq_offline             = rq_offline_dl,
3114 	.task_woken		= task_woken_dl,
3115 	.find_lock_rq		= find_lock_later_rq,
3116 
3117 	.task_tick		= task_tick_dl,
3118 	.task_fork              = task_fork_dl,
3119 
3120 	.prio_changed           = prio_changed_dl,
3121 	.switched_from		= switched_from_dl,
3122 	.switched_to		= switched_to_dl,
3123 
3124 	.update_curr		= update_curr_dl,
3125 #ifdef CONFIG_SCHED_CORE
3126 	.task_is_throttled	= task_is_throttled_dl,
3127 #endif
3128 };
3129 
3130 /*
3131  * Used for dl_bw check and update, used under sched_rt_handler()::mutex and
3132  * sched_domains_mutex.
3133  */
3134 u64 dl_cookie;
3135 
sched_dl_global_validate(void)3136 int sched_dl_global_validate(void)
3137 {
3138 	u64 runtime = global_rt_runtime();
3139 	u64 period = global_rt_period();
3140 	u64 new_bw = to_ratio(period, runtime);
3141 	u64 cookie = ++dl_cookie;
3142 	struct dl_bw *dl_b;
3143 	int cpu, cpus, ret = 0;
3144 	unsigned long flags;
3145 
3146 	/*
3147 	 * Here we want to check the bandwidth not being set to some
3148 	 * value smaller than the currently allocated bandwidth in
3149 	 * any of the root_domains.
3150 	 */
3151 	for_each_online_cpu(cpu) {
3152 		rcu_read_lock_sched();
3153 
3154 		if (dl_bw_visited(cpu, cookie))
3155 			goto next;
3156 
3157 		dl_b = dl_bw_of(cpu);
3158 		cpus = dl_bw_cpus(cpu);
3159 
3160 		raw_spin_lock_irqsave(&dl_b->lock, flags);
3161 		if (new_bw * cpus < dl_b->total_bw)
3162 			ret = -EBUSY;
3163 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3164 
3165 next:
3166 		rcu_read_unlock_sched();
3167 
3168 		if (ret)
3169 			break;
3170 	}
3171 
3172 	return ret;
3173 }
3174 
init_dl_rq_bw_ratio(struct dl_rq * dl_rq)3175 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
3176 {
3177 	if (global_rt_runtime() == RUNTIME_INF) {
3178 		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
3179 		dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT;
3180 	} else {
3181 		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
3182 			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
3183 		dl_rq->max_bw = dl_rq->extra_bw =
3184 			to_ratio(global_rt_period(), global_rt_runtime());
3185 	}
3186 }
3187 
sched_dl_do_global(void)3188 void sched_dl_do_global(void)
3189 {
3190 	u64 new_bw = -1;
3191 	u64 cookie = ++dl_cookie;
3192 	struct dl_bw *dl_b;
3193 	int cpu;
3194 	unsigned long flags;
3195 
3196 	if (global_rt_runtime() != RUNTIME_INF)
3197 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
3198 
3199 	for_each_possible_cpu(cpu)
3200 		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
3201 
3202 	for_each_possible_cpu(cpu) {
3203 		rcu_read_lock_sched();
3204 
3205 		if (dl_bw_visited(cpu, cookie)) {
3206 			rcu_read_unlock_sched();
3207 			continue;
3208 		}
3209 
3210 		dl_b = dl_bw_of(cpu);
3211 
3212 		raw_spin_lock_irqsave(&dl_b->lock, flags);
3213 		dl_b->bw = new_bw;
3214 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3215 
3216 		rcu_read_unlock_sched();
3217 	}
3218 }
3219 
3220 /*
3221  * We must be sure that accepting a new task (or allowing changing the
3222  * parameters of an existing one) is consistent with the bandwidth
3223  * constraints. If yes, this function also accordingly updates the currently
3224  * allocated bandwidth to reflect the new situation.
3225  *
3226  * This function is called while holding p's rq->lock.
3227  */
sched_dl_overflow(struct task_struct * p,int policy,const struct sched_attr * attr)3228 int sched_dl_overflow(struct task_struct *p, int policy,
3229 		      const struct sched_attr *attr)
3230 {
3231 	u64 period = attr->sched_period ?: attr->sched_deadline;
3232 	u64 runtime = attr->sched_runtime;
3233 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
3234 	int cpus, err = -1, cpu = task_cpu(p);
3235 	struct dl_bw *dl_b = dl_bw_of(cpu);
3236 	unsigned long cap;
3237 
3238 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
3239 		return 0;
3240 
3241 	/* !deadline task may carry old deadline bandwidth */
3242 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
3243 		return 0;
3244 
3245 	/*
3246 	 * Either if a task, enters, leave, or stays -deadline but changes
3247 	 * its parameters, we may need to update accordingly the total
3248 	 * allocated bandwidth of the container.
3249 	 */
3250 	raw_spin_lock(&dl_b->lock);
3251 	cpus = dl_bw_cpus(cpu);
3252 	cap = dl_bw_capacity(cpu);
3253 
3254 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
3255 	    !__dl_overflow(dl_b, cap, 0, new_bw)) {
3256 		if (hrtimer_active(&p->dl.inactive_timer))
3257 			__dl_sub(dl_b, p->dl.dl_bw, cpus);
3258 		__dl_add(dl_b, new_bw, cpus);
3259 		err = 0;
3260 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
3261 		   !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
3262 		/*
3263 		 * XXX this is slightly incorrect: when the task
3264 		 * utilization decreases, we should delay the total
3265 		 * utilization change until the task's 0-lag point.
3266 		 * But this would require to set the task's "inactive
3267 		 * timer" when the task is not inactive.
3268 		 */
3269 		__dl_sub(dl_b, p->dl.dl_bw, cpus);
3270 		__dl_add(dl_b, new_bw, cpus);
3271 		dl_change_utilization(p, new_bw);
3272 		err = 0;
3273 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
3274 		/*
3275 		 * Do not decrease the total deadline utilization here,
3276 		 * switched_from_dl() will take care to do it at the correct
3277 		 * (0-lag) time.
3278 		 */
3279 		err = 0;
3280 	}
3281 	raw_spin_unlock(&dl_b->lock);
3282 
3283 	return err;
3284 }
3285 
3286 /*
3287  * This function initializes the sched_dl_entity of a newly becoming
3288  * SCHED_DEADLINE task.
3289  *
3290  * Only the static values are considered here, the actual runtime and the
3291  * absolute deadline will be properly calculated when the task is enqueued
3292  * for the first time with its new policy.
3293  */
__setparam_dl(struct task_struct * p,const struct sched_attr * attr)3294 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3295 {
3296 	struct sched_dl_entity *dl_se = &p->dl;
3297 
3298 	dl_se->dl_runtime = attr->sched_runtime;
3299 	dl_se->dl_deadline = attr->sched_deadline;
3300 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3301 	dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
3302 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3303 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
3304 }
3305 
__getparam_dl(struct task_struct * p,struct sched_attr * attr)3306 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3307 {
3308 	struct sched_dl_entity *dl_se = &p->dl;
3309 
3310 	attr->sched_priority = p->rt_priority;
3311 	attr->sched_runtime = dl_se->dl_runtime;
3312 	attr->sched_deadline = dl_se->dl_deadline;
3313 	attr->sched_period = dl_se->dl_period;
3314 	attr->sched_flags &= ~SCHED_DL_FLAGS;
3315 	attr->sched_flags |= dl_se->flags;
3316 }
3317 
3318 /*
3319  * This function validates the new parameters of a -deadline task.
3320  * We ask for the deadline not being zero, and greater or equal
3321  * than the runtime, as well as the period of being zero or
3322  * greater than deadline. Furthermore, we have to be sure that
3323  * user parameters are above the internal resolution of 1us (we
3324  * check sched_runtime only since it is always the smaller one) and
3325  * below 2^63 ns (we have to check both sched_deadline and
3326  * sched_period, as the latter can be zero).
3327  */
__checkparam_dl(const struct sched_attr * attr)3328 bool __checkparam_dl(const struct sched_attr *attr)
3329 {
3330 	u64 period, max, min;
3331 
3332 	/* special dl tasks don't actually use any parameter */
3333 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
3334 		return true;
3335 
3336 	/* deadline != 0 */
3337 	if (attr->sched_deadline == 0)
3338 		return false;
3339 
3340 	/*
3341 	 * Since we truncate DL_SCALE bits, make sure we're at least
3342 	 * that big.
3343 	 */
3344 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3345 		return false;
3346 
3347 	/*
3348 	 * Since we use the MSB for wrap-around and sign issues, make
3349 	 * sure it's not set (mind that period can be equal to zero).
3350 	 */
3351 	if (attr->sched_deadline & (1ULL << 63) ||
3352 	    attr->sched_period & (1ULL << 63))
3353 		return false;
3354 
3355 	period = attr->sched_period;
3356 	if (!period)
3357 		period = attr->sched_deadline;
3358 
3359 	/* runtime <= deadline <= period (if period != 0) */
3360 	if (period < attr->sched_deadline ||
3361 	    attr->sched_deadline < attr->sched_runtime)
3362 		return false;
3363 
3364 	max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
3365 	min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
3366 
3367 	if (period < min || period > max)
3368 		return false;
3369 
3370 	return true;
3371 }
3372 
3373 /*
3374  * This function clears the sched_dl_entity static params.
3375  */
__dl_clear_params(struct sched_dl_entity * dl_se)3376 static void __dl_clear_params(struct sched_dl_entity *dl_se)
3377 {
3378 	dl_se->dl_runtime		= 0;
3379 	dl_se->dl_deadline		= 0;
3380 	dl_se->dl_period		= 0;
3381 	dl_se->flags			= 0;
3382 	dl_se->dl_bw			= 0;
3383 	dl_se->dl_density		= 0;
3384 
3385 	dl_se->dl_throttled		= 0;
3386 	dl_se->dl_yielded		= 0;
3387 	dl_se->dl_non_contending	= 0;
3388 	dl_se->dl_overrun		= 0;
3389 	dl_se->dl_server		= 0;
3390 
3391 #ifdef CONFIG_RT_MUTEXES
3392 	dl_se->pi_se			= dl_se;
3393 #endif
3394 }
3395 
init_dl_entity(struct sched_dl_entity * dl_se)3396 void init_dl_entity(struct sched_dl_entity *dl_se)
3397 {
3398 	RB_CLEAR_NODE(&dl_se->rb_node);
3399 	init_dl_task_timer(dl_se);
3400 	init_dl_inactive_task_timer(dl_se);
3401 	__dl_clear_params(dl_se);
3402 }
3403 
dl_param_changed(struct task_struct * p,const struct sched_attr * attr)3404 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
3405 {
3406 	struct sched_dl_entity *dl_se = &p->dl;
3407 
3408 	if (dl_se->dl_runtime != attr->sched_runtime ||
3409 	    dl_se->dl_deadline != attr->sched_deadline ||
3410 	    dl_se->dl_period != attr->sched_period ||
3411 	    dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
3412 		return true;
3413 
3414 	return false;
3415 }
3416 
dl_cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)3417 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
3418 				 const struct cpumask *trial)
3419 {
3420 	unsigned long flags, cap;
3421 	struct dl_bw *cur_dl_b;
3422 	int ret = 1;
3423 
3424 	rcu_read_lock_sched();
3425 	cur_dl_b = dl_bw_of(cpumask_any(cur));
3426 	cap = __dl_bw_capacity(trial);
3427 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
3428 	if (__dl_overflow(cur_dl_b, cap, 0, 0))
3429 		ret = 0;
3430 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
3431 	rcu_read_unlock_sched();
3432 
3433 	return ret;
3434 }
3435 
3436 enum dl_bw_request {
3437 	dl_bw_req_deactivate = 0,
3438 	dl_bw_req_alloc,
3439 	dl_bw_req_free
3440 };
3441 
dl_bw_manage(enum dl_bw_request req,int cpu,u64 dl_bw)3442 static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw)
3443 {
3444 	unsigned long flags, cap;
3445 	struct dl_bw *dl_b;
3446 	bool overflow = 0;
3447 	u64 fair_server_bw = 0;
3448 
3449 	rcu_read_lock_sched();
3450 	dl_b = dl_bw_of(cpu);
3451 	raw_spin_lock_irqsave(&dl_b->lock, flags);
3452 
3453 	cap = dl_bw_capacity(cpu);
3454 	switch (req) {
3455 	case dl_bw_req_free:
3456 		__dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu));
3457 		break;
3458 	case dl_bw_req_alloc:
3459 		overflow = __dl_overflow(dl_b, cap, 0, dl_bw);
3460 
3461 		if (!overflow) {
3462 			/*
3463 			 * We reserve space in the destination
3464 			 * root_domain, as we can't fail after this point.
3465 			 * We will free resources in the source root_domain
3466 			 * later on (see set_cpus_allowed_dl()).
3467 			 */
3468 			__dl_add(dl_b, dl_bw, dl_bw_cpus(cpu));
3469 		}
3470 		break;
3471 	case dl_bw_req_deactivate:
3472 		/*
3473 		 * cpu is not off yet, but we need to do the math by
3474 		 * considering it off already (i.e., what would happen if we
3475 		 * turn cpu off?).
3476 		 */
3477 		cap -= arch_scale_cpu_capacity(cpu);
3478 
3479 		/*
3480 		 * cpu is going offline and NORMAL tasks will be moved away
3481 		 * from it. We can thus discount dl_server bandwidth
3482 		 * contribution as it won't need to be servicing tasks after
3483 		 * the cpu is off.
3484 		 */
3485 		if (cpu_rq(cpu)->fair_server.dl_server)
3486 			fair_server_bw = cpu_rq(cpu)->fair_server.dl_bw;
3487 
3488 		/*
3489 		 * Not much to check if no DEADLINE bandwidth is present.
3490 		 * dl_servers we can discount, as tasks will be moved out the
3491 		 * offlined CPUs anyway.
3492 		 */
3493 		if (dl_b->total_bw - fair_server_bw > 0) {
3494 			/*
3495 			 * Leaving at least one CPU for DEADLINE tasks seems a
3496 			 * wise thing to do. As said above, cpu is not offline
3497 			 * yet, so account for that.
3498 			 */
3499 			if (dl_bw_cpus(cpu) - 1)
3500 				overflow = __dl_overflow(dl_b, cap, fair_server_bw, 0);
3501 			else
3502 				overflow = 1;
3503 		}
3504 
3505 		break;
3506 	}
3507 
3508 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3509 	rcu_read_unlock_sched();
3510 
3511 	return overflow ? -EBUSY : 0;
3512 }
3513 
dl_bw_deactivate(int cpu)3514 int dl_bw_deactivate(int cpu)
3515 {
3516 	return dl_bw_manage(dl_bw_req_deactivate, cpu, 0);
3517 }
3518 
dl_bw_alloc(int cpu,u64 dl_bw)3519 int dl_bw_alloc(int cpu, u64 dl_bw)
3520 {
3521 	return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw);
3522 }
3523 
dl_bw_free(int cpu,u64 dl_bw)3524 void dl_bw_free(int cpu, u64 dl_bw)
3525 {
3526 	dl_bw_manage(dl_bw_req_free, cpu, dl_bw);
3527 }
3528 
print_dl_stats(struct seq_file * m,int cpu)3529 void print_dl_stats(struct seq_file *m, int cpu)
3530 {
3531 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
3532 }
3533