1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Deadline Scheduling Class (SCHED_DEADLINE)
4 *
5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 *
7 * Tasks that periodically executes their instances for less than their
8 * runtime won't miss any of their deadlines.
9 * Tasks that are not periodic or sporadic or that tries to execute more
10 * than their reserved bandwidth will be slowed down (and may potentially
11 * miss some of their deadlines), and won't affect any other task.
12 *
13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14 * Juri Lelli <juri.lelli@gmail.com>,
15 * Michael Trimarchi <michael@amarulasolutions.com>,
16 * Fabio Checconi <fchecconi@gmail.com>
17 */
18
19 #include <linux/cpuset.h>
20 #include <linux/sched/clock.h>
21 #include <uapi/linux/sched/types.h>
22 #include "sched.h"
23 #include "pelt.h"
24
25 /*
26 * Default limits for DL period; on the top end we guard against small util
27 * tasks still getting ridiculously long effective runtimes, on the bottom end we
28 * guard against timer DoS.
29 */
30 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
31 static unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */
32 #ifdef CONFIG_SYSCTL
33 static const struct ctl_table sched_dl_sysctls[] = {
34 {
35 .procname = "sched_deadline_period_max_us",
36 .data = &sysctl_sched_dl_period_max,
37 .maxlen = sizeof(unsigned int),
38 .mode = 0644,
39 .proc_handler = proc_douintvec_minmax,
40 .extra1 = (void *)&sysctl_sched_dl_period_min,
41 },
42 {
43 .procname = "sched_deadline_period_min_us",
44 .data = &sysctl_sched_dl_period_min,
45 .maxlen = sizeof(unsigned int),
46 .mode = 0644,
47 .proc_handler = proc_douintvec_minmax,
48 .extra2 = (void *)&sysctl_sched_dl_period_max,
49 },
50 };
51
sched_dl_sysctl_init(void)52 static int __init sched_dl_sysctl_init(void)
53 {
54 register_sysctl_init("kernel", sched_dl_sysctls);
55 return 0;
56 }
57 late_initcall(sched_dl_sysctl_init);
58 #endif /* CONFIG_SYSCTL */
59
dl_server(struct sched_dl_entity * dl_se)60 static bool dl_server(struct sched_dl_entity *dl_se)
61 {
62 return dl_se->dl_server;
63 }
64
dl_task_of(struct sched_dl_entity * dl_se)65 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
66 {
67 BUG_ON(dl_server(dl_se));
68 return container_of(dl_se, struct task_struct, dl);
69 }
70
rq_of_dl_rq(struct dl_rq * dl_rq)71 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
72 {
73 return container_of(dl_rq, struct rq, dl);
74 }
75
rq_of_dl_se(struct sched_dl_entity * dl_se)76 static inline struct rq *rq_of_dl_se(struct sched_dl_entity *dl_se)
77 {
78 struct rq *rq = dl_se->rq;
79
80 if (!dl_server(dl_se))
81 rq = task_rq(dl_task_of(dl_se));
82
83 return rq;
84 }
85
dl_rq_of_se(struct sched_dl_entity * dl_se)86 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
87 {
88 return &rq_of_dl_se(dl_se)->dl;
89 }
90
on_dl_rq(struct sched_dl_entity * dl_se)91 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
92 {
93 return !RB_EMPTY_NODE(&dl_se->rb_node);
94 }
95
96 #ifdef CONFIG_RT_MUTEXES
pi_of(struct sched_dl_entity * dl_se)97 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
98 {
99 return dl_se->pi_se;
100 }
101
is_dl_boosted(struct sched_dl_entity * dl_se)102 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
103 {
104 return pi_of(dl_se) != dl_se;
105 }
106 #else /* !CONFIG_RT_MUTEXES: */
pi_of(struct sched_dl_entity * dl_se)107 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
108 {
109 return dl_se;
110 }
111
is_dl_boosted(struct sched_dl_entity * dl_se)112 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
113 {
114 return false;
115 }
116 #endif /* !CONFIG_RT_MUTEXES */
117
dl_bw_of(int i)118 static inline struct dl_bw *dl_bw_of(int i)
119 {
120 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
121 "sched RCU must be held");
122 return &cpu_rq(i)->rd->dl_bw;
123 }
124
dl_bw_cpus(int i)125 static inline int dl_bw_cpus(int i)
126 {
127 struct root_domain *rd = cpu_rq(i)->rd;
128 int cpus;
129
130 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
131 "sched RCU must be held");
132
133 if (cpumask_subset(rd->span, cpu_active_mask))
134 return cpumask_weight(rd->span);
135
136 cpus = 0;
137
138 for_each_cpu_and(i, rd->span, cpu_active_mask)
139 cpus++;
140
141 return cpus;
142 }
143
__dl_bw_capacity(const struct cpumask * mask)144 static inline unsigned long __dl_bw_capacity(const struct cpumask *mask)
145 {
146 unsigned long cap = 0;
147 int i;
148
149 for_each_cpu_and(i, mask, cpu_active_mask)
150 cap += arch_scale_cpu_capacity(i);
151
152 return cap;
153 }
154
155 /*
156 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
157 * of the CPU the task is running on rather rd's \Sum CPU capacity.
158 */
dl_bw_capacity(int i)159 static inline unsigned long dl_bw_capacity(int i)
160 {
161 if (!sched_asym_cpucap_active() &&
162 arch_scale_cpu_capacity(i) == SCHED_CAPACITY_SCALE) {
163 return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
164 } else {
165 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
166 "sched RCU must be held");
167
168 return __dl_bw_capacity(cpu_rq(i)->rd->span);
169 }
170 }
171
dl_bw_visited(int cpu,u64 cookie)172 bool dl_bw_visited(int cpu, u64 cookie)
173 {
174 struct root_domain *rd = cpu_rq(cpu)->rd;
175
176 if (rd->visit_cookie == cookie)
177 return true;
178
179 rd->visit_cookie = cookie;
180 return false;
181 }
182
183 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)184 void __dl_update(struct dl_bw *dl_b, s64 bw)
185 {
186 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
187 int i;
188
189 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
190 "sched RCU must be held");
191 for_each_cpu_and(i, rd->span, cpu_active_mask) {
192 struct rq *rq = cpu_rq(i);
193
194 rq->dl.extra_bw += bw;
195 }
196 }
197
198 static inline
__dl_sub(struct dl_bw * dl_b,u64 tsk_bw,int cpus)199 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
200 {
201 dl_b->total_bw -= tsk_bw;
202 __dl_update(dl_b, (s32)tsk_bw / cpus);
203 }
204
205 static inline
__dl_add(struct dl_bw * dl_b,u64 tsk_bw,int cpus)206 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
207 {
208 dl_b->total_bw += tsk_bw;
209 __dl_update(dl_b, -((s32)tsk_bw / cpus));
210 }
211
212 static inline bool
__dl_overflow(struct dl_bw * dl_b,unsigned long cap,u64 old_bw,u64 new_bw)213 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
214 {
215 return dl_b->bw != -1 &&
216 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
217 }
218
219 static inline
__add_running_bw(u64 dl_bw,struct dl_rq * dl_rq)220 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
221 {
222 u64 old = dl_rq->running_bw;
223
224 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
225 dl_rq->running_bw += dl_bw;
226 WARN_ON_ONCE(dl_rq->running_bw < old); /* overflow */
227 WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw);
228 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
229 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
230 }
231
232 static inline
__sub_running_bw(u64 dl_bw,struct dl_rq * dl_rq)233 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
234 {
235 u64 old = dl_rq->running_bw;
236
237 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
238 dl_rq->running_bw -= dl_bw;
239 WARN_ON_ONCE(dl_rq->running_bw > old); /* underflow */
240 if (dl_rq->running_bw > old)
241 dl_rq->running_bw = 0;
242 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
243 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
244 }
245
246 static inline
__add_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)247 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
248 {
249 u64 old = dl_rq->this_bw;
250
251 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
252 dl_rq->this_bw += dl_bw;
253 WARN_ON_ONCE(dl_rq->this_bw < old); /* overflow */
254 }
255
256 static inline
__sub_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)257 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
258 {
259 u64 old = dl_rq->this_bw;
260
261 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
262 dl_rq->this_bw -= dl_bw;
263 WARN_ON_ONCE(dl_rq->this_bw > old); /* underflow */
264 if (dl_rq->this_bw > old)
265 dl_rq->this_bw = 0;
266 WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw);
267 }
268
269 static inline
add_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)270 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
271 {
272 if (!dl_entity_is_special(dl_se))
273 __add_rq_bw(dl_se->dl_bw, dl_rq);
274 }
275
276 static inline
sub_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)277 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
278 {
279 if (!dl_entity_is_special(dl_se))
280 __sub_rq_bw(dl_se->dl_bw, dl_rq);
281 }
282
283 static inline
add_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)284 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
285 {
286 if (!dl_entity_is_special(dl_se))
287 __add_running_bw(dl_se->dl_bw, dl_rq);
288 }
289
290 static inline
sub_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)291 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
292 {
293 if (!dl_entity_is_special(dl_se))
294 __sub_running_bw(dl_se->dl_bw, dl_rq);
295 }
296
dl_rq_change_utilization(struct rq * rq,struct sched_dl_entity * dl_se,u64 new_bw)297 static void dl_rq_change_utilization(struct rq *rq, struct sched_dl_entity *dl_se, u64 new_bw)
298 {
299 if (dl_se->dl_non_contending) {
300 sub_running_bw(dl_se, &rq->dl);
301 dl_se->dl_non_contending = 0;
302
303 /*
304 * If the timer handler is currently running and the
305 * timer cannot be canceled, inactive_task_timer()
306 * will see that dl_not_contending is not set, and
307 * will not touch the rq's active utilization,
308 * so we are still safe.
309 */
310 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) {
311 if (!dl_server(dl_se))
312 put_task_struct(dl_task_of(dl_se));
313 }
314 }
315 __sub_rq_bw(dl_se->dl_bw, &rq->dl);
316 __add_rq_bw(new_bw, &rq->dl);
317 }
318
319 static __always_inline
cancel_dl_timer(struct sched_dl_entity * dl_se,struct hrtimer * timer)320 void cancel_dl_timer(struct sched_dl_entity *dl_se, struct hrtimer *timer)
321 {
322 /*
323 * If the timer callback was running (hrtimer_try_to_cancel == -1),
324 * it will eventually call put_task_struct().
325 */
326 if (hrtimer_try_to_cancel(timer) == 1 && !dl_server(dl_se))
327 put_task_struct(dl_task_of(dl_se));
328 }
329
330 static __always_inline
cancel_replenish_timer(struct sched_dl_entity * dl_se)331 void cancel_replenish_timer(struct sched_dl_entity *dl_se)
332 {
333 cancel_dl_timer(dl_se, &dl_se->dl_timer);
334 }
335
336 static __always_inline
cancel_inactive_timer(struct sched_dl_entity * dl_se)337 void cancel_inactive_timer(struct sched_dl_entity *dl_se)
338 {
339 cancel_dl_timer(dl_se, &dl_se->inactive_timer);
340 }
341
dl_change_utilization(struct task_struct * p,u64 new_bw)342 static void dl_change_utilization(struct task_struct *p, u64 new_bw)
343 {
344 WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV);
345
346 if (task_on_rq_queued(p))
347 return;
348
349 dl_rq_change_utilization(task_rq(p), &p->dl, new_bw);
350 }
351
352 static void __dl_clear_params(struct sched_dl_entity *dl_se);
353
354 /*
355 * The utilization of a task cannot be immediately removed from
356 * the rq active utilization (running_bw) when the task blocks.
357 * Instead, we have to wait for the so called "0-lag time".
358 *
359 * If a task blocks before the "0-lag time", a timer (the inactive
360 * timer) is armed, and running_bw is decreased when the timer
361 * fires.
362 *
363 * If the task wakes up again before the inactive timer fires,
364 * the timer is canceled, whereas if the task wakes up after the
365 * inactive timer fired (and running_bw has been decreased) the
366 * task's utilization has to be added to running_bw again.
367 * A flag in the deadline scheduling entity (dl_non_contending)
368 * is used to avoid race conditions between the inactive timer handler
369 * and task wakeups.
370 *
371 * The following diagram shows how running_bw is updated. A task is
372 * "ACTIVE" when its utilization contributes to running_bw; an
373 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
374 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
375 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
376 * time already passed, which does not contribute to running_bw anymore.
377 * +------------------+
378 * wakeup | ACTIVE |
379 * +------------------>+ contending |
380 * | add_running_bw | |
381 * | +----+------+------+
382 * | | ^
383 * | dequeue | |
384 * +--------+-------+ | |
385 * | | t >= 0-lag | | wakeup
386 * | INACTIVE |<---------------+ |
387 * | | sub_running_bw | |
388 * +--------+-------+ | |
389 * ^ | |
390 * | t < 0-lag | |
391 * | | |
392 * | V |
393 * | +----+------+------+
394 * | sub_running_bw | ACTIVE |
395 * +-------------------+ |
396 * inactive timer | non contending |
397 * fired +------------------+
398 *
399 * The task_non_contending() function is invoked when a task
400 * blocks, and checks if the 0-lag time already passed or
401 * not (in the first case, it directly updates running_bw;
402 * in the second case, it arms the inactive timer).
403 *
404 * The task_contending() function is invoked when a task wakes
405 * up, and checks if the task is still in the "ACTIVE non contending"
406 * state or not (in the second case, it updates running_bw).
407 */
task_non_contending(struct sched_dl_entity * dl_se)408 static void task_non_contending(struct sched_dl_entity *dl_se)
409 {
410 struct hrtimer *timer = &dl_se->inactive_timer;
411 struct rq *rq = rq_of_dl_se(dl_se);
412 struct dl_rq *dl_rq = &rq->dl;
413 s64 zerolag_time;
414
415 /*
416 * If this is a non-deadline task that has been boosted,
417 * do nothing
418 */
419 if (dl_se->dl_runtime == 0)
420 return;
421
422 if (dl_entity_is_special(dl_se))
423 return;
424
425 WARN_ON(dl_se->dl_non_contending);
426
427 zerolag_time = dl_se->deadline -
428 div64_long((dl_se->runtime * dl_se->dl_period),
429 dl_se->dl_runtime);
430
431 /*
432 * Using relative times instead of the absolute "0-lag time"
433 * allows to simplify the code
434 */
435 zerolag_time -= rq_clock(rq);
436
437 /*
438 * If the "0-lag time" already passed, decrease the active
439 * utilization now, instead of starting a timer
440 */
441 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
442 if (dl_server(dl_se)) {
443 sub_running_bw(dl_se, dl_rq);
444 } else {
445 struct task_struct *p = dl_task_of(dl_se);
446
447 if (dl_task(p))
448 sub_running_bw(dl_se, dl_rq);
449
450 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
451 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
452
453 if (READ_ONCE(p->__state) == TASK_DEAD)
454 sub_rq_bw(dl_se, &rq->dl);
455 raw_spin_lock(&dl_b->lock);
456 __dl_sub(dl_b, dl_se->dl_bw, dl_bw_cpus(task_cpu(p)));
457 raw_spin_unlock(&dl_b->lock);
458 __dl_clear_params(dl_se);
459 }
460 }
461
462 return;
463 }
464
465 dl_se->dl_non_contending = 1;
466 if (!dl_server(dl_se))
467 get_task_struct(dl_task_of(dl_se));
468
469 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
470 }
471
task_contending(struct sched_dl_entity * dl_se,int flags)472 static void task_contending(struct sched_dl_entity *dl_se, int flags)
473 {
474 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
475
476 /*
477 * If this is a non-deadline task that has been boosted,
478 * do nothing
479 */
480 if (dl_se->dl_runtime == 0)
481 return;
482
483 if (flags & ENQUEUE_MIGRATED)
484 add_rq_bw(dl_se, dl_rq);
485
486 if (dl_se->dl_non_contending) {
487 dl_se->dl_non_contending = 0;
488 /*
489 * If the timer handler is currently running and the
490 * timer cannot be canceled, inactive_task_timer()
491 * will see that dl_not_contending is not set, and
492 * will not touch the rq's active utilization,
493 * so we are still safe.
494 */
495 cancel_inactive_timer(dl_se);
496 } else {
497 /*
498 * Since "dl_non_contending" is not set, the
499 * task's utilization has already been removed from
500 * active utilization (either when the task blocked,
501 * when the "inactive timer" fired).
502 * So, add it back.
503 */
504 add_running_bw(dl_se, dl_rq);
505 }
506 }
507
is_leftmost(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)508 static inline int is_leftmost(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
509 {
510 return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
511 }
512
513 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
514
init_dl_bw(struct dl_bw * dl_b)515 void init_dl_bw(struct dl_bw *dl_b)
516 {
517 raw_spin_lock_init(&dl_b->lock);
518 if (global_rt_runtime() == RUNTIME_INF)
519 dl_b->bw = -1;
520 else
521 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
522 dl_b->total_bw = 0;
523 }
524
init_dl_rq(struct dl_rq * dl_rq)525 void init_dl_rq(struct dl_rq *dl_rq)
526 {
527 dl_rq->root = RB_ROOT_CACHED;
528
529 /* zero means no -deadline tasks */
530 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
531
532 dl_rq->overloaded = 0;
533 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
534
535 dl_rq->running_bw = 0;
536 dl_rq->this_bw = 0;
537 init_dl_rq_bw_ratio(dl_rq);
538 }
539
dl_overloaded(struct rq * rq)540 static inline int dl_overloaded(struct rq *rq)
541 {
542 return atomic_read(&rq->rd->dlo_count);
543 }
544
dl_set_overload(struct rq * rq)545 static inline void dl_set_overload(struct rq *rq)
546 {
547 if (!rq->online)
548 return;
549
550 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
551 /*
552 * Must be visible before the overload count is
553 * set (as in sched_rt.c).
554 *
555 * Matched by the barrier in pull_dl_task().
556 */
557 smp_wmb();
558 atomic_inc(&rq->rd->dlo_count);
559 }
560
dl_clear_overload(struct rq * rq)561 static inline void dl_clear_overload(struct rq *rq)
562 {
563 if (!rq->online)
564 return;
565
566 atomic_dec(&rq->rd->dlo_count);
567 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
568 }
569
570 #define __node_2_pdl(node) \
571 rb_entry((node), struct task_struct, pushable_dl_tasks)
572
__pushable_less(struct rb_node * a,const struct rb_node * b)573 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
574 {
575 return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
576 }
577
has_pushable_dl_tasks(struct rq * rq)578 static inline int has_pushable_dl_tasks(struct rq *rq)
579 {
580 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
581 }
582
583 /*
584 * The list of pushable -deadline task is not a plist, like in
585 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
586 */
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)587 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
588 {
589 struct rb_node *leftmost;
590
591 WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
592
593 leftmost = rb_add_cached(&p->pushable_dl_tasks,
594 &rq->dl.pushable_dl_tasks_root,
595 __pushable_less);
596 if (leftmost)
597 rq->dl.earliest_dl.next = p->dl.deadline;
598
599 if (!rq->dl.overloaded) {
600 dl_set_overload(rq);
601 rq->dl.overloaded = 1;
602 }
603 }
604
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)605 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
606 {
607 struct dl_rq *dl_rq = &rq->dl;
608 struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
609 struct rb_node *leftmost;
610
611 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
612 return;
613
614 leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
615 if (leftmost)
616 dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
617
618 RB_CLEAR_NODE(&p->pushable_dl_tasks);
619
620 if (!has_pushable_dl_tasks(rq) && rq->dl.overloaded) {
621 dl_clear_overload(rq);
622 rq->dl.overloaded = 0;
623 }
624 }
625
626 static int push_dl_task(struct rq *rq);
627
need_pull_dl_task(struct rq * rq,struct task_struct * prev)628 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
629 {
630 return rq->online && dl_task(prev);
631 }
632
633 static DEFINE_PER_CPU(struct balance_callback, dl_push_head);
634 static DEFINE_PER_CPU(struct balance_callback, dl_pull_head);
635
636 static void push_dl_tasks(struct rq *);
637 static void pull_dl_task(struct rq *);
638
deadline_queue_push_tasks(struct rq * rq)639 static inline void deadline_queue_push_tasks(struct rq *rq)
640 {
641 if (!has_pushable_dl_tasks(rq))
642 return;
643
644 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
645 }
646
deadline_queue_pull_task(struct rq * rq)647 static inline void deadline_queue_pull_task(struct rq *rq)
648 {
649 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
650 }
651
652 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
653
dl_task_offline_migration(struct rq * rq,struct task_struct * p)654 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
655 {
656 struct rq *later_rq = NULL;
657 struct dl_bw *dl_b;
658
659 later_rq = find_lock_later_rq(p, rq);
660 if (!later_rq) {
661 int cpu;
662
663 /*
664 * If we cannot preempt any rq, fall back to pick any
665 * online CPU:
666 */
667 cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
668 if (cpu >= nr_cpu_ids) {
669 /*
670 * Failed to find any suitable CPU.
671 * The task will never come back!
672 */
673 WARN_ON_ONCE(dl_bandwidth_enabled());
674
675 /*
676 * If admission control is disabled we
677 * try a little harder to let the task
678 * run.
679 */
680 cpu = cpumask_any(cpu_active_mask);
681 }
682 later_rq = cpu_rq(cpu);
683 double_lock_balance(rq, later_rq);
684 }
685
686 if (p->dl.dl_non_contending || p->dl.dl_throttled) {
687 /*
688 * Inactive timer is armed (or callback is running, but
689 * waiting for us to release rq locks). In any case, when it
690 * will fire (or continue), it will see running_bw of this
691 * task migrated to later_rq (and correctly handle it).
692 */
693 sub_running_bw(&p->dl, &rq->dl);
694 sub_rq_bw(&p->dl, &rq->dl);
695
696 add_rq_bw(&p->dl, &later_rq->dl);
697 add_running_bw(&p->dl, &later_rq->dl);
698 } else {
699 sub_rq_bw(&p->dl, &rq->dl);
700 add_rq_bw(&p->dl, &later_rq->dl);
701 }
702
703 /*
704 * And we finally need to fix up root_domain(s) bandwidth accounting,
705 * since p is still hanging out in the old (now moved to default) root
706 * domain.
707 */
708 dl_b = &rq->rd->dl_bw;
709 raw_spin_lock(&dl_b->lock);
710 __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
711 raw_spin_unlock(&dl_b->lock);
712
713 dl_b = &later_rq->rd->dl_bw;
714 raw_spin_lock(&dl_b->lock);
715 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
716 raw_spin_unlock(&dl_b->lock);
717
718 set_task_cpu(p, later_rq->cpu);
719 double_unlock_balance(later_rq, rq);
720
721 return later_rq;
722 }
723
724 static void
725 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags);
726 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
727 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags);
728 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags);
729
replenish_dl_new_period(struct sched_dl_entity * dl_se,struct rq * rq)730 static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se,
731 struct rq *rq)
732 {
733 /* for non-boosted task, pi_of(dl_se) == dl_se */
734 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
735 dl_se->runtime = pi_of(dl_se)->dl_runtime;
736
737 /*
738 * If it is a deferred reservation, and the server
739 * is not handling an starvation case, defer it.
740 */
741 if (dl_se->dl_defer && !dl_se->dl_defer_running) {
742 dl_se->dl_throttled = 1;
743 dl_se->dl_defer_armed = 1;
744 }
745 }
746
747 /*
748 * We are being explicitly informed that a new instance is starting,
749 * and this means that:
750 * - the absolute deadline of the entity has to be placed at
751 * current time + relative deadline;
752 * - the runtime of the entity has to be set to the maximum value.
753 *
754 * The capability of specifying such event is useful whenever a -deadline
755 * entity wants to (try to!) synchronize its behaviour with the scheduler's
756 * one, and to (try to!) reconcile itself with its own scheduling
757 * parameters.
758 */
setup_new_dl_entity(struct sched_dl_entity * dl_se)759 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
760 {
761 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
762 struct rq *rq = rq_of_dl_rq(dl_rq);
763
764 update_rq_clock(rq);
765
766 WARN_ON(is_dl_boosted(dl_se));
767 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
768
769 /*
770 * We are racing with the deadline timer. So, do nothing because
771 * the deadline timer handler will take care of properly recharging
772 * the runtime and postponing the deadline
773 */
774 if (dl_se->dl_throttled)
775 return;
776
777 /*
778 * We use the regular wall clock time to set deadlines in the
779 * future; in fact, we must consider execution overheads (time
780 * spent on hardirq context, etc.).
781 */
782 replenish_dl_new_period(dl_se, rq);
783 }
784
785 static int start_dl_timer(struct sched_dl_entity *dl_se);
786 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t);
787
788 /*
789 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
790 * possibility of a entity lasting more than what it declared, and thus
791 * exhausting its runtime.
792 *
793 * Here we are interested in making runtime overrun possible, but we do
794 * not want a entity which is misbehaving to affect the scheduling of all
795 * other entities.
796 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
797 * is used, in order to confine each entity within its own bandwidth.
798 *
799 * This function deals exactly with that, and ensures that when the runtime
800 * of a entity is replenished, its deadline is also postponed. That ensures
801 * the overrunning entity can't interfere with other entity in the system and
802 * can't make them miss their deadlines. Reasons why this kind of overruns
803 * could happen are, typically, a entity voluntarily trying to overcome its
804 * runtime, or it just underestimated it during sched_setattr().
805 */
replenish_dl_entity(struct sched_dl_entity * dl_se)806 static void replenish_dl_entity(struct sched_dl_entity *dl_se)
807 {
808 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
809 struct rq *rq = rq_of_dl_rq(dl_rq);
810
811 WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0);
812
813 /*
814 * This could be the case for a !-dl task that is boosted.
815 * Just go with full inherited parameters.
816 *
817 * Or, it could be the case of a deferred reservation that
818 * was not able to consume its runtime in background and
819 * reached this point with current u > U.
820 *
821 * In both cases, set a new period.
822 */
823 if (dl_se->dl_deadline == 0 ||
824 (dl_se->dl_defer_armed && dl_entity_overflow(dl_se, rq_clock(rq)))) {
825 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
826 dl_se->runtime = pi_of(dl_se)->dl_runtime;
827 }
828
829 if (dl_se->dl_yielded && dl_se->runtime > 0)
830 dl_se->runtime = 0;
831
832 /*
833 * We keep moving the deadline away until we get some
834 * available runtime for the entity. This ensures correct
835 * handling of situations where the runtime overrun is
836 * arbitrary large.
837 */
838 while (dl_se->runtime <= 0) {
839 dl_se->deadline += pi_of(dl_se)->dl_period;
840 dl_se->runtime += pi_of(dl_se)->dl_runtime;
841 }
842
843 /*
844 * At this point, the deadline really should be "in
845 * the future" with respect to rq->clock. If it's
846 * not, we are, for some reason, lagging too much!
847 * Anyway, after having warn userspace abut that,
848 * we still try to keep the things running by
849 * resetting the deadline and the budget of the
850 * entity.
851 */
852 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
853 printk_deferred_once("sched: DL replenish lagged too much\n");
854 replenish_dl_new_period(dl_se, rq);
855 }
856
857 if (dl_se->dl_yielded)
858 dl_se->dl_yielded = 0;
859 if (dl_se->dl_throttled)
860 dl_se->dl_throttled = 0;
861
862 /*
863 * If this is the replenishment of a deferred reservation,
864 * clear the flag and return.
865 */
866 if (dl_se->dl_defer_armed) {
867 dl_se->dl_defer_armed = 0;
868 return;
869 }
870
871 /*
872 * A this point, if the deferred server is not armed, and the deadline
873 * is in the future, if it is not running already, throttle the server
874 * and arm the defer timer.
875 */
876 if (dl_se->dl_defer && !dl_se->dl_defer_running &&
877 dl_time_before(rq_clock(dl_se->rq), dl_se->deadline - dl_se->runtime)) {
878 if (!is_dl_boosted(dl_se) && dl_se->server_has_tasks(dl_se)) {
879
880 /*
881 * Set dl_se->dl_defer_armed and dl_throttled variables to
882 * inform the start_dl_timer() that this is a deferred
883 * activation.
884 */
885 dl_se->dl_defer_armed = 1;
886 dl_se->dl_throttled = 1;
887 if (!start_dl_timer(dl_se)) {
888 /*
889 * If for whatever reason (delays), a previous timer was
890 * queued but not serviced, cancel it and clean the
891 * deferrable server variables intended for start_dl_timer().
892 */
893 hrtimer_try_to_cancel(&dl_se->dl_timer);
894 dl_se->dl_defer_armed = 0;
895 dl_se->dl_throttled = 0;
896 }
897 }
898 }
899 }
900
901 /*
902 * Here we check if --at time t-- an entity (which is probably being
903 * [re]activated or, in general, enqueued) can use its remaining runtime
904 * and its current deadline _without_ exceeding the bandwidth it is
905 * assigned (function returns true if it can't). We are in fact applying
906 * one of the CBS rules: when a task wakes up, if the residual runtime
907 * over residual deadline fits within the allocated bandwidth, then we
908 * can keep the current (absolute) deadline and residual budget without
909 * disrupting the schedulability of the system. Otherwise, we should
910 * refill the runtime and set the deadline a period in the future,
911 * because keeping the current (absolute) deadline of the task would
912 * result in breaking guarantees promised to other tasks (refer to
913 * Documentation/scheduler/sched-deadline.rst for more information).
914 *
915 * This function returns true if:
916 *
917 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
918 *
919 * IOW we can't recycle current parameters.
920 *
921 * Notice that the bandwidth check is done against the deadline. For
922 * task with deadline equal to period this is the same of using
923 * dl_period instead of dl_deadline in the equation above.
924 */
dl_entity_overflow(struct sched_dl_entity * dl_se,u64 t)925 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
926 {
927 u64 left, right;
928
929 /*
930 * left and right are the two sides of the equation above,
931 * after a bit of shuffling to use multiplications instead
932 * of divisions.
933 *
934 * Note that none of the time values involved in the two
935 * multiplications are absolute: dl_deadline and dl_runtime
936 * are the relative deadline and the maximum runtime of each
937 * instance, runtime is the runtime left for the last instance
938 * and (deadline - t), since t is rq->clock, is the time left
939 * to the (absolute) deadline. Even if overflowing the u64 type
940 * is very unlikely to occur in both cases, here we scale down
941 * as we want to avoid that risk at all. Scaling down by 10
942 * means that we reduce granularity to 1us. We are fine with it,
943 * since this is only a true/false check and, anyway, thinking
944 * of anything below microseconds resolution is actually fiction
945 * (but still we want to give the user that illusion >;).
946 */
947 left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
948 right = ((dl_se->deadline - t) >> DL_SCALE) *
949 (pi_of(dl_se)->dl_runtime >> DL_SCALE);
950
951 return dl_time_before(right, left);
952 }
953
954 /*
955 * Revised wakeup rule [1]: For self-suspending tasks, rather then
956 * re-initializing task's runtime and deadline, the revised wakeup
957 * rule adjusts the task's runtime to avoid the task to overrun its
958 * density.
959 *
960 * Reasoning: a task may overrun the density if:
961 * runtime / (deadline - t) > dl_runtime / dl_deadline
962 *
963 * Therefore, runtime can be adjusted to:
964 * runtime = (dl_runtime / dl_deadline) * (deadline - t)
965 *
966 * In such way that runtime will be equal to the maximum density
967 * the task can use without breaking any rule.
968 *
969 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
970 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
971 */
972 static void
update_dl_revised_wakeup(struct sched_dl_entity * dl_se,struct rq * rq)973 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
974 {
975 u64 laxity = dl_se->deadline - rq_clock(rq);
976
977 /*
978 * If the task has deadline < period, and the deadline is in the past,
979 * it should already be throttled before this check.
980 *
981 * See update_dl_entity() comments for further details.
982 */
983 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
984
985 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
986 }
987
988 /*
989 * Regarding the deadline, a task with implicit deadline has a relative
990 * deadline == relative period. A task with constrained deadline has a
991 * relative deadline <= relative period.
992 *
993 * We support constrained deadline tasks. However, there are some restrictions
994 * applied only for tasks which do not have an implicit deadline. See
995 * update_dl_entity() to know more about such restrictions.
996 *
997 * The dl_is_implicit() returns true if the task has an implicit deadline.
998 */
dl_is_implicit(struct sched_dl_entity * dl_se)999 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
1000 {
1001 return dl_se->dl_deadline == dl_se->dl_period;
1002 }
1003
1004 /*
1005 * When a deadline entity is placed in the runqueue, its runtime and deadline
1006 * might need to be updated. This is done by a CBS wake up rule. There are two
1007 * different rules: 1) the original CBS; and 2) the Revisited CBS.
1008 *
1009 * When the task is starting a new period, the Original CBS is used. In this
1010 * case, the runtime is replenished and a new absolute deadline is set.
1011 *
1012 * When a task is queued before the begin of the next period, using the
1013 * remaining runtime and deadline could make the entity to overflow, see
1014 * dl_entity_overflow() to find more about runtime overflow. When such case
1015 * is detected, the runtime and deadline need to be updated.
1016 *
1017 * If the task has an implicit deadline, i.e., deadline == period, the Original
1018 * CBS is applied. The runtime is replenished and a new absolute deadline is
1019 * set, as in the previous cases.
1020 *
1021 * However, the Original CBS does not work properly for tasks with
1022 * deadline < period, which are said to have a constrained deadline. By
1023 * applying the Original CBS, a constrained deadline task would be able to run
1024 * runtime/deadline in a period. With deadline < period, the task would
1025 * overrun the runtime/period allowed bandwidth, breaking the admission test.
1026 *
1027 * In order to prevent this misbehave, the Revisited CBS is used for
1028 * constrained deadline tasks when a runtime overflow is detected. In the
1029 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
1030 * the remaining runtime of the task is reduced to avoid runtime overflow.
1031 * Please refer to the comments update_dl_revised_wakeup() function to find
1032 * more about the Revised CBS rule.
1033 */
update_dl_entity(struct sched_dl_entity * dl_se)1034 static void update_dl_entity(struct sched_dl_entity *dl_se)
1035 {
1036 struct rq *rq = rq_of_dl_se(dl_se);
1037
1038 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
1039 dl_entity_overflow(dl_se, rq_clock(rq))) {
1040
1041 if (unlikely(!dl_is_implicit(dl_se) &&
1042 !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1043 !is_dl_boosted(dl_se))) {
1044 update_dl_revised_wakeup(dl_se, rq);
1045 return;
1046 }
1047
1048 replenish_dl_new_period(dl_se, rq);
1049 } else if (dl_server(dl_se) && dl_se->dl_defer) {
1050 /*
1051 * The server can still use its previous deadline, so check if
1052 * it left the dl_defer_running state.
1053 */
1054 if (!dl_se->dl_defer_running) {
1055 dl_se->dl_defer_armed = 1;
1056 dl_se->dl_throttled = 1;
1057 }
1058 }
1059 }
1060
dl_next_period(struct sched_dl_entity * dl_se)1061 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
1062 {
1063 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
1064 }
1065
1066 /*
1067 * If the entity depleted all its runtime, and if we want it to sleep
1068 * while waiting for some new execution time to become available, we
1069 * set the bandwidth replenishment timer to the replenishment instant
1070 * and try to activate it.
1071 *
1072 * Notice that it is important for the caller to know if the timer
1073 * actually started or not (i.e., the replenishment instant is in
1074 * the future or in the past).
1075 */
start_dl_timer(struct sched_dl_entity * dl_se)1076 static int start_dl_timer(struct sched_dl_entity *dl_se)
1077 {
1078 struct hrtimer *timer = &dl_se->dl_timer;
1079 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1080 struct rq *rq = rq_of_dl_rq(dl_rq);
1081 ktime_t now, act;
1082 s64 delta;
1083
1084 lockdep_assert_rq_held(rq);
1085
1086 /*
1087 * We want the timer to fire at the deadline, but considering
1088 * that it is actually coming from rq->clock and not from
1089 * hrtimer's time base reading.
1090 *
1091 * The deferred reservation will have its timer set to
1092 * (deadline - runtime). At that point, the CBS rule will decide
1093 * if the current deadline can be used, or if a replenishment is
1094 * required to avoid add too much pressure on the system
1095 * (current u > U).
1096 */
1097 if (dl_se->dl_defer_armed) {
1098 WARN_ON_ONCE(!dl_se->dl_throttled);
1099 act = ns_to_ktime(dl_se->deadline - dl_se->runtime);
1100 } else {
1101 /* act = deadline - rel-deadline + period */
1102 act = ns_to_ktime(dl_next_period(dl_se));
1103 }
1104
1105 now = hrtimer_cb_get_time(timer);
1106 delta = ktime_to_ns(now) - rq_clock(rq);
1107 act = ktime_add_ns(act, delta);
1108
1109 /*
1110 * If the expiry time already passed, e.g., because the value
1111 * chosen as the deadline is too small, don't even try to
1112 * start the timer in the past!
1113 */
1114 if (ktime_us_delta(act, now) < 0)
1115 return 0;
1116
1117 /*
1118 * !enqueued will guarantee another callback; even if one is already in
1119 * progress. This ensures a balanced {get,put}_task_struct().
1120 *
1121 * The race against __run_timer() clearing the enqueued state is
1122 * harmless because we're holding task_rq()->lock, therefore the timer
1123 * expiring after we've done the check will wait on its task_rq_lock()
1124 * and observe our state.
1125 */
1126 if (!hrtimer_is_queued(timer)) {
1127 if (!dl_server(dl_se))
1128 get_task_struct(dl_task_of(dl_se));
1129 hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1130 }
1131
1132 return 1;
1133 }
1134
__push_dl_task(struct rq * rq,struct rq_flags * rf)1135 static void __push_dl_task(struct rq *rq, struct rq_flags *rf)
1136 {
1137 /*
1138 * Queueing this task back might have overloaded rq, check if we need
1139 * to kick someone away.
1140 */
1141 if (has_pushable_dl_tasks(rq)) {
1142 /*
1143 * Nothing relies on rq->lock after this, so its safe to drop
1144 * rq->lock.
1145 */
1146 rq_unpin_lock(rq, rf);
1147 push_dl_task(rq);
1148 rq_repin_lock(rq, rf);
1149 }
1150 }
1151
1152 /* a defer timer will not be reset if the runtime consumed was < dl_server_min_res */
1153 static const u64 dl_server_min_res = 1 * NSEC_PER_MSEC;
1154
1155 static bool dl_server_stopped(struct sched_dl_entity *dl_se);
1156
dl_server_timer(struct hrtimer * timer,struct sched_dl_entity * dl_se)1157 static enum hrtimer_restart dl_server_timer(struct hrtimer *timer, struct sched_dl_entity *dl_se)
1158 {
1159 struct rq *rq = rq_of_dl_se(dl_se);
1160 u64 fw;
1161
1162 scoped_guard (rq_lock, rq) {
1163 struct rq_flags *rf = &scope.rf;
1164
1165 if (!dl_se->dl_throttled || !dl_se->dl_runtime)
1166 return HRTIMER_NORESTART;
1167
1168 sched_clock_tick();
1169 update_rq_clock(rq);
1170
1171 if (!dl_se->dl_runtime)
1172 return HRTIMER_NORESTART;
1173
1174 if (!dl_se->server_has_tasks(dl_se)) {
1175 replenish_dl_entity(dl_se);
1176 dl_server_stopped(dl_se);
1177 return HRTIMER_NORESTART;
1178 }
1179
1180 if (dl_se->dl_defer_armed) {
1181 /*
1182 * First check if the server could consume runtime in background.
1183 * If so, it is possible to push the defer timer for this amount
1184 * of time. The dl_server_min_res serves as a limit to avoid
1185 * forwarding the timer for a too small amount of time.
1186 */
1187 if (dl_time_before(rq_clock(dl_se->rq),
1188 (dl_se->deadline - dl_se->runtime - dl_server_min_res))) {
1189
1190 /* reset the defer timer */
1191 fw = dl_se->deadline - rq_clock(dl_se->rq) - dl_se->runtime;
1192
1193 hrtimer_forward_now(timer, ns_to_ktime(fw));
1194 return HRTIMER_RESTART;
1195 }
1196
1197 dl_se->dl_defer_running = 1;
1198 }
1199
1200 enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
1201
1202 if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &dl_se->rq->curr->dl))
1203 resched_curr(rq);
1204
1205 __push_dl_task(rq, rf);
1206 }
1207
1208 return HRTIMER_NORESTART;
1209 }
1210
1211 /*
1212 * This is the bandwidth enforcement timer callback. If here, we know
1213 * a task is not on its dl_rq, since the fact that the timer was running
1214 * means the task is throttled and needs a runtime replenishment.
1215 *
1216 * However, what we actually do depends on the fact the task is active,
1217 * (it is on its rq) or has been removed from there by a call to
1218 * dequeue_task_dl(). In the former case we must issue the runtime
1219 * replenishment and add the task back to the dl_rq; in the latter, we just
1220 * do nothing but clearing dl_throttled, so that runtime and deadline
1221 * updating (and the queueing back to dl_rq) will be done by the
1222 * next call to enqueue_task_dl().
1223 */
dl_task_timer(struct hrtimer * timer)1224 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1225 {
1226 struct sched_dl_entity *dl_se = container_of(timer,
1227 struct sched_dl_entity,
1228 dl_timer);
1229 struct task_struct *p;
1230 struct rq_flags rf;
1231 struct rq *rq;
1232
1233 if (dl_server(dl_se))
1234 return dl_server_timer(timer, dl_se);
1235
1236 p = dl_task_of(dl_se);
1237 rq = task_rq_lock(p, &rf);
1238
1239 /*
1240 * The task might have changed its scheduling policy to something
1241 * different than SCHED_DEADLINE (through switched_from_dl()).
1242 */
1243 if (!dl_task(p))
1244 goto unlock;
1245
1246 /*
1247 * The task might have been boosted by someone else and might be in the
1248 * boosting/deboosting path, its not throttled.
1249 */
1250 if (is_dl_boosted(dl_se))
1251 goto unlock;
1252
1253 /*
1254 * Spurious timer due to start_dl_timer() race; or we already received
1255 * a replenishment from rt_mutex_setprio().
1256 */
1257 if (!dl_se->dl_throttled)
1258 goto unlock;
1259
1260 sched_clock_tick();
1261 update_rq_clock(rq);
1262
1263 /*
1264 * If the throttle happened during sched-out; like:
1265 *
1266 * schedule()
1267 * deactivate_task()
1268 * dequeue_task_dl()
1269 * update_curr_dl()
1270 * start_dl_timer()
1271 * __dequeue_task_dl()
1272 * prev->on_rq = 0;
1273 *
1274 * We can be both throttled and !queued. Replenish the counter
1275 * but do not enqueue -- wait for our wakeup to do that.
1276 */
1277 if (!task_on_rq_queued(p)) {
1278 replenish_dl_entity(dl_se);
1279 goto unlock;
1280 }
1281
1282 if (unlikely(!rq->online)) {
1283 /*
1284 * If the runqueue is no longer available, migrate the
1285 * task elsewhere. This necessarily changes rq.
1286 */
1287 lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1288 rq = dl_task_offline_migration(rq, p);
1289 rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1290 update_rq_clock(rq);
1291
1292 /*
1293 * Now that the task has been migrated to the new RQ and we
1294 * have that locked, proceed as normal and enqueue the task
1295 * there.
1296 */
1297 }
1298
1299 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1300 if (dl_task(rq->donor))
1301 wakeup_preempt_dl(rq, p, 0);
1302 else
1303 resched_curr(rq);
1304
1305 __push_dl_task(rq, &rf);
1306
1307 unlock:
1308 task_rq_unlock(rq, p, &rf);
1309
1310 /*
1311 * This can free the task_struct, including this hrtimer, do not touch
1312 * anything related to that after this.
1313 */
1314 put_task_struct(p);
1315
1316 return HRTIMER_NORESTART;
1317 }
1318
init_dl_task_timer(struct sched_dl_entity * dl_se)1319 static void init_dl_task_timer(struct sched_dl_entity *dl_se)
1320 {
1321 struct hrtimer *timer = &dl_se->dl_timer;
1322
1323 hrtimer_setup(timer, dl_task_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1324 }
1325
1326 /*
1327 * During the activation, CBS checks if it can reuse the current task's
1328 * runtime and period. If the deadline of the task is in the past, CBS
1329 * cannot use the runtime, and so it replenishes the task. This rule
1330 * works fine for implicit deadline tasks (deadline == period), and the
1331 * CBS was designed for implicit deadline tasks. However, a task with
1332 * constrained deadline (deadline < period) might be awakened after the
1333 * deadline, but before the next period. In this case, replenishing the
1334 * task would allow it to run for runtime / deadline. As in this case
1335 * deadline < period, CBS enables a task to run for more than the
1336 * runtime / period. In a very loaded system, this can cause a domino
1337 * effect, making other tasks miss their deadlines.
1338 *
1339 * To avoid this problem, in the activation of a constrained deadline
1340 * task after the deadline but before the next period, throttle the
1341 * task and set the replenishing timer to the begin of the next period,
1342 * unless it is boosted.
1343 */
dl_check_constrained_dl(struct sched_dl_entity * dl_se)1344 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1345 {
1346 struct rq *rq = rq_of_dl_se(dl_se);
1347
1348 if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1349 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1350 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se)))
1351 return;
1352 dl_se->dl_throttled = 1;
1353 if (dl_se->runtime > 0)
1354 dl_se->runtime = 0;
1355 }
1356 }
1357
1358 static
dl_runtime_exceeded(struct sched_dl_entity * dl_se)1359 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1360 {
1361 return (dl_se->runtime <= 0);
1362 }
1363
1364 /*
1365 * This function implements the GRUB accounting rule. According to the
1366 * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt",
1367 * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt",
1368 * where u is the utilization of the task, Umax is the maximum reclaimable
1369 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1370 * as the difference between the "total runqueue utilization" and the
1371 * "runqueue active utilization", and Uextra is the (per runqueue) extra
1372 * reclaimable utilization.
1373 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied
1374 * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT.
1375 * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw
1376 * is multiplied by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1377 * Since delta is a 64 bit variable, to have an overflow its value should be
1378 * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is
1379 * not an issue here.
1380 */
grub_reclaim(u64 delta,struct rq * rq,struct sched_dl_entity * dl_se)1381 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1382 {
1383 u64 u_act;
1384 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1385
1386 /*
1387 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we
1388 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra
1389 * can be larger than u_max. So, u_max - u_inact - u_extra would be
1390 * negative leading to wrong results.
1391 */
1392 if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw)
1393 u_act = dl_se->dl_bw;
1394 else
1395 u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw;
1396
1397 u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT;
1398 return (delta * u_act) >> BW_SHIFT;
1399 }
1400
dl_scaled_delta_exec(struct rq * rq,struct sched_dl_entity * dl_se,s64 delta_exec)1401 s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
1402 {
1403 s64 scaled_delta_exec;
1404
1405 /*
1406 * For tasks that participate in GRUB, we implement GRUB-PA: the
1407 * spare reclaimed bandwidth is used to clock down frequency.
1408 *
1409 * For the others, we still need to scale reservation parameters
1410 * according to current frequency and CPU maximum capacity.
1411 */
1412 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1413 scaled_delta_exec = grub_reclaim(delta_exec, rq, dl_se);
1414 } else {
1415 int cpu = cpu_of(rq);
1416 unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1417 unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1418
1419 scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1420 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1421 }
1422
1423 return scaled_delta_exec;
1424 }
1425
1426 static inline void
1427 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1428 int flags);
update_curr_dl_se(struct rq * rq,struct sched_dl_entity * dl_se,s64 delta_exec)1429 static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
1430 {
1431 s64 scaled_delta_exec;
1432
1433 if (unlikely(delta_exec <= 0)) {
1434 if (unlikely(dl_se->dl_yielded))
1435 goto throttle;
1436 return;
1437 }
1438
1439 if (dl_server(dl_se) && dl_se->dl_throttled && !dl_se->dl_defer)
1440 return;
1441
1442 if (dl_entity_is_special(dl_se))
1443 return;
1444
1445 scaled_delta_exec = delta_exec;
1446 if (!dl_server(dl_se))
1447 scaled_delta_exec = dl_scaled_delta_exec(rq, dl_se, delta_exec);
1448
1449 dl_se->runtime -= scaled_delta_exec;
1450
1451 /*
1452 * The fair server can consume its runtime while throttled (not queued/
1453 * running as regular CFS).
1454 *
1455 * If the server consumes its entire runtime in this state. The server
1456 * is not required for the current period. Thus, reset the server by
1457 * starting a new period, pushing the activation.
1458 */
1459 if (dl_se->dl_defer && dl_se->dl_throttled && dl_runtime_exceeded(dl_se)) {
1460 /*
1461 * If the server was previously activated - the starving condition
1462 * took place, it this point it went away because the fair scheduler
1463 * was able to get runtime in background. So return to the initial
1464 * state.
1465 */
1466 dl_se->dl_defer_running = 0;
1467
1468 hrtimer_try_to_cancel(&dl_se->dl_timer);
1469
1470 replenish_dl_new_period(dl_se, dl_se->rq);
1471
1472 /*
1473 * Not being able to start the timer seems problematic. If it could not
1474 * be started for whatever reason, we need to "unthrottle" the DL server
1475 * and queue right away. Otherwise nothing might queue it. That's similar
1476 * to what enqueue_dl_entity() does on start_dl_timer==0. For now, just warn.
1477 */
1478 WARN_ON_ONCE(!start_dl_timer(dl_se));
1479
1480 return;
1481 }
1482
1483 throttle:
1484 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1485 dl_se->dl_throttled = 1;
1486
1487 /* If requested, inform the user about runtime overruns. */
1488 if (dl_runtime_exceeded(dl_se) &&
1489 (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1490 dl_se->dl_overrun = 1;
1491
1492 dequeue_dl_entity(dl_se, 0);
1493 if (!dl_server(dl_se)) {
1494 update_stats_dequeue_dl(&rq->dl, dl_se, 0);
1495 dequeue_pushable_dl_task(rq, dl_task_of(dl_se));
1496 }
1497
1498 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) {
1499 if (dl_server(dl_se)) {
1500 replenish_dl_new_period(dl_se, rq);
1501 start_dl_timer(dl_se);
1502 } else {
1503 enqueue_task_dl(rq, dl_task_of(dl_se), ENQUEUE_REPLENISH);
1504 }
1505 }
1506
1507 if (!is_leftmost(dl_se, &rq->dl))
1508 resched_curr(rq);
1509 }
1510
1511 /*
1512 * The fair server (sole dl_server) does not account for real-time
1513 * workload because it is running fair work.
1514 */
1515 if (dl_se == &rq->fair_server)
1516 return;
1517
1518 #ifdef CONFIG_RT_GROUP_SCHED
1519 /*
1520 * Because -- for now -- we share the rt bandwidth, we need to
1521 * account our runtime there too, otherwise actual rt tasks
1522 * would be able to exceed the shared quota.
1523 *
1524 * Account to the root rt group for now.
1525 *
1526 * The solution we're working towards is having the RT groups scheduled
1527 * using deadline servers -- however there's a few nasties to figure
1528 * out before that can happen.
1529 */
1530 if (rt_bandwidth_enabled()) {
1531 struct rt_rq *rt_rq = &rq->rt;
1532
1533 raw_spin_lock(&rt_rq->rt_runtime_lock);
1534 /*
1535 * We'll let actual RT tasks worry about the overflow here, we
1536 * have our own CBS to keep us inline; only account when RT
1537 * bandwidth is relevant.
1538 */
1539 if (sched_rt_bandwidth_account(rt_rq))
1540 rt_rq->rt_time += delta_exec;
1541 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1542 }
1543 #endif /* CONFIG_RT_GROUP_SCHED */
1544 }
1545
1546 /*
1547 * In the non-defer mode, the idle time is not accounted, as the
1548 * server provides a guarantee.
1549 *
1550 * If the dl_server is in defer mode, the idle time is also considered
1551 * as time available for the fair server, avoiding a penalty for the
1552 * rt scheduler that did not consumed that time.
1553 */
dl_server_update_idle_time(struct rq * rq,struct task_struct * p)1554 void dl_server_update_idle_time(struct rq *rq, struct task_struct *p)
1555 {
1556 s64 delta_exec;
1557
1558 if (!rq->fair_server.dl_defer)
1559 return;
1560
1561 /* no need to discount more */
1562 if (rq->fair_server.runtime < 0)
1563 return;
1564
1565 delta_exec = rq_clock_task(rq) - p->se.exec_start;
1566 if (delta_exec < 0)
1567 return;
1568
1569 rq->fair_server.runtime -= delta_exec;
1570
1571 if (rq->fair_server.runtime < 0) {
1572 rq->fair_server.dl_defer_running = 0;
1573 rq->fair_server.runtime = 0;
1574 }
1575
1576 p->se.exec_start = rq_clock_task(rq);
1577 }
1578
dl_server_update(struct sched_dl_entity * dl_se,s64 delta_exec)1579 void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec)
1580 {
1581 /* 0 runtime = fair server disabled */
1582 if (dl_se->dl_runtime) {
1583 dl_se->dl_server_idle = 0;
1584 update_curr_dl_se(dl_se->rq, dl_se, delta_exec);
1585 }
1586 }
1587
dl_server_start(struct sched_dl_entity * dl_se)1588 void dl_server_start(struct sched_dl_entity *dl_se)
1589 {
1590 struct rq *rq = dl_se->rq;
1591
1592 if (!dl_server(dl_se) || dl_se->dl_server_active)
1593 return;
1594
1595 dl_se->dl_server_active = 1;
1596 enqueue_dl_entity(dl_se, ENQUEUE_WAKEUP);
1597 if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &rq->curr->dl))
1598 resched_curr(dl_se->rq);
1599 }
1600
dl_server_stop(struct sched_dl_entity * dl_se)1601 void dl_server_stop(struct sched_dl_entity *dl_se)
1602 {
1603 if (!dl_server(dl_se) || !dl_server_active(dl_se))
1604 return;
1605
1606 dequeue_dl_entity(dl_se, DEQUEUE_SLEEP);
1607 hrtimer_try_to_cancel(&dl_se->dl_timer);
1608 dl_se->dl_defer_armed = 0;
1609 dl_se->dl_throttled = 0;
1610 dl_se->dl_server_active = 0;
1611 }
1612
dl_server_stopped(struct sched_dl_entity * dl_se)1613 static bool dl_server_stopped(struct sched_dl_entity *dl_se)
1614 {
1615 if (!dl_se->dl_server_active)
1616 return true;
1617
1618 if (dl_se->dl_server_idle) {
1619 dl_server_stop(dl_se);
1620 return true;
1621 }
1622
1623 dl_se->dl_server_idle = 1;
1624 return false;
1625 }
1626
dl_server_init(struct sched_dl_entity * dl_se,struct rq * rq,dl_server_has_tasks_f has_tasks,dl_server_pick_f pick_task)1627 void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
1628 dl_server_has_tasks_f has_tasks,
1629 dl_server_pick_f pick_task)
1630 {
1631 dl_se->rq = rq;
1632 dl_se->server_has_tasks = has_tasks;
1633 dl_se->server_pick_task = pick_task;
1634 }
1635
sched_init_dl_servers(void)1636 void sched_init_dl_servers(void)
1637 {
1638 int cpu;
1639 struct rq *rq;
1640 struct sched_dl_entity *dl_se;
1641
1642 for_each_online_cpu(cpu) {
1643 u64 runtime = 50 * NSEC_PER_MSEC;
1644 u64 period = 1000 * NSEC_PER_MSEC;
1645
1646 rq = cpu_rq(cpu);
1647
1648 guard(rq_lock_irq)(rq);
1649
1650 dl_se = &rq->fair_server;
1651
1652 WARN_ON(dl_server(dl_se));
1653
1654 dl_server_apply_params(dl_se, runtime, period, 1);
1655
1656 dl_se->dl_server = 1;
1657 dl_se->dl_defer = 1;
1658 setup_new_dl_entity(dl_se);
1659 }
1660 }
1661
__dl_server_attach_root(struct sched_dl_entity * dl_se,struct rq * rq)1662 void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq)
1663 {
1664 u64 new_bw = dl_se->dl_bw;
1665 int cpu = cpu_of(rq);
1666 struct dl_bw *dl_b;
1667
1668 dl_b = dl_bw_of(cpu_of(rq));
1669 guard(raw_spinlock)(&dl_b->lock);
1670
1671 if (!dl_bw_cpus(cpu))
1672 return;
1673
1674 __dl_add(dl_b, new_bw, dl_bw_cpus(cpu));
1675 }
1676
dl_server_apply_params(struct sched_dl_entity * dl_se,u64 runtime,u64 period,bool init)1677 int dl_server_apply_params(struct sched_dl_entity *dl_se, u64 runtime, u64 period, bool init)
1678 {
1679 u64 old_bw = init ? 0 : to_ratio(dl_se->dl_period, dl_se->dl_runtime);
1680 u64 new_bw = to_ratio(period, runtime);
1681 struct rq *rq = dl_se->rq;
1682 int cpu = cpu_of(rq);
1683 struct dl_bw *dl_b;
1684 unsigned long cap;
1685 int retval = 0;
1686 int cpus;
1687
1688 dl_b = dl_bw_of(cpu);
1689 guard(raw_spinlock)(&dl_b->lock);
1690
1691 cpus = dl_bw_cpus(cpu);
1692 cap = dl_bw_capacity(cpu);
1693
1694 if (__dl_overflow(dl_b, cap, old_bw, new_bw))
1695 return -EBUSY;
1696
1697 if (init) {
1698 __add_rq_bw(new_bw, &rq->dl);
1699 __dl_add(dl_b, new_bw, cpus);
1700 } else {
1701 __dl_sub(dl_b, dl_se->dl_bw, cpus);
1702 __dl_add(dl_b, new_bw, cpus);
1703
1704 dl_rq_change_utilization(rq, dl_se, new_bw);
1705 }
1706
1707 dl_se->dl_runtime = runtime;
1708 dl_se->dl_deadline = period;
1709 dl_se->dl_period = period;
1710
1711 dl_se->runtime = 0;
1712 dl_se->deadline = 0;
1713
1714 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
1715 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
1716
1717 return retval;
1718 }
1719
1720 /*
1721 * Update the current task's runtime statistics (provided it is still
1722 * a -deadline task and has not been removed from the dl_rq).
1723 */
update_curr_dl(struct rq * rq)1724 static void update_curr_dl(struct rq *rq)
1725 {
1726 struct task_struct *donor = rq->donor;
1727 struct sched_dl_entity *dl_se = &donor->dl;
1728 s64 delta_exec;
1729
1730 if (!dl_task(donor) || !on_dl_rq(dl_se))
1731 return;
1732
1733 /*
1734 * Consumed budget is computed considering the time as
1735 * observed by schedulable tasks (excluding time spent
1736 * in hardirq context, etc.). Deadlines are instead
1737 * computed using hard walltime. This seems to be the more
1738 * natural solution, but the full ramifications of this
1739 * approach need further study.
1740 */
1741 delta_exec = update_curr_common(rq);
1742 update_curr_dl_se(rq, dl_se, delta_exec);
1743 }
1744
inactive_task_timer(struct hrtimer * timer)1745 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1746 {
1747 struct sched_dl_entity *dl_se = container_of(timer,
1748 struct sched_dl_entity,
1749 inactive_timer);
1750 struct task_struct *p = NULL;
1751 struct rq_flags rf;
1752 struct rq *rq;
1753
1754 if (!dl_server(dl_se)) {
1755 p = dl_task_of(dl_se);
1756 rq = task_rq_lock(p, &rf);
1757 } else {
1758 rq = dl_se->rq;
1759 rq_lock(rq, &rf);
1760 }
1761
1762 sched_clock_tick();
1763 update_rq_clock(rq);
1764
1765 if (dl_server(dl_se))
1766 goto no_task;
1767
1768 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1769 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1770
1771 if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1772 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1773 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1774 dl_se->dl_non_contending = 0;
1775 }
1776
1777 raw_spin_lock(&dl_b->lock);
1778 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1779 raw_spin_unlock(&dl_b->lock);
1780 __dl_clear_params(dl_se);
1781
1782 goto unlock;
1783 }
1784
1785 no_task:
1786 if (dl_se->dl_non_contending == 0)
1787 goto unlock;
1788
1789 sub_running_bw(dl_se, &rq->dl);
1790 dl_se->dl_non_contending = 0;
1791 unlock:
1792
1793 if (!dl_server(dl_se)) {
1794 task_rq_unlock(rq, p, &rf);
1795 put_task_struct(p);
1796 } else {
1797 rq_unlock(rq, &rf);
1798 }
1799
1800 return HRTIMER_NORESTART;
1801 }
1802
init_dl_inactive_task_timer(struct sched_dl_entity * dl_se)1803 static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1804 {
1805 struct hrtimer *timer = &dl_se->inactive_timer;
1806
1807 hrtimer_setup(timer, inactive_task_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1808 }
1809
1810 #define __node_2_dle(node) \
1811 rb_entry((node), struct sched_dl_entity, rb_node)
1812
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1813 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1814 {
1815 struct rq *rq = rq_of_dl_rq(dl_rq);
1816
1817 if (dl_rq->earliest_dl.curr == 0 ||
1818 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1819 if (dl_rq->earliest_dl.curr == 0)
1820 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
1821 dl_rq->earliest_dl.curr = deadline;
1822 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1823 }
1824 }
1825
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1826 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1827 {
1828 struct rq *rq = rq_of_dl_rq(dl_rq);
1829
1830 /*
1831 * Since we may have removed our earliest (and/or next earliest)
1832 * task we must recompute them.
1833 */
1834 if (!dl_rq->dl_nr_running) {
1835 dl_rq->earliest_dl.curr = 0;
1836 dl_rq->earliest_dl.next = 0;
1837 cpudl_clear(&rq->rd->cpudl, rq->cpu);
1838 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1839 } else {
1840 struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
1841 struct sched_dl_entity *entry = __node_2_dle(leftmost);
1842
1843 dl_rq->earliest_dl.curr = entry->deadline;
1844 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1845 }
1846 }
1847
1848 static inline
inc_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1849 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1850 {
1851 u64 deadline = dl_se->deadline;
1852
1853 dl_rq->dl_nr_running++;
1854
1855 if (!dl_server(dl_se))
1856 add_nr_running(rq_of_dl_rq(dl_rq), 1);
1857
1858 inc_dl_deadline(dl_rq, deadline);
1859 }
1860
1861 static inline
dec_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1862 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1863 {
1864 WARN_ON(!dl_rq->dl_nr_running);
1865 dl_rq->dl_nr_running--;
1866
1867 if (!dl_server(dl_se))
1868 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1869
1870 dec_dl_deadline(dl_rq, dl_se->deadline);
1871 }
1872
__dl_less(struct rb_node * a,const struct rb_node * b)1873 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
1874 {
1875 return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
1876 }
1877
1878 static __always_inline struct sched_statistics *
__schedstats_from_dl_se(struct sched_dl_entity * dl_se)1879 __schedstats_from_dl_se(struct sched_dl_entity *dl_se)
1880 {
1881 if (!schedstat_enabled())
1882 return NULL;
1883
1884 if (dl_server(dl_se))
1885 return NULL;
1886
1887 return &dl_task_of(dl_se)->stats;
1888 }
1889
1890 static inline void
update_stats_wait_start_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1891 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1892 {
1893 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1894 if (stats)
1895 __update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1896 }
1897
1898 static inline void
update_stats_wait_end_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1899 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1900 {
1901 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1902 if (stats)
1903 __update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1904 }
1905
1906 static inline void
update_stats_enqueue_sleeper_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1907 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1908 {
1909 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1910 if (stats)
1911 __update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1912 }
1913
1914 static inline void
update_stats_enqueue_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se,int flags)1915 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1916 int flags)
1917 {
1918 if (!schedstat_enabled())
1919 return;
1920
1921 if (flags & ENQUEUE_WAKEUP)
1922 update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
1923 }
1924
1925 static inline void
update_stats_dequeue_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se,int flags)1926 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1927 int flags)
1928 {
1929 struct task_struct *p = dl_task_of(dl_se);
1930
1931 if (!schedstat_enabled())
1932 return;
1933
1934 if ((flags & DEQUEUE_SLEEP)) {
1935 unsigned int state;
1936
1937 state = READ_ONCE(p->__state);
1938 if (state & TASK_INTERRUPTIBLE)
1939 __schedstat_set(p->stats.sleep_start,
1940 rq_clock(rq_of_dl_rq(dl_rq)));
1941
1942 if (state & TASK_UNINTERRUPTIBLE)
1943 __schedstat_set(p->stats.block_start,
1944 rq_clock(rq_of_dl_rq(dl_rq)));
1945 }
1946 }
1947
__enqueue_dl_entity(struct sched_dl_entity * dl_se)1948 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1949 {
1950 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1951
1952 WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node));
1953
1954 rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
1955
1956 inc_dl_tasks(dl_se, dl_rq);
1957 }
1958
__dequeue_dl_entity(struct sched_dl_entity * dl_se)1959 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1960 {
1961 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1962
1963 if (RB_EMPTY_NODE(&dl_se->rb_node))
1964 return;
1965
1966 rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1967
1968 RB_CLEAR_NODE(&dl_se->rb_node);
1969
1970 dec_dl_tasks(dl_se, dl_rq);
1971 }
1972
1973 static void
enqueue_dl_entity(struct sched_dl_entity * dl_se,int flags)1974 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1975 {
1976 WARN_ON_ONCE(on_dl_rq(dl_se));
1977
1978 update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
1979
1980 /*
1981 * Check if a constrained deadline task was activated
1982 * after the deadline but before the next period.
1983 * If that is the case, the task will be throttled and
1984 * the replenishment timer will be set to the next period.
1985 */
1986 if (!dl_se->dl_throttled && !dl_is_implicit(dl_se))
1987 dl_check_constrained_dl(dl_se);
1988
1989 if (flags & (ENQUEUE_RESTORE|ENQUEUE_MIGRATING)) {
1990 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1991
1992 add_rq_bw(dl_se, dl_rq);
1993 add_running_bw(dl_se, dl_rq);
1994 }
1995
1996 /*
1997 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1998 * its budget it needs a replenishment and, since it now is on
1999 * its rq, the bandwidth timer callback (which clearly has not
2000 * run yet) will take care of this.
2001 * However, the active utilization does not depend on the fact
2002 * that the task is on the runqueue or not (but depends on the
2003 * task's state - in GRUB parlance, "inactive" vs "active contending").
2004 * In other words, even if a task is throttled its utilization must
2005 * be counted in the active utilization; hence, we need to call
2006 * add_running_bw().
2007 */
2008 if (!dl_se->dl_defer && dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
2009 if (flags & ENQUEUE_WAKEUP)
2010 task_contending(dl_se, flags);
2011
2012 return;
2013 }
2014
2015 /*
2016 * If this is a wakeup or a new instance, the scheduling
2017 * parameters of the task might need updating. Otherwise,
2018 * we want a replenishment of its runtime.
2019 */
2020 if (flags & ENQUEUE_WAKEUP) {
2021 task_contending(dl_se, flags);
2022 update_dl_entity(dl_se);
2023 } else if (flags & ENQUEUE_REPLENISH) {
2024 replenish_dl_entity(dl_se);
2025 } else if ((flags & ENQUEUE_RESTORE) &&
2026 !is_dl_boosted(dl_se) &&
2027 dl_time_before(dl_se->deadline, rq_clock(rq_of_dl_se(dl_se)))) {
2028 setup_new_dl_entity(dl_se);
2029 }
2030
2031 /*
2032 * If the reservation is still throttled, e.g., it got replenished but is a
2033 * deferred task and still got to wait, don't enqueue.
2034 */
2035 if (dl_se->dl_throttled && start_dl_timer(dl_se))
2036 return;
2037
2038 /*
2039 * We're about to enqueue, make sure we're not ->dl_throttled!
2040 * In case the timer was not started, say because the defer time
2041 * has passed, mark as not throttled and mark unarmed.
2042 * Also cancel earlier timers, since letting those run is pointless.
2043 */
2044 if (dl_se->dl_throttled) {
2045 hrtimer_try_to_cancel(&dl_se->dl_timer);
2046 dl_se->dl_defer_armed = 0;
2047 dl_se->dl_throttled = 0;
2048 }
2049
2050 __enqueue_dl_entity(dl_se);
2051 }
2052
dequeue_dl_entity(struct sched_dl_entity * dl_se,int flags)2053 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags)
2054 {
2055 __dequeue_dl_entity(dl_se);
2056
2057 if (flags & (DEQUEUE_SAVE|DEQUEUE_MIGRATING)) {
2058 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2059
2060 sub_running_bw(dl_se, dl_rq);
2061 sub_rq_bw(dl_se, dl_rq);
2062 }
2063
2064 /*
2065 * This check allows to start the inactive timer (or to immediately
2066 * decrease the active utilization, if needed) in two cases:
2067 * when the task blocks and when it is terminating
2068 * (p->state == TASK_DEAD). We can handle the two cases in the same
2069 * way, because from GRUB's point of view the same thing is happening
2070 * (the task moves from "active contending" to "active non contending"
2071 * or "inactive")
2072 */
2073 if (flags & DEQUEUE_SLEEP)
2074 task_non_contending(dl_se);
2075 }
2076
enqueue_task_dl(struct rq * rq,struct task_struct * p,int flags)2077 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
2078 {
2079 if (is_dl_boosted(&p->dl)) {
2080 /*
2081 * Because of delays in the detection of the overrun of a
2082 * thread's runtime, it might be the case that a thread
2083 * goes to sleep in a rt mutex with negative runtime. As
2084 * a consequence, the thread will be throttled.
2085 *
2086 * While waiting for the mutex, this thread can also be
2087 * boosted via PI, resulting in a thread that is throttled
2088 * and boosted at the same time.
2089 *
2090 * In this case, the boost overrides the throttle.
2091 */
2092 if (p->dl.dl_throttled) {
2093 /*
2094 * The replenish timer needs to be canceled. No
2095 * problem if it fires concurrently: boosted threads
2096 * are ignored in dl_task_timer().
2097 */
2098 cancel_replenish_timer(&p->dl);
2099 p->dl.dl_throttled = 0;
2100 }
2101 } else if (!dl_prio(p->normal_prio)) {
2102 /*
2103 * Special case in which we have a !SCHED_DEADLINE task that is going
2104 * to be deboosted, but exceeds its runtime while doing so. No point in
2105 * replenishing it, as it's going to return back to its original
2106 * scheduling class after this. If it has been throttled, we need to
2107 * clear the flag, otherwise the task may wake up as throttled after
2108 * being boosted again with no means to replenish the runtime and clear
2109 * the throttle.
2110 */
2111 p->dl.dl_throttled = 0;
2112 if (!(flags & ENQUEUE_REPLENISH))
2113 printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
2114 task_pid_nr(p));
2115
2116 return;
2117 }
2118
2119 check_schedstat_required();
2120 update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
2121
2122 if (p->on_rq == TASK_ON_RQ_MIGRATING)
2123 flags |= ENQUEUE_MIGRATING;
2124
2125 enqueue_dl_entity(&p->dl, flags);
2126
2127 if (dl_server(&p->dl))
2128 return;
2129
2130 if (task_is_blocked(p))
2131 return;
2132
2133 if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1)
2134 enqueue_pushable_dl_task(rq, p);
2135 }
2136
dequeue_task_dl(struct rq * rq,struct task_struct * p,int flags)2137 static bool dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
2138 {
2139 update_curr_dl(rq);
2140
2141 if (p->on_rq == TASK_ON_RQ_MIGRATING)
2142 flags |= DEQUEUE_MIGRATING;
2143
2144 dequeue_dl_entity(&p->dl, flags);
2145 if (!p->dl.dl_throttled && !dl_server(&p->dl))
2146 dequeue_pushable_dl_task(rq, p);
2147
2148 return true;
2149 }
2150
2151 /*
2152 * Yield task semantic for -deadline tasks is:
2153 *
2154 * get off from the CPU until our next instance, with
2155 * a new runtime. This is of little use now, since we
2156 * don't have a bandwidth reclaiming mechanism. Anyway,
2157 * bandwidth reclaiming is planned for the future, and
2158 * yield_task_dl will indicate that some spare budget
2159 * is available for other task instances to use it.
2160 */
yield_task_dl(struct rq * rq)2161 static void yield_task_dl(struct rq *rq)
2162 {
2163 /*
2164 * We make the task go to sleep until its current deadline by
2165 * forcing its runtime to zero. This way, update_curr_dl() stops
2166 * it and the bandwidth timer will wake it up and will give it
2167 * new scheduling parameters (thanks to dl_yielded=1).
2168 */
2169 rq->curr->dl.dl_yielded = 1;
2170
2171 update_rq_clock(rq);
2172 update_curr_dl(rq);
2173 /*
2174 * Tell update_rq_clock() that we've just updated,
2175 * so we don't do microscopic update in schedule()
2176 * and double the fastpath cost.
2177 */
2178 rq_clock_skip_update(rq);
2179 }
2180
dl_task_is_earliest_deadline(struct task_struct * p,struct rq * rq)2181 static inline bool dl_task_is_earliest_deadline(struct task_struct *p,
2182 struct rq *rq)
2183 {
2184 return (!rq->dl.dl_nr_running ||
2185 dl_time_before(p->dl.deadline,
2186 rq->dl.earliest_dl.curr));
2187 }
2188
2189 static int find_later_rq(struct task_struct *task);
2190
2191 static int
select_task_rq_dl(struct task_struct * p,int cpu,int flags)2192 select_task_rq_dl(struct task_struct *p, int cpu, int flags)
2193 {
2194 struct task_struct *curr, *donor;
2195 bool select_rq;
2196 struct rq *rq;
2197
2198 if (!(flags & WF_TTWU))
2199 goto out;
2200
2201 rq = cpu_rq(cpu);
2202
2203 rcu_read_lock();
2204 curr = READ_ONCE(rq->curr); /* unlocked access */
2205 donor = READ_ONCE(rq->donor);
2206
2207 /*
2208 * If we are dealing with a -deadline task, we must
2209 * decide where to wake it up.
2210 * If it has a later deadline and the current task
2211 * on this rq can't move (provided the waking task
2212 * can!) we prefer to send it somewhere else. On the
2213 * other hand, if it has a shorter deadline, we
2214 * try to make it stay here, it might be important.
2215 */
2216 select_rq = unlikely(dl_task(donor)) &&
2217 (curr->nr_cpus_allowed < 2 ||
2218 !dl_entity_preempt(&p->dl, &donor->dl)) &&
2219 p->nr_cpus_allowed > 1;
2220
2221 /*
2222 * Take the capacity of the CPU into account to
2223 * ensure it fits the requirement of the task.
2224 */
2225 if (sched_asym_cpucap_active())
2226 select_rq |= !dl_task_fits_capacity(p, cpu);
2227
2228 if (select_rq) {
2229 int target = find_later_rq(p);
2230
2231 if (target != -1 &&
2232 dl_task_is_earliest_deadline(p, cpu_rq(target)))
2233 cpu = target;
2234 }
2235 rcu_read_unlock();
2236
2237 out:
2238 return cpu;
2239 }
2240
migrate_task_rq_dl(struct task_struct * p,int new_cpu __maybe_unused)2241 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
2242 {
2243 struct rq_flags rf;
2244 struct rq *rq;
2245
2246 if (READ_ONCE(p->__state) != TASK_WAKING)
2247 return;
2248
2249 rq = task_rq(p);
2250 /*
2251 * Since p->state == TASK_WAKING, set_task_cpu() has been called
2252 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
2253 * rq->lock is not... So, lock it
2254 */
2255 rq_lock(rq, &rf);
2256 if (p->dl.dl_non_contending) {
2257 update_rq_clock(rq);
2258 sub_running_bw(&p->dl, &rq->dl);
2259 p->dl.dl_non_contending = 0;
2260 /*
2261 * If the timer handler is currently running and the
2262 * timer cannot be canceled, inactive_task_timer()
2263 * will see that dl_not_contending is not set, and
2264 * will not touch the rq's active utilization,
2265 * so we are still safe.
2266 */
2267 cancel_inactive_timer(&p->dl);
2268 }
2269 sub_rq_bw(&p->dl, &rq->dl);
2270 rq_unlock(rq, &rf);
2271 }
2272
check_preempt_equal_dl(struct rq * rq,struct task_struct * p)2273 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
2274 {
2275 /*
2276 * Current can't be migrated, useless to reschedule,
2277 * let's hope p can move out.
2278 */
2279 if (rq->curr->nr_cpus_allowed == 1 ||
2280 !cpudl_find(&rq->rd->cpudl, rq->donor, NULL))
2281 return;
2282
2283 /*
2284 * p is migratable, so let's not schedule it and
2285 * see if it is pushed or pulled somewhere else.
2286 */
2287 if (p->nr_cpus_allowed != 1 &&
2288 cpudl_find(&rq->rd->cpudl, p, NULL))
2289 return;
2290
2291 resched_curr(rq);
2292 }
2293
balance_dl(struct rq * rq,struct task_struct * p,struct rq_flags * rf)2294 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
2295 {
2296 if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
2297 /*
2298 * This is OK, because current is on_cpu, which avoids it being
2299 * picked for load-balance and preemption/IRQs are still
2300 * disabled avoiding further scheduler activity on it and we've
2301 * not yet started the picking loop.
2302 */
2303 rq_unpin_lock(rq, rf);
2304 pull_dl_task(rq);
2305 rq_repin_lock(rq, rf);
2306 }
2307
2308 return sched_stop_runnable(rq) || sched_dl_runnable(rq);
2309 }
2310
2311 /*
2312 * Only called when both the current and waking task are -deadline
2313 * tasks.
2314 */
wakeup_preempt_dl(struct rq * rq,struct task_struct * p,int flags)2315 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p,
2316 int flags)
2317 {
2318 if (dl_entity_preempt(&p->dl, &rq->donor->dl)) {
2319 resched_curr(rq);
2320 return;
2321 }
2322
2323 /*
2324 * In the unlikely case current and p have the same deadline
2325 * let us try to decide what's the best thing to do...
2326 */
2327 if ((p->dl.deadline == rq->donor->dl.deadline) &&
2328 !test_tsk_need_resched(rq->curr))
2329 check_preempt_equal_dl(rq, p);
2330 }
2331
2332 #ifdef CONFIG_SCHED_HRTICK
start_hrtick_dl(struct rq * rq,struct sched_dl_entity * dl_se)2333 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2334 {
2335 hrtick_start(rq, dl_se->runtime);
2336 }
2337 #else /* !CONFIG_SCHED_HRTICK: */
start_hrtick_dl(struct rq * rq,struct sched_dl_entity * dl_se)2338 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2339 {
2340 }
2341 #endif /* !CONFIG_SCHED_HRTICK */
2342
set_next_task_dl(struct rq * rq,struct task_struct * p,bool first)2343 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
2344 {
2345 struct sched_dl_entity *dl_se = &p->dl;
2346 struct dl_rq *dl_rq = &rq->dl;
2347
2348 p->se.exec_start = rq_clock_task(rq);
2349 if (on_dl_rq(&p->dl))
2350 update_stats_wait_end_dl(dl_rq, dl_se);
2351
2352 /* You can't push away the running task */
2353 dequeue_pushable_dl_task(rq, p);
2354
2355 if (!first)
2356 return;
2357
2358 if (rq->donor->sched_class != &dl_sched_class)
2359 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2360
2361 deadline_queue_push_tasks(rq);
2362
2363 if (hrtick_enabled_dl(rq))
2364 start_hrtick_dl(rq, &p->dl);
2365 }
2366
pick_next_dl_entity(struct dl_rq * dl_rq)2367 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
2368 {
2369 struct rb_node *left = rb_first_cached(&dl_rq->root);
2370
2371 if (!left)
2372 return NULL;
2373
2374 return __node_2_dle(left);
2375 }
2376
2377 /*
2378 * __pick_next_task_dl - Helper to pick the next -deadline task to run.
2379 * @rq: The runqueue to pick the next task from.
2380 */
__pick_task_dl(struct rq * rq)2381 static struct task_struct *__pick_task_dl(struct rq *rq)
2382 {
2383 struct sched_dl_entity *dl_se;
2384 struct dl_rq *dl_rq = &rq->dl;
2385 struct task_struct *p;
2386
2387 again:
2388 if (!sched_dl_runnable(rq))
2389 return NULL;
2390
2391 dl_se = pick_next_dl_entity(dl_rq);
2392 WARN_ON_ONCE(!dl_se);
2393
2394 if (dl_server(dl_se)) {
2395 p = dl_se->server_pick_task(dl_se);
2396 if (!p) {
2397 if (!dl_server_stopped(dl_se)) {
2398 dl_se->dl_yielded = 1;
2399 update_curr_dl_se(rq, dl_se, 0);
2400 }
2401 goto again;
2402 }
2403 rq->dl_server = dl_se;
2404 } else {
2405 p = dl_task_of(dl_se);
2406 }
2407
2408 return p;
2409 }
2410
pick_task_dl(struct rq * rq)2411 static struct task_struct *pick_task_dl(struct rq *rq)
2412 {
2413 return __pick_task_dl(rq);
2414 }
2415
put_prev_task_dl(struct rq * rq,struct task_struct * p,struct task_struct * next)2416 static void put_prev_task_dl(struct rq *rq, struct task_struct *p, struct task_struct *next)
2417 {
2418 struct sched_dl_entity *dl_se = &p->dl;
2419 struct dl_rq *dl_rq = &rq->dl;
2420
2421 if (on_dl_rq(&p->dl))
2422 update_stats_wait_start_dl(dl_rq, dl_se);
2423
2424 update_curr_dl(rq);
2425
2426 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2427
2428 if (task_is_blocked(p))
2429 return;
2430
2431 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
2432 enqueue_pushable_dl_task(rq, p);
2433 }
2434
2435 /*
2436 * scheduler tick hitting a task of our scheduling class.
2437 *
2438 * NOTE: This function can be called remotely by the tick offload that
2439 * goes along full dynticks. Therefore no local assumption can be made
2440 * and everything must be accessed through the @rq and @curr passed in
2441 * parameters.
2442 */
task_tick_dl(struct rq * rq,struct task_struct * p,int queued)2443 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
2444 {
2445 update_curr_dl(rq);
2446
2447 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2448 /*
2449 * Even when we have runtime, update_curr_dl() might have resulted in us
2450 * not being the leftmost task anymore. In that case NEED_RESCHED will
2451 * be set and schedule() will start a new hrtick for the next task.
2452 */
2453 if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
2454 is_leftmost(&p->dl, &rq->dl))
2455 start_hrtick_dl(rq, &p->dl);
2456 }
2457
task_fork_dl(struct task_struct * p)2458 static void task_fork_dl(struct task_struct *p)
2459 {
2460 /*
2461 * SCHED_DEADLINE tasks cannot fork and this is achieved through
2462 * sched_fork()
2463 */
2464 }
2465
2466 /* Only try algorithms three times */
2467 #define DL_MAX_TRIES 3
2468
2469 /*
2470 * Return the earliest pushable rq's task, which is suitable to be executed
2471 * on the CPU, NULL otherwise:
2472 */
pick_earliest_pushable_dl_task(struct rq * rq,int cpu)2473 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
2474 {
2475 struct task_struct *p = NULL;
2476 struct rb_node *next_node;
2477
2478 if (!has_pushable_dl_tasks(rq))
2479 return NULL;
2480
2481 next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
2482 while (next_node) {
2483 p = __node_2_pdl(next_node);
2484
2485 if (task_is_pushable(rq, p, cpu))
2486 return p;
2487
2488 next_node = rb_next(next_node);
2489 }
2490
2491 return NULL;
2492 }
2493
2494 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
2495
find_later_rq(struct task_struct * task)2496 static int find_later_rq(struct task_struct *task)
2497 {
2498 struct sched_domain *sd;
2499 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
2500 int this_cpu = smp_processor_id();
2501 int cpu = task_cpu(task);
2502
2503 /* Make sure the mask is initialized first */
2504 if (unlikely(!later_mask))
2505 return -1;
2506
2507 if (task->nr_cpus_allowed == 1)
2508 return -1;
2509
2510 /*
2511 * We have to consider system topology and task affinity
2512 * first, then we can look for a suitable CPU.
2513 */
2514 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
2515 return -1;
2516
2517 /*
2518 * If we are here, some targets have been found, including
2519 * the most suitable which is, among the runqueues where the
2520 * current tasks have later deadlines than the task's one, the
2521 * rq with the latest possible one.
2522 *
2523 * Now we check how well this matches with task's
2524 * affinity and system topology.
2525 *
2526 * The last CPU where the task run is our first
2527 * guess, since it is most likely cache-hot there.
2528 */
2529 if (cpumask_test_cpu(cpu, later_mask))
2530 return cpu;
2531 /*
2532 * Check if this_cpu is to be skipped (i.e., it is
2533 * not in the mask) or not.
2534 */
2535 if (!cpumask_test_cpu(this_cpu, later_mask))
2536 this_cpu = -1;
2537
2538 rcu_read_lock();
2539 for_each_domain(cpu, sd) {
2540 if (sd->flags & SD_WAKE_AFFINE) {
2541 int best_cpu;
2542
2543 /*
2544 * If possible, preempting this_cpu is
2545 * cheaper than migrating.
2546 */
2547 if (this_cpu != -1 &&
2548 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2549 rcu_read_unlock();
2550 return this_cpu;
2551 }
2552
2553 best_cpu = cpumask_any_and_distribute(later_mask,
2554 sched_domain_span(sd));
2555 /*
2556 * Last chance: if a CPU being in both later_mask
2557 * and current sd span is valid, that becomes our
2558 * choice. Of course, the latest possible CPU is
2559 * already under consideration through later_mask.
2560 */
2561 if (best_cpu < nr_cpu_ids) {
2562 rcu_read_unlock();
2563 return best_cpu;
2564 }
2565 }
2566 }
2567 rcu_read_unlock();
2568
2569 /*
2570 * At this point, all our guesses failed, we just return
2571 * 'something', and let the caller sort the things out.
2572 */
2573 if (this_cpu != -1)
2574 return this_cpu;
2575
2576 cpu = cpumask_any_distribute(later_mask);
2577 if (cpu < nr_cpu_ids)
2578 return cpu;
2579
2580 return -1;
2581 }
2582
2583 /* Locks the rq it finds */
find_lock_later_rq(struct task_struct * task,struct rq * rq)2584 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2585 {
2586 struct rq *later_rq = NULL;
2587 int tries;
2588 int cpu;
2589
2590 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2591 cpu = find_later_rq(task);
2592
2593 if ((cpu == -1) || (cpu == rq->cpu))
2594 break;
2595
2596 later_rq = cpu_rq(cpu);
2597
2598 if (!dl_task_is_earliest_deadline(task, later_rq)) {
2599 /*
2600 * Target rq has tasks of equal or earlier deadline,
2601 * retrying does not release any lock and is unlikely
2602 * to yield a different result.
2603 */
2604 later_rq = NULL;
2605 break;
2606 }
2607
2608 /* Retry if something changed. */
2609 if (double_lock_balance(rq, later_rq)) {
2610 if (unlikely(task_rq(task) != rq ||
2611 !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2612 task_on_cpu(rq, task) ||
2613 !dl_task(task) ||
2614 is_migration_disabled(task) ||
2615 !task_on_rq_queued(task))) {
2616 double_unlock_balance(rq, later_rq);
2617 later_rq = NULL;
2618 break;
2619 }
2620 }
2621
2622 /*
2623 * If the rq we found has no -deadline task, or
2624 * its earliest one has a later deadline than our
2625 * task, the rq is a good one.
2626 */
2627 if (dl_task_is_earliest_deadline(task, later_rq))
2628 break;
2629
2630 /* Otherwise we try again. */
2631 double_unlock_balance(rq, later_rq);
2632 later_rq = NULL;
2633 }
2634
2635 return later_rq;
2636 }
2637
pick_next_pushable_dl_task(struct rq * rq)2638 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2639 {
2640 struct task_struct *p;
2641
2642 if (!has_pushable_dl_tasks(rq))
2643 return NULL;
2644
2645 p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
2646
2647 WARN_ON_ONCE(rq->cpu != task_cpu(p));
2648 WARN_ON_ONCE(task_current(rq, p));
2649 WARN_ON_ONCE(p->nr_cpus_allowed <= 1);
2650
2651 WARN_ON_ONCE(!task_on_rq_queued(p));
2652 WARN_ON_ONCE(!dl_task(p));
2653
2654 return p;
2655 }
2656
2657 /*
2658 * See if the non running -deadline tasks on this rq
2659 * can be sent to some other CPU where they can preempt
2660 * and start executing.
2661 */
push_dl_task(struct rq * rq)2662 static int push_dl_task(struct rq *rq)
2663 {
2664 struct task_struct *next_task;
2665 struct rq *later_rq;
2666 int ret = 0;
2667
2668 next_task = pick_next_pushable_dl_task(rq);
2669 if (!next_task)
2670 return 0;
2671
2672 retry:
2673 /*
2674 * If next_task preempts rq->curr, and rq->curr
2675 * can move away, it makes sense to just reschedule
2676 * without going further in pushing next_task.
2677 */
2678 if (dl_task(rq->donor) &&
2679 dl_time_before(next_task->dl.deadline, rq->donor->dl.deadline) &&
2680 rq->curr->nr_cpus_allowed > 1) {
2681 resched_curr(rq);
2682 return 0;
2683 }
2684
2685 if (is_migration_disabled(next_task))
2686 return 0;
2687
2688 if (WARN_ON(next_task == rq->curr))
2689 return 0;
2690
2691 /* We might release rq lock */
2692 get_task_struct(next_task);
2693
2694 /* Will lock the rq it'll find */
2695 later_rq = find_lock_later_rq(next_task, rq);
2696 if (!later_rq) {
2697 struct task_struct *task;
2698
2699 /*
2700 * We must check all this again, since
2701 * find_lock_later_rq releases rq->lock and it is
2702 * then possible that next_task has migrated.
2703 */
2704 task = pick_next_pushable_dl_task(rq);
2705 if (task == next_task) {
2706 /*
2707 * The task is still there. We don't try
2708 * again, some other CPU will pull it when ready.
2709 */
2710 goto out;
2711 }
2712
2713 if (!task)
2714 /* No more tasks */
2715 goto out;
2716
2717 put_task_struct(next_task);
2718 next_task = task;
2719 goto retry;
2720 }
2721
2722 move_queued_task_locked(rq, later_rq, next_task);
2723 ret = 1;
2724
2725 resched_curr(later_rq);
2726
2727 double_unlock_balance(rq, later_rq);
2728
2729 out:
2730 put_task_struct(next_task);
2731
2732 return ret;
2733 }
2734
push_dl_tasks(struct rq * rq)2735 static void push_dl_tasks(struct rq *rq)
2736 {
2737 /* push_dl_task() will return true if it moved a -deadline task */
2738 while (push_dl_task(rq))
2739 ;
2740 }
2741
pull_dl_task(struct rq * this_rq)2742 static void pull_dl_task(struct rq *this_rq)
2743 {
2744 int this_cpu = this_rq->cpu, cpu;
2745 struct task_struct *p, *push_task;
2746 bool resched = false;
2747 struct rq *src_rq;
2748 u64 dmin = LONG_MAX;
2749
2750 if (likely(!dl_overloaded(this_rq)))
2751 return;
2752
2753 /*
2754 * Match the barrier from dl_set_overloaded; this guarantees that if we
2755 * see overloaded we must also see the dlo_mask bit.
2756 */
2757 smp_rmb();
2758
2759 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2760 if (this_cpu == cpu)
2761 continue;
2762
2763 src_rq = cpu_rq(cpu);
2764
2765 /*
2766 * It looks racy, and it is! However, as in sched_rt.c,
2767 * we are fine with this.
2768 */
2769 if (this_rq->dl.dl_nr_running &&
2770 dl_time_before(this_rq->dl.earliest_dl.curr,
2771 src_rq->dl.earliest_dl.next))
2772 continue;
2773
2774 /* Might drop this_rq->lock */
2775 push_task = NULL;
2776 double_lock_balance(this_rq, src_rq);
2777
2778 /*
2779 * If there are no more pullable tasks on the
2780 * rq, we're done with it.
2781 */
2782 if (src_rq->dl.dl_nr_running <= 1)
2783 goto skip;
2784
2785 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2786
2787 /*
2788 * We found a task to be pulled if:
2789 * - it preempts our current (if there's one),
2790 * - it will preempt the last one we pulled (if any).
2791 */
2792 if (p && dl_time_before(p->dl.deadline, dmin) &&
2793 dl_task_is_earliest_deadline(p, this_rq)) {
2794 WARN_ON(p == src_rq->curr);
2795 WARN_ON(!task_on_rq_queued(p));
2796
2797 /*
2798 * Then we pull iff p has actually an earlier
2799 * deadline than the current task of its runqueue.
2800 */
2801 if (dl_time_before(p->dl.deadline,
2802 src_rq->donor->dl.deadline))
2803 goto skip;
2804
2805 if (is_migration_disabled(p)) {
2806 push_task = get_push_task(src_rq);
2807 } else {
2808 move_queued_task_locked(src_rq, this_rq, p);
2809 dmin = p->dl.deadline;
2810 resched = true;
2811 }
2812
2813 /* Is there any other task even earlier? */
2814 }
2815 skip:
2816 double_unlock_balance(this_rq, src_rq);
2817
2818 if (push_task) {
2819 preempt_disable();
2820 raw_spin_rq_unlock(this_rq);
2821 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2822 push_task, &src_rq->push_work);
2823 preempt_enable();
2824 raw_spin_rq_lock(this_rq);
2825 }
2826 }
2827
2828 if (resched)
2829 resched_curr(this_rq);
2830 }
2831
2832 /*
2833 * Since the task is not running and a reschedule is not going to happen
2834 * anytime soon on its runqueue, we try pushing it away now.
2835 */
task_woken_dl(struct rq * rq,struct task_struct * p)2836 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2837 {
2838 if (!task_on_cpu(rq, p) &&
2839 !test_tsk_need_resched(rq->curr) &&
2840 p->nr_cpus_allowed > 1 &&
2841 dl_task(rq->donor) &&
2842 (rq->curr->nr_cpus_allowed < 2 ||
2843 !dl_entity_preempt(&p->dl, &rq->donor->dl))) {
2844 push_dl_tasks(rq);
2845 }
2846 }
2847
set_cpus_allowed_dl(struct task_struct * p,struct affinity_context * ctx)2848 static void set_cpus_allowed_dl(struct task_struct *p,
2849 struct affinity_context *ctx)
2850 {
2851 struct root_domain *src_rd;
2852 struct rq *rq;
2853
2854 WARN_ON_ONCE(!dl_task(p));
2855
2856 rq = task_rq(p);
2857 src_rd = rq->rd;
2858 /*
2859 * Migrating a SCHED_DEADLINE task between exclusive
2860 * cpusets (different root_domains) entails a bandwidth
2861 * update. We already made space for us in the destination
2862 * domain (see cpuset_can_attach()).
2863 */
2864 if (!cpumask_intersects(src_rd->span, ctx->new_mask)) {
2865 struct dl_bw *src_dl_b;
2866
2867 src_dl_b = dl_bw_of(cpu_of(rq));
2868 /*
2869 * We now free resources of the root_domain we are migrating
2870 * off. In the worst case, sched_setattr() may temporary fail
2871 * until we complete the update.
2872 */
2873 raw_spin_lock(&src_dl_b->lock);
2874 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2875 raw_spin_unlock(&src_dl_b->lock);
2876 }
2877
2878 set_cpus_allowed_common(p, ctx);
2879 }
2880
2881 /* Assumes rq->lock is held */
rq_online_dl(struct rq * rq)2882 static void rq_online_dl(struct rq *rq)
2883 {
2884 if (rq->dl.overloaded)
2885 dl_set_overload(rq);
2886
2887 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2888 if (rq->dl.dl_nr_running > 0)
2889 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2890 }
2891
2892 /* Assumes rq->lock is held */
rq_offline_dl(struct rq * rq)2893 static void rq_offline_dl(struct rq *rq)
2894 {
2895 if (rq->dl.overloaded)
2896 dl_clear_overload(rq);
2897
2898 cpudl_clear(&rq->rd->cpudl, rq->cpu);
2899 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2900 }
2901
init_sched_dl_class(void)2902 void __init init_sched_dl_class(void)
2903 {
2904 unsigned int i;
2905
2906 for_each_possible_cpu(i)
2907 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2908 GFP_KERNEL, cpu_to_node(i));
2909 }
2910
dl_add_task_root_domain(struct task_struct * p)2911 void dl_add_task_root_domain(struct task_struct *p)
2912 {
2913 struct rq_flags rf;
2914 struct rq *rq;
2915 struct dl_bw *dl_b;
2916
2917 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2918 if (!dl_task(p) || dl_entity_is_special(&p->dl)) {
2919 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2920 return;
2921 }
2922
2923 rq = __task_rq_lock(p, &rf);
2924
2925 dl_b = &rq->rd->dl_bw;
2926 raw_spin_lock(&dl_b->lock);
2927
2928 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2929
2930 raw_spin_unlock(&dl_b->lock);
2931
2932 task_rq_unlock(rq, p, &rf);
2933 }
2934
dl_clear_root_domain(struct root_domain * rd)2935 void dl_clear_root_domain(struct root_domain *rd)
2936 {
2937 int i;
2938
2939 guard(raw_spinlock_irqsave)(&rd->dl_bw.lock);
2940
2941 /*
2942 * Reset total_bw to zero and extra_bw to max_bw so that next
2943 * loop will add dl-servers contributions back properly,
2944 */
2945 rd->dl_bw.total_bw = 0;
2946 for_each_cpu(i, rd->span)
2947 cpu_rq(i)->dl.extra_bw = cpu_rq(i)->dl.max_bw;
2948
2949 /*
2950 * dl_servers are not tasks. Since dl_add_task_root_domain ignores
2951 * them, we need to account for them here explicitly.
2952 */
2953 for_each_cpu(i, rd->span) {
2954 struct sched_dl_entity *dl_se = &cpu_rq(i)->fair_server;
2955
2956 if (dl_server(dl_se) && cpu_active(i))
2957 __dl_add(&rd->dl_bw, dl_se->dl_bw, dl_bw_cpus(i));
2958 }
2959 }
2960
dl_clear_root_domain_cpu(int cpu)2961 void dl_clear_root_domain_cpu(int cpu)
2962 {
2963 dl_clear_root_domain(cpu_rq(cpu)->rd);
2964 }
2965
switched_from_dl(struct rq * rq,struct task_struct * p)2966 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2967 {
2968 /*
2969 * task_non_contending() can start the "inactive timer" (if the 0-lag
2970 * time is in the future). If the task switches back to dl before
2971 * the "inactive timer" fires, it can continue to consume its current
2972 * runtime using its current deadline. If it stays outside of
2973 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2974 * will reset the task parameters.
2975 */
2976 if (task_on_rq_queued(p) && p->dl.dl_runtime)
2977 task_non_contending(&p->dl);
2978
2979 /*
2980 * In case a task is setscheduled out from SCHED_DEADLINE we need to
2981 * keep track of that on its cpuset (for correct bandwidth tracking).
2982 */
2983 dec_dl_tasks_cs(p);
2984
2985 if (!task_on_rq_queued(p)) {
2986 /*
2987 * Inactive timer is armed. However, p is leaving DEADLINE and
2988 * might migrate away from this rq while continuing to run on
2989 * some other class. We need to remove its contribution from
2990 * this rq running_bw now, or sub_rq_bw (below) will complain.
2991 */
2992 if (p->dl.dl_non_contending)
2993 sub_running_bw(&p->dl, &rq->dl);
2994 sub_rq_bw(&p->dl, &rq->dl);
2995 }
2996
2997 /*
2998 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2999 * at the 0-lag time, because the task could have been migrated
3000 * while SCHED_OTHER in the meanwhile.
3001 */
3002 if (p->dl.dl_non_contending)
3003 p->dl.dl_non_contending = 0;
3004
3005 /*
3006 * Since this might be the only -deadline task on the rq,
3007 * this is the right place to try to pull some other one
3008 * from an overloaded CPU, if any.
3009 */
3010 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
3011 return;
3012
3013 deadline_queue_pull_task(rq);
3014 }
3015
3016 /*
3017 * When switching to -deadline, we may overload the rq, then
3018 * we try to push someone off, if possible.
3019 */
switched_to_dl(struct rq * rq,struct task_struct * p)3020 static void switched_to_dl(struct rq *rq, struct task_struct *p)
3021 {
3022 cancel_inactive_timer(&p->dl);
3023
3024 /*
3025 * In case a task is setscheduled to SCHED_DEADLINE we need to keep
3026 * track of that on its cpuset (for correct bandwidth tracking).
3027 */
3028 inc_dl_tasks_cs(p);
3029
3030 /* If p is not queued we will update its parameters at next wakeup. */
3031 if (!task_on_rq_queued(p)) {
3032 add_rq_bw(&p->dl, &rq->dl);
3033
3034 return;
3035 }
3036
3037 if (rq->donor != p) {
3038 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
3039 deadline_queue_push_tasks(rq);
3040 if (dl_task(rq->donor))
3041 wakeup_preempt_dl(rq, p, 0);
3042 else
3043 resched_curr(rq);
3044 } else {
3045 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
3046 }
3047 }
3048
3049 /*
3050 * If the scheduling parameters of a -deadline task changed,
3051 * a push or pull operation might be needed.
3052 */
prio_changed_dl(struct rq * rq,struct task_struct * p,int oldprio)3053 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
3054 int oldprio)
3055 {
3056 if (!task_on_rq_queued(p))
3057 return;
3058
3059 /*
3060 * This might be too much, but unfortunately
3061 * we don't have the old deadline value, and
3062 * we can't argue if the task is increasing
3063 * or lowering its prio, so...
3064 */
3065 if (!rq->dl.overloaded)
3066 deadline_queue_pull_task(rq);
3067
3068 if (task_current_donor(rq, p)) {
3069 /*
3070 * If we now have a earlier deadline task than p,
3071 * then reschedule, provided p is still on this
3072 * runqueue.
3073 */
3074 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
3075 resched_curr(rq);
3076 } else {
3077 /*
3078 * Current may not be deadline in case p was throttled but we
3079 * have just replenished it (e.g. rt_mutex_setprio()).
3080 *
3081 * Otherwise, if p was given an earlier deadline, reschedule.
3082 */
3083 if (!dl_task(rq->curr) ||
3084 dl_time_before(p->dl.deadline, rq->curr->dl.deadline))
3085 resched_curr(rq);
3086 }
3087 }
3088
3089 #ifdef CONFIG_SCHED_CORE
task_is_throttled_dl(struct task_struct * p,int cpu)3090 static int task_is_throttled_dl(struct task_struct *p, int cpu)
3091 {
3092 return p->dl.dl_throttled;
3093 }
3094 #endif
3095
3096 DEFINE_SCHED_CLASS(dl) = {
3097
3098 .enqueue_task = enqueue_task_dl,
3099 .dequeue_task = dequeue_task_dl,
3100 .yield_task = yield_task_dl,
3101
3102 .wakeup_preempt = wakeup_preempt_dl,
3103
3104 .pick_task = pick_task_dl,
3105 .put_prev_task = put_prev_task_dl,
3106 .set_next_task = set_next_task_dl,
3107
3108 .balance = balance_dl,
3109 .select_task_rq = select_task_rq_dl,
3110 .migrate_task_rq = migrate_task_rq_dl,
3111 .set_cpus_allowed = set_cpus_allowed_dl,
3112 .rq_online = rq_online_dl,
3113 .rq_offline = rq_offline_dl,
3114 .task_woken = task_woken_dl,
3115 .find_lock_rq = find_lock_later_rq,
3116
3117 .task_tick = task_tick_dl,
3118 .task_fork = task_fork_dl,
3119
3120 .prio_changed = prio_changed_dl,
3121 .switched_from = switched_from_dl,
3122 .switched_to = switched_to_dl,
3123
3124 .update_curr = update_curr_dl,
3125 #ifdef CONFIG_SCHED_CORE
3126 .task_is_throttled = task_is_throttled_dl,
3127 #endif
3128 };
3129
3130 /*
3131 * Used for dl_bw check and update, used under sched_rt_handler()::mutex and
3132 * sched_domains_mutex.
3133 */
3134 u64 dl_cookie;
3135
sched_dl_global_validate(void)3136 int sched_dl_global_validate(void)
3137 {
3138 u64 runtime = global_rt_runtime();
3139 u64 period = global_rt_period();
3140 u64 new_bw = to_ratio(period, runtime);
3141 u64 cookie = ++dl_cookie;
3142 struct dl_bw *dl_b;
3143 int cpu, cpus, ret = 0;
3144 unsigned long flags;
3145
3146 /*
3147 * Here we want to check the bandwidth not being set to some
3148 * value smaller than the currently allocated bandwidth in
3149 * any of the root_domains.
3150 */
3151 for_each_online_cpu(cpu) {
3152 rcu_read_lock_sched();
3153
3154 if (dl_bw_visited(cpu, cookie))
3155 goto next;
3156
3157 dl_b = dl_bw_of(cpu);
3158 cpus = dl_bw_cpus(cpu);
3159
3160 raw_spin_lock_irqsave(&dl_b->lock, flags);
3161 if (new_bw * cpus < dl_b->total_bw)
3162 ret = -EBUSY;
3163 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3164
3165 next:
3166 rcu_read_unlock_sched();
3167
3168 if (ret)
3169 break;
3170 }
3171
3172 return ret;
3173 }
3174
init_dl_rq_bw_ratio(struct dl_rq * dl_rq)3175 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
3176 {
3177 if (global_rt_runtime() == RUNTIME_INF) {
3178 dl_rq->bw_ratio = 1 << RATIO_SHIFT;
3179 dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT;
3180 } else {
3181 dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
3182 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
3183 dl_rq->max_bw = dl_rq->extra_bw =
3184 to_ratio(global_rt_period(), global_rt_runtime());
3185 }
3186 }
3187
sched_dl_do_global(void)3188 void sched_dl_do_global(void)
3189 {
3190 u64 new_bw = -1;
3191 u64 cookie = ++dl_cookie;
3192 struct dl_bw *dl_b;
3193 int cpu;
3194 unsigned long flags;
3195
3196 if (global_rt_runtime() != RUNTIME_INF)
3197 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
3198
3199 for_each_possible_cpu(cpu)
3200 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
3201
3202 for_each_possible_cpu(cpu) {
3203 rcu_read_lock_sched();
3204
3205 if (dl_bw_visited(cpu, cookie)) {
3206 rcu_read_unlock_sched();
3207 continue;
3208 }
3209
3210 dl_b = dl_bw_of(cpu);
3211
3212 raw_spin_lock_irqsave(&dl_b->lock, flags);
3213 dl_b->bw = new_bw;
3214 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3215
3216 rcu_read_unlock_sched();
3217 }
3218 }
3219
3220 /*
3221 * We must be sure that accepting a new task (or allowing changing the
3222 * parameters of an existing one) is consistent with the bandwidth
3223 * constraints. If yes, this function also accordingly updates the currently
3224 * allocated bandwidth to reflect the new situation.
3225 *
3226 * This function is called while holding p's rq->lock.
3227 */
sched_dl_overflow(struct task_struct * p,int policy,const struct sched_attr * attr)3228 int sched_dl_overflow(struct task_struct *p, int policy,
3229 const struct sched_attr *attr)
3230 {
3231 u64 period = attr->sched_period ?: attr->sched_deadline;
3232 u64 runtime = attr->sched_runtime;
3233 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
3234 int cpus, err = -1, cpu = task_cpu(p);
3235 struct dl_bw *dl_b = dl_bw_of(cpu);
3236 unsigned long cap;
3237
3238 if (attr->sched_flags & SCHED_FLAG_SUGOV)
3239 return 0;
3240
3241 /* !deadline task may carry old deadline bandwidth */
3242 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
3243 return 0;
3244
3245 /*
3246 * Either if a task, enters, leave, or stays -deadline but changes
3247 * its parameters, we may need to update accordingly the total
3248 * allocated bandwidth of the container.
3249 */
3250 raw_spin_lock(&dl_b->lock);
3251 cpus = dl_bw_cpus(cpu);
3252 cap = dl_bw_capacity(cpu);
3253
3254 if (dl_policy(policy) && !task_has_dl_policy(p) &&
3255 !__dl_overflow(dl_b, cap, 0, new_bw)) {
3256 if (hrtimer_active(&p->dl.inactive_timer))
3257 __dl_sub(dl_b, p->dl.dl_bw, cpus);
3258 __dl_add(dl_b, new_bw, cpus);
3259 err = 0;
3260 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
3261 !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
3262 /*
3263 * XXX this is slightly incorrect: when the task
3264 * utilization decreases, we should delay the total
3265 * utilization change until the task's 0-lag point.
3266 * But this would require to set the task's "inactive
3267 * timer" when the task is not inactive.
3268 */
3269 __dl_sub(dl_b, p->dl.dl_bw, cpus);
3270 __dl_add(dl_b, new_bw, cpus);
3271 dl_change_utilization(p, new_bw);
3272 err = 0;
3273 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
3274 /*
3275 * Do not decrease the total deadline utilization here,
3276 * switched_from_dl() will take care to do it at the correct
3277 * (0-lag) time.
3278 */
3279 err = 0;
3280 }
3281 raw_spin_unlock(&dl_b->lock);
3282
3283 return err;
3284 }
3285
3286 /*
3287 * This function initializes the sched_dl_entity of a newly becoming
3288 * SCHED_DEADLINE task.
3289 *
3290 * Only the static values are considered here, the actual runtime and the
3291 * absolute deadline will be properly calculated when the task is enqueued
3292 * for the first time with its new policy.
3293 */
__setparam_dl(struct task_struct * p,const struct sched_attr * attr)3294 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3295 {
3296 struct sched_dl_entity *dl_se = &p->dl;
3297
3298 dl_se->dl_runtime = attr->sched_runtime;
3299 dl_se->dl_deadline = attr->sched_deadline;
3300 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3301 dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
3302 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3303 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
3304 }
3305
__getparam_dl(struct task_struct * p,struct sched_attr * attr)3306 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3307 {
3308 struct sched_dl_entity *dl_se = &p->dl;
3309
3310 attr->sched_priority = p->rt_priority;
3311 attr->sched_runtime = dl_se->dl_runtime;
3312 attr->sched_deadline = dl_se->dl_deadline;
3313 attr->sched_period = dl_se->dl_period;
3314 attr->sched_flags &= ~SCHED_DL_FLAGS;
3315 attr->sched_flags |= dl_se->flags;
3316 }
3317
3318 /*
3319 * This function validates the new parameters of a -deadline task.
3320 * We ask for the deadline not being zero, and greater or equal
3321 * than the runtime, as well as the period of being zero or
3322 * greater than deadline. Furthermore, we have to be sure that
3323 * user parameters are above the internal resolution of 1us (we
3324 * check sched_runtime only since it is always the smaller one) and
3325 * below 2^63 ns (we have to check both sched_deadline and
3326 * sched_period, as the latter can be zero).
3327 */
__checkparam_dl(const struct sched_attr * attr)3328 bool __checkparam_dl(const struct sched_attr *attr)
3329 {
3330 u64 period, max, min;
3331
3332 /* special dl tasks don't actually use any parameter */
3333 if (attr->sched_flags & SCHED_FLAG_SUGOV)
3334 return true;
3335
3336 /* deadline != 0 */
3337 if (attr->sched_deadline == 0)
3338 return false;
3339
3340 /*
3341 * Since we truncate DL_SCALE bits, make sure we're at least
3342 * that big.
3343 */
3344 if (attr->sched_runtime < (1ULL << DL_SCALE))
3345 return false;
3346
3347 /*
3348 * Since we use the MSB for wrap-around and sign issues, make
3349 * sure it's not set (mind that period can be equal to zero).
3350 */
3351 if (attr->sched_deadline & (1ULL << 63) ||
3352 attr->sched_period & (1ULL << 63))
3353 return false;
3354
3355 period = attr->sched_period;
3356 if (!period)
3357 period = attr->sched_deadline;
3358
3359 /* runtime <= deadline <= period (if period != 0) */
3360 if (period < attr->sched_deadline ||
3361 attr->sched_deadline < attr->sched_runtime)
3362 return false;
3363
3364 max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
3365 min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
3366
3367 if (period < min || period > max)
3368 return false;
3369
3370 return true;
3371 }
3372
3373 /*
3374 * This function clears the sched_dl_entity static params.
3375 */
__dl_clear_params(struct sched_dl_entity * dl_se)3376 static void __dl_clear_params(struct sched_dl_entity *dl_se)
3377 {
3378 dl_se->dl_runtime = 0;
3379 dl_se->dl_deadline = 0;
3380 dl_se->dl_period = 0;
3381 dl_se->flags = 0;
3382 dl_se->dl_bw = 0;
3383 dl_se->dl_density = 0;
3384
3385 dl_se->dl_throttled = 0;
3386 dl_se->dl_yielded = 0;
3387 dl_se->dl_non_contending = 0;
3388 dl_se->dl_overrun = 0;
3389 dl_se->dl_server = 0;
3390
3391 #ifdef CONFIG_RT_MUTEXES
3392 dl_se->pi_se = dl_se;
3393 #endif
3394 }
3395
init_dl_entity(struct sched_dl_entity * dl_se)3396 void init_dl_entity(struct sched_dl_entity *dl_se)
3397 {
3398 RB_CLEAR_NODE(&dl_se->rb_node);
3399 init_dl_task_timer(dl_se);
3400 init_dl_inactive_task_timer(dl_se);
3401 __dl_clear_params(dl_se);
3402 }
3403
dl_param_changed(struct task_struct * p,const struct sched_attr * attr)3404 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
3405 {
3406 struct sched_dl_entity *dl_se = &p->dl;
3407
3408 if (dl_se->dl_runtime != attr->sched_runtime ||
3409 dl_se->dl_deadline != attr->sched_deadline ||
3410 dl_se->dl_period != attr->sched_period ||
3411 dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
3412 return true;
3413
3414 return false;
3415 }
3416
dl_cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)3417 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
3418 const struct cpumask *trial)
3419 {
3420 unsigned long flags, cap;
3421 struct dl_bw *cur_dl_b;
3422 int ret = 1;
3423
3424 rcu_read_lock_sched();
3425 cur_dl_b = dl_bw_of(cpumask_any(cur));
3426 cap = __dl_bw_capacity(trial);
3427 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
3428 if (__dl_overflow(cur_dl_b, cap, 0, 0))
3429 ret = 0;
3430 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
3431 rcu_read_unlock_sched();
3432
3433 return ret;
3434 }
3435
3436 enum dl_bw_request {
3437 dl_bw_req_deactivate = 0,
3438 dl_bw_req_alloc,
3439 dl_bw_req_free
3440 };
3441
dl_bw_manage(enum dl_bw_request req,int cpu,u64 dl_bw)3442 static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw)
3443 {
3444 unsigned long flags, cap;
3445 struct dl_bw *dl_b;
3446 bool overflow = 0;
3447 u64 fair_server_bw = 0;
3448
3449 rcu_read_lock_sched();
3450 dl_b = dl_bw_of(cpu);
3451 raw_spin_lock_irqsave(&dl_b->lock, flags);
3452
3453 cap = dl_bw_capacity(cpu);
3454 switch (req) {
3455 case dl_bw_req_free:
3456 __dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu));
3457 break;
3458 case dl_bw_req_alloc:
3459 overflow = __dl_overflow(dl_b, cap, 0, dl_bw);
3460
3461 if (!overflow) {
3462 /*
3463 * We reserve space in the destination
3464 * root_domain, as we can't fail after this point.
3465 * We will free resources in the source root_domain
3466 * later on (see set_cpus_allowed_dl()).
3467 */
3468 __dl_add(dl_b, dl_bw, dl_bw_cpus(cpu));
3469 }
3470 break;
3471 case dl_bw_req_deactivate:
3472 /*
3473 * cpu is not off yet, but we need to do the math by
3474 * considering it off already (i.e., what would happen if we
3475 * turn cpu off?).
3476 */
3477 cap -= arch_scale_cpu_capacity(cpu);
3478
3479 /*
3480 * cpu is going offline and NORMAL tasks will be moved away
3481 * from it. We can thus discount dl_server bandwidth
3482 * contribution as it won't need to be servicing tasks after
3483 * the cpu is off.
3484 */
3485 if (cpu_rq(cpu)->fair_server.dl_server)
3486 fair_server_bw = cpu_rq(cpu)->fair_server.dl_bw;
3487
3488 /*
3489 * Not much to check if no DEADLINE bandwidth is present.
3490 * dl_servers we can discount, as tasks will be moved out the
3491 * offlined CPUs anyway.
3492 */
3493 if (dl_b->total_bw - fair_server_bw > 0) {
3494 /*
3495 * Leaving at least one CPU for DEADLINE tasks seems a
3496 * wise thing to do. As said above, cpu is not offline
3497 * yet, so account for that.
3498 */
3499 if (dl_bw_cpus(cpu) - 1)
3500 overflow = __dl_overflow(dl_b, cap, fair_server_bw, 0);
3501 else
3502 overflow = 1;
3503 }
3504
3505 break;
3506 }
3507
3508 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3509 rcu_read_unlock_sched();
3510
3511 return overflow ? -EBUSY : 0;
3512 }
3513
dl_bw_deactivate(int cpu)3514 int dl_bw_deactivate(int cpu)
3515 {
3516 return dl_bw_manage(dl_bw_req_deactivate, cpu, 0);
3517 }
3518
dl_bw_alloc(int cpu,u64 dl_bw)3519 int dl_bw_alloc(int cpu, u64 dl_bw)
3520 {
3521 return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw);
3522 }
3523
dl_bw_free(int cpu,u64 dl_bw)3524 void dl_bw_free(int cpu, u64 dl_bw)
3525 {
3526 dl_bw_manage(dl_bw_req_free, cpu, dl_bw);
3527 }
3528
print_dl_stats(struct seq_file * m,int cpu)3529 void print_dl_stats(struct seq_file *m, int cpu)
3530 {
3531 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
3532 }
3533