xref: /linux/fs/gfs2/file.c (revision 3a39d672e7f48b8d6b91a09afa4b55352773b4b5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
5  */
6 
7 #include <linux/slab.h>
8 #include <linux/spinlock.h>
9 #include <linux/compat.h>
10 #include <linux/completion.h>
11 #include <linux/buffer_head.h>
12 #include <linux/pagemap.h>
13 #include <linux/uio.h>
14 #include <linux/blkdev.h>
15 #include <linux/mm.h>
16 #include <linux/mount.h>
17 #include <linux/fs.h>
18 #include <linux/filelock.h>
19 #include <linux/gfs2_ondisk.h>
20 #include <linux/falloc.h>
21 #include <linux/swap.h>
22 #include <linux/crc32.h>
23 #include <linux/writeback.h>
24 #include <linux/uaccess.h>
25 #include <linux/dlm.h>
26 #include <linux/dlm_plock.h>
27 #include <linux/delay.h>
28 #include <linux/backing-dev.h>
29 #include <linux/fileattr.h>
30 
31 #include "gfs2.h"
32 #include "incore.h"
33 #include "bmap.h"
34 #include "aops.h"
35 #include "dir.h"
36 #include "glock.h"
37 #include "glops.h"
38 #include "inode.h"
39 #include "log.h"
40 #include "meta_io.h"
41 #include "quota.h"
42 #include "rgrp.h"
43 #include "trans.h"
44 #include "util.h"
45 
46 /**
47  * gfs2_llseek - seek to a location in a file
48  * @file: the file
49  * @offset: the offset
50  * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END)
51  *
52  * SEEK_END requires the glock for the file because it references the
53  * file's size.
54  *
55  * Returns: The new offset, or errno
56  */
57 
gfs2_llseek(struct file * file,loff_t offset,int whence)58 static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence)
59 {
60 	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
61 	struct gfs2_holder i_gh;
62 	loff_t error;
63 
64 	switch (whence) {
65 	case SEEK_END:
66 		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
67 					   &i_gh);
68 		if (!error) {
69 			error = generic_file_llseek(file, offset, whence);
70 			gfs2_glock_dq_uninit(&i_gh);
71 		}
72 		break;
73 
74 	case SEEK_DATA:
75 		error = gfs2_seek_data(file, offset);
76 		break;
77 
78 	case SEEK_HOLE:
79 		error = gfs2_seek_hole(file, offset);
80 		break;
81 
82 	case SEEK_CUR:
83 	case SEEK_SET:
84 		/*
85 		 * These don't reference inode->i_size and don't depend on the
86 		 * block mapping, so we don't need the glock.
87 		 */
88 		error = generic_file_llseek(file, offset, whence);
89 		break;
90 	default:
91 		error = -EINVAL;
92 	}
93 
94 	return error;
95 }
96 
97 /**
98  * gfs2_readdir - Iterator for a directory
99  * @file: The directory to read from
100  * @ctx: What to feed directory entries to
101  *
102  * Returns: errno
103  */
104 
gfs2_readdir(struct file * file,struct dir_context * ctx)105 static int gfs2_readdir(struct file *file, struct dir_context *ctx)
106 {
107 	struct inode *dir = file->f_mapping->host;
108 	struct gfs2_inode *dip = GFS2_I(dir);
109 	struct gfs2_holder d_gh;
110 	int error;
111 
112 	error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh);
113 	if (error)
114 		return error;
115 
116 	error = gfs2_dir_read(dir, ctx, &file->f_ra);
117 
118 	gfs2_glock_dq_uninit(&d_gh);
119 
120 	return error;
121 }
122 
123 /*
124  * struct fsflag_gfs2flag
125  *
126  * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories,
127  * and to GFS2_DIF_JDATA for non-directories.
128  */
129 static struct {
130 	u32 fsflag;
131 	u32 gfsflag;
132 } fsflag_gfs2flag[] = {
133 	{FS_SYNC_FL, GFS2_DIF_SYNC},
134 	{FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE},
135 	{FS_APPEND_FL, GFS2_DIF_APPENDONLY},
136 	{FS_NOATIME_FL, GFS2_DIF_NOATIME},
137 	{FS_INDEX_FL, GFS2_DIF_EXHASH},
138 	{FS_TOPDIR_FL, GFS2_DIF_TOPDIR},
139 	{FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA},
140 };
141 
gfs2_gfsflags_to_fsflags(struct inode * inode,u32 gfsflags)142 static inline u32 gfs2_gfsflags_to_fsflags(struct inode *inode, u32 gfsflags)
143 {
144 	int i;
145 	u32 fsflags = 0;
146 
147 	if (S_ISDIR(inode->i_mode))
148 		gfsflags &= ~GFS2_DIF_JDATA;
149 	else
150 		gfsflags &= ~GFS2_DIF_INHERIT_JDATA;
151 
152 	for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++)
153 		if (gfsflags & fsflag_gfs2flag[i].gfsflag)
154 			fsflags |= fsflag_gfs2flag[i].fsflag;
155 	return fsflags;
156 }
157 
gfs2_fileattr_get(struct dentry * dentry,struct fileattr * fa)158 int gfs2_fileattr_get(struct dentry *dentry, struct fileattr *fa)
159 {
160 	struct inode *inode = d_inode(dentry);
161 	struct gfs2_inode *ip = GFS2_I(inode);
162 	struct gfs2_holder gh;
163 	int error;
164 	u32 fsflags;
165 
166 	if (d_is_special(dentry))
167 		return -ENOTTY;
168 
169 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
170 	error = gfs2_glock_nq(&gh);
171 	if (error)
172 		goto out_uninit;
173 
174 	fsflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags);
175 
176 	fileattr_fill_flags(fa, fsflags);
177 
178 	gfs2_glock_dq(&gh);
179 out_uninit:
180 	gfs2_holder_uninit(&gh);
181 	return error;
182 }
183 
gfs2_set_inode_flags(struct inode * inode)184 void gfs2_set_inode_flags(struct inode *inode)
185 {
186 	struct gfs2_inode *ip = GFS2_I(inode);
187 	unsigned int flags = inode->i_flags;
188 
189 	flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC);
190 	if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode))
191 		flags |= S_NOSEC;
192 	if (ip->i_diskflags & GFS2_DIF_IMMUTABLE)
193 		flags |= S_IMMUTABLE;
194 	if (ip->i_diskflags & GFS2_DIF_APPENDONLY)
195 		flags |= S_APPEND;
196 	if (ip->i_diskflags & GFS2_DIF_NOATIME)
197 		flags |= S_NOATIME;
198 	if (ip->i_diskflags & GFS2_DIF_SYNC)
199 		flags |= S_SYNC;
200 	inode->i_flags = flags;
201 }
202 
203 /* Flags that can be set by user space */
204 #define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA|			\
205 			     GFS2_DIF_IMMUTABLE|		\
206 			     GFS2_DIF_APPENDONLY|		\
207 			     GFS2_DIF_NOATIME|			\
208 			     GFS2_DIF_SYNC|			\
209 			     GFS2_DIF_TOPDIR|			\
210 			     GFS2_DIF_INHERIT_JDATA)
211 
212 /**
213  * do_gfs2_set_flags - set flags on an inode
214  * @inode: The inode
215  * @reqflags: The flags to set
216  * @mask: Indicates which flags are valid
217  *
218  */
do_gfs2_set_flags(struct inode * inode,u32 reqflags,u32 mask)219 static int do_gfs2_set_flags(struct inode *inode, u32 reqflags, u32 mask)
220 {
221 	struct gfs2_inode *ip = GFS2_I(inode);
222 	struct gfs2_sbd *sdp = GFS2_SB(inode);
223 	struct buffer_head *bh;
224 	struct gfs2_holder gh;
225 	int error;
226 	u32 new_flags, flags;
227 
228 	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
229 	if (error)
230 		return error;
231 
232 	error = 0;
233 	flags = ip->i_diskflags;
234 	new_flags = (flags & ~mask) | (reqflags & mask);
235 	if ((new_flags ^ flags) == 0)
236 		goto out;
237 
238 	if (!IS_IMMUTABLE(inode)) {
239 		error = gfs2_permission(&nop_mnt_idmap, inode, MAY_WRITE);
240 		if (error)
241 			goto out;
242 	}
243 	if ((flags ^ new_flags) & GFS2_DIF_JDATA) {
244 		if (new_flags & GFS2_DIF_JDATA)
245 			gfs2_log_flush(sdp, ip->i_gl,
246 				       GFS2_LOG_HEAD_FLUSH_NORMAL |
247 				       GFS2_LFC_SET_FLAGS);
248 		error = filemap_fdatawrite(inode->i_mapping);
249 		if (error)
250 			goto out;
251 		error = filemap_fdatawait(inode->i_mapping);
252 		if (error)
253 			goto out;
254 		if (new_flags & GFS2_DIF_JDATA)
255 			gfs2_ordered_del_inode(ip);
256 	}
257 	error = gfs2_trans_begin(sdp, RES_DINODE, 0);
258 	if (error)
259 		goto out;
260 	error = gfs2_meta_inode_buffer(ip, &bh);
261 	if (error)
262 		goto out_trans_end;
263 	inode_set_ctime_current(inode);
264 	gfs2_trans_add_meta(ip->i_gl, bh);
265 	ip->i_diskflags = new_flags;
266 	gfs2_dinode_out(ip, bh->b_data);
267 	brelse(bh);
268 	gfs2_set_inode_flags(inode);
269 	gfs2_set_aops(inode);
270 out_trans_end:
271 	gfs2_trans_end(sdp);
272 out:
273 	gfs2_glock_dq_uninit(&gh);
274 	return error;
275 }
276 
gfs2_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct fileattr * fa)277 int gfs2_fileattr_set(struct mnt_idmap *idmap,
278 		      struct dentry *dentry, struct fileattr *fa)
279 {
280 	struct inode *inode = d_inode(dentry);
281 	u32 fsflags = fa->flags, gfsflags = 0;
282 	u32 mask;
283 	int i;
284 
285 	if (d_is_special(dentry))
286 		return -ENOTTY;
287 
288 	if (fileattr_has_fsx(fa))
289 		return -EOPNOTSUPP;
290 
291 	for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) {
292 		if (fsflags & fsflag_gfs2flag[i].fsflag) {
293 			fsflags &= ~fsflag_gfs2flag[i].fsflag;
294 			gfsflags |= fsflag_gfs2flag[i].gfsflag;
295 		}
296 	}
297 	if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET)
298 		return -EINVAL;
299 
300 	mask = GFS2_FLAGS_USER_SET;
301 	if (S_ISDIR(inode->i_mode)) {
302 		mask &= ~GFS2_DIF_JDATA;
303 	} else {
304 		/* The GFS2_DIF_TOPDIR flag is only valid for directories. */
305 		if (gfsflags & GFS2_DIF_TOPDIR)
306 			return -EINVAL;
307 		mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA);
308 	}
309 
310 	return do_gfs2_set_flags(inode, gfsflags, mask);
311 }
312 
gfs2_getlabel(struct file * filp,char __user * label)313 static int gfs2_getlabel(struct file *filp, char __user *label)
314 {
315 	struct inode *inode = file_inode(filp);
316 	struct gfs2_sbd *sdp = GFS2_SB(inode);
317 
318 	if (copy_to_user(label, sdp->sd_sb.sb_locktable, GFS2_LOCKNAME_LEN))
319 		return -EFAULT;
320 
321 	return 0;
322 }
323 
gfs2_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)324 static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
325 {
326 	switch(cmd) {
327 	case FITRIM:
328 		return gfs2_fitrim(filp, (void __user *)arg);
329 	case FS_IOC_GETFSLABEL:
330 		return gfs2_getlabel(filp, (char __user *)arg);
331 	}
332 
333 	return -ENOTTY;
334 }
335 
336 #ifdef CONFIG_COMPAT
gfs2_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)337 static long gfs2_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
338 {
339 	switch(cmd) {
340 	/* Keep this list in sync with gfs2_ioctl */
341 	case FITRIM:
342 	case FS_IOC_GETFSLABEL:
343 		break;
344 	default:
345 		return -ENOIOCTLCMD;
346 	}
347 
348 	return gfs2_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
349 }
350 #else
351 #define gfs2_compat_ioctl NULL
352 #endif
353 
354 /**
355  * gfs2_size_hint - Give a hint to the size of a write request
356  * @filep: The struct file
357  * @offset: The file offset of the write
358  * @size: The length of the write
359  *
360  * When we are about to do a write, this function records the total
361  * write size in order to provide a suitable hint to the lower layers
362  * about how many blocks will be required.
363  *
364  */
365 
gfs2_size_hint(struct file * filep,loff_t offset,size_t size)366 static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size)
367 {
368 	struct inode *inode = file_inode(filep);
369 	struct gfs2_sbd *sdp = GFS2_SB(inode);
370 	struct gfs2_inode *ip = GFS2_I(inode);
371 	size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift;
372 	int hint = min_t(size_t, INT_MAX, blks);
373 
374 	if (hint > atomic_read(&ip->i_sizehint))
375 		atomic_set(&ip->i_sizehint, hint);
376 }
377 
378 /**
379  * gfs2_allocate_folio_backing - Allocate blocks for a write fault
380  * @folio: The (locked) folio to allocate backing for
381  * @length: Size of the allocation
382  *
383  * We try to allocate all the blocks required for the folio in one go.  This
384  * might fail for various reasons, so we keep trying until all the blocks to
385  * back this folio are allocated.  If some of the blocks are already allocated,
386  * that is ok too.
387  */
gfs2_allocate_folio_backing(struct folio * folio,size_t length)388 static int gfs2_allocate_folio_backing(struct folio *folio, size_t length)
389 {
390 	u64 pos = folio_pos(folio);
391 
392 	do {
393 		struct iomap iomap = { };
394 
395 		if (gfs2_iomap_alloc(folio->mapping->host, pos, length, &iomap))
396 			return -EIO;
397 
398 		if (length < iomap.length)
399 			iomap.length = length;
400 		length -= iomap.length;
401 		pos += iomap.length;
402 	} while (length > 0);
403 
404 	return 0;
405 }
406 
407 /**
408  * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable
409  * @vmf: The virtual memory fault containing the page to become writable
410  *
411  * When the page becomes writable, we need to ensure that we have
412  * blocks allocated on disk to back that page.
413  */
414 
gfs2_page_mkwrite(struct vm_fault * vmf)415 static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf)
416 {
417 	struct folio *folio = page_folio(vmf->page);
418 	struct inode *inode = file_inode(vmf->vma->vm_file);
419 	struct gfs2_inode *ip = GFS2_I(inode);
420 	struct gfs2_sbd *sdp = GFS2_SB(inode);
421 	struct gfs2_alloc_parms ap = {};
422 	u64 pos = folio_pos(folio);
423 	unsigned int data_blocks, ind_blocks, rblocks;
424 	vm_fault_t ret = VM_FAULT_LOCKED;
425 	struct gfs2_holder gh;
426 	size_t length;
427 	loff_t size;
428 	int err;
429 
430 	sb_start_pagefault(inode->i_sb);
431 
432 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
433 	err = gfs2_glock_nq(&gh);
434 	if (err) {
435 		ret = vmf_fs_error(err);
436 		goto out_uninit;
437 	}
438 
439 	/* Check folio index against inode size */
440 	size = i_size_read(inode);
441 	if (pos >= size) {
442 		ret = VM_FAULT_SIGBUS;
443 		goto out_unlock;
444 	}
445 
446 	/* Update file times before taking folio lock */
447 	file_update_time(vmf->vma->vm_file);
448 
449 	/* folio is wholly or partially inside EOF */
450 	if (size - pos < folio_size(folio))
451 		length = size - pos;
452 	else
453 		length = folio_size(folio);
454 
455 	gfs2_size_hint(vmf->vma->vm_file, pos, length);
456 
457 	set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
458 	set_bit(GIF_SW_PAGED, &ip->i_flags);
459 
460 	/*
461 	 * iomap_writepage / iomap_writepages currently don't support inline
462 	 * files, so always unstuff here.
463 	 */
464 
465 	if (!gfs2_is_stuffed(ip) &&
466 	    !gfs2_write_alloc_required(ip, pos, length)) {
467 		folio_lock(folio);
468 		if (!folio_test_uptodate(folio) ||
469 		    folio->mapping != inode->i_mapping) {
470 			ret = VM_FAULT_NOPAGE;
471 			folio_unlock(folio);
472 		}
473 		goto out_unlock;
474 	}
475 
476 	err = gfs2_rindex_update(sdp);
477 	if (err) {
478 		ret = vmf_fs_error(err);
479 		goto out_unlock;
480 	}
481 
482 	gfs2_write_calc_reserv(ip, length, &data_blocks, &ind_blocks);
483 	ap.target = data_blocks + ind_blocks;
484 	err = gfs2_quota_lock_check(ip, &ap);
485 	if (err) {
486 		ret = vmf_fs_error(err);
487 		goto out_unlock;
488 	}
489 	err = gfs2_inplace_reserve(ip, &ap);
490 	if (err) {
491 		ret = vmf_fs_error(err);
492 		goto out_quota_unlock;
493 	}
494 
495 	rblocks = RES_DINODE + ind_blocks;
496 	if (gfs2_is_jdata(ip))
497 		rblocks += data_blocks ? data_blocks : 1;
498 	if (ind_blocks || data_blocks) {
499 		rblocks += RES_STATFS + RES_QUOTA;
500 		rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
501 	}
502 	err = gfs2_trans_begin(sdp, rblocks, 0);
503 	if (err) {
504 		ret = vmf_fs_error(err);
505 		goto out_trans_fail;
506 	}
507 
508 	/* Unstuff, if required, and allocate backing blocks for folio */
509 	if (gfs2_is_stuffed(ip)) {
510 		err = gfs2_unstuff_dinode(ip);
511 		if (err) {
512 			ret = vmf_fs_error(err);
513 			goto out_trans_end;
514 		}
515 	}
516 
517 	folio_lock(folio);
518 	/* If truncated, we must retry the operation, we may have raced
519 	 * with the glock demotion code.
520 	 */
521 	if (!folio_test_uptodate(folio) || folio->mapping != inode->i_mapping) {
522 		ret = VM_FAULT_NOPAGE;
523 		goto out_page_locked;
524 	}
525 
526 	err = gfs2_allocate_folio_backing(folio, length);
527 	if (err)
528 		ret = vmf_fs_error(err);
529 
530 out_page_locked:
531 	if (ret != VM_FAULT_LOCKED)
532 		folio_unlock(folio);
533 out_trans_end:
534 	gfs2_trans_end(sdp);
535 out_trans_fail:
536 	gfs2_inplace_release(ip);
537 out_quota_unlock:
538 	gfs2_quota_unlock(ip);
539 out_unlock:
540 	gfs2_glock_dq(&gh);
541 out_uninit:
542 	gfs2_holder_uninit(&gh);
543 	if (ret == VM_FAULT_LOCKED) {
544 		folio_mark_dirty(folio);
545 		folio_wait_stable(folio);
546 	}
547 	sb_end_pagefault(inode->i_sb);
548 	return ret;
549 }
550 
gfs2_fault(struct vm_fault * vmf)551 static vm_fault_t gfs2_fault(struct vm_fault *vmf)
552 {
553 	struct inode *inode = file_inode(vmf->vma->vm_file);
554 	struct gfs2_inode *ip = GFS2_I(inode);
555 	struct gfs2_holder gh;
556 	vm_fault_t ret;
557 	int err;
558 
559 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
560 	err = gfs2_glock_nq(&gh);
561 	if (err) {
562 		ret = vmf_fs_error(err);
563 		goto out_uninit;
564 	}
565 	ret = filemap_fault(vmf);
566 	gfs2_glock_dq(&gh);
567 out_uninit:
568 	gfs2_holder_uninit(&gh);
569 	return ret;
570 }
571 
572 static const struct vm_operations_struct gfs2_vm_ops = {
573 	.fault = gfs2_fault,
574 	.map_pages = filemap_map_pages,
575 	.page_mkwrite = gfs2_page_mkwrite,
576 };
577 
578 /**
579  * gfs2_mmap
580  * @file: The file to map
581  * @vma: The VMA which described the mapping
582  *
583  * There is no need to get a lock here unless we should be updating
584  * atime. We ignore any locking errors since the only consequence is
585  * a missed atime update (which will just be deferred until later).
586  *
587  * Returns: 0
588  */
589 
gfs2_mmap(struct file * file,struct vm_area_struct * vma)590 static int gfs2_mmap(struct file *file, struct vm_area_struct *vma)
591 {
592 	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
593 
594 	if (!(file->f_flags & O_NOATIME) &&
595 	    !IS_NOATIME(&ip->i_inode)) {
596 		struct gfs2_holder i_gh;
597 		int error;
598 
599 		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
600 					   &i_gh);
601 		if (error)
602 			return error;
603 		/* grab lock to update inode */
604 		gfs2_glock_dq_uninit(&i_gh);
605 		file_accessed(file);
606 	}
607 	vma->vm_ops = &gfs2_vm_ops;
608 
609 	return 0;
610 }
611 
612 /**
613  * gfs2_open_common - This is common to open and atomic_open
614  * @inode: The inode being opened
615  * @file: The file being opened
616  *
617  * This maybe called under a glock or not depending upon how it has
618  * been called. We must always be called under a glock for regular
619  * files, however. For other file types, it does not matter whether
620  * we hold the glock or not.
621  *
622  * Returns: Error code or 0 for success
623  */
624 
gfs2_open_common(struct inode * inode,struct file * file)625 int gfs2_open_common(struct inode *inode, struct file *file)
626 {
627 	struct gfs2_file *fp;
628 	int ret;
629 
630 	if (S_ISREG(inode->i_mode)) {
631 		ret = generic_file_open(inode, file);
632 		if (ret)
633 			return ret;
634 
635 		if (!gfs2_is_jdata(GFS2_I(inode)))
636 			file->f_mode |= FMODE_CAN_ODIRECT;
637 	}
638 
639 	fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS);
640 	if (!fp)
641 		return -ENOMEM;
642 
643 	mutex_init(&fp->f_fl_mutex);
644 
645 	gfs2_assert_warn(GFS2_SB(inode), !file->private_data);
646 	file->private_data = fp;
647 	if (file->f_mode & FMODE_WRITE) {
648 		ret = gfs2_qa_get(GFS2_I(inode));
649 		if (ret)
650 			goto fail;
651 	}
652 	return 0;
653 
654 fail:
655 	kfree(file->private_data);
656 	file->private_data = NULL;
657 	return ret;
658 }
659 
660 /**
661  * gfs2_open - open a file
662  * @inode: the inode to open
663  * @file: the struct file for this opening
664  *
665  * After atomic_open, this function is only used for opening files
666  * which are already cached. We must still get the glock for regular
667  * files to ensure that we have the file size uptodate for the large
668  * file check which is in the common code. That is only an issue for
669  * regular files though.
670  *
671  * Returns: errno
672  */
673 
gfs2_open(struct inode * inode,struct file * file)674 static int gfs2_open(struct inode *inode, struct file *file)
675 {
676 	struct gfs2_inode *ip = GFS2_I(inode);
677 	struct gfs2_holder i_gh;
678 	int error;
679 	bool need_unlock = false;
680 
681 	if (S_ISREG(ip->i_inode.i_mode)) {
682 		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
683 					   &i_gh);
684 		if (error)
685 			return error;
686 		need_unlock = true;
687 	}
688 
689 	error = gfs2_open_common(inode, file);
690 
691 	if (need_unlock)
692 		gfs2_glock_dq_uninit(&i_gh);
693 
694 	return error;
695 }
696 
697 /**
698  * gfs2_release - called to close a struct file
699  * @inode: the inode the struct file belongs to
700  * @file: the struct file being closed
701  *
702  * Returns: errno
703  */
704 
gfs2_release(struct inode * inode,struct file * file)705 static int gfs2_release(struct inode *inode, struct file *file)
706 {
707 	struct gfs2_inode *ip = GFS2_I(inode);
708 
709 	kfree(file->private_data);
710 	file->private_data = NULL;
711 
712 	if (file->f_mode & FMODE_WRITE) {
713 		if (gfs2_rs_active(&ip->i_res))
714 			gfs2_rs_delete(ip);
715 		gfs2_qa_put(ip);
716 	}
717 	return 0;
718 }
719 
720 /**
721  * gfs2_fsync - sync the dirty data for a file (across the cluster)
722  * @file: the file that points to the dentry
723  * @start: the start position in the file to sync
724  * @end: the end position in the file to sync
725  * @datasync: set if we can ignore timestamp changes
726  *
727  * We split the data flushing here so that we don't wait for the data
728  * until after we've also sent the metadata to disk. Note that for
729  * data=ordered, we will write & wait for the data at the log flush
730  * stage anyway, so this is unlikely to make much of a difference
731  * except in the data=writeback case.
732  *
733  * If the fdatawrite fails due to any reason except -EIO, we will
734  * continue the remainder of the fsync, although we'll still report
735  * the error at the end. This is to match filemap_write_and_wait_range()
736  * behaviour.
737  *
738  * Returns: errno
739  */
740 
gfs2_fsync(struct file * file,loff_t start,loff_t end,int datasync)741 static int gfs2_fsync(struct file *file, loff_t start, loff_t end,
742 		      int datasync)
743 {
744 	struct address_space *mapping = file->f_mapping;
745 	struct inode *inode = mapping->host;
746 	int sync_state = inode->i_state & I_DIRTY;
747 	struct gfs2_inode *ip = GFS2_I(inode);
748 	int ret = 0, ret1 = 0;
749 
750 	if (mapping->nrpages) {
751 		ret1 = filemap_fdatawrite_range(mapping, start, end);
752 		if (ret1 == -EIO)
753 			return ret1;
754 	}
755 
756 	if (!gfs2_is_jdata(ip))
757 		sync_state &= ~I_DIRTY_PAGES;
758 	if (datasync)
759 		sync_state &= ~I_DIRTY_SYNC;
760 
761 	if (sync_state) {
762 		ret = sync_inode_metadata(inode, 1);
763 		if (ret)
764 			return ret;
765 		if (gfs2_is_jdata(ip))
766 			ret = file_write_and_wait(file);
767 		if (ret)
768 			return ret;
769 		gfs2_ail_flush(ip->i_gl, 1);
770 	}
771 
772 	if (mapping->nrpages)
773 		ret = file_fdatawait_range(file, start, end);
774 
775 	return ret ? ret : ret1;
776 }
777 
should_fault_in_pages(struct iov_iter * i,struct kiocb * iocb,size_t * prev_count,size_t * window_size)778 static inline bool should_fault_in_pages(struct iov_iter *i,
779 					 struct kiocb *iocb,
780 					 size_t *prev_count,
781 					 size_t *window_size)
782 {
783 	size_t count = iov_iter_count(i);
784 	size_t size, offs;
785 
786 	if (!count)
787 		return false;
788 	if (!user_backed_iter(i))
789 		return false;
790 
791 	/*
792 	 * Try to fault in multiple pages initially.  When that doesn't result
793 	 * in any progress, fall back to a single page.
794 	 */
795 	size = PAGE_SIZE;
796 	offs = offset_in_page(iocb->ki_pos);
797 	if (*prev_count != count) {
798 		size_t nr_dirtied;
799 
800 		nr_dirtied = max(current->nr_dirtied_pause -
801 				 current->nr_dirtied, 8);
802 		size = min_t(size_t, SZ_1M, nr_dirtied << PAGE_SHIFT);
803 	}
804 
805 	*prev_count = count;
806 	*window_size = size - offs;
807 	return true;
808 }
809 
gfs2_file_direct_read(struct kiocb * iocb,struct iov_iter * to,struct gfs2_holder * gh)810 static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to,
811 				     struct gfs2_holder *gh)
812 {
813 	struct file *file = iocb->ki_filp;
814 	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
815 	size_t prev_count = 0, window_size = 0;
816 	size_t read = 0;
817 	ssize_t ret;
818 
819 	/*
820 	 * In this function, we disable page faults when we're holding the
821 	 * inode glock while doing I/O.  If a page fault occurs, we indicate
822 	 * that the inode glock may be dropped, fault in the pages manually,
823 	 * and retry.
824 	 *
825 	 * Unlike generic_file_read_iter, for reads, iomap_dio_rw can trigger
826 	 * physical as well as manual page faults, and we need to disable both
827 	 * kinds.
828 	 *
829 	 * For direct I/O, gfs2 takes the inode glock in deferred mode.  This
830 	 * locking mode is compatible with other deferred holders, so multiple
831 	 * processes and nodes can do direct I/O to a file at the same time.
832 	 * There's no guarantee that reads or writes will be atomic.  Any
833 	 * coordination among readers and writers needs to happen externally.
834 	 */
835 
836 	if (!iov_iter_count(to))
837 		return 0; /* skip atime */
838 
839 	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh);
840 retry:
841 	ret = gfs2_glock_nq(gh);
842 	if (ret)
843 		goto out_uninit;
844 	pagefault_disable();
845 	to->nofault = true;
846 	ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL,
847 			   IOMAP_DIO_PARTIAL, NULL, read);
848 	to->nofault = false;
849 	pagefault_enable();
850 	if (ret <= 0 && ret != -EFAULT)
851 		goto out_unlock;
852 	/* No increment (+=) because iomap_dio_rw returns a cumulative value. */
853 	if (ret > 0)
854 		read = ret;
855 
856 	if (should_fault_in_pages(to, iocb, &prev_count, &window_size)) {
857 		gfs2_glock_dq(gh);
858 		window_size -= fault_in_iov_iter_writeable(to, window_size);
859 		if (window_size)
860 			goto retry;
861 	}
862 out_unlock:
863 	if (gfs2_holder_queued(gh))
864 		gfs2_glock_dq(gh);
865 out_uninit:
866 	gfs2_holder_uninit(gh);
867 	/* User space doesn't expect partial success. */
868 	if (ret < 0)
869 		return ret;
870 	return read;
871 }
872 
gfs2_file_direct_write(struct kiocb * iocb,struct iov_iter * from,struct gfs2_holder * gh)873 static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from,
874 				      struct gfs2_holder *gh)
875 {
876 	struct file *file = iocb->ki_filp;
877 	struct inode *inode = file->f_mapping->host;
878 	struct gfs2_inode *ip = GFS2_I(inode);
879 	size_t prev_count = 0, window_size = 0;
880 	size_t written = 0;
881 	bool enough_retries;
882 	ssize_t ret;
883 
884 	/*
885 	 * In this function, we disable page faults when we're holding the
886 	 * inode glock while doing I/O.  If a page fault occurs, we indicate
887 	 * that the inode glock may be dropped, fault in the pages manually,
888 	 * and retry.
889 	 *
890 	 * For writes, iomap_dio_rw only triggers manual page faults, so we
891 	 * don't need to disable physical ones.
892 	 */
893 
894 	/*
895 	 * Deferred lock, even if its a write, since we do no allocation on
896 	 * this path. All we need to change is the atime, and this lock mode
897 	 * ensures that other nodes have flushed their buffered read caches
898 	 * (i.e. their page cache entries for this inode). We do not,
899 	 * unfortunately, have the option of only flushing a range like the
900 	 * VFS does.
901 	 */
902 	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh);
903 retry:
904 	ret = gfs2_glock_nq(gh);
905 	if (ret)
906 		goto out_uninit;
907 	/* Silently fall back to buffered I/O when writing beyond EOF */
908 	if (iocb->ki_pos + iov_iter_count(from) > i_size_read(&ip->i_inode))
909 		goto out_unlock;
910 
911 	from->nofault = true;
912 	ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL,
913 			   IOMAP_DIO_PARTIAL, NULL, written);
914 	from->nofault = false;
915 	if (ret <= 0) {
916 		if (ret == -ENOTBLK)
917 			ret = 0;
918 		if (ret != -EFAULT)
919 			goto out_unlock;
920 	}
921 	/* No increment (+=) because iomap_dio_rw returns a cumulative value. */
922 	if (ret > 0)
923 		written = ret;
924 
925 	enough_retries = prev_count == iov_iter_count(from) &&
926 			 window_size <= PAGE_SIZE;
927 	if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) {
928 		gfs2_glock_dq(gh);
929 		window_size -= fault_in_iov_iter_readable(from, window_size);
930 		if (window_size) {
931 			if (!enough_retries)
932 				goto retry;
933 			/* fall back to buffered I/O */
934 			ret = 0;
935 		}
936 	}
937 out_unlock:
938 	if (gfs2_holder_queued(gh))
939 		gfs2_glock_dq(gh);
940 out_uninit:
941 	gfs2_holder_uninit(gh);
942 	/* User space doesn't expect partial success. */
943 	if (ret < 0)
944 		return ret;
945 	return written;
946 }
947 
gfs2_file_read_iter(struct kiocb * iocb,struct iov_iter * to)948 static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
949 {
950 	struct gfs2_inode *ip;
951 	struct gfs2_holder gh;
952 	size_t prev_count = 0, window_size = 0;
953 	size_t read = 0;
954 	ssize_t ret;
955 
956 	/*
957 	 * In this function, we disable page faults when we're holding the
958 	 * inode glock while doing I/O.  If a page fault occurs, we indicate
959 	 * that the inode glock may be dropped, fault in the pages manually,
960 	 * and retry.
961 	 */
962 
963 	if (iocb->ki_flags & IOCB_DIRECT)
964 		return gfs2_file_direct_read(iocb, to, &gh);
965 
966 	pagefault_disable();
967 	iocb->ki_flags |= IOCB_NOIO;
968 	ret = generic_file_read_iter(iocb, to);
969 	iocb->ki_flags &= ~IOCB_NOIO;
970 	pagefault_enable();
971 	if (ret >= 0) {
972 		if (!iov_iter_count(to))
973 			return ret;
974 		read = ret;
975 	} else if (ret != -EFAULT) {
976 		if (ret != -EAGAIN)
977 			return ret;
978 		if (iocb->ki_flags & IOCB_NOWAIT)
979 			return ret;
980 	}
981 	ip = GFS2_I(iocb->ki_filp->f_mapping->host);
982 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
983 retry:
984 	ret = gfs2_glock_nq(&gh);
985 	if (ret)
986 		goto out_uninit;
987 	pagefault_disable();
988 	ret = generic_file_read_iter(iocb, to);
989 	pagefault_enable();
990 	if (ret <= 0 && ret != -EFAULT)
991 		goto out_unlock;
992 	if (ret > 0)
993 		read += ret;
994 
995 	if (should_fault_in_pages(to, iocb, &prev_count, &window_size)) {
996 		gfs2_glock_dq(&gh);
997 		window_size -= fault_in_iov_iter_writeable(to, window_size);
998 		if (window_size)
999 			goto retry;
1000 	}
1001 out_unlock:
1002 	if (gfs2_holder_queued(&gh))
1003 		gfs2_glock_dq(&gh);
1004 out_uninit:
1005 	gfs2_holder_uninit(&gh);
1006 	return read ? read : ret;
1007 }
1008 
gfs2_file_buffered_write(struct kiocb * iocb,struct iov_iter * from,struct gfs2_holder * gh)1009 static ssize_t gfs2_file_buffered_write(struct kiocb *iocb,
1010 					struct iov_iter *from,
1011 					struct gfs2_holder *gh)
1012 {
1013 	struct file *file = iocb->ki_filp;
1014 	struct inode *inode = file_inode(file);
1015 	struct gfs2_inode *ip = GFS2_I(inode);
1016 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1017 	struct gfs2_holder *statfs_gh = NULL;
1018 	size_t prev_count = 0, window_size = 0;
1019 	size_t orig_count = iov_iter_count(from);
1020 	size_t written = 0;
1021 	ssize_t ret;
1022 
1023 	/*
1024 	 * In this function, we disable page faults when we're holding the
1025 	 * inode glock while doing I/O.  If a page fault occurs, we indicate
1026 	 * that the inode glock may be dropped, fault in the pages manually,
1027 	 * and retry.
1028 	 */
1029 
1030 	if (inode == sdp->sd_rindex) {
1031 		statfs_gh = kmalloc(sizeof(*statfs_gh), GFP_NOFS);
1032 		if (!statfs_gh)
1033 			return -ENOMEM;
1034 	}
1035 
1036 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, gh);
1037 	if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) {
1038 retry:
1039 		window_size -= fault_in_iov_iter_readable(from, window_size);
1040 		if (!window_size) {
1041 			ret = -EFAULT;
1042 			goto out_uninit;
1043 		}
1044 		from->count = min(from->count, window_size);
1045 	}
1046 	ret = gfs2_glock_nq(gh);
1047 	if (ret)
1048 		goto out_uninit;
1049 
1050 	if (inode == sdp->sd_rindex) {
1051 		struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
1052 
1053 		ret = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
1054 					 GL_NOCACHE, statfs_gh);
1055 		if (ret)
1056 			goto out_unlock;
1057 	}
1058 
1059 	pagefault_disable();
1060 	ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops, NULL);
1061 	pagefault_enable();
1062 	if (ret > 0)
1063 		written += ret;
1064 
1065 	if (inode == sdp->sd_rindex)
1066 		gfs2_glock_dq_uninit(statfs_gh);
1067 
1068 	if (ret <= 0 && ret != -EFAULT)
1069 		goto out_unlock;
1070 
1071 	from->count = orig_count - written;
1072 	if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) {
1073 		gfs2_glock_dq(gh);
1074 		goto retry;
1075 	}
1076 out_unlock:
1077 	if (gfs2_holder_queued(gh))
1078 		gfs2_glock_dq(gh);
1079 out_uninit:
1080 	gfs2_holder_uninit(gh);
1081 	kfree(statfs_gh);
1082 	from->count = orig_count - written;
1083 	return written ? written : ret;
1084 }
1085 
1086 /**
1087  * gfs2_file_write_iter - Perform a write to a file
1088  * @iocb: The io context
1089  * @from: The data to write
1090  *
1091  * We have to do a lock/unlock here to refresh the inode size for
1092  * O_APPEND writes, otherwise we can land up writing at the wrong
1093  * offset. There is still a race, but provided the app is using its
1094  * own file locking, this will make O_APPEND work as expected.
1095  *
1096  */
1097 
gfs2_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1098 static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1099 {
1100 	struct file *file = iocb->ki_filp;
1101 	struct inode *inode = file_inode(file);
1102 	struct gfs2_inode *ip = GFS2_I(inode);
1103 	struct gfs2_holder gh;
1104 	ssize_t ret;
1105 
1106 	gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from));
1107 
1108 	if (iocb->ki_flags & IOCB_APPEND) {
1109 		ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
1110 		if (ret)
1111 			return ret;
1112 		gfs2_glock_dq_uninit(&gh);
1113 	}
1114 
1115 	inode_lock(inode);
1116 	ret = generic_write_checks(iocb, from);
1117 	if (ret <= 0)
1118 		goto out_unlock;
1119 
1120 	ret = file_remove_privs(file);
1121 	if (ret)
1122 		goto out_unlock;
1123 
1124 	if (iocb->ki_flags & IOCB_DIRECT) {
1125 		struct address_space *mapping = file->f_mapping;
1126 		ssize_t buffered, ret2;
1127 
1128 		/*
1129 		 * Note that under direct I/O, we don't allow and inode
1130 		 * timestamp updates, so we're not calling file_update_time()
1131 		 * here.
1132 		 */
1133 
1134 		ret = gfs2_file_direct_write(iocb, from, &gh);
1135 		if (ret < 0 || !iov_iter_count(from))
1136 			goto out_unlock;
1137 
1138 		iocb->ki_flags |= IOCB_DSYNC;
1139 		buffered = gfs2_file_buffered_write(iocb, from, &gh);
1140 		if (unlikely(buffered <= 0)) {
1141 			if (!ret)
1142 				ret = buffered;
1143 			goto out_unlock;
1144 		}
1145 
1146 		/*
1147 		 * We need to ensure that the page cache pages are written to
1148 		 * disk and invalidated to preserve the expected O_DIRECT
1149 		 * semantics.  If the writeback or invalidate fails, only report
1150 		 * the direct I/O range as we don't know if the buffered pages
1151 		 * made it to disk.
1152 		 */
1153 		ret2 = generic_write_sync(iocb, buffered);
1154 		invalidate_mapping_pages(mapping,
1155 				(iocb->ki_pos - buffered) >> PAGE_SHIFT,
1156 				(iocb->ki_pos - 1) >> PAGE_SHIFT);
1157 		if (!ret || ret2 > 0)
1158 			ret += ret2;
1159 	} else {
1160 		ret = file_update_time(file);
1161 		if (ret)
1162 			goto out_unlock;
1163 
1164 		ret = gfs2_file_buffered_write(iocb, from, &gh);
1165 		if (likely(ret > 0))
1166 			ret = generic_write_sync(iocb, ret);
1167 	}
1168 
1169 out_unlock:
1170 	inode_unlock(inode);
1171 	return ret;
1172 }
1173 
fallocate_chunk(struct inode * inode,loff_t offset,loff_t len,int mode)1174 static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len,
1175 			   int mode)
1176 {
1177 	struct super_block *sb = inode->i_sb;
1178 	struct gfs2_inode *ip = GFS2_I(inode);
1179 	loff_t end = offset + len;
1180 	struct buffer_head *dibh;
1181 	int error;
1182 
1183 	error = gfs2_meta_inode_buffer(ip, &dibh);
1184 	if (unlikely(error))
1185 		return error;
1186 
1187 	gfs2_trans_add_meta(ip->i_gl, dibh);
1188 
1189 	if (gfs2_is_stuffed(ip)) {
1190 		error = gfs2_unstuff_dinode(ip);
1191 		if (unlikely(error))
1192 			goto out;
1193 	}
1194 
1195 	while (offset < end) {
1196 		struct iomap iomap = { };
1197 
1198 		error = gfs2_iomap_alloc(inode, offset, end - offset, &iomap);
1199 		if (error)
1200 			goto out;
1201 		offset = iomap.offset + iomap.length;
1202 		if (!(iomap.flags & IOMAP_F_NEW))
1203 			continue;
1204 		error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits,
1205 					 iomap.length >> inode->i_blkbits,
1206 					 GFP_NOFS);
1207 		if (error) {
1208 			fs_err(GFS2_SB(inode), "Failed to zero data buffers\n");
1209 			goto out;
1210 		}
1211 	}
1212 out:
1213 	brelse(dibh);
1214 	return error;
1215 }
1216 
1217 /**
1218  * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of
1219  *                     blocks, determine how many bytes can be written.
1220  * @ip:          The inode in question.
1221  * @len:         Max cap of bytes. What we return in *len must be <= this.
1222  * @data_blocks: Compute and return the number of data blocks needed
1223  * @ind_blocks:  Compute and return the number of indirect blocks needed
1224  * @max_blocks:  The total blocks available to work with.
1225  *
1226  * Returns: void, but @len, @data_blocks and @ind_blocks are filled in.
1227  */
calc_max_reserv(struct gfs2_inode * ip,loff_t * len,unsigned int * data_blocks,unsigned int * ind_blocks,unsigned int max_blocks)1228 static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len,
1229 			    unsigned int *data_blocks, unsigned int *ind_blocks,
1230 			    unsigned int max_blocks)
1231 {
1232 	loff_t max = *len;
1233 	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1234 	unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1);
1235 
1236 	for (tmp = max_data; tmp > sdp->sd_diptrs;) {
1237 		tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs);
1238 		max_data -= tmp;
1239 	}
1240 
1241 	*data_blocks = max_data;
1242 	*ind_blocks = max_blocks - max_data;
1243 	*len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift;
1244 	if (*len > max) {
1245 		*len = max;
1246 		gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks);
1247 	}
1248 }
1249 
__gfs2_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1250 static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1251 {
1252 	struct inode *inode = file_inode(file);
1253 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1254 	struct gfs2_inode *ip = GFS2_I(inode);
1255 	struct gfs2_alloc_parms ap = {};
1256 	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
1257 	loff_t bytes, max_bytes, max_blks;
1258 	int error;
1259 	const loff_t pos = offset;
1260 	const loff_t count = len;
1261 	loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1);
1262 	loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift;
1263 	loff_t max_chunk_size = UINT_MAX & bsize_mask;
1264 
1265 	next = (next + 1) << sdp->sd_sb.sb_bsize_shift;
1266 
1267 	offset &= bsize_mask;
1268 
1269 	len = next - offset;
1270 	bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2;
1271 	if (!bytes)
1272 		bytes = UINT_MAX;
1273 	bytes &= bsize_mask;
1274 	if (bytes == 0)
1275 		bytes = sdp->sd_sb.sb_bsize;
1276 
1277 	gfs2_size_hint(file, offset, len);
1278 
1279 	gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
1280 	ap.min_target = data_blocks + ind_blocks;
1281 
1282 	while (len > 0) {
1283 		if (len < bytes)
1284 			bytes = len;
1285 		if (!gfs2_write_alloc_required(ip, offset, bytes)) {
1286 			len -= bytes;
1287 			offset += bytes;
1288 			continue;
1289 		}
1290 
1291 		/* We need to determine how many bytes we can actually
1292 		 * fallocate without exceeding quota or going over the
1293 		 * end of the fs. We start off optimistically by assuming
1294 		 * we can write max_bytes */
1295 		max_bytes = (len > max_chunk_size) ? max_chunk_size : len;
1296 
1297 		/* Since max_bytes is most likely a theoretical max, we
1298 		 * calculate a more realistic 'bytes' to serve as a good
1299 		 * starting point for the number of bytes we may be able
1300 		 * to write */
1301 		gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks);
1302 		ap.target = data_blocks + ind_blocks;
1303 
1304 		error = gfs2_quota_lock_check(ip, &ap);
1305 		if (error)
1306 			return error;
1307 		/* ap.allowed tells us how many blocks quota will allow
1308 		 * us to write. Check if this reduces max_blks */
1309 		max_blks = UINT_MAX;
1310 		if (ap.allowed)
1311 			max_blks = ap.allowed;
1312 
1313 		error = gfs2_inplace_reserve(ip, &ap);
1314 		if (error)
1315 			goto out_qunlock;
1316 
1317 		/* check if the selected rgrp limits our max_blks further */
1318 		if (ip->i_res.rs_reserved < max_blks)
1319 			max_blks = ip->i_res.rs_reserved;
1320 
1321 		/* Almost done. Calculate bytes that can be written using
1322 		 * max_blks. We also recompute max_bytes, data_blocks and
1323 		 * ind_blocks */
1324 		calc_max_reserv(ip, &max_bytes, &data_blocks,
1325 				&ind_blocks, max_blks);
1326 
1327 		rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA +
1328 			  RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1329 		if (gfs2_is_jdata(ip))
1330 			rblocks += data_blocks ? data_blocks : 1;
1331 
1332 		error = gfs2_trans_begin(sdp, rblocks,
1333 					 PAGE_SIZE >> inode->i_blkbits);
1334 		if (error)
1335 			goto out_trans_fail;
1336 
1337 		error = fallocate_chunk(inode, offset, max_bytes, mode);
1338 		gfs2_trans_end(sdp);
1339 
1340 		if (error)
1341 			goto out_trans_fail;
1342 
1343 		len -= max_bytes;
1344 		offset += max_bytes;
1345 		gfs2_inplace_release(ip);
1346 		gfs2_quota_unlock(ip);
1347 	}
1348 
1349 	if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size)
1350 		i_size_write(inode, pos + count);
1351 	file_update_time(file);
1352 	mark_inode_dirty(inode);
1353 
1354 	if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host))
1355 		return vfs_fsync_range(file, pos, pos + count - 1,
1356 			       (file->f_flags & __O_SYNC) ? 0 : 1);
1357 	return 0;
1358 
1359 out_trans_fail:
1360 	gfs2_inplace_release(ip);
1361 out_qunlock:
1362 	gfs2_quota_unlock(ip);
1363 	return error;
1364 }
1365 
gfs2_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1366 static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1367 {
1368 	struct inode *inode = file_inode(file);
1369 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1370 	struct gfs2_inode *ip = GFS2_I(inode);
1371 	struct gfs2_holder gh;
1372 	int ret;
1373 
1374 	if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE))
1375 		return -EOPNOTSUPP;
1376 	/* fallocate is needed by gfs2_grow to reserve space in the rindex */
1377 	if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex)
1378 		return -EOPNOTSUPP;
1379 
1380 	inode_lock(inode);
1381 
1382 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
1383 	ret = gfs2_glock_nq(&gh);
1384 	if (ret)
1385 		goto out_uninit;
1386 
1387 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1388 	    (offset + len) > inode->i_size) {
1389 		ret = inode_newsize_ok(inode, offset + len);
1390 		if (ret)
1391 			goto out_unlock;
1392 	}
1393 
1394 	ret = get_write_access(inode);
1395 	if (ret)
1396 		goto out_unlock;
1397 
1398 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1399 		ret = __gfs2_punch_hole(file, offset, len);
1400 	} else {
1401 		ret = __gfs2_fallocate(file, mode, offset, len);
1402 		if (ret)
1403 			gfs2_rs_deltree(&ip->i_res);
1404 	}
1405 
1406 	put_write_access(inode);
1407 out_unlock:
1408 	gfs2_glock_dq(&gh);
1409 out_uninit:
1410 	gfs2_holder_uninit(&gh);
1411 	inode_unlock(inode);
1412 	return ret;
1413 }
1414 
gfs2_file_splice_write(struct pipe_inode_info * pipe,struct file * out,loff_t * ppos,size_t len,unsigned int flags)1415 static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe,
1416 				      struct file *out, loff_t *ppos,
1417 				      size_t len, unsigned int flags)
1418 {
1419 	ssize_t ret;
1420 
1421 	gfs2_size_hint(out, *ppos, len);
1422 
1423 	ret = iter_file_splice_write(pipe, out, ppos, len, flags);
1424 	return ret;
1425 }
1426 
1427 #ifdef CONFIG_GFS2_FS_LOCKING_DLM
1428 
1429 /**
1430  * gfs2_lock - acquire/release a posix lock on a file
1431  * @file: the file pointer
1432  * @cmd: either modify or retrieve lock state, possibly wait
1433  * @fl: type and range of lock
1434  *
1435  * Returns: errno
1436  */
1437 
gfs2_lock(struct file * file,int cmd,struct file_lock * fl)1438 static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl)
1439 {
1440 	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
1441 	struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host);
1442 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1443 
1444 	if (!(fl->c.flc_flags & FL_POSIX))
1445 		return -ENOLCK;
1446 	if (gfs2_withdrawing_or_withdrawn(sdp)) {
1447 		if (lock_is_unlock(fl))
1448 			locks_lock_file_wait(file, fl);
1449 		return -EIO;
1450 	}
1451 	if (cmd == F_CANCELLK)
1452 		return dlm_posix_cancel(ls->ls_dlm, ip->i_no_addr, file, fl);
1453 	else if (IS_GETLK(cmd))
1454 		return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl);
1455 	else if (lock_is_unlock(fl))
1456 		return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl);
1457 	else
1458 		return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl);
1459 }
1460 
__flock_holder_uninit(struct file * file,struct gfs2_holder * fl_gh)1461 static void __flock_holder_uninit(struct file *file, struct gfs2_holder *fl_gh)
1462 {
1463 	struct gfs2_glock *gl = gfs2_glock_hold(fl_gh->gh_gl);
1464 
1465 	/*
1466 	 * Make sure gfs2_glock_put() won't sleep under the file->f_lock
1467 	 * spinlock.
1468 	 */
1469 
1470 	spin_lock(&file->f_lock);
1471 	gfs2_holder_uninit(fl_gh);
1472 	spin_unlock(&file->f_lock);
1473 	gfs2_glock_put(gl);
1474 }
1475 
do_flock(struct file * file,int cmd,struct file_lock * fl)1476 static int do_flock(struct file *file, int cmd, struct file_lock *fl)
1477 {
1478 	struct gfs2_file *fp = file->private_data;
1479 	struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1480 	struct gfs2_inode *ip = GFS2_I(file_inode(file));
1481 	struct gfs2_glock *gl;
1482 	unsigned int state;
1483 	u16 flags;
1484 	int error = 0;
1485 	int sleeptime;
1486 
1487 	state = lock_is_write(fl) ? LM_ST_EXCLUSIVE : LM_ST_SHARED;
1488 	flags = GL_EXACT | GL_NOPID;
1489 	if (!IS_SETLKW(cmd))
1490 		flags |= LM_FLAG_TRY_1CB;
1491 
1492 	mutex_lock(&fp->f_fl_mutex);
1493 
1494 	if (gfs2_holder_initialized(fl_gh)) {
1495 		struct file_lock request;
1496 		if (fl_gh->gh_state == state)
1497 			goto out;
1498 		locks_init_lock(&request);
1499 		request.c.flc_type = F_UNLCK;
1500 		request.c.flc_flags = FL_FLOCK;
1501 		locks_lock_file_wait(file, &request);
1502 		gfs2_glock_dq(fl_gh);
1503 		gfs2_holder_reinit(state, flags, fl_gh);
1504 	} else {
1505 		error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr,
1506 				       &gfs2_flock_glops, CREATE, &gl);
1507 		if (error)
1508 			goto out;
1509 		spin_lock(&file->f_lock);
1510 		gfs2_holder_init(gl, state, flags, fl_gh);
1511 		spin_unlock(&file->f_lock);
1512 		gfs2_glock_put(gl);
1513 	}
1514 	for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) {
1515 		error = gfs2_glock_nq(fl_gh);
1516 		if (error != GLR_TRYFAILED)
1517 			break;
1518 		fl_gh->gh_flags &= ~LM_FLAG_TRY_1CB;
1519 		fl_gh->gh_flags |= LM_FLAG_TRY;
1520 		msleep(sleeptime);
1521 	}
1522 	if (error) {
1523 		__flock_holder_uninit(file, fl_gh);
1524 		if (error == GLR_TRYFAILED)
1525 			error = -EAGAIN;
1526 	} else {
1527 		error = locks_lock_file_wait(file, fl);
1528 		gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error);
1529 	}
1530 
1531 out:
1532 	mutex_unlock(&fp->f_fl_mutex);
1533 	return error;
1534 }
1535 
do_unflock(struct file * file,struct file_lock * fl)1536 static void do_unflock(struct file *file, struct file_lock *fl)
1537 {
1538 	struct gfs2_file *fp = file->private_data;
1539 	struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1540 
1541 	mutex_lock(&fp->f_fl_mutex);
1542 	locks_lock_file_wait(file, fl);
1543 	if (gfs2_holder_initialized(fl_gh)) {
1544 		gfs2_glock_dq(fl_gh);
1545 		__flock_holder_uninit(file, fl_gh);
1546 	}
1547 	mutex_unlock(&fp->f_fl_mutex);
1548 }
1549 
1550 /**
1551  * gfs2_flock - acquire/release a flock lock on a file
1552  * @file: the file pointer
1553  * @cmd: either modify or retrieve lock state, possibly wait
1554  * @fl: type and range of lock
1555  *
1556  * Returns: errno
1557  */
1558 
gfs2_flock(struct file * file,int cmd,struct file_lock * fl)1559 static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl)
1560 {
1561 	if (!(fl->c.flc_flags & FL_FLOCK))
1562 		return -ENOLCK;
1563 
1564 	if (lock_is_unlock(fl)) {
1565 		do_unflock(file, fl);
1566 		return 0;
1567 	} else {
1568 		return do_flock(file, cmd, fl);
1569 	}
1570 }
1571 
1572 const struct file_operations gfs2_file_fops = {
1573 	.llseek		= gfs2_llseek,
1574 	.read_iter	= gfs2_file_read_iter,
1575 	.write_iter	= gfs2_file_write_iter,
1576 	.iopoll		= iocb_bio_iopoll,
1577 	.unlocked_ioctl	= gfs2_ioctl,
1578 	.compat_ioctl	= gfs2_compat_ioctl,
1579 	.mmap		= gfs2_mmap,
1580 	.open		= gfs2_open,
1581 	.release	= gfs2_release,
1582 	.fsync		= gfs2_fsync,
1583 	.lock		= gfs2_lock,
1584 	.flock		= gfs2_flock,
1585 	.splice_read	= copy_splice_read,
1586 	.splice_write	= gfs2_file_splice_write,
1587 	.setlease	= simple_nosetlease,
1588 	.fallocate	= gfs2_fallocate,
1589 };
1590 
1591 const struct file_operations gfs2_dir_fops = {
1592 	.iterate_shared	= gfs2_readdir,
1593 	.unlocked_ioctl	= gfs2_ioctl,
1594 	.compat_ioctl	= gfs2_compat_ioctl,
1595 	.open		= gfs2_open,
1596 	.release	= gfs2_release,
1597 	.fsync		= gfs2_fsync,
1598 	.lock		= gfs2_lock,
1599 	.flock		= gfs2_flock,
1600 	.llseek		= default_llseek,
1601 };
1602 
1603 #endif /* CONFIG_GFS2_FS_LOCKING_DLM */
1604 
1605 const struct file_operations gfs2_file_fops_nolock = {
1606 	.llseek		= gfs2_llseek,
1607 	.read_iter	= gfs2_file_read_iter,
1608 	.write_iter	= gfs2_file_write_iter,
1609 	.iopoll		= iocb_bio_iopoll,
1610 	.unlocked_ioctl	= gfs2_ioctl,
1611 	.compat_ioctl	= gfs2_compat_ioctl,
1612 	.mmap		= gfs2_mmap,
1613 	.open		= gfs2_open,
1614 	.release	= gfs2_release,
1615 	.fsync		= gfs2_fsync,
1616 	.splice_read	= copy_splice_read,
1617 	.splice_write	= gfs2_file_splice_write,
1618 	.setlease	= generic_setlease,
1619 	.fallocate	= gfs2_fallocate,
1620 };
1621 
1622 const struct file_operations gfs2_dir_fops_nolock = {
1623 	.iterate_shared	= gfs2_readdir,
1624 	.unlocked_ioctl	= gfs2_ioctl,
1625 	.compat_ioctl	= gfs2_compat_ioctl,
1626 	.open		= gfs2_open,
1627 	.release	= gfs2_release,
1628 	.fsync		= gfs2_fsync,
1629 	.llseek		= default_llseek,
1630 };
1631 
1632