1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/writeback.h>
11 #include <linux/pagemap.h>
12 #include <linux/blkdev.h>
13 #include <linux/uuid.h>
14 #include <linux/timekeeping.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "locking.h"
20 #include "tree-log.h"
21 #include "volumes.h"
22 #include "dev-replace.h"
23 #include "qgroup.h"
24 #include "block-group.h"
25 #include "space-info.h"
26 #include "fs.h"
27 #include "accessors.h"
28 #include "extent-tree.h"
29 #include "root-tree.h"
30 #include "dir-item.h"
31 #include "uuid-tree.h"
32 #include "ioctl.h"
33 #include "relocation.h"
34 #include "scrub.h"
35 #include "ordered-data.h"
36 #include "delayed-inode.h"
37
38 static struct kmem_cache *btrfs_trans_handle_cachep;
39
40 /*
41 * Transaction states and transitions
42 *
43 * No running transaction (fs tree blocks are not modified)
44 * |
45 * | To next stage:
46 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
47 * V
48 * Transaction N [[TRANS_STATE_RUNNING]]
49 * |
50 * | New trans handles can be attached to transaction N by calling all
51 * | start_transaction() variants.
52 * |
53 * | To next stage:
54 * | Call btrfs_commit_transaction() on any trans handle attached to
55 * | transaction N
56 * V
57 * Transaction N [[TRANS_STATE_COMMIT_PREP]]
58 * |
59 * | If there are simultaneous calls to btrfs_commit_transaction() one will win
60 * | the race and the rest will wait for the winner to commit the transaction.
61 * |
62 * | The winner will wait for previous running transaction to completely finish
63 * | if there is one.
64 * |
65 * Transaction N [[TRANS_STATE_COMMIT_START]]
66 * |
67 * | Then one of the following happens:
68 * | - Wait for all other trans handle holders to release.
69 * | The btrfs_commit_transaction() caller will do the commit work.
70 * | - Wait for current transaction to be committed by others.
71 * | Other btrfs_commit_transaction() caller will do the commit work.
72 * |
73 * | At this stage, only btrfs_join_transaction*() variants can attach
74 * | to this running transaction.
75 * | All other variants will wait for current one to finish and attach to
76 * | transaction N+1.
77 * |
78 * | To next stage:
79 * | Caller is chosen to commit transaction N, and all other trans handle
80 * | haven been released.
81 * V
82 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
83 * |
84 * | The heavy lifting transaction work is started.
85 * | From running delayed refs (modifying extent tree) to creating pending
86 * | snapshots, running qgroups.
87 * | In short, modify supporting trees to reflect modifications of subvolume
88 * | trees.
89 * |
90 * | At this stage, all start_transaction() calls will wait for this
91 * | transaction to finish and attach to transaction N+1.
92 * |
93 * | To next stage:
94 * | Until all supporting trees are updated.
95 * V
96 * Transaction N [[TRANS_STATE_UNBLOCKED]]
97 * | Transaction N+1
98 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
99 * | need to write them back to disk and update |
100 * | super blocks. |
101 * | |
102 * | At this stage, new transaction is allowed to |
103 * | start. |
104 * | All new start_transaction() calls will be |
105 * | attached to transid N+1. |
106 * | |
107 * | To next stage: |
108 * | Until all tree blocks and super blocks are |
109 * | written to block devices |
110 * V |
111 * Transaction N [[TRANS_STATE_COMPLETED]] V
112 * All tree blocks and super blocks are written. Transaction N+1
113 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
114 * data structures will be cleaned up. | Life goes on
115 */
116 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
117 [TRANS_STATE_RUNNING] = 0U,
118 [TRANS_STATE_COMMIT_PREP] = 0U,
119 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
120 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
121 __TRANS_ATTACH |
122 __TRANS_JOIN |
123 __TRANS_JOIN_NOSTART),
124 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
125 __TRANS_ATTACH |
126 __TRANS_JOIN |
127 __TRANS_JOIN_NOLOCK |
128 __TRANS_JOIN_NOSTART),
129 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
130 __TRANS_ATTACH |
131 __TRANS_JOIN |
132 __TRANS_JOIN_NOLOCK |
133 __TRANS_JOIN_NOSTART),
134 [TRANS_STATE_COMPLETED] = (__TRANS_START |
135 __TRANS_ATTACH |
136 __TRANS_JOIN |
137 __TRANS_JOIN_NOLOCK |
138 __TRANS_JOIN_NOSTART),
139 };
140
btrfs_put_transaction(struct btrfs_transaction * transaction)141 void btrfs_put_transaction(struct btrfs_transaction *transaction)
142 {
143 if (refcount_dec_and_test(&transaction->use_count)) {
144 BUG_ON(!list_empty(&transaction->list));
145 WARN_ON(!xa_empty(&transaction->delayed_refs.head_refs));
146 WARN_ON(!xa_empty(&transaction->delayed_refs.dirty_extents));
147 if (transaction->delayed_refs.pending_csums)
148 btrfs_err(transaction->fs_info,
149 "pending csums is %llu",
150 transaction->delayed_refs.pending_csums);
151 /*
152 * If any block groups are found in ->deleted_bgs then it's
153 * because the transaction was aborted and a commit did not
154 * happen (things failed before writing the new superblock
155 * and calling btrfs_finish_extent_commit()), so we can not
156 * discard the physical locations of the block groups.
157 */
158 while (!list_empty(&transaction->deleted_bgs)) {
159 struct btrfs_block_group *cache;
160
161 cache = list_first_entry(&transaction->deleted_bgs,
162 struct btrfs_block_group,
163 bg_list);
164 /*
165 * Not strictly necessary to lock, as no other task will be using a
166 * block_group on the deleted_bgs list during a transaction abort.
167 */
168 spin_lock(&transaction->fs_info->unused_bgs_lock);
169 list_del_init(&cache->bg_list);
170 spin_unlock(&transaction->fs_info->unused_bgs_lock);
171 btrfs_unfreeze_block_group(cache);
172 btrfs_put_block_group(cache);
173 }
174 WARN_ON(!list_empty(&transaction->dev_update_list));
175 kfree(transaction);
176 }
177 }
178
switch_commit_roots(struct btrfs_trans_handle * trans)179 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
180 {
181 struct btrfs_transaction *cur_trans = trans->transaction;
182 struct btrfs_fs_info *fs_info = trans->fs_info;
183 struct btrfs_root *root, *tmp;
184
185 /*
186 * At this point no one can be using this transaction to modify any tree
187 * and no one can start another transaction to modify any tree either.
188 */
189 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING,
190 "cur_trans->state=%d", cur_trans->state);
191
192 down_write(&fs_info->commit_root_sem);
193
194 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
195 fs_info->last_reloc_trans = trans->transid;
196
197 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
198 dirty_list) {
199 list_del_init(&root->dirty_list);
200 free_extent_buffer(root->commit_root);
201 root->commit_root = btrfs_root_node(root);
202 btrfs_extent_io_tree_release(&root->dirty_log_pages);
203 btrfs_qgroup_clean_swapped_blocks(root);
204 }
205
206 /* We can free old roots now. */
207 spin_lock(&cur_trans->dropped_roots_lock);
208 while (!list_empty(&cur_trans->dropped_roots)) {
209 root = list_first_entry(&cur_trans->dropped_roots,
210 struct btrfs_root, root_list);
211 list_del_init(&root->root_list);
212 spin_unlock(&cur_trans->dropped_roots_lock);
213 btrfs_free_log(trans, root);
214 btrfs_drop_and_free_fs_root(fs_info, root);
215 spin_lock(&cur_trans->dropped_roots_lock);
216 }
217 spin_unlock(&cur_trans->dropped_roots_lock);
218
219 up_write(&fs_info->commit_root_sem);
220 }
221
extwriter_counter_inc(struct btrfs_transaction * trans,unsigned int type)222 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
223 unsigned int type)
224 {
225 if (type & TRANS_EXTWRITERS)
226 atomic_inc(&trans->num_extwriters);
227 }
228
extwriter_counter_dec(struct btrfs_transaction * trans,unsigned int type)229 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
230 unsigned int type)
231 {
232 if (type & TRANS_EXTWRITERS)
233 atomic_dec(&trans->num_extwriters);
234 }
235
extwriter_counter_init(struct btrfs_transaction * trans,unsigned int type)236 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
237 unsigned int type)
238 {
239 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
240 }
241
extwriter_counter_read(struct btrfs_transaction * trans)242 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
243 {
244 return atomic_read(&trans->num_extwriters);
245 }
246
247 /*
248 * To be called after doing the chunk btree updates right after allocating a new
249 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
250 * chunk after all chunk btree updates and after finishing the second phase of
251 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
252 * group had its chunk item insertion delayed to the second phase.
253 */
btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle * trans)254 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
255 {
256 struct btrfs_fs_info *fs_info = trans->fs_info;
257
258 if (!trans->chunk_bytes_reserved)
259 return;
260
261 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
262 trans->chunk_bytes_reserved, NULL);
263 trans->chunk_bytes_reserved = 0;
264 }
265
266 /*
267 * either allocate a new transaction or hop into the existing one
268 */
join_transaction(struct btrfs_fs_info * fs_info,unsigned int type)269 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
270 unsigned int type)
271 {
272 struct btrfs_transaction *cur_trans;
273
274 spin_lock(&fs_info->trans_lock);
275 loop:
276 /* The file system has been taken offline. No new transactions. */
277 if (BTRFS_FS_ERROR(fs_info)) {
278 spin_unlock(&fs_info->trans_lock);
279 return -EROFS;
280 }
281
282 cur_trans = fs_info->running_transaction;
283 if (cur_trans) {
284 if (TRANS_ABORTED(cur_trans)) {
285 const int abort_error = cur_trans->aborted;
286
287 spin_unlock(&fs_info->trans_lock);
288 return abort_error;
289 }
290 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
291 spin_unlock(&fs_info->trans_lock);
292 return -EBUSY;
293 }
294 refcount_inc(&cur_trans->use_count);
295 atomic_inc(&cur_trans->num_writers);
296 extwriter_counter_inc(cur_trans, type);
297 spin_unlock(&fs_info->trans_lock);
298 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
299 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
300 return 0;
301 }
302 spin_unlock(&fs_info->trans_lock);
303
304 /*
305 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
306 * current transaction, and commit it. If there is no transaction, just
307 * return ENOENT.
308 */
309 if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
310 return -ENOENT;
311
312 /*
313 * JOIN_NOLOCK only happens during the transaction commit, so
314 * it is impossible that ->running_transaction is NULL
315 */
316 BUG_ON(type == TRANS_JOIN_NOLOCK);
317
318 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
319 if (!cur_trans)
320 return -ENOMEM;
321
322 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
323 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
324
325 spin_lock(&fs_info->trans_lock);
326 if (fs_info->running_transaction) {
327 /*
328 * someone started a transaction after we unlocked. Make sure
329 * to redo the checks above
330 */
331 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
332 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
333 kfree(cur_trans);
334 goto loop;
335 } else if (BTRFS_FS_ERROR(fs_info)) {
336 spin_unlock(&fs_info->trans_lock);
337 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
338 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
339 kfree(cur_trans);
340 return -EROFS;
341 }
342
343 cur_trans->fs_info = fs_info;
344 atomic_set(&cur_trans->pending_ordered, 0);
345 init_waitqueue_head(&cur_trans->pending_wait);
346 atomic_set(&cur_trans->num_writers, 1);
347 extwriter_counter_init(cur_trans, type);
348 init_waitqueue_head(&cur_trans->writer_wait);
349 init_waitqueue_head(&cur_trans->commit_wait);
350 cur_trans->state = TRANS_STATE_RUNNING;
351 /*
352 * One for this trans handle, one so it will live on until we
353 * commit the transaction.
354 */
355 refcount_set(&cur_trans->use_count, 2);
356 cur_trans->flags = 0;
357 cur_trans->start_time = ktime_get_seconds();
358
359 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
360
361 xa_init(&cur_trans->delayed_refs.head_refs);
362 xa_init(&cur_trans->delayed_refs.dirty_extents);
363
364 /*
365 * although the tree mod log is per file system and not per transaction,
366 * the log must never go across transaction boundaries.
367 */
368 smp_mb();
369 if (!list_empty(&fs_info->tree_mod_seq_list))
370 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
371 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
372 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
373 atomic64_set(&fs_info->tree_mod_seq, 0);
374
375 spin_lock_init(&cur_trans->delayed_refs.lock);
376
377 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
378 INIT_LIST_HEAD(&cur_trans->dev_update_list);
379 INIT_LIST_HEAD(&cur_trans->switch_commits);
380 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
381 INIT_LIST_HEAD(&cur_trans->io_bgs);
382 INIT_LIST_HEAD(&cur_trans->dropped_roots);
383 mutex_init(&cur_trans->cache_write_mutex);
384 spin_lock_init(&cur_trans->dirty_bgs_lock);
385 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
386 spin_lock_init(&cur_trans->dropped_roots_lock);
387 list_add_tail(&cur_trans->list, &fs_info->trans_list);
388 btrfs_extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
389 IO_TREE_TRANS_DIRTY_PAGES);
390 btrfs_extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
391 IO_TREE_FS_PINNED_EXTENTS);
392 btrfs_set_fs_generation(fs_info, fs_info->generation + 1);
393 cur_trans->transid = fs_info->generation;
394 fs_info->running_transaction = cur_trans;
395 cur_trans->aborted = 0;
396 spin_unlock(&fs_info->trans_lock);
397
398 return 0;
399 }
400
401 /*
402 * This does all the record keeping required to make sure that a shareable root
403 * is properly recorded in a given transaction. This is required to make sure
404 * the old root from before we joined the transaction is deleted when the
405 * transaction commits.
406 */
record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,bool force)407 static int record_root_in_trans(struct btrfs_trans_handle *trans,
408 struct btrfs_root *root,
409 bool force)
410 {
411 struct btrfs_fs_info *fs_info = root->fs_info;
412 int ret = 0;
413
414 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
415 btrfs_get_root_last_trans(root) < trans->transid) || force) {
416 WARN_ON(!force && root->commit_root != root->node);
417
418 /*
419 * see below for IN_TRANS_SETUP usage rules
420 * we have the reloc mutex held now, so there
421 * is only one writer in this function
422 */
423 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
424
425 /* make sure readers find IN_TRANS_SETUP before
426 * they find our root->last_trans update
427 */
428 smp_wmb();
429
430 spin_lock(&fs_info->fs_roots_radix_lock);
431 if (btrfs_get_root_last_trans(root) == trans->transid && !force) {
432 spin_unlock(&fs_info->fs_roots_radix_lock);
433 return 0;
434 }
435 radix_tree_tag_set(&fs_info->fs_roots_radix,
436 (unsigned long)btrfs_root_id(root),
437 BTRFS_ROOT_TRANS_TAG);
438 spin_unlock(&fs_info->fs_roots_radix_lock);
439 btrfs_set_root_last_trans(root, trans->transid);
440
441 /* this is pretty tricky. We don't want to
442 * take the relocation lock in btrfs_record_root_in_trans
443 * unless we're really doing the first setup for this root in
444 * this transaction.
445 *
446 * Normally we'd use root->last_trans as a flag to decide
447 * if we want to take the expensive mutex.
448 *
449 * But, we have to set root->last_trans before we
450 * init the relocation root, otherwise, we trip over warnings
451 * in ctree.c. The solution used here is to flag ourselves
452 * with root IN_TRANS_SETUP. When this is 1, we're still
453 * fixing up the reloc trees and everyone must wait.
454 *
455 * When this is zero, they can trust root->last_trans and fly
456 * through btrfs_record_root_in_trans without having to take the
457 * lock. smp_wmb() makes sure that all the writes above are
458 * done before we pop in the zero below
459 */
460 ret = btrfs_init_reloc_root(trans, root);
461 smp_mb__before_atomic();
462 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
463 }
464 return ret;
465 }
466
467
btrfs_add_dropped_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)468 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
469 struct btrfs_root *root)
470 {
471 struct btrfs_fs_info *fs_info = root->fs_info;
472 struct btrfs_transaction *cur_trans = trans->transaction;
473
474 /* Add ourselves to the transaction dropped list */
475 spin_lock(&cur_trans->dropped_roots_lock);
476 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
477 spin_unlock(&cur_trans->dropped_roots_lock);
478
479 /* Make sure we don't try to update the root at commit time */
480 spin_lock(&fs_info->fs_roots_radix_lock);
481 radix_tree_tag_clear(&fs_info->fs_roots_radix,
482 (unsigned long)btrfs_root_id(root),
483 BTRFS_ROOT_TRANS_TAG);
484 spin_unlock(&fs_info->fs_roots_radix_lock);
485 }
486
btrfs_record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)487 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
488 struct btrfs_root *root)
489 {
490 struct btrfs_fs_info *fs_info = root->fs_info;
491 int ret;
492
493 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
494 return 0;
495
496 /*
497 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
498 * and barriers
499 */
500 smp_rmb();
501 if (btrfs_get_root_last_trans(root) == trans->transid &&
502 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
503 return 0;
504
505 mutex_lock(&fs_info->reloc_mutex);
506 ret = record_root_in_trans(trans, root, 0);
507 mutex_unlock(&fs_info->reloc_mutex);
508
509 return ret;
510 }
511
is_transaction_blocked(struct btrfs_transaction * trans)512 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
513 {
514 return (trans->state >= TRANS_STATE_COMMIT_START &&
515 trans->state < TRANS_STATE_UNBLOCKED &&
516 !TRANS_ABORTED(trans));
517 }
518
519 /* wait for commit against the current transaction to become unblocked
520 * when this is done, it is safe to start a new transaction, but the current
521 * transaction might not be fully on disk.
522 */
wait_current_trans(struct btrfs_fs_info * fs_info,unsigned int type)523 static void wait_current_trans(struct btrfs_fs_info *fs_info, unsigned int type)
524 {
525 struct btrfs_transaction *cur_trans;
526
527 spin_lock(&fs_info->trans_lock);
528 cur_trans = fs_info->running_transaction;
529 if (cur_trans && is_transaction_blocked(cur_trans) &&
530 (btrfs_blocked_trans_types[cur_trans->state] & type)) {
531 refcount_inc(&cur_trans->use_count);
532 spin_unlock(&fs_info->trans_lock);
533
534 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
535 wait_event(fs_info->transaction_wait,
536 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
537 TRANS_ABORTED(cur_trans));
538 btrfs_put_transaction(cur_trans);
539 } else {
540 spin_unlock(&fs_info->trans_lock);
541 }
542 }
543
may_wait_transaction(struct btrfs_fs_info * fs_info,int type)544 static bool may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
545 {
546 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
547 return false;
548
549 if (type == TRANS_START)
550 return true;
551
552 return false;
553 }
554
need_reserve_reloc_root(struct btrfs_root * root)555 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
556 {
557 struct btrfs_fs_info *fs_info = root->fs_info;
558
559 if (!fs_info->reloc_ctl ||
560 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
561 btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
562 root->reloc_root)
563 return false;
564
565 return true;
566 }
567
btrfs_reserve_trans_metadata(struct btrfs_fs_info * fs_info,enum btrfs_reserve_flush_enum flush,u64 num_bytes,u64 * delayed_refs_bytes)568 static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info,
569 enum btrfs_reserve_flush_enum flush,
570 u64 num_bytes,
571 u64 *delayed_refs_bytes)
572 {
573 struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info;
574 u64 bytes = num_bytes + *delayed_refs_bytes;
575 int ret;
576
577 /*
578 * We want to reserve all the bytes we may need all at once, so we only
579 * do 1 enospc flushing cycle per transaction start.
580 */
581 ret = btrfs_reserve_metadata_bytes(si, bytes, flush);
582
583 /*
584 * If we are an emergency flush, which can steal from the global block
585 * reserve, then attempt to not reserve space for the delayed refs, as
586 * we will consume space for them from the global block reserve.
587 */
588 if (ret && flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
589 bytes -= *delayed_refs_bytes;
590 *delayed_refs_bytes = 0;
591 ret = btrfs_reserve_metadata_bytes(si, bytes, flush);
592 }
593
594 return ret;
595 }
596
597 static struct btrfs_trans_handle *
start_transaction(struct btrfs_root * root,unsigned int num_items,unsigned int type,enum btrfs_reserve_flush_enum flush,bool enforce_qgroups)598 start_transaction(struct btrfs_root *root, unsigned int num_items,
599 unsigned int type, enum btrfs_reserve_flush_enum flush,
600 bool enforce_qgroups)
601 {
602 struct btrfs_fs_info *fs_info = root->fs_info;
603 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
604 struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
605 struct btrfs_trans_handle *h;
606 struct btrfs_transaction *cur_trans;
607 u64 num_bytes = 0;
608 u64 qgroup_reserved = 0;
609 u64 delayed_refs_bytes = 0;
610 bool reloc_reserved = false;
611 bool do_chunk_alloc = false;
612 int ret;
613
614 if (BTRFS_FS_ERROR(fs_info))
615 return ERR_PTR(-EROFS);
616
617 if (current->journal_info) {
618 WARN_ON(type & TRANS_EXTWRITERS);
619 h = current->journal_info;
620 refcount_inc(&h->use_count);
621 WARN_ON(refcount_read(&h->use_count) > 2);
622 h->orig_rsv = h->block_rsv;
623 h->block_rsv = NULL;
624 goto got_it;
625 }
626
627 /*
628 * Do the reservation before we join the transaction so we can do all
629 * the appropriate flushing if need be.
630 */
631 if (num_items && root != fs_info->chunk_root) {
632 qgroup_reserved = num_items * fs_info->nodesize;
633 /*
634 * Use prealloc for now, as there might be a currently running
635 * transaction that could free this reserved space prematurely
636 * by committing.
637 */
638 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
639 enforce_qgroups, false);
640 if (ret)
641 return ERR_PTR(ret);
642
643 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
644 /*
645 * If we plan to insert/update/delete "num_items" from a btree,
646 * we will also generate delayed refs for extent buffers in the
647 * respective btree paths, so reserve space for the delayed refs
648 * that will be generated by the caller as it modifies btrees.
649 * Try to reserve them to avoid excessive use of the global
650 * block reserve.
651 */
652 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items);
653
654 /*
655 * Do the reservation for the relocation root creation
656 */
657 if (need_reserve_reloc_root(root)) {
658 num_bytes += fs_info->nodesize;
659 reloc_reserved = true;
660 }
661
662 ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes,
663 &delayed_refs_bytes);
664 if (ret)
665 goto reserve_fail;
666
667 btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true);
668
669 if (trans_rsv->space_info->force_alloc)
670 do_chunk_alloc = true;
671 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
672 !btrfs_block_rsv_full(delayed_refs_rsv)) {
673 /*
674 * Some people call with btrfs_start_transaction(root, 0)
675 * because they can be throttled, but have some other mechanism
676 * for reserving space. We still want these guys to refill the
677 * delayed block_rsv so just add 1 items worth of reservation
678 * here.
679 */
680 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
681 if (ret)
682 goto reserve_fail;
683 }
684 again:
685 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
686 if (!h) {
687 ret = -ENOMEM;
688 goto alloc_fail;
689 }
690
691 /*
692 * If we are JOIN_NOLOCK we're already committing a transaction and
693 * waiting on this guy, so we don't need to do the sb_start_intwrite
694 * because we're already holding a ref. We need this because we could
695 * have raced in and did an fsync() on a file which can kick a commit
696 * and then we deadlock with somebody doing a freeze.
697 *
698 * If we are ATTACH, it means we just want to catch the current
699 * transaction and commit it, so we needn't do sb_start_intwrite().
700 */
701 if (type & __TRANS_FREEZABLE)
702 sb_start_intwrite(fs_info->sb);
703
704 if (may_wait_transaction(fs_info, type))
705 wait_current_trans(fs_info, type);
706
707 do {
708 ret = join_transaction(fs_info, type);
709 if (ret == -EBUSY) {
710 wait_current_trans(fs_info, type);
711 if (unlikely(type == TRANS_ATTACH ||
712 type == TRANS_JOIN_NOSTART))
713 ret = -ENOENT;
714 }
715 } while (ret == -EBUSY);
716
717 if (ret < 0)
718 goto join_fail;
719
720 cur_trans = fs_info->running_transaction;
721
722 h->transid = cur_trans->transid;
723 h->transaction = cur_trans;
724 refcount_set(&h->use_count, 1);
725 h->fs_info = root->fs_info;
726
727 h->type = type;
728 INIT_LIST_HEAD(&h->new_bgs);
729 btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS);
730
731 smp_mb();
732 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
733 may_wait_transaction(fs_info, type)) {
734 current->journal_info = h;
735 btrfs_commit_transaction(h);
736 goto again;
737 }
738
739 if (num_bytes) {
740 trace_btrfs_space_reservation(fs_info, "transaction",
741 h->transid, num_bytes, 1);
742 h->block_rsv = trans_rsv;
743 h->bytes_reserved = num_bytes;
744 if (delayed_refs_bytes > 0) {
745 trace_btrfs_space_reservation(fs_info,
746 "local_delayed_refs_rsv",
747 h->transid,
748 delayed_refs_bytes, 1);
749 h->delayed_refs_bytes_reserved = delayed_refs_bytes;
750 btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true);
751 delayed_refs_bytes = 0;
752 }
753 h->reloc_reserved = reloc_reserved;
754 }
755
756 got_it:
757 if (!current->journal_info)
758 current->journal_info = h;
759
760 /*
761 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
762 * ALLOC_FORCE the first run through, and then we won't allocate for
763 * anybody else who races in later. We don't care about the return
764 * value here.
765 */
766 if (do_chunk_alloc && num_bytes) {
767 struct btrfs_space_info *space_info = h->block_rsv->space_info;
768 u64 flags = space_info->flags;
769
770 btrfs_chunk_alloc(h, space_info, btrfs_get_alloc_profile(fs_info, flags),
771 CHUNK_ALLOC_NO_FORCE);
772 }
773
774 /*
775 * btrfs_record_root_in_trans() needs to alloc new extents, and may
776 * call btrfs_join_transaction() while we're also starting a
777 * transaction.
778 *
779 * Thus it need to be called after current->journal_info initialized,
780 * or we can deadlock.
781 */
782 ret = btrfs_record_root_in_trans(h, root);
783 if (ret) {
784 /*
785 * The transaction handle is fully initialized and linked with
786 * other structures so it needs to be ended in case of errors,
787 * not just freed.
788 */
789 btrfs_end_transaction(h);
790 goto reserve_fail;
791 }
792 /*
793 * Now that we have found a transaction to be a part of, convert the
794 * qgroup reservation from prealloc to pertrans. A different transaction
795 * can't race in and free our pertrans out from under us.
796 */
797 if (qgroup_reserved)
798 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
799
800 return h;
801
802 join_fail:
803 if (type & __TRANS_FREEZABLE)
804 sb_end_intwrite(fs_info->sb);
805 kmem_cache_free(btrfs_trans_handle_cachep, h);
806 alloc_fail:
807 if (num_bytes)
808 btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL);
809 if (delayed_refs_bytes)
810 btrfs_space_info_free_bytes_may_use(trans_rsv->space_info, delayed_refs_bytes);
811 reserve_fail:
812 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
813 return ERR_PTR(ret);
814 }
815
btrfs_start_transaction(struct btrfs_root * root,unsigned int num_items)816 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
817 unsigned int num_items)
818 {
819 return start_transaction(root, num_items, TRANS_START,
820 BTRFS_RESERVE_FLUSH_ALL, true);
821 }
822
btrfs_start_transaction_fallback_global_rsv(struct btrfs_root * root,unsigned int num_items)823 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
824 struct btrfs_root *root,
825 unsigned int num_items)
826 {
827 return start_transaction(root, num_items, TRANS_START,
828 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
829 }
830
btrfs_join_transaction(struct btrfs_root * root)831 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
832 {
833 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
834 true);
835 }
836
btrfs_join_transaction_spacecache(struct btrfs_root * root)837 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
838 {
839 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
840 BTRFS_RESERVE_NO_FLUSH, true);
841 }
842
843 /*
844 * Similar to regular join but it never starts a transaction when none is
845 * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
846 * This is similar to btrfs_attach_transaction() but it allows the join to
847 * happen if the transaction commit already started but it's not yet in the
848 * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
849 */
btrfs_join_transaction_nostart(struct btrfs_root * root)850 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
851 {
852 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
853 BTRFS_RESERVE_NO_FLUSH, true);
854 }
855
856 /*
857 * Catch the running transaction.
858 *
859 * It is used when we want to commit the current the transaction, but
860 * don't want to start a new one.
861 *
862 * Note: If this function return -ENOENT, it just means there is no
863 * running transaction. But it is possible that the inactive transaction
864 * is still in the memory, not fully on disk. If you hope there is no
865 * inactive transaction in the fs when -ENOENT is returned, you should
866 * invoke
867 * btrfs_attach_transaction_barrier()
868 */
btrfs_attach_transaction(struct btrfs_root * root)869 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
870 {
871 return start_transaction(root, 0, TRANS_ATTACH,
872 BTRFS_RESERVE_NO_FLUSH, true);
873 }
874
875 /*
876 * Catch the running transaction.
877 *
878 * It is similar to the above function, the difference is this one
879 * will wait for all the inactive transactions until they fully
880 * complete.
881 */
882 struct btrfs_trans_handle *
btrfs_attach_transaction_barrier(struct btrfs_root * root)883 btrfs_attach_transaction_barrier(struct btrfs_root *root)
884 {
885 struct btrfs_trans_handle *trans;
886
887 trans = start_transaction(root, 0, TRANS_ATTACH,
888 BTRFS_RESERVE_NO_FLUSH, true);
889 if (trans == ERR_PTR(-ENOENT)) {
890 int ret;
891
892 ret = btrfs_wait_for_commit(root->fs_info, 0);
893 if (ret)
894 return ERR_PTR(ret);
895 }
896
897 return trans;
898 }
899
900 /* Wait for a transaction commit to reach at least the given state. */
wait_for_commit(struct btrfs_transaction * commit,const enum btrfs_trans_state min_state)901 static noinline void wait_for_commit(struct btrfs_transaction *commit,
902 const enum btrfs_trans_state min_state)
903 {
904 struct btrfs_fs_info *fs_info = commit->fs_info;
905 u64 transid = commit->transid;
906 bool put = false;
907
908 /*
909 * At the moment this function is called with min_state either being
910 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
911 */
912 if (min_state == TRANS_STATE_COMPLETED)
913 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
914 else
915 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
916
917 while (1) {
918 wait_event(commit->commit_wait, commit->state >= min_state);
919 if (put)
920 btrfs_put_transaction(commit);
921
922 if (min_state < TRANS_STATE_COMPLETED)
923 break;
924
925 /*
926 * A transaction isn't really completed until all of the
927 * previous transactions are completed, but with fsync we can
928 * end up with SUPER_COMMITTED transactions before a COMPLETED
929 * transaction. Wait for those.
930 */
931
932 spin_lock(&fs_info->trans_lock);
933 commit = list_first_entry_or_null(&fs_info->trans_list,
934 struct btrfs_transaction,
935 list);
936 if (!commit || commit->transid > transid) {
937 spin_unlock(&fs_info->trans_lock);
938 break;
939 }
940 refcount_inc(&commit->use_count);
941 put = true;
942 spin_unlock(&fs_info->trans_lock);
943 }
944 }
945
btrfs_wait_for_commit(struct btrfs_fs_info * fs_info,u64 transid)946 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
947 {
948 struct btrfs_transaction *cur_trans = NULL, *t;
949 int ret = 0;
950
951 if (transid) {
952 if (transid <= btrfs_get_last_trans_committed(fs_info))
953 goto out;
954
955 /* find specified transaction */
956 spin_lock(&fs_info->trans_lock);
957 list_for_each_entry(t, &fs_info->trans_list, list) {
958 if (t->transid == transid) {
959 cur_trans = t;
960 refcount_inc(&cur_trans->use_count);
961 ret = 0;
962 break;
963 }
964 if (t->transid > transid) {
965 ret = 0;
966 break;
967 }
968 }
969 spin_unlock(&fs_info->trans_lock);
970
971 /*
972 * The specified transaction doesn't exist, or we
973 * raced with btrfs_commit_transaction
974 */
975 if (!cur_trans) {
976 if (transid > btrfs_get_last_trans_committed(fs_info))
977 ret = -EINVAL;
978 goto out;
979 }
980 } else {
981 /* find newest transaction that is committing | committed */
982 spin_lock(&fs_info->trans_lock);
983 list_for_each_entry_reverse(t, &fs_info->trans_list,
984 list) {
985 if (t->state >= TRANS_STATE_COMMIT_START) {
986 if (t->state == TRANS_STATE_COMPLETED)
987 break;
988 cur_trans = t;
989 refcount_inc(&cur_trans->use_count);
990 break;
991 }
992 }
993 spin_unlock(&fs_info->trans_lock);
994 if (!cur_trans)
995 goto out; /* nothing committing|committed */
996 }
997
998 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
999 ret = cur_trans->aborted;
1000 btrfs_put_transaction(cur_trans);
1001 out:
1002 return ret;
1003 }
1004
btrfs_throttle(struct btrfs_fs_info * fs_info)1005 void btrfs_throttle(struct btrfs_fs_info *fs_info)
1006 {
1007 wait_current_trans(fs_info, TRANS_START);
1008 }
1009
btrfs_should_end_transaction(struct btrfs_trans_handle * trans)1010 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
1011 {
1012 struct btrfs_transaction *cur_trans = trans->transaction;
1013
1014 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
1015 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
1016 return true;
1017
1018 if (btrfs_check_space_for_delayed_refs(trans->fs_info))
1019 return true;
1020
1021 return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
1022 }
1023
btrfs_trans_release_metadata(struct btrfs_trans_handle * trans)1024 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
1025
1026 {
1027 struct btrfs_fs_info *fs_info = trans->fs_info;
1028
1029 if (!trans->block_rsv) {
1030 ASSERT(trans->bytes_reserved == 0,
1031 "trans->bytes_reserved=%llu", trans->bytes_reserved);
1032 ASSERT(trans->delayed_refs_bytes_reserved == 0,
1033 "trans->delayed_refs_bytes_reserved=%llu",
1034 trans->delayed_refs_bytes_reserved);
1035 return;
1036 }
1037
1038 if (!trans->bytes_reserved) {
1039 ASSERT(trans->delayed_refs_bytes_reserved == 0,
1040 "trans->delayed_refs_bytes_reserved=%llu",
1041 trans->delayed_refs_bytes_reserved);
1042 return;
1043 }
1044
1045 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
1046 trace_btrfs_space_reservation(fs_info, "transaction",
1047 trans->transid, trans->bytes_reserved, 0);
1048 btrfs_block_rsv_release(fs_info, trans->block_rsv,
1049 trans->bytes_reserved, NULL);
1050 trans->bytes_reserved = 0;
1051
1052 if (!trans->delayed_refs_bytes_reserved)
1053 return;
1054
1055 trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv",
1056 trans->transid,
1057 trans->delayed_refs_bytes_reserved, 0);
1058 btrfs_block_rsv_release(fs_info, &trans->delayed_rsv,
1059 trans->delayed_refs_bytes_reserved, NULL);
1060 trans->delayed_refs_bytes_reserved = 0;
1061 }
1062
__btrfs_end_transaction(struct btrfs_trans_handle * trans,int throttle)1063 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
1064 int throttle)
1065 {
1066 struct btrfs_fs_info *info = trans->fs_info;
1067 struct btrfs_transaction *cur_trans = trans->transaction;
1068 int ret = 0;
1069
1070 if (refcount_read(&trans->use_count) > 1) {
1071 refcount_dec(&trans->use_count);
1072 trans->block_rsv = trans->orig_rsv;
1073 return 0;
1074 }
1075
1076 btrfs_trans_release_metadata(trans);
1077 trans->block_rsv = NULL;
1078
1079 btrfs_create_pending_block_groups(trans);
1080
1081 btrfs_trans_release_chunk_metadata(trans);
1082
1083 if (trans->type & __TRANS_FREEZABLE)
1084 sb_end_intwrite(info->sb);
1085
1086 WARN_ON(cur_trans != info->running_transaction);
1087 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1088 atomic_dec(&cur_trans->num_writers);
1089 extwriter_counter_dec(cur_trans, trans->type);
1090
1091 cond_wake_up(&cur_trans->writer_wait);
1092
1093 btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1094 btrfs_lockdep_release(info, btrfs_trans_num_writers);
1095
1096 btrfs_put_transaction(cur_trans);
1097
1098 if (current->journal_info == trans)
1099 current->journal_info = NULL;
1100
1101 if (throttle)
1102 btrfs_run_delayed_iputs(info);
1103
1104 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1105 wake_up_process(info->transaction_kthread);
1106 if (TRANS_ABORTED(trans))
1107 ret = trans->aborted;
1108 else
1109 ret = -EROFS;
1110 }
1111
1112 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1113 return ret;
1114 }
1115
btrfs_end_transaction(struct btrfs_trans_handle * trans)1116 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1117 {
1118 return __btrfs_end_transaction(trans, 0);
1119 }
1120
btrfs_end_transaction_throttle(struct btrfs_trans_handle * trans)1121 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1122 {
1123 return __btrfs_end_transaction(trans, 1);
1124 }
1125
1126 /*
1127 * when btree blocks are allocated, they have some corresponding bits set for
1128 * them in one of two extent_io trees. This is used to make sure all of
1129 * those extents are sent to disk but does not wait on them
1130 */
btrfs_write_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)1131 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1132 struct extent_io_tree *dirty_pages, int mark)
1133 {
1134 int ret = 0;
1135 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1136 struct extent_state *cached_state = NULL;
1137 u64 start = 0;
1138 u64 end;
1139
1140 while (btrfs_find_first_extent_bit(dirty_pages, start, &start, &end,
1141 mark, &cached_state)) {
1142 bool wait_writeback = false;
1143
1144 ret = btrfs_convert_extent_bit(dirty_pages, start, end,
1145 EXTENT_NEED_WAIT,
1146 mark, &cached_state);
1147 /*
1148 * convert_extent_bit can return -ENOMEM, which is most of the
1149 * time a temporary error. So when it happens, ignore the error
1150 * and wait for writeback of this range to finish - because we
1151 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1152 * to __btrfs_wait_marked_extents() would not know that
1153 * writeback for this range started and therefore wouldn't
1154 * wait for it to finish - we don't want to commit a
1155 * superblock that points to btree nodes/leafs for which
1156 * writeback hasn't finished yet (and without errors).
1157 * We cleanup any entries left in the io tree when committing
1158 * the transaction (through extent_io_tree_release()).
1159 */
1160 if (ret == -ENOMEM) {
1161 ret = 0;
1162 wait_writeback = true;
1163 }
1164 if (!ret)
1165 ret = filemap_fdatawrite_range(mapping, start, end);
1166 if (!ret && wait_writeback)
1167 btrfs_btree_wait_writeback_range(fs_info, start, end);
1168 btrfs_free_extent_state(cached_state);
1169 if (ret)
1170 break;
1171 cached_state = NULL;
1172 cond_resched();
1173 start = end + 1;
1174 }
1175 return ret;
1176 }
1177
1178 /*
1179 * when btree blocks are allocated, they have some corresponding bits set for
1180 * them in one of two extent_io trees. This is used to make sure all of
1181 * those extents are on disk for transaction or log commit. We wait
1182 * on all the pages and clear them from the dirty pages state tree
1183 */
__btrfs_wait_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages)1184 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1185 struct extent_io_tree *dirty_pages)
1186 {
1187 struct extent_state *cached_state = NULL;
1188 u64 start = 0;
1189 u64 end;
1190 int ret = 0;
1191
1192 while (btrfs_find_first_extent_bit(dirty_pages, start, &start, &end,
1193 EXTENT_NEED_WAIT, &cached_state)) {
1194 /*
1195 * Ignore -ENOMEM errors returned by clear_extent_bit().
1196 * When committing the transaction, we'll remove any entries
1197 * left in the io tree. For a log commit, we don't remove them
1198 * after committing the log because the tree can be accessed
1199 * concurrently - we do it only at transaction commit time when
1200 * it's safe to do it (through extent_io_tree_release()).
1201 */
1202 ret = btrfs_clear_extent_bit(dirty_pages, start, end,
1203 EXTENT_NEED_WAIT, &cached_state);
1204 if (ret == -ENOMEM)
1205 ret = 0;
1206 if (!ret)
1207 btrfs_btree_wait_writeback_range(fs_info, start, end);
1208 btrfs_free_extent_state(cached_state);
1209 if (ret)
1210 break;
1211 cached_state = NULL;
1212 cond_resched();
1213 start = end + 1;
1214 }
1215 return ret;
1216 }
1217
btrfs_wait_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages)1218 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1219 struct extent_io_tree *dirty_pages)
1220 {
1221 bool errors = false;
1222 int ret;
1223
1224 ret = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1225 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1226 errors = true;
1227
1228 if (errors && !ret)
1229 ret = -EIO;
1230 return ret;
1231 }
1232
btrfs_wait_tree_log_extents(struct btrfs_root * log_root,int mark)1233 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1234 {
1235 struct btrfs_fs_info *fs_info = log_root->fs_info;
1236 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1237 bool errors = false;
1238 int ret;
1239
1240 ASSERT(btrfs_root_id(log_root) == BTRFS_TREE_LOG_OBJECTID,
1241 "root_id(log_root)=%llu", btrfs_root_id(log_root));
1242
1243 ret = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1244 if ((mark & EXTENT_DIRTY_LOG1) &&
1245 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1246 errors = true;
1247
1248 if ((mark & EXTENT_DIRTY_LOG2) &&
1249 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1250 errors = true;
1251
1252 if (errors && !ret)
1253 ret = -EIO;
1254 return ret;
1255 }
1256
1257 /*
1258 * When btree blocks are allocated the corresponding extents are marked dirty.
1259 * This function ensures such extents are persisted on disk for transaction or
1260 * log commit.
1261 *
1262 * @trans: transaction whose dirty pages we'd like to write
1263 */
btrfs_write_and_wait_transaction(struct btrfs_trans_handle * trans)1264 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1265 {
1266 int ret;
1267 int ret2;
1268 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1269 struct btrfs_fs_info *fs_info = trans->fs_info;
1270 struct blk_plug plug;
1271
1272 blk_start_plug(&plug);
1273 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1274 blk_finish_plug(&plug);
1275 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1276
1277 btrfs_extent_io_tree_release(&trans->transaction->dirty_pages);
1278
1279 if (ret)
1280 return ret;
1281 else if (ret2)
1282 return ret2;
1283 else
1284 return 0;
1285 }
1286
1287 /*
1288 * this is used to update the root pointer in the tree of tree roots.
1289 *
1290 * But, in the case of the extent allocation tree, updating the root
1291 * pointer may allocate blocks which may change the root of the extent
1292 * allocation tree.
1293 *
1294 * So, this loops and repeats and makes sure the cowonly root didn't
1295 * change while the root pointer was being updated in the metadata.
1296 */
update_cowonly_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)1297 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1298 struct btrfs_root *root)
1299 {
1300 int ret;
1301 u64 old_root_bytenr;
1302 u64 old_root_used;
1303 struct btrfs_fs_info *fs_info = root->fs_info;
1304 struct btrfs_root *tree_root = fs_info->tree_root;
1305
1306 old_root_used = btrfs_root_used(&root->root_item);
1307
1308 while (1) {
1309 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1310 if (old_root_bytenr == root->node->start &&
1311 old_root_used == btrfs_root_used(&root->root_item))
1312 break;
1313
1314 btrfs_set_root_node(&root->root_item, root->node);
1315 ret = btrfs_update_root(trans, tree_root,
1316 &root->root_key,
1317 &root->root_item);
1318 if (ret)
1319 return ret;
1320
1321 old_root_used = btrfs_root_used(&root->root_item);
1322 }
1323
1324 return 0;
1325 }
1326
1327 /*
1328 * update all the cowonly tree roots on disk
1329 *
1330 * The error handling in this function may not be obvious. Any of the
1331 * failures will cause the file system to go offline. We still need
1332 * to clean up the delayed refs.
1333 */
commit_cowonly_roots(struct btrfs_trans_handle * trans)1334 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1335 {
1336 struct btrfs_fs_info *fs_info = trans->fs_info;
1337 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1338 struct list_head *io_bgs = &trans->transaction->io_bgs;
1339 struct extent_buffer *eb;
1340 int ret;
1341
1342 /*
1343 * At this point no one can be using this transaction to modify any tree
1344 * and no one can start another transaction to modify any tree either.
1345 */
1346 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING,
1347 "trans->transaction->state=%d", trans->transaction->state);
1348
1349 eb = btrfs_lock_root_node(fs_info->tree_root);
1350 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1351 0, &eb, BTRFS_NESTING_COW);
1352 btrfs_tree_unlock(eb);
1353 free_extent_buffer(eb);
1354
1355 if (ret)
1356 return ret;
1357
1358 ret = btrfs_run_dev_stats(trans);
1359 if (ret)
1360 return ret;
1361 ret = btrfs_run_dev_replace(trans);
1362 if (ret)
1363 return ret;
1364 ret = btrfs_run_qgroups(trans);
1365 if (ret)
1366 return ret;
1367
1368 ret = btrfs_setup_space_cache(trans);
1369 if (ret)
1370 return ret;
1371
1372 again:
1373 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1374 struct btrfs_root *root;
1375
1376 root = list_first_entry(&fs_info->dirty_cowonly_roots,
1377 struct btrfs_root, dirty_list);
1378 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1379 list_move_tail(&root->dirty_list,
1380 &trans->transaction->switch_commits);
1381
1382 ret = update_cowonly_root(trans, root);
1383 if (ret)
1384 return ret;
1385 }
1386
1387 /* Now flush any delayed refs generated by updating all of the roots */
1388 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1389 if (ret)
1390 return ret;
1391
1392 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1393 ret = btrfs_write_dirty_block_groups(trans);
1394 if (ret)
1395 return ret;
1396
1397 /*
1398 * We're writing the dirty block groups, which could generate
1399 * delayed refs, which could generate more dirty block groups,
1400 * so we want to keep this flushing in this loop to make sure
1401 * everything gets run.
1402 */
1403 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1404 if (ret)
1405 return ret;
1406 }
1407
1408 if (!list_empty(&fs_info->dirty_cowonly_roots))
1409 goto again;
1410
1411 /* Update dev-replace pointer once everything is committed */
1412 fs_info->dev_replace.committed_cursor_left =
1413 fs_info->dev_replace.cursor_left_last_write_of_item;
1414
1415 return 0;
1416 }
1417
1418 /*
1419 * If we had a pending drop we need to see if there are any others left in our
1420 * dead roots list, and if not clear our bit and wake any waiters.
1421 */
btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info * fs_info)1422 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1423 {
1424 /*
1425 * We put the drop in progress roots at the front of the list, so if the
1426 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1427 * up.
1428 */
1429 spin_lock(&fs_info->trans_lock);
1430 if (!list_empty(&fs_info->dead_roots)) {
1431 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1432 struct btrfs_root,
1433 root_list);
1434 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1435 spin_unlock(&fs_info->trans_lock);
1436 return;
1437 }
1438 }
1439 spin_unlock(&fs_info->trans_lock);
1440
1441 btrfs_wake_unfinished_drop(fs_info);
1442 }
1443
1444 /*
1445 * dead roots are old snapshots that need to be deleted. This allocates
1446 * a dirty root struct and adds it into the list of dead roots that need to
1447 * be deleted
1448 */
btrfs_add_dead_root(struct btrfs_root * root)1449 void btrfs_add_dead_root(struct btrfs_root *root)
1450 {
1451 struct btrfs_fs_info *fs_info = root->fs_info;
1452
1453 spin_lock(&fs_info->trans_lock);
1454 if (list_empty(&root->root_list)) {
1455 btrfs_grab_root(root);
1456
1457 /* We want to process the partially complete drops first. */
1458 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1459 list_add(&root->root_list, &fs_info->dead_roots);
1460 else
1461 list_add_tail(&root->root_list, &fs_info->dead_roots);
1462 }
1463 spin_unlock(&fs_info->trans_lock);
1464 }
1465
1466 /*
1467 * Update each subvolume root and its relocation root, if it exists, in the tree
1468 * of tree roots. Also free log roots if they exist.
1469 */
commit_fs_roots(struct btrfs_trans_handle * trans)1470 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1471 {
1472 struct btrfs_fs_info *fs_info = trans->fs_info;
1473 struct btrfs_root *gang[8];
1474 int i;
1475 int ret;
1476
1477 /*
1478 * At this point no one can be using this transaction to modify any tree
1479 * and no one can start another transaction to modify any tree either.
1480 */
1481 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING,
1482 "trans->transaction->state=%d", trans->transaction->state);
1483
1484 spin_lock(&fs_info->fs_roots_radix_lock);
1485 while (1) {
1486 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1487 (void **)gang, 0,
1488 ARRAY_SIZE(gang),
1489 BTRFS_ROOT_TRANS_TAG);
1490 if (ret == 0)
1491 break;
1492 for (i = 0; i < ret; i++) {
1493 struct btrfs_root *root = gang[i];
1494 int ret2;
1495
1496 /*
1497 * At this point we can neither have tasks logging inodes
1498 * from a root nor trying to commit a log tree.
1499 */
1500 ASSERT(atomic_read(&root->log_writers) == 0,
1501 "atomic_read(&root->log_writers)=%d",
1502 atomic_read(&root->log_writers));
1503 ASSERT(atomic_read(&root->log_commit[0]) == 0,
1504 "atomic_read(&root->log_commit[0])=%d",
1505 atomic_read(&root->log_commit[0]));
1506 ASSERT(atomic_read(&root->log_commit[1]) == 0,
1507 "atomic_read(&root->log_commit[1])=%d",
1508 atomic_read(&root->log_commit[1]));
1509
1510 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1511 (unsigned long)btrfs_root_id(root),
1512 BTRFS_ROOT_TRANS_TAG);
1513 btrfs_qgroup_free_meta_all_pertrans(root);
1514 spin_unlock(&fs_info->fs_roots_radix_lock);
1515
1516 btrfs_free_log(trans, root);
1517 ret2 = btrfs_update_reloc_root(trans, root);
1518 if (ret2)
1519 return ret2;
1520
1521 /* see comments in should_cow_block() */
1522 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1523 smp_mb__after_atomic();
1524
1525 if (root->commit_root != root->node) {
1526 list_add_tail(&root->dirty_list,
1527 &trans->transaction->switch_commits);
1528 btrfs_set_root_node(&root->root_item,
1529 root->node);
1530 }
1531
1532 ret2 = btrfs_update_root(trans, fs_info->tree_root,
1533 &root->root_key,
1534 &root->root_item);
1535 if (ret2)
1536 return ret2;
1537 spin_lock(&fs_info->fs_roots_radix_lock);
1538 }
1539 }
1540 spin_unlock(&fs_info->fs_roots_radix_lock);
1541 return 0;
1542 }
1543
1544 /*
1545 * Do all special snapshot related qgroup dirty hack.
1546 *
1547 * Will do all needed qgroup inherit and dirty hack like switch commit
1548 * roots inside one transaction and write all btree into disk, to make
1549 * qgroup works.
1550 */
qgroup_account_snapshot(struct btrfs_trans_handle * trans,struct btrfs_root * src,struct btrfs_root * parent,struct btrfs_qgroup_inherit * inherit,u64 dst_objectid)1551 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1552 struct btrfs_root *src,
1553 struct btrfs_root *parent,
1554 struct btrfs_qgroup_inherit *inherit,
1555 u64 dst_objectid)
1556 {
1557 struct btrfs_fs_info *fs_info = src->fs_info;
1558 int ret;
1559
1560 /*
1561 * Save some performance in the case that qgroups are not enabled. If
1562 * this check races with the ioctl, rescan will kick in anyway.
1563 */
1564 if (!btrfs_qgroup_full_accounting(fs_info))
1565 return 0;
1566
1567 /*
1568 * Ensure dirty @src will be committed. Or, after coming
1569 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1570 * recorded root will never be updated again, causing an outdated root
1571 * item.
1572 */
1573 ret = record_root_in_trans(trans, src, 1);
1574 if (ret)
1575 return ret;
1576
1577 /*
1578 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1579 * src root, so we must run the delayed refs here.
1580 *
1581 * However this isn't particularly fool proof, because there's no
1582 * synchronization keeping us from changing the tree after this point
1583 * before we do the qgroup_inherit, or even from making changes while
1584 * we're doing the qgroup_inherit. But that's a problem for the future,
1585 * for now flush the delayed refs to narrow the race window where the
1586 * qgroup counters could end up wrong.
1587 */
1588 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1589 if (unlikely(ret)) {
1590 btrfs_abort_transaction(trans, ret);
1591 return ret;
1592 }
1593
1594 ret = commit_fs_roots(trans);
1595 if (ret)
1596 goto out;
1597 ret = btrfs_qgroup_account_extents(trans);
1598 if (ret < 0)
1599 goto out;
1600
1601 /* Now qgroup are all updated, we can inherit it to new qgroups */
1602 ret = btrfs_qgroup_inherit(trans, btrfs_root_id(src), dst_objectid,
1603 btrfs_root_id(parent), inherit);
1604 if (ret < 0)
1605 goto out;
1606
1607 /*
1608 * Now we do a simplified commit transaction, which will:
1609 * 1) commit all subvolume and extent tree
1610 * To ensure all subvolume and extent tree have a valid
1611 * commit_root to accounting later insert_dir_item()
1612 * 2) write all btree blocks onto disk
1613 * This is to make sure later btree modification will be cowed
1614 * Or commit_root can be populated and cause wrong qgroup numbers
1615 * In this simplified commit, we don't really care about other trees
1616 * like chunk and root tree, as they won't affect qgroup.
1617 * And we don't write super to avoid half committed status.
1618 */
1619 ret = commit_cowonly_roots(trans);
1620 if (ret)
1621 goto out;
1622 switch_commit_roots(trans);
1623 ret = btrfs_write_and_wait_transaction(trans);
1624 if (ret)
1625 btrfs_handle_fs_error(fs_info, ret,
1626 "Error while writing out transaction for qgroup");
1627
1628 out:
1629 /*
1630 * Force parent root to be updated, as we recorded it before so its
1631 * last_trans == cur_transid.
1632 * Or it won't be committed again onto disk after later
1633 * insert_dir_item()
1634 */
1635 if (!ret)
1636 ret = record_root_in_trans(trans, parent, 1);
1637 return ret;
1638 }
1639
1640 /*
1641 * new snapshots need to be created at a very specific time in the
1642 * transaction commit. This does the actual creation.
1643 *
1644 * Note:
1645 * If the error which may affect the commitment of the current transaction
1646 * happens, we should return the error number. If the error which just affect
1647 * the creation of the pending snapshots, just return 0.
1648 */
create_pending_snapshot(struct btrfs_trans_handle * trans,struct btrfs_pending_snapshot * pending)1649 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1650 struct btrfs_pending_snapshot *pending)
1651 {
1652
1653 struct btrfs_fs_info *fs_info = trans->fs_info;
1654 struct btrfs_key key;
1655 struct btrfs_root_item *new_root_item;
1656 struct btrfs_root *tree_root = fs_info->tree_root;
1657 struct btrfs_root *root = pending->root;
1658 struct btrfs_root *parent_root;
1659 struct btrfs_block_rsv *rsv;
1660 struct btrfs_inode *parent_inode = pending->dir;
1661 BTRFS_PATH_AUTO_FREE(path);
1662 struct btrfs_dir_item *dir_item;
1663 struct extent_buffer *tmp;
1664 struct extent_buffer *old;
1665 struct timespec64 cur_time;
1666 int ret = 0;
1667 u64 to_reserve = 0;
1668 u64 index = 0;
1669 u64 objectid;
1670 u64 root_flags;
1671 unsigned int nofs_flags;
1672 struct fscrypt_name fname;
1673
1674 ASSERT(pending->path);
1675 path = pending->path;
1676
1677 ASSERT(pending->root_item);
1678 new_root_item = pending->root_item;
1679
1680 /*
1681 * We're inside a transaction and must make sure that any potential
1682 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1683 * filesystem.
1684 */
1685 nofs_flags = memalloc_nofs_save();
1686 pending->error = fscrypt_setup_filename(&parent_inode->vfs_inode,
1687 &pending->dentry->d_name, 0,
1688 &fname);
1689 memalloc_nofs_restore(nofs_flags);
1690 if (pending->error)
1691 goto free_pending;
1692
1693 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1694 if (pending->error)
1695 goto free_fname;
1696
1697 /*
1698 * Make qgroup to skip current new snapshot's qgroupid, as it is
1699 * accounted by later btrfs_qgroup_inherit().
1700 */
1701 btrfs_set_skip_qgroup(trans, objectid);
1702
1703 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1704
1705 if (to_reserve > 0) {
1706 pending->error = btrfs_block_rsv_add(fs_info,
1707 &pending->block_rsv,
1708 to_reserve,
1709 BTRFS_RESERVE_NO_FLUSH);
1710 if (pending->error)
1711 goto clear_skip_qgroup;
1712 }
1713
1714 rsv = trans->block_rsv;
1715 trans->block_rsv = &pending->block_rsv;
1716 trans->bytes_reserved = trans->block_rsv->reserved;
1717 trace_btrfs_space_reservation(fs_info, "transaction",
1718 trans->transid,
1719 trans->bytes_reserved, 1);
1720 parent_root = parent_inode->root;
1721 ret = record_root_in_trans(trans, parent_root, 0);
1722 if (ret)
1723 goto fail;
1724 cur_time = current_time(&parent_inode->vfs_inode);
1725
1726 /*
1727 * insert the directory item
1728 */
1729 ret = btrfs_set_inode_index(parent_inode, &index);
1730 if (unlikely(ret)) {
1731 btrfs_abort_transaction(trans, ret);
1732 goto fail;
1733 }
1734
1735 /* check if there is a file/dir which has the same name. */
1736 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1737 btrfs_ino(parent_inode),
1738 &fname.disk_name, 0);
1739 if (dir_item != NULL && !IS_ERR(dir_item)) {
1740 pending->error = -EEXIST;
1741 goto dir_item_existed;
1742 } else if (IS_ERR(dir_item)) {
1743 ret = PTR_ERR(dir_item);
1744 btrfs_abort_transaction(trans, ret);
1745 goto fail;
1746 }
1747 btrfs_release_path(path);
1748
1749 ret = btrfs_create_qgroup(trans, objectid);
1750 if (ret && ret != -EEXIST) {
1751 if (unlikely(ret != -ENOTCONN || btrfs_qgroup_enabled(fs_info))) {
1752 btrfs_abort_transaction(trans, ret);
1753 goto fail;
1754 }
1755 }
1756
1757 /*
1758 * pull in the delayed directory update
1759 * and the delayed inode item
1760 * otherwise we corrupt the FS during
1761 * snapshot
1762 */
1763 ret = btrfs_run_delayed_items(trans);
1764 if (unlikely(ret)) {
1765 btrfs_abort_transaction(trans, ret);
1766 goto fail;
1767 }
1768
1769 ret = record_root_in_trans(trans, root, 0);
1770 if (unlikely(ret)) {
1771 btrfs_abort_transaction(trans, ret);
1772 goto fail;
1773 }
1774 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1775 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1776 btrfs_check_and_init_root_item(new_root_item);
1777
1778 root_flags = btrfs_root_flags(new_root_item);
1779 if (pending->readonly)
1780 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1781 else
1782 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1783 btrfs_set_root_flags(new_root_item, root_flags);
1784
1785 btrfs_set_root_generation_v2(new_root_item,
1786 trans->transid);
1787 generate_random_guid(new_root_item->uuid);
1788 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1789 BTRFS_UUID_SIZE);
1790 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1791 memset(new_root_item->received_uuid, 0,
1792 sizeof(new_root_item->received_uuid));
1793 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1794 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1795 btrfs_set_root_stransid(new_root_item, 0);
1796 btrfs_set_root_rtransid(new_root_item, 0);
1797 }
1798 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1799 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1800 btrfs_set_root_otransid(new_root_item, trans->transid);
1801
1802 old = btrfs_lock_root_node(root);
1803 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1804 BTRFS_NESTING_COW);
1805 if (unlikely(ret)) {
1806 btrfs_tree_unlock(old);
1807 free_extent_buffer(old);
1808 btrfs_abort_transaction(trans, ret);
1809 goto fail;
1810 }
1811
1812 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1813 /* clean up in any case */
1814 btrfs_tree_unlock(old);
1815 free_extent_buffer(old);
1816 if (unlikely(ret)) {
1817 btrfs_abort_transaction(trans, ret);
1818 goto fail;
1819 }
1820 /* see comments in should_cow_block() */
1821 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1822 smp_mb__after_atomic();
1823
1824 btrfs_set_root_node(new_root_item, tmp);
1825 /* record when the snapshot was created in key.offset */
1826 key.objectid = objectid;
1827 key.type = BTRFS_ROOT_ITEM_KEY;
1828 key.offset = trans->transid;
1829 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1830 btrfs_tree_unlock(tmp);
1831 free_extent_buffer(tmp);
1832 if (unlikely(ret)) {
1833 btrfs_abort_transaction(trans, ret);
1834 goto fail;
1835 }
1836
1837 /*
1838 * insert root back/forward references
1839 */
1840 ret = btrfs_add_root_ref(trans, objectid,
1841 btrfs_root_id(parent_root),
1842 btrfs_ino(parent_inode), index,
1843 &fname.disk_name);
1844 if (unlikely(ret)) {
1845 btrfs_abort_transaction(trans, ret);
1846 goto fail;
1847 }
1848
1849 key.offset = (u64)-1;
1850 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, &pending->anon_dev);
1851 if (IS_ERR(pending->snap)) {
1852 ret = PTR_ERR(pending->snap);
1853 pending->snap = NULL;
1854 btrfs_abort_transaction(trans, ret);
1855 goto fail;
1856 }
1857
1858 ret = btrfs_reloc_post_snapshot(trans, pending);
1859 if (unlikely(ret)) {
1860 btrfs_abort_transaction(trans, ret);
1861 goto fail;
1862 }
1863
1864 /*
1865 * Do special qgroup accounting for snapshot, as we do some qgroup
1866 * snapshot hack to do fast snapshot.
1867 * To co-operate with that hack, we do hack again.
1868 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1869 */
1870 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL)
1871 ret = qgroup_account_snapshot(trans, root, parent_root,
1872 pending->inherit, objectid);
1873 else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE)
1874 ret = btrfs_qgroup_inherit(trans, btrfs_root_id(root), objectid,
1875 btrfs_root_id(parent_root), pending->inherit);
1876 if (ret < 0)
1877 goto fail;
1878
1879 ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1880 parent_inode, &key, BTRFS_FT_DIR,
1881 index);
1882 if (unlikely(ret)) {
1883 btrfs_abort_transaction(trans, ret);
1884 goto fail;
1885 }
1886
1887 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
1888 fname.disk_name.len * 2);
1889 inode_set_mtime_to_ts(&parent_inode->vfs_inode,
1890 inode_set_ctime_current(&parent_inode->vfs_inode));
1891 ret = btrfs_update_inode_fallback(trans, parent_inode);
1892 if (unlikely(ret)) {
1893 btrfs_abort_transaction(trans, ret);
1894 goto fail;
1895 }
1896 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1897 BTRFS_UUID_KEY_SUBVOL,
1898 objectid);
1899 if (unlikely(ret)) {
1900 btrfs_abort_transaction(trans, ret);
1901 goto fail;
1902 }
1903 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1904 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1905 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1906 objectid);
1907 if (unlikely(ret && ret != -EEXIST)) {
1908 btrfs_abort_transaction(trans, ret);
1909 goto fail;
1910 }
1911 }
1912
1913 fail:
1914 pending->error = ret;
1915 dir_item_existed:
1916 trans->block_rsv = rsv;
1917 trans->bytes_reserved = 0;
1918 clear_skip_qgroup:
1919 btrfs_clear_skip_qgroup(trans);
1920 free_fname:
1921 fscrypt_free_filename(&fname);
1922 free_pending:
1923 kfree(new_root_item);
1924 pending->root_item = NULL;
1925 pending->path = NULL;
1926
1927 return ret;
1928 }
1929
1930 /*
1931 * create all the snapshots we've scheduled for creation
1932 */
create_pending_snapshots(struct btrfs_trans_handle * trans)1933 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1934 {
1935 struct btrfs_pending_snapshot *pending, *next;
1936 struct list_head *head = &trans->transaction->pending_snapshots;
1937 int ret = 0;
1938
1939 list_for_each_entry_safe(pending, next, head, list) {
1940 list_del(&pending->list);
1941 ret = create_pending_snapshot(trans, pending);
1942 if (ret)
1943 break;
1944 }
1945 return ret;
1946 }
1947
update_super_roots(struct btrfs_fs_info * fs_info)1948 static void update_super_roots(struct btrfs_fs_info *fs_info)
1949 {
1950 struct btrfs_root_item *root_item;
1951 struct btrfs_super_block *super;
1952
1953 super = fs_info->super_copy;
1954
1955 root_item = &fs_info->chunk_root->root_item;
1956 super->chunk_root = root_item->bytenr;
1957 super->chunk_root_generation = root_item->generation;
1958 super->chunk_root_level = root_item->level;
1959
1960 root_item = &fs_info->tree_root->root_item;
1961 super->root = root_item->bytenr;
1962 super->generation = root_item->generation;
1963 super->root_level = root_item->level;
1964 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1965 super->cache_generation = root_item->generation;
1966 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1967 super->cache_generation = 0;
1968 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1969 super->uuid_tree_generation = root_item->generation;
1970 }
1971
btrfs_transaction_blocked(struct btrfs_fs_info * info)1972 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1973 {
1974 struct btrfs_transaction *trans;
1975 int ret = 0;
1976
1977 spin_lock(&info->trans_lock);
1978 trans = info->running_transaction;
1979 if (trans)
1980 ret = is_transaction_blocked(trans);
1981 spin_unlock(&info->trans_lock);
1982 return ret;
1983 }
1984
btrfs_commit_transaction_async(struct btrfs_trans_handle * trans)1985 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1986 {
1987 struct btrfs_fs_info *fs_info = trans->fs_info;
1988 struct btrfs_transaction *cur_trans;
1989
1990 /* Kick the transaction kthread. */
1991 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1992 wake_up_process(fs_info->transaction_kthread);
1993
1994 /* take transaction reference */
1995 cur_trans = trans->transaction;
1996 refcount_inc(&cur_trans->use_count);
1997
1998 btrfs_end_transaction(trans);
1999
2000 /*
2001 * Wait for the current transaction commit to start and block
2002 * subsequent transaction joins
2003 */
2004 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2005 wait_event(fs_info->transaction_blocked_wait,
2006 cur_trans->state >= TRANS_STATE_COMMIT_START ||
2007 TRANS_ABORTED(cur_trans));
2008 btrfs_put_transaction(cur_trans);
2009 }
2010
2011 /*
2012 * If there is a running transaction commit it or if it's already committing,
2013 * wait for its commit to complete. Does not start and commit a new transaction
2014 * if there isn't any running.
2015 */
btrfs_commit_current_transaction(struct btrfs_root * root)2016 int btrfs_commit_current_transaction(struct btrfs_root *root)
2017 {
2018 struct btrfs_trans_handle *trans;
2019
2020 trans = btrfs_attach_transaction_barrier(root);
2021 if (IS_ERR(trans)) {
2022 int ret = PTR_ERR(trans);
2023
2024 return (ret == -ENOENT) ? 0 : ret;
2025 }
2026
2027 return btrfs_commit_transaction(trans);
2028 }
2029
cleanup_transaction(struct btrfs_trans_handle * trans,int err)2030 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
2031 {
2032 struct btrfs_fs_info *fs_info = trans->fs_info;
2033 struct btrfs_transaction *cur_trans = trans->transaction;
2034
2035 WARN_ON(refcount_read(&trans->use_count) > 1);
2036
2037 btrfs_abort_transaction(trans, err);
2038
2039 spin_lock(&fs_info->trans_lock);
2040
2041 /*
2042 * If the transaction is removed from the list, it means this
2043 * transaction has been committed successfully, so it is impossible
2044 * to call the cleanup function.
2045 */
2046 BUG_ON(list_empty(&cur_trans->list));
2047
2048 if (cur_trans == fs_info->running_transaction) {
2049 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2050 spin_unlock(&fs_info->trans_lock);
2051
2052 /*
2053 * The thread has already released the lockdep map as reader
2054 * already in btrfs_commit_transaction().
2055 */
2056 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2057 wait_event(cur_trans->writer_wait,
2058 atomic_read(&cur_trans->num_writers) == 1);
2059
2060 spin_lock(&fs_info->trans_lock);
2061 }
2062
2063 /*
2064 * Now that we know no one else is still using the transaction we can
2065 * remove the transaction from the list of transactions. This avoids
2066 * the transaction kthread from cleaning up the transaction while some
2067 * other task is still using it, which could result in a use-after-free
2068 * on things like log trees, as it forces the transaction kthread to
2069 * wait for this transaction to be cleaned up by us.
2070 */
2071 list_del_init(&cur_trans->list);
2072
2073 spin_unlock(&fs_info->trans_lock);
2074
2075 btrfs_cleanup_one_transaction(trans->transaction);
2076
2077 spin_lock(&fs_info->trans_lock);
2078 if (cur_trans == fs_info->running_transaction)
2079 fs_info->running_transaction = NULL;
2080 spin_unlock(&fs_info->trans_lock);
2081
2082 if (trans->type & __TRANS_FREEZABLE)
2083 sb_end_intwrite(fs_info->sb);
2084 btrfs_put_transaction(cur_trans);
2085 btrfs_put_transaction(cur_trans);
2086
2087 trace_btrfs_transaction_commit(fs_info);
2088
2089 if (current->journal_info == trans)
2090 current->journal_info = NULL;
2091
2092 /*
2093 * If relocation is running, we can't cancel scrub because that will
2094 * result in a deadlock. Before relocating a block group, relocation
2095 * pauses scrub, then starts and commits a transaction before unpausing
2096 * scrub. If the transaction commit is being done by the relocation
2097 * task or triggered by another task and the relocation task is waiting
2098 * for the commit, and we end up here due to an error in the commit
2099 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2100 * asking for scrub to stop while having it asked to be paused higher
2101 * above in relocation code.
2102 */
2103 if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2104 btrfs_scrub_cancel(fs_info);
2105
2106 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2107 }
2108
2109 /*
2110 * Release reserved delayed ref space of all pending block groups of the
2111 * transaction and remove them from the list
2112 */
btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle * trans)2113 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2114 {
2115 struct btrfs_fs_info *fs_info = trans->fs_info;
2116 struct btrfs_block_group *block_group, *tmp;
2117
2118 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2119 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2120 /*
2121 * Not strictly necessary to lock, as no other task will be using a
2122 * block_group on the new_bgs list during a transaction abort.
2123 */
2124 spin_lock(&fs_info->unused_bgs_lock);
2125 list_del_init(&block_group->bg_list);
2126 btrfs_put_block_group(block_group);
2127 spin_unlock(&fs_info->unused_bgs_lock);
2128 }
2129 }
2130
btrfs_start_delalloc_flush(struct btrfs_fs_info * fs_info)2131 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2132 {
2133 /*
2134 * We use try_to_writeback_inodes_sb() here because if we used
2135 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2136 * Currently are holding the fs freeze lock, if we do an async flush
2137 * we'll do btrfs_join_transaction() and deadlock because we need to
2138 * wait for the fs freeze lock. Using the direct flushing we benefit
2139 * from already being in a transaction and our join_transaction doesn't
2140 * have to re-take the fs freeze lock.
2141 *
2142 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2143 * if it can read lock sb->s_umount. It will always be able to lock it,
2144 * except when the filesystem is being unmounted or being frozen, but in
2145 * those cases sync_filesystem() is called, which results in calling
2146 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2147 * Note that we don't call writeback_inodes_sb() directly, because it
2148 * will emit a warning if sb->s_umount is not locked.
2149 */
2150 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2151 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2152 return 0;
2153 }
2154
btrfs_wait_delalloc_flush(struct btrfs_fs_info * fs_info)2155 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2156 {
2157 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2158 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
2159 }
2160
2161 /*
2162 * Add a pending snapshot associated with the given transaction handle to the
2163 * respective handle. This must be called after the transaction commit started
2164 * and while holding fs_info->trans_lock.
2165 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2166 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2167 * returns an error.
2168 */
add_pending_snapshot(struct btrfs_trans_handle * trans)2169 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2170 {
2171 struct btrfs_transaction *cur_trans = trans->transaction;
2172
2173 if (!trans->pending_snapshot)
2174 return;
2175
2176 lockdep_assert_held(&trans->fs_info->trans_lock);
2177 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP,
2178 "cur_trans->state=%d", cur_trans->state);
2179
2180 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2181 }
2182
update_commit_stats(struct btrfs_fs_info * fs_info)2183 static void update_commit_stats(struct btrfs_fs_info *fs_info)
2184 {
2185 ktime_t now = ktime_get_ns();
2186 ktime_t interval = now - fs_info->commit_stats.critical_section_start_time;
2187
2188 ASSERT(fs_info->commit_stats.critical_section_start_time);
2189
2190 fs_info->commit_stats.commit_count++;
2191 fs_info->commit_stats.last_commit_dur = interval;
2192 fs_info->commit_stats.max_commit_dur =
2193 max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2194 fs_info->commit_stats.total_commit_dur += interval;
2195 fs_info->commit_stats.critical_section_start_time = 0;
2196 }
2197
btrfs_commit_transaction(struct btrfs_trans_handle * trans)2198 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2199 {
2200 struct btrfs_fs_info *fs_info = trans->fs_info;
2201 struct btrfs_transaction *cur_trans = trans->transaction;
2202 struct btrfs_transaction *prev_trans = NULL;
2203 int ret;
2204
2205 ASSERT(refcount_read(&trans->use_count) == 1,
2206 "refcount_read(&trans->use_count)=%d", refcount_read(&trans->use_count));
2207 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2208
2209 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2210
2211 /* Stop the commit early if ->aborted is set */
2212 if (TRANS_ABORTED(cur_trans)) {
2213 ret = cur_trans->aborted;
2214 goto lockdep_trans_commit_start_release;
2215 }
2216
2217 btrfs_trans_release_metadata(trans);
2218 trans->block_rsv = NULL;
2219
2220 /*
2221 * We only want one transaction commit doing the flushing so we do not
2222 * waste a bunch of time on lock contention on the extent root node.
2223 */
2224 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2225 &cur_trans->delayed_refs.flags)) {
2226 /*
2227 * Make a pass through all the delayed refs we have so far.
2228 * Any running threads may add more while we are here.
2229 */
2230 ret = btrfs_run_delayed_refs(trans, 0);
2231 if (ret)
2232 goto lockdep_trans_commit_start_release;
2233 }
2234
2235 btrfs_create_pending_block_groups(trans);
2236
2237 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2238 int run_it = 0;
2239
2240 /* this mutex is also taken before trying to set
2241 * block groups readonly. We need to make sure
2242 * that nobody has set a block group readonly
2243 * after a extents from that block group have been
2244 * allocated for cache files. btrfs_set_block_group_ro
2245 * will wait for the transaction to commit if it
2246 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2247 *
2248 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2249 * only one process starts all the block group IO. It wouldn't
2250 * hurt to have more than one go through, but there's no
2251 * real advantage to it either.
2252 */
2253 mutex_lock(&fs_info->ro_block_group_mutex);
2254 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2255 &cur_trans->flags))
2256 run_it = 1;
2257 mutex_unlock(&fs_info->ro_block_group_mutex);
2258
2259 if (run_it) {
2260 ret = btrfs_start_dirty_block_groups(trans);
2261 if (ret)
2262 goto lockdep_trans_commit_start_release;
2263 }
2264 }
2265
2266 spin_lock(&fs_info->trans_lock);
2267 if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
2268 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2269
2270 add_pending_snapshot(trans);
2271
2272 spin_unlock(&fs_info->trans_lock);
2273 refcount_inc(&cur_trans->use_count);
2274
2275 if (trans->in_fsync)
2276 want_state = TRANS_STATE_SUPER_COMMITTED;
2277
2278 btrfs_trans_state_lockdep_release(fs_info,
2279 BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2280 ret = btrfs_end_transaction(trans);
2281 wait_for_commit(cur_trans, want_state);
2282
2283 if (TRANS_ABORTED(cur_trans))
2284 ret = cur_trans->aborted;
2285
2286 btrfs_put_transaction(cur_trans);
2287
2288 return ret;
2289 }
2290
2291 cur_trans->state = TRANS_STATE_COMMIT_PREP;
2292 wake_up(&fs_info->transaction_blocked_wait);
2293 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2294
2295 if (!list_is_first(&cur_trans->list, &fs_info->trans_list)) {
2296 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2297
2298 if (trans->in_fsync)
2299 want_state = TRANS_STATE_SUPER_COMMITTED;
2300
2301 prev_trans = list_prev_entry(cur_trans, list);
2302 if (prev_trans->state < want_state) {
2303 refcount_inc(&prev_trans->use_count);
2304 spin_unlock(&fs_info->trans_lock);
2305
2306 wait_for_commit(prev_trans, want_state);
2307
2308 ret = READ_ONCE(prev_trans->aborted);
2309
2310 btrfs_put_transaction(prev_trans);
2311 if (ret)
2312 goto lockdep_release;
2313 spin_lock(&fs_info->trans_lock);
2314 }
2315 } else {
2316 /*
2317 * The previous transaction was aborted and was already removed
2318 * from the list of transactions at fs_info->trans_list. So we
2319 * abort to prevent writing a new superblock that reflects a
2320 * corrupt state (pointing to trees with unwritten nodes/leafs).
2321 */
2322 if (BTRFS_FS_ERROR(fs_info)) {
2323 spin_unlock(&fs_info->trans_lock);
2324 ret = -EROFS;
2325 goto lockdep_release;
2326 }
2327 }
2328
2329 cur_trans->state = TRANS_STATE_COMMIT_START;
2330 wake_up(&fs_info->transaction_blocked_wait);
2331 spin_unlock(&fs_info->trans_lock);
2332
2333 /*
2334 * Get the time spent on the work done by the commit thread and not
2335 * the time spent waiting on a previous commit
2336 */
2337 fs_info->commit_stats.critical_section_start_time = ktime_get_ns();
2338 extwriter_counter_dec(cur_trans, trans->type);
2339
2340 ret = btrfs_start_delalloc_flush(fs_info);
2341 if (ret)
2342 goto lockdep_release;
2343
2344 ret = btrfs_run_delayed_items(trans);
2345 if (ret)
2346 goto lockdep_release;
2347
2348 /*
2349 * The thread has started/joined the transaction thus it holds the
2350 * lockdep map as a reader. It has to release it before acquiring the
2351 * lockdep map as a writer.
2352 */
2353 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2354 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2355 wait_event(cur_trans->writer_wait,
2356 extwriter_counter_read(cur_trans) == 0);
2357
2358 /* some pending stuffs might be added after the previous flush. */
2359 ret = btrfs_run_delayed_items(trans);
2360 if (ret) {
2361 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2362 goto cleanup_transaction;
2363 }
2364
2365 btrfs_wait_delalloc_flush(fs_info);
2366
2367 /*
2368 * Wait for all ordered extents started by a fast fsync that joined this
2369 * transaction. Otherwise if this transaction commits before the ordered
2370 * extents complete we lose logged data after a power failure.
2371 */
2372 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2373 wait_event(cur_trans->pending_wait,
2374 atomic_read(&cur_trans->pending_ordered) == 0);
2375
2376 btrfs_scrub_pause(fs_info);
2377 /*
2378 * Ok now we need to make sure to block out any other joins while we
2379 * commit the transaction. We could have started a join before setting
2380 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2381 */
2382 spin_lock(&fs_info->trans_lock);
2383 add_pending_snapshot(trans);
2384 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2385 spin_unlock(&fs_info->trans_lock);
2386
2387 /*
2388 * The thread has started/joined the transaction thus it holds the
2389 * lockdep map as a reader. It has to release it before acquiring the
2390 * lockdep map as a writer.
2391 */
2392 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2393 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2394 wait_event(cur_trans->writer_wait,
2395 atomic_read(&cur_trans->num_writers) == 1);
2396
2397 /*
2398 * Make lockdep happy by acquiring the state locks after
2399 * btrfs_trans_num_writers is released. If we acquired the state locks
2400 * before releasing the btrfs_trans_num_writers lock then lockdep would
2401 * complain because we did not follow the reverse order unlocking rule.
2402 */
2403 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2404 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2405 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2406
2407 /*
2408 * We've started the commit, clear the flag in case we were triggered to
2409 * do an async commit but somebody else started before the transaction
2410 * kthread could do the work.
2411 */
2412 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2413
2414 if (TRANS_ABORTED(cur_trans)) {
2415 ret = cur_trans->aborted;
2416 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2417 goto scrub_continue;
2418 }
2419 /*
2420 * the reloc mutex makes sure that we stop
2421 * the balancing code from coming in and moving
2422 * extents around in the middle of the commit
2423 */
2424 mutex_lock(&fs_info->reloc_mutex);
2425
2426 /*
2427 * We needn't worry about the delayed items because we will
2428 * deal with them in create_pending_snapshot(), which is the
2429 * core function of the snapshot creation.
2430 */
2431 ret = create_pending_snapshots(trans);
2432 if (ret)
2433 goto unlock_reloc;
2434
2435 /*
2436 * We insert the dir indexes of the snapshots and update the inode
2437 * of the snapshots' parents after the snapshot creation, so there
2438 * are some delayed items which are not dealt with. Now deal with
2439 * them.
2440 *
2441 * We needn't worry that this operation will corrupt the snapshots,
2442 * because all the tree which are snapshotted will be forced to COW
2443 * the nodes and leaves.
2444 */
2445 ret = btrfs_run_delayed_items(trans);
2446 if (ret)
2447 goto unlock_reloc;
2448
2449 ret = btrfs_run_delayed_refs(trans, U64_MAX);
2450 if (ret)
2451 goto unlock_reloc;
2452
2453 /*
2454 * make sure none of the code above managed to slip in a
2455 * delayed item
2456 */
2457 btrfs_assert_delayed_root_empty(fs_info);
2458
2459 WARN_ON(cur_trans != trans->transaction);
2460
2461 ret = commit_fs_roots(trans);
2462 if (ret)
2463 goto unlock_reloc;
2464
2465 /* commit_fs_roots gets rid of all the tree log roots, it is now
2466 * safe to free the root of tree log roots
2467 */
2468 btrfs_free_log_root_tree(trans, fs_info);
2469
2470 /*
2471 * Since fs roots are all committed, we can get a quite accurate
2472 * new_roots. So let's do quota accounting.
2473 */
2474 ret = btrfs_qgroup_account_extents(trans);
2475 if (ret < 0)
2476 goto unlock_reloc;
2477
2478 ret = commit_cowonly_roots(trans);
2479 if (ret)
2480 goto unlock_reloc;
2481
2482 /*
2483 * The tasks which save the space cache and inode cache may also
2484 * update ->aborted, check it.
2485 */
2486 if (TRANS_ABORTED(cur_trans)) {
2487 ret = cur_trans->aborted;
2488 goto unlock_reloc;
2489 }
2490
2491 cur_trans = fs_info->running_transaction;
2492
2493 btrfs_set_root_node(&fs_info->tree_root->root_item,
2494 fs_info->tree_root->node);
2495 list_add_tail(&fs_info->tree_root->dirty_list,
2496 &cur_trans->switch_commits);
2497
2498 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2499 fs_info->chunk_root->node);
2500 list_add_tail(&fs_info->chunk_root->dirty_list,
2501 &cur_trans->switch_commits);
2502
2503 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2504 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2505 fs_info->block_group_root->node);
2506 list_add_tail(&fs_info->block_group_root->dirty_list,
2507 &cur_trans->switch_commits);
2508 }
2509
2510 switch_commit_roots(trans);
2511
2512 ASSERT(list_empty(&cur_trans->dirty_bgs));
2513 ASSERT(list_empty(&cur_trans->io_bgs));
2514 update_super_roots(fs_info);
2515
2516 btrfs_set_super_log_root(fs_info->super_copy, 0);
2517 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2518 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2519 sizeof(*fs_info->super_copy));
2520
2521 btrfs_commit_device_sizes(cur_trans);
2522
2523 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2524 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2525
2526 btrfs_trans_release_chunk_metadata(trans);
2527
2528 /*
2529 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2530 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2531 * make sure that before we commit our superblock, no other task can
2532 * start a new transaction and commit a log tree before we commit our
2533 * superblock. Anyone trying to commit a log tree locks this mutex before
2534 * writing its superblock.
2535 */
2536 mutex_lock(&fs_info->tree_log_mutex);
2537
2538 spin_lock(&fs_info->trans_lock);
2539 cur_trans->state = TRANS_STATE_UNBLOCKED;
2540 fs_info->running_transaction = NULL;
2541 spin_unlock(&fs_info->trans_lock);
2542 mutex_unlock(&fs_info->reloc_mutex);
2543
2544 wake_up(&fs_info->transaction_wait);
2545 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2546
2547 /* If we have features changed, wake up the cleaner to update sysfs. */
2548 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2549 fs_info->cleaner_kthread)
2550 wake_up_process(fs_info->cleaner_kthread);
2551
2552 ret = btrfs_write_and_wait_transaction(trans);
2553 if (ret) {
2554 btrfs_handle_fs_error(fs_info, ret,
2555 "Error while writing out transaction");
2556 mutex_unlock(&fs_info->tree_log_mutex);
2557 goto scrub_continue;
2558 }
2559
2560 ret = write_all_supers(fs_info, 0);
2561 /*
2562 * the super is written, we can safely allow the tree-loggers
2563 * to go about their business
2564 */
2565 mutex_unlock(&fs_info->tree_log_mutex);
2566 if (ret)
2567 goto scrub_continue;
2568
2569 update_commit_stats(fs_info);
2570 /*
2571 * We needn't acquire the lock here because there is no other task
2572 * which can change it.
2573 */
2574 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2575 wake_up(&cur_trans->commit_wait);
2576 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2577
2578 ret = btrfs_finish_extent_commit(trans);
2579 if (ret)
2580 goto scrub_continue;
2581
2582 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2583 btrfs_clear_space_info_full(fs_info);
2584
2585 btrfs_set_last_trans_committed(fs_info, cur_trans->transid);
2586 /*
2587 * We needn't acquire the lock here because there is no other task
2588 * which can change it.
2589 */
2590 cur_trans->state = TRANS_STATE_COMPLETED;
2591 wake_up(&cur_trans->commit_wait);
2592 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2593
2594 spin_lock(&fs_info->trans_lock);
2595 list_del_init(&cur_trans->list);
2596 spin_unlock(&fs_info->trans_lock);
2597
2598 btrfs_put_transaction(cur_trans);
2599 btrfs_put_transaction(cur_trans);
2600
2601 if (trans->type & __TRANS_FREEZABLE)
2602 sb_end_intwrite(fs_info->sb);
2603
2604 trace_btrfs_transaction_commit(fs_info);
2605
2606 btrfs_scrub_continue(fs_info);
2607
2608 if (current->journal_info == trans)
2609 current->journal_info = NULL;
2610
2611 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2612
2613 return ret;
2614
2615 unlock_reloc:
2616 mutex_unlock(&fs_info->reloc_mutex);
2617 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2618 scrub_continue:
2619 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2620 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2621 btrfs_scrub_continue(fs_info);
2622 cleanup_transaction:
2623 btrfs_trans_release_metadata(trans);
2624 btrfs_cleanup_pending_block_groups(trans);
2625 btrfs_trans_release_chunk_metadata(trans);
2626 trans->block_rsv = NULL;
2627 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2628 if (current->journal_info == trans)
2629 current->journal_info = NULL;
2630 cleanup_transaction(trans, ret);
2631
2632 return ret;
2633
2634 lockdep_release:
2635 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2636 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2637 goto cleanup_transaction;
2638
2639 lockdep_trans_commit_start_release:
2640 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2641 btrfs_end_transaction(trans);
2642 return ret;
2643 }
2644
2645 /*
2646 * return < 0 if error
2647 * 0 if there are no more dead_roots at the time of call
2648 * 1 there are more to be processed, call me again
2649 *
2650 * The return value indicates there are certainly more snapshots to delete, but
2651 * if there comes a new one during processing, it may return 0. We don't mind,
2652 * because btrfs_commit_super will poke cleaner thread and it will process it a
2653 * few seconds later.
2654 */
btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info * fs_info)2655 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2656 {
2657 struct btrfs_root *root;
2658 int ret;
2659
2660 spin_lock(&fs_info->trans_lock);
2661 if (list_empty(&fs_info->dead_roots)) {
2662 spin_unlock(&fs_info->trans_lock);
2663 return 0;
2664 }
2665 root = list_first_entry(&fs_info->dead_roots,
2666 struct btrfs_root, root_list);
2667 list_del_init(&root->root_list);
2668 spin_unlock(&fs_info->trans_lock);
2669
2670 btrfs_debug(fs_info, "cleaner removing %llu", btrfs_root_id(root));
2671
2672 btrfs_kill_all_delayed_nodes(root);
2673
2674 if (btrfs_header_backref_rev(root->node) <
2675 BTRFS_MIXED_BACKREF_REV)
2676 ret = btrfs_drop_snapshot(root, false, false);
2677 else
2678 ret = btrfs_drop_snapshot(root, true, false);
2679
2680 btrfs_put_root(root);
2681 return (ret < 0) ? 0 : 1;
2682 }
2683
2684 /*
2685 * We only mark the transaction aborted and then set the file system read-only.
2686 * This will prevent new transactions from starting or trying to join this
2687 * one.
2688 *
2689 * This means that error recovery at the call site is limited to freeing
2690 * any local memory allocations and passing the error code up without
2691 * further cleanup. The transaction should complete as it normally would
2692 * in the call path but will return -EIO.
2693 *
2694 * We'll complete the cleanup in btrfs_end_transaction and
2695 * btrfs_commit_transaction.
2696 */
__btrfs_abort_transaction(struct btrfs_trans_handle * trans,const char * function,unsigned int line,int error,bool first_hit)2697 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2698 const char *function,
2699 unsigned int line, int error, bool first_hit)
2700 {
2701 struct btrfs_fs_info *fs_info = trans->fs_info;
2702
2703 WRITE_ONCE(trans->aborted, error);
2704 WRITE_ONCE(trans->transaction->aborted, error);
2705 if (first_hit && error == -ENOSPC)
2706 btrfs_dump_space_info_for_trans_abort(fs_info);
2707 /* Wake up anybody who may be waiting on this transaction */
2708 wake_up(&fs_info->transaction_wait);
2709 wake_up(&fs_info->transaction_blocked_wait);
2710 __btrfs_handle_fs_error(fs_info, function, line, error, NULL);
2711 }
2712
btrfs_transaction_init(void)2713 int __init btrfs_transaction_init(void)
2714 {
2715 btrfs_trans_handle_cachep = KMEM_CACHE(btrfs_trans_handle, SLAB_TEMPORARY);
2716 if (!btrfs_trans_handle_cachep)
2717 return -ENOMEM;
2718 return 0;
2719 }
2720
btrfs_transaction_exit(void)2721 void __cold btrfs_transaction_exit(void)
2722 {
2723 kmem_cache_destroy(btrfs_trans_handle_cachep);
2724 }
2725