1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Universal power supply monitor class
4 *
5 * Copyright © 2007 Anton Vorontsov <cbou@mail.ru>
6 * Copyright © 2004 Szabolcs Gyurko
7 * Copyright © 2003 Ian Molton <spyro@f2s.com>
8 *
9 * Modified: 2004, Oct Szabolcs Gyurko
10 */
11
12 #ifndef __LINUX_POWER_SUPPLY_H__
13 #define __LINUX_POWER_SUPPLY_H__
14
15 #include <linux/device.h>
16 #include <linux/workqueue.h>
17 #include <linux/leds.h>
18 #include <linux/spinlock.h>
19 #include <linux/notifier.h>
20
21 /*
22 * All voltages, currents, charges, energies, time and temperatures in uV,
23 * µA, µAh, µWh, seconds and tenths of degree Celsius unless otherwise
24 * stated. It's driver's job to convert its raw values to units in which
25 * this class operates.
26 */
27
28 /*
29 * For systems where the charger determines the maximum battery capacity
30 * the min and max fields should be used to present these values to user
31 * space. Unused/unknown fields will not appear in sysfs.
32 */
33
34 enum {
35 POWER_SUPPLY_STATUS_UNKNOWN = 0,
36 POWER_SUPPLY_STATUS_CHARGING,
37 POWER_SUPPLY_STATUS_DISCHARGING,
38 POWER_SUPPLY_STATUS_NOT_CHARGING,
39 POWER_SUPPLY_STATUS_FULL,
40 };
41
42 /* What algorithm is the charger using? */
43 enum {
44 POWER_SUPPLY_CHARGE_TYPE_UNKNOWN = 0,
45 POWER_SUPPLY_CHARGE_TYPE_NONE,
46 POWER_SUPPLY_CHARGE_TYPE_TRICKLE, /* slow speed */
47 POWER_SUPPLY_CHARGE_TYPE_FAST, /* fast speed */
48 POWER_SUPPLY_CHARGE_TYPE_STANDARD, /* normal speed */
49 POWER_SUPPLY_CHARGE_TYPE_ADAPTIVE, /* dynamically adjusted speed */
50 POWER_SUPPLY_CHARGE_TYPE_CUSTOM, /* use CHARGE_CONTROL_* props */
51 POWER_SUPPLY_CHARGE_TYPE_LONGLIFE, /* slow speed, longer life */
52 POWER_SUPPLY_CHARGE_TYPE_BYPASS, /* bypassing the charger */
53 };
54
55 enum {
56 POWER_SUPPLY_HEALTH_UNKNOWN = 0,
57 POWER_SUPPLY_HEALTH_GOOD,
58 POWER_SUPPLY_HEALTH_OVERHEAT,
59 POWER_SUPPLY_HEALTH_DEAD,
60 POWER_SUPPLY_HEALTH_OVERVOLTAGE,
61 POWER_SUPPLY_HEALTH_UNSPEC_FAILURE,
62 POWER_SUPPLY_HEALTH_COLD,
63 POWER_SUPPLY_HEALTH_WATCHDOG_TIMER_EXPIRE,
64 POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE,
65 POWER_SUPPLY_HEALTH_OVERCURRENT,
66 POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED,
67 POWER_SUPPLY_HEALTH_WARM,
68 POWER_SUPPLY_HEALTH_COOL,
69 POWER_SUPPLY_HEALTH_HOT,
70 POWER_SUPPLY_HEALTH_NO_BATTERY,
71 };
72
73 enum {
74 POWER_SUPPLY_TECHNOLOGY_UNKNOWN = 0,
75 POWER_SUPPLY_TECHNOLOGY_NiMH,
76 POWER_SUPPLY_TECHNOLOGY_LION,
77 POWER_SUPPLY_TECHNOLOGY_LIPO,
78 POWER_SUPPLY_TECHNOLOGY_LiFe,
79 POWER_SUPPLY_TECHNOLOGY_NiCd,
80 POWER_SUPPLY_TECHNOLOGY_LiMn,
81 };
82
83 enum {
84 POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN = 0,
85 POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL,
86 POWER_SUPPLY_CAPACITY_LEVEL_LOW,
87 POWER_SUPPLY_CAPACITY_LEVEL_NORMAL,
88 POWER_SUPPLY_CAPACITY_LEVEL_HIGH,
89 POWER_SUPPLY_CAPACITY_LEVEL_FULL,
90 };
91
92 enum {
93 POWER_SUPPLY_SCOPE_UNKNOWN = 0,
94 POWER_SUPPLY_SCOPE_SYSTEM,
95 POWER_SUPPLY_SCOPE_DEVICE,
96 };
97
98 enum power_supply_property {
99 /* Properties of type `int' */
100 POWER_SUPPLY_PROP_STATUS = 0,
101 POWER_SUPPLY_PROP_CHARGE_TYPE,
102 POWER_SUPPLY_PROP_HEALTH,
103 POWER_SUPPLY_PROP_PRESENT,
104 POWER_SUPPLY_PROP_ONLINE,
105 POWER_SUPPLY_PROP_AUTHENTIC,
106 POWER_SUPPLY_PROP_TECHNOLOGY,
107 POWER_SUPPLY_PROP_CYCLE_COUNT,
108 POWER_SUPPLY_PROP_VOLTAGE_MAX,
109 POWER_SUPPLY_PROP_VOLTAGE_MIN,
110 POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
111 POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
112 POWER_SUPPLY_PROP_VOLTAGE_NOW,
113 POWER_SUPPLY_PROP_VOLTAGE_AVG,
114 POWER_SUPPLY_PROP_VOLTAGE_OCV,
115 POWER_SUPPLY_PROP_VOLTAGE_BOOT,
116 POWER_SUPPLY_PROP_CURRENT_MAX,
117 POWER_SUPPLY_PROP_CURRENT_NOW,
118 POWER_SUPPLY_PROP_CURRENT_AVG,
119 POWER_SUPPLY_PROP_CURRENT_BOOT,
120 POWER_SUPPLY_PROP_POWER_NOW,
121 POWER_SUPPLY_PROP_POWER_AVG,
122 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
123 POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN,
124 POWER_SUPPLY_PROP_CHARGE_FULL,
125 POWER_SUPPLY_PROP_CHARGE_EMPTY,
126 POWER_SUPPLY_PROP_CHARGE_NOW,
127 POWER_SUPPLY_PROP_CHARGE_AVG,
128 POWER_SUPPLY_PROP_CHARGE_COUNTER,
129 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT,
130 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
131 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
132 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
133 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT,
134 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX,
135 POWER_SUPPLY_PROP_CHARGE_CONTROL_START_THRESHOLD, /* in percents! */
136 POWER_SUPPLY_PROP_CHARGE_CONTROL_END_THRESHOLD, /* in percents! */
137 POWER_SUPPLY_PROP_CHARGE_BEHAVIOUR,
138 POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT,
139 POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT,
140 POWER_SUPPLY_PROP_INPUT_POWER_LIMIT,
141 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
142 POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN,
143 POWER_SUPPLY_PROP_ENERGY_FULL,
144 POWER_SUPPLY_PROP_ENERGY_EMPTY,
145 POWER_SUPPLY_PROP_ENERGY_NOW,
146 POWER_SUPPLY_PROP_ENERGY_AVG,
147 POWER_SUPPLY_PROP_CAPACITY, /* in percents! */
148 POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN, /* in percents! */
149 POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX, /* in percents! */
150 POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN, /* in percents! */
151 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
152 POWER_SUPPLY_PROP_TEMP,
153 POWER_SUPPLY_PROP_TEMP_MAX,
154 POWER_SUPPLY_PROP_TEMP_MIN,
155 POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
156 POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
157 POWER_SUPPLY_PROP_TEMP_AMBIENT,
158 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN,
159 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX,
160 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
161 POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
162 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
163 POWER_SUPPLY_PROP_TIME_TO_FULL_AVG,
164 POWER_SUPPLY_PROP_TYPE, /* use power_supply.type instead */
165 POWER_SUPPLY_PROP_USB_TYPE,
166 POWER_SUPPLY_PROP_SCOPE,
167 POWER_SUPPLY_PROP_PRECHARGE_CURRENT,
168 POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
169 POWER_SUPPLY_PROP_CALIBRATE,
170 POWER_SUPPLY_PROP_MANUFACTURE_YEAR,
171 POWER_SUPPLY_PROP_MANUFACTURE_MONTH,
172 POWER_SUPPLY_PROP_MANUFACTURE_DAY,
173 /* Properties of type `const char *' */
174 POWER_SUPPLY_PROP_MODEL_NAME,
175 POWER_SUPPLY_PROP_MANUFACTURER,
176 POWER_SUPPLY_PROP_SERIAL_NUMBER,
177 };
178
179 enum power_supply_type {
180 POWER_SUPPLY_TYPE_UNKNOWN = 0,
181 POWER_SUPPLY_TYPE_BATTERY,
182 POWER_SUPPLY_TYPE_UPS,
183 POWER_SUPPLY_TYPE_MAINS,
184 POWER_SUPPLY_TYPE_USB, /* Standard Downstream Port */
185 POWER_SUPPLY_TYPE_USB_DCP, /* Dedicated Charging Port */
186 POWER_SUPPLY_TYPE_USB_CDP, /* Charging Downstream Port */
187 POWER_SUPPLY_TYPE_USB_ACA, /* Accessory Charger Adapters */
188 POWER_SUPPLY_TYPE_USB_TYPE_C, /* Type C Port */
189 POWER_SUPPLY_TYPE_USB_PD, /* Power Delivery Port */
190 POWER_SUPPLY_TYPE_USB_PD_DRP, /* PD Dual Role Port */
191 POWER_SUPPLY_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */
192 POWER_SUPPLY_TYPE_WIRELESS, /* Wireless */
193 };
194
195 enum power_supply_usb_type {
196 POWER_SUPPLY_USB_TYPE_UNKNOWN = 0,
197 POWER_SUPPLY_USB_TYPE_SDP, /* Standard Downstream Port */
198 POWER_SUPPLY_USB_TYPE_DCP, /* Dedicated Charging Port */
199 POWER_SUPPLY_USB_TYPE_CDP, /* Charging Downstream Port */
200 POWER_SUPPLY_USB_TYPE_ACA, /* Accessory Charger Adapters */
201 POWER_SUPPLY_USB_TYPE_C, /* Type C Port */
202 POWER_SUPPLY_USB_TYPE_PD, /* Power Delivery Port */
203 POWER_SUPPLY_USB_TYPE_PD_DRP, /* PD Dual Role Port */
204 POWER_SUPPLY_USB_TYPE_PD_PPS, /* PD Programmable Power Supply */
205 POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */
206 };
207
208 enum power_supply_charge_behaviour {
209 POWER_SUPPLY_CHARGE_BEHAVIOUR_AUTO = 0,
210 POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE,
211 POWER_SUPPLY_CHARGE_BEHAVIOUR_FORCE_DISCHARGE,
212 };
213
214 enum power_supply_notifier_events {
215 PSY_EVENT_PROP_CHANGED,
216 };
217
218 union power_supply_propval {
219 int intval;
220 const char *strval;
221 };
222
223 struct device_node;
224 struct power_supply;
225
226 /* Run-time specific power supply configuration */
227 struct power_supply_config {
228 struct device_node *of_node;
229 struct fwnode_handle *fwnode;
230
231 /* Driver private data */
232 void *drv_data;
233
234 /* Device specific sysfs attributes */
235 const struct attribute_group **attr_grp;
236
237 char **supplied_to;
238 size_t num_supplicants;
239
240 bool no_wakeup_source;
241 };
242
243 /* Description of power supply */
244 struct power_supply_desc {
245 const char *name;
246 enum power_supply_type type;
247 u8 charge_behaviours;
248 u32 usb_types;
249 const enum power_supply_property *properties;
250 size_t num_properties;
251
252 /*
253 * Functions for drivers implementing power supply class.
254 * These shouldn't be called directly by other drivers for accessing
255 * this power supply. Instead use power_supply_*() functions (for
256 * example power_supply_get_property()).
257 */
258 int (*get_property)(struct power_supply *psy,
259 enum power_supply_property psp,
260 union power_supply_propval *val);
261 int (*set_property)(struct power_supply *psy,
262 enum power_supply_property psp,
263 const union power_supply_propval *val);
264 /*
265 * property_is_writeable() will be called during registration
266 * of power supply. If this happens during device probe then it must
267 * not access internal data of device (because probe did not end).
268 */
269 int (*property_is_writeable)(struct power_supply *psy,
270 enum power_supply_property psp);
271 void (*external_power_changed)(struct power_supply *psy);
272 void (*set_charged)(struct power_supply *psy);
273
274 /*
275 * Set if thermal zone should not be created for this power supply.
276 * For example for virtual supplies forwarding calls to actual
277 * sensors or other supplies.
278 */
279 bool no_thermal;
280 /* For APM emulation, think legacy userspace. */
281 int use_for_apm;
282 };
283
284 struct power_supply {
285 const struct power_supply_desc *desc;
286
287 char **supplied_to;
288 size_t num_supplicants;
289
290 char **supplied_from;
291 size_t num_supplies;
292 struct device_node *of_node;
293
294 /* Driver private data */
295 void *drv_data;
296
297 /* private */
298 struct device dev;
299 struct work_struct changed_work;
300 struct delayed_work deferred_register_work;
301 spinlock_t changed_lock;
302 bool changed;
303 bool initialized;
304 bool removing;
305 atomic_t use_cnt;
306 struct power_supply_battery_info *battery_info;
307 #ifdef CONFIG_THERMAL
308 struct thermal_zone_device *tzd;
309 struct thermal_cooling_device *tcd;
310 #endif
311
312 #ifdef CONFIG_LEDS_TRIGGERS
313 struct led_trigger *trig;
314 struct led_trigger *charging_trig;
315 struct led_trigger *full_trig;
316 struct led_trigger *charging_blink_full_solid_trig;
317 struct led_trigger *charging_orange_full_green_trig;
318 #endif
319 };
320
321 /*
322 * This is recommended structure to specify static power supply parameters.
323 * Generic one, parametrizable for different power supplies. Power supply
324 * class itself does not use it, but that's what implementing most platform
325 * drivers, should try reuse for consistency.
326 */
327
328 struct power_supply_info {
329 const char *name;
330 int technology;
331 int voltage_max_design;
332 int voltage_min_design;
333 int charge_full_design;
334 int charge_empty_design;
335 int energy_full_design;
336 int energy_empty_design;
337 int use_for_apm;
338 };
339
340 struct power_supply_battery_ocv_table {
341 int ocv; /* microVolts */
342 int capacity; /* percent */
343 };
344
345 struct power_supply_resistance_temp_table {
346 int temp; /* celsius */
347 int resistance; /* internal resistance percent */
348 };
349
350 struct power_supply_vbat_ri_table {
351 int vbat_uv; /* Battery voltage in microvolt */
352 int ri_uohm; /* Internal resistance in microohm */
353 };
354
355 /**
356 * struct power_supply_maintenance_charge_table - setting for maintenace charging
357 * @charge_current_max_ua: maintenance charging current that is used to keep
358 * the charge of the battery full as current is consumed after full charging.
359 * The corresponding charge_voltage_max_uv is used as a safeguard: when we
360 * reach this voltage the maintenance charging current is turned off. It is
361 * turned back on if we fall below this voltage.
362 * @charge_voltage_max_uv: maintenance charging voltage that is usually a bit
363 * lower than the constant_charge_voltage_max_uv. We can apply this settings
364 * charge_current_max_ua until we get back up to this voltage.
365 * @safety_timer_minutes: maintenance charging safety timer, with an expiry
366 * time in minutes. We will only use maintenance charging in this setting
367 * for a certain amount of time, then we will first move to the next
368 * maintenance charge current and voltage pair in respective array and wait
369 * for the next safety timer timeout, or, if we reached the last maintencance
370 * charging setting, disable charging until we reach
371 * charge_restart_voltage_uv and restart ordinary CC/CV charging from there.
372 * These timers should be chosen to align with the typical discharge curve
373 * for the battery.
374 *
375 * Ordinary CC/CV charging will stop charging when the charge current goes
376 * below charge_term_current_ua, and then restart it (if the device is still
377 * plugged into the charger) at charge_restart_voltage_uv. This happens in most
378 * consumer products because the power usage while connected to a charger is
379 * not zero, and devices are not manufactured to draw power directly from the
380 * charger: instead they will at all times dissipate the battery a little, like
381 * the power used in standby mode. This will over time give a charge graph
382 * such as this:
383 *
384 * Energy
385 * ^ ... ... ... ... ... ... ...
386 * | . . . . . . . . . . . . .
387 * | .. . .. . .. . .. . .. . .. . ..
388 * |. .. .. .. .. .. ..
389 * +-------------------------------------------------------------------> t
390 *
391 * Practically this means that the Li-ions are wandering back and forth in the
392 * battery and this causes degeneration of the battery anode and cathode.
393 * To prolong the life of the battery, maintenance charging is applied after
394 * reaching charge_term_current_ua to hold up the charge in the battery while
395 * consuming power, thus lowering the wear on the battery:
396 *
397 * Energy
398 * ^ .......................................
399 * | . ......................
400 * | ..
401 * |.
402 * +-------------------------------------------------------------------> t
403 *
404 * Maintenance charging uses the voltages from this table: a table of settings
405 * is traversed using a slightly lower current and voltage than what is used for
406 * CC/CV charging. The maintenance charging will for safety reasons not go on
407 * indefinately: we lower the current and voltage with successive maintenance
408 * settings, then disable charging completely after we reach the last one,
409 * and after that we do not restart charging until we reach
410 * charge_restart_voltage_uv (see struct power_supply_battery_info) and restart
411 * ordinary CC/CV charging from there.
412 *
413 * As an example, a Samsung EB425161LA Lithium-Ion battery is CC/CV charged
414 * at 900mA to 4340mV, then maintenance charged at 600mA and 4150mV for up to
415 * 60 hours, then maintenance charged at 600mA and 4100mV for up to 200 hours.
416 * After this the charge cycle is restarted waiting for
417 * charge_restart_voltage_uv.
418 *
419 * For most mobile electronics this type of maintenance charging is enough for
420 * the user to disconnect the device and make use of it before both maintenance
421 * charging cycles are complete, if the current and voltage has been chosen
422 * appropriately. These need to be determined from battery discharge curves
423 * and expected standby current.
424 *
425 * If the voltage anyway drops to charge_restart_voltage_uv during maintenance
426 * charging, ordinary CC/CV charging is restarted. This can happen if the
427 * device is e.g. actively used during charging, so more current is drawn than
428 * the expected stand-by current. Also overvoltage protection will be applied
429 * as usual.
430 */
431 struct power_supply_maintenance_charge_table {
432 int charge_current_max_ua;
433 int charge_voltage_max_uv;
434 int charge_safety_timer_minutes;
435 };
436
437 #define POWER_SUPPLY_OCV_TEMP_MAX 20
438
439 /**
440 * struct power_supply_battery_info - information about batteries
441 * @technology: from the POWER_SUPPLY_TECHNOLOGY_* enum
442 * @energy_full_design_uwh: energy content when fully charged in microwatt
443 * hours
444 * @charge_full_design_uah: charge content when fully charged in microampere
445 * hours
446 * @voltage_min_design_uv: minimum voltage across the poles when the battery
447 * is at minimum voltage level in microvolts. If the voltage drops below this
448 * level the battery will need precharging when using CC/CV charging.
449 * @voltage_max_design_uv: voltage across the poles when the battery is fully
450 * charged in microvolts. This is the "nominal voltage" i.e. the voltage
451 * printed on the label of the battery.
452 * @tricklecharge_current_ua: the tricklecharge current used when trickle
453 * charging the battery in microamperes. This is the charging phase when the
454 * battery is completely empty and we need to carefully trickle in some
455 * charge until we reach the precharging voltage.
456 * @precharge_current_ua: current to use in the precharge phase in microamperes,
457 * the precharge rate is limited by limiting the current to this value.
458 * @precharge_voltage_max_uv: the maximum voltage allowed when precharging in
459 * microvolts. When we pass this voltage we will nominally switch over to the
460 * CC (constant current) charging phase defined by constant_charge_current_ua
461 * and constant_charge_voltage_max_uv.
462 * @charge_term_current_ua: when the current in the CV (constant voltage)
463 * charging phase drops below this value in microamperes the charging will
464 * terminate completely and not restart until the voltage over the battery
465 * poles reach charge_restart_voltage_uv unless we use maintenance charging.
466 * @charge_restart_voltage_uv: when the battery has been fully charged by
467 * CC/CV charging and charging has been disabled, and the voltage subsequently
468 * drops below this value in microvolts, the charging will be restarted
469 * (typically using CV charging).
470 * @overvoltage_limit_uv: If the voltage exceeds the nominal voltage
471 * voltage_max_design_uv and we reach this voltage level, all charging must
472 * stop and emergency procedures take place, such as shutting down the system
473 * in some cases.
474 * @constant_charge_current_max_ua: current in microamperes to use in the CC
475 * (constant current) charging phase. The charging rate is limited
476 * by this current. This is the main charging phase and as the current is
477 * constant into the battery the voltage slowly ascends to
478 * constant_charge_voltage_max_uv.
479 * @constant_charge_voltage_max_uv: voltage in microvolts signifying the end of
480 * the CC (constant current) charging phase and the beginning of the CV
481 * (constant voltage) charging phase.
482 * @maintenance_charge: an array of maintenance charging settings to be used
483 * after the main CC/CV charging phase is complete.
484 * @maintenance_charge_size: the number of maintenance charging settings in
485 * maintenance_charge.
486 * @alert_low_temp_charge_current_ua: The charging current to use if the battery
487 * enters low alert temperature, i.e. if the internal temperature is between
488 * temp_alert_min and temp_min. No matter the charging phase, this
489 * and alert_high_temp_charge_voltage_uv will be applied.
490 * @alert_low_temp_charge_voltage_uv: Same as alert_low_temp_charge_current_ua,
491 * but for the charging voltage.
492 * @alert_high_temp_charge_current_ua: The charging current to use if the
493 * battery enters high alert temperature, i.e. if the internal temperature is
494 * between temp_alert_max and temp_max. No matter the charging phase, this
495 * and alert_high_temp_charge_voltage_uv will be applied, usually lowering
496 * the charging current as an evasive manouver.
497 * @alert_high_temp_charge_voltage_uv: Same as
498 * alert_high_temp_charge_current_ua, but for the charging voltage.
499 * @factory_internal_resistance_uohm: the internal resistance of the battery
500 * at fabrication time, expressed in microohms. This resistance will vary
501 * depending on the lifetime and charge of the battery, so this is just a
502 * nominal ballpark figure. This internal resistance is given for the state
503 * when the battery is discharging.
504 * @factory_internal_resistance_charging_uohm: the internal resistance of the
505 * battery at fabrication time while charging, expressed in microohms.
506 * The charging process will affect the internal resistance of the battery
507 * so this value provides a better resistance under these circumstances.
508 * This resistance will vary depending on the lifetime and charge of the
509 * battery, so this is just a nominal ballpark figure.
510 * @ocv_temp: array indicating the open circuit voltage (OCV) capacity
511 * temperature indices. This is an array of temperatures in degrees Celsius
512 * indicating which capacity table to use for a certain temperature, since
513 * the capacity for reasons of chemistry will be different at different
514 * temperatures. Determining capacity is a multivariate problem and the
515 * temperature is the first variable we determine.
516 * @temp_ambient_alert_min: the battery will go outside of operating conditions
517 * when the ambient temperature goes below this temperature in degrees
518 * Celsius.
519 * @temp_ambient_alert_max: the battery will go outside of operating conditions
520 * when the ambient temperature goes above this temperature in degrees
521 * Celsius.
522 * @temp_alert_min: the battery should issue an alert if the internal
523 * temperature goes below this temperature in degrees Celsius.
524 * @temp_alert_max: the battery should issue an alert if the internal
525 * temperature goes above this temperature in degrees Celsius.
526 * @temp_min: the battery will go outside of operating conditions when
527 * the internal temperature goes below this temperature in degrees Celsius.
528 * Normally this means the system should shut down.
529 * @temp_max: the battery will go outside of operating conditions when
530 * the internal temperature goes above this temperature in degrees Celsius.
531 * Normally this means the system should shut down.
532 * @ocv_table: for each entry in ocv_temp there is a corresponding entry in
533 * ocv_table and a size for each entry in ocv_table_size. These arrays
534 * determine the capacity in percent in relation to the voltage in microvolts
535 * at the indexed temperature.
536 * @ocv_table_size: for each entry in ocv_temp this array is giving the size of
537 * each entry in the array of capacity arrays in ocv_table.
538 * @resist_table: this is a table that correlates a battery temperature to the
539 * expected internal resistance at this temperature. The resistance is given
540 * as a percentage of factory_internal_resistance_uohm. Knowing the
541 * resistance of the battery is usually necessary for calculating the open
542 * circuit voltage (OCV) that is then used with the ocv_table to calculate
543 * the capacity of the battery. The resist_table must be ordered descending
544 * by temperature: highest temperature with lowest resistance first, lowest
545 * temperature with highest resistance last.
546 * @resist_table_size: the number of items in the resist_table.
547 * @vbat2ri_discharging: this is a table that correlates Battery voltage (VBAT)
548 * to internal resistance (Ri). The resistance is given in microohm for the
549 * corresponding voltage in microvolts. The internal resistance is used to
550 * determine the open circuit voltage so that we can determine the capacity
551 * of the battery. These voltages to resistance tables apply when the battery
552 * is discharging. The table must be ordered descending by voltage: highest
553 * voltage first.
554 * @vbat2ri_discharging_size: the number of items in the vbat2ri_discharging
555 * table.
556 * @vbat2ri_charging: same function as vbat2ri_discharging but for the state
557 * when the battery is charging. Being under charge changes the battery's
558 * internal resistance characteristics so a separate table is needed.*
559 * The table must be ordered descending by voltage: highest voltage first.
560 * @vbat2ri_charging_size: the number of items in the vbat2ri_charging
561 * table.
562 * @bti_resistance_ohm: The Battery Type Indicator (BIT) nominal resistance
563 * in ohms for this battery, if an identification resistor is mounted
564 * between a third battery terminal and ground. This scheme is used by a lot
565 * of mobile device batteries.
566 * @bti_resistance_tolerance: The tolerance in percent of the BTI resistance,
567 * for example 10 for +/- 10%, if the bti_resistance is set to 7000 and the
568 * tolerance is 10% we will detect a proper battery if the BTI resistance
569 * is between 6300 and 7700 Ohm.
570 *
571 * This is the recommended struct to manage static battery parameters,
572 * populated by power_supply_get_battery_info(). Most platform drivers should
573 * use these for consistency.
574 *
575 * Its field names must correspond to elements in enum power_supply_property.
576 * The default field value is -EINVAL or NULL for pointers.
577 *
578 * CC/CV CHARGING:
579 *
580 * The charging parameters here assume a CC/CV charging scheme. This method
581 * is most common with Lithium Ion batteries (other methods are possible) and
582 * looks as follows:
583 *
584 * ^ Battery voltage
585 * | --- overvoltage_limit_uv
586 * |
587 * | ...................................................
588 * | .. constant_charge_voltage_max_uv
589 * | ..
590 * | .
591 * | .
592 * | .
593 * | .
594 * | .
595 * | .. precharge_voltage_max_uv
596 * | ..
597 * |. (trickle charging)
598 * +------------------------------------------------------------------> time
599 *
600 * ^ Current into the battery
601 * |
602 * | ............. constant_charge_current_max_ua
603 * | . .
604 * | . .
605 * | . .
606 * | . .
607 * | . ..
608 * | . ....
609 * | . .....
610 * | ... precharge_current_ua ....... charge_term_current_ua
611 * | . .
612 * | . .
613 * |.... tricklecharge_current_ua .
614 * | .
615 * +-----------------------------------------------------------------> time
616 *
617 * These diagrams are synchronized on time and the voltage and current
618 * follow each other.
619 *
620 * With CC/CV charging commence over time like this for an empty battery:
621 *
622 * 1. When the battery is completely empty it may need to be charged with
623 * an especially small current so that electrons just "trickle in",
624 * this is the tricklecharge_current_ua.
625 *
626 * 2. Next a small initial pre-charge current (precharge_current_ua)
627 * is applied if the voltage is below precharge_voltage_max_uv until we
628 * reach precharge_voltage_max_uv. CAUTION: in some texts this is referred
629 * to as "trickle charging" but the use in the Linux kernel is different
630 * see below!
631 *
632 * 3. Then the main charging current is applied, which is called the constant
633 * current (CC) phase. A current regulator is set up to allow
634 * constant_charge_current_max_ua of current to flow into the battery.
635 * The chemical reaction in the battery will make the voltage go up as
636 * charge goes into the battery. This current is applied until we reach
637 * the constant_charge_voltage_max_uv voltage.
638 *
639 * 4. At this voltage we switch over to the constant voltage (CV) phase. This
640 * means we allow current to go into the battery, but we keep the voltage
641 * fixed. This current will continue to charge the battery while keeping
642 * the voltage the same. A chemical reaction in the battery goes on
643 * storing energy without affecting the voltage. Over time the current
644 * will slowly drop and when we reach charge_term_current_ua we will
645 * end the constant voltage phase.
646 *
647 * After this the battery is fully charged, and if we do not support maintenance
648 * charging, the charging will not restart until power dissipation makes the
649 * voltage fall so that we reach charge_restart_voltage_uv and at this point
650 * we restart charging at the appropriate phase, usually this will be inside
651 * the CV phase.
652 *
653 * If we support maintenance charging the voltage is however kept high after
654 * the CV phase with a very low current. This is meant to let the same charge
655 * go in for usage while the charger is still connected, mainly for
656 * dissipation for the power consuming entity while connected to the
657 * charger.
658 *
659 * All charging MUST terminate if the overvoltage_limit_uv is ever reached.
660 * Overcharging Lithium Ion cells can be DANGEROUS and lead to fire or
661 * explosions.
662 *
663 * DETERMINING BATTERY CAPACITY:
664 *
665 * Several members of the struct deal with trying to determine the remaining
666 * capacity in the battery, usually as a percentage of charge. In practice
667 * many chargers uses a so-called fuel gauge or coloumb counter that measure
668 * how much charge goes into the battery and how much goes out (+/- leak
669 * consumption). This does not help if we do not know how much capacity the
670 * battery has to begin with, such as when it is first used or was taken out
671 * and charged in a separate charger. Therefore many capacity algorithms use
672 * the open circuit voltage with a look-up table to determine the rough
673 * capacity of the battery. The open circuit voltage can be conceptualized
674 * with an ideal voltage source (V) in series with an internal resistance (Ri)
675 * like this:
676 *
677 * +-------> IBAT >----------------+
678 * | ^ |
679 * [ ] Ri | |
680 * | | VBAT |
681 * o <---------- | |
682 * +| ^ | [ ] Rload
683 * .---. | | |
684 * | V | | OCV | |
685 * '---' | | |
686 * | | | |
687 * GND +-------------------------------+
688 *
689 * If we disconnect the load (here simplified as a fixed resistance Rload)
690 * and measure VBAT with a infinite impedance voltage meter we will get
691 * VBAT = OCV and this assumption is sometimes made even under load, assuming
692 * Rload is insignificant. However this will be of dubious quality because the
693 * load is rarely that small and Ri is strongly nonlinear depending on
694 * temperature and how much capacity is left in the battery due to the
695 * chemistry involved.
696 *
697 * In many practical applications we cannot just disconnect the battery from
698 * the load, so instead we often try to measure the instantaneous IBAT (the
699 * current out from the battery), estimate the Ri and thus calculate the
700 * voltage drop over Ri and compensate like this:
701 *
702 * OCV = VBAT - (IBAT * Ri)
703 *
704 * The tables vbat2ri_discharging and vbat2ri_charging are used to determine
705 * (by interpolation) the Ri from the VBAT under load. These curves are highly
706 * nonlinear and may need many datapoints but can be found in datasheets for
707 * some batteries. This gives the compensated open circuit voltage (OCV) for
708 * the battery even under load. Using this method will also compensate for
709 * temperature changes in the environment: this will also make the internal
710 * resistance change, and it will affect the VBAT under load, so correlating
711 * VBAT to Ri takes both remaining capacity and temperature into consideration.
712 *
713 * Alternatively a manufacturer can specify how the capacity of the battery
714 * is dependent on the battery temperature which is the main factor affecting
715 * Ri. As we know all checmical reactions are faster when it is warm and slower
716 * when it is cold. You can put in 1500mAh and only get 800mAh out before the
717 * voltage drops too low for example. This effect is also highly nonlinear and
718 * the purpose of the table resist_table: this will take a temperature and
719 * tell us how big percentage of Ri the specified temperature correlates to.
720 * Usually we have 100% of the factory_internal_resistance_uohm at 25 degrees
721 * Celsius.
722 *
723 * The power supply class itself doesn't use this struct as of now.
724 */
725
726 struct power_supply_battery_info {
727 unsigned int technology;
728 int energy_full_design_uwh;
729 int charge_full_design_uah;
730 int voltage_min_design_uv;
731 int voltage_max_design_uv;
732 int tricklecharge_current_ua;
733 int precharge_current_ua;
734 int precharge_voltage_max_uv;
735 int charge_term_current_ua;
736 int charge_restart_voltage_uv;
737 int overvoltage_limit_uv;
738 int constant_charge_current_max_ua;
739 int constant_charge_voltage_max_uv;
740 const struct power_supply_maintenance_charge_table *maintenance_charge;
741 int maintenance_charge_size;
742 int alert_low_temp_charge_current_ua;
743 int alert_low_temp_charge_voltage_uv;
744 int alert_high_temp_charge_current_ua;
745 int alert_high_temp_charge_voltage_uv;
746 int factory_internal_resistance_uohm;
747 int factory_internal_resistance_charging_uohm;
748 int ocv_temp[POWER_SUPPLY_OCV_TEMP_MAX];
749 int temp_ambient_alert_min;
750 int temp_ambient_alert_max;
751 int temp_alert_min;
752 int temp_alert_max;
753 int temp_min;
754 int temp_max;
755 const struct power_supply_battery_ocv_table *ocv_table[POWER_SUPPLY_OCV_TEMP_MAX];
756 int ocv_table_size[POWER_SUPPLY_OCV_TEMP_MAX];
757 const struct power_supply_resistance_temp_table *resist_table;
758 int resist_table_size;
759 const struct power_supply_vbat_ri_table *vbat2ri_discharging;
760 int vbat2ri_discharging_size;
761 const struct power_supply_vbat_ri_table *vbat2ri_charging;
762 int vbat2ri_charging_size;
763 int bti_resistance_ohm;
764 int bti_resistance_tolerance;
765 };
766
767 extern int power_supply_reg_notifier(struct notifier_block *nb);
768 extern void power_supply_unreg_notifier(struct notifier_block *nb);
769 #if IS_ENABLED(CONFIG_POWER_SUPPLY)
770 extern struct power_supply *power_supply_get_by_name(const char *name);
771 extern void power_supply_put(struct power_supply *psy);
772 #else
power_supply_put(struct power_supply * psy)773 static inline void power_supply_put(struct power_supply *psy) {}
power_supply_get_by_name(const char * name)774 static inline struct power_supply *power_supply_get_by_name(const char *name)
775 { return NULL; }
776 #endif
777 #ifdef CONFIG_OF
778 extern struct power_supply *power_supply_get_by_phandle(struct device_node *np,
779 const char *property);
780 extern struct power_supply *devm_power_supply_get_by_phandle(
781 struct device *dev, const char *property);
782 #else /* !CONFIG_OF */
783 static inline struct power_supply *
power_supply_get_by_phandle(struct device_node * np,const char * property)784 power_supply_get_by_phandle(struct device_node *np, const char *property)
785 { return NULL; }
786 static inline struct power_supply *
devm_power_supply_get_by_phandle(struct device * dev,const char * property)787 devm_power_supply_get_by_phandle(struct device *dev, const char *property)
788 { return NULL; }
789 #endif /* CONFIG_OF */
790
791 extern const enum power_supply_property power_supply_battery_info_properties[];
792 extern const size_t power_supply_battery_info_properties_size;
793 extern int power_supply_get_battery_info(struct power_supply *psy,
794 struct power_supply_battery_info **info_out);
795 extern void power_supply_put_battery_info(struct power_supply *psy,
796 struct power_supply_battery_info *info);
797 extern bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info,
798 enum power_supply_property psp);
799 extern int power_supply_battery_info_get_prop(struct power_supply_battery_info *info,
800 enum power_supply_property psp,
801 union power_supply_propval *val);
802 extern int power_supply_ocv2cap_simple(const struct power_supply_battery_ocv_table *table,
803 int table_len, int ocv);
804 extern const struct power_supply_battery_ocv_table *
805 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
806 int temp, int *table_len);
807 extern int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
808 int ocv, int temp);
809 extern int
810 power_supply_temp2resist_simple(const struct power_supply_resistance_temp_table *table,
811 int table_len, int temp);
812 extern int power_supply_vbat2ri(struct power_supply_battery_info *info,
813 int vbat_uv, bool charging);
814 extern const struct power_supply_maintenance_charge_table *
815 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info, int index);
816 extern bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
817 int resistance);
818 extern void power_supply_changed(struct power_supply *psy);
819 extern int power_supply_am_i_supplied(struct power_supply *psy);
820 int power_supply_get_property_from_supplier(struct power_supply *psy,
821 enum power_supply_property psp,
822 union power_supply_propval *val);
823 extern int power_supply_set_battery_charged(struct power_supply *psy);
824
825 static inline bool
power_supply_supports_maintenance_charging(struct power_supply_battery_info * info)826 power_supply_supports_maintenance_charging(struct power_supply_battery_info *info)
827 {
828 const struct power_supply_maintenance_charge_table *mt;
829
830 mt = power_supply_get_maintenance_charging_setting(info, 0);
831
832 return (mt != NULL);
833 }
834
835 static inline bool
power_supply_supports_vbat2ri(struct power_supply_battery_info * info)836 power_supply_supports_vbat2ri(struct power_supply_battery_info *info)
837 {
838 return ((info->vbat2ri_discharging != NULL) &&
839 info->vbat2ri_discharging_size > 0);
840 }
841
842 static inline bool
power_supply_supports_temp2ri(struct power_supply_battery_info * info)843 power_supply_supports_temp2ri(struct power_supply_battery_info *info)
844 {
845 return ((info->resist_table != NULL) &&
846 info->resist_table_size > 0);
847 }
848
849 #ifdef CONFIG_POWER_SUPPLY
850 extern int power_supply_is_system_supplied(void);
851 #else
power_supply_is_system_supplied(void)852 static inline int power_supply_is_system_supplied(void) { return -ENOSYS; }
853 #endif
854
855 extern int power_supply_get_property(struct power_supply *psy,
856 enum power_supply_property psp,
857 union power_supply_propval *val);
858 #if IS_ENABLED(CONFIG_POWER_SUPPLY)
859 extern int power_supply_set_property(struct power_supply *psy,
860 enum power_supply_property psp,
861 const union power_supply_propval *val);
862 #else
power_supply_set_property(struct power_supply * psy,enum power_supply_property psp,const union power_supply_propval * val)863 static inline int power_supply_set_property(struct power_supply *psy,
864 enum power_supply_property psp,
865 const union power_supply_propval *val)
866 { return 0; }
867 #endif
868 extern void power_supply_external_power_changed(struct power_supply *psy);
869
870 extern struct power_supply *__must_check
871 power_supply_register(struct device *parent,
872 const struct power_supply_desc *desc,
873 const struct power_supply_config *cfg);
874 extern struct power_supply *__must_check
875 devm_power_supply_register(struct device *parent,
876 const struct power_supply_desc *desc,
877 const struct power_supply_config *cfg);
878 extern void power_supply_unregister(struct power_supply *psy);
879 extern int power_supply_powers(struct power_supply *psy, struct device *dev);
880
881 #define to_power_supply(device) container_of(device, struct power_supply, dev)
882
883 extern void *power_supply_get_drvdata(struct power_supply *psy);
884 extern int power_supply_for_each_device(void *data, int (*fn)(struct device *dev, void *data));
885
power_supply_is_amp_property(enum power_supply_property psp)886 static inline bool power_supply_is_amp_property(enum power_supply_property psp)
887 {
888 switch (psp) {
889 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
890 case POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN:
891 case POWER_SUPPLY_PROP_CHARGE_FULL:
892 case POWER_SUPPLY_PROP_CHARGE_EMPTY:
893 case POWER_SUPPLY_PROP_CHARGE_NOW:
894 case POWER_SUPPLY_PROP_CHARGE_AVG:
895 case POWER_SUPPLY_PROP_CHARGE_COUNTER:
896 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
897 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
898 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT:
899 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
900 case POWER_SUPPLY_PROP_CURRENT_MAX:
901 case POWER_SUPPLY_PROP_CURRENT_NOW:
902 case POWER_SUPPLY_PROP_CURRENT_AVG:
903 case POWER_SUPPLY_PROP_CURRENT_BOOT:
904 return true;
905 default:
906 break;
907 }
908
909 return false;
910 }
911
power_supply_is_watt_property(enum power_supply_property psp)912 static inline bool power_supply_is_watt_property(enum power_supply_property psp)
913 {
914 switch (psp) {
915 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
916 case POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN:
917 case POWER_SUPPLY_PROP_ENERGY_FULL:
918 case POWER_SUPPLY_PROP_ENERGY_EMPTY:
919 case POWER_SUPPLY_PROP_ENERGY_NOW:
920 case POWER_SUPPLY_PROP_ENERGY_AVG:
921 case POWER_SUPPLY_PROP_VOLTAGE_MAX:
922 case POWER_SUPPLY_PROP_VOLTAGE_MIN:
923 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
924 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
925 case POWER_SUPPLY_PROP_VOLTAGE_NOW:
926 case POWER_SUPPLY_PROP_VOLTAGE_AVG:
927 case POWER_SUPPLY_PROP_VOLTAGE_OCV:
928 case POWER_SUPPLY_PROP_VOLTAGE_BOOT:
929 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
930 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
931 case POWER_SUPPLY_PROP_POWER_NOW:
932 return true;
933 default:
934 break;
935 }
936
937 return false;
938 }
939
940 #ifdef CONFIG_SYSFS
941 ssize_t power_supply_charge_behaviour_show(struct device *dev,
942 unsigned int available_behaviours,
943 enum power_supply_charge_behaviour behaviour,
944 char *buf);
945
946 int power_supply_charge_behaviour_parse(unsigned int available_behaviours, const char *buf);
947 #else
948 static inline
power_supply_charge_behaviour_show(struct device * dev,unsigned int available_behaviours,enum power_supply_charge_behaviour behaviour,char * buf)949 ssize_t power_supply_charge_behaviour_show(struct device *dev,
950 unsigned int available_behaviours,
951 enum power_supply_charge_behaviour behaviour,
952 char *buf)
953 {
954 return -EOPNOTSUPP;
955 }
956
power_supply_charge_behaviour_parse(unsigned int available_behaviours,const char * buf)957 static inline int power_supply_charge_behaviour_parse(unsigned int available_behaviours,
958 const char *buf)
959 {
960 return -EOPNOTSUPP;
961 }
962 #endif
963
964 #endif /* __LINUX_POWER_SUPPLY_H__ */
965