xref: /linux/mm/memory_hotplug.c (revision 1110ce6a1e34fe1fdc1bfe4ad52405f327d5083b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory_hotplug.c
4  *
5  *  Copyright (C)
6  */
7 
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memremap.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/vmalloc.h>
24 #include <linux/ioport.h>
25 #include <linux/delay.h>
26 #include <linux/migrate.h>
27 #include <linux/page-isolation.h>
28 #include <linux/pfn.h>
29 #include <linux/suspend.h>
30 #include <linux/mm_inline.h>
31 #include <linux/firmware-map.h>
32 #include <linux/stop_machine.h>
33 #include <linux/hugetlb.h>
34 #include <linux/memblock.h>
35 #include <linux/compaction.h>
36 #include <linux/rmap.h>
37 #include <linux/module.h>
38 
39 #include <asm/tlbflush.h>
40 
41 #include "internal.h"
42 #include "shuffle.h"
43 
44 enum {
45 	MEMMAP_ON_MEMORY_DISABLE = 0,
46 	MEMMAP_ON_MEMORY_ENABLE,
47 	MEMMAP_ON_MEMORY_FORCE,
48 };
49 
50 static int memmap_mode __read_mostly = MEMMAP_ON_MEMORY_DISABLE;
51 
memory_block_memmap_size(void)52 static inline unsigned long memory_block_memmap_size(void)
53 {
54 	return PHYS_PFN(memory_block_size_bytes()) * sizeof(struct page);
55 }
56 
memory_block_memmap_on_memory_pages(void)57 static inline unsigned long memory_block_memmap_on_memory_pages(void)
58 {
59 	unsigned long nr_pages = PFN_UP(memory_block_memmap_size());
60 
61 	/*
62 	 * In "forced" memmap_on_memory mode, we add extra pages to align the
63 	 * vmemmap size to cover full pageblocks. That way, we can add memory
64 	 * even if the vmemmap size is not properly aligned, however, we might waste
65 	 * memory.
66 	 */
67 	if (memmap_mode == MEMMAP_ON_MEMORY_FORCE)
68 		return pageblock_align(nr_pages);
69 	return nr_pages;
70 }
71 
72 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
73 /*
74  * memory_hotplug.memmap_on_memory parameter
75  */
set_memmap_mode(const char * val,const struct kernel_param * kp)76 static int set_memmap_mode(const char *val, const struct kernel_param *kp)
77 {
78 	int ret, mode;
79 	bool enabled;
80 
81 	if (sysfs_streq(val, "force") ||  sysfs_streq(val, "FORCE")) {
82 		mode = MEMMAP_ON_MEMORY_FORCE;
83 	} else {
84 		ret = kstrtobool(val, &enabled);
85 		if (ret < 0)
86 			return ret;
87 		if (enabled)
88 			mode = MEMMAP_ON_MEMORY_ENABLE;
89 		else
90 			mode = MEMMAP_ON_MEMORY_DISABLE;
91 	}
92 	*((int *)kp->arg) = mode;
93 	if (mode == MEMMAP_ON_MEMORY_FORCE) {
94 		unsigned long memmap_pages = memory_block_memmap_on_memory_pages();
95 
96 		pr_info_once("Memory hotplug will waste %ld pages in each memory block\n",
97 			     memmap_pages - PFN_UP(memory_block_memmap_size()));
98 	}
99 	return 0;
100 }
101 
get_memmap_mode(char * buffer,const struct kernel_param * kp)102 static int get_memmap_mode(char *buffer, const struct kernel_param *kp)
103 {
104 	int mode = *((int *)kp->arg);
105 
106 	if (mode == MEMMAP_ON_MEMORY_FORCE)
107 		return sprintf(buffer, "force\n");
108 	return sprintf(buffer, "%c\n", mode ? 'Y' : 'N');
109 }
110 
111 static const struct kernel_param_ops memmap_mode_ops = {
112 	.set = set_memmap_mode,
113 	.get = get_memmap_mode,
114 };
115 module_param_cb(memmap_on_memory, &memmap_mode_ops, &memmap_mode, 0444);
116 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug\n"
117 		 "With value \"force\" it could result in memory wastage due "
118 		 "to memmap size limitations (Y/N/force)");
119 
mhp_memmap_on_memory(void)120 static inline bool mhp_memmap_on_memory(void)
121 {
122 	return memmap_mode != MEMMAP_ON_MEMORY_DISABLE;
123 }
124 #else
mhp_memmap_on_memory(void)125 static inline bool mhp_memmap_on_memory(void)
126 {
127 	return false;
128 }
129 #endif
130 
131 enum {
132 	ONLINE_POLICY_CONTIG_ZONES = 0,
133 	ONLINE_POLICY_AUTO_MOVABLE,
134 };
135 
136 static const char * const online_policy_to_str[] = {
137 	[ONLINE_POLICY_CONTIG_ZONES] = "contig-zones",
138 	[ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable",
139 };
140 
set_online_policy(const char * val,const struct kernel_param * kp)141 static int set_online_policy(const char *val, const struct kernel_param *kp)
142 {
143 	int ret = sysfs_match_string(online_policy_to_str, val);
144 
145 	if (ret < 0)
146 		return ret;
147 	*((int *)kp->arg) = ret;
148 	return 0;
149 }
150 
get_online_policy(char * buffer,const struct kernel_param * kp)151 static int get_online_policy(char *buffer, const struct kernel_param *kp)
152 {
153 	return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]);
154 }
155 
156 /*
157  * memory_hotplug.online_policy: configure online behavior when onlining without
158  * specifying a zone (MMOP_ONLINE)
159  *
160  * "contig-zones": keep zone contiguous
161  * "auto-movable": online memory to ZONE_MOVABLE if the configuration
162  *                 (auto_movable_ratio, auto_movable_numa_aware) allows for it
163  */
164 static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES;
165 static const struct kernel_param_ops online_policy_ops = {
166 	.set = set_online_policy,
167 	.get = get_online_policy,
168 };
169 module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644);
170 MODULE_PARM_DESC(online_policy,
171 		"Set the online policy (\"contig-zones\", \"auto-movable\") "
172 		"Default: \"contig-zones\"");
173 
174 /*
175  * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio
176  *
177  * The ratio represent an upper limit and the kernel might decide to not
178  * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory
179  * doesn't allow for more MOVABLE memory.
180  */
181 static unsigned int auto_movable_ratio __read_mostly = 301;
182 module_param(auto_movable_ratio, uint, 0644);
183 MODULE_PARM_DESC(auto_movable_ratio,
184 		"Set the maximum ratio of MOVABLE:KERNEL memory in the system "
185 		"in percent for \"auto-movable\" online policy. Default: 301");
186 
187 /*
188  * memory_hotplug.auto_movable_numa_aware: consider numa node stats
189  */
190 #ifdef CONFIG_NUMA
191 static bool auto_movable_numa_aware __read_mostly = true;
192 module_param(auto_movable_numa_aware, bool, 0644);
193 MODULE_PARM_DESC(auto_movable_numa_aware,
194 		"Consider numa node stats in addition to global stats in "
195 		"\"auto-movable\" online policy. Default: true");
196 #endif /* CONFIG_NUMA */
197 
198 /*
199  * online_page_callback contains pointer to current page onlining function.
200  * Initially it is generic_online_page(). If it is required it could be
201  * changed by calling set_online_page_callback() for callback registration
202  * and restore_online_page_callback() for generic callback restore.
203  */
204 
205 static online_page_callback_t online_page_callback = generic_online_page;
206 static DEFINE_MUTEX(online_page_callback_lock);
207 
208 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
209 
get_online_mems(void)210 void get_online_mems(void)
211 {
212 	percpu_down_read(&mem_hotplug_lock);
213 }
214 
put_online_mems(void)215 void put_online_mems(void)
216 {
217 	percpu_up_read(&mem_hotplug_lock);
218 }
219 
220 bool movable_node_enabled = false;
221 
222 static int mhp_default_online_type = -1;
mhp_get_default_online_type(void)223 int mhp_get_default_online_type(void)
224 {
225 	if (mhp_default_online_type >= 0)
226 		return mhp_default_online_type;
227 
228 	if (IS_ENABLED(CONFIG_MHP_DEFAULT_ONLINE_TYPE_OFFLINE))
229 		mhp_default_online_type = MMOP_OFFLINE;
230 	else if (IS_ENABLED(CONFIG_MHP_DEFAULT_ONLINE_TYPE_ONLINE_AUTO))
231 		mhp_default_online_type = MMOP_ONLINE;
232 	else if (IS_ENABLED(CONFIG_MHP_DEFAULT_ONLINE_TYPE_ONLINE_KERNEL))
233 		mhp_default_online_type = MMOP_ONLINE_KERNEL;
234 	else if (IS_ENABLED(CONFIG_MHP_DEFAULT_ONLINE_TYPE_ONLINE_MOVABLE))
235 		mhp_default_online_type = MMOP_ONLINE_MOVABLE;
236 	else
237 		mhp_default_online_type = MMOP_OFFLINE;
238 
239 	return mhp_default_online_type;
240 }
241 
mhp_set_default_online_type(int online_type)242 void mhp_set_default_online_type(int online_type)
243 {
244 	mhp_default_online_type = online_type;
245 }
246 
setup_memhp_default_state(char * str)247 static int __init setup_memhp_default_state(char *str)
248 {
249 	const int online_type = mhp_online_type_from_str(str);
250 
251 	if (online_type >= 0)
252 		mhp_default_online_type = online_type;
253 
254 	return 1;
255 }
256 __setup("memhp_default_state=", setup_memhp_default_state);
257 
mem_hotplug_begin(void)258 void mem_hotplug_begin(void)
259 {
260 	cpus_read_lock();
261 	percpu_down_write(&mem_hotplug_lock);
262 }
263 
mem_hotplug_done(void)264 void mem_hotplug_done(void)
265 {
266 	percpu_up_write(&mem_hotplug_lock);
267 	cpus_read_unlock();
268 }
269 
270 u64 max_mem_size = U64_MAX;
271 
272 /* add this memory to iomem resource */
register_memory_resource(u64 start,u64 size,const char * resource_name)273 static struct resource *register_memory_resource(u64 start, u64 size,
274 						 const char *resource_name)
275 {
276 	struct resource *res;
277 	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
278 
279 	if (strcmp(resource_name, "System RAM"))
280 		flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
281 
282 	if (!mhp_range_allowed(start, size, true))
283 		return ERR_PTR(-E2BIG);
284 
285 	/*
286 	 * Make sure value parsed from 'mem=' only restricts memory adding
287 	 * while booting, so that memory hotplug won't be impacted. Please
288 	 * refer to document of 'mem=' in kernel-parameters.txt for more
289 	 * details.
290 	 */
291 	if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
292 		return ERR_PTR(-E2BIG);
293 
294 	/*
295 	 * Request ownership of the new memory range.  This might be
296 	 * a child of an existing resource that was present but
297 	 * not marked as busy.
298 	 */
299 	res = __request_region(&iomem_resource, start, size,
300 			       resource_name, flags);
301 
302 	if (!res) {
303 		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
304 				start, start + size);
305 		return ERR_PTR(-EEXIST);
306 	}
307 	return res;
308 }
309 
release_memory_resource(struct resource * res)310 static void release_memory_resource(struct resource *res)
311 {
312 	if (!res)
313 		return;
314 	release_resource(res);
315 	kfree(res);
316 }
317 
check_pfn_span(unsigned long pfn,unsigned long nr_pages)318 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages)
319 {
320 	/*
321 	 * Disallow all operations smaller than a sub-section and only
322 	 * allow operations smaller than a section for
323 	 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
324 	 * enforces a larger memory_block_size_bytes() granularity for
325 	 * memory that will be marked online, so this check should only
326 	 * fire for direct arch_{add,remove}_memory() users outside of
327 	 * add_memory_resource().
328 	 */
329 	unsigned long min_align;
330 
331 	if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
332 		min_align = PAGES_PER_SUBSECTION;
333 	else
334 		min_align = PAGES_PER_SECTION;
335 	if (!IS_ALIGNED(pfn | nr_pages, min_align))
336 		return -EINVAL;
337 	return 0;
338 }
339 
340 /*
341  * Return page for the valid pfn only if the page is online. All pfn
342  * walkers which rely on the fully initialized page->flags and others
343  * should use this rather than pfn_valid && pfn_to_page
344  */
pfn_to_online_page(unsigned long pfn)345 struct page *pfn_to_online_page(unsigned long pfn)
346 {
347 	unsigned long nr = pfn_to_section_nr(pfn);
348 	struct dev_pagemap *pgmap;
349 	struct mem_section *ms;
350 
351 	if (nr >= NR_MEM_SECTIONS)
352 		return NULL;
353 
354 	ms = __nr_to_section(nr);
355 	if (!online_section(ms))
356 		return NULL;
357 
358 	/*
359 	 * Save some code text when online_section() +
360 	 * pfn_section_valid() are sufficient.
361 	 */
362 	if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
363 		return NULL;
364 
365 	if (!pfn_section_valid(ms, pfn))
366 		return NULL;
367 
368 	if (!online_device_section(ms))
369 		return pfn_to_page(pfn);
370 
371 	/*
372 	 * Slowpath: when ZONE_DEVICE collides with
373 	 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
374 	 * the section may be 'offline' but 'valid'. Only
375 	 * get_dev_pagemap() can determine sub-section online status.
376 	 */
377 	pgmap = get_dev_pagemap(pfn, NULL);
378 	put_dev_pagemap(pgmap);
379 
380 	/* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
381 	if (pgmap)
382 		return NULL;
383 
384 	return pfn_to_page(pfn);
385 }
386 EXPORT_SYMBOL_GPL(pfn_to_online_page);
387 
__add_pages(int nid,unsigned long pfn,unsigned long nr_pages,struct mhp_params * params)388 int __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
389 		struct mhp_params *params)
390 {
391 	const unsigned long end_pfn = pfn + nr_pages;
392 	unsigned long cur_nr_pages;
393 	int err;
394 	struct vmem_altmap *altmap = params->altmap;
395 
396 	if (WARN_ON_ONCE(!pgprot_val(params->pgprot)))
397 		return -EINVAL;
398 
399 	VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
400 
401 	if (altmap) {
402 		/*
403 		 * Validate altmap is within bounds of the total request
404 		 */
405 		if (altmap->base_pfn != pfn
406 				|| vmem_altmap_offset(altmap) > nr_pages) {
407 			pr_warn_once("memory add fail, invalid altmap\n");
408 			return -EINVAL;
409 		}
410 		altmap->alloc = 0;
411 	}
412 
413 	if (check_pfn_span(pfn, nr_pages)) {
414 		WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1);
415 		return -EINVAL;
416 	}
417 
418 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
419 		/* Select all remaining pages up to the next section boundary */
420 		cur_nr_pages = min(end_pfn - pfn,
421 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
422 		err = sparse_add_section(nid, pfn, cur_nr_pages, altmap,
423 					 params->pgmap);
424 		if (err)
425 			break;
426 		cond_resched();
427 	}
428 	vmemmap_populate_print_last();
429 	return err;
430 }
431 
432 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
find_smallest_section_pfn(int nid,struct zone * zone,unsigned long start_pfn,unsigned long end_pfn)433 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
434 				     unsigned long start_pfn,
435 				     unsigned long end_pfn)
436 {
437 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
438 		if (unlikely(!pfn_to_online_page(start_pfn)))
439 			continue;
440 
441 		if (unlikely(pfn_to_nid(start_pfn) != nid))
442 			continue;
443 
444 		if (zone != page_zone(pfn_to_page(start_pfn)))
445 			continue;
446 
447 		return start_pfn;
448 	}
449 
450 	return 0;
451 }
452 
453 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
find_biggest_section_pfn(int nid,struct zone * zone,unsigned long start_pfn,unsigned long end_pfn)454 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
455 				    unsigned long start_pfn,
456 				    unsigned long end_pfn)
457 {
458 	unsigned long pfn;
459 
460 	/* pfn is the end pfn of a memory section. */
461 	pfn = end_pfn - 1;
462 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
463 		if (unlikely(!pfn_to_online_page(pfn)))
464 			continue;
465 
466 		if (unlikely(pfn_to_nid(pfn) != nid))
467 			continue;
468 
469 		if (zone != page_zone(pfn_to_page(pfn)))
470 			continue;
471 
472 		return pfn;
473 	}
474 
475 	return 0;
476 }
477 
shrink_zone_span(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn)478 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
479 			     unsigned long end_pfn)
480 {
481 	unsigned long pfn;
482 	int nid = zone_to_nid(zone);
483 
484 	if (zone->zone_start_pfn == start_pfn) {
485 		/*
486 		 * If the section is smallest section in the zone, it need
487 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
488 		 * In this case, we find second smallest valid mem_section
489 		 * for shrinking zone.
490 		 */
491 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
492 						zone_end_pfn(zone));
493 		if (pfn) {
494 			zone->spanned_pages = zone_end_pfn(zone) - pfn;
495 			zone->zone_start_pfn = pfn;
496 		} else {
497 			zone->zone_start_pfn = 0;
498 			zone->spanned_pages = 0;
499 		}
500 	} else if (zone_end_pfn(zone) == end_pfn) {
501 		/*
502 		 * If the section is biggest section in the zone, it need
503 		 * shrink zone->spanned_pages.
504 		 * In this case, we find second biggest valid mem_section for
505 		 * shrinking zone.
506 		 */
507 		pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
508 					       start_pfn);
509 		if (pfn)
510 			zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
511 		else {
512 			zone->zone_start_pfn = 0;
513 			zone->spanned_pages = 0;
514 		}
515 	}
516 }
517 
update_pgdat_span(struct pglist_data * pgdat)518 static void update_pgdat_span(struct pglist_data *pgdat)
519 {
520 	unsigned long node_start_pfn = 0, node_end_pfn = 0;
521 	struct zone *zone;
522 
523 	for (zone = pgdat->node_zones;
524 	     zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
525 		unsigned long end_pfn = zone_end_pfn(zone);
526 
527 		/* No need to lock the zones, they can't change. */
528 		if (!zone->spanned_pages)
529 			continue;
530 		if (!node_end_pfn) {
531 			node_start_pfn = zone->zone_start_pfn;
532 			node_end_pfn = end_pfn;
533 			continue;
534 		}
535 
536 		if (end_pfn > node_end_pfn)
537 			node_end_pfn = end_pfn;
538 		if (zone->zone_start_pfn < node_start_pfn)
539 			node_start_pfn = zone->zone_start_pfn;
540 	}
541 
542 	pgdat->node_start_pfn = node_start_pfn;
543 	pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
544 }
545 
remove_pfn_range_from_zone(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)546 void remove_pfn_range_from_zone(struct zone *zone,
547 				      unsigned long start_pfn,
548 				      unsigned long nr_pages)
549 {
550 	const unsigned long end_pfn = start_pfn + nr_pages;
551 	struct pglist_data *pgdat = zone->zone_pgdat;
552 	unsigned long pfn, cur_nr_pages;
553 
554 	/* Poison struct pages because they are now uninitialized again. */
555 	for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
556 		cond_resched();
557 
558 		/* Select all remaining pages up to the next section boundary */
559 		cur_nr_pages =
560 			min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
561 		page_init_poison(pfn_to_page(pfn),
562 				 sizeof(struct page) * cur_nr_pages);
563 	}
564 
565 	/*
566 	 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
567 	 * we will not try to shrink the zones - which is okay as
568 	 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
569 	 */
570 	if (zone_is_zone_device(zone))
571 		return;
572 
573 	clear_zone_contiguous(zone);
574 
575 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
576 	update_pgdat_span(pgdat);
577 
578 	set_zone_contiguous(zone);
579 }
580 
581 /**
582  * __remove_pages() - remove sections of pages
583  * @pfn: starting pageframe (must be aligned to start of a section)
584  * @nr_pages: number of pages to remove (must be multiple of section size)
585  * @altmap: alternative device page map or %NULL if default memmap is used
586  *
587  * Generic helper function to remove section mappings and sysfs entries
588  * for the section of the memory we are removing. Caller needs to make
589  * sure that pages are marked reserved and zones are adjust properly by
590  * calling offline_pages().
591  */
__remove_pages(unsigned long pfn,unsigned long nr_pages,struct vmem_altmap * altmap)592 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
593 		    struct vmem_altmap *altmap)
594 {
595 	const unsigned long end_pfn = pfn + nr_pages;
596 	unsigned long cur_nr_pages;
597 
598 	if (check_pfn_span(pfn, nr_pages)) {
599 		WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1);
600 		return;
601 	}
602 
603 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
604 		cond_resched();
605 		/* Select all remaining pages up to the next section boundary */
606 		cur_nr_pages = min(end_pfn - pfn,
607 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
608 		sparse_remove_section(pfn, cur_nr_pages, altmap);
609 	}
610 }
611 
set_online_page_callback(online_page_callback_t callback)612 int set_online_page_callback(online_page_callback_t callback)
613 {
614 	int rc = -EINVAL;
615 
616 	get_online_mems();
617 	mutex_lock(&online_page_callback_lock);
618 
619 	if (online_page_callback == generic_online_page) {
620 		online_page_callback = callback;
621 		rc = 0;
622 	}
623 
624 	mutex_unlock(&online_page_callback_lock);
625 	put_online_mems();
626 
627 	return rc;
628 }
629 EXPORT_SYMBOL_GPL(set_online_page_callback);
630 
restore_online_page_callback(online_page_callback_t callback)631 int restore_online_page_callback(online_page_callback_t callback)
632 {
633 	int rc = -EINVAL;
634 
635 	get_online_mems();
636 	mutex_lock(&online_page_callback_lock);
637 
638 	if (online_page_callback == callback) {
639 		online_page_callback = generic_online_page;
640 		rc = 0;
641 	}
642 
643 	mutex_unlock(&online_page_callback_lock);
644 	put_online_mems();
645 
646 	return rc;
647 }
648 EXPORT_SYMBOL_GPL(restore_online_page_callback);
649 
650 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
generic_online_page(struct page * page,unsigned int order)651 void generic_online_page(struct page *page, unsigned int order)
652 {
653 	__free_pages_core(page, order, MEMINIT_HOTPLUG);
654 }
655 EXPORT_SYMBOL_GPL(generic_online_page);
656 
online_pages_range(unsigned long start_pfn,unsigned long nr_pages)657 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
658 {
659 	const unsigned long end_pfn = start_pfn + nr_pages;
660 	unsigned long pfn;
661 
662 	/*
663 	 * Online the pages in MAX_PAGE_ORDER aligned chunks. The callback might
664 	 * decide to not expose all pages to the buddy (e.g., expose them
665 	 * later). We account all pages as being online and belonging to this
666 	 * zone ("present").
667 	 * When using memmap_on_memory, the range might not be aligned to
668 	 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
669 	 * this and the first chunk to online will be pageblock_nr_pages.
670 	 */
671 	for (pfn = start_pfn; pfn < end_pfn;) {
672 		struct page *page = pfn_to_page(pfn);
673 		int order;
674 
675 		/*
676 		 * Free to online pages in the largest chunks alignment allows.
677 		 *
678 		 * __ffs() behaviour is undefined for 0. start == 0 is
679 		 * MAX_PAGE_ORDER-aligned, Set order to MAX_PAGE_ORDER for
680 		 * the case.
681 		 */
682 		if (pfn)
683 			order = min_t(int, MAX_PAGE_ORDER, __ffs(pfn));
684 		else
685 			order = MAX_PAGE_ORDER;
686 
687 		/*
688 		 * Exposing the page to the buddy by freeing can cause
689 		 * issues with debug_pagealloc enabled: some archs don't
690 		 * like double-unmappings. So treat them like any pages that
691 		 * were allocated from the buddy.
692 		 */
693 		debug_pagealloc_map_pages(page, 1 << order);
694 		(*online_page_callback)(page, order);
695 		pfn += (1UL << order);
696 	}
697 
698 	/* mark all involved sections as online */
699 	online_mem_sections(start_pfn, end_pfn);
700 }
701 
702 /* check which state of node_states will be changed when online memory */
node_states_check_changes_online(unsigned long nr_pages,struct zone * zone,struct memory_notify * arg)703 static void node_states_check_changes_online(unsigned long nr_pages,
704 	struct zone *zone, struct memory_notify *arg)
705 {
706 	int nid = zone_to_nid(zone);
707 
708 	arg->status_change_nid = NUMA_NO_NODE;
709 	arg->status_change_nid_normal = NUMA_NO_NODE;
710 
711 	if (!node_state(nid, N_MEMORY))
712 		arg->status_change_nid = nid;
713 	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
714 		arg->status_change_nid_normal = nid;
715 }
716 
node_states_set_node(int node,struct memory_notify * arg)717 static void node_states_set_node(int node, struct memory_notify *arg)
718 {
719 	if (arg->status_change_nid_normal >= 0)
720 		node_set_state(node, N_NORMAL_MEMORY);
721 
722 	if (arg->status_change_nid >= 0)
723 		node_set_state(node, N_MEMORY);
724 }
725 
resize_zone_range(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)726 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
727 		unsigned long nr_pages)
728 {
729 	unsigned long old_end_pfn = zone_end_pfn(zone);
730 
731 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
732 		zone->zone_start_pfn = start_pfn;
733 
734 	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
735 }
736 
resize_pgdat_range(struct pglist_data * pgdat,unsigned long start_pfn,unsigned long nr_pages)737 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
738                                      unsigned long nr_pages)
739 {
740 	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
741 
742 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
743 		pgdat->node_start_pfn = start_pfn;
744 
745 	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
746 
747 }
748 
749 #ifdef CONFIG_ZONE_DEVICE
section_taint_zone_device(unsigned long pfn)750 static void section_taint_zone_device(unsigned long pfn)
751 {
752 	struct mem_section *ms = __pfn_to_section(pfn);
753 
754 	ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
755 }
756 #else
section_taint_zone_device(unsigned long pfn)757 static inline void section_taint_zone_device(unsigned long pfn)
758 {
759 }
760 #endif
761 
762 /*
763  * Associate the pfn range with the given zone, initializing the memmaps
764  * and resizing the pgdat/zone data to span the added pages. After this
765  * call, all affected pages are PageOffline().
766  *
767  * All aligned pageblocks are initialized to the specified migratetype
768  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
769  * zone stats (e.g., nr_isolate_pageblock) are touched.
770  */
move_pfn_range_to_zone(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages,struct vmem_altmap * altmap,int migratetype)771 void move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
772 				  unsigned long nr_pages,
773 				  struct vmem_altmap *altmap, int migratetype)
774 {
775 	struct pglist_data *pgdat = zone->zone_pgdat;
776 	int nid = pgdat->node_id;
777 
778 	clear_zone_contiguous(zone);
779 
780 	if (zone_is_empty(zone))
781 		init_currently_empty_zone(zone, start_pfn, nr_pages);
782 	resize_zone_range(zone, start_pfn, nr_pages);
783 	resize_pgdat_range(pgdat, start_pfn, nr_pages);
784 
785 	/*
786 	 * Subsection population requires care in pfn_to_online_page().
787 	 * Set the taint to enable the slow path detection of
788 	 * ZONE_DEVICE pages in an otherwise  ZONE_{NORMAL,MOVABLE}
789 	 * section.
790 	 */
791 	if (zone_is_zone_device(zone)) {
792 		if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
793 			section_taint_zone_device(start_pfn);
794 		if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
795 			section_taint_zone_device(start_pfn + nr_pages);
796 	}
797 
798 	/*
799 	 * TODO now we have a visible range of pages which are not associated
800 	 * with their zone properly. Not nice but set_pfnblock_flags_mask
801 	 * expects the zone spans the pfn range. All the pages in the range
802 	 * are reserved so nobody should be touching them so we should be safe
803 	 */
804 	memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
805 			 MEMINIT_HOTPLUG, altmap, migratetype);
806 
807 	set_zone_contiguous(zone);
808 }
809 
810 struct auto_movable_stats {
811 	unsigned long kernel_early_pages;
812 	unsigned long movable_pages;
813 };
814 
auto_movable_stats_account_zone(struct auto_movable_stats * stats,struct zone * zone)815 static void auto_movable_stats_account_zone(struct auto_movable_stats *stats,
816 					    struct zone *zone)
817 {
818 	if (zone_idx(zone) == ZONE_MOVABLE) {
819 		stats->movable_pages += zone->present_pages;
820 	} else {
821 		stats->kernel_early_pages += zone->present_early_pages;
822 #ifdef CONFIG_CMA
823 		/*
824 		 * CMA pages (never on hotplugged memory) behave like
825 		 * ZONE_MOVABLE.
826 		 */
827 		stats->movable_pages += zone->cma_pages;
828 		stats->kernel_early_pages -= zone->cma_pages;
829 #endif /* CONFIG_CMA */
830 	}
831 }
832 struct auto_movable_group_stats {
833 	unsigned long movable_pages;
834 	unsigned long req_kernel_early_pages;
835 };
836 
auto_movable_stats_account_group(struct memory_group * group,void * arg)837 static int auto_movable_stats_account_group(struct memory_group *group,
838 					   void *arg)
839 {
840 	const int ratio = READ_ONCE(auto_movable_ratio);
841 	struct auto_movable_group_stats *stats = arg;
842 	long pages;
843 
844 	/*
845 	 * We don't support modifying the config while the auto-movable online
846 	 * policy is already enabled. Just avoid the division by zero below.
847 	 */
848 	if (!ratio)
849 		return 0;
850 
851 	/*
852 	 * Calculate how many early kernel pages this group requires to
853 	 * satisfy the configured zone ratio.
854 	 */
855 	pages = group->present_movable_pages * 100 / ratio;
856 	pages -= group->present_kernel_pages;
857 
858 	if (pages > 0)
859 		stats->req_kernel_early_pages += pages;
860 	stats->movable_pages += group->present_movable_pages;
861 	return 0;
862 }
863 
auto_movable_can_online_movable(int nid,struct memory_group * group,unsigned long nr_pages)864 static bool auto_movable_can_online_movable(int nid, struct memory_group *group,
865 					    unsigned long nr_pages)
866 {
867 	unsigned long kernel_early_pages, movable_pages;
868 	struct auto_movable_group_stats group_stats = {};
869 	struct auto_movable_stats stats = {};
870 	struct zone *zone;
871 	int i;
872 
873 	/* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */
874 	if (nid == NUMA_NO_NODE) {
875 		/* TODO: cache values */
876 		for_each_populated_zone(zone)
877 			auto_movable_stats_account_zone(&stats, zone);
878 	} else {
879 		for (i = 0; i < MAX_NR_ZONES; i++) {
880 			pg_data_t *pgdat = NODE_DATA(nid);
881 
882 			zone = pgdat->node_zones + i;
883 			if (populated_zone(zone))
884 				auto_movable_stats_account_zone(&stats, zone);
885 		}
886 	}
887 
888 	kernel_early_pages = stats.kernel_early_pages;
889 	movable_pages = stats.movable_pages;
890 
891 	/*
892 	 * Kernel memory inside dynamic memory group allows for more MOVABLE
893 	 * memory within the same group. Remove the effect of all but the
894 	 * current group from the stats.
895 	 */
896 	walk_dynamic_memory_groups(nid, auto_movable_stats_account_group,
897 				   group, &group_stats);
898 	if (kernel_early_pages <= group_stats.req_kernel_early_pages)
899 		return false;
900 	kernel_early_pages -= group_stats.req_kernel_early_pages;
901 	movable_pages -= group_stats.movable_pages;
902 
903 	if (group && group->is_dynamic)
904 		kernel_early_pages += group->present_kernel_pages;
905 
906 	/*
907 	 * Test if we could online the given number of pages to ZONE_MOVABLE
908 	 * and still stay in the configured ratio.
909 	 */
910 	movable_pages += nr_pages;
911 	return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100;
912 }
913 
914 /*
915  * Returns a default kernel memory zone for the given pfn range.
916  * If no kernel zone covers this pfn range it will automatically go
917  * to the ZONE_NORMAL.
918  */
default_kernel_zone_for_pfn(int nid,unsigned long start_pfn,unsigned long nr_pages)919 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
920 		unsigned long nr_pages)
921 {
922 	struct pglist_data *pgdat = NODE_DATA(nid);
923 	int zid;
924 
925 	for (zid = 0; zid < ZONE_NORMAL; zid++) {
926 		struct zone *zone = &pgdat->node_zones[zid];
927 
928 		if (zone_intersects(zone, start_pfn, nr_pages))
929 			return zone;
930 	}
931 
932 	return &pgdat->node_zones[ZONE_NORMAL];
933 }
934 
935 /*
936  * Determine to which zone to online memory dynamically based on user
937  * configuration and system stats. We care about the following ratio:
938  *
939  *   MOVABLE : KERNEL
940  *
941  * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in
942  * one of the kernel zones. CMA pages inside one of the kernel zones really
943  * behaves like ZONE_MOVABLE, so we treat them accordingly.
944  *
945  * We don't allow for hotplugged memory in a KERNEL zone to increase the
946  * amount of MOVABLE memory we can have, so we end up with:
947  *
948  *   MOVABLE : KERNEL_EARLY
949  *
950  * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze
951  * boot. We base our calculation on KERNEL_EARLY internally, because:
952  *
953  * a) Hotplugged memory in one of the kernel zones can sometimes still get
954  *    hotunplugged, especially when hot(un)plugging individual memory blocks.
955  *    There is no coordination across memory devices, therefore "automatic"
956  *    hotunplugging, as implemented in hypervisors, could result in zone
957  *    imbalances.
958  * b) Early/boot memory in one of the kernel zones can usually not get
959  *    hotunplugged again (e.g., no firmware interface to unplug, fragmented
960  *    with unmovable allocations). While there are corner cases where it might
961  *    still work, it is barely relevant in practice.
962  *
963  * Exceptions are dynamic memory groups, which allow for more MOVABLE
964  * memory within the same memory group -- because in that case, there is
965  * coordination within the single memory device managed by a single driver.
966  *
967  * We rely on "present pages" instead of "managed pages", as the latter is
968  * highly unreliable and dynamic in virtualized environments, and does not
969  * consider boot time allocations. For example, memory ballooning adjusts the
970  * managed pages when inflating/deflating the balloon, and balloon compaction
971  * can even migrate inflated pages between zones.
972  *
973  * Using "present pages" is better but some things to keep in mind are:
974  *
975  * a) Some memblock allocations, such as for the crashkernel area, are
976  *    effectively unused by the kernel, yet they account to "present pages".
977  *    Fortunately, these allocations are comparatively small in relevant setups
978  *    (e.g., fraction of system memory).
979  * b) Some hotplugged memory blocks in virtualized environments, esecially
980  *    hotplugged by virtio-mem, look like they are completely present, however,
981  *    only parts of the memory block are actually currently usable.
982  *    "present pages" is an upper limit that can get reached at runtime. As
983  *    we base our calculations on KERNEL_EARLY, this is not an issue.
984  */
auto_movable_zone_for_pfn(int nid,struct memory_group * group,unsigned long pfn,unsigned long nr_pages)985 static struct zone *auto_movable_zone_for_pfn(int nid,
986 					      struct memory_group *group,
987 					      unsigned long pfn,
988 					      unsigned long nr_pages)
989 {
990 	unsigned long online_pages = 0, max_pages, end_pfn;
991 	struct page *page;
992 
993 	if (!auto_movable_ratio)
994 		goto kernel_zone;
995 
996 	if (group && !group->is_dynamic) {
997 		max_pages = group->s.max_pages;
998 		online_pages = group->present_movable_pages;
999 
1000 		/* If anything is !MOVABLE online the rest !MOVABLE. */
1001 		if (group->present_kernel_pages)
1002 			goto kernel_zone;
1003 	} else if (!group || group->d.unit_pages == nr_pages) {
1004 		max_pages = nr_pages;
1005 	} else {
1006 		max_pages = group->d.unit_pages;
1007 		/*
1008 		 * Take a look at all online sections in the current unit.
1009 		 * We can safely assume that all pages within a section belong
1010 		 * to the same zone, because dynamic memory groups only deal
1011 		 * with hotplugged memory.
1012 		 */
1013 		pfn = ALIGN_DOWN(pfn, group->d.unit_pages);
1014 		end_pfn = pfn + group->d.unit_pages;
1015 		for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1016 			page = pfn_to_online_page(pfn);
1017 			if (!page)
1018 				continue;
1019 			/* If anything is !MOVABLE online the rest !MOVABLE. */
1020 			if (!is_zone_movable_page(page))
1021 				goto kernel_zone;
1022 			online_pages += PAGES_PER_SECTION;
1023 		}
1024 	}
1025 
1026 	/*
1027 	 * Online MOVABLE if we could *currently* online all remaining parts
1028 	 * MOVABLE. We expect to (add+) online them immediately next, so if
1029 	 * nobody interferes, all will be MOVABLE if possible.
1030 	 */
1031 	nr_pages = max_pages - online_pages;
1032 	if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages))
1033 		goto kernel_zone;
1034 
1035 #ifdef CONFIG_NUMA
1036 	if (auto_movable_numa_aware &&
1037 	    !auto_movable_can_online_movable(nid, group, nr_pages))
1038 		goto kernel_zone;
1039 #endif /* CONFIG_NUMA */
1040 
1041 	return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1042 kernel_zone:
1043 	return default_kernel_zone_for_pfn(nid, pfn, nr_pages);
1044 }
1045 
default_zone_for_pfn(int nid,unsigned long start_pfn,unsigned long nr_pages)1046 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
1047 		unsigned long nr_pages)
1048 {
1049 	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
1050 			nr_pages);
1051 	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1052 	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
1053 	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
1054 
1055 	/*
1056 	 * We inherit the existing zone in a simple case where zones do not
1057 	 * overlap in the given range
1058 	 */
1059 	if (in_kernel ^ in_movable)
1060 		return (in_kernel) ? kernel_zone : movable_zone;
1061 
1062 	/*
1063 	 * If the range doesn't belong to any zone or two zones overlap in the
1064 	 * given range then we use movable zone only if movable_node is
1065 	 * enabled because we always online to a kernel zone by default.
1066 	 */
1067 	return movable_node_enabled ? movable_zone : kernel_zone;
1068 }
1069 
zone_for_pfn_range(int online_type,int nid,struct memory_group * group,unsigned long start_pfn,unsigned long nr_pages)1070 struct zone *zone_for_pfn_range(int online_type, int nid,
1071 		struct memory_group *group, unsigned long start_pfn,
1072 		unsigned long nr_pages)
1073 {
1074 	if (online_type == MMOP_ONLINE_KERNEL)
1075 		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
1076 
1077 	if (online_type == MMOP_ONLINE_MOVABLE)
1078 		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1079 
1080 	if (online_policy == ONLINE_POLICY_AUTO_MOVABLE)
1081 		return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages);
1082 
1083 	return default_zone_for_pfn(nid, start_pfn, nr_pages);
1084 }
1085 
1086 /*
1087  * This function should only be called by memory_block_{online,offline},
1088  * and {online,offline}_pages.
1089  */
adjust_present_page_count(struct page * page,struct memory_group * group,long nr_pages)1090 void adjust_present_page_count(struct page *page, struct memory_group *group,
1091 			       long nr_pages)
1092 {
1093 	struct zone *zone = page_zone(page);
1094 	const bool movable = zone_idx(zone) == ZONE_MOVABLE;
1095 
1096 	/*
1097 	 * We only support onlining/offlining/adding/removing of complete
1098 	 * memory blocks; therefore, either all is either early or hotplugged.
1099 	 */
1100 	if (early_section(__pfn_to_section(page_to_pfn(page))))
1101 		zone->present_early_pages += nr_pages;
1102 	zone->present_pages += nr_pages;
1103 	zone->zone_pgdat->node_present_pages += nr_pages;
1104 
1105 	if (group && movable)
1106 		group->present_movable_pages += nr_pages;
1107 	else if (group && !movable)
1108 		group->present_kernel_pages += nr_pages;
1109 }
1110 
mhp_init_memmap_on_memory(unsigned long pfn,unsigned long nr_pages,struct zone * zone,bool mhp_off_inaccessible)1111 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
1112 			      struct zone *zone, bool mhp_off_inaccessible)
1113 {
1114 	unsigned long end_pfn = pfn + nr_pages;
1115 	int ret, i;
1116 
1117 	ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1118 	if (ret)
1119 		return ret;
1120 
1121 	/*
1122 	 * Memory block is accessible at this stage and hence poison the struct
1123 	 * pages now.  If the memory block is accessible during memory hotplug
1124 	 * addition phase, then page poisining is already performed in
1125 	 * sparse_add_section().
1126 	 */
1127 	if (mhp_off_inaccessible)
1128 		page_init_poison(pfn_to_page(pfn), sizeof(struct page) * nr_pages);
1129 
1130 	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
1131 
1132 	for (i = 0; i < nr_pages; i++) {
1133 		struct page *page = pfn_to_page(pfn + i);
1134 
1135 		__ClearPageOffline(page);
1136 		SetPageVmemmapSelfHosted(page);
1137 	}
1138 
1139 	/*
1140 	 * It might be that the vmemmap_pages fully span sections. If that is
1141 	 * the case, mark those sections online here as otherwise they will be
1142 	 * left offline.
1143 	 */
1144 	if (nr_pages >= PAGES_PER_SECTION)
1145 	        online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1146 
1147 	return ret;
1148 }
1149 
mhp_deinit_memmap_on_memory(unsigned long pfn,unsigned long nr_pages)1150 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
1151 {
1152 	unsigned long end_pfn = pfn + nr_pages;
1153 
1154 	/*
1155 	 * It might be that the vmemmap_pages fully span sections. If that is
1156 	 * the case, mark those sections offline here as otherwise they will be
1157 	 * left online.
1158 	 */
1159 	if (nr_pages >= PAGES_PER_SECTION)
1160 		offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1161 
1162         /*
1163 	 * The pages associated with this vmemmap have been offlined, so
1164 	 * we can reset its state here.
1165 	 */
1166 	remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
1167 	kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1168 }
1169 
1170 /*
1171  * Must be called with mem_hotplug_lock in write mode.
1172  */
online_pages(unsigned long pfn,unsigned long nr_pages,struct zone * zone,struct memory_group * group)1173 int online_pages(unsigned long pfn, unsigned long nr_pages,
1174 		       struct zone *zone, struct memory_group *group)
1175 {
1176 	unsigned long flags;
1177 	int need_zonelists_rebuild = 0;
1178 	const int nid = zone_to_nid(zone);
1179 	int ret;
1180 	struct memory_notify arg;
1181 
1182 	/*
1183 	 * {on,off}lining is constrained to full memory sections (or more
1184 	 * precisely to memory blocks from the user space POV).
1185 	 * memmap_on_memory is an exception because it reserves initial part
1186 	 * of the physical memory space for vmemmaps. That space is pageblock
1187 	 * aligned.
1188 	 */
1189 	if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(pfn) ||
1190 			 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
1191 		return -EINVAL;
1192 
1193 
1194 	/* associate pfn range with the zone */
1195 	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
1196 
1197 	arg.start_pfn = pfn;
1198 	arg.nr_pages = nr_pages;
1199 	node_states_check_changes_online(nr_pages, zone, &arg);
1200 
1201 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
1202 	ret = notifier_to_errno(ret);
1203 	if (ret)
1204 		goto failed_addition;
1205 
1206 	/*
1207 	 * Fixup the number of isolated pageblocks before marking the sections
1208 	 * onlining, such that undo_isolate_page_range() works correctly.
1209 	 */
1210 	spin_lock_irqsave(&zone->lock, flags);
1211 	zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
1212 	spin_unlock_irqrestore(&zone->lock, flags);
1213 
1214 	/*
1215 	 * If this zone is not populated, then it is not in zonelist.
1216 	 * This means the page allocator ignores this zone.
1217 	 * So, zonelist must be updated after online.
1218 	 */
1219 	if (!populated_zone(zone)) {
1220 		need_zonelists_rebuild = 1;
1221 		setup_zone_pageset(zone);
1222 	}
1223 
1224 	online_pages_range(pfn, nr_pages);
1225 	adjust_present_page_count(pfn_to_page(pfn), group, nr_pages);
1226 
1227 	node_states_set_node(nid, &arg);
1228 	if (need_zonelists_rebuild)
1229 		build_all_zonelists(NULL);
1230 
1231 	/* Basic onlining is complete, allow allocation of onlined pages. */
1232 	undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
1233 
1234 	/*
1235 	 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
1236 	 * the tail of the freelist when undoing isolation). Shuffle the whole
1237 	 * zone to make sure the just onlined pages are properly distributed
1238 	 * across the whole freelist - to create an initial shuffle.
1239 	 */
1240 	shuffle_zone(zone);
1241 
1242 	/* reinitialise watermarks and update pcp limits */
1243 	init_per_zone_wmark_min();
1244 
1245 	kswapd_run(nid);
1246 	kcompactd_run(nid);
1247 
1248 	writeback_set_ratelimit();
1249 
1250 	memory_notify(MEM_ONLINE, &arg);
1251 	return 0;
1252 
1253 failed_addition:
1254 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1255 		 (unsigned long long) pfn << PAGE_SHIFT,
1256 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1257 	memory_notify(MEM_CANCEL_ONLINE, &arg);
1258 	remove_pfn_range_from_zone(zone, pfn, nr_pages);
1259 	return ret;
1260 }
1261 
1262 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
hotadd_init_pgdat(int nid)1263 static pg_data_t *hotadd_init_pgdat(int nid)
1264 {
1265 	struct pglist_data *pgdat;
1266 
1267 	/*
1268 	 * NODE_DATA is preallocated (free_area_init) but its internal
1269 	 * state is not allocated completely. Add missing pieces.
1270 	 * Completely offline nodes stay around and they just need
1271 	 * reintialization.
1272 	 */
1273 	pgdat = NODE_DATA(nid);
1274 
1275 	/* init node's zones as empty zones, we don't have any present pages.*/
1276 	free_area_init_core_hotplug(pgdat);
1277 
1278 	/*
1279 	 * The node we allocated has no zone fallback lists. For avoiding
1280 	 * to access not-initialized zonelist, build here.
1281 	 */
1282 	build_all_zonelists(pgdat);
1283 
1284 	return pgdat;
1285 }
1286 
1287 /*
1288  * __try_online_node - online a node if offlined
1289  * @nid: the node ID
1290  * @set_node_online: Whether we want to online the node
1291  * called by cpu_up() to online a node without onlined memory.
1292  *
1293  * Returns:
1294  * 1 -> a new node has been allocated
1295  * 0 -> the node is already online
1296  * -ENOMEM -> the node could not be allocated
1297  */
__try_online_node(int nid,bool set_node_online)1298 static int __try_online_node(int nid, bool set_node_online)
1299 {
1300 	pg_data_t *pgdat;
1301 	int ret = 1;
1302 
1303 	if (node_online(nid))
1304 		return 0;
1305 
1306 	pgdat = hotadd_init_pgdat(nid);
1307 	if (!pgdat) {
1308 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1309 		ret = -ENOMEM;
1310 		goto out;
1311 	}
1312 
1313 	if (set_node_online) {
1314 		node_set_online(nid);
1315 		ret = register_one_node(nid);
1316 		BUG_ON(ret);
1317 	}
1318 out:
1319 	return ret;
1320 }
1321 
1322 /*
1323  * Users of this function always want to online/register the node
1324  */
try_online_node(int nid)1325 int try_online_node(int nid)
1326 {
1327 	int ret;
1328 
1329 	mem_hotplug_begin();
1330 	ret =  __try_online_node(nid, true);
1331 	mem_hotplug_done();
1332 	return ret;
1333 }
1334 
check_hotplug_memory_range(u64 start,u64 size)1335 static int check_hotplug_memory_range(u64 start, u64 size)
1336 {
1337 	/* memory range must be block size aligned */
1338 	if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1339 	    !IS_ALIGNED(size, memory_block_size_bytes())) {
1340 		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1341 		       memory_block_size_bytes(), start, size);
1342 		return -EINVAL;
1343 	}
1344 
1345 	return 0;
1346 }
1347 
online_memory_block(struct memory_block * mem,void * arg)1348 static int online_memory_block(struct memory_block *mem, void *arg)
1349 {
1350 	mem->online_type = mhp_get_default_online_type();
1351 	return device_online(&mem->dev);
1352 }
1353 
1354 #ifndef arch_supports_memmap_on_memory
arch_supports_memmap_on_memory(unsigned long vmemmap_size)1355 static inline bool arch_supports_memmap_on_memory(unsigned long vmemmap_size)
1356 {
1357 	/*
1358 	 * As default, we want the vmemmap to span a complete PMD such that we
1359 	 * can map the vmemmap using a single PMD if supported by the
1360 	 * architecture.
1361 	 */
1362 	return IS_ALIGNED(vmemmap_size, PMD_SIZE);
1363 }
1364 #endif
1365 
mhp_supports_memmap_on_memory(void)1366 bool mhp_supports_memmap_on_memory(void)
1367 {
1368 	unsigned long vmemmap_size = memory_block_memmap_size();
1369 	unsigned long memmap_pages = memory_block_memmap_on_memory_pages();
1370 
1371 	/*
1372 	 * Besides having arch support and the feature enabled at runtime, we
1373 	 * need a few more assumptions to hold true:
1374 	 *
1375 	 * a) The vmemmap pages span complete PMDs: We don't want vmemmap code
1376 	 *    to populate memory from the altmap for unrelated parts (i.e.,
1377 	 *    other memory blocks)
1378 	 *
1379 	 * b) The vmemmap pages (and thereby the pages that will be exposed to
1380 	 *    the buddy) have to cover full pageblocks: memory onlining/offlining
1381 	 *    code requires applicable ranges to be page-aligned, for example, to
1382 	 *    set the migratetypes properly.
1383 	 *
1384 	 * TODO: Although we have a check here to make sure that vmemmap pages
1385 	 *       fully populate a PMD, it is not the right place to check for
1386 	 *       this. A much better solution involves improving vmemmap code
1387 	 *       to fallback to base pages when trying to populate vmemmap using
1388 	 *       altmap as an alternative source of memory, and we do not exactly
1389 	 *       populate a single PMD.
1390 	 */
1391 	if (!mhp_memmap_on_memory())
1392 		return false;
1393 
1394 	/*
1395 	 * Make sure the vmemmap allocation is fully contained
1396 	 * so that we always allocate vmemmap memory from altmap area.
1397 	 */
1398 	if (!IS_ALIGNED(vmemmap_size, PAGE_SIZE))
1399 		return false;
1400 
1401 	/*
1402 	 * start pfn should be pageblock_nr_pages aligned for correctly
1403 	 * setting migrate types
1404 	 */
1405 	if (!pageblock_aligned(memmap_pages))
1406 		return false;
1407 
1408 	if (memmap_pages == PHYS_PFN(memory_block_size_bytes()))
1409 		/* No effective hotplugged memory doesn't make sense. */
1410 		return false;
1411 
1412 	return arch_supports_memmap_on_memory(vmemmap_size);
1413 }
1414 EXPORT_SYMBOL_GPL(mhp_supports_memmap_on_memory);
1415 
remove_memory_blocks_and_altmaps(u64 start,u64 size)1416 static void remove_memory_blocks_and_altmaps(u64 start, u64 size)
1417 {
1418 	unsigned long memblock_size = memory_block_size_bytes();
1419 	u64 cur_start;
1420 
1421 	/*
1422 	 * For memmap_on_memory, the altmaps were added on a per-memblock
1423 	 * basis; we have to process each individual memory block.
1424 	 */
1425 	for (cur_start = start; cur_start < start + size;
1426 	     cur_start += memblock_size) {
1427 		struct vmem_altmap *altmap = NULL;
1428 		struct memory_block *mem;
1429 
1430 		mem = find_memory_block(pfn_to_section_nr(PFN_DOWN(cur_start)));
1431 		if (WARN_ON_ONCE(!mem))
1432 			continue;
1433 
1434 		altmap = mem->altmap;
1435 		mem->altmap = NULL;
1436 
1437 		remove_memory_block_devices(cur_start, memblock_size);
1438 
1439 		arch_remove_memory(cur_start, memblock_size, altmap);
1440 
1441 		/* Verify that all vmemmap pages have actually been freed. */
1442 		WARN(altmap->alloc, "Altmap not fully unmapped");
1443 		kfree(altmap);
1444 	}
1445 }
1446 
create_altmaps_and_memory_blocks(int nid,struct memory_group * group,u64 start,u64 size,mhp_t mhp_flags)1447 static int create_altmaps_and_memory_blocks(int nid, struct memory_group *group,
1448 					    u64 start, u64 size, mhp_t mhp_flags)
1449 {
1450 	unsigned long memblock_size = memory_block_size_bytes();
1451 	u64 cur_start;
1452 	int ret;
1453 
1454 	for (cur_start = start; cur_start < start + size;
1455 	     cur_start += memblock_size) {
1456 		struct mhp_params params = { .pgprot =
1457 						     pgprot_mhp(PAGE_KERNEL) };
1458 		struct vmem_altmap mhp_altmap = {
1459 			.base_pfn = PHYS_PFN(cur_start),
1460 			.end_pfn = PHYS_PFN(cur_start + memblock_size - 1),
1461 		};
1462 
1463 		mhp_altmap.free = memory_block_memmap_on_memory_pages();
1464 		if (mhp_flags & MHP_OFFLINE_INACCESSIBLE)
1465 			mhp_altmap.inaccessible = true;
1466 		params.altmap = kmemdup(&mhp_altmap, sizeof(struct vmem_altmap),
1467 					GFP_KERNEL);
1468 		if (!params.altmap) {
1469 			ret = -ENOMEM;
1470 			goto out;
1471 		}
1472 
1473 		/* call arch's memory hotadd */
1474 		ret = arch_add_memory(nid, cur_start, memblock_size, &params);
1475 		if (ret < 0) {
1476 			kfree(params.altmap);
1477 			goto out;
1478 		}
1479 
1480 		/* create memory block devices after memory was added */
1481 		ret = create_memory_block_devices(cur_start, memblock_size,
1482 						  params.altmap, group);
1483 		if (ret) {
1484 			arch_remove_memory(cur_start, memblock_size, NULL);
1485 			kfree(params.altmap);
1486 			goto out;
1487 		}
1488 	}
1489 
1490 	return 0;
1491 out:
1492 	if (ret && cur_start != start)
1493 		remove_memory_blocks_and_altmaps(start, cur_start - start);
1494 	return ret;
1495 }
1496 
1497 /*
1498  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1499  * and online/offline operations (triggered e.g. by sysfs).
1500  *
1501  * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1502  */
add_memory_resource(int nid,struct resource * res,mhp_t mhp_flags)1503 int add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1504 {
1505 	struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1506 	enum memblock_flags memblock_flags = MEMBLOCK_NONE;
1507 	struct memory_group *group = NULL;
1508 	u64 start, size;
1509 	bool new_node = false;
1510 	int ret;
1511 
1512 	start = res->start;
1513 	size = resource_size(res);
1514 
1515 	ret = check_hotplug_memory_range(start, size);
1516 	if (ret)
1517 		return ret;
1518 
1519 	if (mhp_flags & MHP_NID_IS_MGID) {
1520 		group = memory_group_find_by_id(nid);
1521 		if (!group)
1522 			return -EINVAL;
1523 		nid = group->nid;
1524 	}
1525 
1526 	if (!node_possible(nid)) {
1527 		WARN(1, "node %d was absent from the node_possible_map\n", nid);
1528 		return -EINVAL;
1529 	}
1530 
1531 	mem_hotplug_begin();
1532 
1533 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1534 		if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
1535 			memblock_flags = MEMBLOCK_DRIVER_MANAGED;
1536 		ret = memblock_add_node(start, size, nid, memblock_flags);
1537 		if (ret)
1538 			goto error_mem_hotplug_end;
1539 	}
1540 
1541 	ret = __try_online_node(nid, false);
1542 	if (ret < 0)
1543 		goto error;
1544 	new_node = ret;
1545 
1546 	/*
1547 	 * Self hosted memmap array
1548 	 */
1549 	if ((mhp_flags & MHP_MEMMAP_ON_MEMORY) &&
1550 	    mhp_supports_memmap_on_memory()) {
1551 		ret = create_altmaps_and_memory_blocks(nid, group, start, size, mhp_flags);
1552 		if (ret)
1553 			goto error;
1554 	} else {
1555 		ret = arch_add_memory(nid, start, size, &params);
1556 		if (ret < 0)
1557 			goto error;
1558 
1559 		/* create memory block devices after memory was added */
1560 		ret = create_memory_block_devices(start, size, NULL, group);
1561 		if (ret) {
1562 			arch_remove_memory(start, size, params.altmap);
1563 			goto error;
1564 		}
1565 	}
1566 
1567 	if (new_node) {
1568 		/* If sysfs file of new node can't be created, cpu on the node
1569 		 * can't be hot-added. There is no rollback way now.
1570 		 * So, check by BUG_ON() to catch it reluctantly..
1571 		 * We online node here. We can't roll back from here.
1572 		 */
1573 		node_set_online(nid);
1574 		ret = __register_one_node(nid);
1575 		BUG_ON(ret);
1576 	}
1577 
1578 	register_memory_blocks_under_node(nid, PFN_DOWN(start),
1579 					  PFN_UP(start + size - 1),
1580 					  MEMINIT_HOTPLUG);
1581 
1582 	/* create new memmap entry */
1583 	if (!strcmp(res->name, "System RAM"))
1584 		firmware_map_add_hotplug(start, start + size, "System RAM");
1585 
1586 	/* device_online() will take the lock when calling online_pages() */
1587 	mem_hotplug_done();
1588 
1589 	/*
1590 	 * In case we're allowed to merge the resource, flag it and trigger
1591 	 * merging now that adding succeeded.
1592 	 */
1593 	if (mhp_flags & MHP_MERGE_RESOURCE)
1594 		merge_system_ram_resource(res);
1595 
1596 	/* online pages if requested */
1597 	if (mhp_get_default_online_type() != MMOP_OFFLINE)
1598 		walk_memory_blocks(start, size, NULL, online_memory_block);
1599 
1600 	return ret;
1601 error:
1602 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1603 		memblock_remove(start, size);
1604 error_mem_hotplug_end:
1605 	mem_hotplug_done();
1606 	return ret;
1607 }
1608 
1609 /* requires device_hotplug_lock, see add_memory_resource() */
__add_memory(int nid,u64 start,u64 size,mhp_t mhp_flags)1610 int __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1611 {
1612 	struct resource *res;
1613 	int ret;
1614 
1615 	res = register_memory_resource(start, size, "System RAM");
1616 	if (IS_ERR(res))
1617 		return PTR_ERR(res);
1618 
1619 	ret = add_memory_resource(nid, res, mhp_flags);
1620 	if (ret < 0)
1621 		release_memory_resource(res);
1622 	return ret;
1623 }
1624 
add_memory(int nid,u64 start,u64 size,mhp_t mhp_flags)1625 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1626 {
1627 	int rc;
1628 
1629 	lock_device_hotplug();
1630 	rc = __add_memory(nid, start, size, mhp_flags);
1631 	unlock_device_hotplug();
1632 
1633 	return rc;
1634 }
1635 EXPORT_SYMBOL_GPL(add_memory);
1636 
1637 /*
1638  * Add special, driver-managed memory to the system as system RAM. Such
1639  * memory is not exposed via the raw firmware-provided memmap as system
1640  * RAM, instead, it is detected and added by a driver - during cold boot,
1641  * after a reboot, and after kexec.
1642  *
1643  * Reasons why this memory should not be used for the initial memmap of a
1644  * kexec kernel or for placing kexec images:
1645  * - The booting kernel is in charge of determining how this memory will be
1646  *   used (e.g., use persistent memory as system RAM)
1647  * - Coordination with a hypervisor is required before this memory
1648  *   can be used (e.g., inaccessible parts).
1649  *
1650  * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1651  * memory map") are created. Also, the created memory resource is flagged
1652  * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1653  * this memory as well (esp., not place kexec images onto it).
1654  *
1655  * The resource_name (visible via /proc/iomem) has to have the format
1656  * "System RAM ($DRIVER)".
1657  */
add_memory_driver_managed(int nid,u64 start,u64 size,const char * resource_name,mhp_t mhp_flags)1658 int add_memory_driver_managed(int nid, u64 start, u64 size,
1659 			      const char *resource_name, mhp_t mhp_flags)
1660 {
1661 	struct resource *res;
1662 	int rc;
1663 
1664 	if (!resource_name ||
1665 	    strstr(resource_name, "System RAM (") != resource_name ||
1666 	    resource_name[strlen(resource_name) - 1] != ')')
1667 		return -EINVAL;
1668 
1669 	lock_device_hotplug();
1670 
1671 	res = register_memory_resource(start, size, resource_name);
1672 	if (IS_ERR(res)) {
1673 		rc = PTR_ERR(res);
1674 		goto out_unlock;
1675 	}
1676 
1677 	rc = add_memory_resource(nid, res, mhp_flags);
1678 	if (rc < 0)
1679 		release_memory_resource(res);
1680 
1681 out_unlock:
1682 	unlock_device_hotplug();
1683 	return rc;
1684 }
1685 EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1686 
1687 /*
1688  * Platforms should define arch_get_mappable_range() that provides
1689  * maximum possible addressable physical memory range for which the
1690  * linear mapping could be created. The platform returned address
1691  * range must adhere to these following semantics.
1692  *
1693  * - range.start <= range.end
1694  * - Range includes both end points [range.start..range.end]
1695  *
1696  * There is also a fallback definition provided here, allowing the
1697  * entire possible physical address range in case any platform does
1698  * not define arch_get_mappable_range().
1699  */
arch_get_mappable_range(void)1700 struct range __weak arch_get_mappable_range(void)
1701 {
1702 	struct range mhp_range = {
1703 		.start = 0UL,
1704 		.end = -1ULL,
1705 	};
1706 	return mhp_range;
1707 }
1708 
mhp_get_pluggable_range(bool need_mapping)1709 struct range mhp_get_pluggable_range(bool need_mapping)
1710 {
1711 	const u64 max_phys = DIRECT_MAP_PHYSMEM_END;
1712 	struct range mhp_range;
1713 
1714 	if (need_mapping) {
1715 		mhp_range = arch_get_mappable_range();
1716 		if (mhp_range.start > max_phys) {
1717 			mhp_range.start = 0;
1718 			mhp_range.end = 0;
1719 		}
1720 		mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1721 	} else {
1722 		mhp_range.start = 0;
1723 		mhp_range.end = max_phys;
1724 	}
1725 	return mhp_range;
1726 }
1727 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1728 
mhp_range_allowed(u64 start,u64 size,bool need_mapping)1729 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1730 {
1731 	struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1732 	u64 end = start + size;
1733 
1734 	if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1735 		return true;
1736 
1737 	pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1738 		start, end, mhp_range.start, mhp_range.end);
1739 	return false;
1740 }
1741 
1742 #ifdef CONFIG_MEMORY_HOTREMOVE
1743 /*
1744  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1745  * non-lru movable pages and hugepages). Will skip over most unmovable
1746  * pages (esp., pages that can be skipped when offlining), but bail out on
1747  * definitely unmovable pages.
1748  *
1749  * Returns:
1750  *	0 in case a movable page is found and movable_pfn was updated.
1751  *	-ENOENT in case no movable page was found.
1752  *	-EBUSY in case a definitely unmovable page was found.
1753  */
scan_movable_pages(unsigned long start,unsigned long end,unsigned long * movable_pfn)1754 static int scan_movable_pages(unsigned long start, unsigned long end,
1755 			      unsigned long *movable_pfn)
1756 {
1757 	unsigned long pfn;
1758 
1759 	for (pfn = start; pfn < end; pfn++) {
1760 		struct page *page;
1761 		struct folio *folio;
1762 
1763 		if (!pfn_valid(pfn))
1764 			continue;
1765 		page = pfn_to_page(pfn);
1766 		if (PageLRU(page))
1767 			goto found;
1768 		if (__PageMovable(page))
1769 			goto found;
1770 
1771 		/*
1772 		 * PageOffline() pages that are not marked __PageMovable() and
1773 		 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1774 		 * definitely unmovable. If their reference count would be 0,
1775 		 * they could at least be skipped when offlining memory.
1776 		 */
1777 		if (PageOffline(page) && page_count(page))
1778 			return -EBUSY;
1779 
1780 		if (!PageHuge(page))
1781 			continue;
1782 		folio = page_folio(page);
1783 		/*
1784 		 * This test is racy as we hold no reference or lock.  The
1785 		 * hugetlb page could have been free'ed and head is no longer
1786 		 * a hugetlb page before the following check.  In such unlikely
1787 		 * cases false positives and negatives are possible.  Calling
1788 		 * code must deal with these scenarios.
1789 		 */
1790 		if (folio_test_hugetlb_migratable(folio))
1791 			goto found;
1792 		pfn |= folio_nr_pages(folio) - 1;
1793 	}
1794 	return -ENOENT;
1795 found:
1796 	*movable_pfn = pfn;
1797 	return 0;
1798 }
1799 
do_migrate_range(unsigned long start_pfn,unsigned long end_pfn)1800 static void do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1801 {
1802 	struct folio *folio;
1803 	unsigned long pfn;
1804 	LIST_HEAD(source);
1805 	static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1806 				      DEFAULT_RATELIMIT_BURST);
1807 
1808 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1809 		struct page *page;
1810 
1811 		if (!pfn_valid(pfn))
1812 			continue;
1813 		page = pfn_to_page(pfn);
1814 		folio = page_folio(page);
1815 
1816 		/*
1817 		 * No reference or lock is held on the folio, so it might
1818 		 * be modified concurrently (e.g. split).  As such,
1819 		 * folio_nr_pages() may read garbage.  This is fine as the outer
1820 		 * loop will revisit the split folio later.
1821 		 */
1822 		if (folio_test_large(folio))
1823 			pfn = folio_pfn(folio) + folio_nr_pages(folio) - 1;
1824 
1825 		if (!folio_try_get(folio))
1826 			continue;
1827 
1828 		if (unlikely(page_folio(page) != folio))
1829 			goto put_folio;
1830 
1831 		if (folio_test_hwpoison(folio) ||
1832 		    (folio_test_large(folio) && folio_test_has_hwpoisoned(folio))) {
1833 			if (WARN_ON(folio_test_lru(folio)))
1834 				folio_isolate_lru(folio);
1835 			if (folio_mapped(folio)) {
1836 				folio_lock(folio);
1837 				unmap_poisoned_folio(folio, pfn, false);
1838 				folio_unlock(folio);
1839 			}
1840 
1841 			goto put_folio;
1842 		}
1843 
1844 		if (!isolate_folio_to_list(folio, &source)) {
1845 			if (__ratelimit(&migrate_rs)) {
1846 				pr_warn("failed to isolate pfn %lx\n",
1847 					page_to_pfn(page));
1848 				dump_page(page, "isolation failed");
1849 			}
1850 		}
1851 put_folio:
1852 		folio_put(folio);
1853 	}
1854 	if (!list_empty(&source)) {
1855 		nodemask_t nmask = node_states[N_MEMORY];
1856 		struct migration_target_control mtc = {
1857 			.nmask = &nmask,
1858 			.gfp_mask = GFP_KERNEL | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1859 			.reason = MR_MEMORY_HOTPLUG,
1860 		};
1861 		int ret;
1862 
1863 		/*
1864 		 * We have checked that migration range is on a single zone so
1865 		 * we can use the nid of the first page to all the others.
1866 		 */
1867 		mtc.nid = folio_nid(list_first_entry(&source, struct folio, lru));
1868 
1869 		/*
1870 		 * try to allocate from a different node but reuse this node
1871 		 * if there are no other online nodes to be used (e.g. we are
1872 		 * offlining a part of the only existing node)
1873 		 */
1874 		node_clear(mtc.nid, nmask);
1875 		if (nodes_empty(nmask))
1876 			node_set(mtc.nid, nmask);
1877 		ret = migrate_pages(&source, alloc_migration_target, NULL,
1878 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL);
1879 		if (ret) {
1880 			list_for_each_entry(folio, &source, lru) {
1881 				if (__ratelimit(&migrate_rs)) {
1882 					pr_warn("migrating pfn %lx failed ret:%d\n",
1883 						folio_pfn(folio), ret);
1884 					dump_page(&folio->page,
1885 						  "migration failure");
1886 				}
1887 			}
1888 			putback_movable_pages(&source);
1889 		}
1890 	}
1891 }
1892 
cmdline_parse_movable_node(char * p)1893 static int __init cmdline_parse_movable_node(char *p)
1894 {
1895 	movable_node_enabled = true;
1896 	return 0;
1897 }
1898 early_param("movable_node", cmdline_parse_movable_node);
1899 
1900 /* check which state of node_states will be changed when offline memory */
node_states_check_changes_offline(unsigned long nr_pages,struct zone * zone,struct memory_notify * arg)1901 static void node_states_check_changes_offline(unsigned long nr_pages,
1902 		struct zone *zone, struct memory_notify *arg)
1903 {
1904 	struct pglist_data *pgdat = zone->zone_pgdat;
1905 	unsigned long present_pages = 0;
1906 	enum zone_type zt;
1907 
1908 	arg->status_change_nid = NUMA_NO_NODE;
1909 	arg->status_change_nid_normal = NUMA_NO_NODE;
1910 
1911 	/*
1912 	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1913 	 * If the memory to be offline is within the range
1914 	 * [0..ZONE_NORMAL], and it is the last present memory there,
1915 	 * the zones in that range will become empty after the offlining,
1916 	 * thus we can determine that we need to clear the node from
1917 	 * node_states[N_NORMAL_MEMORY].
1918 	 */
1919 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1920 		present_pages += pgdat->node_zones[zt].present_pages;
1921 	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1922 		arg->status_change_nid_normal = zone_to_nid(zone);
1923 
1924 	/*
1925 	 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM
1926 	 * does not apply as we don't support 32bit.
1927 	 * Here we count the possible pages from ZONE_MOVABLE.
1928 	 * If after having accounted all the pages, we see that the nr_pages
1929 	 * to be offlined is over or equal to the accounted pages,
1930 	 * we know that the node will become empty, and so, we can clear
1931 	 * it for N_MEMORY as well.
1932 	 */
1933 	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1934 
1935 	if (nr_pages >= present_pages)
1936 		arg->status_change_nid = zone_to_nid(zone);
1937 }
1938 
node_states_clear_node(int node,struct memory_notify * arg)1939 static void node_states_clear_node(int node, struct memory_notify *arg)
1940 {
1941 	if (arg->status_change_nid_normal >= 0)
1942 		node_clear_state(node, N_NORMAL_MEMORY);
1943 
1944 	if (arg->status_change_nid >= 0)
1945 		node_clear_state(node, N_MEMORY);
1946 }
1947 
count_system_ram_pages_cb(unsigned long start_pfn,unsigned long nr_pages,void * data)1948 static int count_system_ram_pages_cb(unsigned long start_pfn,
1949 				     unsigned long nr_pages, void *data)
1950 {
1951 	unsigned long *nr_system_ram_pages = data;
1952 
1953 	*nr_system_ram_pages += nr_pages;
1954 	return 0;
1955 }
1956 
1957 /*
1958  * Must be called with mem_hotplug_lock in write mode.
1959  */
offline_pages(unsigned long start_pfn,unsigned long nr_pages,struct zone * zone,struct memory_group * group)1960 int offline_pages(unsigned long start_pfn, unsigned long nr_pages,
1961 			struct zone *zone, struct memory_group *group)
1962 {
1963 	const unsigned long end_pfn = start_pfn + nr_pages;
1964 	unsigned long pfn, managed_pages, system_ram_pages = 0;
1965 	const int node = zone_to_nid(zone);
1966 	unsigned long flags;
1967 	struct memory_notify arg;
1968 	char *reason;
1969 	int ret;
1970 
1971 	/*
1972 	 * {on,off}lining is constrained to full memory sections (or more
1973 	 * precisely to memory blocks from the user space POV).
1974 	 * memmap_on_memory is an exception because it reserves initial part
1975 	 * of the physical memory space for vmemmaps. That space is pageblock
1976 	 * aligned.
1977 	 */
1978 	if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(start_pfn) ||
1979 			 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1980 		return -EINVAL;
1981 
1982 	/*
1983 	 * Don't allow to offline memory blocks that contain holes.
1984 	 * Consequently, memory blocks with holes can never get onlined
1985 	 * via the hotplug path - online_pages() - as hotplugged memory has
1986 	 * no holes. This way, we don't have to worry about memory holes,
1987 	 * don't need pfn_valid() checks, and can avoid using
1988 	 * walk_system_ram_range() later.
1989 	 */
1990 	walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1991 			      count_system_ram_pages_cb);
1992 	if (system_ram_pages != nr_pages) {
1993 		ret = -EINVAL;
1994 		reason = "memory holes";
1995 		goto failed_removal;
1996 	}
1997 
1998 	/*
1999 	 * We only support offlining of memory blocks managed by a single zone,
2000 	 * checked by calling code. This is just a sanity check that we might
2001 	 * want to remove in the future.
2002 	 */
2003 	if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone ||
2004 			 page_zone(pfn_to_page(end_pfn - 1)) != zone)) {
2005 		ret = -EINVAL;
2006 		reason = "multizone range";
2007 		goto failed_removal;
2008 	}
2009 
2010 	/*
2011 	 * Disable pcplists so that page isolation cannot race with freeing
2012 	 * in a way that pages from isolated pageblock are left on pcplists.
2013 	 */
2014 	zone_pcp_disable(zone);
2015 	lru_cache_disable();
2016 
2017 	/* set above range as isolated */
2018 	ret = start_isolate_page_range(start_pfn, end_pfn,
2019 				       MIGRATE_MOVABLE,
2020 				       MEMORY_OFFLINE | REPORT_FAILURE);
2021 	if (ret) {
2022 		reason = "failure to isolate range";
2023 		goto failed_removal_pcplists_disabled;
2024 	}
2025 
2026 	arg.start_pfn = start_pfn;
2027 	arg.nr_pages = nr_pages;
2028 	node_states_check_changes_offline(nr_pages, zone, &arg);
2029 
2030 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
2031 	ret = notifier_to_errno(ret);
2032 	if (ret) {
2033 		reason = "notifier failure";
2034 		goto failed_removal_isolated;
2035 	}
2036 
2037 	do {
2038 		pfn = start_pfn;
2039 		do {
2040 			/*
2041 			 * Historically we always checked for any signal and
2042 			 * can't limit it to fatal signals without eventually
2043 			 * breaking user space.
2044 			 */
2045 			if (signal_pending(current)) {
2046 				ret = -EINTR;
2047 				reason = "signal backoff";
2048 				goto failed_removal_isolated;
2049 			}
2050 
2051 			cond_resched();
2052 
2053 			ret = scan_movable_pages(pfn, end_pfn, &pfn);
2054 			if (!ret) {
2055 				/*
2056 				 * TODO: fatal migration failures should bail
2057 				 * out
2058 				 */
2059 				do_migrate_range(pfn, end_pfn);
2060 			}
2061 		} while (!ret);
2062 
2063 		if (ret != -ENOENT) {
2064 			reason = "unmovable page";
2065 			goto failed_removal_isolated;
2066 		}
2067 
2068 		/*
2069 		 * Dissolve free hugetlb folios in the memory block before doing
2070 		 * offlining actually in order to make hugetlbfs's object
2071 		 * counting consistent.
2072 		 */
2073 		ret = dissolve_free_hugetlb_folios(start_pfn, end_pfn);
2074 		if (ret) {
2075 			reason = "failure to dissolve huge pages";
2076 			goto failed_removal_isolated;
2077 		}
2078 
2079 		ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
2080 
2081 	} while (ret);
2082 
2083 	/* Mark all sections offline and remove free pages from the buddy. */
2084 	managed_pages = __offline_isolated_pages(start_pfn, end_pfn);
2085 	pr_debug("Offlined Pages %ld\n", nr_pages);
2086 
2087 	/*
2088 	 * The memory sections are marked offline, and the pageblock flags
2089 	 * effectively stale; nobody should be touching them. Fixup the number
2090 	 * of isolated pageblocks, memory onlining will properly revert this.
2091 	 */
2092 	spin_lock_irqsave(&zone->lock, flags);
2093 	zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
2094 	spin_unlock_irqrestore(&zone->lock, flags);
2095 
2096 	lru_cache_enable();
2097 	zone_pcp_enable(zone);
2098 
2099 	/* removal success */
2100 	adjust_managed_page_count(pfn_to_page(start_pfn), -managed_pages);
2101 	adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages);
2102 
2103 	/* reinitialise watermarks and update pcp limits */
2104 	init_per_zone_wmark_min();
2105 
2106 	/*
2107 	 * Make sure to mark the node as memory-less before rebuilding the zone
2108 	 * list. Otherwise this node would still appear in the fallback lists.
2109 	 */
2110 	node_states_clear_node(node, &arg);
2111 	if (!populated_zone(zone)) {
2112 		zone_pcp_reset(zone);
2113 		build_all_zonelists(NULL);
2114 	}
2115 
2116 	if (arg.status_change_nid >= 0) {
2117 		kcompactd_stop(node);
2118 		kswapd_stop(node);
2119 	}
2120 
2121 	writeback_set_ratelimit();
2122 
2123 	memory_notify(MEM_OFFLINE, &arg);
2124 	remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
2125 	return 0;
2126 
2127 failed_removal_isolated:
2128 	/* pushback to free area */
2129 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
2130 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
2131 failed_removal_pcplists_disabled:
2132 	lru_cache_enable();
2133 	zone_pcp_enable(zone);
2134 failed_removal:
2135 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
2136 		 (unsigned long long) start_pfn << PAGE_SHIFT,
2137 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
2138 		 reason);
2139 	return ret;
2140 }
2141 
check_memblock_offlined_cb(struct memory_block * mem,void * arg)2142 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
2143 {
2144 	int *nid = arg;
2145 
2146 	*nid = mem->nid;
2147 	if (unlikely(mem->state != MEM_OFFLINE)) {
2148 		phys_addr_t beginpa, endpa;
2149 
2150 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
2151 		endpa = beginpa + memory_block_size_bytes() - 1;
2152 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
2153 			&beginpa, &endpa);
2154 
2155 		return -EBUSY;
2156 	}
2157 	return 0;
2158 }
2159 
count_memory_range_altmaps_cb(struct memory_block * mem,void * arg)2160 static int count_memory_range_altmaps_cb(struct memory_block *mem, void *arg)
2161 {
2162 	u64 *num_altmaps = (u64 *)arg;
2163 
2164 	if (mem->altmap)
2165 		*num_altmaps += 1;
2166 
2167 	return 0;
2168 }
2169 
check_cpu_on_node(int nid)2170 static int check_cpu_on_node(int nid)
2171 {
2172 	int cpu;
2173 
2174 	for_each_present_cpu(cpu) {
2175 		if (cpu_to_node(cpu) == nid)
2176 			/*
2177 			 * the cpu on this node isn't removed, and we can't
2178 			 * offline this node.
2179 			 */
2180 			return -EBUSY;
2181 	}
2182 
2183 	return 0;
2184 }
2185 
check_no_memblock_for_node_cb(struct memory_block * mem,void * arg)2186 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
2187 {
2188 	int nid = *(int *)arg;
2189 
2190 	/*
2191 	 * If a memory block belongs to multiple nodes, the stored nid is not
2192 	 * reliable. However, such blocks are always online (e.g., cannot get
2193 	 * offlined) and, therefore, are still spanned by the node.
2194 	 */
2195 	return mem->nid == nid ? -EEXIST : 0;
2196 }
2197 
2198 /**
2199  * try_offline_node
2200  * @nid: the node ID
2201  *
2202  * Offline a node if all memory sections and cpus of the node are removed.
2203  *
2204  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2205  * and online/offline operations before this call.
2206  */
try_offline_node(int nid)2207 void try_offline_node(int nid)
2208 {
2209 	int rc;
2210 
2211 	/*
2212 	 * If the node still spans pages (especially ZONE_DEVICE), don't
2213 	 * offline it. A node spans memory after move_pfn_range_to_zone(),
2214 	 * e.g., after the memory block was onlined.
2215 	 */
2216 	if (node_spanned_pages(nid))
2217 		return;
2218 
2219 	/*
2220 	 * Especially offline memory blocks might not be spanned by the
2221 	 * node. They will get spanned by the node once they get onlined.
2222 	 * However, they link to the node in sysfs and can get onlined later.
2223 	 */
2224 	rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
2225 	if (rc)
2226 		return;
2227 
2228 	if (check_cpu_on_node(nid))
2229 		return;
2230 
2231 	/*
2232 	 * all memory/cpu of this node are removed, we can offline this
2233 	 * node now.
2234 	 */
2235 	node_set_offline(nid);
2236 	unregister_one_node(nid);
2237 }
2238 EXPORT_SYMBOL(try_offline_node);
2239 
memory_blocks_have_altmaps(u64 start,u64 size)2240 static int memory_blocks_have_altmaps(u64 start, u64 size)
2241 {
2242 	u64 num_memblocks = size / memory_block_size_bytes();
2243 	u64 num_altmaps = 0;
2244 
2245 	if (!mhp_memmap_on_memory())
2246 		return 0;
2247 
2248 	walk_memory_blocks(start, size, &num_altmaps,
2249 			   count_memory_range_altmaps_cb);
2250 
2251 	if (num_altmaps == 0)
2252 		return 0;
2253 
2254 	if (WARN_ON_ONCE(num_memblocks != num_altmaps))
2255 		return -EINVAL;
2256 
2257 	return 1;
2258 }
2259 
try_remove_memory(u64 start,u64 size)2260 static int try_remove_memory(u64 start, u64 size)
2261 {
2262 	int rc, nid = NUMA_NO_NODE;
2263 
2264 	BUG_ON(check_hotplug_memory_range(start, size));
2265 
2266 	/*
2267 	 * All memory blocks must be offlined before removing memory.  Check
2268 	 * whether all memory blocks in question are offline and return error
2269 	 * if this is not the case.
2270 	 *
2271 	 * While at it, determine the nid. Note that if we'd have mixed nodes,
2272 	 * we'd only try to offline the last determined one -- which is good
2273 	 * enough for the cases we care about.
2274 	 */
2275 	rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb);
2276 	if (rc)
2277 		return rc;
2278 
2279 	/* remove memmap entry */
2280 	firmware_map_remove(start, start + size, "System RAM");
2281 
2282 	mem_hotplug_begin();
2283 
2284 	rc = memory_blocks_have_altmaps(start, size);
2285 	if (rc < 0) {
2286 		mem_hotplug_done();
2287 		return rc;
2288 	} else if (!rc) {
2289 		/*
2290 		 * Memory block device removal under the device_hotplug_lock is
2291 		 * a barrier against racing online attempts.
2292 		 * No altmaps present, do the removal directly
2293 		 */
2294 		remove_memory_block_devices(start, size);
2295 		arch_remove_memory(start, size, NULL);
2296 	} else {
2297 		/* all memblocks in the range have altmaps */
2298 		remove_memory_blocks_and_altmaps(start, size);
2299 	}
2300 
2301 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
2302 		memblock_remove(start, size);
2303 
2304 	release_mem_region_adjustable(start, size);
2305 
2306 	if (nid != NUMA_NO_NODE)
2307 		try_offline_node(nid);
2308 
2309 	mem_hotplug_done();
2310 	return 0;
2311 }
2312 
2313 /**
2314  * __remove_memory - Remove memory if every memory block is offline
2315  * @start: physical address of the region to remove
2316  * @size: size of the region to remove
2317  *
2318  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2319  * and online/offline operations before this call, as required by
2320  * try_offline_node().
2321  */
__remove_memory(u64 start,u64 size)2322 void __remove_memory(u64 start, u64 size)
2323 {
2324 
2325 	/*
2326 	 * trigger BUG() if some memory is not offlined prior to calling this
2327 	 * function
2328 	 */
2329 	if (try_remove_memory(start, size))
2330 		BUG();
2331 }
2332 
2333 /*
2334  * Remove memory if every memory block is offline, otherwise return -EBUSY is
2335  * some memory is not offline
2336  */
remove_memory(u64 start,u64 size)2337 int remove_memory(u64 start, u64 size)
2338 {
2339 	int rc;
2340 
2341 	lock_device_hotplug();
2342 	rc = try_remove_memory(start, size);
2343 	unlock_device_hotplug();
2344 
2345 	return rc;
2346 }
2347 EXPORT_SYMBOL_GPL(remove_memory);
2348 
try_offline_memory_block(struct memory_block * mem,void * arg)2349 static int try_offline_memory_block(struct memory_block *mem, void *arg)
2350 {
2351 	uint8_t online_type = MMOP_ONLINE_KERNEL;
2352 	uint8_t **online_types = arg;
2353 	struct page *page;
2354 	int rc;
2355 
2356 	/*
2357 	 * Sense the online_type via the zone of the memory block. Offlining
2358 	 * with multiple zones within one memory block will be rejected
2359 	 * by offlining code ... so we don't care about that.
2360 	 */
2361 	page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2362 	if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2363 		online_type = MMOP_ONLINE_MOVABLE;
2364 
2365 	rc = device_offline(&mem->dev);
2366 	/*
2367 	 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2368 	 * so try_reonline_memory_block() can do the right thing.
2369 	 */
2370 	if (!rc)
2371 		**online_types = online_type;
2372 
2373 	(*online_types)++;
2374 	/* Ignore if already offline. */
2375 	return rc < 0 ? rc : 0;
2376 }
2377 
try_reonline_memory_block(struct memory_block * mem,void * arg)2378 static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2379 {
2380 	uint8_t **online_types = arg;
2381 	int rc;
2382 
2383 	if (**online_types != MMOP_OFFLINE) {
2384 		mem->online_type = **online_types;
2385 		rc = device_online(&mem->dev);
2386 		if (rc < 0)
2387 			pr_warn("%s: Failed to re-online memory: %d",
2388 				__func__, rc);
2389 	}
2390 
2391 	/* Continue processing all remaining memory blocks. */
2392 	(*online_types)++;
2393 	return 0;
2394 }
2395 
2396 /*
2397  * Try to offline and remove memory. Might take a long time to finish in case
2398  * memory is still in use. Primarily useful for memory devices that logically
2399  * unplugged all memory (so it's no longer in use) and want to offline + remove
2400  * that memory.
2401  */
offline_and_remove_memory(u64 start,u64 size)2402 int offline_and_remove_memory(u64 start, u64 size)
2403 {
2404 	const unsigned long mb_count = size / memory_block_size_bytes();
2405 	uint8_t *online_types, *tmp;
2406 	int rc;
2407 
2408 	if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2409 	    !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2410 		return -EINVAL;
2411 
2412 	/*
2413 	 * We'll remember the old online type of each memory block, so we can
2414 	 * try to revert whatever we did when offlining one memory block fails
2415 	 * after offlining some others succeeded.
2416 	 */
2417 	online_types = kmalloc_array(mb_count, sizeof(*online_types),
2418 				     GFP_KERNEL);
2419 	if (!online_types)
2420 		return -ENOMEM;
2421 	/*
2422 	 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2423 	 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2424 	 * try_reonline_memory_block().
2425 	 */
2426 	memset(online_types, MMOP_OFFLINE, mb_count);
2427 
2428 	lock_device_hotplug();
2429 
2430 	tmp = online_types;
2431 	rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2432 
2433 	/*
2434 	 * In case we succeeded to offline all memory, remove it.
2435 	 * This cannot fail as it cannot get onlined in the meantime.
2436 	 */
2437 	if (!rc) {
2438 		rc = try_remove_memory(start, size);
2439 		if (rc)
2440 			pr_err("%s: Failed to remove memory: %d", __func__, rc);
2441 	}
2442 
2443 	/*
2444 	 * Rollback what we did. While memory onlining might theoretically fail
2445 	 * (nacked by a notifier), it barely ever happens.
2446 	 */
2447 	if (rc) {
2448 		tmp = online_types;
2449 		walk_memory_blocks(start, size, &tmp,
2450 				   try_reonline_memory_block);
2451 	}
2452 	unlock_device_hotplug();
2453 
2454 	kfree(online_types);
2455 	return rc;
2456 }
2457 EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2458 #endif /* CONFIG_MEMORY_HOTREMOVE */
2459