1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory_hotplug.c
4 *
5 * Copyright (C)
6 */
7
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memremap.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/vmalloc.h>
24 #include <linux/ioport.h>
25 #include <linux/delay.h>
26 #include <linux/migrate.h>
27 #include <linux/page-isolation.h>
28 #include <linux/pfn.h>
29 #include <linux/suspend.h>
30 #include <linux/mm_inline.h>
31 #include <linux/firmware-map.h>
32 #include <linux/stop_machine.h>
33 #include <linux/hugetlb.h>
34 #include <linux/memblock.h>
35 #include <linux/compaction.h>
36 #include <linux/rmap.h>
37 #include <linux/module.h>
38 #include <linux/node.h>
39
40 #include <asm/tlbflush.h>
41
42 #include "internal.h"
43 #include "shuffle.h"
44
45 enum {
46 MEMMAP_ON_MEMORY_DISABLE = 0,
47 MEMMAP_ON_MEMORY_ENABLE,
48 MEMMAP_ON_MEMORY_FORCE,
49 };
50
51 static int memmap_mode __read_mostly = MEMMAP_ON_MEMORY_DISABLE;
52
memory_block_memmap_size(void)53 static inline unsigned long memory_block_memmap_size(void)
54 {
55 return PHYS_PFN(memory_block_size_bytes()) * sizeof(struct page);
56 }
57
memory_block_memmap_on_memory_pages(void)58 static inline unsigned long memory_block_memmap_on_memory_pages(void)
59 {
60 unsigned long nr_pages = PFN_UP(memory_block_memmap_size());
61
62 /*
63 * In "forced" memmap_on_memory mode, we add extra pages to align the
64 * vmemmap size to cover full pageblocks. That way, we can add memory
65 * even if the vmemmap size is not properly aligned, however, we might waste
66 * memory.
67 */
68 if (memmap_mode == MEMMAP_ON_MEMORY_FORCE)
69 return pageblock_align(nr_pages);
70 return nr_pages;
71 }
72
73 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
74 /*
75 * memory_hotplug.memmap_on_memory parameter
76 */
set_memmap_mode(const char * val,const struct kernel_param * kp)77 static int set_memmap_mode(const char *val, const struct kernel_param *kp)
78 {
79 int ret, mode;
80 bool enabled;
81
82 if (sysfs_streq(val, "force") || sysfs_streq(val, "FORCE")) {
83 mode = MEMMAP_ON_MEMORY_FORCE;
84 } else {
85 ret = kstrtobool(val, &enabled);
86 if (ret < 0)
87 return ret;
88 if (enabled)
89 mode = MEMMAP_ON_MEMORY_ENABLE;
90 else
91 mode = MEMMAP_ON_MEMORY_DISABLE;
92 }
93 *((int *)kp->arg) = mode;
94 if (mode == MEMMAP_ON_MEMORY_FORCE) {
95 unsigned long memmap_pages = memory_block_memmap_on_memory_pages();
96
97 pr_info_once("Memory hotplug will waste %ld pages in each memory block\n",
98 memmap_pages - PFN_UP(memory_block_memmap_size()));
99 }
100 return 0;
101 }
102
get_memmap_mode(char * buffer,const struct kernel_param * kp)103 static int get_memmap_mode(char *buffer, const struct kernel_param *kp)
104 {
105 int mode = *((int *)kp->arg);
106
107 if (mode == MEMMAP_ON_MEMORY_FORCE)
108 return sprintf(buffer, "force\n");
109 return sprintf(buffer, "%c\n", mode ? 'Y' : 'N');
110 }
111
112 static const struct kernel_param_ops memmap_mode_ops = {
113 .set = set_memmap_mode,
114 .get = get_memmap_mode,
115 };
116 module_param_cb(memmap_on_memory, &memmap_mode_ops, &memmap_mode, 0444);
117 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug\n"
118 "With value \"force\" it could result in memory wastage due "
119 "to memmap size limitations (Y/N/force)");
120
mhp_memmap_on_memory(void)121 static inline bool mhp_memmap_on_memory(void)
122 {
123 return memmap_mode != MEMMAP_ON_MEMORY_DISABLE;
124 }
125 #else
mhp_memmap_on_memory(void)126 static inline bool mhp_memmap_on_memory(void)
127 {
128 return false;
129 }
130 #endif
131
132 enum {
133 ONLINE_POLICY_CONTIG_ZONES = 0,
134 ONLINE_POLICY_AUTO_MOVABLE,
135 };
136
137 static const char * const online_policy_to_str[] = {
138 [ONLINE_POLICY_CONTIG_ZONES] = "contig-zones",
139 [ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable",
140 };
141
set_online_policy(const char * val,const struct kernel_param * kp)142 static int set_online_policy(const char *val, const struct kernel_param *kp)
143 {
144 int ret = sysfs_match_string(online_policy_to_str, val);
145
146 if (ret < 0)
147 return ret;
148 *((int *)kp->arg) = ret;
149 return 0;
150 }
151
get_online_policy(char * buffer,const struct kernel_param * kp)152 static int get_online_policy(char *buffer, const struct kernel_param *kp)
153 {
154 return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]);
155 }
156
157 /*
158 * memory_hotplug.online_policy: configure online behavior when onlining without
159 * specifying a zone (MMOP_ONLINE)
160 *
161 * "contig-zones": keep zone contiguous
162 * "auto-movable": online memory to ZONE_MOVABLE if the configuration
163 * (auto_movable_ratio, auto_movable_numa_aware) allows for it
164 */
165 static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES;
166 static const struct kernel_param_ops online_policy_ops = {
167 .set = set_online_policy,
168 .get = get_online_policy,
169 };
170 module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644);
171 MODULE_PARM_DESC(online_policy,
172 "Set the online policy (\"contig-zones\", \"auto-movable\") "
173 "Default: \"contig-zones\"");
174
175 /*
176 * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio
177 *
178 * The ratio represent an upper limit and the kernel might decide to not
179 * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory
180 * doesn't allow for more MOVABLE memory.
181 */
182 static unsigned int auto_movable_ratio __read_mostly = 301;
183 module_param(auto_movable_ratio, uint, 0644);
184 MODULE_PARM_DESC(auto_movable_ratio,
185 "Set the maximum ratio of MOVABLE:KERNEL memory in the system "
186 "in percent for \"auto-movable\" online policy. Default: 301");
187
188 /*
189 * memory_hotplug.auto_movable_numa_aware: consider numa node stats
190 */
191 #ifdef CONFIG_NUMA
192 static bool auto_movable_numa_aware __read_mostly = true;
193 module_param(auto_movable_numa_aware, bool, 0644);
194 MODULE_PARM_DESC(auto_movable_numa_aware,
195 "Consider numa node stats in addition to global stats in "
196 "\"auto-movable\" online policy. Default: true");
197 #endif /* CONFIG_NUMA */
198
199 /*
200 * online_page_callback contains pointer to current page onlining function.
201 * Initially it is generic_online_page(). If it is required it could be
202 * changed by calling set_online_page_callback() for callback registration
203 * and restore_online_page_callback() for generic callback restore.
204 */
205
206 static online_page_callback_t online_page_callback = generic_online_page;
207 static DEFINE_MUTEX(online_page_callback_lock);
208
209 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
210
get_online_mems(void)211 void get_online_mems(void)
212 {
213 percpu_down_read(&mem_hotplug_lock);
214 }
215
put_online_mems(void)216 void put_online_mems(void)
217 {
218 percpu_up_read(&mem_hotplug_lock);
219 }
220
221 bool movable_node_enabled = false;
222
223 static int mhp_default_online_type = -1;
mhp_get_default_online_type(void)224 int mhp_get_default_online_type(void)
225 {
226 if (mhp_default_online_type >= 0)
227 return mhp_default_online_type;
228
229 if (IS_ENABLED(CONFIG_MHP_DEFAULT_ONLINE_TYPE_OFFLINE))
230 mhp_default_online_type = MMOP_OFFLINE;
231 else if (IS_ENABLED(CONFIG_MHP_DEFAULT_ONLINE_TYPE_ONLINE_AUTO))
232 mhp_default_online_type = MMOP_ONLINE;
233 else if (IS_ENABLED(CONFIG_MHP_DEFAULT_ONLINE_TYPE_ONLINE_KERNEL))
234 mhp_default_online_type = MMOP_ONLINE_KERNEL;
235 else if (IS_ENABLED(CONFIG_MHP_DEFAULT_ONLINE_TYPE_ONLINE_MOVABLE))
236 mhp_default_online_type = MMOP_ONLINE_MOVABLE;
237 else
238 mhp_default_online_type = MMOP_OFFLINE;
239
240 return mhp_default_online_type;
241 }
242
mhp_set_default_online_type(int online_type)243 void mhp_set_default_online_type(int online_type)
244 {
245 mhp_default_online_type = online_type;
246 }
247
setup_memhp_default_state(char * str)248 static int __init setup_memhp_default_state(char *str)
249 {
250 const int online_type = mhp_online_type_from_str(str);
251
252 if (online_type >= 0)
253 mhp_default_online_type = online_type;
254
255 return 1;
256 }
257 __setup("memhp_default_state=", setup_memhp_default_state);
258
mem_hotplug_begin(void)259 void mem_hotplug_begin(void)
260 {
261 cpus_read_lock();
262 percpu_down_write(&mem_hotplug_lock);
263 }
264
mem_hotplug_done(void)265 void mem_hotplug_done(void)
266 {
267 percpu_up_write(&mem_hotplug_lock);
268 cpus_read_unlock();
269 }
270
271 u64 max_mem_size = U64_MAX;
272
273 /* add this memory to iomem resource */
register_memory_resource(u64 start,u64 size,const char * resource_name)274 static struct resource *register_memory_resource(u64 start, u64 size,
275 const char *resource_name)
276 {
277 struct resource *res;
278 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
279
280 if (strcmp(resource_name, "System RAM"))
281 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
282
283 if (!mhp_range_allowed(start, size, true))
284 return ERR_PTR(-E2BIG);
285
286 /*
287 * Make sure value parsed from 'mem=' only restricts memory adding
288 * while booting, so that memory hotplug won't be impacted. Please
289 * refer to document of 'mem=' in kernel-parameters.txt for more
290 * details.
291 */
292 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
293 return ERR_PTR(-E2BIG);
294
295 /*
296 * Request ownership of the new memory range. This might be
297 * a child of an existing resource that was present but
298 * not marked as busy.
299 */
300 res = __request_region(&iomem_resource, start, size,
301 resource_name, flags);
302
303 if (!res) {
304 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
305 start, start + size);
306 return ERR_PTR(-EEXIST);
307 }
308 return res;
309 }
310
release_memory_resource(struct resource * res)311 static void release_memory_resource(struct resource *res)
312 {
313 if (!res)
314 return;
315 release_resource(res);
316 kfree(res);
317 }
318
check_pfn_span(unsigned long pfn,unsigned long nr_pages)319 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages)
320 {
321 /*
322 * Disallow all operations smaller than a sub-section and only
323 * allow operations smaller than a section for
324 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
325 * enforces a larger memory_block_size_bytes() granularity for
326 * memory that will be marked online, so this check should only
327 * fire for direct arch_{add,remove}_memory() users outside of
328 * add_memory_resource().
329 */
330 unsigned long min_align;
331
332 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
333 min_align = PAGES_PER_SUBSECTION;
334 else
335 min_align = PAGES_PER_SECTION;
336 if (!IS_ALIGNED(pfn | nr_pages, min_align))
337 return -EINVAL;
338 return 0;
339 }
340
341 /*
342 * Return page for the valid pfn only if the page is online. All pfn
343 * walkers which rely on the fully initialized page->flags and others
344 * should use this rather than pfn_valid && pfn_to_page
345 */
pfn_to_online_page(unsigned long pfn)346 struct page *pfn_to_online_page(unsigned long pfn)
347 {
348 unsigned long nr = pfn_to_section_nr(pfn);
349 struct dev_pagemap *pgmap;
350 struct mem_section *ms;
351
352 if (nr >= NR_MEM_SECTIONS)
353 return NULL;
354
355 ms = __nr_to_section(nr);
356 if (!online_section(ms))
357 return NULL;
358
359 /*
360 * Save some code text when online_section() +
361 * pfn_section_valid() are sufficient.
362 */
363 if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
364 return NULL;
365
366 if (!pfn_section_valid(ms, pfn))
367 return NULL;
368
369 if (!online_device_section(ms))
370 return pfn_to_page(pfn);
371
372 /*
373 * Slowpath: when ZONE_DEVICE collides with
374 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
375 * the section may be 'offline' but 'valid'. Only
376 * get_dev_pagemap() can determine sub-section online status.
377 */
378 pgmap = get_dev_pagemap(pfn);
379 put_dev_pagemap(pgmap);
380
381 /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
382 if (pgmap)
383 return NULL;
384
385 return pfn_to_page(pfn);
386 }
387 EXPORT_SYMBOL_GPL(pfn_to_online_page);
388
__add_pages(int nid,unsigned long pfn,unsigned long nr_pages,struct mhp_params * params)389 int __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
390 struct mhp_params *params)
391 {
392 const unsigned long end_pfn = pfn + nr_pages;
393 unsigned long cur_nr_pages;
394 int err;
395 struct vmem_altmap *altmap = params->altmap;
396
397 if (WARN_ON_ONCE(!pgprot_val(params->pgprot)))
398 return -EINVAL;
399
400 VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
401
402 if (altmap) {
403 /*
404 * Validate altmap is within bounds of the total request
405 */
406 if (altmap->base_pfn != pfn
407 || vmem_altmap_offset(altmap) > nr_pages) {
408 pr_warn_once("memory add fail, invalid altmap\n");
409 return -EINVAL;
410 }
411 altmap->alloc = 0;
412 }
413
414 if (check_pfn_span(pfn, nr_pages)) {
415 WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1);
416 return -EINVAL;
417 }
418
419 for (; pfn < end_pfn; pfn += cur_nr_pages) {
420 /* Select all remaining pages up to the next section boundary */
421 cur_nr_pages = min(end_pfn - pfn,
422 SECTION_ALIGN_UP(pfn + 1) - pfn);
423 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap,
424 params->pgmap);
425 if (err)
426 break;
427 cond_resched();
428 }
429 vmemmap_populate_print_last();
430 return err;
431 }
432
433 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
find_smallest_section_pfn(int nid,struct zone * zone,unsigned long start_pfn,unsigned long end_pfn)434 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
435 unsigned long start_pfn,
436 unsigned long end_pfn)
437 {
438 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
439 if (unlikely(!pfn_to_online_page(start_pfn)))
440 continue;
441
442 if (unlikely(pfn_to_nid(start_pfn) != nid))
443 continue;
444
445 if (zone != page_zone(pfn_to_page(start_pfn)))
446 continue;
447
448 return start_pfn;
449 }
450
451 return 0;
452 }
453
454 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
find_biggest_section_pfn(int nid,struct zone * zone,unsigned long start_pfn,unsigned long end_pfn)455 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
456 unsigned long start_pfn,
457 unsigned long end_pfn)
458 {
459 unsigned long pfn;
460
461 /* pfn is the end pfn of a memory section. */
462 pfn = end_pfn - 1;
463 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
464 if (unlikely(!pfn_to_online_page(pfn)))
465 continue;
466
467 if (unlikely(pfn_to_nid(pfn) != nid))
468 continue;
469
470 if (zone != page_zone(pfn_to_page(pfn)))
471 continue;
472
473 return pfn;
474 }
475
476 return 0;
477 }
478
shrink_zone_span(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn)479 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
480 unsigned long end_pfn)
481 {
482 unsigned long pfn;
483 int nid = zone_to_nid(zone);
484
485 if (zone->zone_start_pfn == start_pfn) {
486 /*
487 * If the section is smallest section in the zone, it need
488 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
489 * In this case, we find second smallest valid mem_section
490 * for shrinking zone.
491 */
492 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
493 zone_end_pfn(zone));
494 if (pfn) {
495 zone->spanned_pages = zone_end_pfn(zone) - pfn;
496 zone->zone_start_pfn = pfn;
497 } else {
498 zone->zone_start_pfn = 0;
499 zone->spanned_pages = 0;
500 }
501 } else if (zone_end_pfn(zone) == end_pfn) {
502 /*
503 * If the section is biggest section in the zone, it need
504 * shrink zone->spanned_pages.
505 * In this case, we find second biggest valid mem_section for
506 * shrinking zone.
507 */
508 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
509 start_pfn);
510 if (pfn)
511 zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
512 else {
513 zone->zone_start_pfn = 0;
514 zone->spanned_pages = 0;
515 }
516 }
517 }
518
update_pgdat_span(struct pglist_data * pgdat)519 static void update_pgdat_span(struct pglist_data *pgdat)
520 {
521 unsigned long node_start_pfn = 0, node_end_pfn = 0;
522 struct zone *zone;
523
524 for (zone = pgdat->node_zones;
525 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
526 unsigned long end_pfn = zone_end_pfn(zone);
527
528 /* No need to lock the zones, they can't change. */
529 if (!zone->spanned_pages)
530 continue;
531 if (!node_end_pfn) {
532 node_start_pfn = zone->zone_start_pfn;
533 node_end_pfn = end_pfn;
534 continue;
535 }
536
537 if (end_pfn > node_end_pfn)
538 node_end_pfn = end_pfn;
539 if (zone->zone_start_pfn < node_start_pfn)
540 node_start_pfn = zone->zone_start_pfn;
541 }
542
543 pgdat->node_start_pfn = node_start_pfn;
544 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
545 }
546
remove_pfn_range_from_zone(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)547 void remove_pfn_range_from_zone(struct zone *zone,
548 unsigned long start_pfn,
549 unsigned long nr_pages)
550 {
551 const unsigned long end_pfn = start_pfn + nr_pages;
552 struct pglist_data *pgdat = zone->zone_pgdat;
553 unsigned long pfn, cur_nr_pages;
554
555 /* Poison struct pages because they are now uninitialized again. */
556 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
557 cond_resched();
558
559 /* Select all remaining pages up to the next section boundary */
560 cur_nr_pages =
561 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
562 page_init_poison(pfn_to_page(pfn),
563 sizeof(struct page) * cur_nr_pages);
564 }
565
566 /*
567 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
568 * we will not try to shrink the zones - which is okay as
569 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
570 */
571 if (zone_is_zone_device(zone))
572 return;
573
574 clear_zone_contiguous(zone);
575
576 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
577 update_pgdat_span(pgdat);
578
579 set_zone_contiguous(zone);
580 }
581
582 /**
583 * __remove_pages() - remove sections of pages
584 * @pfn: starting pageframe (must be aligned to start of a section)
585 * @nr_pages: number of pages to remove (must be multiple of section size)
586 * @altmap: alternative device page map or %NULL if default memmap is used
587 *
588 * Generic helper function to remove section mappings and sysfs entries
589 * for the section of the memory we are removing. Caller needs to make
590 * sure that pages are marked reserved and zones are adjust properly by
591 * calling offline_pages().
592 */
__remove_pages(unsigned long pfn,unsigned long nr_pages,struct vmem_altmap * altmap)593 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
594 struct vmem_altmap *altmap)
595 {
596 const unsigned long end_pfn = pfn + nr_pages;
597 unsigned long cur_nr_pages;
598
599 if (check_pfn_span(pfn, nr_pages)) {
600 WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1);
601 return;
602 }
603
604 for (; pfn < end_pfn; pfn += cur_nr_pages) {
605 cond_resched();
606 /* Select all remaining pages up to the next section boundary */
607 cur_nr_pages = min(end_pfn - pfn,
608 SECTION_ALIGN_UP(pfn + 1) - pfn);
609 sparse_remove_section(pfn, cur_nr_pages, altmap);
610 }
611 }
612
set_online_page_callback(online_page_callback_t callback)613 int set_online_page_callback(online_page_callback_t callback)
614 {
615 int rc = -EINVAL;
616
617 get_online_mems();
618 mutex_lock(&online_page_callback_lock);
619
620 if (online_page_callback == generic_online_page) {
621 online_page_callback = callback;
622 rc = 0;
623 }
624
625 mutex_unlock(&online_page_callback_lock);
626 put_online_mems();
627
628 return rc;
629 }
630 EXPORT_SYMBOL_GPL(set_online_page_callback);
631
restore_online_page_callback(online_page_callback_t callback)632 int restore_online_page_callback(online_page_callback_t callback)
633 {
634 int rc = -EINVAL;
635
636 get_online_mems();
637 mutex_lock(&online_page_callback_lock);
638
639 if (online_page_callback == callback) {
640 online_page_callback = generic_online_page;
641 rc = 0;
642 }
643
644 mutex_unlock(&online_page_callback_lock);
645 put_online_mems();
646
647 return rc;
648 }
649 EXPORT_SYMBOL_GPL(restore_online_page_callback);
650
651 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
generic_online_page(struct page * page,unsigned int order)652 void generic_online_page(struct page *page, unsigned int order)
653 {
654 __free_pages_core(page, order, MEMINIT_HOTPLUG);
655 }
656 EXPORT_SYMBOL_GPL(generic_online_page);
657
online_pages_range(unsigned long start_pfn,unsigned long nr_pages)658 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
659 {
660 const unsigned long end_pfn = start_pfn + nr_pages;
661 unsigned long pfn;
662
663 /*
664 * Online the pages in MAX_PAGE_ORDER aligned chunks. The callback might
665 * decide to not expose all pages to the buddy (e.g., expose them
666 * later). We account all pages as being online and belonging to this
667 * zone ("present").
668 * When using memmap_on_memory, the range might not be aligned to
669 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
670 * this and the first chunk to online will be pageblock_nr_pages.
671 */
672 for (pfn = start_pfn; pfn < end_pfn;) {
673 struct page *page = pfn_to_page(pfn);
674 int order;
675
676 /*
677 * Free to online pages in the largest chunks alignment allows.
678 *
679 * __ffs() behaviour is undefined for 0. start == 0 is
680 * MAX_PAGE_ORDER-aligned, Set order to MAX_PAGE_ORDER for
681 * the case.
682 */
683 if (pfn)
684 order = min_t(int, MAX_PAGE_ORDER, __ffs(pfn));
685 else
686 order = MAX_PAGE_ORDER;
687
688 /*
689 * Exposing the page to the buddy by freeing can cause
690 * issues with debug_pagealloc enabled: some archs don't
691 * like double-unmappings. So treat them like any pages that
692 * were allocated from the buddy.
693 */
694 debug_pagealloc_map_pages(page, 1 << order);
695 (*online_page_callback)(page, order);
696 pfn += (1UL << order);
697 }
698
699 /* mark all involved sections as online */
700 online_mem_sections(start_pfn, end_pfn);
701 }
702
resize_zone_range(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)703 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
704 unsigned long nr_pages)
705 {
706 unsigned long old_end_pfn = zone_end_pfn(zone);
707
708 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
709 zone->zone_start_pfn = start_pfn;
710
711 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
712 }
713
resize_pgdat_range(struct pglist_data * pgdat,unsigned long start_pfn,unsigned long nr_pages)714 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
715 unsigned long nr_pages)
716 {
717 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
718
719 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
720 pgdat->node_start_pfn = start_pfn;
721
722 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
723
724 }
725
726 #ifdef CONFIG_ZONE_DEVICE
section_taint_zone_device(unsigned long pfn)727 static void section_taint_zone_device(unsigned long pfn)
728 {
729 struct mem_section *ms = __pfn_to_section(pfn);
730
731 ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
732 }
733 #else
section_taint_zone_device(unsigned long pfn)734 static inline void section_taint_zone_device(unsigned long pfn)
735 {
736 }
737 #endif
738
739 /*
740 * Associate the pfn range with the given zone, initializing the memmaps
741 * and resizing the pgdat/zone data to span the added pages. After this
742 * call, all affected pages are PageOffline().
743 *
744 * All aligned pageblocks are initialized to the specified migratetype
745 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
746 * zone stats (e.g., nr_isolate_pageblock) are touched.
747 */
move_pfn_range_to_zone(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages,struct vmem_altmap * altmap,int migratetype,bool isolate_pageblock)748 void move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
749 unsigned long nr_pages,
750 struct vmem_altmap *altmap, int migratetype,
751 bool isolate_pageblock)
752 {
753 struct pglist_data *pgdat = zone->zone_pgdat;
754 int nid = pgdat->node_id;
755
756 clear_zone_contiguous(zone);
757
758 if (zone_is_empty(zone))
759 init_currently_empty_zone(zone, start_pfn, nr_pages);
760 resize_zone_range(zone, start_pfn, nr_pages);
761 resize_pgdat_range(pgdat, start_pfn, nr_pages);
762
763 /*
764 * Subsection population requires care in pfn_to_online_page().
765 * Set the taint to enable the slow path detection of
766 * ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE}
767 * section.
768 */
769 if (zone_is_zone_device(zone)) {
770 if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
771 section_taint_zone_device(start_pfn);
772 if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
773 section_taint_zone_device(start_pfn + nr_pages);
774 }
775
776 /*
777 * TODO now we have a visible range of pages which are not associated
778 * with their zone properly. Not nice but set_pfnblock_migratetype()
779 * expects the zone spans the pfn range. All the pages in the range
780 * are reserved so nobody should be touching them so we should be safe
781 */
782 memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
783 MEMINIT_HOTPLUG, altmap, migratetype,
784 isolate_pageblock);
785
786 set_zone_contiguous(zone);
787 }
788
789 struct auto_movable_stats {
790 unsigned long kernel_early_pages;
791 unsigned long movable_pages;
792 };
793
auto_movable_stats_account_zone(struct auto_movable_stats * stats,struct zone * zone)794 static void auto_movable_stats_account_zone(struct auto_movable_stats *stats,
795 struct zone *zone)
796 {
797 if (zone_idx(zone) == ZONE_MOVABLE) {
798 stats->movable_pages += zone->present_pages;
799 } else {
800 stats->kernel_early_pages += zone->present_early_pages;
801 #ifdef CONFIG_CMA
802 /*
803 * CMA pages (never on hotplugged memory) behave like
804 * ZONE_MOVABLE.
805 */
806 stats->movable_pages += zone->cma_pages;
807 stats->kernel_early_pages -= zone->cma_pages;
808 #endif /* CONFIG_CMA */
809 }
810 }
811 struct auto_movable_group_stats {
812 unsigned long movable_pages;
813 unsigned long req_kernel_early_pages;
814 };
815
auto_movable_stats_account_group(struct memory_group * group,void * arg)816 static int auto_movable_stats_account_group(struct memory_group *group,
817 void *arg)
818 {
819 const int ratio = READ_ONCE(auto_movable_ratio);
820 struct auto_movable_group_stats *stats = arg;
821 long pages;
822
823 /*
824 * We don't support modifying the config while the auto-movable online
825 * policy is already enabled. Just avoid the division by zero below.
826 */
827 if (!ratio)
828 return 0;
829
830 /*
831 * Calculate how many early kernel pages this group requires to
832 * satisfy the configured zone ratio.
833 */
834 pages = group->present_movable_pages * 100 / ratio;
835 pages -= group->present_kernel_pages;
836
837 if (pages > 0)
838 stats->req_kernel_early_pages += pages;
839 stats->movable_pages += group->present_movable_pages;
840 return 0;
841 }
842
auto_movable_can_online_movable(int nid,struct memory_group * group,unsigned long nr_pages)843 static bool auto_movable_can_online_movable(int nid, struct memory_group *group,
844 unsigned long nr_pages)
845 {
846 unsigned long kernel_early_pages, movable_pages;
847 struct auto_movable_group_stats group_stats = {};
848 struct auto_movable_stats stats = {};
849 struct zone *zone;
850 int i;
851
852 /* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */
853 if (nid == NUMA_NO_NODE) {
854 /* TODO: cache values */
855 for_each_populated_zone(zone)
856 auto_movable_stats_account_zone(&stats, zone);
857 } else {
858 for (i = 0; i < MAX_NR_ZONES; i++) {
859 pg_data_t *pgdat = NODE_DATA(nid);
860
861 zone = pgdat->node_zones + i;
862 if (populated_zone(zone))
863 auto_movable_stats_account_zone(&stats, zone);
864 }
865 }
866
867 kernel_early_pages = stats.kernel_early_pages;
868 movable_pages = stats.movable_pages;
869
870 /*
871 * Kernel memory inside dynamic memory group allows for more MOVABLE
872 * memory within the same group. Remove the effect of all but the
873 * current group from the stats.
874 */
875 walk_dynamic_memory_groups(nid, auto_movable_stats_account_group,
876 group, &group_stats);
877 if (kernel_early_pages <= group_stats.req_kernel_early_pages)
878 return false;
879 kernel_early_pages -= group_stats.req_kernel_early_pages;
880 movable_pages -= group_stats.movable_pages;
881
882 if (group && group->is_dynamic)
883 kernel_early_pages += group->present_kernel_pages;
884
885 /*
886 * Test if we could online the given number of pages to ZONE_MOVABLE
887 * and still stay in the configured ratio.
888 */
889 movable_pages += nr_pages;
890 return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100;
891 }
892
893 /*
894 * Returns a default kernel memory zone for the given pfn range.
895 * If no kernel zone covers this pfn range it will automatically go
896 * to the ZONE_NORMAL.
897 */
default_kernel_zone_for_pfn(int nid,unsigned long start_pfn,unsigned long nr_pages)898 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
899 unsigned long nr_pages)
900 {
901 struct pglist_data *pgdat = NODE_DATA(nid);
902 int zid;
903
904 for (zid = 0; zid < ZONE_NORMAL; zid++) {
905 struct zone *zone = &pgdat->node_zones[zid];
906
907 if (zone_intersects(zone, start_pfn, nr_pages))
908 return zone;
909 }
910
911 return &pgdat->node_zones[ZONE_NORMAL];
912 }
913
914 /*
915 * Determine to which zone to online memory dynamically based on user
916 * configuration and system stats. We care about the following ratio:
917 *
918 * MOVABLE : KERNEL
919 *
920 * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in
921 * one of the kernel zones. CMA pages inside one of the kernel zones really
922 * behaves like ZONE_MOVABLE, so we treat them accordingly.
923 *
924 * We don't allow for hotplugged memory in a KERNEL zone to increase the
925 * amount of MOVABLE memory we can have, so we end up with:
926 *
927 * MOVABLE : KERNEL_EARLY
928 *
929 * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze
930 * boot. We base our calculation on KERNEL_EARLY internally, because:
931 *
932 * a) Hotplugged memory in one of the kernel zones can sometimes still get
933 * hotunplugged, especially when hot(un)plugging individual memory blocks.
934 * There is no coordination across memory devices, therefore "automatic"
935 * hotunplugging, as implemented in hypervisors, could result in zone
936 * imbalances.
937 * b) Early/boot memory in one of the kernel zones can usually not get
938 * hotunplugged again (e.g., no firmware interface to unplug, fragmented
939 * with unmovable allocations). While there are corner cases where it might
940 * still work, it is barely relevant in practice.
941 *
942 * Exceptions are dynamic memory groups, which allow for more MOVABLE
943 * memory within the same memory group -- because in that case, there is
944 * coordination within the single memory device managed by a single driver.
945 *
946 * We rely on "present pages" instead of "managed pages", as the latter is
947 * highly unreliable and dynamic in virtualized environments, and does not
948 * consider boot time allocations. For example, memory ballooning adjusts the
949 * managed pages when inflating/deflating the balloon, and balloon compaction
950 * can even migrate inflated pages between zones.
951 *
952 * Using "present pages" is better but some things to keep in mind are:
953 *
954 * a) Some memblock allocations, such as for the crashkernel area, are
955 * effectively unused by the kernel, yet they account to "present pages".
956 * Fortunately, these allocations are comparatively small in relevant setups
957 * (e.g., fraction of system memory).
958 * b) Some hotplugged memory blocks in virtualized environments, especially
959 * hotplugged by virtio-mem, look like they are completely present, however,
960 * only parts of the memory block are actually currently usable.
961 * "present pages" is an upper limit that can get reached at runtime. As
962 * we base our calculations on KERNEL_EARLY, this is not an issue.
963 */
auto_movable_zone_for_pfn(int nid,struct memory_group * group,unsigned long pfn,unsigned long nr_pages)964 static struct zone *auto_movable_zone_for_pfn(int nid,
965 struct memory_group *group,
966 unsigned long pfn,
967 unsigned long nr_pages)
968 {
969 unsigned long online_pages = 0, max_pages, end_pfn;
970 struct page *page;
971
972 if (!auto_movable_ratio)
973 goto kernel_zone;
974
975 if (group && !group->is_dynamic) {
976 max_pages = group->s.max_pages;
977 online_pages = group->present_movable_pages;
978
979 /* If anything is !MOVABLE online the rest !MOVABLE. */
980 if (group->present_kernel_pages)
981 goto kernel_zone;
982 } else if (!group || group->d.unit_pages == nr_pages) {
983 max_pages = nr_pages;
984 } else {
985 max_pages = group->d.unit_pages;
986 /*
987 * Take a look at all online sections in the current unit.
988 * We can safely assume that all pages within a section belong
989 * to the same zone, because dynamic memory groups only deal
990 * with hotplugged memory.
991 */
992 pfn = ALIGN_DOWN(pfn, group->d.unit_pages);
993 end_pfn = pfn + group->d.unit_pages;
994 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
995 page = pfn_to_online_page(pfn);
996 if (!page)
997 continue;
998 /* If anything is !MOVABLE online the rest !MOVABLE. */
999 if (!is_zone_movable_page(page))
1000 goto kernel_zone;
1001 online_pages += PAGES_PER_SECTION;
1002 }
1003 }
1004
1005 /*
1006 * Online MOVABLE if we could *currently* online all remaining parts
1007 * MOVABLE. We expect to (add+) online them immediately next, so if
1008 * nobody interferes, all will be MOVABLE if possible.
1009 */
1010 nr_pages = max_pages - online_pages;
1011 if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages))
1012 goto kernel_zone;
1013
1014 #ifdef CONFIG_NUMA
1015 if (auto_movable_numa_aware &&
1016 !auto_movable_can_online_movable(nid, group, nr_pages))
1017 goto kernel_zone;
1018 #endif /* CONFIG_NUMA */
1019
1020 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1021 kernel_zone:
1022 return default_kernel_zone_for_pfn(nid, pfn, nr_pages);
1023 }
1024
default_zone_for_pfn(int nid,unsigned long start_pfn,unsigned long nr_pages)1025 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
1026 unsigned long nr_pages)
1027 {
1028 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
1029 nr_pages);
1030 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1031 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
1032 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
1033
1034 /*
1035 * We inherit the existing zone in a simple case where zones do not
1036 * overlap in the given range
1037 */
1038 if (in_kernel ^ in_movable)
1039 return (in_kernel) ? kernel_zone : movable_zone;
1040
1041 /*
1042 * If the range doesn't belong to any zone or two zones overlap in the
1043 * given range then we use movable zone only if movable_node is
1044 * enabled because we always online to a kernel zone by default.
1045 */
1046 return movable_node_enabled ? movable_zone : kernel_zone;
1047 }
1048
zone_for_pfn_range(int online_type,int nid,struct memory_group * group,unsigned long start_pfn,unsigned long nr_pages)1049 struct zone *zone_for_pfn_range(int online_type, int nid,
1050 struct memory_group *group, unsigned long start_pfn,
1051 unsigned long nr_pages)
1052 {
1053 if (online_type == MMOP_ONLINE_KERNEL)
1054 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
1055
1056 if (online_type == MMOP_ONLINE_MOVABLE)
1057 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1058
1059 if (online_policy == ONLINE_POLICY_AUTO_MOVABLE)
1060 return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages);
1061
1062 return default_zone_for_pfn(nid, start_pfn, nr_pages);
1063 }
1064
1065 /*
1066 * This function should only be called by memory_block_{online,offline},
1067 * and {online,offline}_pages.
1068 */
adjust_present_page_count(struct page * page,struct memory_group * group,long nr_pages)1069 void adjust_present_page_count(struct page *page, struct memory_group *group,
1070 long nr_pages)
1071 {
1072 struct zone *zone = page_zone(page);
1073 const bool movable = zone_idx(zone) == ZONE_MOVABLE;
1074
1075 /*
1076 * We only support onlining/offlining/adding/removing of complete
1077 * memory blocks; therefore, either all is either early or hotplugged.
1078 */
1079 if (early_section(__pfn_to_section(page_to_pfn(page))))
1080 zone->present_early_pages += nr_pages;
1081 zone->present_pages += nr_pages;
1082 zone->zone_pgdat->node_present_pages += nr_pages;
1083
1084 if (group && movable)
1085 group->present_movable_pages += nr_pages;
1086 else if (group && !movable)
1087 group->present_kernel_pages += nr_pages;
1088 }
1089
mhp_init_memmap_on_memory(unsigned long pfn,unsigned long nr_pages,struct zone * zone,bool mhp_off_inaccessible)1090 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
1091 struct zone *zone, bool mhp_off_inaccessible)
1092 {
1093 unsigned long end_pfn = pfn + nr_pages;
1094 int ret, i;
1095
1096 ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1097 if (ret)
1098 return ret;
1099
1100 /*
1101 * Memory block is accessible at this stage and hence poison the struct
1102 * pages now. If the memory block is accessible during memory hotplug
1103 * addition phase, then page poisining is already performed in
1104 * sparse_add_section().
1105 */
1106 if (mhp_off_inaccessible)
1107 page_init_poison(pfn_to_page(pfn), sizeof(struct page) * nr_pages);
1108
1109 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE,
1110 false);
1111
1112 for (i = 0; i < nr_pages; i++) {
1113 struct page *page = pfn_to_page(pfn + i);
1114
1115 __ClearPageOffline(page);
1116 SetPageVmemmapSelfHosted(page);
1117 }
1118
1119 /*
1120 * It might be that the vmemmap_pages fully span sections. If that is
1121 * the case, mark those sections online here as otherwise they will be
1122 * left offline.
1123 */
1124 if (nr_pages >= PAGES_PER_SECTION)
1125 online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1126
1127 return ret;
1128 }
1129
mhp_deinit_memmap_on_memory(unsigned long pfn,unsigned long nr_pages)1130 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
1131 {
1132 unsigned long end_pfn = pfn + nr_pages;
1133
1134 /*
1135 * It might be that the vmemmap_pages fully span sections. If that is
1136 * the case, mark those sections offline here as otherwise they will be
1137 * left online.
1138 */
1139 if (nr_pages >= PAGES_PER_SECTION)
1140 offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1141
1142 /*
1143 * The pages associated with this vmemmap have been offlined, so
1144 * we can reset its state here.
1145 */
1146 remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
1147 kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1148 }
1149
1150 /*
1151 * Must be called with mem_hotplug_lock in write mode.
1152 */
online_pages(unsigned long pfn,unsigned long nr_pages,struct zone * zone,struct memory_group * group)1153 int online_pages(unsigned long pfn, unsigned long nr_pages,
1154 struct zone *zone, struct memory_group *group)
1155 {
1156 struct memory_notify mem_arg = {
1157 .start_pfn = pfn,
1158 .nr_pages = nr_pages,
1159 };
1160 struct node_notify node_arg = {
1161 .nid = NUMA_NO_NODE,
1162 };
1163 const int nid = zone_to_nid(zone);
1164 int need_zonelists_rebuild = 0;
1165 unsigned long flags;
1166 int ret;
1167
1168 /*
1169 * {on,off}lining is constrained to full memory sections (or more
1170 * precisely to memory blocks from the user space POV).
1171 * memmap_on_memory is an exception because it reserves initial part
1172 * of the physical memory space for vmemmaps. That space is pageblock
1173 * aligned.
1174 */
1175 if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(pfn) ||
1176 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
1177 return -EINVAL;
1178
1179
1180 /* associate pfn range with the zone */
1181 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_MOVABLE,
1182 true);
1183
1184 if (!node_state(nid, N_MEMORY)) {
1185 /* Adding memory to the node for the first time */
1186 node_arg.nid = nid;
1187 ret = node_notify(NODE_ADDING_FIRST_MEMORY, &node_arg);
1188 ret = notifier_to_errno(ret);
1189 if (ret)
1190 goto failed_addition;
1191 }
1192
1193 ret = memory_notify(MEM_GOING_ONLINE, &mem_arg);
1194 ret = notifier_to_errno(ret);
1195 if (ret)
1196 goto failed_addition;
1197
1198 /*
1199 * Fixup the number of isolated pageblocks before marking the sections
1200 * onlining, such that undo_isolate_page_range() works correctly.
1201 */
1202 spin_lock_irqsave(&zone->lock, flags);
1203 zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
1204 spin_unlock_irqrestore(&zone->lock, flags);
1205
1206 /*
1207 * If this zone is not populated, then it is not in zonelist.
1208 * This means the page allocator ignores this zone.
1209 * So, zonelist must be updated after online.
1210 */
1211 if (!populated_zone(zone)) {
1212 need_zonelists_rebuild = 1;
1213 setup_zone_pageset(zone);
1214 }
1215
1216 online_pages_range(pfn, nr_pages);
1217 adjust_present_page_count(pfn_to_page(pfn), group, nr_pages);
1218
1219 if (node_arg.nid >= 0)
1220 node_set_state(nid, N_MEMORY);
1221 if (need_zonelists_rebuild)
1222 build_all_zonelists(NULL);
1223
1224 /* Basic onlining is complete, allow allocation of onlined pages. */
1225 undo_isolate_page_range(pfn, pfn + nr_pages);
1226
1227 /*
1228 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
1229 * the tail of the freelist when undoing isolation). Shuffle the whole
1230 * zone to make sure the just onlined pages are properly distributed
1231 * across the whole freelist - to create an initial shuffle.
1232 */
1233 shuffle_zone(zone);
1234
1235 /* reinitialise watermarks and update pcp limits */
1236 init_per_zone_wmark_min();
1237
1238 kswapd_run(nid);
1239 kcompactd_run(nid);
1240
1241 if (node_arg.nid >= 0)
1242 /* First memory added successfully. Notify consumers. */
1243 node_notify(NODE_ADDED_FIRST_MEMORY, &node_arg);
1244
1245 writeback_set_ratelimit();
1246
1247 memory_notify(MEM_ONLINE, &mem_arg);
1248 return 0;
1249
1250 failed_addition:
1251 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1252 (unsigned long long) pfn << PAGE_SHIFT,
1253 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1254 memory_notify(MEM_CANCEL_ONLINE, &mem_arg);
1255 if (node_arg.nid != NUMA_NO_NODE)
1256 node_notify(NODE_CANCEL_ADDING_FIRST_MEMORY, &node_arg);
1257 remove_pfn_range_from_zone(zone, pfn, nr_pages);
1258 return ret;
1259 }
1260
1261 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
hotadd_init_pgdat(int nid)1262 static pg_data_t *hotadd_init_pgdat(int nid)
1263 {
1264 struct pglist_data *pgdat;
1265
1266 /*
1267 * NODE_DATA is preallocated (free_area_init) but its internal
1268 * state is not allocated completely. Add missing pieces.
1269 * Completely offline nodes stay around and they just need
1270 * reintialization.
1271 */
1272 pgdat = NODE_DATA(nid);
1273
1274 /* init node's zones as empty zones, we don't have any present pages.*/
1275 free_area_init_core_hotplug(pgdat);
1276
1277 /*
1278 * The node we allocated has no zone fallback lists. For avoiding
1279 * to access not-initialized zonelist, build here.
1280 */
1281 build_all_zonelists(pgdat);
1282
1283 return pgdat;
1284 }
1285
1286 /*
1287 * __try_online_node - online a node if offlined
1288 * @nid: the node ID
1289 * @set_node_online: Whether we want to online the node
1290 * called by cpu_up() to online a node without onlined memory.
1291 *
1292 * Returns:
1293 * 1 -> a new node has been allocated
1294 * 0 -> the node is already online
1295 * -ENOMEM -> the node could not be allocated
1296 */
__try_online_node(int nid,bool set_node_online)1297 static int __try_online_node(int nid, bool set_node_online)
1298 {
1299 pg_data_t *pgdat;
1300 int ret = 1;
1301
1302 if (node_online(nid))
1303 return 0;
1304
1305 pgdat = hotadd_init_pgdat(nid);
1306 if (!pgdat) {
1307 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1308 ret = -ENOMEM;
1309 goto out;
1310 }
1311
1312 if (set_node_online) {
1313 node_set_online(nid);
1314 ret = register_one_node(nid);
1315 BUG_ON(ret);
1316 }
1317 out:
1318 return ret;
1319 }
1320
1321 /*
1322 * Users of this function always want to online/register the node
1323 */
try_online_node(int nid)1324 int try_online_node(int nid)
1325 {
1326 int ret;
1327
1328 mem_hotplug_begin();
1329 ret = __try_online_node(nid, true);
1330 mem_hotplug_done();
1331 return ret;
1332 }
1333
check_hotplug_memory_range(u64 start,u64 size)1334 static int check_hotplug_memory_range(u64 start, u64 size)
1335 {
1336 /* memory range must be block size aligned */
1337 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1338 !IS_ALIGNED(size, memory_block_size_bytes())) {
1339 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1340 memory_block_size_bytes(), start, size);
1341 return -EINVAL;
1342 }
1343
1344 return 0;
1345 }
1346
online_memory_block(struct memory_block * mem,void * arg)1347 static int online_memory_block(struct memory_block *mem, void *arg)
1348 {
1349 mem->online_type = mhp_get_default_online_type();
1350 return device_online(&mem->dev);
1351 }
1352
1353 #ifndef arch_supports_memmap_on_memory
arch_supports_memmap_on_memory(unsigned long vmemmap_size)1354 static inline bool arch_supports_memmap_on_memory(unsigned long vmemmap_size)
1355 {
1356 /*
1357 * As default, we want the vmemmap to span a complete PMD such that we
1358 * can map the vmemmap using a single PMD if supported by the
1359 * architecture.
1360 */
1361 return IS_ALIGNED(vmemmap_size, PMD_SIZE);
1362 }
1363 #endif
1364
mhp_supports_memmap_on_memory(void)1365 bool mhp_supports_memmap_on_memory(void)
1366 {
1367 unsigned long vmemmap_size = memory_block_memmap_size();
1368 unsigned long memmap_pages = memory_block_memmap_on_memory_pages();
1369
1370 /*
1371 * Besides having arch support and the feature enabled at runtime, we
1372 * need a few more assumptions to hold true:
1373 *
1374 * a) The vmemmap pages span complete PMDs: We don't want vmemmap code
1375 * to populate memory from the altmap for unrelated parts (i.e.,
1376 * other memory blocks)
1377 *
1378 * b) The vmemmap pages (and thereby the pages that will be exposed to
1379 * the buddy) have to cover full pageblocks: memory onlining/offlining
1380 * code requires applicable ranges to be page-aligned, for example, to
1381 * set the migratetypes properly.
1382 *
1383 * TODO: Although we have a check here to make sure that vmemmap pages
1384 * fully populate a PMD, it is not the right place to check for
1385 * this. A much better solution involves improving vmemmap code
1386 * to fallback to base pages when trying to populate vmemmap using
1387 * altmap as an alternative source of memory, and we do not exactly
1388 * populate a single PMD.
1389 */
1390 if (!mhp_memmap_on_memory())
1391 return false;
1392
1393 /*
1394 * Make sure the vmemmap allocation is fully contained
1395 * so that we always allocate vmemmap memory from altmap area.
1396 */
1397 if (!IS_ALIGNED(vmemmap_size, PAGE_SIZE))
1398 return false;
1399
1400 /*
1401 * start pfn should be pageblock_nr_pages aligned for correctly
1402 * setting migrate types
1403 */
1404 if (!pageblock_aligned(memmap_pages))
1405 return false;
1406
1407 if (memmap_pages == PHYS_PFN(memory_block_size_bytes()))
1408 /* No effective hotplugged memory doesn't make sense. */
1409 return false;
1410
1411 return arch_supports_memmap_on_memory(vmemmap_size);
1412 }
1413 EXPORT_SYMBOL_GPL(mhp_supports_memmap_on_memory);
1414
remove_memory_blocks_and_altmaps(u64 start,u64 size)1415 static void remove_memory_blocks_and_altmaps(u64 start, u64 size)
1416 {
1417 unsigned long memblock_size = memory_block_size_bytes();
1418 u64 cur_start;
1419
1420 /*
1421 * For memmap_on_memory, the altmaps were added on a per-memblock
1422 * basis; we have to process each individual memory block.
1423 */
1424 for (cur_start = start; cur_start < start + size;
1425 cur_start += memblock_size) {
1426 struct vmem_altmap *altmap = NULL;
1427 struct memory_block *mem;
1428
1429 mem = find_memory_block(pfn_to_section_nr(PFN_DOWN(cur_start)));
1430 if (WARN_ON_ONCE(!mem))
1431 continue;
1432
1433 altmap = mem->altmap;
1434 mem->altmap = NULL;
1435
1436 remove_memory_block_devices(cur_start, memblock_size);
1437
1438 arch_remove_memory(cur_start, memblock_size, altmap);
1439
1440 /* Verify that all vmemmap pages have actually been freed. */
1441 WARN(altmap->alloc, "Altmap not fully unmapped");
1442 kfree(altmap);
1443 }
1444 }
1445
create_altmaps_and_memory_blocks(int nid,struct memory_group * group,u64 start,u64 size,mhp_t mhp_flags)1446 static int create_altmaps_and_memory_blocks(int nid, struct memory_group *group,
1447 u64 start, u64 size, mhp_t mhp_flags)
1448 {
1449 unsigned long memblock_size = memory_block_size_bytes();
1450 u64 cur_start;
1451 int ret;
1452
1453 for (cur_start = start; cur_start < start + size;
1454 cur_start += memblock_size) {
1455 struct mhp_params params = { .pgprot =
1456 pgprot_mhp(PAGE_KERNEL) };
1457 struct vmem_altmap mhp_altmap = {
1458 .base_pfn = PHYS_PFN(cur_start),
1459 .end_pfn = PHYS_PFN(cur_start + memblock_size - 1),
1460 };
1461
1462 mhp_altmap.free = memory_block_memmap_on_memory_pages();
1463 if (mhp_flags & MHP_OFFLINE_INACCESSIBLE)
1464 mhp_altmap.inaccessible = true;
1465 params.altmap = kmemdup(&mhp_altmap, sizeof(struct vmem_altmap),
1466 GFP_KERNEL);
1467 if (!params.altmap) {
1468 ret = -ENOMEM;
1469 goto out;
1470 }
1471
1472 /* call arch's memory hotadd */
1473 ret = arch_add_memory(nid, cur_start, memblock_size, ¶ms);
1474 if (ret < 0) {
1475 kfree(params.altmap);
1476 goto out;
1477 }
1478
1479 /* create memory block devices after memory was added */
1480 ret = create_memory_block_devices(cur_start, memblock_size, nid,
1481 params.altmap, group);
1482 if (ret) {
1483 arch_remove_memory(cur_start, memblock_size, NULL);
1484 kfree(params.altmap);
1485 goto out;
1486 }
1487 }
1488
1489 return 0;
1490 out:
1491 if (ret && cur_start != start)
1492 remove_memory_blocks_and_altmaps(start, cur_start - start);
1493 return ret;
1494 }
1495
1496 /*
1497 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1498 * and online/offline operations (triggered e.g. by sysfs).
1499 *
1500 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1501 */
add_memory_resource(int nid,struct resource * res,mhp_t mhp_flags)1502 int add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1503 {
1504 struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1505 enum memblock_flags memblock_flags = MEMBLOCK_NONE;
1506 struct memory_group *group = NULL;
1507 u64 start, size;
1508 bool new_node = false;
1509 int ret;
1510
1511 start = res->start;
1512 size = resource_size(res);
1513
1514 ret = check_hotplug_memory_range(start, size);
1515 if (ret)
1516 return ret;
1517
1518 if (mhp_flags & MHP_NID_IS_MGID) {
1519 group = memory_group_find_by_id(nid);
1520 if (!group)
1521 return -EINVAL;
1522 nid = group->nid;
1523 }
1524
1525 if (!node_possible(nid)) {
1526 WARN(1, "node %d was absent from the node_possible_map\n", nid);
1527 return -EINVAL;
1528 }
1529
1530 mem_hotplug_begin();
1531
1532 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1533 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
1534 memblock_flags = MEMBLOCK_DRIVER_MANAGED;
1535 ret = memblock_add_node(start, size, nid, memblock_flags);
1536 if (ret)
1537 goto error_mem_hotplug_end;
1538 }
1539
1540 ret = __try_online_node(nid, false);
1541 if (ret < 0)
1542 goto error_memblock_remove;
1543 if (ret) {
1544 node_set_online(nid);
1545 ret = register_one_node(nid);
1546 if (WARN_ON(ret)) {
1547 node_set_offline(nid);
1548 goto error_memblock_remove;
1549 }
1550 new_node = true;
1551 }
1552
1553 /*
1554 * Self hosted memmap array
1555 */
1556 if ((mhp_flags & MHP_MEMMAP_ON_MEMORY) &&
1557 mhp_supports_memmap_on_memory()) {
1558 ret = create_altmaps_and_memory_blocks(nid, group, start, size, mhp_flags);
1559 if (ret)
1560 goto error;
1561 } else {
1562 ret = arch_add_memory(nid, start, size, ¶ms);
1563 if (ret < 0)
1564 goto error;
1565
1566 /* create memory block devices after memory was added */
1567 ret = create_memory_block_devices(start, size, nid, NULL, group);
1568 if (ret) {
1569 arch_remove_memory(start, size, params.altmap);
1570 goto error;
1571 }
1572 }
1573
1574 register_memory_blocks_under_node_hotplug(nid, PFN_DOWN(start),
1575 PFN_UP(start + size - 1));
1576
1577 /* create new memmap entry */
1578 if (!strcmp(res->name, "System RAM"))
1579 firmware_map_add_hotplug(start, start + size, "System RAM");
1580
1581 /* device_online() will take the lock when calling online_pages() */
1582 mem_hotplug_done();
1583
1584 /*
1585 * In case we're allowed to merge the resource, flag it and trigger
1586 * merging now that adding succeeded.
1587 */
1588 if (mhp_flags & MHP_MERGE_RESOURCE)
1589 merge_system_ram_resource(res);
1590
1591 /* online pages if requested */
1592 if (mhp_get_default_online_type() != MMOP_OFFLINE)
1593 walk_memory_blocks(start, size, NULL, online_memory_block);
1594
1595 return ret;
1596 error:
1597 if (new_node) {
1598 node_set_offline(nid);
1599 unregister_one_node(nid);
1600 }
1601 error_memblock_remove:
1602 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1603 memblock_remove(start, size);
1604 error_mem_hotplug_end:
1605 mem_hotplug_done();
1606 return ret;
1607 }
1608
1609 /* requires device_hotplug_lock, see add_memory_resource() */
__add_memory(int nid,u64 start,u64 size,mhp_t mhp_flags)1610 int __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1611 {
1612 struct resource *res;
1613 int ret;
1614
1615 res = register_memory_resource(start, size, "System RAM");
1616 if (IS_ERR(res))
1617 return PTR_ERR(res);
1618
1619 ret = add_memory_resource(nid, res, mhp_flags);
1620 if (ret < 0)
1621 release_memory_resource(res);
1622 return ret;
1623 }
1624
add_memory(int nid,u64 start,u64 size,mhp_t mhp_flags)1625 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1626 {
1627 int rc;
1628
1629 lock_device_hotplug();
1630 rc = __add_memory(nid, start, size, mhp_flags);
1631 unlock_device_hotplug();
1632
1633 return rc;
1634 }
1635 EXPORT_SYMBOL_GPL(add_memory);
1636
1637 /*
1638 * Add special, driver-managed memory to the system as system RAM. Such
1639 * memory is not exposed via the raw firmware-provided memmap as system
1640 * RAM, instead, it is detected and added by a driver - during cold boot,
1641 * after a reboot, and after kexec.
1642 *
1643 * Reasons why this memory should not be used for the initial memmap of a
1644 * kexec kernel or for placing kexec images:
1645 * - The booting kernel is in charge of determining how this memory will be
1646 * used (e.g., use persistent memory as system RAM)
1647 * - Coordination with a hypervisor is required before this memory
1648 * can be used (e.g., inaccessible parts).
1649 *
1650 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1651 * memory map") are created. Also, the created memory resource is flagged
1652 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1653 * this memory as well (esp., not place kexec images onto it).
1654 *
1655 * The resource_name (visible via /proc/iomem) has to have the format
1656 * "System RAM ($DRIVER)".
1657 */
add_memory_driver_managed(int nid,u64 start,u64 size,const char * resource_name,mhp_t mhp_flags)1658 int add_memory_driver_managed(int nid, u64 start, u64 size,
1659 const char *resource_name, mhp_t mhp_flags)
1660 {
1661 struct resource *res;
1662 int rc;
1663
1664 if (!resource_name ||
1665 strstr(resource_name, "System RAM (") != resource_name ||
1666 resource_name[strlen(resource_name) - 1] != ')')
1667 return -EINVAL;
1668
1669 lock_device_hotplug();
1670
1671 res = register_memory_resource(start, size, resource_name);
1672 if (IS_ERR(res)) {
1673 rc = PTR_ERR(res);
1674 goto out_unlock;
1675 }
1676
1677 rc = add_memory_resource(nid, res, mhp_flags);
1678 if (rc < 0)
1679 release_memory_resource(res);
1680
1681 out_unlock:
1682 unlock_device_hotplug();
1683 return rc;
1684 }
1685 EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1686
1687 /*
1688 * Platforms should define arch_get_mappable_range() that provides
1689 * maximum possible addressable physical memory range for which the
1690 * linear mapping could be created. The platform returned address
1691 * range must adhere to these following semantics.
1692 *
1693 * - range.start <= range.end
1694 * - Range includes both end points [range.start..range.end]
1695 *
1696 * There is also a fallback definition provided here, allowing the
1697 * entire possible physical address range in case any platform does
1698 * not define arch_get_mappable_range().
1699 */
arch_get_mappable_range(void)1700 struct range __weak arch_get_mappable_range(void)
1701 {
1702 struct range mhp_range = {
1703 .start = 0UL,
1704 .end = -1ULL,
1705 };
1706 return mhp_range;
1707 }
1708
mhp_get_pluggable_range(bool need_mapping)1709 struct range mhp_get_pluggable_range(bool need_mapping)
1710 {
1711 const u64 max_phys = DIRECT_MAP_PHYSMEM_END;
1712 struct range mhp_range;
1713
1714 if (need_mapping) {
1715 mhp_range = arch_get_mappable_range();
1716 if (mhp_range.start > max_phys) {
1717 mhp_range.start = 0;
1718 mhp_range.end = 0;
1719 }
1720 mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1721 } else {
1722 mhp_range.start = 0;
1723 mhp_range.end = max_phys;
1724 }
1725 return mhp_range;
1726 }
1727 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1728
mhp_range_allowed(u64 start,u64 size,bool need_mapping)1729 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1730 {
1731 struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1732 u64 end = start + size;
1733
1734 if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1735 return true;
1736
1737 pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1738 start, end, mhp_range.start, mhp_range.end);
1739 return false;
1740 }
1741
1742 #ifdef CONFIG_MEMORY_HOTREMOVE
1743 /*
1744 * Scan pfn range [start,end) to find movable/migratable pages (LRU and
1745 * hugetlb folio, movable_ops pages). Will skip over most unmovable
1746 * pages (esp., pages that can be skipped when offlining), but bail out on
1747 * definitely unmovable pages.
1748 *
1749 * Returns:
1750 * 0 in case a movable page is found and movable_pfn was updated.
1751 * -ENOENT in case no movable page was found.
1752 * -EBUSY in case a definitely unmovable page was found.
1753 */
scan_movable_pages(unsigned long start,unsigned long end,unsigned long * movable_pfn)1754 static int scan_movable_pages(unsigned long start, unsigned long end,
1755 unsigned long *movable_pfn)
1756 {
1757 unsigned long pfn;
1758
1759 for_each_valid_pfn(pfn, start, end) {
1760 struct page *page;
1761 struct folio *folio;
1762
1763 page = pfn_to_page(pfn);
1764 if (PageLRU(page) || page_has_movable_ops(page))
1765 goto found;
1766
1767 /*
1768 * PageOffline() pages that do not have movable_ops and
1769 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1770 * definitely unmovable. If their reference count would be 0,
1771 * they could at least be skipped when offlining memory.
1772 */
1773 if (PageOffline(page) && page_count(page))
1774 return -EBUSY;
1775
1776 if (!PageHuge(page))
1777 continue;
1778 folio = page_folio(page);
1779 /*
1780 * This test is racy as we hold no reference or lock. The
1781 * hugetlb page could have been free'ed and head is no longer
1782 * a hugetlb page before the following check. In such unlikely
1783 * cases false positives and negatives are possible. Calling
1784 * code must deal with these scenarios.
1785 */
1786 if (folio_test_hugetlb_migratable(folio))
1787 goto found;
1788 pfn |= folio_nr_pages(folio) - 1;
1789 }
1790 return -ENOENT;
1791 found:
1792 *movable_pfn = pfn;
1793 return 0;
1794 }
1795
do_migrate_range(unsigned long start_pfn,unsigned long end_pfn)1796 static void do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1797 {
1798 struct folio *folio;
1799 unsigned long pfn;
1800 LIST_HEAD(source);
1801 static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1802 DEFAULT_RATELIMIT_BURST);
1803
1804 for_each_valid_pfn(pfn, start_pfn, end_pfn) {
1805 struct page *page;
1806
1807 page = pfn_to_page(pfn);
1808 folio = page_folio(page);
1809
1810 if (!folio_try_get(folio))
1811 continue;
1812
1813 if (unlikely(page_folio(page) != folio))
1814 goto put_folio;
1815
1816 if (folio_test_large(folio))
1817 pfn = folio_pfn(folio) + folio_nr_pages(folio) - 1;
1818
1819 if (folio_contain_hwpoisoned_page(folio)) {
1820 /*
1821 * unmap_poisoned_folio() cannot handle large folios
1822 * in all cases yet.
1823 */
1824 if (folio_test_large(folio) && !folio_test_hugetlb(folio))
1825 goto put_folio;
1826 if (folio_test_lru(folio) && !folio_isolate_lru(folio))
1827 goto put_folio;
1828 if (folio_mapped(folio)) {
1829 folio_lock(folio);
1830 unmap_poisoned_folio(folio, pfn, false);
1831 folio_unlock(folio);
1832 }
1833
1834 goto put_folio;
1835 }
1836
1837 if (!isolate_folio_to_list(folio, &source)) {
1838 if (__ratelimit(&migrate_rs)) {
1839 pr_warn("failed to isolate pfn %lx\n",
1840 page_to_pfn(page));
1841 dump_page(page, "isolation failed");
1842 }
1843 }
1844 put_folio:
1845 folio_put(folio);
1846 }
1847 if (!list_empty(&source)) {
1848 nodemask_t nmask = node_states[N_MEMORY];
1849 struct migration_target_control mtc = {
1850 .nmask = &nmask,
1851 .gfp_mask = GFP_KERNEL | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1852 .reason = MR_MEMORY_HOTPLUG,
1853 };
1854 int ret;
1855
1856 /*
1857 * We have checked that migration range is on a single zone so
1858 * we can use the nid of the first page to all the others.
1859 */
1860 mtc.nid = folio_nid(list_first_entry(&source, struct folio, lru));
1861
1862 /*
1863 * try to allocate from a different node but reuse this node
1864 * if there are no other online nodes to be used (e.g. we are
1865 * offlining a part of the only existing node)
1866 */
1867 node_clear(mtc.nid, nmask);
1868 if (nodes_empty(nmask))
1869 node_set(mtc.nid, nmask);
1870 ret = migrate_pages(&source, alloc_migration_target, NULL,
1871 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL);
1872 if (ret) {
1873 list_for_each_entry(folio, &source, lru) {
1874 if (__ratelimit(&migrate_rs)) {
1875 pr_warn("migrating pfn %lx failed ret:%d\n",
1876 folio_pfn(folio), ret);
1877 dump_page(&folio->page,
1878 "migration failure");
1879 }
1880 }
1881 putback_movable_pages(&source);
1882 }
1883 }
1884 }
1885
cmdline_parse_movable_node(char * p)1886 static int __init cmdline_parse_movable_node(char *p)
1887 {
1888 movable_node_enabled = true;
1889 return 0;
1890 }
1891 early_param("movable_node", cmdline_parse_movable_node);
1892
count_system_ram_pages_cb(unsigned long start_pfn,unsigned long nr_pages,void * data)1893 static int count_system_ram_pages_cb(unsigned long start_pfn,
1894 unsigned long nr_pages, void *data)
1895 {
1896 unsigned long *nr_system_ram_pages = data;
1897
1898 *nr_system_ram_pages += nr_pages;
1899 return 0;
1900 }
1901
1902 /*
1903 * Must be called with mem_hotplug_lock in write mode.
1904 */
offline_pages(unsigned long start_pfn,unsigned long nr_pages,struct zone * zone,struct memory_group * group)1905 int offline_pages(unsigned long start_pfn, unsigned long nr_pages,
1906 struct zone *zone, struct memory_group *group)
1907 {
1908 unsigned long pfn, managed_pages, system_ram_pages = 0;
1909 const unsigned long end_pfn = start_pfn + nr_pages;
1910 struct pglist_data *pgdat = zone->zone_pgdat;
1911 const int node = zone_to_nid(zone);
1912 struct memory_notify mem_arg = {
1913 .start_pfn = start_pfn,
1914 .nr_pages = nr_pages,
1915 };
1916 struct node_notify node_arg = {
1917 .nid = NUMA_NO_NODE,
1918 };
1919 unsigned long flags;
1920 char *reason;
1921 int ret;
1922
1923 /*
1924 * {on,off}lining is constrained to full memory sections (or more
1925 * precisely to memory blocks from the user space POV).
1926 * memmap_on_memory is an exception because it reserves initial part
1927 * of the physical memory space for vmemmaps. That space is pageblock
1928 * aligned.
1929 */
1930 if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(start_pfn) ||
1931 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1932 return -EINVAL;
1933
1934 /*
1935 * Don't allow to offline memory blocks that contain holes.
1936 * Consequently, memory blocks with holes can never get onlined
1937 * via the hotplug path - online_pages() - as hotplugged memory has
1938 * no holes. This way, we don't have to worry about memory holes,
1939 * don't need pfn_valid() checks, and can avoid using
1940 * walk_system_ram_range() later.
1941 */
1942 walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1943 count_system_ram_pages_cb);
1944 if (system_ram_pages != nr_pages) {
1945 ret = -EINVAL;
1946 reason = "memory holes";
1947 goto failed_removal;
1948 }
1949
1950 /*
1951 * We only support offlining of memory blocks managed by a single zone,
1952 * checked by calling code. This is just a sanity check that we might
1953 * want to remove in the future.
1954 */
1955 if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone ||
1956 page_zone(pfn_to_page(end_pfn - 1)) != zone)) {
1957 ret = -EINVAL;
1958 reason = "multizone range";
1959 goto failed_removal;
1960 }
1961
1962 /*
1963 * Disable pcplists so that page isolation cannot race with freeing
1964 * in a way that pages from isolated pageblock are left on pcplists.
1965 */
1966 zone_pcp_disable(zone);
1967 lru_cache_disable();
1968
1969 /* set above range as isolated */
1970 ret = start_isolate_page_range(start_pfn, end_pfn,
1971 PB_ISOLATE_MODE_MEM_OFFLINE);
1972 if (ret) {
1973 reason = "failure to isolate range";
1974 goto failed_removal_pcplists_disabled;
1975 }
1976
1977 /*
1978 * Check whether the node will have no present pages after we offline
1979 * 'nr_pages' more. If so, we know that the node will become empty, and
1980 * so we will clear N_MEMORY for it.
1981 */
1982 if (nr_pages >= pgdat->node_present_pages) {
1983 node_arg.nid = node;
1984 ret = node_notify(NODE_REMOVING_LAST_MEMORY, &node_arg);
1985 ret = notifier_to_errno(ret);
1986 if (ret) {
1987 reason = "node notifier failure";
1988 goto failed_removal_isolated;
1989 }
1990 }
1991
1992 ret = memory_notify(MEM_GOING_OFFLINE, &mem_arg);
1993 ret = notifier_to_errno(ret);
1994 if (ret) {
1995 reason = "notifier failure";
1996 goto failed_removal_isolated;
1997 }
1998
1999 do {
2000 pfn = start_pfn;
2001 do {
2002 /*
2003 * Historically we always checked for any signal and
2004 * can't limit it to fatal signals without eventually
2005 * breaking user space.
2006 */
2007 if (signal_pending(current)) {
2008 ret = -EINTR;
2009 reason = "signal backoff";
2010 goto failed_removal_isolated;
2011 }
2012
2013 cond_resched();
2014
2015 ret = scan_movable_pages(pfn, end_pfn, &pfn);
2016 if (!ret) {
2017 /*
2018 * TODO: fatal migration failures should bail
2019 * out
2020 */
2021 do_migrate_range(pfn, end_pfn);
2022 }
2023 } while (!ret);
2024
2025 if (ret != -ENOENT) {
2026 reason = "unmovable page";
2027 goto failed_removal_isolated;
2028 }
2029
2030 /*
2031 * Dissolve free hugetlb folios in the memory block before doing
2032 * offlining actually in order to make hugetlbfs's object
2033 * counting consistent.
2034 */
2035 ret = dissolve_free_hugetlb_folios(start_pfn, end_pfn);
2036 if (ret) {
2037 reason = "failure to dissolve huge pages";
2038 goto failed_removal_isolated;
2039 }
2040
2041 ret = test_pages_isolated(start_pfn, end_pfn,
2042 PB_ISOLATE_MODE_MEM_OFFLINE);
2043
2044 } while (ret);
2045
2046 /* Mark all sections offline and remove free pages from the buddy. */
2047 managed_pages = __offline_isolated_pages(start_pfn, end_pfn);
2048 pr_debug("Offlined Pages %ld\n", nr_pages);
2049
2050 /*
2051 * The memory sections are marked offline, and the pageblock flags
2052 * effectively stale; nobody should be touching them. Fixup the number
2053 * of isolated pageblocks, memory onlining will properly revert this.
2054 */
2055 spin_lock_irqsave(&zone->lock, flags);
2056 zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
2057 spin_unlock_irqrestore(&zone->lock, flags);
2058
2059 lru_cache_enable();
2060 zone_pcp_enable(zone);
2061
2062 /* removal success */
2063 adjust_managed_page_count(pfn_to_page(start_pfn), -managed_pages);
2064 adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages);
2065
2066 /* reinitialise watermarks and update pcp limits */
2067 init_per_zone_wmark_min();
2068
2069 /*
2070 * Make sure to mark the node as memory-less before rebuilding the zone
2071 * list. Otherwise this node would still appear in the fallback lists.
2072 */
2073 if (node_arg.nid >= 0)
2074 node_clear_state(node, N_MEMORY);
2075 if (!populated_zone(zone)) {
2076 zone_pcp_reset(zone);
2077 build_all_zonelists(NULL);
2078 }
2079
2080 if (node_arg.nid >= 0) {
2081 kcompactd_stop(node);
2082 kswapd_stop(node);
2083 /* Node went memoryless. Notify consumers */
2084 node_notify(NODE_REMOVED_LAST_MEMORY, &node_arg);
2085 }
2086
2087 writeback_set_ratelimit();
2088
2089 memory_notify(MEM_OFFLINE, &mem_arg);
2090 remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
2091 return 0;
2092
2093 failed_removal_isolated:
2094 /* pushback to free area */
2095 undo_isolate_page_range(start_pfn, end_pfn);
2096 memory_notify(MEM_CANCEL_OFFLINE, &mem_arg);
2097 if (node_arg.nid != NUMA_NO_NODE)
2098 node_notify(NODE_CANCEL_REMOVING_LAST_MEMORY, &node_arg);
2099 failed_removal_pcplists_disabled:
2100 lru_cache_enable();
2101 zone_pcp_enable(zone);
2102 failed_removal:
2103 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
2104 (unsigned long long) start_pfn << PAGE_SHIFT,
2105 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
2106 reason);
2107 return ret;
2108 }
2109
check_memblock_offlined_cb(struct memory_block * mem,void * arg)2110 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
2111 {
2112 int *nid = arg;
2113
2114 *nid = mem->nid;
2115 if (unlikely(mem->state != MEM_OFFLINE)) {
2116 phys_addr_t beginpa, endpa;
2117
2118 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
2119 endpa = beginpa + memory_block_size_bytes() - 1;
2120 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
2121 &beginpa, &endpa);
2122
2123 return -EBUSY;
2124 }
2125 return 0;
2126 }
2127
count_memory_range_altmaps_cb(struct memory_block * mem,void * arg)2128 static int count_memory_range_altmaps_cb(struct memory_block *mem, void *arg)
2129 {
2130 u64 *num_altmaps = (u64 *)arg;
2131
2132 if (mem->altmap)
2133 *num_altmaps += 1;
2134
2135 return 0;
2136 }
2137
check_cpu_on_node(int nid)2138 static int check_cpu_on_node(int nid)
2139 {
2140 int cpu;
2141
2142 for_each_present_cpu(cpu) {
2143 if (cpu_to_node(cpu) == nid)
2144 /*
2145 * the cpu on this node isn't removed, and we can't
2146 * offline this node.
2147 */
2148 return -EBUSY;
2149 }
2150
2151 return 0;
2152 }
2153
check_no_memblock_for_node_cb(struct memory_block * mem,void * arg)2154 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
2155 {
2156 int nid = *(int *)arg;
2157
2158 /*
2159 * If a memory block belongs to multiple nodes, the stored nid is not
2160 * reliable. However, such blocks are always online (e.g., cannot get
2161 * offlined) and, therefore, are still spanned by the node.
2162 */
2163 return mem->nid == nid ? -EEXIST : 0;
2164 }
2165
2166 /**
2167 * try_offline_node
2168 * @nid: the node ID
2169 *
2170 * Offline a node if all memory sections and cpus of the node are removed.
2171 *
2172 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2173 * and online/offline operations before this call.
2174 */
try_offline_node(int nid)2175 void try_offline_node(int nid)
2176 {
2177 int rc;
2178
2179 /*
2180 * If the node still spans pages (especially ZONE_DEVICE), don't
2181 * offline it. A node spans memory after move_pfn_range_to_zone(),
2182 * e.g., after the memory block was onlined.
2183 */
2184 if (node_spanned_pages(nid))
2185 return;
2186
2187 /*
2188 * Especially offline memory blocks might not be spanned by the
2189 * node. They will get spanned by the node once they get onlined.
2190 * However, they link to the node in sysfs and can get onlined later.
2191 */
2192 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
2193 if (rc)
2194 return;
2195
2196 if (check_cpu_on_node(nid))
2197 return;
2198
2199 /*
2200 * all memory/cpu of this node are removed, we can offline this
2201 * node now.
2202 */
2203 node_set_offline(nid);
2204 unregister_one_node(nid);
2205 }
2206 EXPORT_SYMBOL(try_offline_node);
2207
memory_blocks_have_altmaps(u64 start,u64 size)2208 static int memory_blocks_have_altmaps(u64 start, u64 size)
2209 {
2210 u64 num_memblocks = size / memory_block_size_bytes();
2211 u64 num_altmaps = 0;
2212
2213 if (!mhp_memmap_on_memory())
2214 return 0;
2215
2216 walk_memory_blocks(start, size, &num_altmaps,
2217 count_memory_range_altmaps_cb);
2218
2219 if (num_altmaps == 0)
2220 return 0;
2221
2222 if (WARN_ON_ONCE(num_memblocks != num_altmaps))
2223 return -EINVAL;
2224
2225 return 1;
2226 }
2227
try_remove_memory(u64 start,u64 size)2228 static int try_remove_memory(u64 start, u64 size)
2229 {
2230 int rc, nid = NUMA_NO_NODE;
2231
2232 BUG_ON(check_hotplug_memory_range(start, size));
2233
2234 /*
2235 * All memory blocks must be offlined before removing memory. Check
2236 * whether all memory blocks in question are offline and return error
2237 * if this is not the case.
2238 *
2239 * While at it, determine the nid. Note that if we'd have mixed nodes,
2240 * we'd only try to offline the last determined one -- which is good
2241 * enough for the cases we care about.
2242 */
2243 rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb);
2244 if (rc)
2245 return rc;
2246
2247 /* remove memmap entry */
2248 firmware_map_remove(start, start + size, "System RAM");
2249
2250 mem_hotplug_begin();
2251
2252 rc = memory_blocks_have_altmaps(start, size);
2253 if (rc < 0) {
2254 mem_hotplug_done();
2255 return rc;
2256 } else if (!rc) {
2257 /*
2258 * Memory block device removal under the device_hotplug_lock is
2259 * a barrier against racing online attempts.
2260 * No altmaps present, do the removal directly
2261 */
2262 remove_memory_block_devices(start, size);
2263 arch_remove_memory(start, size, NULL);
2264 } else {
2265 /* all memblocks in the range have altmaps */
2266 remove_memory_blocks_and_altmaps(start, size);
2267 }
2268
2269 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
2270 memblock_remove(start, size);
2271
2272 release_mem_region_adjustable(start, size);
2273
2274 if (nid != NUMA_NO_NODE)
2275 try_offline_node(nid);
2276
2277 mem_hotplug_done();
2278 return 0;
2279 }
2280
2281 /**
2282 * __remove_memory - Remove memory if every memory block is offline
2283 * @start: physical address of the region to remove
2284 * @size: size of the region to remove
2285 *
2286 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2287 * and online/offline operations before this call, as required by
2288 * try_offline_node().
2289 */
__remove_memory(u64 start,u64 size)2290 void __remove_memory(u64 start, u64 size)
2291 {
2292
2293 /*
2294 * trigger BUG() if some memory is not offlined prior to calling this
2295 * function
2296 */
2297 if (try_remove_memory(start, size))
2298 BUG();
2299 }
2300
2301 /*
2302 * Remove memory if every memory block is offline, otherwise return -EBUSY is
2303 * some memory is not offline
2304 */
remove_memory(u64 start,u64 size)2305 int remove_memory(u64 start, u64 size)
2306 {
2307 int rc;
2308
2309 lock_device_hotplug();
2310 rc = try_remove_memory(start, size);
2311 unlock_device_hotplug();
2312
2313 return rc;
2314 }
2315 EXPORT_SYMBOL_GPL(remove_memory);
2316
try_offline_memory_block(struct memory_block * mem,void * arg)2317 static int try_offline_memory_block(struct memory_block *mem, void *arg)
2318 {
2319 uint8_t online_type = MMOP_ONLINE_KERNEL;
2320 uint8_t **online_types = arg;
2321 struct page *page;
2322 int rc;
2323
2324 /*
2325 * Sense the online_type via the zone of the memory block. Offlining
2326 * with multiple zones within one memory block will be rejected
2327 * by offlining code ... so we don't care about that.
2328 */
2329 page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2330 if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2331 online_type = MMOP_ONLINE_MOVABLE;
2332
2333 rc = device_offline(&mem->dev);
2334 /*
2335 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2336 * so try_reonline_memory_block() can do the right thing.
2337 */
2338 if (!rc)
2339 **online_types = online_type;
2340
2341 (*online_types)++;
2342 /* Ignore if already offline. */
2343 return rc < 0 ? rc : 0;
2344 }
2345
try_reonline_memory_block(struct memory_block * mem,void * arg)2346 static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2347 {
2348 uint8_t **online_types = arg;
2349 int rc;
2350
2351 if (**online_types != MMOP_OFFLINE) {
2352 mem->online_type = **online_types;
2353 rc = device_online(&mem->dev);
2354 if (rc < 0)
2355 pr_warn("%s: Failed to re-online memory: %d",
2356 __func__, rc);
2357 }
2358
2359 /* Continue processing all remaining memory blocks. */
2360 (*online_types)++;
2361 return 0;
2362 }
2363
2364 /*
2365 * Try to offline and remove memory. Might take a long time to finish in case
2366 * memory is still in use. Primarily useful for memory devices that logically
2367 * unplugged all memory (so it's no longer in use) and want to offline + remove
2368 * that memory.
2369 */
offline_and_remove_memory(u64 start,u64 size)2370 int offline_and_remove_memory(u64 start, u64 size)
2371 {
2372 const unsigned long mb_count = size / memory_block_size_bytes();
2373 uint8_t *online_types, *tmp;
2374 int rc;
2375
2376 if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2377 !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2378 return -EINVAL;
2379
2380 /*
2381 * We'll remember the old online type of each memory block, so we can
2382 * try to revert whatever we did when offlining one memory block fails
2383 * after offlining some others succeeded.
2384 */
2385 online_types = kmalloc_array(mb_count, sizeof(*online_types),
2386 GFP_KERNEL);
2387 if (!online_types)
2388 return -ENOMEM;
2389 /*
2390 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2391 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2392 * try_reonline_memory_block().
2393 */
2394 memset(online_types, MMOP_OFFLINE, mb_count);
2395
2396 lock_device_hotplug();
2397
2398 tmp = online_types;
2399 rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2400
2401 /*
2402 * In case we succeeded to offline all memory, remove it.
2403 * This cannot fail as it cannot get onlined in the meantime.
2404 */
2405 if (!rc) {
2406 rc = try_remove_memory(start, size);
2407 if (rc)
2408 pr_err("%s: Failed to remove memory: %d", __func__, rc);
2409 }
2410
2411 /*
2412 * Rollback what we did. While memory onlining might theoretically fail
2413 * (nacked by a notifier), it barely ever happens.
2414 */
2415 if (rc) {
2416 tmp = online_types;
2417 walk_memory_blocks(start, size, &tmp,
2418 try_reonline_memory_block);
2419 }
2420 unlock_device_hotplug();
2421
2422 kfree(online_types);
2423 return rc;
2424 }
2425 EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2426 #endif /* CONFIG_MEMORY_HOTREMOVE */
2427