1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory_hotplug.c
4 *
5 * Copyright (C)
6 */
7
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memremap.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/vmalloc.h>
24 #include <linux/ioport.h>
25 #include <linux/delay.h>
26 #include <linux/migrate.h>
27 #include <linux/page-isolation.h>
28 #include <linux/pfn.h>
29 #include <linux/suspend.h>
30 #include <linux/mm_inline.h>
31 #include <linux/firmware-map.h>
32 #include <linux/stop_machine.h>
33 #include <linux/hugetlb.h>
34 #include <linux/memblock.h>
35 #include <linux/compaction.h>
36 #include <linux/rmap.h>
37 #include <linux/module.h>
38
39 #include <asm/tlbflush.h>
40
41 #include "internal.h"
42 #include "shuffle.h"
43
44 enum {
45 MEMMAP_ON_MEMORY_DISABLE = 0,
46 MEMMAP_ON_MEMORY_ENABLE,
47 MEMMAP_ON_MEMORY_FORCE,
48 };
49
50 static int memmap_mode __read_mostly = MEMMAP_ON_MEMORY_DISABLE;
51
memory_block_memmap_size(void)52 static inline unsigned long memory_block_memmap_size(void)
53 {
54 return PHYS_PFN(memory_block_size_bytes()) * sizeof(struct page);
55 }
56
memory_block_memmap_on_memory_pages(void)57 static inline unsigned long memory_block_memmap_on_memory_pages(void)
58 {
59 unsigned long nr_pages = PFN_UP(memory_block_memmap_size());
60
61 /*
62 * In "forced" memmap_on_memory mode, we add extra pages to align the
63 * vmemmap size to cover full pageblocks. That way, we can add memory
64 * even if the vmemmap size is not properly aligned, however, we might waste
65 * memory.
66 */
67 if (memmap_mode == MEMMAP_ON_MEMORY_FORCE)
68 return pageblock_align(nr_pages);
69 return nr_pages;
70 }
71
72 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
73 /*
74 * memory_hotplug.memmap_on_memory parameter
75 */
set_memmap_mode(const char * val,const struct kernel_param * kp)76 static int set_memmap_mode(const char *val, const struct kernel_param *kp)
77 {
78 int ret, mode;
79 bool enabled;
80
81 if (sysfs_streq(val, "force") || sysfs_streq(val, "FORCE")) {
82 mode = MEMMAP_ON_MEMORY_FORCE;
83 } else {
84 ret = kstrtobool(val, &enabled);
85 if (ret < 0)
86 return ret;
87 if (enabled)
88 mode = MEMMAP_ON_MEMORY_ENABLE;
89 else
90 mode = MEMMAP_ON_MEMORY_DISABLE;
91 }
92 *((int *)kp->arg) = mode;
93 if (mode == MEMMAP_ON_MEMORY_FORCE) {
94 unsigned long memmap_pages = memory_block_memmap_on_memory_pages();
95
96 pr_info_once("Memory hotplug will waste %ld pages in each memory block\n",
97 memmap_pages - PFN_UP(memory_block_memmap_size()));
98 }
99 return 0;
100 }
101
get_memmap_mode(char * buffer,const struct kernel_param * kp)102 static int get_memmap_mode(char *buffer, const struct kernel_param *kp)
103 {
104 int mode = *((int *)kp->arg);
105
106 if (mode == MEMMAP_ON_MEMORY_FORCE)
107 return sprintf(buffer, "force\n");
108 return sprintf(buffer, "%c\n", mode ? 'Y' : 'N');
109 }
110
111 static const struct kernel_param_ops memmap_mode_ops = {
112 .set = set_memmap_mode,
113 .get = get_memmap_mode,
114 };
115 module_param_cb(memmap_on_memory, &memmap_mode_ops, &memmap_mode, 0444);
116 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug\n"
117 "With value \"force\" it could result in memory wastage due "
118 "to memmap size limitations (Y/N/force)");
119
mhp_memmap_on_memory(void)120 static inline bool mhp_memmap_on_memory(void)
121 {
122 return memmap_mode != MEMMAP_ON_MEMORY_DISABLE;
123 }
124 #else
mhp_memmap_on_memory(void)125 static inline bool mhp_memmap_on_memory(void)
126 {
127 return false;
128 }
129 #endif
130
131 enum {
132 ONLINE_POLICY_CONTIG_ZONES = 0,
133 ONLINE_POLICY_AUTO_MOVABLE,
134 };
135
136 static const char * const online_policy_to_str[] = {
137 [ONLINE_POLICY_CONTIG_ZONES] = "contig-zones",
138 [ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable",
139 };
140
set_online_policy(const char * val,const struct kernel_param * kp)141 static int set_online_policy(const char *val, const struct kernel_param *kp)
142 {
143 int ret = sysfs_match_string(online_policy_to_str, val);
144
145 if (ret < 0)
146 return ret;
147 *((int *)kp->arg) = ret;
148 return 0;
149 }
150
get_online_policy(char * buffer,const struct kernel_param * kp)151 static int get_online_policy(char *buffer, const struct kernel_param *kp)
152 {
153 return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]);
154 }
155
156 /*
157 * memory_hotplug.online_policy: configure online behavior when onlining without
158 * specifying a zone (MMOP_ONLINE)
159 *
160 * "contig-zones": keep zone contiguous
161 * "auto-movable": online memory to ZONE_MOVABLE if the configuration
162 * (auto_movable_ratio, auto_movable_numa_aware) allows for it
163 */
164 static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES;
165 static const struct kernel_param_ops online_policy_ops = {
166 .set = set_online_policy,
167 .get = get_online_policy,
168 };
169 module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644);
170 MODULE_PARM_DESC(online_policy,
171 "Set the online policy (\"contig-zones\", \"auto-movable\") "
172 "Default: \"contig-zones\"");
173
174 /*
175 * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio
176 *
177 * The ratio represent an upper limit and the kernel might decide to not
178 * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory
179 * doesn't allow for more MOVABLE memory.
180 */
181 static unsigned int auto_movable_ratio __read_mostly = 301;
182 module_param(auto_movable_ratio, uint, 0644);
183 MODULE_PARM_DESC(auto_movable_ratio,
184 "Set the maximum ratio of MOVABLE:KERNEL memory in the system "
185 "in percent for \"auto-movable\" online policy. Default: 301");
186
187 /*
188 * memory_hotplug.auto_movable_numa_aware: consider numa node stats
189 */
190 #ifdef CONFIG_NUMA
191 static bool auto_movable_numa_aware __read_mostly = true;
192 module_param(auto_movable_numa_aware, bool, 0644);
193 MODULE_PARM_DESC(auto_movable_numa_aware,
194 "Consider numa node stats in addition to global stats in "
195 "\"auto-movable\" online policy. Default: true");
196 #endif /* CONFIG_NUMA */
197
198 /*
199 * online_page_callback contains pointer to current page onlining function.
200 * Initially it is generic_online_page(). If it is required it could be
201 * changed by calling set_online_page_callback() for callback registration
202 * and restore_online_page_callback() for generic callback restore.
203 */
204
205 static online_page_callback_t online_page_callback = generic_online_page;
206 static DEFINE_MUTEX(online_page_callback_lock);
207
208 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
209
get_online_mems(void)210 void get_online_mems(void)
211 {
212 percpu_down_read(&mem_hotplug_lock);
213 }
214
put_online_mems(void)215 void put_online_mems(void)
216 {
217 percpu_up_read(&mem_hotplug_lock);
218 }
219
220 bool movable_node_enabled = false;
221
222 static int mhp_default_online_type = -1;
mhp_get_default_online_type(void)223 int mhp_get_default_online_type(void)
224 {
225 if (mhp_default_online_type >= 0)
226 return mhp_default_online_type;
227
228 if (IS_ENABLED(CONFIG_MHP_DEFAULT_ONLINE_TYPE_OFFLINE))
229 mhp_default_online_type = MMOP_OFFLINE;
230 else if (IS_ENABLED(CONFIG_MHP_DEFAULT_ONLINE_TYPE_ONLINE_AUTO))
231 mhp_default_online_type = MMOP_ONLINE;
232 else if (IS_ENABLED(CONFIG_MHP_DEFAULT_ONLINE_TYPE_ONLINE_KERNEL))
233 mhp_default_online_type = MMOP_ONLINE_KERNEL;
234 else if (IS_ENABLED(CONFIG_MHP_DEFAULT_ONLINE_TYPE_ONLINE_MOVABLE))
235 mhp_default_online_type = MMOP_ONLINE_MOVABLE;
236 else
237 mhp_default_online_type = MMOP_OFFLINE;
238
239 return mhp_default_online_type;
240 }
241
mhp_set_default_online_type(int online_type)242 void mhp_set_default_online_type(int online_type)
243 {
244 mhp_default_online_type = online_type;
245 }
246
setup_memhp_default_state(char * str)247 static int __init setup_memhp_default_state(char *str)
248 {
249 const int online_type = mhp_online_type_from_str(str);
250
251 if (online_type >= 0)
252 mhp_default_online_type = online_type;
253
254 return 1;
255 }
256 __setup("memhp_default_state=", setup_memhp_default_state);
257
mem_hotplug_begin(void)258 void mem_hotplug_begin(void)
259 {
260 cpus_read_lock();
261 percpu_down_write(&mem_hotplug_lock);
262 }
263
mem_hotplug_done(void)264 void mem_hotplug_done(void)
265 {
266 percpu_up_write(&mem_hotplug_lock);
267 cpus_read_unlock();
268 }
269
270 u64 max_mem_size = U64_MAX;
271
272 /* add this memory to iomem resource */
register_memory_resource(u64 start,u64 size,const char * resource_name)273 static struct resource *register_memory_resource(u64 start, u64 size,
274 const char *resource_name)
275 {
276 struct resource *res;
277 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
278
279 if (strcmp(resource_name, "System RAM"))
280 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
281
282 if (!mhp_range_allowed(start, size, true))
283 return ERR_PTR(-E2BIG);
284
285 /*
286 * Make sure value parsed from 'mem=' only restricts memory adding
287 * while booting, so that memory hotplug won't be impacted. Please
288 * refer to document of 'mem=' in kernel-parameters.txt for more
289 * details.
290 */
291 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
292 return ERR_PTR(-E2BIG);
293
294 /*
295 * Request ownership of the new memory range. This might be
296 * a child of an existing resource that was present but
297 * not marked as busy.
298 */
299 res = __request_region(&iomem_resource, start, size,
300 resource_name, flags);
301
302 if (!res) {
303 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
304 start, start + size);
305 return ERR_PTR(-EEXIST);
306 }
307 return res;
308 }
309
release_memory_resource(struct resource * res)310 static void release_memory_resource(struct resource *res)
311 {
312 if (!res)
313 return;
314 release_resource(res);
315 kfree(res);
316 }
317
check_pfn_span(unsigned long pfn,unsigned long nr_pages)318 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages)
319 {
320 /*
321 * Disallow all operations smaller than a sub-section and only
322 * allow operations smaller than a section for
323 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
324 * enforces a larger memory_block_size_bytes() granularity for
325 * memory that will be marked online, so this check should only
326 * fire for direct arch_{add,remove}_memory() users outside of
327 * add_memory_resource().
328 */
329 unsigned long min_align;
330
331 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
332 min_align = PAGES_PER_SUBSECTION;
333 else
334 min_align = PAGES_PER_SECTION;
335 if (!IS_ALIGNED(pfn | nr_pages, min_align))
336 return -EINVAL;
337 return 0;
338 }
339
340 /*
341 * Return page for the valid pfn only if the page is online. All pfn
342 * walkers which rely on the fully initialized page->flags and others
343 * should use this rather than pfn_valid && pfn_to_page
344 */
pfn_to_online_page(unsigned long pfn)345 struct page *pfn_to_online_page(unsigned long pfn)
346 {
347 unsigned long nr = pfn_to_section_nr(pfn);
348 struct dev_pagemap *pgmap;
349 struct mem_section *ms;
350
351 if (nr >= NR_MEM_SECTIONS)
352 return NULL;
353
354 ms = __nr_to_section(nr);
355 if (!online_section(ms))
356 return NULL;
357
358 /*
359 * Save some code text when online_section() +
360 * pfn_section_valid() are sufficient.
361 */
362 if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
363 return NULL;
364
365 if (!pfn_section_valid(ms, pfn))
366 return NULL;
367
368 if (!online_device_section(ms))
369 return pfn_to_page(pfn);
370
371 /*
372 * Slowpath: when ZONE_DEVICE collides with
373 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
374 * the section may be 'offline' but 'valid'. Only
375 * get_dev_pagemap() can determine sub-section online status.
376 */
377 pgmap = get_dev_pagemap(pfn, NULL);
378 put_dev_pagemap(pgmap);
379
380 /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
381 if (pgmap)
382 return NULL;
383
384 return pfn_to_page(pfn);
385 }
386 EXPORT_SYMBOL_GPL(pfn_to_online_page);
387
__add_pages(int nid,unsigned long pfn,unsigned long nr_pages,struct mhp_params * params)388 int __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
389 struct mhp_params *params)
390 {
391 const unsigned long end_pfn = pfn + nr_pages;
392 unsigned long cur_nr_pages;
393 int err;
394 struct vmem_altmap *altmap = params->altmap;
395
396 if (WARN_ON_ONCE(!pgprot_val(params->pgprot)))
397 return -EINVAL;
398
399 VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
400
401 if (altmap) {
402 /*
403 * Validate altmap is within bounds of the total request
404 */
405 if (altmap->base_pfn != pfn
406 || vmem_altmap_offset(altmap) > nr_pages) {
407 pr_warn_once("memory add fail, invalid altmap\n");
408 return -EINVAL;
409 }
410 altmap->alloc = 0;
411 }
412
413 if (check_pfn_span(pfn, nr_pages)) {
414 WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1);
415 return -EINVAL;
416 }
417
418 for (; pfn < end_pfn; pfn += cur_nr_pages) {
419 /* Select all remaining pages up to the next section boundary */
420 cur_nr_pages = min(end_pfn - pfn,
421 SECTION_ALIGN_UP(pfn + 1) - pfn);
422 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap,
423 params->pgmap);
424 if (err)
425 break;
426 cond_resched();
427 }
428 vmemmap_populate_print_last();
429 return err;
430 }
431
432 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
find_smallest_section_pfn(int nid,struct zone * zone,unsigned long start_pfn,unsigned long end_pfn)433 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
434 unsigned long start_pfn,
435 unsigned long end_pfn)
436 {
437 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
438 if (unlikely(!pfn_to_online_page(start_pfn)))
439 continue;
440
441 if (unlikely(pfn_to_nid(start_pfn) != nid))
442 continue;
443
444 if (zone != page_zone(pfn_to_page(start_pfn)))
445 continue;
446
447 return start_pfn;
448 }
449
450 return 0;
451 }
452
453 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
find_biggest_section_pfn(int nid,struct zone * zone,unsigned long start_pfn,unsigned long end_pfn)454 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
455 unsigned long start_pfn,
456 unsigned long end_pfn)
457 {
458 unsigned long pfn;
459
460 /* pfn is the end pfn of a memory section. */
461 pfn = end_pfn - 1;
462 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
463 if (unlikely(!pfn_to_online_page(pfn)))
464 continue;
465
466 if (unlikely(pfn_to_nid(pfn) != nid))
467 continue;
468
469 if (zone != page_zone(pfn_to_page(pfn)))
470 continue;
471
472 return pfn;
473 }
474
475 return 0;
476 }
477
shrink_zone_span(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn)478 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
479 unsigned long end_pfn)
480 {
481 unsigned long pfn;
482 int nid = zone_to_nid(zone);
483
484 if (zone->zone_start_pfn == start_pfn) {
485 /*
486 * If the section is smallest section in the zone, it need
487 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
488 * In this case, we find second smallest valid mem_section
489 * for shrinking zone.
490 */
491 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
492 zone_end_pfn(zone));
493 if (pfn) {
494 zone->spanned_pages = zone_end_pfn(zone) - pfn;
495 zone->zone_start_pfn = pfn;
496 } else {
497 zone->zone_start_pfn = 0;
498 zone->spanned_pages = 0;
499 }
500 } else if (zone_end_pfn(zone) == end_pfn) {
501 /*
502 * If the section is biggest section in the zone, it need
503 * shrink zone->spanned_pages.
504 * In this case, we find second biggest valid mem_section for
505 * shrinking zone.
506 */
507 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
508 start_pfn);
509 if (pfn)
510 zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
511 else {
512 zone->zone_start_pfn = 0;
513 zone->spanned_pages = 0;
514 }
515 }
516 }
517
update_pgdat_span(struct pglist_data * pgdat)518 static void update_pgdat_span(struct pglist_data *pgdat)
519 {
520 unsigned long node_start_pfn = 0, node_end_pfn = 0;
521 struct zone *zone;
522
523 for (zone = pgdat->node_zones;
524 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
525 unsigned long end_pfn = zone_end_pfn(zone);
526
527 /* No need to lock the zones, they can't change. */
528 if (!zone->spanned_pages)
529 continue;
530 if (!node_end_pfn) {
531 node_start_pfn = zone->zone_start_pfn;
532 node_end_pfn = end_pfn;
533 continue;
534 }
535
536 if (end_pfn > node_end_pfn)
537 node_end_pfn = end_pfn;
538 if (zone->zone_start_pfn < node_start_pfn)
539 node_start_pfn = zone->zone_start_pfn;
540 }
541
542 pgdat->node_start_pfn = node_start_pfn;
543 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
544 }
545
remove_pfn_range_from_zone(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)546 void remove_pfn_range_from_zone(struct zone *zone,
547 unsigned long start_pfn,
548 unsigned long nr_pages)
549 {
550 const unsigned long end_pfn = start_pfn + nr_pages;
551 struct pglist_data *pgdat = zone->zone_pgdat;
552 unsigned long pfn, cur_nr_pages;
553
554 /* Poison struct pages because they are now uninitialized again. */
555 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
556 cond_resched();
557
558 /* Select all remaining pages up to the next section boundary */
559 cur_nr_pages =
560 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
561 page_init_poison(pfn_to_page(pfn),
562 sizeof(struct page) * cur_nr_pages);
563 }
564
565 /*
566 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
567 * we will not try to shrink the zones - which is okay as
568 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
569 */
570 if (zone_is_zone_device(zone))
571 return;
572
573 clear_zone_contiguous(zone);
574
575 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
576 update_pgdat_span(pgdat);
577
578 set_zone_contiguous(zone);
579 }
580
581 /**
582 * __remove_pages() - remove sections of pages
583 * @pfn: starting pageframe (must be aligned to start of a section)
584 * @nr_pages: number of pages to remove (must be multiple of section size)
585 * @altmap: alternative device page map or %NULL if default memmap is used
586 *
587 * Generic helper function to remove section mappings and sysfs entries
588 * for the section of the memory we are removing. Caller needs to make
589 * sure that pages are marked reserved and zones are adjust properly by
590 * calling offline_pages().
591 */
__remove_pages(unsigned long pfn,unsigned long nr_pages,struct vmem_altmap * altmap)592 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
593 struct vmem_altmap *altmap)
594 {
595 const unsigned long end_pfn = pfn + nr_pages;
596 unsigned long cur_nr_pages;
597
598 if (check_pfn_span(pfn, nr_pages)) {
599 WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1);
600 return;
601 }
602
603 for (; pfn < end_pfn; pfn += cur_nr_pages) {
604 cond_resched();
605 /* Select all remaining pages up to the next section boundary */
606 cur_nr_pages = min(end_pfn - pfn,
607 SECTION_ALIGN_UP(pfn + 1) - pfn);
608 sparse_remove_section(pfn, cur_nr_pages, altmap);
609 }
610 }
611
set_online_page_callback(online_page_callback_t callback)612 int set_online_page_callback(online_page_callback_t callback)
613 {
614 int rc = -EINVAL;
615
616 get_online_mems();
617 mutex_lock(&online_page_callback_lock);
618
619 if (online_page_callback == generic_online_page) {
620 online_page_callback = callback;
621 rc = 0;
622 }
623
624 mutex_unlock(&online_page_callback_lock);
625 put_online_mems();
626
627 return rc;
628 }
629 EXPORT_SYMBOL_GPL(set_online_page_callback);
630
restore_online_page_callback(online_page_callback_t callback)631 int restore_online_page_callback(online_page_callback_t callback)
632 {
633 int rc = -EINVAL;
634
635 get_online_mems();
636 mutex_lock(&online_page_callback_lock);
637
638 if (online_page_callback == callback) {
639 online_page_callback = generic_online_page;
640 rc = 0;
641 }
642
643 mutex_unlock(&online_page_callback_lock);
644 put_online_mems();
645
646 return rc;
647 }
648 EXPORT_SYMBOL_GPL(restore_online_page_callback);
649
650 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
generic_online_page(struct page * page,unsigned int order)651 void generic_online_page(struct page *page, unsigned int order)
652 {
653 __free_pages_core(page, order, MEMINIT_HOTPLUG);
654 }
655 EXPORT_SYMBOL_GPL(generic_online_page);
656
online_pages_range(unsigned long start_pfn,unsigned long nr_pages)657 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
658 {
659 const unsigned long end_pfn = start_pfn + nr_pages;
660 unsigned long pfn;
661
662 /*
663 * Online the pages in MAX_PAGE_ORDER aligned chunks. The callback might
664 * decide to not expose all pages to the buddy (e.g., expose them
665 * later). We account all pages as being online and belonging to this
666 * zone ("present").
667 * When using memmap_on_memory, the range might not be aligned to
668 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
669 * this and the first chunk to online will be pageblock_nr_pages.
670 */
671 for (pfn = start_pfn; pfn < end_pfn;) {
672 struct page *page = pfn_to_page(pfn);
673 int order;
674
675 /*
676 * Free to online pages in the largest chunks alignment allows.
677 *
678 * __ffs() behaviour is undefined for 0. start == 0 is
679 * MAX_PAGE_ORDER-aligned, Set order to MAX_PAGE_ORDER for
680 * the case.
681 */
682 if (pfn)
683 order = min_t(int, MAX_PAGE_ORDER, __ffs(pfn));
684 else
685 order = MAX_PAGE_ORDER;
686
687 /*
688 * Exposing the page to the buddy by freeing can cause
689 * issues with debug_pagealloc enabled: some archs don't
690 * like double-unmappings. So treat them like any pages that
691 * were allocated from the buddy.
692 */
693 debug_pagealloc_map_pages(page, 1 << order);
694 (*online_page_callback)(page, order);
695 pfn += (1UL << order);
696 }
697
698 /* mark all involved sections as online */
699 online_mem_sections(start_pfn, end_pfn);
700 }
701
702 /* check which state of node_states will be changed when online memory */
node_states_check_changes_online(unsigned long nr_pages,struct zone * zone,struct memory_notify * arg)703 static void node_states_check_changes_online(unsigned long nr_pages,
704 struct zone *zone, struct memory_notify *arg)
705 {
706 int nid = zone_to_nid(zone);
707
708 arg->status_change_nid = NUMA_NO_NODE;
709 arg->status_change_nid_normal = NUMA_NO_NODE;
710
711 if (!node_state(nid, N_MEMORY))
712 arg->status_change_nid = nid;
713 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
714 arg->status_change_nid_normal = nid;
715 }
716
node_states_set_node(int node,struct memory_notify * arg)717 static void node_states_set_node(int node, struct memory_notify *arg)
718 {
719 if (arg->status_change_nid_normal >= 0)
720 node_set_state(node, N_NORMAL_MEMORY);
721
722 if (arg->status_change_nid >= 0)
723 node_set_state(node, N_MEMORY);
724 }
725
resize_zone_range(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)726 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
727 unsigned long nr_pages)
728 {
729 unsigned long old_end_pfn = zone_end_pfn(zone);
730
731 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
732 zone->zone_start_pfn = start_pfn;
733
734 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
735 }
736
resize_pgdat_range(struct pglist_data * pgdat,unsigned long start_pfn,unsigned long nr_pages)737 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
738 unsigned long nr_pages)
739 {
740 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
741
742 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
743 pgdat->node_start_pfn = start_pfn;
744
745 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
746
747 }
748
749 #ifdef CONFIG_ZONE_DEVICE
section_taint_zone_device(unsigned long pfn)750 static void section_taint_zone_device(unsigned long pfn)
751 {
752 struct mem_section *ms = __pfn_to_section(pfn);
753
754 ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
755 }
756 #else
section_taint_zone_device(unsigned long pfn)757 static inline void section_taint_zone_device(unsigned long pfn)
758 {
759 }
760 #endif
761
762 /*
763 * Associate the pfn range with the given zone, initializing the memmaps
764 * and resizing the pgdat/zone data to span the added pages. After this
765 * call, all affected pages are PageOffline().
766 *
767 * All aligned pageblocks are initialized to the specified migratetype
768 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
769 * zone stats (e.g., nr_isolate_pageblock) are touched.
770 */
move_pfn_range_to_zone(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages,struct vmem_altmap * altmap,int migratetype)771 void move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
772 unsigned long nr_pages,
773 struct vmem_altmap *altmap, int migratetype)
774 {
775 struct pglist_data *pgdat = zone->zone_pgdat;
776 int nid = pgdat->node_id;
777
778 clear_zone_contiguous(zone);
779
780 if (zone_is_empty(zone))
781 init_currently_empty_zone(zone, start_pfn, nr_pages);
782 resize_zone_range(zone, start_pfn, nr_pages);
783 resize_pgdat_range(pgdat, start_pfn, nr_pages);
784
785 /*
786 * Subsection population requires care in pfn_to_online_page().
787 * Set the taint to enable the slow path detection of
788 * ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE}
789 * section.
790 */
791 if (zone_is_zone_device(zone)) {
792 if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
793 section_taint_zone_device(start_pfn);
794 if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
795 section_taint_zone_device(start_pfn + nr_pages);
796 }
797
798 /*
799 * TODO now we have a visible range of pages which are not associated
800 * with their zone properly. Not nice but set_pfnblock_flags_mask
801 * expects the zone spans the pfn range. All the pages in the range
802 * are reserved so nobody should be touching them so we should be safe
803 */
804 memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
805 MEMINIT_HOTPLUG, altmap, migratetype);
806
807 set_zone_contiguous(zone);
808 }
809
810 struct auto_movable_stats {
811 unsigned long kernel_early_pages;
812 unsigned long movable_pages;
813 };
814
auto_movable_stats_account_zone(struct auto_movable_stats * stats,struct zone * zone)815 static void auto_movable_stats_account_zone(struct auto_movable_stats *stats,
816 struct zone *zone)
817 {
818 if (zone_idx(zone) == ZONE_MOVABLE) {
819 stats->movable_pages += zone->present_pages;
820 } else {
821 stats->kernel_early_pages += zone->present_early_pages;
822 #ifdef CONFIG_CMA
823 /*
824 * CMA pages (never on hotplugged memory) behave like
825 * ZONE_MOVABLE.
826 */
827 stats->movable_pages += zone->cma_pages;
828 stats->kernel_early_pages -= zone->cma_pages;
829 #endif /* CONFIG_CMA */
830 }
831 }
832 struct auto_movable_group_stats {
833 unsigned long movable_pages;
834 unsigned long req_kernel_early_pages;
835 };
836
auto_movable_stats_account_group(struct memory_group * group,void * arg)837 static int auto_movable_stats_account_group(struct memory_group *group,
838 void *arg)
839 {
840 const int ratio = READ_ONCE(auto_movable_ratio);
841 struct auto_movable_group_stats *stats = arg;
842 long pages;
843
844 /*
845 * We don't support modifying the config while the auto-movable online
846 * policy is already enabled. Just avoid the division by zero below.
847 */
848 if (!ratio)
849 return 0;
850
851 /*
852 * Calculate how many early kernel pages this group requires to
853 * satisfy the configured zone ratio.
854 */
855 pages = group->present_movable_pages * 100 / ratio;
856 pages -= group->present_kernel_pages;
857
858 if (pages > 0)
859 stats->req_kernel_early_pages += pages;
860 stats->movable_pages += group->present_movable_pages;
861 return 0;
862 }
863
auto_movable_can_online_movable(int nid,struct memory_group * group,unsigned long nr_pages)864 static bool auto_movable_can_online_movable(int nid, struct memory_group *group,
865 unsigned long nr_pages)
866 {
867 unsigned long kernel_early_pages, movable_pages;
868 struct auto_movable_group_stats group_stats = {};
869 struct auto_movable_stats stats = {};
870 struct zone *zone;
871 int i;
872
873 /* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */
874 if (nid == NUMA_NO_NODE) {
875 /* TODO: cache values */
876 for_each_populated_zone(zone)
877 auto_movable_stats_account_zone(&stats, zone);
878 } else {
879 for (i = 0; i < MAX_NR_ZONES; i++) {
880 pg_data_t *pgdat = NODE_DATA(nid);
881
882 zone = pgdat->node_zones + i;
883 if (populated_zone(zone))
884 auto_movable_stats_account_zone(&stats, zone);
885 }
886 }
887
888 kernel_early_pages = stats.kernel_early_pages;
889 movable_pages = stats.movable_pages;
890
891 /*
892 * Kernel memory inside dynamic memory group allows for more MOVABLE
893 * memory within the same group. Remove the effect of all but the
894 * current group from the stats.
895 */
896 walk_dynamic_memory_groups(nid, auto_movable_stats_account_group,
897 group, &group_stats);
898 if (kernel_early_pages <= group_stats.req_kernel_early_pages)
899 return false;
900 kernel_early_pages -= group_stats.req_kernel_early_pages;
901 movable_pages -= group_stats.movable_pages;
902
903 if (group && group->is_dynamic)
904 kernel_early_pages += group->present_kernel_pages;
905
906 /*
907 * Test if we could online the given number of pages to ZONE_MOVABLE
908 * and still stay in the configured ratio.
909 */
910 movable_pages += nr_pages;
911 return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100;
912 }
913
914 /*
915 * Returns a default kernel memory zone for the given pfn range.
916 * If no kernel zone covers this pfn range it will automatically go
917 * to the ZONE_NORMAL.
918 */
default_kernel_zone_for_pfn(int nid,unsigned long start_pfn,unsigned long nr_pages)919 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
920 unsigned long nr_pages)
921 {
922 struct pglist_data *pgdat = NODE_DATA(nid);
923 int zid;
924
925 for (zid = 0; zid < ZONE_NORMAL; zid++) {
926 struct zone *zone = &pgdat->node_zones[zid];
927
928 if (zone_intersects(zone, start_pfn, nr_pages))
929 return zone;
930 }
931
932 return &pgdat->node_zones[ZONE_NORMAL];
933 }
934
935 /*
936 * Determine to which zone to online memory dynamically based on user
937 * configuration and system stats. We care about the following ratio:
938 *
939 * MOVABLE : KERNEL
940 *
941 * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in
942 * one of the kernel zones. CMA pages inside one of the kernel zones really
943 * behaves like ZONE_MOVABLE, so we treat them accordingly.
944 *
945 * We don't allow for hotplugged memory in a KERNEL zone to increase the
946 * amount of MOVABLE memory we can have, so we end up with:
947 *
948 * MOVABLE : KERNEL_EARLY
949 *
950 * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze
951 * boot. We base our calculation on KERNEL_EARLY internally, because:
952 *
953 * a) Hotplugged memory in one of the kernel zones can sometimes still get
954 * hotunplugged, especially when hot(un)plugging individual memory blocks.
955 * There is no coordination across memory devices, therefore "automatic"
956 * hotunplugging, as implemented in hypervisors, could result in zone
957 * imbalances.
958 * b) Early/boot memory in one of the kernel zones can usually not get
959 * hotunplugged again (e.g., no firmware interface to unplug, fragmented
960 * with unmovable allocations). While there are corner cases where it might
961 * still work, it is barely relevant in practice.
962 *
963 * Exceptions are dynamic memory groups, which allow for more MOVABLE
964 * memory within the same memory group -- because in that case, there is
965 * coordination within the single memory device managed by a single driver.
966 *
967 * We rely on "present pages" instead of "managed pages", as the latter is
968 * highly unreliable and dynamic in virtualized environments, and does not
969 * consider boot time allocations. For example, memory ballooning adjusts the
970 * managed pages when inflating/deflating the balloon, and balloon compaction
971 * can even migrate inflated pages between zones.
972 *
973 * Using "present pages" is better but some things to keep in mind are:
974 *
975 * a) Some memblock allocations, such as for the crashkernel area, are
976 * effectively unused by the kernel, yet they account to "present pages".
977 * Fortunately, these allocations are comparatively small in relevant setups
978 * (e.g., fraction of system memory).
979 * b) Some hotplugged memory blocks in virtualized environments, esecially
980 * hotplugged by virtio-mem, look like they are completely present, however,
981 * only parts of the memory block are actually currently usable.
982 * "present pages" is an upper limit that can get reached at runtime. As
983 * we base our calculations on KERNEL_EARLY, this is not an issue.
984 */
auto_movable_zone_for_pfn(int nid,struct memory_group * group,unsigned long pfn,unsigned long nr_pages)985 static struct zone *auto_movable_zone_for_pfn(int nid,
986 struct memory_group *group,
987 unsigned long pfn,
988 unsigned long nr_pages)
989 {
990 unsigned long online_pages = 0, max_pages, end_pfn;
991 struct page *page;
992
993 if (!auto_movable_ratio)
994 goto kernel_zone;
995
996 if (group && !group->is_dynamic) {
997 max_pages = group->s.max_pages;
998 online_pages = group->present_movable_pages;
999
1000 /* If anything is !MOVABLE online the rest !MOVABLE. */
1001 if (group->present_kernel_pages)
1002 goto kernel_zone;
1003 } else if (!group || group->d.unit_pages == nr_pages) {
1004 max_pages = nr_pages;
1005 } else {
1006 max_pages = group->d.unit_pages;
1007 /*
1008 * Take a look at all online sections in the current unit.
1009 * We can safely assume that all pages within a section belong
1010 * to the same zone, because dynamic memory groups only deal
1011 * with hotplugged memory.
1012 */
1013 pfn = ALIGN_DOWN(pfn, group->d.unit_pages);
1014 end_pfn = pfn + group->d.unit_pages;
1015 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1016 page = pfn_to_online_page(pfn);
1017 if (!page)
1018 continue;
1019 /* If anything is !MOVABLE online the rest !MOVABLE. */
1020 if (!is_zone_movable_page(page))
1021 goto kernel_zone;
1022 online_pages += PAGES_PER_SECTION;
1023 }
1024 }
1025
1026 /*
1027 * Online MOVABLE if we could *currently* online all remaining parts
1028 * MOVABLE. We expect to (add+) online them immediately next, so if
1029 * nobody interferes, all will be MOVABLE if possible.
1030 */
1031 nr_pages = max_pages - online_pages;
1032 if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages))
1033 goto kernel_zone;
1034
1035 #ifdef CONFIG_NUMA
1036 if (auto_movable_numa_aware &&
1037 !auto_movable_can_online_movable(nid, group, nr_pages))
1038 goto kernel_zone;
1039 #endif /* CONFIG_NUMA */
1040
1041 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1042 kernel_zone:
1043 return default_kernel_zone_for_pfn(nid, pfn, nr_pages);
1044 }
1045
default_zone_for_pfn(int nid,unsigned long start_pfn,unsigned long nr_pages)1046 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
1047 unsigned long nr_pages)
1048 {
1049 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
1050 nr_pages);
1051 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1052 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
1053 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
1054
1055 /*
1056 * We inherit the existing zone in a simple case where zones do not
1057 * overlap in the given range
1058 */
1059 if (in_kernel ^ in_movable)
1060 return (in_kernel) ? kernel_zone : movable_zone;
1061
1062 /*
1063 * If the range doesn't belong to any zone or two zones overlap in the
1064 * given range then we use movable zone only if movable_node is
1065 * enabled because we always online to a kernel zone by default.
1066 */
1067 return movable_node_enabled ? movable_zone : kernel_zone;
1068 }
1069
zone_for_pfn_range(int online_type,int nid,struct memory_group * group,unsigned long start_pfn,unsigned long nr_pages)1070 struct zone *zone_for_pfn_range(int online_type, int nid,
1071 struct memory_group *group, unsigned long start_pfn,
1072 unsigned long nr_pages)
1073 {
1074 if (online_type == MMOP_ONLINE_KERNEL)
1075 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
1076
1077 if (online_type == MMOP_ONLINE_MOVABLE)
1078 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1079
1080 if (online_policy == ONLINE_POLICY_AUTO_MOVABLE)
1081 return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages);
1082
1083 return default_zone_for_pfn(nid, start_pfn, nr_pages);
1084 }
1085
1086 /*
1087 * This function should only be called by memory_block_{online,offline},
1088 * and {online,offline}_pages.
1089 */
adjust_present_page_count(struct page * page,struct memory_group * group,long nr_pages)1090 void adjust_present_page_count(struct page *page, struct memory_group *group,
1091 long nr_pages)
1092 {
1093 struct zone *zone = page_zone(page);
1094 const bool movable = zone_idx(zone) == ZONE_MOVABLE;
1095
1096 /*
1097 * We only support onlining/offlining/adding/removing of complete
1098 * memory blocks; therefore, either all is either early or hotplugged.
1099 */
1100 if (early_section(__pfn_to_section(page_to_pfn(page))))
1101 zone->present_early_pages += nr_pages;
1102 zone->present_pages += nr_pages;
1103 zone->zone_pgdat->node_present_pages += nr_pages;
1104
1105 if (group && movable)
1106 group->present_movable_pages += nr_pages;
1107 else if (group && !movable)
1108 group->present_kernel_pages += nr_pages;
1109 }
1110
mhp_init_memmap_on_memory(unsigned long pfn,unsigned long nr_pages,struct zone * zone,bool mhp_off_inaccessible)1111 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
1112 struct zone *zone, bool mhp_off_inaccessible)
1113 {
1114 unsigned long end_pfn = pfn + nr_pages;
1115 int ret, i;
1116
1117 ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1118 if (ret)
1119 return ret;
1120
1121 /*
1122 * Memory block is accessible at this stage and hence poison the struct
1123 * pages now. If the memory block is accessible during memory hotplug
1124 * addition phase, then page poisining is already performed in
1125 * sparse_add_section().
1126 */
1127 if (mhp_off_inaccessible)
1128 page_init_poison(pfn_to_page(pfn), sizeof(struct page) * nr_pages);
1129
1130 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
1131
1132 for (i = 0; i < nr_pages; i++) {
1133 struct page *page = pfn_to_page(pfn + i);
1134
1135 __ClearPageOffline(page);
1136 SetPageVmemmapSelfHosted(page);
1137 }
1138
1139 /*
1140 * It might be that the vmemmap_pages fully span sections. If that is
1141 * the case, mark those sections online here as otherwise they will be
1142 * left offline.
1143 */
1144 if (nr_pages >= PAGES_PER_SECTION)
1145 online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1146
1147 return ret;
1148 }
1149
mhp_deinit_memmap_on_memory(unsigned long pfn,unsigned long nr_pages)1150 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
1151 {
1152 unsigned long end_pfn = pfn + nr_pages;
1153
1154 /*
1155 * It might be that the vmemmap_pages fully span sections. If that is
1156 * the case, mark those sections offline here as otherwise they will be
1157 * left online.
1158 */
1159 if (nr_pages >= PAGES_PER_SECTION)
1160 offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1161
1162 /*
1163 * The pages associated with this vmemmap have been offlined, so
1164 * we can reset its state here.
1165 */
1166 remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
1167 kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1168 }
1169
1170 /*
1171 * Must be called with mem_hotplug_lock in write mode.
1172 */
online_pages(unsigned long pfn,unsigned long nr_pages,struct zone * zone,struct memory_group * group)1173 int online_pages(unsigned long pfn, unsigned long nr_pages,
1174 struct zone *zone, struct memory_group *group)
1175 {
1176 unsigned long flags;
1177 int need_zonelists_rebuild = 0;
1178 const int nid = zone_to_nid(zone);
1179 int ret;
1180 struct memory_notify arg;
1181
1182 /*
1183 * {on,off}lining is constrained to full memory sections (or more
1184 * precisely to memory blocks from the user space POV).
1185 * memmap_on_memory is an exception because it reserves initial part
1186 * of the physical memory space for vmemmaps. That space is pageblock
1187 * aligned.
1188 */
1189 if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(pfn) ||
1190 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
1191 return -EINVAL;
1192
1193
1194 /* associate pfn range with the zone */
1195 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
1196
1197 arg.start_pfn = pfn;
1198 arg.nr_pages = nr_pages;
1199 node_states_check_changes_online(nr_pages, zone, &arg);
1200
1201 ret = memory_notify(MEM_GOING_ONLINE, &arg);
1202 ret = notifier_to_errno(ret);
1203 if (ret)
1204 goto failed_addition;
1205
1206 /*
1207 * Fixup the number of isolated pageblocks before marking the sections
1208 * onlining, such that undo_isolate_page_range() works correctly.
1209 */
1210 spin_lock_irqsave(&zone->lock, flags);
1211 zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
1212 spin_unlock_irqrestore(&zone->lock, flags);
1213
1214 /*
1215 * If this zone is not populated, then it is not in zonelist.
1216 * This means the page allocator ignores this zone.
1217 * So, zonelist must be updated after online.
1218 */
1219 if (!populated_zone(zone)) {
1220 need_zonelists_rebuild = 1;
1221 setup_zone_pageset(zone);
1222 }
1223
1224 online_pages_range(pfn, nr_pages);
1225 adjust_present_page_count(pfn_to_page(pfn), group, nr_pages);
1226
1227 node_states_set_node(nid, &arg);
1228 if (need_zonelists_rebuild)
1229 build_all_zonelists(NULL);
1230
1231 /* Basic onlining is complete, allow allocation of onlined pages. */
1232 undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
1233
1234 /*
1235 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
1236 * the tail of the freelist when undoing isolation). Shuffle the whole
1237 * zone to make sure the just onlined pages are properly distributed
1238 * across the whole freelist - to create an initial shuffle.
1239 */
1240 shuffle_zone(zone);
1241
1242 /* reinitialise watermarks and update pcp limits */
1243 init_per_zone_wmark_min();
1244
1245 kswapd_run(nid);
1246 kcompactd_run(nid);
1247
1248 writeback_set_ratelimit();
1249
1250 memory_notify(MEM_ONLINE, &arg);
1251 return 0;
1252
1253 failed_addition:
1254 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1255 (unsigned long long) pfn << PAGE_SHIFT,
1256 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1257 memory_notify(MEM_CANCEL_ONLINE, &arg);
1258 remove_pfn_range_from_zone(zone, pfn, nr_pages);
1259 return ret;
1260 }
1261
1262 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
hotadd_init_pgdat(int nid)1263 static pg_data_t *hotadd_init_pgdat(int nid)
1264 {
1265 struct pglist_data *pgdat;
1266
1267 /*
1268 * NODE_DATA is preallocated (free_area_init) but its internal
1269 * state is not allocated completely. Add missing pieces.
1270 * Completely offline nodes stay around and they just need
1271 * reintialization.
1272 */
1273 pgdat = NODE_DATA(nid);
1274
1275 /* init node's zones as empty zones, we don't have any present pages.*/
1276 free_area_init_core_hotplug(pgdat);
1277
1278 /*
1279 * The node we allocated has no zone fallback lists. For avoiding
1280 * to access not-initialized zonelist, build here.
1281 */
1282 build_all_zonelists(pgdat);
1283
1284 return pgdat;
1285 }
1286
1287 /*
1288 * __try_online_node - online a node if offlined
1289 * @nid: the node ID
1290 * @set_node_online: Whether we want to online the node
1291 * called by cpu_up() to online a node without onlined memory.
1292 *
1293 * Returns:
1294 * 1 -> a new node has been allocated
1295 * 0 -> the node is already online
1296 * -ENOMEM -> the node could not be allocated
1297 */
__try_online_node(int nid,bool set_node_online)1298 static int __try_online_node(int nid, bool set_node_online)
1299 {
1300 pg_data_t *pgdat;
1301 int ret = 1;
1302
1303 if (node_online(nid))
1304 return 0;
1305
1306 pgdat = hotadd_init_pgdat(nid);
1307 if (!pgdat) {
1308 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1309 ret = -ENOMEM;
1310 goto out;
1311 }
1312
1313 if (set_node_online) {
1314 node_set_online(nid);
1315 ret = register_one_node(nid);
1316 BUG_ON(ret);
1317 }
1318 out:
1319 return ret;
1320 }
1321
1322 /*
1323 * Users of this function always want to online/register the node
1324 */
try_online_node(int nid)1325 int try_online_node(int nid)
1326 {
1327 int ret;
1328
1329 mem_hotplug_begin();
1330 ret = __try_online_node(nid, true);
1331 mem_hotplug_done();
1332 return ret;
1333 }
1334
check_hotplug_memory_range(u64 start,u64 size)1335 static int check_hotplug_memory_range(u64 start, u64 size)
1336 {
1337 /* memory range must be block size aligned */
1338 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1339 !IS_ALIGNED(size, memory_block_size_bytes())) {
1340 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1341 memory_block_size_bytes(), start, size);
1342 return -EINVAL;
1343 }
1344
1345 return 0;
1346 }
1347
online_memory_block(struct memory_block * mem,void * arg)1348 static int online_memory_block(struct memory_block *mem, void *arg)
1349 {
1350 mem->online_type = mhp_get_default_online_type();
1351 return device_online(&mem->dev);
1352 }
1353
1354 #ifndef arch_supports_memmap_on_memory
arch_supports_memmap_on_memory(unsigned long vmemmap_size)1355 static inline bool arch_supports_memmap_on_memory(unsigned long vmemmap_size)
1356 {
1357 /*
1358 * As default, we want the vmemmap to span a complete PMD such that we
1359 * can map the vmemmap using a single PMD if supported by the
1360 * architecture.
1361 */
1362 return IS_ALIGNED(vmemmap_size, PMD_SIZE);
1363 }
1364 #endif
1365
mhp_supports_memmap_on_memory(void)1366 bool mhp_supports_memmap_on_memory(void)
1367 {
1368 unsigned long vmemmap_size = memory_block_memmap_size();
1369 unsigned long memmap_pages = memory_block_memmap_on_memory_pages();
1370
1371 /*
1372 * Besides having arch support and the feature enabled at runtime, we
1373 * need a few more assumptions to hold true:
1374 *
1375 * a) The vmemmap pages span complete PMDs: We don't want vmemmap code
1376 * to populate memory from the altmap for unrelated parts (i.e.,
1377 * other memory blocks)
1378 *
1379 * b) The vmemmap pages (and thereby the pages that will be exposed to
1380 * the buddy) have to cover full pageblocks: memory onlining/offlining
1381 * code requires applicable ranges to be page-aligned, for example, to
1382 * set the migratetypes properly.
1383 *
1384 * TODO: Although we have a check here to make sure that vmemmap pages
1385 * fully populate a PMD, it is not the right place to check for
1386 * this. A much better solution involves improving vmemmap code
1387 * to fallback to base pages when trying to populate vmemmap using
1388 * altmap as an alternative source of memory, and we do not exactly
1389 * populate a single PMD.
1390 */
1391 if (!mhp_memmap_on_memory())
1392 return false;
1393
1394 /*
1395 * Make sure the vmemmap allocation is fully contained
1396 * so that we always allocate vmemmap memory from altmap area.
1397 */
1398 if (!IS_ALIGNED(vmemmap_size, PAGE_SIZE))
1399 return false;
1400
1401 /*
1402 * start pfn should be pageblock_nr_pages aligned for correctly
1403 * setting migrate types
1404 */
1405 if (!pageblock_aligned(memmap_pages))
1406 return false;
1407
1408 if (memmap_pages == PHYS_PFN(memory_block_size_bytes()))
1409 /* No effective hotplugged memory doesn't make sense. */
1410 return false;
1411
1412 return arch_supports_memmap_on_memory(vmemmap_size);
1413 }
1414 EXPORT_SYMBOL_GPL(mhp_supports_memmap_on_memory);
1415
remove_memory_blocks_and_altmaps(u64 start,u64 size)1416 static void remove_memory_blocks_and_altmaps(u64 start, u64 size)
1417 {
1418 unsigned long memblock_size = memory_block_size_bytes();
1419 u64 cur_start;
1420
1421 /*
1422 * For memmap_on_memory, the altmaps were added on a per-memblock
1423 * basis; we have to process each individual memory block.
1424 */
1425 for (cur_start = start; cur_start < start + size;
1426 cur_start += memblock_size) {
1427 struct vmem_altmap *altmap = NULL;
1428 struct memory_block *mem;
1429
1430 mem = find_memory_block(pfn_to_section_nr(PFN_DOWN(cur_start)));
1431 if (WARN_ON_ONCE(!mem))
1432 continue;
1433
1434 altmap = mem->altmap;
1435 mem->altmap = NULL;
1436
1437 remove_memory_block_devices(cur_start, memblock_size);
1438
1439 arch_remove_memory(cur_start, memblock_size, altmap);
1440
1441 /* Verify that all vmemmap pages have actually been freed. */
1442 WARN(altmap->alloc, "Altmap not fully unmapped");
1443 kfree(altmap);
1444 }
1445 }
1446
create_altmaps_and_memory_blocks(int nid,struct memory_group * group,u64 start,u64 size,mhp_t mhp_flags)1447 static int create_altmaps_and_memory_blocks(int nid, struct memory_group *group,
1448 u64 start, u64 size, mhp_t mhp_flags)
1449 {
1450 unsigned long memblock_size = memory_block_size_bytes();
1451 u64 cur_start;
1452 int ret;
1453
1454 for (cur_start = start; cur_start < start + size;
1455 cur_start += memblock_size) {
1456 struct mhp_params params = { .pgprot =
1457 pgprot_mhp(PAGE_KERNEL) };
1458 struct vmem_altmap mhp_altmap = {
1459 .base_pfn = PHYS_PFN(cur_start),
1460 .end_pfn = PHYS_PFN(cur_start + memblock_size - 1),
1461 };
1462
1463 mhp_altmap.free = memory_block_memmap_on_memory_pages();
1464 if (mhp_flags & MHP_OFFLINE_INACCESSIBLE)
1465 mhp_altmap.inaccessible = true;
1466 params.altmap = kmemdup(&mhp_altmap, sizeof(struct vmem_altmap),
1467 GFP_KERNEL);
1468 if (!params.altmap) {
1469 ret = -ENOMEM;
1470 goto out;
1471 }
1472
1473 /* call arch's memory hotadd */
1474 ret = arch_add_memory(nid, cur_start, memblock_size, ¶ms);
1475 if (ret < 0) {
1476 kfree(params.altmap);
1477 goto out;
1478 }
1479
1480 /* create memory block devices after memory was added */
1481 ret = create_memory_block_devices(cur_start, memblock_size,
1482 params.altmap, group);
1483 if (ret) {
1484 arch_remove_memory(cur_start, memblock_size, NULL);
1485 kfree(params.altmap);
1486 goto out;
1487 }
1488 }
1489
1490 return 0;
1491 out:
1492 if (ret && cur_start != start)
1493 remove_memory_blocks_and_altmaps(start, cur_start - start);
1494 return ret;
1495 }
1496
1497 /*
1498 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1499 * and online/offline operations (triggered e.g. by sysfs).
1500 *
1501 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1502 */
add_memory_resource(int nid,struct resource * res,mhp_t mhp_flags)1503 int add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1504 {
1505 struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1506 enum memblock_flags memblock_flags = MEMBLOCK_NONE;
1507 struct memory_group *group = NULL;
1508 u64 start, size;
1509 bool new_node = false;
1510 int ret;
1511
1512 start = res->start;
1513 size = resource_size(res);
1514
1515 ret = check_hotplug_memory_range(start, size);
1516 if (ret)
1517 return ret;
1518
1519 if (mhp_flags & MHP_NID_IS_MGID) {
1520 group = memory_group_find_by_id(nid);
1521 if (!group)
1522 return -EINVAL;
1523 nid = group->nid;
1524 }
1525
1526 if (!node_possible(nid)) {
1527 WARN(1, "node %d was absent from the node_possible_map\n", nid);
1528 return -EINVAL;
1529 }
1530
1531 mem_hotplug_begin();
1532
1533 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1534 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
1535 memblock_flags = MEMBLOCK_DRIVER_MANAGED;
1536 ret = memblock_add_node(start, size, nid, memblock_flags);
1537 if (ret)
1538 goto error_mem_hotplug_end;
1539 }
1540
1541 ret = __try_online_node(nid, false);
1542 if (ret < 0)
1543 goto error;
1544 new_node = ret;
1545
1546 /*
1547 * Self hosted memmap array
1548 */
1549 if ((mhp_flags & MHP_MEMMAP_ON_MEMORY) &&
1550 mhp_supports_memmap_on_memory()) {
1551 ret = create_altmaps_and_memory_blocks(nid, group, start, size, mhp_flags);
1552 if (ret)
1553 goto error;
1554 } else {
1555 ret = arch_add_memory(nid, start, size, ¶ms);
1556 if (ret < 0)
1557 goto error;
1558
1559 /* create memory block devices after memory was added */
1560 ret = create_memory_block_devices(start, size, NULL, group);
1561 if (ret) {
1562 arch_remove_memory(start, size, params.altmap);
1563 goto error;
1564 }
1565 }
1566
1567 if (new_node) {
1568 /* If sysfs file of new node can't be created, cpu on the node
1569 * can't be hot-added. There is no rollback way now.
1570 * So, check by BUG_ON() to catch it reluctantly..
1571 * We online node here. We can't roll back from here.
1572 */
1573 node_set_online(nid);
1574 ret = __register_one_node(nid);
1575 BUG_ON(ret);
1576 }
1577
1578 register_memory_blocks_under_node(nid, PFN_DOWN(start),
1579 PFN_UP(start + size - 1),
1580 MEMINIT_HOTPLUG);
1581
1582 /* create new memmap entry */
1583 if (!strcmp(res->name, "System RAM"))
1584 firmware_map_add_hotplug(start, start + size, "System RAM");
1585
1586 /* device_online() will take the lock when calling online_pages() */
1587 mem_hotplug_done();
1588
1589 /*
1590 * In case we're allowed to merge the resource, flag it and trigger
1591 * merging now that adding succeeded.
1592 */
1593 if (mhp_flags & MHP_MERGE_RESOURCE)
1594 merge_system_ram_resource(res);
1595
1596 /* online pages if requested */
1597 if (mhp_get_default_online_type() != MMOP_OFFLINE)
1598 walk_memory_blocks(start, size, NULL, online_memory_block);
1599
1600 return ret;
1601 error:
1602 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1603 memblock_remove(start, size);
1604 error_mem_hotplug_end:
1605 mem_hotplug_done();
1606 return ret;
1607 }
1608
1609 /* requires device_hotplug_lock, see add_memory_resource() */
__add_memory(int nid,u64 start,u64 size,mhp_t mhp_flags)1610 int __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1611 {
1612 struct resource *res;
1613 int ret;
1614
1615 res = register_memory_resource(start, size, "System RAM");
1616 if (IS_ERR(res))
1617 return PTR_ERR(res);
1618
1619 ret = add_memory_resource(nid, res, mhp_flags);
1620 if (ret < 0)
1621 release_memory_resource(res);
1622 return ret;
1623 }
1624
add_memory(int nid,u64 start,u64 size,mhp_t mhp_flags)1625 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1626 {
1627 int rc;
1628
1629 lock_device_hotplug();
1630 rc = __add_memory(nid, start, size, mhp_flags);
1631 unlock_device_hotplug();
1632
1633 return rc;
1634 }
1635 EXPORT_SYMBOL_GPL(add_memory);
1636
1637 /*
1638 * Add special, driver-managed memory to the system as system RAM. Such
1639 * memory is not exposed via the raw firmware-provided memmap as system
1640 * RAM, instead, it is detected and added by a driver - during cold boot,
1641 * after a reboot, and after kexec.
1642 *
1643 * Reasons why this memory should not be used for the initial memmap of a
1644 * kexec kernel or for placing kexec images:
1645 * - The booting kernel is in charge of determining how this memory will be
1646 * used (e.g., use persistent memory as system RAM)
1647 * - Coordination with a hypervisor is required before this memory
1648 * can be used (e.g., inaccessible parts).
1649 *
1650 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1651 * memory map") are created. Also, the created memory resource is flagged
1652 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1653 * this memory as well (esp., not place kexec images onto it).
1654 *
1655 * The resource_name (visible via /proc/iomem) has to have the format
1656 * "System RAM ($DRIVER)".
1657 */
add_memory_driver_managed(int nid,u64 start,u64 size,const char * resource_name,mhp_t mhp_flags)1658 int add_memory_driver_managed(int nid, u64 start, u64 size,
1659 const char *resource_name, mhp_t mhp_flags)
1660 {
1661 struct resource *res;
1662 int rc;
1663
1664 if (!resource_name ||
1665 strstr(resource_name, "System RAM (") != resource_name ||
1666 resource_name[strlen(resource_name) - 1] != ')')
1667 return -EINVAL;
1668
1669 lock_device_hotplug();
1670
1671 res = register_memory_resource(start, size, resource_name);
1672 if (IS_ERR(res)) {
1673 rc = PTR_ERR(res);
1674 goto out_unlock;
1675 }
1676
1677 rc = add_memory_resource(nid, res, mhp_flags);
1678 if (rc < 0)
1679 release_memory_resource(res);
1680
1681 out_unlock:
1682 unlock_device_hotplug();
1683 return rc;
1684 }
1685 EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1686
1687 /*
1688 * Platforms should define arch_get_mappable_range() that provides
1689 * maximum possible addressable physical memory range for which the
1690 * linear mapping could be created. The platform returned address
1691 * range must adhere to these following semantics.
1692 *
1693 * - range.start <= range.end
1694 * - Range includes both end points [range.start..range.end]
1695 *
1696 * There is also a fallback definition provided here, allowing the
1697 * entire possible physical address range in case any platform does
1698 * not define arch_get_mappable_range().
1699 */
arch_get_mappable_range(void)1700 struct range __weak arch_get_mappable_range(void)
1701 {
1702 struct range mhp_range = {
1703 .start = 0UL,
1704 .end = -1ULL,
1705 };
1706 return mhp_range;
1707 }
1708
mhp_get_pluggable_range(bool need_mapping)1709 struct range mhp_get_pluggable_range(bool need_mapping)
1710 {
1711 const u64 max_phys = DIRECT_MAP_PHYSMEM_END;
1712 struct range mhp_range;
1713
1714 if (need_mapping) {
1715 mhp_range = arch_get_mappable_range();
1716 if (mhp_range.start > max_phys) {
1717 mhp_range.start = 0;
1718 mhp_range.end = 0;
1719 }
1720 mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1721 } else {
1722 mhp_range.start = 0;
1723 mhp_range.end = max_phys;
1724 }
1725 return mhp_range;
1726 }
1727 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1728
mhp_range_allowed(u64 start,u64 size,bool need_mapping)1729 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1730 {
1731 struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1732 u64 end = start + size;
1733
1734 if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1735 return true;
1736
1737 pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1738 start, end, mhp_range.start, mhp_range.end);
1739 return false;
1740 }
1741
1742 #ifdef CONFIG_MEMORY_HOTREMOVE
1743 /*
1744 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1745 * non-lru movable pages and hugepages). Will skip over most unmovable
1746 * pages (esp., pages that can be skipped when offlining), but bail out on
1747 * definitely unmovable pages.
1748 *
1749 * Returns:
1750 * 0 in case a movable page is found and movable_pfn was updated.
1751 * -ENOENT in case no movable page was found.
1752 * -EBUSY in case a definitely unmovable page was found.
1753 */
scan_movable_pages(unsigned long start,unsigned long end,unsigned long * movable_pfn)1754 static int scan_movable_pages(unsigned long start, unsigned long end,
1755 unsigned long *movable_pfn)
1756 {
1757 unsigned long pfn;
1758
1759 for (pfn = start; pfn < end; pfn++) {
1760 struct page *page;
1761 struct folio *folio;
1762
1763 if (!pfn_valid(pfn))
1764 continue;
1765 page = pfn_to_page(pfn);
1766 if (PageLRU(page))
1767 goto found;
1768 if (__PageMovable(page))
1769 goto found;
1770
1771 /*
1772 * PageOffline() pages that are not marked __PageMovable() and
1773 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1774 * definitely unmovable. If their reference count would be 0,
1775 * they could at least be skipped when offlining memory.
1776 */
1777 if (PageOffline(page) && page_count(page))
1778 return -EBUSY;
1779
1780 if (!PageHuge(page))
1781 continue;
1782 folio = page_folio(page);
1783 /*
1784 * This test is racy as we hold no reference or lock. The
1785 * hugetlb page could have been free'ed and head is no longer
1786 * a hugetlb page before the following check. In such unlikely
1787 * cases false positives and negatives are possible. Calling
1788 * code must deal with these scenarios.
1789 */
1790 if (folio_test_hugetlb_migratable(folio))
1791 goto found;
1792 pfn |= folio_nr_pages(folio) - 1;
1793 }
1794 return -ENOENT;
1795 found:
1796 *movable_pfn = pfn;
1797 return 0;
1798 }
1799
do_migrate_range(unsigned long start_pfn,unsigned long end_pfn)1800 static void do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1801 {
1802 struct folio *folio;
1803 unsigned long pfn;
1804 LIST_HEAD(source);
1805 static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1806 DEFAULT_RATELIMIT_BURST);
1807
1808 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1809 struct page *page;
1810
1811 if (!pfn_valid(pfn))
1812 continue;
1813 page = pfn_to_page(pfn);
1814 folio = page_folio(page);
1815
1816 /*
1817 * No reference or lock is held on the folio, so it might
1818 * be modified concurrently (e.g. split). As such,
1819 * folio_nr_pages() may read garbage. This is fine as the outer
1820 * loop will revisit the split folio later.
1821 */
1822 if (folio_test_large(folio))
1823 pfn = folio_pfn(folio) + folio_nr_pages(folio) - 1;
1824
1825 if (!folio_try_get(folio))
1826 continue;
1827
1828 if (unlikely(page_folio(page) != folio))
1829 goto put_folio;
1830
1831 if (folio_test_hwpoison(folio) ||
1832 (folio_test_large(folio) && folio_test_has_hwpoisoned(folio))) {
1833 if (WARN_ON(folio_test_lru(folio)))
1834 folio_isolate_lru(folio);
1835 if (folio_mapped(folio)) {
1836 folio_lock(folio);
1837 unmap_poisoned_folio(folio, pfn, false);
1838 folio_unlock(folio);
1839 }
1840
1841 goto put_folio;
1842 }
1843
1844 if (!isolate_folio_to_list(folio, &source)) {
1845 if (__ratelimit(&migrate_rs)) {
1846 pr_warn("failed to isolate pfn %lx\n",
1847 page_to_pfn(page));
1848 dump_page(page, "isolation failed");
1849 }
1850 }
1851 put_folio:
1852 folio_put(folio);
1853 }
1854 if (!list_empty(&source)) {
1855 nodemask_t nmask = node_states[N_MEMORY];
1856 struct migration_target_control mtc = {
1857 .nmask = &nmask,
1858 .gfp_mask = GFP_KERNEL | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1859 .reason = MR_MEMORY_HOTPLUG,
1860 };
1861 int ret;
1862
1863 /*
1864 * We have checked that migration range is on a single zone so
1865 * we can use the nid of the first page to all the others.
1866 */
1867 mtc.nid = folio_nid(list_first_entry(&source, struct folio, lru));
1868
1869 /*
1870 * try to allocate from a different node but reuse this node
1871 * if there are no other online nodes to be used (e.g. we are
1872 * offlining a part of the only existing node)
1873 */
1874 node_clear(mtc.nid, nmask);
1875 if (nodes_empty(nmask))
1876 node_set(mtc.nid, nmask);
1877 ret = migrate_pages(&source, alloc_migration_target, NULL,
1878 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL);
1879 if (ret) {
1880 list_for_each_entry(folio, &source, lru) {
1881 if (__ratelimit(&migrate_rs)) {
1882 pr_warn("migrating pfn %lx failed ret:%d\n",
1883 folio_pfn(folio), ret);
1884 dump_page(&folio->page,
1885 "migration failure");
1886 }
1887 }
1888 putback_movable_pages(&source);
1889 }
1890 }
1891 }
1892
cmdline_parse_movable_node(char * p)1893 static int __init cmdline_parse_movable_node(char *p)
1894 {
1895 movable_node_enabled = true;
1896 return 0;
1897 }
1898 early_param("movable_node", cmdline_parse_movable_node);
1899
1900 /* check which state of node_states will be changed when offline memory */
node_states_check_changes_offline(unsigned long nr_pages,struct zone * zone,struct memory_notify * arg)1901 static void node_states_check_changes_offline(unsigned long nr_pages,
1902 struct zone *zone, struct memory_notify *arg)
1903 {
1904 struct pglist_data *pgdat = zone->zone_pgdat;
1905 unsigned long present_pages = 0;
1906 enum zone_type zt;
1907
1908 arg->status_change_nid = NUMA_NO_NODE;
1909 arg->status_change_nid_normal = NUMA_NO_NODE;
1910
1911 /*
1912 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1913 * If the memory to be offline is within the range
1914 * [0..ZONE_NORMAL], and it is the last present memory there,
1915 * the zones in that range will become empty after the offlining,
1916 * thus we can determine that we need to clear the node from
1917 * node_states[N_NORMAL_MEMORY].
1918 */
1919 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1920 present_pages += pgdat->node_zones[zt].present_pages;
1921 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1922 arg->status_change_nid_normal = zone_to_nid(zone);
1923
1924 /*
1925 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM
1926 * does not apply as we don't support 32bit.
1927 * Here we count the possible pages from ZONE_MOVABLE.
1928 * If after having accounted all the pages, we see that the nr_pages
1929 * to be offlined is over or equal to the accounted pages,
1930 * we know that the node will become empty, and so, we can clear
1931 * it for N_MEMORY as well.
1932 */
1933 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1934
1935 if (nr_pages >= present_pages)
1936 arg->status_change_nid = zone_to_nid(zone);
1937 }
1938
node_states_clear_node(int node,struct memory_notify * arg)1939 static void node_states_clear_node(int node, struct memory_notify *arg)
1940 {
1941 if (arg->status_change_nid_normal >= 0)
1942 node_clear_state(node, N_NORMAL_MEMORY);
1943
1944 if (arg->status_change_nid >= 0)
1945 node_clear_state(node, N_MEMORY);
1946 }
1947
count_system_ram_pages_cb(unsigned long start_pfn,unsigned long nr_pages,void * data)1948 static int count_system_ram_pages_cb(unsigned long start_pfn,
1949 unsigned long nr_pages, void *data)
1950 {
1951 unsigned long *nr_system_ram_pages = data;
1952
1953 *nr_system_ram_pages += nr_pages;
1954 return 0;
1955 }
1956
1957 /*
1958 * Must be called with mem_hotplug_lock in write mode.
1959 */
offline_pages(unsigned long start_pfn,unsigned long nr_pages,struct zone * zone,struct memory_group * group)1960 int offline_pages(unsigned long start_pfn, unsigned long nr_pages,
1961 struct zone *zone, struct memory_group *group)
1962 {
1963 const unsigned long end_pfn = start_pfn + nr_pages;
1964 unsigned long pfn, managed_pages, system_ram_pages = 0;
1965 const int node = zone_to_nid(zone);
1966 unsigned long flags;
1967 struct memory_notify arg;
1968 char *reason;
1969 int ret;
1970
1971 /*
1972 * {on,off}lining is constrained to full memory sections (or more
1973 * precisely to memory blocks from the user space POV).
1974 * memmap_on_memory is an exception because it reserves initial part
1975 * of the physical memory space for vmemmaps. That space is pageblock
1976 * aligned.
1977 */
1978 if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(start_pfn) ||
1979 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1980 return -EINVAL;
1981
1982 /*
1983 * Don't allow to offline memory blocks that contain holes.
1984 * Consequently, memory blocks with holes can never get onlined
1985 * via the hotplug path - online_pages() - as hotplugged memory has
1986 * no holes. This way, we don't have to worry about memory holes,
1987 * don't need pfn_valid() checks, and can avoid using
1988 * walk_system_ram_range() later.
1989 */
1990 walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1991 count_system_ram_pages_cb);
1992 if (system_ram_pages != nr_pages) {
1993 ret = -EINVAL;
1994 reason = "memory holes";
1995 goto failed_removal;
1996 }
1997
1998 /*
1999 * We only support offlining of memory blocks managed by a single zone,
2000 * checked by calling code. This is just a sanity check that we might
2001 * want to remove in the future.
2002 */
2003 if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone ||
2004 page_zone(pfn_to_page(end_pfn - 1)) != zone)) {
2005 ret = -EINVAL;
2006 reason = "multizone range";
2007 goto failed_removal;
2008 }
2009
2010 /*
2011 * Disable pcplists so that page isolation cannot race with freeing
2012 * in a way that pages from isolated pageblock are left on pcplists.
2013 */
2014 zone_pcp_disable(zone);
2015 lru_cache_disable();
2016
2017 /* set above range as isolated */
2018 ret = start_isolate_page_range(start_pfn, end_pfn,
2019 MIGRATE_MOVABLE,
2020 MEMORY_OFFLINE | REPORT_FAILURE);
2021 if (ret) {
2022 reason = "failure to isolate range";
2023 goto failed_removal_pcplists_disabled;
2024 }
2025
2026 arg.start_pfn = start_pfn;
2027 arg.nr_pages = nr_pages;
2028 node_states_check_changes_offline(nr_pages, zone, &arg);
2029
2030 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
2031 ret = notifier_to_errno(ret);
2032 if (ret) {
2033 reason = "notifier failure";
2034 goto failed_removal_isolated;
2035 }
2036
2037 do {
2038 pfn = start_pfn;
2039 do {
2040 /*
2041 * Historically we always checked for any signal and
2042 * can't limit it to fatal signals without eventually
2043 * breaking user space.
2044 */
2045 if (signal_pending(current)) {
2046 ret = -EINTR;
2047 reason = "signal backoff";
2048 goto failed_removal_isolated;
2049 }
2050
2051 cond_resched();
2052
2053 ret = scan_movable_pages(pfn, end_pfn, &pfn);
2054 if (!ret) {
2055 /*
2056 * TODO: fatal migration failures should bail
2057 * out
2058 */
2059 do_migrate_range(pfn, end_pfn);
2060 }
2061 } while (!ret);
2062
2063 if (ret != -ENOENT) {
2064 reason = "unmovable page";
2065 goto failed_removal_isolated;
2066 }
2067
2068 /*
2069 * Dissolve free hugetlb folios in the memory block before doing
2070 * offlining actually in order to make hugetlbfs's object
2071 * counting consistent.
2072 */
2073 ret = dissolve_free_hugetlb_folios(start_pfn, end_pfn);
2074 if (ret) {
2075 reason = "failure to dissolve huge pages";
2076 goto failed_removal_isolated;
2077 }
2078
2079 ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
2080
2081 } while (ret);
2082
2083 /* Mark all sections offline and remove free pages from the buddy. */
2084 managed_pages = __offline_isolated_pages(start_pfn, end_pfn);
2085 pr_debug("Offlined Pages %ld\n", nr_pages);
2086
2087 /*
2088 * The memory sections are marked offline, and the pageblock flags
2089 * effectively stale; nobody should be touching them. Fixup the number
2090 * of isolated pageblocks, memory onlining will properly revert this.
2091 */
2092 spin_lock_irqsave(&zone->lock, flags);
2093 zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
2094 spin_unlock_irqrestore(&zone->lock, flags);
2095
2096 lru_cache_enable();
2097 zone_pcp_enable(zone);
2098
2099 /* removal success */
2100 adjust_managed_page_count(pfn_to_page(start_pfn), -managed_pages);
2101 adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages);
2102
2103 /* reinitialise watermarks and update pcp limits */
2104 init_per_zone_wmark_min();
2105
2106 /*
2107 * Make sure to mark the node as memory-less before rebuilding the zone
2108 * list. Otherwise this node would still appear in the fallback lists.
2109 */
2110 node_states_clear_node(node, &arg);
2111 if (!populated_zone(zone)) {
2112 zone_pcp_reset(zone);
2113 build_all_zonelists(NULL);
2114 }
2115
2116 if (arg.status_change_nid >= 0) {
2117 kcompactd_stop(node);
2118 kswapd_stop(node);
2119 }
2120
2121 writeback_set_ratelimit();
2122
2123 memory_notify(MEM_OFFLINE, &arg);
2124 remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
2125 return 0;
2126
2127 failed_removal_isolated:
2128 /* pushback to free area */
2129 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
2130 memory_notify(MEM_CANCEL_OFFLINE, &arg);
2131 failed_removal_pcplists_disabled:
2132 lru_cache_enable();
2133 zone_pcp_enable(zone);
2134 failed_removal:
2135 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
2136 (unsigned long long) start_pfn << PAGE_SHIFT,
2137 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
2138 reason);
2139 return ret;
2140 }
2141
check_memblock_offlined_cb(struct memory_block * mem,void * arg)2142 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
2143 {
2144 int *nid = arg;
2145
2146 *nid = mem->nid;
2147 if (unlikely(mem->state != MEM_OFFLINE)) {
2148 phys_addr_t beginpa, endpa;
2149
2150 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
2151 endpa = beginpa + memory_block_size_bytes() - 1;
2152 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
2153 &beginpa, &endpa);
2154
2155 return -EBUSY;
2156 }
2157 return 0;
2158 }
2159
count_memory_range_altmaps_cb(struct memory_block * mem,void * arg)2160 static int count_memory_range_altmaps_cb(struct memory_block *mem, void *arg)
2161 {
2162 u64 *num_altmaps = (u64 *)arg;
2163
2164 if (mem->altmap)
2165 *num_altmaps += 1;
2166
2167 return 0;
2168 }
2169
check_cpu_on_node(int nid)2170 static int check_cpu_on_node(int nid)
2171 {
2172 int cpu;
2173
2174 for_each_present_cpu(cpu) {
2175 if (cpu_to_node(cpu) == nid)
2176 /*
2177 * the cpu on this node isn't removed, and we can't
2178 * offline this node.
2179 */
2180 return -EBUSY;
2181 }
2182
2183 return 0;
2184 }
2185
check_no_memblock_for_node_cb(struct memory_block * mem,void * arg)2186 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
2187 {
2188 int nid = *(int *)arg;
2189
2190 /*
2191 * If a memory block belongs to multiple nodes, the stored nid is not
2192 * reliable. However, such blocks are always online (e.g., cannot get
2193 * offlined) and, therefore, are still spanned by the node.
2194 */
2195 return mem->nid == nid ? -EEXIST : 0;
2196 }
2197
2198 /**
2199 * try_offline_node
2200 * @nid: the node ID
2201 *
2202 * Offline a node if all memory sections and cpus of the node are removed.
2203 *
2204 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2205 * and online/offline operations before this call.
2206 */
try_offline_node(int nid)2207 void try_offline_node(int nid)
2208 {
2209 int rc;
2210
2211 /*
2212 * If the node still spans pages (especially ZONE_DEVICE), don't
2213 * offline it. A node spans memory after move_pfn_range_to_zone(),
2214 * e.g., after the memory block was onlined.
2215 */
2216 if (node_spanned_pages(nid))
2217 return;
2218
2219 /*
2220 * Especially offline memory blocks might not be spanned by the
2221 * node. They will get spanned by the node once they get onlined.
2222 * However, they link to the node in sysfs and can get onlined later.
2223 */
2224 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
2225 if (rc)
2226 return;
2227
2228 if (check_cpu_on_node(nid))
2229 return;
2230
2231 /*
2232 * all memory/cpu of this node are removed, we can offline this
2233 * node now.
2234 */
2235 node_set_offline(nid);
2236 unregister_one_node(nid);
2237 }
2238 EXPORT_SYMBOL(try_offline_node);
2239
memory_blocks_have_altmaps(u64 start,u64 size)2240 static int memory_blocks_have_altmaps(u64 start, u64 size)
2241 {
2242 u64 num_memblocks = size / memory_block_size_bytes();
2243 u64 num_altmaps = 0;
2244
2245 if (!mhp_memmap_on_memory())
2246 return 0;
2247
2248 walk_memory_blocks(start, size, &num_altmaps,
2249 count_memory_range_altmaps_cb);
2250
2251 if (num_altmaps == 0)
2252 return 0;
2253
2254 if (WARN_ON_ONCE(num_memblocks != num_altmaps))
2255 return -EINVAL;
2256
2257 return 1;
2258 }
2259
try_remove_memory(u64 start,u64 size)2260 static int try_remove_memory(u64 start, u64 size)
2261 {
2262 int rc, nid = NUMA_NO_NODE;
2263
2264 BUG_ON(check_hotplug_memory_range(start, size));
2265
2266 /*
2267 * All memory blocks must be offlined before removing memory. Check
2268 * whether all memory blocks in question are offline and return error
2269 * if this is not the case.
2270 *
2271 * While at it, determine the nid. Note that if we'd have mixed nodes,
2272 * we'd only try to offline the last determined one -- which is good
2273 * enough for the cases we care about.
2274 */
2275 rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb);
2276 if (rc)
2277 return rc;
2278
2279 /* remove memmap entry */
2280 firmware_map_remove(start, start + size, "System RAM");
2281
2282 mem_hotplug_begin();
2283
2284 rc = memory_blocks_have_altmaps(start, size);
2285 if (rc < 0) {
2286 mem_hotplug_done();
2287 return rc;
2288 } else if (!rc) {
2289 /*
2290 * Memory block device removal under the device_hotplug_lock is
2291 * a barrier against racing online attempts.
2292 * No altmaps present, do the removal directly
2293 */
2294 remove_memory_block_devices(start, size);
2295 arch_remove_memory(start, size, NULL);
2296 } else {
2297 /* all memblocks in the range have altmaps */
2298 remove_memory_blocks_and_altmaps(start, size);
2299 }
2300
2301 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
2302 memblock_remove(start, size);
2303
2304 release_mem_region_adjustable(start, size);
2305
2306 if (nid != NUMA_NO_NODE)
2307 try_offline_node(nid);
2308
2309 mem_hotplug_done();
2310 return 0;
2311 }
2312
2313 /**
2314 * __remove_memory - Remove memory if every memory block is offline
2315 * @start: physical address of the region to remove
2316 * @size: size of the region to remove
2317 *
2318 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2319 * and online/offline operations before this call, as required by
2320 * try_offline_node().
2321 */
__remove_memory(u64 start,u64 size)2322 void __remove_memory(u64 start, u64 size)
2323 {
2324
2325 /*
2326 * trigger BUG() if some memory is not offlined prior to calling this
2327 * function
2328 */
2329 if (try_remove_memory(start, size))
2330 BUG();
2331 }
2332
2333 /*
2334 * Remove memory if every memory block is offline, otherwise return -EBUSY is
2335 * some memory is not offline
2336 */
remove_memory(u64 start,u64 size)2337 int remove_memory(u64 start, u64 size)
2338 {
2339 int rc;
2340
2341 lock_device_hotplug();
2342 rc = try_remove_memory(start, size);
2343 unlock_device_hotplug();
2344
2345 return rc;
2346 }
2347 EXPORT_SYMBOL_GPL(remove_memory);
2348
try_offline_memory_block(struct memory_block * mem,void * arg)2349 static int try_offline_memory_block(struct memory_block *mem, void *arg)
2350 {
2351 uint8_t online_type = MMOP_ONLINE_KERNEL;
2352 uint8_t **online_types = arg;
2353 struct page *page;
2354 int rc;
2355
2356 /*
2357 * Sense the online_type via the zone of the memory block. Offlining
2358 * with multiple zones within one memory block will be rejected
2359 * by offlining code ... so we don't care about that.
2360 */
2361 page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2362 if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2363 online_type = MMOP_ONLINE_MOVABLE;
2364
2365 rc = device_offline(&mem->dev);
2366 /*
2367 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2368 * so try_reonline_memory_block() can do the right thing.
2369 */
2370 if (!rc)
2371 **online_types = online_type;
2372
2373 (*online_types)++;
2374 /* Ignore if already offline. */
2375 return rc < 0 ? rc : 0;
2376 }
2377
try_reonline_memory_block(struct memory_block * mem,void * arg)2378 static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2379 {
2380 uint8_t **online_types = arg;
2381 int rc;
2382
2383 if (**online_types != MMOP_OFFLINE) {
2384 mem->online_type = **online_types;
2385 rc = device_online(&mem->dev);
2386 if (rc < 0)
2387 pr_warn("%s: Failed to re-online memory: %d",
2388 __func__, rc);
2389 }
2390
2391 /* Continue processing all remaining memory blocks. */
2392 (*online_types)++;
2393 return 0;
2394 }
2395
2396 /*
2397 * Try to offline and remove memory. Might take a long time to finish in case
2398 * memory is still in use. Primarily useful for memory devices that logically
2399 * unplugged all memory (so it's no longer in use) and want to offline + remove
2400 * that memory.
2401 */
offline_and_remove_memory(u64 start,u64 size)2402 int offline_and_remove_memory(u64 start, u64 size)
2403 {
2404 const unsigned long mb_count = size / memory_block_size_bytes();
2405 uint8_t *online_types, *tmp;
2406 int rc;
2407
2408 if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2409 !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2410 return -EINVAL;
2411
2412 /*
2413 * We'll remember the old online type of each memory block, so we can
2414 * try to revert whatever we did when offlining one memory block fails
2415 * after offlining some others succeeded.
2416 */
2417 online_types = kmalloc_array(mb_count, sizeof(*online_types),
2418 GFP_KERNEL);
2419 if (!online_types)
2420 return -ENOMEM;
2421 /*
2422 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2423 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2424 * try_reonline_memory_block().
2425 */
2426 memset(online_types, MMOP_OFFLINE, mb_count);
2427
2428 lock_device_hotplug();
2429
2430 tmp = online_types;
2431 rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2432
2433 /*
2434 * In case we succeeded to offline all memory, remove it.
2435 * This cannot fail as it cannot get onlined in the meantime.
2436 */
2437 if (!rc) {
2438 rc = try_remove_memory(start, size);
2439 if (rc)
2440 pr_err("%s: Failed to remove memory: %d", __func__, rc);
2441 }
2442
2443 /*
2444 * Rollback what we did. While memory onlining might theoretically fail
2445 * (nacked by a notifier), it barely ever happens.
2446 */
2447 if (rc) {
2448 tmp = online_types;
2449 walk_memory_blocks(start, size, &tmp,
2450 try_reonline_memory_block);
2451 }
2452 unlock_device_hotplug();
2453
2454 kfree(online_types);
2455 return rc;
2456 }
2457 EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2458 #endif /* CONFIG_MEMORY_HOTREMOVE */
2459