xref: /linux/arch/x86/mm/init.c (revision 8804d970fab45726b3c7cd7f240b31122aa94219)
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/swapfile.h>
7 #include <linux/swapops.h>
8 #include <linux/kmemleak.h>
9 #include <linux/sched/task.h>
10 #include <linux/execmem.h>
11 
12 #include <asm/set_memory.h>
13 #include <asm/cpu_device_id.h>
14 #include <asm/e820/api.h>
15 #include <asm/init.h>
16 #include <asm/page.h>
17 #include <asm/page_types.h>
18 #include <asm/sections.h>
19 #include <asm/setup.h>
20 #include <asm/tlbflush.h>
21 #include <asm/tlb.h>
22 #include <asm/proto.h>
23 #include <asm/dma.h>		/* for MAX_DMA_PFN */
24 #include <asm/kaslr.h>
25 #include <asm/hypervisor.h>
26 #include <asm/cpufeature.h>
27 #include <asm/pti.h>
28 #include <asm/text-patching.h>
29 #include <asm/memtype.h>
30 #include <asm/paravirt.h>
31 #include <asm/mmu_context.h>
32 
33 /*
34  * We need to define the tracepoints somewhere, and tlb.c
35  * is only compiled when SMP=y.
36  */
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/tlb.h>
39 
40 #include "mm_internal.h"
41 
42 /*
43  * Tables translating between page_cache_type_t and pte encoding.
44  *
45  * The default values are defined statically as minimal supported mode;
46  * WC and WT fall back to UC-.  pat_init() updates these values to support
47  * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
48  * for the details.  Note, __early_ioremap() used during early boot-time
49  * takes pgprot_t (pte encoding) and does not use these tables.
50  *
51  *   Index into __cachemode2pte_tbl[] is the cachemode.
52  *
53  *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
54  *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
55  */
56 static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
57 	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
58 	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
59 	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
60 	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
61 	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
62 	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
63 };
64 
cachemode2protval(enum page_cache_mode pcm)65 unsigned long cachemode2protval(enum page_cache_mode pcm)
66 {
67 	if (likely(pcm == 0))
68 		return 0;
69 	return __cachemode2pte_tbl[pcm];
70 }
71 EXPORT_SYMBOL(cachemode2protval);
72 
73 static uint8_t __pte2cachemode_tbl[8] = {
74 	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
75 	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
76 	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
77 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
78 	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
79 	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
80 	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
81 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
82 };
83 
84 /*
85  * Check that the write-protect PAT entry is set for write-protect.
86  * To do this without making assumptions how PAT has been set up (Xen has
87  * another layout than the kernel), translate the _PAGE_CACHE_MODE_WP cache
88  * mode via the __cachemode2pte_tbl[] into protection bits (those protection
89  * bits will select a cache mode of WP or better), and then translate the
90  * protection bits back into the cache mode using __pte2cm_idx() and the
91  * __pte2cachemode_tbl[] array. This will return the really used cache mode.
92  */
x86_has_pat_wp(void)93 bool x86_has_pat_wp(void)
94 {
95 	uint16_t prot = __cachemode2pte_tbl[_PAGE_CACHE_MODE_WP];
96 
97 	return __pte2cachemode_tbl[__pte2cm_idx(prot)] == _PAGE_CACHE_MODE_WP;
98 }
99 
pgprot2cachemode(pgprot_t pgprot)100 enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
101 {
102 	unsigned long masked;
103 
104 	masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
105 	if (likely(masked == 0))
106 		return 0;
107 	return __pte2cachemode_tbl[__pte2cm_idx(masked)];
108 }
109 
110 static unsigned long __initdata pgt_buf_start;
111 static unsigned long __initdata pgt_buf_end;
112 static unsigned long __initdata pgt_buf_top;
113 
114 static unsigned long min_pfn_mapped;
115 
116 static bool __initdata can_use_brk_pgt = true;
117 
118 /*
119  * Pages returned are already directly mapped.
120  *
121  * Changing that is likely to break Xen, see commit:
122  *
123  *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
124  *
125  * for detailed information.
126  */
alloc_low_pages(unsigned int num)127 __ref void *alloc_low_pages(unsigned int num)
128 {
129 	unsigned long pfn;
130 	int i;
131 
132 	if (after_bootmem) {
133 		unsigned int order;
134 
135 		order = get_order((unsigned long)num << PAGE_SHIFT);
136 		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
137 	}
138 
139 	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
140 		unsigned long ret = 0;
141 
142 		if (min_pfn_mapped < max_pfn_mapped) {
143 			ret = memblock_phys_alloc_range(
144 					PAGE_SIZE * num, PAGE_SIZE,
145 					min_pfn_mapped << PAGE_SHIFT,
146 					max_pfn_mapped << PAGE_SHIFT);
147 		}
148 		if (!ret && can_use_brk_pgt)
149 			ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
150 
151 		if (!ret)
152 			panic("alloc_low_pages: can not alloc memory");
153 
154 		pfn = ret >> PAGE_SHIFT;
155 	} else {
156 		pfn = pgt_buf_end;
157 		pgt_buf_end += num;
158 	}
159 
160 	for (i = 0; i < num; i++) {
161 		void *adr;
162 
163 		adr = __va((pfn + i) << PAGE_SHIFT);
164 		clear_page(adr);
165 	}
166 
167 	return __va(pfn << PAGE_SHIFT);
168 }
169 
170 /*
171  * By default need to be able to allocate page tables below PGD firstly for
172  * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping.
173  * With KASLR memory randomization, depending on the machine e820 memory and the
174  * PUD alignment, twice that many pages may be needed when KASLR memory
175  * randomization is enabled.
176  */
177 
178 #define INIT_PGD_PAGE_TABLES    4
179 
180 #ifndef CONFIG_RANDOMIZE_MEMORY
181 #define INIT_PGD_PAGE_COUNT      (2 * INIT_PGD_PAGE_TABLES)
182 #else
183 #define INIT_PGD_PAGE_COUNT      (4 * INIT_PGD_PAGE_TABLES)
184 #endif
185 
186 #define INIT_PGT_BUF_SIZE	(INIT_PGD_PAGE_COUNT * PAGE_SIZE)
187 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
early_alloc_pgt_buf(void)188 void  __init early_alloc_pgt_buf(void)
189 {
190 	unsigned long tables = INIT_PGT_BUF_SIZE;
191 	phys_addr_t base;
192 
193 	base = __pa(extend_brk(tables, PAGE_SIZE));
194 
195 	pgt_buf_start = base >> PAGE_SHIFT;
196 	pgt_buf_end = pgt_buf_start;
197 	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
198 }
199 
200 int after_bootmem;
201 
202 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
203 
204 struct map_range {
205 	unsigned long start;
206 	unsigned long end;
207 	unsigned page_size_mask;
208 };
209 
210 static int page_size_mask;
211 
212 /*
213  * Save some of cr4 feature set we're using (e.g.  Pentium 4MB
214  * enable and PPro Global page enable), so that any CPU's that boot
215  * up after us can get the correct flags. Invoked on the boot CPU.
216  */
cr4_set_bits_and_update_boot(unsigned long mask)217 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
218 {
219 	mmu_cr4_features |= mask;
220 	if (trampoline_cr4_features)
221 		*trampoline_cr4_features = mmu_cr4_features;
222 	cr4_set_bits(mask);
223 }
224 
probe_page_size_mask(void)225 static void __init probe_page_size_mask(void)
226 {
227 	/*
228 	 * For pagealloc debugging, identity mapping will use small pages.
229 	 * This will simplify cpa(), which otherwise needs to support splitting
230 	 * large pages into small in interrupt context, etc.
231 	 */
232 	if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
233 		page_size_mask |= 1 << PG_LEVEL_2M;
234 	else
235 		direct_gbpages = 0;
236 
237 	/* Enable PSE if available */
238 	if (boot_cpu_has(X86_FEATURE_PSE))
239 		cr4_set_bits_and_update_boot(X86_CR4_PSE);
240 
241 	/* Enable PGE if available */
242 	__supported_pte_mask &= ~_PAGE_GLOBAL;
243 	if (boot_cpu_has(X86_FEATURE_PGE)) {
244 		cr4_set_bits_and_update_boot(X86_CR4_PGE);
245 		__supported_pte_mask |= _PAGE_GLOBAL;
246 	}
247 
248 	/* By the default is everything supported: */
249 	__default_kernel_pte_mask = __supported_pte_mask;
250 	/* Except when with PTI where the kernel is mostly non-Global: */
251 	if (cpu_feature_enabled(X86_FEATURE_PTI))
252 		__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
253 
254 	/* Enable 1 GB linear kernel mappings if available: */
255 	if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
256 		printk(KERN_INFO "Using GB pages for direct mapping\n");
257 		page_size_mask |= 1 << PG_LEVEL_1G;
258 	} else {
259 		direct_gbpages = 0;
260 	}
261 }
262 
263 /*
264  * INVLPG may not properly flush Global entries on
265  * these CPUs.  New microcode fixes the issue.
266  */
267 static const struct x86_cpu_id invlpg_miss_ids[] = {
268 	X86_MATCH_VFM(INTEL_ALDERLAKE,	    0x2e),
269 	X86_MATCH_VFM(INTEL_ALDERLAKE_L,    0x42c),
270 	X86_MATCH_VFM(INTEL_ATOM_GRACEMONT, 0x11),
271 	X86_MATCH_VFM(INTEL_RAPTORLAKE,	    0x118),
272 	X86_MATCH_VFM(INTEL_RAPTORLAKE_P,   0x4117),
273 	X86_MATCH_VFM(INTEL_RAPTORLAKE_S,   0x2e),
274 	{}
275 };
276 
setup_pcid(void)277 static void setup_pcid(void)
278 {
279 	const struct x86_cpu_id *invlpg_miss_match;
280 
281 	if (!IS_ENABLED(CONFIG_X86_64))
282 		return;
283 
284 	if (!boot_cpu_has(X86_FEATURE_PCID))
285 		return;
286 
287 	invlpg_miss_match = x86_match_cpu(invlpg_miss_ids);
288 
289 	if (invlpg_miss_match &&
290 	    boot_cpu_data.microcode < invlpg_miss_match->driver_data) {
291 		pr_info("Incomplete global flushes, disabling PCID");
292 		setup_clear_cpu_cap(X86_FEATURE_PCID);
293 		return;
294 	}
295 
296 	if (boot_cpu_has(X86_FEATURE_PGE)) {
297 		/*
298 		 * This can't be cr4_set_bits_and_update_boot() -- the
299 		 * trampoline code can't handle CR4.PCIDE and it wouldn't
300 		 * do any good anyway.  Despite the name,
301 		 * cr4_set_bits_and_update_boot() doesn't actually cause
302 		 * the bits in question to remain set all the way through
303 		 * the secondary boot asm.
304 		 *
305 		 * Instead, we brute-force it and set CR4.PCIDE manually in
306 		 * start_secondary().
307 		 */
308 		cr4_set_bits(X86_CR4_PCIDE);
309 	} else {
310 		/*
311 		 * flush_tlb_all(), as currently implemented, won't work if
312 		 * PCID is on but PGE is not.  Since that combination
313 		 * doesn't exist on real hardware, there's no reason to try
314 		 * to fully support it, but it's polite to avoid corrupting
315 		 * data if we're on an improperly configured VM.
316 		 */
317 		setup_clear_cpu_cap(X86_FEATURE_PCID);
318 	}
319 }
320 
321 #ifdef CONFIG_X86_32
322 #define NR_RANGE_MR 3
323 #else /* CONFIG_X86_64 */
324 #define NR_RANGE_MR 5
325 #endif
326 
save_mr(struct map_range * mr,int nr_range,unsigned long start_pfn,unsigned long end_pfn,unsigned long page_size_mask)327 static int __meminit save_mr(struct map_range *mr, int nr_range,
328 			     unsigned long start_pfn, unsigned long end_pfn,
329 			     unsigned long page_size_mask)
330 {
331 	if (start_pfn < end_pfn) {
332 		if (nr_range >= NR_RANGE_MR)
333 			panic("run out of range for init_memory_mapping\n");
334 		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
335 		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
336 		mr[nr_range].page_size_mask = page_size_mask;
337 		nr_range++;
338 	}
339 
340 	return nr_range;
341 }
342 
343 /*
344  * adjust the page_size_mask for small range to go with
345  *	big page size instead small one if nearby are ram too.
346  */
adjust_range_page_size_mask(struct map_range * mr,int nr_range)347 static void __ref adjust_range_page_size_mask(struct map_range *mr,
348 							 int nr_range)
349 {
350 	int i;
351 
352 	for (i = 0; i < nr_range; i++) {
353 		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
354 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
355 			unsigned long start = round_down(mr[i].start, PMD_SIZE);
356 			unsigned long end = round_up(mr[i].end, PMD_SIZE);
357 
358 #ifdef CONFIG_X86_32
359 			if ((end >> PAGE_SHIFT) > max_low_pfn)
360 				continue;
361 #endif
362 
363 			if (memblock_is_region_memory(start, end - start))
364 				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
365 		}
366 		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
367 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
368 			unsigned long start = round_down(mr[i].start, PUD_SIZE);
369 			unsigned long end = round_up(mr[i].end, PUD_SIZE);
370 
371 			if (memblock_is_region_memory(start, end - start))
372 				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
373 		}
374 	}
375 }
376 
page_size_string(struct map_range * mr)377 static const char *page_size_string(struct map_range *mr)
378 {
379 	static const char str_1g[] = "1G";
380 	static const char str_2m[] = "2M";
381 	static const char str_4m[] = "4M";
382 	static const char str_4k[] = "4k";
383 
384 	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
385 		return str_1g;
386 	/*
387 	 * 32-bit without PAE has a 4M large page size.
388 	 * PG_LEVEL_2M is misnamed, but we can at least
389 	 * print out the right size in the string.
390 	 */
391 	if (IS_ENABLED(CONFIG_X86_32) &&
392 	    !IS_ENABLED(CONFIG_X86_PAE) &&
393 	    mr->page_size_mask & (1<<PG_LEVEL_2M))
394 		return str_4m;
395 
396 	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
397 		return str_2m;
398 
399 	return str_4k;
400 }
401 
split_mem_range(struct map_range * mr,int nr_range,unsigned long start,unsigned long end)402 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
403 				     unsigned long start,
404 				     unsigned long end)
405 {
406 	unsigned long start_pfn, end_pfn, limit_pfn;
407 	unsigned long pfn;
408 	int i;
409 
410 	limit_pfn = PFN_DOWN(end);
411 
412 	/* head if not big page alignment ? */
413 	pfn = start_pfn = PFN_DOWN(start);
414 #ifdef CONFIG_X86_32
415 	/*
416 	 * Don't use a large page for the first 2/4MB of memory
417 	 * because there are often fixed size MTRRs in there
418 	 * and overlapping MTRRs into large pages can cause
419 	 * slowdowns.
420 	 */
421 	if (pfn == 0)
422 		end_pfn = PFN_DOWN(PMD_SIZE);
423 	else
424 		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
425 #else /* CONFIG_X86_64 */
426 	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
427 #endif
428 	if (end_pfn > limit_pfn)
429 		end_pfn = limit_pfn;
430 	if (start_pfn < end_pfn) {
431 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
432 		pfn = end_pfn;
433 	}
434 
435 	/* big page (2M) range */
436 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
437 #ifdef CONFIG_X86_32
438 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
439 #else /* CONFIG_X86_64 */
440 	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
441 	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
442 		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
443 #endif
444 
445 	if (start_pfn < end_pfn) {
446 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
447 				page_size_mask & (1<<PG_LEVEL_2M));
448 		pfn = end_pfn;
449 	}
450 
451 #ifdef CONFIG_X86_64
452 	/* big page (1G) range */
453 	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
454 	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
455 	if (start_pfn < end_pfn) {
456 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
457 				page_size_mask &
458 				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
459 		pfn = end_pfn;
460 	}
461 
462 	/* tail is not big page (1G) alignment */
463 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
464 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
465 	if (start_pfn < end_pfn) {
466 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
467 				page_size_mask & (1<<PG_LEVEL_2M));
468 		pfn = end_pfn;
469 	}
470 #endif
471 
472 	/* tail is not big page (2M) alignment */
473 	start_pfn = pfn;
474 	end_pfn = limit_pfn;
475 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
476 
477 	if (!after_bootmem)
478 		adjust_range_page_size_mask(mr, nr_range);
479 
480 	/* try to merge same page size and continuous */
481 	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
482 		unsigned long old_start;
483 		if (mr[i].end != mr[i+1].start ||
484 		    mr[i].page_size_mask != mr[i+1].page_size_mask)
485 			continue;
486 		/* move it */
487 		old_start = mr[i].start;
488 		memmove(&mr[i], &mr[i+1],
489 			(nr_range - 1 - i) * sizeof(struct map_range));
490 		mr[i--].start = old_start;
491 		nr_range--;
492 	}
493 
494 	for (i = 0; i < nr_range; i++)
495 		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
496 				mr[i].start, mr[i].end - 1,
497 				page_size_string(&mr[i]));
498 
499 	return nr_range;
500 }
501 
502 struct range pfn_mapped[E820_MAX_ENTRIES];
503 int nr_pfn_mapped;
504 
add_pfn_range_mapped(unsigned long start_pfn,unsigned long end_pfn)505 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
506 {
507 	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
508 					     nr_pfn_mapped, start_pfn, end_pfn);
509 	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
510 
511 	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
512 
513 	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
514 		max_low_pfn_mapped = max(max_low_pfn_mapped,
515 					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
516 }
517 
pfn_range_is_mapped(unsigned long start_pfn,unsigned long end_pfn)518 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
519 {
520 	int i;
521 
522 	for (i = 0; i < nr_pfn_mapped; i++)
523 		if ((start_pfn >= pfn_mapped[i].start) &&
524 		    (end_pfn <= pfn_mapped[i].end))
525 			return true;
526 
527 	return false;
528 }
529 
530 /*
531  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
532  * This runs before bootmem is initialized and gets pages directly from
533  * the physical memory. To access them they are temporarily mapped.
534  */
init_memory_mapping(unsigned long start,unsigned long end,pgprot_t prot)535 unsigned long __ref init_memory_mapping(unsigned long start,
536 					unsigned long end, pgprot_t prot)
537 {
538 	struct map_range mr[NR_RANGE_MR];
539 	unsigned long ret = 0;
540 	int nr_range, i;
541 
542 	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
543 	       start, end - 1);
544 
545 	memset(mr, 0, sizeof(mr));
546 	nr_range = split_mem_range(mr, 0, start, end);
547 
548 	for (i = 0; i < nr_range; i++)
549 		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
550 						   mr[i].page_size_mask,
551 						   prot);
552 
553 	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
554 
555 	return ret >> PAGE_SHIFT;
556 }
557 
558 /*
559  * We need to iterate through the E820 memory map and create direct mappings
560  * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
561  * create direct mappings for all pfns from [0 to max_low_pfn) and
562  * [4GB to max_pfn) because of possible memory holes in high addresses
563  * that cannot be marked as UC by fixed/variable range MTRRs.
564  * Depending on the alignment of E820 ranges, this may possibly result
565  * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
566  *
567  * init_mem_mapping() calls init_range_memory_mapping() with big range.
568  * That range would have hole in the middle or ends, and only ram parts
569  * will be mapped in init_range_memory_mapping().
570  */
init_range_memory_mapping(unsigned long r_start,unsigned long r_end)571 static unsigned long __init init_range_memory_mapping(
572 					   unsigned long r_start,
573 					   unsigned long r_end)
574 {
575 	unsigned long start_pfn, end_pfn;
576 	unsigned long mapped_ram_size = 0;
577 	int i;
578 
579 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
580 		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
581 		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
582 		if (start >= end)
583 			continue;
584 
585 		/*
586 		 * if it is overlapping with brk pgt, we need to
587 		 * alloc pgt buf from memblock instead.
588 		 */
589 		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
590 				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
591 		init_memory_mapping(start, end, PAGE_KERNEL);
592 		mapped_ram_size += end - start;
593 		can_use_brk_pgt = true;
594 	}
595 
596 	return mapped_ram_size;
597 }
598 
get_new_step_size(unsigned long step_size)599 static unsigned long __init get_new_step_size(unsigned long step_size)
600 {
601 	/*
602 	 * Initial mapped size is PMD_SIZE (2M).
603 	 * We can not set step_size to be PUD_SIZE (1G) yet.
604 	 * In worse case, when we cross the 1G boundary, and
605 	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
606 	 * to map 1G range with PTE. Hence we use one less than the
607 	 * difference of page table level shifts.
608 	 *
609 	 * Don't need to worry about overflow in the top-down case, on 32bit,
610 	 * when step_size is 0, round_down() returns 0 for start, and that
611 	 * turns it into 0x100000000ULL.
612 	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
613 	 * needs to be taken into consideration by the code below.
614 	 */
615 	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
616 }
617 
618 /**
619  * memory_map_top_down - Map [map_start, map_end) top down
620  * @map_start: start address of the target memory range
621  * @map_end: end address of the target memory range
622  *
623  * This function will setup direct mapping for memory range
624  * [map_start, map_end) in top-down. That said, the page tables
625  * will be allocated at the end of the memory, and we map the
626  * memory in top-down.
627  */
memory_map_top_down(unsigned long map_start,unsigned long map_end)628 static void __init memory_map_top_down(unsigned long map_start,
629 				       unsigned long map_end)
630 {
631 	unsigned long real_end, last_start;
632 	unsigned long step_size;
633 	unsigned long addr;
634 	unsigned long mapped_ram_size = 0;
635 
636 	/*
637 	 * Systems that have many reserved areas near top of the memory,
638 	 * e.g. QEMU with less than 1G RAM and EFI enabled, or Xen, will
639 	 * require lots of 4K mappings which may exhaust pgt_buf.
640 	 * Start with top-most PMD_SIZE range aligned at PMD_SIZE to ensure
641 	 * there is enough mapped memory that can be allocated from
642 	 * memblock.
643 	 */
644 	addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, map_start,
645 					 map_end);
646 	if (!addr) {
647 		pr_warn("Failed to release memory for alloc_low_pages()");
648 		real_end = max(map_start, ALIGN_DOWN(map_end, PMD_SIZE));
649 	} else {
650 		memblock_phys_free(addr, PMD_SIZE);
651 		real_end = addr + PMD_SIZE;
652 	}
653 
654 	/* step_size need to be small so pgt_buf from BRK could cover it */
655 	step_size = PMD_SIZE;
656 	max_pfn_mapped = 0; /* will get exact value next */
657 	min_pfn_mapped = real_end >> PAGE_SHIFT;
658 	last_start = real_end;
659 
660 	/*
661 	 * We start from the top (end of memory) and go to the bottom.
662 	 * The memblock_find_in_range() gets us a block of RAM from the
663 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
664 	 * for page table.
665 	 */
666 	while (last_start > map_start) {
667 		unsigned long start;
668 
669 		if (last_start > step_size) {
670 			start = round_down(last_start - 1, step_size);
671 			if (start < map_start)
672 				start = map_start;
673 		} else
674 			start = map_start;
675 		mapped_ram_size += init_range_memory_mapping(start,
676 							last_start);
677 		last_start = start;
678 		min_pfn_mapped = last_start >> PAGE_SHIFT;
679 		if (mapped_ram_size >= step_size)
680 			step_size = get_new_step_size(step_size);
681 	}
682 
683 	if (real_end < map_end)
684 		init_range_memory_mapping(real_end, map_end);
685 }
686 
687 /**
688  * memory_map_bottom_up - Map [map_start, map_end) bottom up
689  * @map_start: start address of the target memory range
690  * @map_end: end address of the target memory range
691  *
692  * This function will setup direct mapping for memory range
693  * [map_start, map_end) in bottom-up. Since we have limited the
694  * bottom-up allocation above the kernel, the page tables will
695  * be allocated just above the kernel and we map the memory
696  * in [map_start, map_end) in bottom-up.
697  */
memory_map_bottom_up(unsigned long map_start,unsigned long map_end)698 static void __init memory_map_bottom_up(unsigned long map_start,
699 					unsigned long map_end)
700 {
701 	unsigned long next, start;
702 	unsigned long mapped_ram_size = 0;
703 	/* step_size need to be small so pgt_buf from BRK could cover it */
704 	unsigned long step_size = PMD_SIZE;
705 
706 	start = map_start;
707 	min_pfn_mapped = start >> PAGE_SHIFT;
708 
709 	/*
710 	 * We start from the bottom (@map_start) and go to the top (@map_end).
711 	 * The memblock_find_in_range() gets us a block of RAM from the
712 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
713 	 * for page table.
714 	 */
715 	while (start < map_end) {
716 		if (step_size && map_end - start > step_size) {
717 			next = round_up(start + 1, step_size);
718 			if (next > map_end)
719 				next = map_end;
720 		} else {
721 			next = map_end;
722 		}
723 
724 		mapped_ram_size += init_range_memory_mapping(start, next);
725 		start = next;
726 
727 		if (mapped_ram_size >= step_size)
728 			step_size = get_new_step_size(step_size);
729 	}
730 }
731 
732 /*
733  * The real mode trampoline, which is required for bootstrapping CPUs
734  * occupies only a small area under the low 1MB.  See reserve_real_mode()
735  * for details.
736  *
737  * If KASLR is disabled the first PGD entry of the direct mapping is copied
738  * to map the real mode trampoline.
739  *
740  * If KASLR is enabled, copy only the PUD which covers the low 1MB
741  * area. This limits the randomization granularity to 1GB for both 4-level
742  * and 5-level paging.
743  */
init_trampoline(void)744 static void __init init_trampoline(void)
745 {
746 #ifdef CONFIG_X86_64
747 	/*
748 	 * The code below will alias kernel page-tables in the user-range of the
749 	 * address space, including the Global bit. So global TLB entries will
750 	 * be created when using the trampoline page-table.
751 	 */
752 	if (!kaslr_memory_enabled())
753 		trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
754 	else
755 		init_trampoline_kaslr();
756 #endif
757 }
758 
init_mem_mapping(void)759 void __init init_mem_mapping(void)
760 {
761 	unsigned long end;
762 
763 	pti_check_boottime_disable();
764 	probe_page_size_mask();
765 	setup_pcid();
766 
767 #ifdef CONFIG_X86_64
768 	end = max_pfn << PAGE_SHIFT;
769 #else
770 	end = max_low_pfn << PAGE_SHIFT;
771 #endif
772 
773 	/* the ISA range is always mapped regardless of memory holes */
774 	init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
775 
776 	/* Init the trampoline, possibly with KASLR memory offset */
777 	init_trampoline();
778 
779 	/*
780 	 * If the allocation is in bottom-up direction, we setup direct mapping
781 	 * in bottom-up, otherwise we setup direct mapping in top-down.
782 	 */
783 	if (memblock_bottom_up()) {
784 		unsigned long kernel_end = __pa_symbol(_end);
785 
786 		/*
787 		 * we need two separate calls here. This is because we want to
788 		 * allocate page tables above the kernel. So we first map
789 		 * [kernel_end, end) to make memory above the kernel be mapped
790 		 * as soon as possible. And then use page tables allocated above
791 		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
792 		 */
793 		memory_map_bottom_up(kernel_end, end);
794 		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
795 	} else {
796 		memory_map_top_down(ISA_END_ADDRESS, end);
797 	}
798 
799 #ifdef CONFIG_X86_64
800 	if (max_pfn > max_low_pfn) {
801 		/* can we preserve max_low_pfn ?*/
802 		max_low_pfn = max_pfn;
803 	}
804 #else
805 	early_ioremap_page_table_range_init();
806 #endif
807 
808 	load_cr3(swapper_pg_dir);
809 	__flush_tlb_all();
810 
811 	x86_init.hyper.init_mem_mapping();
812 
813 	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
814 }
815 
816 /*
817  * Initialize an mm_struct to be used during poking and a pointer to be used
818  * during patching.
819  */
poking_init(void)820 void __init poking_init(void)
821 {
822 	spinlock_t *ptl;
823 	pte_t *ptep;
824 
825 	text_poke_mm = mm_alloc();
826 	BUG_ON(!text_poke_mm);
827 
828 	/* Xen PV guests need the PGD to be pinned. */
829 	paravirt_enter_mmap(text_poke_mm);
830 
831 	set_notrack_mm(text_poke_mm);
832 
833 	/*
834 	 * Randomize the poking address, but make sure that the following page
835 	 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
836 	 * and adjust the address if the PMD ends after the first one.
837 	 */
838 	text_poke_mm_addr = TASK_UNMAPPED_BASE;
839 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
840 		text_poke_mm_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
841 			(TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
842 
843 	if (((text_poke_mm_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
844 		text_poke_mm_addr += PAGE_SIZE;
845 
846 	/*
847 	 * We need to trigger the allocation of the page-tables that will be
848 	 * needed for poking now. Later, poking may be performed in an atomic
849 	 * section, which might cause allocation to fail.
850 	 */
851 	ptep = get_locked_pte(text_poke_mm, text_poke_mm_addr, &ptl);
852 	BUG_ON(!ptep);
853 	pte_unmap_unlock(ptep, ptl);
854 }
855 
856 /*
857  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
858  * is valid. The argument is a physical page number.
859  *
860  * On x86, access has to be given to the first megabyte of RAM because that
861  * area traditionally contains BIOS code and data regions used by X, dosemu,
862  * and similar apps. Since they map the entire memory range, the whole range
863  * must be allowed (for mapping), but any areas that would otherwise be
864  * disallowed are flagged as being "zero filled" instead of rejected.
865  * Access has to be given to non-kernel-ram areas as well, these contain the
866  * PCI mmio resources as well as potential bios/acpi data regions.
867  */
devmem_is_allowed(unsigned long pagenr)868 int devmem_is_allowed(unsigned long pagenr)
869 {
870 	if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
871 				IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
872 			!= REGION_DISJOINT) {
873 		/*
874 		 * For disallowed memory regions in the low 1MB range,
875 		 * request that the page be shown as all zeros.
876 		 */
877 		if (pagenr < 256)
878 			return 2;
879 
880 		return 0;
881 	}
882 
883 	/*
884 	 * This must follow RAM test, since System RAM is considered a
885 	 * restricted resource under CONFIG_STRICT_DEVMEM.
886 	 */
887 	if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
888 		/* Low 1MB bypasses iomem restrictions. */
889 		if (pagenr < 256)
890 			return 1;
891 
892 		return 0;
893 	}
894 
895 	return 1;
896 }
897 
free_init_pages(const char * what,unsigned long begin,unsigned long end)898 void free_init_pages(const char *what, unsigned long begin, unsigned long end)
899 {
900 	unsigned long begin_aligned, end_aligned;
901 
902 	/* Make sure boundaries are page aligned */
903 	begin_aligned = PAGE_ALIGN(begin);
904 	end_aligned   = end & PAGE_MASK;
905 
906 	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
907 		begin = begin_aligned;
908 		end   = end_aligned;
909 	}
910 
911 	if (begin >= end)
912 		return;
913 
914 	/*
915 	 * If debugging page accesses then do not free this memory but
916 	 * mark them not present - any buggy init-section access will
917 	 * create a kernel page fault:
918 	 */
919 	if (debug_pagealloc_enabled()) {
920 		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
921 			begin, end - 1);
922 		/*
923 		 * Inform kmemleak about the hole in the memory since the
924 		 * corresponding pages will be unmapped.
925 		 */
926 		kmemleak_free_part((void *)begin, end - begin);
927 		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
928 	} else {
929 		/*
930 		 * We just marked the kernel text read only above, now that
931 		 * we are going to free part of that, we need to make that
932 		 * writeable and non-executable first.
933 		 */
934 		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
935 		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
936 
937 		free_reserved_area((void *)begin, (void *)end,
938 				   POISON_FREE_INITMEM, what);
939 	}
940 }
941 
942 /*
943  * begin/end can be in the direct map or the "high kernel mapping"
944  * used for the kernel image only.  free_init_pages() will do the
945  * right thing for either kind of address.
946  */
free_kernel_image_pages(const char * what,void * begin,void * end)947 void free_kernel_image_pages(const char *what, void *begin, void *end)
948 {
949 	unsigned long begin_ul = (unsigned long)begin;
950 	unsigned long end_ul = (unsigned long)end;
951 	unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
952 
953 	free_init_pages(what, begin_ul, end_ul);
954 
955 	/*
956 	 * PTI maps some of the kernel into userspace.  For performance,
957 	 * this includes some kernel areas that do not contain secrets.
958 	 * Those areas might be adjacent to the parts of the kernel image
959 	 * being freed, which may contain secrets.  Remove the "high kernel
960 	 * image mapping" for these freed areas, ensuring they are not even
961 	 * potentially vulnerable to Meltdown regardless of the specific
962 	 * optimizations PTI is currently using.
963 	 *
964 	 * The "noalias" prevents unmapping the direct map alias which is
965 	 * needed to access the freed pages.
966 	 *
967 	 * This is only valid for 64bit kernels. 32bit has only one mapping
968 	 * which can't be treated in this way for obvious reasons.
969 	 */
970 	if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
971 		set_memory_np_noalias(begin_ul, len_pages);
972 }
973 
free_initmem(void)974 void __ref free_initmem(void)
975 {
976 	e820__reallocate_tables();
977 
978 	mem_encrypt_free_decrypted_mem();
979 
980 	free_kernel_image_pages("unused kernel image (initmem)",
981 				&__init_begin, &__init_end);
982 }
983 
984 #ifdef CONFIG_BLK_DEV_INITRD
free_initrd_mem(unsigned long start,unsigned long end)985 void __init free_initrd_mem(unsigned long start, unsigned long end)
986 {
987 	/*
988 	 * end could be not aligned, and We can not align that,
989 	 * decompressor could be confused by aligned initrd_end
990 	 * We already reserve the end partial page before in
991 	 *   - i386_start_kernel()
992 	 *   - x86_64_start_kernel()
993 	 *   - relocate_initrd()
994 	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
995 	 */
996 	free_init_pages("initrd", start, PAGE_ALIGN(end));
997 }
998 #endif
999 
zone_sizes_init(void)1000 void __init zone_sizes_init(void)
1001 {
1002 	unsigned long max_zone_pfns[MAX_NR_ZONES];
1003 
1004 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1005 
1006 #ifdef CONFIG_ZONE_DMA
1007 	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
1008 #endif
1009 #ifdef CONFIG_ZONE_DMA32
1010 	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
1011 #endif
1012 	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
1013 #ifdef CONFIG_HIGHMEM
1014 	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
1015 #endif
1016 
1017 	free_area_init(max_zone_pfns);
1018 }
1019 
1020 __visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = {
1021 	.loaded_mm = &init_mm,
1022 	.next_asid = 1,
1023 	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
1024 };
1025 
1026 #ifdef CONFIG_ADDRESS_MASKING
1027 DEFINE_PER_CPU(u64, tlbstate_untag_mask);
1028 EXPORT_PER_CPU_SYMBOL(tlbstate_untag_mask);
1029 #endif
1030 
update_cache_mode_entry(unsigned entry,enum page_cache_mode cache)1031 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
1032 {
1033 	/* entry 0 MUST be WB (hardwired to speed up translations) */
1034 	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
1035 
1036 	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
1037 	__pte2cachemode_tbl[entry] = cache;
1038 }
1039 
1040 #ifdef CONFIG_SWAP
arch_max_swapfile_size(void)1041 unsigned long arch_max_swapfile_size(void)
1042 {
1043 	unsigned long pages;
1044 
1045 	pages = generic_max_swapfile_size();
1046 
1047 	if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1048 		/* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1049 		unsigned long long l1tf_limit = l1tf_pfn_limit();
1050 		/*
1051 		 * We encode swap offsets also with 3 bits below those for pfn
1052 		 * which makes the usable limit higher.
1053 		 */
1054 #if CONFIG_PGTABLE_LEVELS > 2
1055 		l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1056 #endif
1057 		pages = min_t(unsigned long long, l1tf_limit, pages);
1058 	}
1059 	return pages;
1060 }
1061 #endif
1062 
1063 #ifdef CONFIG_EXECMEM
1064 static struct execmem_info execmem_info __ro_after_init;
1065 
1066 #ifdef CONFIG_ARCH_HAS_EXECMEM_ROX
execmem_fill_trapping_insns(void * ptr,size_t size)1067 void execmem_fill_trapping_insns(void *ptr, size_t size)
1068 {
1069 	memset(ptr, INT3_INSN_OPCODE, size);
1070 }
1071 #endif
1072 
execmem_arch_setup(void)1073 struct execmem_info __init *execmem_arch_setup(void)
1074 {
1075 	unsigned long start, offset = 0;
1076 	enum execmem_range_flags flags;
1077 	pgprot_t pgprot;
1078 
1079 	if (kaslr_enabled())
1080 		offset = get_random_u32_inclusive(1, 1024) * PAGE_SIZE;
1081 
1082 	start = MODULES_VADDR + offset;
1083 
1084 	if (IS_ENABLED(CONFIG_ARCH_HAS_EXECMEM_ROX) &&
1085 	    cpu_feature_enabled(X86_FEATURE_PSE)) {
1086 		pgprot = PAGE_KERNEL_ROX;
1087 		flags = EXECMEM_KASAN_SHADOW | EXECMEM_ROX_CACHE;
1088 	} else {
1089 		pgprot = PAGE_KERNEL;
1090 		flags = EXECMEM_KASAN_SHADOW;
1091 	}
1092 
1093 	execmem_info = (struct execmem_info){
1094 		.ranges = {
1095 			[EXECMEM_MODULE_TEXT] = {
1096 				.flags	= flags,
1097 				.start	= start,
1098 				.end	= MODULES_END,
1099 				.pgprot	= pgprot,
1100 				.alignment = MODULE_ALIGN,
1101 			},
1102 			[EXECMEM_KPROBES] = {
1103 				.flags	= flags,
1104 				.start	= start,
1105 				.end	= MODULES_END,
1106 				.pgprot	= PAGE_KERNEL_ROX,
1107 				.alignment = MODULE_ALIGN,
1108 			},
1109 			[EXECMEM_FTRACE] = {
1110 				.flags	= flags,
1111 				.start	= start,
1112 				.end	= MODULES_END,
1113 				.pgprot	= pgprot,
1114 				.alignment = MODULE_ALIGN,
1115 			},
1116 			[EXECMEM_BPF] = {
1117 				.flags	= EXECMEM_KASAN_SHADOW,
1118 				.start	= start,
1119 				.end	= MODULES_END,
1120 				.pgprot	= PAGE_KERNEL,
1121 				.alignment = MODULE_ALIGN,
1122 			},
1123 			[EXECMEM_MODULE_DATA] = {
1124 				.flags	= EXECMEM_KASAN_SHADOW,
1125 				.start	= start,
1126 				.end	= MODULES_END,
1127 				.pgprot	= PAGE_KERNEL,
1128 				.alignment = MODULE_ALIGN,
1129 			},
1130 		},
1131 	};
1132 
1133 	return &execmem_info;
1134 }
1135 #endif /* CONFIG_EXECMEM */
1136