1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/mm/mmu.c
4 *
5 * Copyright (C) 1995-2005 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 */
8
9 #include <linux/cache.h>
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/kexec.h>
16 #include <linux/libfdt.h>
17 #include <linux/mman.h>
18 #include <linux/nodemask.h>
19 #include <linux/memblock.h>
20 #include <linux/memremap.h>
21 #include <linux/memory.h>
22 #include <linux/fs.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/vmalloc.h>
26 #include <linux/set_memory.h>
27 #include <linux/kfence.h>
28 #include <linux/pkeys.h>
29 #include <linux/mm_inline.h>
30 #include <linux/pagewalk.h>
31 #include <linux/stop_machine.h>
32
33 #include <asm/barrier.h>
34 #include <asm/cputype.h>
35 #include <asm/fixmap.h>
36 #include <asm/kasan.h>
37 #include <asm/kernel-pgtable.h>
38 #include <asm/sections.h>
39 #include <asm/setup.h>
40 #include <linux/sizes.h>
41 #include <asm/tlb.h>
42 #include <asm/mmu_context.h>
43 #include <asm/ptdump.h>
44 #include <asm/tlbflush.h>
45 #include <asm/pgalloc.h>
46 #include <asm/kfence.h>
47
48 #define NO_BLOCK_MAPPINGS BIT(0)
49 #define NO_CONT_MAPPINGS BIT(1)
50 #define NO_EXEC_MAPPINGS BIT(2) /* assumes FEAT_HPDS is not used */
51
52 DEFINE_STATIC_KEY_FALSE(arm64_ptdump_lock_key);
53
54 u64 kimage_voffset __ro_after_init;
55 EXPORT_SYMBOL(kimage_voffset);
56
57 u32 __boot_cpu_mode[] = { BOOT_CPU_MODE_EL2, BOOT_CPU_MODE_EL1 };
58
59 static bool rodata_is_rw __ro_after_init = true;
60
61 /*
62 * The booting CPU updates the failed status @__early_cpu_boot_status,
63 * with MMU turned off.
64 */
65 long __section(".mmuoff.data.write") __early_cpu_boot_status;
66
67 /*
68 * Empty_zero_page is a special page that is used for zero-initialized data
69 * and COW.
70 */
71 unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] __page_aligned_bss;
72 EXPORT_SYMBOL(empty_zero_page);
73
74 static DEFINE_SPINLOCK(swapper_pgdir_lock);
75 static DEFINE_MUTEX(fixmap_lock);
76
set_swapper_pgd(pgd_t * pgdp,pgd_t pgd)77 void noinstr set_swapper_pgd(pgd_t *pgdp, pgd_t pgd)
78 {
79 pgd_t *fixmap_pgdp;
80
81 /*
82 * Don't bother with the fixmap if swapper_pg_dir is still mapped
83 * writable in the kernel mapping.
84 */
85 if (rodata_is_rw) {
86 WRITE_ONCE(*pgdp, pgd);
87 dsb(ishst);
88 isb();
89 return;
90 }
91
92 spin_lock(&swapper_pgdir_lock);
93 fixmap_pgdp = pgd_set_fixmap(__pa_symbol(pgdp));
94 WRITE_ONCE(*fixmap_pgdp, pgd);
95 /*
96 * We need dsb(ishst) here to ensure the page-table-walker sees
97 * our new entry before set_p?d() returns. The fixmap's
98 * flush_tlb_kernel_range() via clear_fixmap() does this for us.
99 */
100 pgd_clear_fixmap();
101 spin_unlock(&swapper_pgdir_lock);
102 }
103
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)104 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
105 unsigned long size, pgprot_t vma_prot)
106 {
107 if (!pfn_is_map_memory(pfn))
108 return pgprot_noncached(vma_prot);
109 else if (file->f_flags & O_SYNC)
110 return pgprot_writecombine(vma_prot);
111 return vma_prot;
112 }
113 EXPORT_SYMBOL(phys_mem_access_prot);
114
early_pgtable_alloc(enum pgtable_type pgtable_type)115 static phys_addr_t __init early_pgtable_alloc(enum pgtable_type pgtable_type)
116 {
117 phys_addr_t phys;
118
119 phys = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0,
120 MEMBLOCK_ALLOC_NOLEAKTRACE);
121 if (!phys)
122 panic("Failed to allocate page table page\n");
123
124 return phys;
125 }
126
pgattr_change_is_safe(pteval_t old,pteval_t new)127 bool pgattr_change_is_safe(pteval_t old, pteval_t new)
128 {
129 /*
130 * The following mapping attributes may be updated in live
131 * kernel mappings without the need for break-before-make.
132 */
133 pteval_t mask = PTE_PXN | PTE_RDONLY | PTE_WRITE | PTE_NG |
134 PTE_SWBITS_MASK;
135
136 /* creating or taking down mappings is always safe */
137 if (!pte_valid(__pte(old)) || !pte_valid(__pte(new)))
138 return true;
139
140 /* A live entry's pfn should not change */
141 if (pte_pfn(__pte(old)) != pte_pfn(__pte(new)))
142 return false;
143
144 /* live contiguous mappings may not be manipulated at all */
145 if ((old | new) & PTE_CONT)
146 return false;
147
148 /* Transitioning from Non-Global to Global is unsafe */
149 if (old & ~new & PTE_NG)
150 return false;
151
152 /*
153 * Changing the memory type between Normal and Normal-Tagged is safe
154 * since Tagged is considered a permission attribute from the
155 * mismatched attribute aliases perspective.
156 */
157 if (((old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
158 (old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)) &&
159 ((new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
160 (new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)))
161 mask |= PTE_ATTRINDX_MASK;
162
163 return ((old ^ new) & ~mask) == 0;
164 }
165
init_clear_pgtable(void * table)166 static void init_clear_pgtable(void *table)
167 {
168 clear_page(table);
169
170 /* Ensure the zeroing is observed by page table walks. */
171 dsb(ishst);
172 }
173
init_pte(pte_t * ptep,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot)174 static void init_pte(pte_t *ptep, unsigned long addr, unsigned long end,
175 phys_addr_t phys, pgprot_t prot)
176 {
177 do {
178 pte_t old_pte = __ptep_get(ptep);
179
180 /*
181 * Required barriers to make this visible to the table walker
182 * are deferred to the end of alloc_init_cont_pte().
183 */
184 __set_pte_nosync(ptep, pfn_pte(__phys_to_pfn(phys), prot));
185
186 /*
187 * After the PTE entry has been populated once, we
188 * only allow updates to the permission attributes.
189 */
190 BUG_ON(!pgattr_change_is_safe(pte_val(old_pte),
191 pte_val(__ptep_get(ptep))));
192
193 phys += PAGE_SIZE;
194 } while (ptep++, addr += PAGE_SIZE, addr != end);
195 }
196
alloc_init_cont_pte(pmd_t * pmdp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot,phys_addr_t (* pgtable_alloc)(enum pgtable_type),int flags)197 static int alloc_init_cont_pte(pmd_t *pmdp, unsigned long addr,
198 unsigned long end, phys_addr_t phys,
199 pgprot_t prot,
200 phys_addr_t (*pgtable_alloc)(enum pgtable_type),
201 int flags)
202 {
203 unsigned long next;
204 pmd_t pmd = READ_ONCE(*pmdp);
205 pte_t *ptep;
206
207 BUG_ON(pmd_sect(pmd));
208 if (pmd_none(pmd)) {
209 pmdval_t pmdval = PMD_TYPE_TABLE | PMD_TABLE_UXN | PMD_TABLE_AF;
210 phys_addr_t pte_phys;
211
212 if (flags & NO_EXEC_MAPPINGS)
213 pmdval |= PMD_TABLE_PXN;
214 BUG_ON(!pgtable_alloc);
215 pte_phys = pgtable_alloc(TABLE_PTE);
216 if (pte_phys == INVALID_PHYS_ADDR)
217 return -ENOMEM;
218 ptep = pte_set_fixmap(pte_phys);
219 init_clear_pgtable(ptep);
220 ptep += pte_index(addr);
221 __pmd_populate(pmdp, pte_phys, pmdval);
222 } else {
223 BUG_ON(pmd_bad(pmd));
224 ptep = pte_set_fixmap_offset(pmdp, addr);
225 }
226
227 do {
228 pgprot_t __prot = prot;
229
230 next = pte_cont_addr_end(addr, end);
231
232 /* use a contiguous mapping if the range is suitably aligned */
233 if ((((addr | next | phys) & ~CONT_PTE_MASK) == 0) &&
234 (flags & NO_CONT_MAPPINGS) == 0)
235 __prot = __pgprot(pgprot_val(prot) | PTE_CONT);
236
237 init_pte(ptep, addr, next, phys, __prot);
238
239 ptep += pte_index(next) - pte_index(addr);
240 phys += next - addr;
241 } while (addr = next, addr != end);
242
243 /*
244 * Note: barriers and maintenance necessary to clear the fixmap slot
245 * ensure that all previous pgtable writes are visible to the table
246 * walker.
247 */
248 pte_clear_fixmap();
249
250 return 0;
251 }
252
init_pmd(pmd_t * pmdp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot,phys_addr_t (* pgtable_alloc)(enum pgtable_type),int flags)253 static int init_pmd(pmd_t *pmdp, unsigned long addr, unsigned long end,
254 phys_addr_t phys, pgprot_t prot,
255 phys_addr_t (*pgtable_alloc)(enum pgtable_type), int flags)
256 {
257 unsigned long next;
258
259 do {
260 pmd_t old_pmd = READ_ONCE(*pmdp);
261
262 next = pmd_addr_end(addr, end);
263
264 /* try section mapping first */
265 if (((addr | next | phys) & ~PMD_MASK) == 0 &&
266 (flags & NO_BLOCK_MAPPINGS) == 0) {
267 pmd_set_huge(pmdp, phys, prot);
268
269 /*
270 * After the PMD entry has been populated once, we
271 * only allow updates to the permission attributes.
272 */
273 BUG_ON(!pgattr_change_is_safe(pmd_val(old_pmd),
274 READ_ONCE(pmd_val(*pmdp))));
275 } else {
276 int ret;
277
278 ret = alloc_init_cont_pte(pmdp, addr, next, phys, prot,
279 pgtable_alloc, flags);
280 if (ret)
281 return ret;
282
283 BUG_ON(pmd_val(old_pmd) != 0 &&
284 pmd_val(old_pmd) != READ_ONCE(pmd_val(*pmdp)));
285 }
286 phys += next - addr;
287 } while (pmdp++, addr = next, addr != end);
288
289 return 0;
290 }
291
alloc_init_cont_pmd(pud_t * pudp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot,phys_addr_t (* pgtable_alloc)(enum pgtable_type),int flags)292 static int alloc_init_cont_pmd(pud_t *pudp, unsigned long addr,
293 unsigned long end, phys_addr_t phys,
294 pgprot_t prot,
295 phys_addr_t (*pgtable_alloc)(enum pgtable_type),
296 int flags)
297 {
298 int ret;
299 unsigned long next;
300 pud_t pud = READ_ONCE(*pudp);
301 pmd_t *pmdp;
302
303 /*
304 * Check for initial section mappings in the pgd/pud.
305 */
306 BUG_ON(pud_sect(pud));
307 if (pud_none(pud)) {
308 pudval_t pudval = PUD_TYPE_TABLE | PUD_TABLE_UXN | PUD_TABLE_AF;
309 phys_addr_t pmd_phys;
310
311 if (flags & NO_EXEC_MAPPINGS)
312 pudval |= PUD_TABLE_PXN;
313 BUG_ON(!pgtable_alloc);
314 pmd_phys = pgtable_alloc(TABLE_PMD);
315 if (pmd_phys == INVALID_PHYS_ADDR)
316 return -ENOMEM;
317 pmdp = pmd_set_fixmap(pmd_phys);
318 init_clear_pgtable(pmdp);
319 pmdp += pmd_index(addr);
320 __pud_populate(pudp, pmd_phys, pudval);
321 } else {
322 BUG_ON(pud_bad(pud));
323 pmdp = pmd_set_fixmap_offset(pudp, addr);
324 }
325
326 do {
327 pgprot_t __prot = prot;
328
329 next = pmd_cont_addr_end(addr, end);
330
331 /* use a contiguous mapping if the range is suitably aligned */
332 if ((((addr | next | phys) & ~CONT_PMD_MASK) == 0) &&
333 (flags & NO_CONT_MAPPINGS) == 0)
334 __prot = __pgprot(pgprot_val(prot) | PTE_CONT);
335
336 ret = init_pmd(pmdp, addr, next, phys, __prot, pgtable_alloc, flags);
337 if (ret)
338 goto out;
339
340 pmdp += pmd_index(next) - pmd_index(addr);
341 phys += next - addr;
342 } while (addr = next, addr != end);
343
344 out:
345 pmd_clear_fixmap();
346
347 return ret;
348 }
349
alloc_init_pud(p4d_t * p4dp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot,phys_addr_t (* pgtable_alloc)(enum pgtable_type),int flags)350 static int alloc_init_pud(p4d_t *p4dp, unsigned long addr, unsigned long end,
351 phys_addr_t phys, pgprot_t prot,
352 phys_addr_t (*pgtable_alloc)(enum pgtable_type),
353 int flags)
354 {
355 int ret = 0;
356 unsigned long next;
357 p4d_t p4d = READ_ONCE(*p4dp);
358 pud_t *pudp;
359
360 if (p4d_none(p4d)) {
361 p4dval_t p4dval = P4D_TYPE_TABLE | P4D_TABLE_UXN | P4D_TABLE_AF;
362 phys_addr_t pud_phys;
363
364 if (flags & NO_EXEC_MAPPINGS)
365 p4dval |= P4D_TABLE_PXN;
366 BUG_ON(!pgtable_alloc);
367 pud_phys = pgtable_alloc(TABLE_PUD);
368 if (pud_phys == INVALID_PHYS_ADDR)
369 return -ENOMEM;
370 pudp = pud_set_fixmap(pud_phys);
371 init_clear_pgtable(pudp);
372 pudp += pud_index(addr);
373 __p4d_populate(p4dp, pud_phys, p4dval);
374 } else {
375 BUG_ON(p4d_bad(p4d));
376 pudp = pud_set_fixmap_offset(p4dp, addr);
377 }
378
379 do {
380 pud_t old_pud = READ_ONCE(*pudp);
381
382 next = pud_addr_end(addr, end);
383
384 /*
385 * For 4K granule only, attempt to put down a 1GB block
386 */
387 if (pud_sect_supported() &&
388 ((addr | next | phys) & ~PUD_MASK) == 0 &&
389 (flags & NO_BLOCK_MAPPINGS) == 0) {
390 pud_set_huge(pudp, phys, prot);
391
392 /*
393 * After the PUD entry has been populated once, we
394 * only allow updates to the permission attributes.
395 */
396 BUG_ON(!pgattr_change_is_safe(pud_val(old_pud),
397 READ_ONCE(pud_val(*pudp))));
398 } else {
399 ret = alloc_init_cont_pmd(pudp, addr, next, phys, prot,
400 pgtable_alloc, flags);
401 if (ret)
402 goto out;
403
404 BUG_ON(pud_val(old_pud) != 0 &&
405 pud_val(old_pud) != READ_ONCE(pud_val(*pudp)));
406 }
407 phys += next - addr;
408 } while (pudp++, addr = next, addr != end);
409
410 out:
411 pud_clear_fixmap();
412
413 return ret;
414 }
415
alloc_init_p4d(pgd_t * pgdp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot,phys_addr_t (* pgtable_alloc)(enum pgtable_type),int flags)416 static int alloc_init_p4d(pgd_t *pgdp, unsigned long addr, unsigned long end,
417 phys_addr_t phys, pgprot_t prot,
418 phys_addr_t (*pgtable_alloc)(enum pgtable_type),
419 int flags)
420 {
421 int ret;
422 unsigned long next;
423 pgd_t pgd = READ_ONCE(*pgdp);
424 p4d_t *p4dp;
425
426 if (pgd_none(pgd)) {
427 pgdval_t pgdval = PGD_TYPE_TABLE | PGD_TABLE_UXN | PGD_TABLE_AF;
428 phys_addr_t p4d_phys;
429
430 if (flags & NO_EXEC_MAPPINGS)
431 pgdval |= PGD_TABLE_PXN;
432 BUG_ON(!pgtable_alloc);
433 p4d_phys = pgtable_alloc(TABLE_P4D);
434 if (p4d_phys == INVALID_PHYS_ADDR)
435 return -ENOMEM;
436 p4dp = p4d_set_fixmap(p4d_phys);
437 init_clear_pgtable(p4dp);
438 p4dp += p4d_index(addr);
439 __pgd_populate(pgdp, p4d_phys, pgdval);
440 } else {
441 BUG_ON(pgd_bad(pgd));
442 p4dp = p4d_set_fixmap_offset(pgdp, addr);
443 }
444
445 do {
446 p4d_t old_p4d = READ_ONCE(*p4dp);
447
448 next = p4d_addr_end(addr, end);
449
450 ret = alloc_init_pud(p4dp, addr, next, phys, prot,
451 pgtable_alloc, flags);
452 if (ret)
453 goto out;
454
455 BUG_ON(p4d_val(old_p4d) != 0 &&
456 p4d_val(old_p4d) != READ_ONCE(p4d_val(*p4dp)));
457
458 phys += next - addr;
459 } while (p4dp++, addr = next, addr != end);
460
461 out:
462 p4d_clear_fixmap();
463
464 return ret;
465 }
466
__create_pgd_mapping_locked(pgd_t * pgdir,phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot,phys_addr_t (* pgtable_alloc)(enum pgtable_type),int flags)467 static int __create_pgd_mapping_locked(pgd_t *pgdir, phys_addr_t phys,
468 unsigned long virt, phys_addr_t size,
469 pgprot_t prot,
470 phys_addr_t (*pgtable_alloc)(enum pgtable_type),
471 int flags)
472 {
473 int ret;
474 unsigned long addr, end, next;
475 pgd_t *pgdp = pgd_offset_pgd(pgdir, virt);
476
477 /*
478 * If the virtual and physical address don't have the same offset
479 * within a page, we cannot map the region as the caller expects.
480 */
481 if (WARN_ON((phys ^ virt) & ~PAGE_MASK))
482 return -EINVAL;
483
484 phys &= PAGE_MASK;
485 addr = virt & PAGE_MASK;
486 end = PAGE_ALIGN(virt + size);
487
488 do {
489 next = pgd_addr_end(addr, end);
490 ret = alloc_init_p4d(pgdp, addr, next, phys, prot, pgtable_alloc,
491 flags);
492 if (ret)
493 return ret;
494 phys += next - addr;
495 } while (pgdp++, addr = next, addr != end);
496
497 return 0;
498 }
499
__create_pgd_mapping(pgd_t * pgdir,phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot,phys_addr_t (* pgtable_alloc)(enum pgtable_type),int flags)500 static int __create_pgd_mapping(pgd_t *pgdir, phys_addr_t phys,
501 unsigned long virt, phys_addr_t size,
502 pgprot_t prot,
503 phys_addr_t (*pgtable_alloc)(enum pgtable_type),
504 int flags)
505 {
506 int ret;
507
508 mutex_lock(&fixmap_lock);
509 ret = __create_pgd_mapping_locked(pgdir, phys, virt, size, prot,
510 pgtable_alloc, flags);
511 mutex_unlock(&fixmap_lock);
512
513 return ret;
514 }
515
early_create_pgd_mapping(pgd_t * pgdir,phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot,phys_addr_t (* pgtable_alloc)(enum pgtable_type),int flags)516 static void early_create_pgd_mapping(pgd_t *pgdir, phys_addr_t phys,
517 unsigned long virt, phys_addr_t size,
518 pgprot_t prot,
519 phys_addr_t (*pgtable_alloc)(enum pgtable_type),
520 int flags)
521 {
522 int ret;
523
524 ret = __create_pgd_mapping(pgdir, phys, virt, size, prot, pgtable_alloc,
525 flags);
526 if (ret)
527 panic("Failed to create page tables\n");
528 }
529
__pgd_pgtable_alloc(struct mm_struct * mm,gfp_t gfp,enum pgtable_type pgtable_type)530 static phys_addr_t __pgd_pgtable_alloc(struct mm_struct *mm, gfp_t gfp,
531 enum pgtable_type pgtable_type)
532 {
533 /* Page is zeroed by init_clear_pgtable() so don't duplicate effort. */
534 struct ptdesc *ptdesc = pagetable_alloc(gfp & ~__GFP_ZERO, 0);
535 phys_addr_t pa;
536
537 if (!ptdesc)
538 return INVALID_PHYS_ADDR;
539
540 pa = page_to_phys(ptdesc_page(ptdesc));
541
542 switch (pgtable_type) {
543 case TABLE_PTE:
544 BUG_ON(!pagetable_pte_ctor(mm, ptdesc));
545 break;
546 case TABLE_PMD:
547 BUG_ON(!pagetable_pmd_ctor(mm, ptdesc));
548 break;
549 case TABLE_PUD:
550 pagetable_pud_ctor(ptdesc);
551 break;
552 case TABLE_P4D:
553 pagetable_p4d_ctor(ptdesc);
554 break;
555 }
556
557 return pa;
558 }
559
560 static phys_addr_t
pgd_pgtable_alloc_init_mm_gfp(enum pgtable_type pgtable_type,gfp_t gfp)561 pgd_pgtable_alloc_init_mm_gfp(enum pgtable_type pgtable_type, gfp_t gfp)
562 {
563 return __pgd_pgtable_alloc(&init_mm, gfp, pgtable_type);
564 }
565
566 static phys_addr_t __maybe_unused
pgd_pgtable_alloc_init_mm(enum pgtable_type pgtable_type)567 pgd_pgtable_alloc_init_mm(enum pgtable_type pgtable_type)
568 {
569 return pgd_pgtable_alloc_init_mm_gfp(pgtable_type, GFP_PGTABLE_KERNEL);
570 }
571
572 static phys_addr_t
pgd_pgtable_alloc_special_mm(enum pgtable_type pgtable_type)573 pgd_pgtable_alloc_special_mm(enum pgtable_type pgtable_type)
574 {
575 return __pgd_pgtable_alloc(NULL, GFP_PGTABLE_KERNEL, pgtable_type);
576 }
577
split_contpte(pte_t * ptep)578 static void split_contpte(pte_t *ptep)
579 {
580 int i;
581
582 ptep = PTR_ALIGN_DOWN(ptep, sizeof(*ptep) * CONT_PTES);
583 for (i = 0; i < CONT_PTES; i++, ptep++)
584 __set_pte(ptep, pte_mknoncont(__ptep_get(ptep)));
585 }
586
split_pmd(pmd_t * pmdp,pmd_t pmd,gfp_t gfp,bool to_cont)587 static int split_pmd(pmd_t *pmdp, pmd_t pmd, gfp_t gfp, bool to_cont)
588 {
589 pmdval_t tableprot = PMD_TYPE_TABLE | PMD_TABLE_UXN | PMD_TABLE_AF;
590 unsigned long pfn = pmd_pfn(pmd);
591 pgprot_t prot = pmd_pgprot(pmd);
592 phys_addr_t pte_phys;
593 pte_t *ptep;
594 int i;
595
596 pte_phys = pgd_pgtable_alloc_init_mm_gfp(TABLE_PTE, gfp);
597 if (pte_phys == INVALID_PHYS_ADDR)
598 return -ENOMEM;
599 ptep = (pte_t *)phys_to_virt(pte_phys);
600
601 if (pgprot_val(prot) & PMD_SECT_PXN)
602 tableprot |= PMD_TABLE_PXN;
603
604 prot = __pgprot((pgprot_val(prot) & ~PTE_TYPE_MASK) | PTE_TYPE_PAGE);
605 prot = __pgprot(pgprot_val(prot) & ~PTE_CONT);
606 if (to_cont)
607 prot = __pgprot(pgprot_val(prot) | PTE_CONT);
608
609 for (i = 0; i < PTRS_PER_PTE; i++, ptep++, pfn++)
610 __set_pte(ptep, pfn_pte(pfn, prot));
611
612 /*
613 * Ensure the pte entries are visible to the table walker by the time
614 * the pmd entry that points to the ptes is visible.
615 */
616 dsb(ishst);
617 __pmd_populate(pmdp, pte_phys, tableprot);
618
619 return 0;
620 }
621
split_contpmd(pmd_t * pmdp)622 static void split_contpmd(pmd_t *pmdp)
623 {
624 int i;
625
626 pmdp = PTR_ALIGN_DOWN(pmdp, sizeof(*pmdp) * CONT_PMDS);
627 for (i = 0; i < CONT_PMDS; i++, pmdp++)
628 set_pmd(pmdp, pmd_mknoncont(pmdp_get(pmdp)));
629 }
630
split_pud(pud_t * pudp,pud_t pud,gfp_t gfp,bool to_cont)631 static int split_pud(pud_t *pudp, pud_t pud, gfp_t gfp, bool to_cont)
632 {
633 pudval_t tableprot = PUD_TYPE_TABLE | PUD_TABLE_UXN | PUD_TABLE_AF;
634 unsigned int step = PMD_SIZE >> PAGE_SHIFT;
635 unsigned long pfn = pud_pfn(pud);
636 pgprot_t prot = pud_pgprot(pud);
637 phys_addr_t pmd_phys;
638 pmd_t *pmdp;
639 int i;
640
641 pmd_phys = pgd_pgtable_alloc_init_mm_gfp(TABLE_PMD, gfp);
642 if (pmd_phys == INVALID_PHYS_ADDR)
643 return -ENOMEM;
644 pmdp = (pmd_t *)phys_to_virt(pmd_phys);
645
646 if (pgprot_val(prot) & PMD_SECT_PXN)
647 tableprot |= PUD_TABLE_PXN;
648
649 prot = __pgprot((pgprot_val(prot) & ~PMD_TYPE_MASK) | PMD_TYPE_SECT);
650 prot = __pgprot(pgprot_val(prot) & ~PTE_CONT);
651 if (to_cont)
652 prot = __pgprot(pgprot_val(prot) | PTE_CONT);
653
654 for (i = 0; i < PTRS_PER_PMD; i++, pmdp++, pfn += step)
655 set_pmd(pmdp, pfn_pmd(pfn, prot));
656
657 /*
658 * Ensure the pmd entries are visible to the table walker by the time
659 * the pud entry that points to the pmds is visible.
660 */
661 dsb(ishst);
662 __pud_populate(pudp, pmd_phys, tableprot);
663
664 return 0;
665 }
666
split_kernel_leaf_mapping_locked(unsigned long addr)667 static int split_kernel_leaf_mapping_locked(unsigned long addr)
668 {
669 pgd_t *pgdp, pgd;
670 p4d_t *p4dp, p4d;
671 pud_t *pudp, pud;
672 pmd_t *pmdp, pmd;
673 pte_t *ptep, pte;
674 int ret = 0;
675
676 /*
677 * PGD: If addr is PGD aligned then addr already describes a leaf
678 * boundary. If not present then there is nothing to split.
679 */
680 if (ALIGN_DOWN(addr, PGDIR_SIZE) == addr)
681 goto out;
682 pgdp = pgd_offset_k(addr);
683 pgd = pgdp_get(pgdp);
684 if (!pgd_present(pgd))
685 goto out;
686
687 /*
688 * P4D: If addr is P4D aligned then addr already describes a leaf
689 * boundary. If not present then there is nothing to split.
690 */
691 if (ALIGN_DOWN(addr, P4D_SIZE) == addr)
692 goto out;
693 p4dp = p4d_offset(pgdp, addr);
694 p4d = p4dp_get(p4dp);
695 if (!p4d_present(p4d))
696 goto out;
697
698 /*
699 * PUD: If addr is PUD aligned then addr already describes a leaf
700 * boundary. If not present then there is nothing to split. Otherwise,
701 * if we have a pud leaf, split to contpmd.
702 */
703 if (ALIGN_DOWN(addr, PUD_SIZE) == addr)
704 goto out;
705 pudp = pud_offset(p4dp, addr);
706 pud = pudp_get(pudp);
707 if (!pud_present(pud))
708 goto out;
709 if (pud_leaf(pud)) {
710 ret = split_pud(pudp, pud, GFP_PGTABLE_KERNEL, true);
711 if (ret)
712 goto out;
713 }
714
715 /*
716 * CONTPMD: If addr is CONTPMD aligned then addr already describes a
717 * leaf boundary. If not present then there is nothing to split.
718 * Otherwise, if we have a contpmd leaf, split to pmd.
719 */
720 if (ALIGN_DOWN(addr, CONT_PMD_SIZE) == addr)
721 goto out;
722 pmdp = pmd_offset(pudp, addr);
723 pmd = pmdp_get(pmdp);
724 if (!pmd_present(pmd))
725 goto out;
726 if (pmd_leaf(pmd)) {
727 if (pmd_cont(pmd))
728 split_contpmd(pmdp);
729 /*
730 * PMD: If addr is PMD aligned then addr already describes a
731 * leaf boundary. Otherwise, split to contpte.
732 */
733 if (ALIGN_DOWN(addr, PMD_SIZE) == addr)
734 goto out;
735 ret = split_pmd(pmdp, pmd, GFP_PGTABLE_KERNEL, true);
736 if (ret)
737 goto out;
738 }
739
740 /*
741 * CONTPTE: If addr is CONTPTE aligned then addr already describes a
742 * leaf boundary. If not present then there is nothing to split.
743 * Otherwise, if we have a contpte leaf, split to pte.
744 */
745 if (ALIGN_DOWN(addr, CONT_PTE_SIZE) == addr)
746 goto out;
747 ptep = pte_offset_kernel(pmdp, addr);
748 pte = __ptep_get(ptep);
749 if (!pte_present(pte))
750 goto out;
751 if (pte_cont(pte))
752 split_contpte(ptep);
753
754 out:
755 return ret;
756 }
757
force_pte_mapping(void)758 static inline bool force_pte_mapping(void)
759 {
760 const bool bbml2 = system_capabilities_finalized() ?
761 system_supports_bbml2_noabort() : cpu_supports_bbml2_noabort();
762
763 if (debug_pagealloc_enabled())
764 return true;
765 if (bbml2)
766 return false;
767 return rodata_full || arm64_kfence_can_set_direct_map() || is_realm_world();
768 }
769
split_leaf_mapping_possible(void)770 static inline bool split_leaf_mapping_possible(void)
771 {
772 /*
773 * !BBML2_NOABORT systems should never run into scenarios where we would
774 * have to split. So exit early and let calling code detect it and raise
775 * a warning.
776 */
777 if (!system_supports_bbml2_noabort())
778 return false;
779 return !force_pte_mapping();
780 }
781
782 static DEFINE_MUTEX(pgtable_split_lock);
783
split_kernel_leaf_mapping(unsigned long start,unsigned long end)784 int split_kernel_leaf_mapping(unsigned long start, unsigned long end)
785 {
786 int ret;
787
788 /*
789 * Exit early if the region is within a pte-mapped area or if we can't
790 * split. For the latter case, the permission change code will raise a
791 * warning if not already pte-mapped.
792 */
793 if (!split_leaf_mapping_possible() || is_kfence_address((void *)start))
794 return 0;
795
796 /*
797 * Ensure start and end are at least page-aligned since this is the
798 * finest granularity we can split to.
799 */
800 if (start != PAGE_ALIGN(start) || end != PAGE_ALIGN(end))
801 return -EINVAL;
802
803 mutex_lock(&pgtable_split_lock);
804 arch_enter_lazy_mmu_mode();
805
806 /*
807 * The split_kernel_leaf_mapping_locked() may sleep, it is not a
808 * problem for ARM64 since ARM64's lazy MMU implementation allows
809 * sleeping.
810 *
811 * Optimize for the common case of splitting out a single page from a
812 * larger mapping. Here we can just split on the "least aligned" of
813 * start and end and this will guarantee that there must also be a split
814 * on the more aligned address since the both addresses must be in the
815 * same contpte block and it must have been split to ptes.
816 */
817 if (end - start == PAGE_SIZE) {
818 start = __ffs(start) < __ffs(end) ? start : end;
819 ret = split_kernel_leaf_mapping_locked(start);
820 } else {
821 ret = split_kernel_leaf_mapping_locked(start);
822 if (!ret)
823 ret = split_kernel_leaf_mapping_locked(end);
824 }
825
826 arch_leave_lazy_mmu_mode();
827 mutex_unlock(&pgtable_split_lock);
828 return ret;
829 }
830
split_to_ptes_pud_entry(pud_t * pudp,unsigned long addr,unsigned long next,struct mm_walk * walk)831 static int split_to_ptes_pud_entry(pud_t *pudp, unsigned long addr,
832 unsigned long next, struct mm_walk *walk)
833 {
834 gfp_t gfp = *(gfp_t *)walk->private;
835 pud_t pud = pudp_get(pudp);
836 int ret = 0;
837
838 if (pud_leaf(pud))
839 ret = split_pud(pudp, pud, gfp, false);
840
841 return ret;
842 }
843
split_to_ptes_pmd_entry(pmd_t * pmdp,unsigned long addr,unsigned long next,struct mm_walk * walk)844 static int split_to_ptes_pmd_entry(pmd_t *pmdp, unsigned long addr,
845 unsigned long next, struct mm_walk *walk)
846 {
847 gfp_t gfp = *(gfp_t *)walk->private;
848 pmd_t pmd = pmdp_get(pmdp);
849 int ret = 0;
850
851 if (pmd_leaf(pmd)) {
852 if (pmd_cont(pmd))
853 split_contpmd(pmdp);
854 ret = split_pmd(pmdp, pmd, gfp, false);
855
856 /*
857 * We have split the pmd directly to ptes so there is no need to
858 * visit each pte to check if they are contpte.
859 */
860 walk->action = ACTION_CONTINUE;
861 }
862
863 return ret;
864 }
865
split_to_ptes_pte_entry(pte_t * ptep,unsigned long addr,unsigned long next,struct mm_walk * walk)866 static int split_to_ptes_pte_entry(pte_t *ptep, unsigned long addr,
867 unsigned long next, struct mm_walk *walk)
868 {
869 pte_t pte = __ptep_get(ptep);
870
871 if (pte_cont(pte))
872 split_contpte(ptep);
873
874 return 0;
875 }
876
877 static const struct mm_walk_ops split_to_ptes_ops = {
878 .pud_entry = split_to_ptes_pud_entry,
879 .pmd_entry = split_to_ptes_pmd_entry,
880 .pte_entry = split_to_ptes_pte_entry,
881 };
882
range_split_to_ptes(unsigned long start,unsigned long end,gfp_t gfp)883 static int range_split_to_ptes(unsigned long start, unsigned long end, gfp_t gfp)
884 {
885 int ret;
886
887 arch_enter_lazy_mmu_mode();
888 ret = walk_kernel_page_table_range_lockless(start, end,
889 &split_to_ptes_ops, NULL, &gfp);
890 arch_leave_lazy_mmu_mode();
891
892 return ret;
893 }
894
895 static bool linear_map_requires_bbml2 __initdata;
896
897 u32 idmap_kpti_bbml2_flag;
898
init_idmap_kpti_bbml2_flag(void)899 static void __init init_idmap_kpti_bbml2_flag(void)
900 {
901 WRITE_ONCE(idmap_kpti_bbml2_flag, 1);
902 /* Must be visible to other CPUs before stop_machine() is called. */
903 smp_mb();
904 }
905
linear_map_split_to_ptes(void * __unused)906 static int __init linear_map_split_to_ptes(void *__unused)
907 {
908 /*
909 * Repainting the linear map must be done by CPU0 (the boot CPU) because
910 * that's the only CPU that we know supports BBML2. The other CPUs will
911 * be held in a waiting area with the idmap active.
912 */
913 if (!smp_processor_id()) {
914 unsigned long lstart = _PAGE_OFFSET(vabits_actual);
915 unsigned long lend = PAGE_END;
916 unsigned long kstart = (unsigned long)lm_alias(_stext);
917 unsigned long kend = (unsigned long)lm_alias(__init_begin);
918 int ret;
919
920 /*
921 * Wait for all secondary CPUs to be put into the waiting area.
922 */
923 smp_cond_load_acquire(&idmap_kpti_bbml2_flag, VAL == num_online_cpus());
924
925 /*
926 * Walk all of the linear map [lstart, lend), except the kernel
927 * linear map alias [kstart, kend), and split all mappings to
928 * PTE. The kernel alias remains static throughout runtime so
929 * can continue to be safely mapped with large mappings.
930 */
931 ret = range_split_to_ptes(lstart, kstart, GFP_ATOMIC);
932 if (!ret)
933 ret = range_split_to_ptes(kend, lend, GFP_ATOMIC);
934 if (ret)
935 panic("Failed to split linear map\n");
936 flush_tlb_kernel_range(lstart, lend);
937
938 /*
939 * Relies on dsb in flush_tlb_kernel_range() to avoid reordering
940 * before any page table split operations.
941 */
942 WRITE_ONCE(idmap_kpti_bbml2_flag, 0);
943 } else {
944 typedef void (wait_split_fn)(void);
945 extern wait_split_fn wait_linear_map_split_to_ptes;
946 wait_split_fn *wait_fn;
947
948 wait_fn = (void *)__pa_symbol(wait_linear_map_split_to_ptes);
949
950 /*
951 * At least one secondary CPU doesn't support BBML2 so cannot
952 * tolerate the size of the live mappings changing. So have the
953 * secondary CPUs wait for the boot CPU to make the changes
954 * with the idmap active and init_mm inactive.
955 */
956 cpu_install_idmap();
957 wait_fn();
958 cpu_uninstall_idmap();
959 }
960
961 return 0;
962 }
963
linear_map_maybe_split_to_ptes(void)964 void __init linear_map_maybe_split_to_ptes(void)
965 {
966 if (linear_map_requires_bbml2 && !system_supports_bbml2_noabort()) {
967 init_idmap_kpti_bbml2_flag();
968 stop_machine(linear_map_split_to_ptes, NULL, cpu_online_mask);
969 }
970 }
971
972 /*
973 * This function can only be used to modify existing table entries,
974 * without allocating new levels of table. Note that this permits the
975 * creation of new section or page entries.
976 */
create_mapping_noalloc(phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot)977 void __init create_mapping_noalloc(phys_addr_t phys, unsigned long virt,
978 phys_addr_t size, pgprot_t prot)
979 {
980 if (virt < PAGE_OFFSET) {
981 pr_warn("BUG: not creating mapping for %pa at 0x%016lx - outside kernel range\n",
982 &phys, virt);
983 return;
984 }
985 early_create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
986 NO_CONT_MAPPINGS);
987 }
988
create_pgd_mapping(struct mm_struct * mm,phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot,bool page_mappings_only)989 void __init create_pgd_mapping(struct mm_struct *mm, phys_addr_t phys,
990 unsigned long virt, phys_addr_t size,
991 pgprot_t prot, bool page_mappings_only)
992 {
993 int flags = 0;
994
995 BUG_ON(mm == &init_mm);
996
997 if (page_mappings_only)
998 flags = NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
999
1000 early_create_pgd_mapping(mm->pgd, phys, virt, size, prot,
1001 pgd_pgtable_alloc_special_mm, flags);
1002 }
1003
update_mapping_prot(phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot)1004 static void update_mapping_prot(phys_addr_t phys, unsigned long virt,
1005 phys_addr_t size, pgprot_t prot)
1006 {
1007 if (virt < PAGE_OFFSET) {
1008 pr_warn("BUG: not updating mapping for %pa at 0x%016lx - outside kernel range\n",
1009 &phys, virt);
1010 return;
1011 }
1012
1013 early_create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
1014 NO_CONT_MAPPINGS);
1015
1016 /* flush the TLBs after updating live kernel mappings */
1017 flush_tlb_kernel_range(virt, virt + size);
1018 }
1019
__map_memblock(pgd_t * pgdp,phys_addr_t start,phys_addr_t end,pgprot_t prot,int flags)1020 static void __init __map_memblock(pgd_t *pgdp, phys_addr_t start,
1021 phys_addr_t end, pgprot_t prot, int flags)
1022 {
1023 early_create_pgd_mapping(pgdp, start, __phys_to_virt(start), end - start,
1024 prot, early_pgtable_alloc, flags);
1025 }
1026
mark_linear_text_alias_ro(void)1027 void __init mark_linear_text_alias_ro(void)
1028 {
1029 /*
1030 * Remove the write permissions from the linear alias of .text/.rodata
1031 */
1032 update_mapping_prot(__pa_symbol(_text), (unsigned long)lm_alias(_text),
1033 (unsigned long)__init_begin - (unsigned long)_text,
1034 PAGE_KERNEL_RO);
1035 }
1036
1037 #ifdef CONFIG_KFENCE
1038
1039 bool __ro_after_init kfence_early_init = !!CONFIG_KFENCE_SAMPLE_INTERVAL;
1040
1041 /* early_param() will be parsed before map_mem() below. */
parse_kfence_early_init(char * arg)1042 static int __init parse_kfence_early_init(char *arg)
1043 {
1044 int val;
1045
1046 if (get_option(&arg, &val))
1047 kfence_early_init = !!val;
1048 return 0;
1049 }
1050 early_param("kfence.sample_interval", parse_kfence_early_init);
1051
arm64_kfence_alloc_pool(void)1052 static phys_addr_t __init arm64_kfence_alloc_pool(void)
1053 {
1054 phys_addr_t kfence_pool;
1055
1056 if (!kfence_early_init)
1057 return 0;
1058
1059 kfence_pool = memblock_phys_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
1060 if (!kfence_pool) {
1061 pr_err("failed to allocate kfence pool\n");
1062 kfence_early_init = false;
1063 return 0;
1064 }
1065
1066 /* Temporarily mark as NOMAP. */
1067 memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE);
1068
1069 return kfence_pool;
1070 }
1071
arm64_kfence_map_pool(phys_addr_t kfence_pool,pgd_t * pgdp)1072 static void __init arm64_kfence_map_pool(phys_addr_t kfence_pool, pgd_t *pgdp)
1073 {
1074 if (!kfence_pool)
1075 return;
1076
1077 /* KFENCE pool needs page-level mapping. */
1078 __map_memblock(pgdp, kfence_pool, kfence_pool + KFENCE_POOL_SIZE,
1079 pgprot_tagged(PAGE_KERNEL),
1080 NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS);
1081 memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE);
1082 __kfence_pool = phys_to_virt(kfence_pool);
1083 }
1084
arch_kfence_init_pool(void)1085 bool arch_kfence_init_pool(void)
1086 {
1087 unsigned long start = (unsigned long)__kfence_pool;
1088 unsigned long end = start + KFENCE_POOL_SIZE;
1089 int ret;
1090
1091 /* Exit early if we know the linear map is already pte-mapped. */
1092 if (!split_leaf_mapping_possible())
1093 return true;
1094
1095 /* Kfence pool is already pte-mapped for the early init case. */
1096 if (kfence_early_init)
1097 return true;
1098
1099 mutex_lock(&pgtable_split_lock);
1100 ret = range_split_to_ptes(start, end, GFP_PGTABLE_KERNEL);
1101 mutex_unlock(&pgtable_split_lock);
1102
1103 /*
1104 * Since the system supports bbml2_noabort, tlb invalidation is not
1105 * required here; the pgtable mappings have been split to pte but larger
1106 * entries may safely linger in the TLB.
1107 */
1108
1109 return !ret;
1110 }
1111 #else /* CONFIG_KFENCE */
1112
arm64_kfence_alloc_pool(void)1113 static inline phys_addr_t arm64_kfence_alloc_pool(void) { return 0; }
arm64_kfence_map_pool(phys_addr_t kfence_pool,pgd_t * pgdp)1114 static inline void arm64_kfence_map_pool(phys_addr_t kfence_pool, pgd_t *pgdp) { }
1115
1116 #endif /* CONFIG_KFENCE */
1117
map_mem(pgd_t * pgdp)1118 static void __init map_mem(pgd_t *pgdp)
1119 {
1120 static const u64 direct_map_end = _PAGE_END(VA_BITS_MIN);
1121 phys_addr_t kernel_start = __pa_symbol(_text);
1122 phys_addr_t kernel_end = __pa_symbol(__init_begin);
1123 phys_addr_t start, end;
1124 phys_addr_t early_kfence_pool;
1125 int flags = NO_EXEC_MAPPINGS;
1126 u64 i;
1127
1128 /*
1129 * Setting hierarchical PXNTable attributes on table entries covering
1130 * the linear region is only possible if it is guaranteed that no table
1131 * entries at any level are being shared between the linear region and
1132 * the vmalloc region. Check whether this is true for the PGD level, in
1133 * which case it is guaranteed to be true for all other levels as well.
1134 * (Unless we are running with support for LPA2, in which case the
1135 * entire reduced VA space is covered by a single pgd_t which will have
1136 * been populated without the PXNTable attribute by the time we get here.)
1137 */
1138 BUILD_BUG_ON(pgd_index(direct_map_end - 1) == pgd_index(direct_map_end) &&
1139 pgd_index(_PAGE_OFFSET(VA_BITS_MIN)) != PTRS_PER_PGD - 1);
1140
1141 early_kfence_pool = arm64_kfence_alloc_pool();
1142
1143 linear_map_requires_bbml2 = !force_pte_mapping() && can_set_direct_map();
1144
1145 if (force_pte_mapping())
1146 flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
1147
1148 /*
1149 * Take care not to create a writable alias for the
1150 * read-only text and rodata sections of the kernel image.
1151 * So temporarily mark them as NOMAP to skip mappings in
1152 * the following for-loop
1153 */
1154 memblock_mark_nomap(kernel_start, kernel_end - kernel_start);
1155
1156 /* map all the memory banks */
1157 for_each_mem_range(i, &start, &end) {
1158 if (start >= end)
1159 break;
1160 /*
1161 * The linear map must allow allocation tags reading/writing
1162 * if MTE is present. Otherwise, it has the same attributes as
1163 * PAGE_KERNEL.
1164 */
1165 __map_memblock(pgdp, start, end, pgprot_tagged(PAGE_KERNEL),
1166 flags);
1167 }
1168
1169 /*
1170 * Map the linear alias of the [_text, __init_begin) interval
1171 * as non-executable now, and remove the write permission in
1172 * mark_linear_text_alias_ro() below (which will be called after
1173 * alternative patching has completed). This makes the contents
1174 * of the region accessible to subsystems such as hibernate,
1175 * but protects it from inadvertent modification or execution.
1176 * Note that contiguous mappings cannot be remapped in this way,
1177 * so we should avoid them here.
1178 */
1179 __map_memblock(pgdp, kernel_start, kernel_end,
1180 PAGE_KERNEL, NO_CONT_MAPPINGS);
1181 memblock_clear_nomap(kernel_start, kernel_end - kernel_start);
1182 arm64_kfence_map_pool(early_kfence_pool, pgdp);
1183 }
1184
mark_rodata_ro(void)1185 void mark_rodata_ro(void)
1186 {
1187 unsigned long section_size;
1188
1189 /*
1190 * mark .rodata as read only. Use __init_begin rather than __end_rodata
1191 * to cover NOTES and EXCEPTION_TABLE.
1192 */
1193 section_size = (unsigned long)__init_begin - (unsigned long)__start_rodata;
1194 WRITE_ONCE(rodata_is_rw, false);
1195 update_mapping_prot(__pa_symbol(__start_rodata), (unsigned long)__start_rodata,
1196 section_size, PAGE_KERNEL_RO);
1197 /* mark the range between _text and _stext as read only. */
1198 update_mapping_prot(__pa_symbol(_text), (unsigned long)_text,
1199 (unsigned long)_stext - (unsigned long)_text,
1200 PAGE_KERNEL_RO);
1201 }
1202
declare_vma(struct vm_struct * vma,void * va_start,void * va_end,unsigned long vm_flags)1203 static void __init declare_vma(struct vm_struct *vma,
1204 void *va_start, void *va_end,
1205 unsigned long vm_flags)
1206 {
1207 phys_addr_t pa_start = __pa_symbol(va_start);
1208 unsigned long size = va_end - va_start;
1209
1210 BUG_ON(!PAGE_ALIGNED(pa_start));
1211 BUG_ON(!PAGE_ALIGNED(size));
1212
1213 if (!(vm_flags & VM_NO_GUARD))
1214 size += PAGE_SIZE;
1215
1216 vma->addr = va_start;
1217 vma->phys_addr = pa_start;
1218 vma->size = size;
1219 vma->flags = VM_MAP | vm_flags;
1220 vma->caller = __builtin_return_address(0);
1221
1222 vm_area_add_early(vma);
1223 }
1224
1225 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1226 #define KPTI_NG_TEMP_VA (-(1UL << PMD_SHIFT))
1227
1228 static phys_addr_t kpti_ng_temp_alloc __initdata;
1229
kpti_ng_pgd_alloc(enum pgtable_type type)1230 static phys_addr_t __init kpti_ng_pgd_alloc(enum pgtable_type type)
1231 {
1232 kpti_ng_temp_alloc -= PAGE_SIZE;
1233 return kpti_ng_temp_alloc;
1234 }
1235
__kpti_install_ng_mappings(void * __unused)1236 static int __init __kpti_install_ng_mappings(void *__unused)
1237 {
1238 typedef void (kpti_remap_fn)(int, int, phys_addr_t, unsigned long);
1239 extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1240 kpti_remap_fn *remap_fn;
1241
1242 int cpu = smp_processor_id();
1243 int levels = CONFIG_PGTABLE_LEVELS;
1244 int order = order_base_2(levels);
1245 u64 kpti_ng_temp_pgd_pa = 0;
1246 pgd_t *kpti_ng_temp_pgd;
1247 u64 alloc = 0;
1248
1249 if (levels == 5 && !pgtable_l5_enabled())
1250 levels = 4;
1251 else if (levels == 4 && !pgtable_l4_enabled())
1252 levels = 3;
1253
1254 remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1255
1256 if (!cpu) {
1257 int ret;
1258
1259 alloc = __get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
1260 kpti_ng_temp_pgd = (pgd_t *)(alloc + (levels - 1) * PAGE_SIZE);
1261 kpti_ng_temp_alloc = kpti_ng_temp_pgd_pa = __pa(kpti_ng_temp_pgd);
1262
1263 //
1264 // Create a minimal page table hierarchy that permits us to map
1265 // the swapper page tables temporarily as we traverse them.
1266 //
1267 // The physical pages are laid out as follows:
1268 //
1269 // +--------+-/-------+-/------ +-/------ +-\\\--------+
1270 // : PTE[] : | PMD[] : | PUD[] : | P4D[] : ||| PGD[] :
1271 // +--------+-\-------+-\------ +-\------ +-///--------+
1272 // ^
1273 // The first page is mapped into this hierarchy at a PMD_SHIFT
1274 // aligned virtual address, so that we can manipulate the PTE
1275 // level entries while the mapping is active. The first entry
1276 // covers the PTE[] page itself, the remaining entries are free
1277 // to be used as a ad-hoc fixmap.
1278 //
1279 ret = __create_pgd_mapping_locked(kpti_ng_temp_pgd, __pa(alloc),
1280 KPTI_NG_TEMP_VA, PAGE_SIZE, PAGE_KERNEL,
1281 kpti_ng_pgd_alloc, 0);
1282 if (ret)
1283 panic("Failed to create page tables\n");
1284 }
1285
1286 cpu_install_idmap();
1287 remap_fn(cpu, num_online_cpus(), kpti_ng_temp_pgd_pa, KPTI_NG_TEMP_VA);
1288 cpu_uninstall_idmap();
1289
1290 if (!cpu) {
1291 free_pages(alloc, order);
1292 arm64_use_ng_mappings = true;
1293 }
1294
1295 return 0;
1296 }
1297
kpti_install_ng_mappings(void)1298 void __init kpti_install_ng_mappings(void)
1299 {
1300 /* Check whether KPTI is going to be used */
1301 if (!arm64_kernel_unmapped_at_el0())
1302 return;
1303
1304 /*
1305 * We don't need to rewrite the page-tables if either we've done
1306 * it already or we have KASLR enabled and therefore have not
1307 * created any global mappings at all.
1308 */
1309 if (arm64_use_ng_mappings)
1310 return;
1311
1312 init_idmap_kpti_bbml2_flag();
1313 stop_machine(__kpti_install_ng_mappings, NULL, cpu_online_mask);
1314 }
1315
kernel_exec_prot(void)1316 static pgprot_t __init kernel_exec_prot(void)
1317 {
1318 return rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC;
1319 }
1320
map_entry_trampoline(void)1321 static int __init map_entry_trampoline(void)
1322 {
1323 int i;
1324
1325 if (!arm64_kernel_unmapped_at_el0())
1326 return 0;
1327
1328 pgprot_t prot = kernel_exec_prot();
1329 phys_addr_t pa_start = __pa_symbol(__entry_tramp_text_start);
1330
1331 /* The trampoline is always mapped and can therefore be global */
1332 pgprot_val(prot) &= ~PTE_NG;
1333
1334 /* Map only the text into the trampoline page table */
1335 memset(tramp_pg_dir, 0, PGD_SIZE);
1336 early_create_pgd_mapping(tramp_pg_dir, pa_start, TRAMP_VALIAS,
1337 entry_tramp_text_size(), prot,
1338 pgd_pgtable_alloc_init_mm, NO_BLOCK_MAPPINGS);
1339
1340 /* Map both the text and data into the kernel page table */
1341 for (i = 0; i < DIV_ROUND_UP(entry_tramp_text_size(), PAGE_SIZE); i++)
1342 __set_fixmap(FIX_ENTRY_TRAMP_TEXT1 - i,
1343 pa_start + i * PAGE_SIZE, prot);
1344
1345 if (IS_ENABLED(CONFIG_RELOCATABLE))
1346 __set_fixmap(FIX_ENTRY_TRAMP_TEXT1 - i,
1347 pa_start + i * PAGE_SIZE, PAGE_KERNEL_RO);
1348
1349 return 0;
1350 }
1351 core_initcall(map_entry_trampoline);
1352 #endif
1353
1354 /*
1355 * Declare the VMA areas for the kernel
1356 */
declare_kernel_vmas(void)1357 static void __init declare_kernel_vmas(void)
1358 {
1359 static struct vm_struct vmlinux_seg[KERNEL_SEGMENT_COUNT];
1360
1361 declare_vma(&vmlinux_seg[0], _text, _etext, VM_NO_GUARD);
1362 declare_vma(&vmlinux_seg[1], __start_rodata, __inittext_begin, VM_NO_GUARD);
1363 declare_vma(&vmlinux_seg[2], __inittext_begin, __inittext_end, VM_NO_GUARD);
1364 declare_vma(&vmlinux_seg[3], __initdata_begin, __initdata_end, VM_NO_GUARD);
1365 declare_vma(&vmlinux_seg[4], _data, _end, 0);
1366 }
1367
1368 void __pi_map_range(phys_addr_t *pte, u64 start, u64 end, phys_addr_t pa,
1369 pgprot_t prot, int level, pte_t *tbl, bool may_use_cont,
1370 u64 va_offset);
1371
1372 static u8 idmap_ptes[IDMAP_LEVELS - 1][PAGE_SIZE] __aligned(PAGE_SIZE) __ro_after_init,
1373 kpti_bbml2_ptes[IDMAP_LEVELS - 1][PAGE_SIZE] __aligned(PAGE_SIZE) __ro_after_init;
1374
create_idmap(void)1375 static void __init create_idmap(void)
1376 {
1377 phys_addr_t start = __pa_symbol(__idmap_text_start);
1378 phys_addr_t end = __pa_symbol(__idmap_text_end);
1379 phys_addr_t ptep = __pa_symbol(idmap_ptes);
1380
1381 __pi_map_range(&ptep, start, end, start, PAGE_KERNEL_ROX,
1382 IDMAP_ROOT_LEVEL, (pte_t *)idmap_pg_dir, false,
1383 __phys_to_virt(ptep) - ptep);
1384
1385 if (linear_map_requires_bbml2 ||
1386 (IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0) && !arm64_use_ng_mappings)) {
1387 phys_addr_t pa = __pa_symbol(&idmap_kpti_bbml2_flag);
1388
1389 /*
1390 * The KPTI G-to-nG conversion code needs a read-write mapping
1391 * of its synchronization flag in the ID map. This is also used
1392 * when splitting the linear map to ptes if a secondary CPU
1393 * doesn't support bbml2.
1394 */
1395 ptep = __pa_symbol(kpti_bbml2_ptes);
1396 __pi_map_range(&ptep, pa, pa + sizeof(u32), pa, PAGE_KERNEL,
1397 IDMAP_ROOT_LEVEL, (pte_t *)idmap_pg_dir, false,
1398 __phys_to_virt(ptep) - ptep);
1399 }
1400 }
1401
paging_init(void)1402 void __init paging_init(void)
1403 {
1404 map_mem(swapper_pg_dir);
1405
1406 memblock_allow_resize();
1407
1408 create_idmap();
1409 declare_kernel_vmas();
1410 }
1411
1412 #ifdef CONFIG_MEMORY_HOTPLUG
free_hotplug_page_range(struct page * page,size_t size,struct vmem_altmap * altmap)1413 static void free_hotplug_page_range(struct page *page, size_t size,
1414 struct vmem_altmap *altmap)
1415 {
1416 if (altmap) {
1417 vmem_altmap_free(altmap, size >> PAGE_SHIFT);
1418 } else {
1419 WARN_ON(PageReserved(page));
1420 __free_pages(page, get_order(size));
1421 }
1422 }
1423
free_hotplug_pgtable_page(struct page * page)1424 static void free_hotplug_pgtable_page(struct page *page)
1425 {
1426 free_hotplug_page_range(page, PAGE_SIZE, NULL);
1427 }
1428
pgtable_range_aligned(unsigned long start,unsigned long end,unsigned long floor,unsigned long ceiling,unsigned long mask)1429 static bool pgtable_range_aligned(unsigned long start, unsigned long end,
1430 unsigned long floor, unsigned long ceiling,
1431 unsigned long mask)
1432 {
1433 start &= mask;
1434 if (start < floor)
1435 return false;
1436
1437 if (ceiling) {
1438 ceiling &= mask;
1439 if (!ceiling)
1440 return false;
1441 }
1442
1443 if (end - 1 > ceiling - 1)
1444 return false;
1445 return true;
1446 }
1447
unmap_hotplug_pte_range(pmd_t * pmdp,unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)1448 static void unmap_hotplug_pte_range(pmd_t *pmdp, unsigned long addr,
1449 unsigned long end, bool free_mapped,
1450 struct vmem_altmap *altmap)
1451 {
1452 pte_t *ptep, pte;
1453
1454 do {
1455 ptep = pte_offset_kernel(pmdp, addr);
1456 pte = __ptep_get(ptep);
1457 if (pte_none(pte))
1458 continue;
1459
1460 WARN_ON(!pte_present(pte));
1461 __pte_clear(&init_mm, addr, ptep);
1462 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
1463 if (free_mapped)
1464 free_hotplug_page_range(pte_page(pte),
1465 PAGE_SIZE, altmap);
1466 } while (addr += PAGE_SIZE, addr < end);
1467 }
1468
unmap_hotplug_pmd_range(pud_t * pudp,unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)1469 static void unmap_hotplug_pmd_range(pud_t *pudp, unsigned long addr,
1470 unsigned long end, bool free_mapped,
1471 struct vmem_altmap *altmap)
1472 {
1473 unsigned long next;
1474 pmd_t *pmdp, pmd;
1475
1476 do {
1477 next = pmd_addr_end(addr, end);
1478 pmdp = pmd_offset(pudp, addr);
1479 pmd = READ_ONCE(*pmdp);
1480 if (pmd_none(pmd))
1481 continue;
1482
1483 WARN_ON(!pmd_present(pmd));
1484 if (pmd_sect(pmd)) {
1485 pmd_clear(pmdp);
1486
1487 /*
1488 * One TLBI should be sufficient here as the PMD_SIZE
1489 * range is mapped with a single block entry.
1490 */
1491 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
1492 if (free_mapped)
1493 free_hotplug_page_range(pmd_page(pmd),
1494 PMD_SIZE, altmap);
1495 continue;
1496 }
1497 WARN_ON(!pmd_table(pmd));
1498 unmap_hotplug_pte_range(pmdp, addr, next, free_mapped, altmap);
1499 } while (addr = next, addr < end);
1500 }
1501
unmap_hotplug_pud_range(p4d_t * p4dp,unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)1502 static void unmap_hotplug_pud_range(p4d_t *p4dp, unsigned long addr,
1503 unsigned long end, bool free_mapped,
1504 struct vmem_altmap *altmap)
1505 {
1506 unsigned long next;
1507 pud_t *pudp, pud;
1508
1509 do {
1510 next = pud_addr_end(addr, end);
1511 pudp = pud_offset(p4dp, addr);
1512 pud = READ_ONCE(*pudp);
1513 if (pud_none(pud))
1514 continue;
1515
1516 WARN_ON(!pud_present(pud));
1517 if (pud_sect(pud)) {
1518 pud_clear(pudp);
1519
1520 /*
1521 * One TLBI should be sufficient here as the PUD_SIZE
1522 * range is mapped with a single block entry.
1523 */
1524 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
1525 if (free_mapped)
1526 free_hotplug_page_range(pud_page(pud),
1527 PUD_SIZE, altmap);
1528 continue;
1529 }
1530 WARN_ON(!pud_table(pud));
1531 unmap_hotplug_pmd_range(pudp, addr, next, free_mapped, altmap);
1532 } while (addr = next, addr < end);
1533 }
1534
unmap_hotplug_p4d_range(pgd_t * pgdp,unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)1535 static void unmap_hotplug_p4d_range(pgd_t *pgdp, unsigned long addr,
1536 unsigned long end, bool free_mapped,
1537 struct vmem_altmap *altmap)
1538 {
1539 unsigned long next;
1540 p4d_t *p4dp, p4d;
1541
1542 do {
1543 next = p4d_addr_end(addr, end);
1544 p4dp = p4d_offset(pgdp, addr);
1545 p4d = READ_ONCE(*p4dp);
1546 if (p4d_none(p4d))
1547 continue;
1548
1549 WARN_ON(!p4d_present(p4d));
1550 unmap_hotplug_pud_range(p4dp, addr, next, free_mapped, altmap);
1551 } while (addr = next, addr < end);
1552 }
1553
unmap_hotplug_range(unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)1554 static void unmap_hotplug_range(unsigned long addr, unsigned long end,
1555 bool free_mapped, struct vmem_altmap *altmap)
1556 {
1557 unsigned long next;
1558 pgd_t *pgdp, pgd;
1559
1560 /*
1561 * altmap can only be used as vmemmap mapping backing memory.
1562 * In case the backing memory itself is not being freed, then
1563 * altmap is irrelevant. Warn about this inconsistency when
1564 * encountered.
1565 */
1566 WARN_ON(!free_mapped && altmap);
1567
1568 do {
1569 next = pgd_addr_end(addr, end);
1570 pgdp = pgd_offset_k(addr);
1571 pgd = READ_ONCE(*pgdp);
1572 if (pgd_none(pgd))
1573 continue;
1574
1575 WARN_ON(!pgd_present(pgd));
1576 unmap_hotplug_p4d_range(pgdp, addr, next, free_mapped, altmap);
1577 } while (addr = next, addr < end);
1578 }
1579
free_empty_pte_table(pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1580 static void free_empty_pte_table(pmd_t *pmdp, unsigned long addr,
1581 unsigned long end, unsigned long floor,
1582 unsigned long ceiling)
1583 {
1584 pte_t *ptep, pte;
1585 unsigned long i, start = addr;
1586
1587 do {
1588 ptep = pte_offset_kernel(pmdp, addr);
1589 pte = __ptep_get(ptep);
1590
1591 /*
1592 * This is just a sanity check here which verifies that
1593 * pte clearing has been done by earlier unmap loops.
1594 */
1595 WARN_ON(!pte_none(pte));
1596 } while (addr += PAGE_SIZE, addr < end);
1597
1598 if (!pgtable_range_aligned(start, end, floor, ceiling, PMD_MASK))
1599 return;
1600
1601 /*
1602 * Check whether we can free the pte page if the rest of the
1603 * entries are empty. Overlap with other regions have been
1604 * handled by the floor/ceiling check.
1605 */
1606 ptep = pte_offset_kernel(pmdp, 0UL);
1607 for (i = 0; i < PTRS_PER_PTE; i++) {
1608 if (!pte_none(__ptep_get(&ptep[i])))
1609 return;
1610 }
1611
1612 pmd_clear(pmdp);
1613 __flush_tlb_kernel_pgtable(start);
1614 free_hotplug_pgtable_page(virt_to_page(ptep));
1615 }
1616
free_empty_pmd_table(pud_t * pudp,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1617 static void free_empty_pmd_table(pud_t *pudp, unsigned long addr,
1618 unsigned long end, unsigned long floor,
1619 unsigned long ceiling)
1620 {
1621 pmd_t *pmdp, pmd;
1622 unsigned long i, next, start = addr;
1623
1624 do {
1625 next = pmd_addr_end(addr, end);
1626 pmdp = pmd_offset(pudp, addr);
1627 pmd = READ_ONCE(*pmdp);
1628 if (pmd_none(pmd))
1629 continue;
1630
1631 WARN_ON(!pmd_present(pmd) || !pmd_table(pmd) || pmd_sect(pmd));
1632 free_empty_pte_table(pmdp, addr, next, floor, ceiling);
1633 } while (addr = next, addr < end);
1634
1635 if (CONFIG_PGTABLE_LEVELS <= 2)
1636 return;
1637
1638 if (!pgtable_range_aligned(start, end, floor, ceiling, PUD_MASK))
1639 return;
1640
1641 /*
1642 * Check whether we can free the pmd page if the rest of the
1643 * entries are empty. Overlap with other regions have been
1644 * handled by the floor/ceiling check.
1645 */
1646 pmdp = pmd_offset(pudp, 0UL);
1647 for (i = 0; i < PTRS_PER_PMD; i++) {
1648 if (!pmd_none(READ_ONCE(pmdp[i])))
1649 return;
1650 }
1651
1652 pud_clear(pudp);
1653 __flush_tlb_kernel_pgtable(start);
1654 free_hotplug_pgtable_page(virt_to_page(pmdp));
1655 }
1656
free_empty_pud_table(p4d_t * p4dp,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1657 static void free_empty_pud_table(p4d_t *p4dp, unsigned long addr,
1658 unsigned long end, unsigned long floor,
1659 unsigned long ceiling)
1660 {
1661 pud_t *pudp, pud;
1662 unsigned long i, next, start = addr;
1663
1664 do {
1665 next = pud_addr_end(addr, end);
1666 pudp = pud_offset(p4dp, addr);
1667 pud = READ_ONCE(*pudp);
1668 if (pud_none(pud))
1669 continue;
1670
1671 WARN_ON(!pud_present(pud) || !pud_table(pud) || pud_sect(pud));
1672 free_empty_pmd_table(pudp, addr, next, floor, ceiling);
1673 } while (addr = next, addr < end);
1674
1675 if (!pgtable_l4_enabled())
1676 return;
1677
1678 if (!pgtable_range_aligned(start, end, floor, ceiling, P4D_MASK))
1679 return;
1680
1681 /*
1682 * Check whether we can free the pud page if the rest of the
1683 * entries are empty. Overlap with other regions have been
1684 * handled by the floor/ceiling check.
1685 */
1686 pudp = pud_offset(p4dp, 0UL);
1687 for (i = 0; i < PTRS_PER_PUD; i++) {
1688 if (!pud_none(READ_ONCE(pudp[i])))
1689 return;
1690 }
1691
1692 p4d_clear(p4dp);
1693 __flush_tlb_kernel_pgtable(start);
1694 free_hotplug_pgtable_page(virt_to_page(pudp));
1695 }
1696
free_empty_p4d_table(pgd_t * pgdp,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1697 static void free_empty_p4d_table(pgd_t *pgdp, unsigned long addr,
1698 unsigned long end, unsigned long floor,
1699 unsigned long ceiling)
1700 {
1701 p4d_t *p4dp, p4d;
1702 unsigned long i, next, start = addr;
1703
1704 do {
1705 next = p4d_addr_end(addr, end);
1706 p4dp = p4d_offset(pgdp, addr);
1707 p4d = READ_ONCE(*p4dp);
1708 if (p4d_none(p4d))
1709 continue;
1710
1711 WARN_ON(!p4d_present(p4d));
1712 free_empty_pud_table(p4dp, addr, next, floor, ceiling);
1713 } while (addr = next, addr < end);
1714
1715 if (!pgtable_l5_enabled())
1716 return;
1717
1718 if (!pgtable_range_aligned(start, end, floor, ceiling, PGDIR_MASK))
1719 return;
1720
1721 /*
1722 * Check whether we can free the p4d page if the rest of the
1723 * entries are empty. Overlap with other regions have been
1724 * handled by the floor/ceiling check.
1725 */
1726 p4dp = p4d_offset(pgdp, 0UL);
1727 for (i = 0; i < PTRS_PER_P4D; i++) {
1728 if (!p4d_none(READ_ONCE(p4dp[i])))
1729 return;
1730 }
1731
1732 pgd_clear(pgdp);
1733 __flush_tlb_kernel_pgtable(start);
1734 free_hotplug_pgtable_page(virt_to_page(p4dp));
1735 }
1736
free_empty_tables(unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1737 static void free_empty_tables(unsigned long addr, unsigned long end,
1738 unsigned long floor, unsigned long ceiling)
1739 {
1740 unsigned long next;
1741 pgd_t *pgdp, pgd;
1742
1743 do {
1744 next = pgd_addr_end(addr, end);
1745 pgdp = pgd_offset_k(addr);
1746 pgd = READ_ONCE(*pgdp);
1747 if (pgd_none(pgd))
1748 continue;
1749
1750 WARN_ON(!pgd_present(pgd));
1751 free_empty_p4d_table(pgdp, addr, next, floor, ceiling);
1752 } while (addr = next, addr < end);
1753 }
1754 #endif
1755
vmemmap_set_pmd(pmd_t * pmdp,void * p,int node,unsigned long addr,unsigned long next)1756 void __meminit vmemmap_set_pmd(pmd_t *pmdp, void *p, int node,
1757 unsigned long addr, unsigned long next)
1758 {
1759 pmd_set_huge(pmdp, __pa(p), __pgprot(PROT_SECT_NORMAL));
1760 }
1761
vmemmap_check_pmd(pmd_t * pmdp,int node,unsigned long addr,unsigned long next)1762 int __meminit vmemmap_check_pmd(pmd_t *pmdp, int node,
1763 unsigned long addr, unsigned long next)
1764 {
1765 vmemmap_verify((pte_t *)pmdp, node, addr, next);
1766
1767 return pmd_sect(READ_ONCE(*pmdp));
1768 }
1769
vmemmap_populate(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)1770 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1771 struct vmem_altmap *altmap)
1772 {
1773 WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1774 /* [start, end] should be within one section */
1775 WARN_ON_ONCE(end - start > PAGES_PER_SECTION * sizeof(struct page));
1776
1777 if (!IS_ENABLED(CONFIG_ARM64_4K_PAGES) ||
1778 (end - start < PAGES_PER_SECTION * sizeof(struct page)))
1779 return vmemmap_populate_basepages(start, end, node, altmap);
1780 else
1781 return vmemmap_populate_hugepages(start, end, node, altmap);
1782 }
1783
1784 #ifdef CONFIG_MEMORY_HOTPLUG
vmemmap_free(unsigned long start,unsigned long end,struct vmem_altmap * altmap)1785 void vmemmap_free(unsigned long start, unsigned long end,
1786 struct vmem_altmap *altmap)
1787 {
1788 WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1789
1790 unmap_hotplug_range(start, end, true, altmap);
1791 free_empty_tables(start, end, VMEMMAP_START, VMEMMAP_END);
1792 }
1793 #endif /* CONFIG_MEMORY_HOTPLUG */
1794
pud_set_huge(pud_t * pudp,phys_addr_t phys,pgprot_t prot)1795 int pud_set_huge(pud_t *pudp, phys_addr_t phys, pgprot_t prot)
1796 {
1797 pud_t new_pud = pfn_pud(__phys_to_pfn(phys), mk_pud_sect_prot(prot));
1798
1799 /* Only allow permission changes for now */
1800 if (!pgattr_change_is_safe(READ_ONCE(pud_val(*pudp)),
1801 pud_val(new_pud)))
1802 return 0;
1803
1804 VM_BUG_ON(phys & ~PUD_MASK);
1805 set_pud(pudp, new_pud);
1806 return 1;
1807 }
1808
pmd_set_huge(pmd_t * pmdp,phys_addr_t phys,pgprot_t prot)1809 int pmd_set_huge(pmd_t *pmdp, phys_addr_t phys, pgprot_t prot)
1810 {
1811 pmd_t new_pmd = pfn_pmd(__phys_to_pfn(phys), mk_pmd_sect_prot(prot));
1812
1813 /* Only allow permission changes for now */
1814 if (!pgattr_change_is_safe(READ_ONCE(pmd_val(*pmdp)),
1815 pmd_val(new_pmd)))
1816 return 0;
1817
1818 VM_BUG_ON(phys & ~PMD_MASK);
1819 set_pmd(pmdp, new_pmd);
1820 return 1;
1821 }
1822
1823 #ifndef __PAGETABLE_P4D_FOLDED
p4d_clear_huge(p4d_t * p4dp)1824 void p4d_clear_huge(p4d_t *p4dp)
1825 {
1826 }
1827 #endif
1828
pud_clear_huge(pud_t * pudp)1829 int pud_clear_huge(pud_t *pudp)
1830 {
1831 if (!pud_sect(READ_ONCE(*pudp)))
1832 return 0;
1833 pud_clear(pudp);
1834 return 1;
1835 }
1836
pmd_clear_huge(pmd_t * pmdp)1837 int pmd_clear_huge(pmd_t *pmdp)
1838 {
1839 if (!pmd_sect(READ_ONCE(*pmdp)))
1840 return 0;
1841 pmd_clear(pmdp);
1842 return 1;
1843 }
1844
__pmd_free_pte_page(pmd_t * pmdp,unsigned long addr,bool acquire_mmap_lock)1845 static int __pmd_free_pte_page(pmd_t *pmdp, unsigned long addr,
1846 bool acquire_mmap_lock)
1847 {
1848 pte_t *table;
1849 pmd_t pmd;
1850
1851 pmd = READ_ONCE(*pmdp);
1852
1853 if (!pmd_table(pmd)) {
1854 VM_WARN_ON(1);
1855 return 1;
1856 }
1857
1858 /* See comment in pud_free_pmd_page for static key logic */
1859 table = pte_offset_kernel(pmdp, addr);
1860 pmd_clear(pmdp);
1861 __flush_tlb_kernel_pgtable(addr);
1862 if (static_branch_unlikely(&arm64_ptdump_lock_key) && acquire_mmap_lock) {
1863 mmap_read_lock(&init_mm);
1864 mmap_read_unlock(&init_mm);
1865 }
1866
1867 pte_free_kernel(NULL, table);
1868 return 1;
1869 }
1870
pmd_free_pte_page(pmd_t * pmdp,unsigned long addr)1871 int pmd_free_pte_page(pmd_t *pmdp, unsigned long addr)
1872 {
1873 /* If ptdump is walking the pagetables, acquire init_mm.mmap_lock */
1874 return __pmd_free_pte_page(pmdp, addr, /* acquire_mmap_lock = */ true);
1875 }
1876
pud_free_pmd_page(pud_t * pudp,unsigned long addr)1877 int pud_free_pmd_page(pud_t *pudp, unsigned long addr)
1878 {
1879 pmd_t *table;
1880 pmd_t *pmdp;
1881 pud_t pud;
1882 unsigned long next, end;
1883
1884 pud = READ_ONCE(*pudp);
1885
1886 if (!pud_table(pud)) {
1887 VM_WARN_ON(1);
1888 return 1;
1889 }
1890
1891 table = pmd_offset(pudp, addr);
1892
1893 /*
1894 * Our objective is to prevent ptdump from reading a PMD table which has
1895 * been freed. In this race, if pud_free_pmd_page observes the key on
1896 * (which got flipped by ptdump) then the mmap lock sequence here will,
1897 * as a result of the mmap write lock/unlock sequence in ptdump, give
1898 * us the correct synchronization. If not, this means that ptdump has
1899 * yet not started walking the pagetables - the sequence of barriers
1900 * issued by __flush_tlb_kernel_pgtable() guarantees that ptdump will
1901 * observe an empty PUD.
1902 */
1903 pud_clear(pudp);
1904 __flush_tlb_kernel_pgtable(addr);
1905 if (static_branch_unlikely(&arm64_ptdump_lock_key)) {
1906 mmap_read_lock(&init_mm);
1907 mmap_read_unlock(&init_mm);
1908 }
1909
1910 pmdp = table;
1911 next = addr;
1912 end = addr + PUD_SIZE;
1913 do {
1914 if (pmd_present(pmdp_get(pmdp)))
1915 /*
1916 * PMD has been isolated, so ptdump won't see it. No
1917 * need to acquire init_mm.mmap_lock.
1918 */
1919 __pmd_free_pte_page(pmdp, next, /* acquire_mmap_lock = */ false);
1920 } while (pmdp++, next += PMD_SIZE, next != end);
1921
1922 pmd_free(NULL, table);
1923 return 1;
1924 }
1925
1926 #ifdef CONFIG_MEMORY_HOTPLUG
__remove_pgd_mapping(pgd_t * pgdir,unsigned long start,u64 size)1927 static void __remove_pgd_mapping(pgd_t *pgdir, unsigned long start, u64 size)
1928 {
1929 unsigned long end = start + size;
1930
1931 WARN_ON(pgdir != init_mm.pgd);
1932 WARN_ON((start < PAGE_OFFSET) || (end > PAGE_END));
1933
1934 unmap_hotplug_range(start, end, false, NULL);
1935 free_empty_tables(start, end, PAGE_OFFSET, PAGE_END);
1936 }
1937
arch_get_mappable_range(void)1938 struct range arch_get_mappable_range(void)
1939 {
1940 struct range mhp_range;
1941 phys_addr_t start_linear_pa = __pa(_PAGE_OFFSET(vabits_actual));
1942 phys_addr_t end_linear_pa = __pa(PAGE_END - 1);
1943
1944 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
1945 /*
1946 * Check for a wrap, it is possible because of randomized linear
1947 * mapping the start physical address is actually bigger than
1948 * the end physical address. In this case set start to zero
1949 * because [0, end_linear_pa] range must still be able to cover
1950 * all addressable physical addresses.
1951 */
1952 if (start_linear_pa > end_linear_pa)
1953 start_linear_pa = 0;
1954 }
1955
1956 WARN_ON(start_linear_pa > end_linear_pa);
1957
1958 /*
1959 * Linear mapping region is the range [PAGE_OFFSET..(PAGE_END - 1)]
1960 * accommodating both its ends but excluding PAGE_END. Max physical
1961 * range which can be mapped inside this linear mapping range, must
1962 * also be derived from its end points.
1963 */
1964 mhp_range.start = start_linear_pa;
1965 mhp_range.end = end_linear_pa;
1966
1967 return mhp_range;
1968 }
1969
arch_add_memory(int nid,u64 start,u64 size,struct mhp_params * params)1970 int arch_add_memory(int nid, u64 start, u64 size,
1971 struct mhp_params *params)
1972 {
1973 int ret, flags = NO_EXEC_MAPPINGS;
1974
1975 VM_BUG_ON(!mhp_range_allowed(start, size, true));
1976
1977 if (force_pte_mapping())
1978 flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
1979
1980 ret = __create_pgd_mapping(swapper_pg_dir, start, __phys_to_virt(start),
1981 size, params->pgprot, pgd_pgtable_alloc_init_mm,
1982 flags);
1983 if (ret)
1984 goto err;
1985
1986 memblock_clear_nomap(start, size);
1987
1988 ret = __add_pages(nid, start >> PAGE_SHIFT, size >> PAGE_SHIFT,
1989 params);
1990 if (ret)
1991 goto err;
1992
1993 /* Address of hotplugged memory can be smaller */
1994 max_pfn = max(max_pfn, PFN_UP(start + size));
1995 max_low_pfn = max_pfn;
1996
1997 return 0;
1998
1999 err:
2000 __remove_pgd_mapping(swapper_pg_dir,
2001 __phys_to_virt(start), size);
2002 return ret;
2003 }
2004
arch_remove_memory(u64 start,u64 size,struct vmem_altmap * altmap)2005 void arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
2006 {
2007 unsigned long start_pfn = start >> PAGE_SHIFT;
2008 unsigned long nr_pages = size >> PAGE_SHIFT;
2009
2010 __remove_pages(start_pfn, nr_pages, altmap);
2011 __remove_pgd_mapping(swapper_pg_dir, __phys_to_virt(start), size);
2012 }
2013
2014 /*
2015 * This memory hotplug notifier helps prevent boot memory from being
2016 * inadvertently removed as it blocks pfn range offlining process in
2017 * __offline_pages(). Hence this prevents both offlining as well as
2018 * removal process for boot memory which is initially always online.
2019 * In future if and when boot memory could be removed, this notifier
2020 * should be dropped and free_hotplug_page_range() should handle any
2021 * reserved pages allocated during boot.
2022 */
prevent_bootmem_remove_notifier(struct notifier_block * nb,unsigned long action,void * data)2023 static int prevent_bootmem_remove_notifier(struct notifier_block *nb,
2024 unsigned long action, void *data)
2025 {
2026 struct mem_section *ms;
2027 struct memory_notify *arg = data;
2028 unsigned long end_pfn = arg->start_pfn + arg->nr_pages;
2029 unsigned long pfn = arg->start_pfn;
2030
2031 if ((action != MEM_GOING_OFFLINE) && (action != MEM_OFFLINE))
2032 return NOTIFY_OK;
2033
2034 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
2035 unsigned long start = PFN_PHYS(pfn);
2036 unsigned long end = start + (1UL << PA_SECTION_SHIFT);
2037
2038 ms = __pfn_to_section(pfn);
2039 if (!early_section(ms))
2040 continue;
2041
2042 if (action == MEM_GOING_OFFLINE) {
2043 /*
2044 * Boot memory removal is not supported. Prevent
2045 * it via blocking any attempted offline request
2046 * for the boot memory and just report it.
2047 */
2048 pr_warn("Boot memory [%lx %lx] offlining attempted\n", start, end);
2049 return NOTIFY_BAD;
2050 } else if (action == MEM_OFFLINE) {
2051 /*
2052 * This should have never happened. Boot memory
2053 * offlining should have been prevented by this
2054 * very notifier. Probably some memory removal
2055 * procedure might have changed which would then
2056 * require further debug.
2057 */
2058 pr_err("Boot memory [%lx %lx] offlined\n", start, end);
2059
2060 /*
2061 * Core memory hotplug does not process a return
2062 * code from the notifier for MEM_OFFLINE events.
2063 * The error condition has been reported. Return
2064 * from here as if ignored.
2065 */
2066 return NOTIFY_DONE;
2067 }
2068 }
2069 return NOTIFY_OK;
2070 }
2071
2072 static struct notifier_block prevent_bootmem_remove_nb = {
2073 .notifier_call = prevent_bootmem_remove_notifier,
2074 };
2075
2076 /*
2077 * This ensures that boot memory sections on the platform are online
2078 * from early boot. Memory sections could not be prevented from being
2079 * offlined, unless for some reason they are not online to begin with.
2080 * This helps validate the basic assumption on which the above memory
2081 * event notifier works to prevent boot memory section offlining and
2082 * its possible removal.
2083 */
validate_bootmem_online(void)2084 static void validate_bootmem_online(void)
2085 {
2086 phys_addr_t start, end, addr;
2087 struct mem_section *ms;
2088 u64 i;
2089
2090 /*
2091 * Scanning across all memblock might be expensive
2092 * on some big memory systems. Hence enable this
2093 * validation only with DEBUG_VM.
2094 */
2095 if (!IS_ENABLED(CONFIG_DEBUG_VM))
2096 return;
2097
2098 for_each_mem_range(i, &start, &end) {
2099 for (addr = start; addr < end; addr += (1UL << PA_SECTION_SHIFT)) {
2100 ms = __pfn_to_section(PHYS_PFN(addr));
2101
2102 /*
2103 * All memory ranges in the system at this point
2104 * should have been marked as early sections.
2105 */
2106 WARN_ON(!early_section(ms));
2107
2108 /*
2109 * Memory notifier mechanism here to prevent boot
2110 * memory offlining depends on the fact that each
2111 * early section memory on the system is initially
2112 * online. Otherwise a given memory section which
2113 * is already offline will be overlooked and can
2114 * be removed completely. Call out such sections.
2115 */
2116 if (!online_section(ms))
2117 pr_err("Boot memory [%llx %llx] is offline, can be removed\n",
2118 addr, addr + (1UL << PA_SECTION_SHIFT));
2119 }
2120 }
2121 }
2122
prevent_bootmem_remove_init(void)2123 static int __init prevent_bootmem_remove_init(void)
2124 {
2125 int ret = 0;
2126
2127 if (!IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
2128 return ret;
2129
2130 validate_bootmem_online();
2131 ret = register_memory_notifier(&prevent_bootmem_remove_nb);
2132 if (ret)
2133 pr_err("%s: Notifier registration failed %d\n", __func__, ret);
2134
2135 return ret;
2136 }
2137 early_initcall(prevent_bootmem_remove_init);
2138 #endif
2139
modify_prot_start_ptes(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr)2140 pte_t modify_prot_start_ptes(struct vm_area_struct *vma, unsigned long addr,
2141 pte_t *ptep, unsigned int nr)
2142 {
2143 pte_t pte = get_and_clear_ptes(vma->vm_mm, addr, ptep, nr);
2144
2145 if (alternative_has_cap_unlikely(ARM64_WORKAROUND_2645198)) {
2146 /*
2147 * Break-before-make (BBM) is required for all user space mappings
2148 * when the permission changes from executable to non-executable
2149 * in cases where cpu is affected with errata #2645198.
2150 */
2151 if (pte_accessible(vma->vm_mm, pte) && pte_user_exec(pte))
2152 __flush_tlb_range(vma, addr, nr * PAGE_SIZE,
2153 PAGE_SIZE, true, 3);
2154 }
2155
2156 return pte;
2157 }
2158
ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)2159 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
2160 {
2161 return modify_prot_start_ptes(vma, addr, ptep, 1);
2162 }
2163
modify_prot_commit_ptes(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte,unsigned int nr)2164 void modify_prot_commit_ptes(struct vm_area_struct *vma, unsigned long addr,
2165 pte_t *ptep, pte_t old_pte, pte_t pte,
2166 unsigned int nr)
2167 {
2168 set_ptes(vma->vm_mm, addr, ptep, pte, nr);
2169 }
2170
ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)2171 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep,
2172 pte_t old_pte, pte_t pte)
2173 {
2174 modify_prot_commit_ptes(vma, addr, ptep, old_pte, pte, 1);
2175 }
2176
2177 /*
2178 * Atomically replaces the active TTBR1_EL1 PGD with a new VA-compatible PGD,
2179 * avoiding the possibility of conflicting TLB entries being allocated.
2180 */
__cpu_replace_ttbr1(pgd_t * pgdp,bool cnp)2181 void __cpu_replace_ttbr1(pgd_t *pgdp, bool cnp)
2182 {
2183 typedef void (ttbr_replace_func)(phys_addr_t);
2184 extern ttbr_replace_func idmap_cpu_replace_ttbr1;
2185 ttbr_replace_func *replace_phys;
2186 unsigned long daif;
2187
2188 /* phys_to_ttbr() zeros lower 2 bits of ttbr with 52-bit PA */
2189 phys_addr_t ttbr1 = phys_to_ttbr(virt_to_phys(pgdp));
2190
2191 if (cnp)
2192 ttbr1 |= TTBR_CNP_BIT;
2193
2194 replace_phys = (void *)__pa_symbol(idmap_cpu_replace_ttbr1);
2195
2196 cpu_install_idmap();
2197
2198 /*
2199 * We really don't want to take *any* exceptions while TTBR1 is
2200 * in the process of being replaced so mask everything.
2201 */
2202 daif = local_daif_save();
2203 replace_phys(ttbr1);
2204 local_daif_restore(daif);
2205
2206 cpu_uninstall_idmap();
2207 }
2208
2209 #ifdef CONFIG_ARCH_HAS_PKEYS
arch_set_user_pkey_access(struct task_struct * tsk,int pkey,unsigned long init_val)2210 int arch_set_user_pkey_access(struct task_struct *tsk, int pkey, unsigned long init_val)
2211 {
2212 u64 new_por;
2213 u64 old_por;
2214
2215 if (!system_supports_poe())
2216 return -ENOSPC;
2217
2218 /*
2219 * This code should only be called with valid 'pkey'
2220 * values originating from in-kernel users. Complain
2221 * if a bad value is observed.
2222 */
2223 if (WARN_ON_ONCE(pkey >= arch_max_pkey()))
2224 return -EINVAL;
2225
2226 /* Set the bits we need in POR: */
2227 new_por = POE_RWX;
2228 if (init_val & PKEY_DISABLE_WRITE)
2229 new_por &= ~POE_W;
2230 if (init_val & PKEY_DISABLE_ACCESS)
2231 new_por &= ~POE_RW;
2232 if (init_val & PKEY_DISABLE_READ)
2233 new_por &= ~POE_R;
2234 if (init_val & PKEY_DISABLE_EXECUTE)
2235 new_por &= ~POE_X;
2236
2237 /* Shift the bits in to the correct place in POR for pkey: */
2238 new_por = POR_ELx_PERM_PREP(pkey, new_por);
2239
2240 /* Get old POR and mask off any old bits in place: */
2241 old_por = read_sysreg_s(SYS_POR_EL0);
2242 old_por &= ~(POE_MASK << POR_ELx_PERM_SHIFT(pkey));
2243
2244 /* Write old part along with new part: */
2245 write_sysreg_s(old_por | new_por, SYS_POR_EL0);
2246
2247 return 0;
2248 }
2249 #endif
2250