xref: /linux/security/keys/encrypted-keys/encrypted.c (revision 24c776355f4097316a763005434ffff716aa21a8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2010 IBM Corporation
4  * Copyright (C) 2010 Politecnico di Torino, Italy
5  *                    TORSEC group -- https://security.polito.it
6  *
7  * Authors:
8  * Mimi Zohar <zohar@us.ibm.com>
9  * Roberto Sassu <roberto.sassu@polito.it>
10  *
11  * See Documentation/security/keys/trusted-encrypted.rst
12  */
13 
14 #include <linux/uaccess.h>
15 #include <linux/module.h>
16 #include <linux/hex.h>
17 #include <linux/init.h>
18 #include <linux/slab.h>
19 #include <linux/parser.h>
20 #include <linux/string.h>
21 #include <linux/err.h>
22 #include <keys/user-type.h>
23 #include <keys/trusted-type.h>
24 #include <keys/encrypted-type.h>
25 #include <linux/key-type.h>
26 #include <linux/random.h>
27 #include <linux/rcupdate.h>
28 #include <linux/scatterlist.h>
29 #include <linux/ctype.h>
30 #include <crypto/aes.h>
31 #include <crypto/sha2.h>
32 #include <crypto/skcipher.h>
33 #include <crypto/utils.h>
34 
35 #include "encrypted.h"
36 #include "ecryptfs_format.h"
37 
38 static const char KEY_TRUSTED_PREFIX[] = "trusted:";
39 static const char KEY_USER_PREFIX[] = "user:";
40 static const char blkcipher_alg[] = "cbc(aes)";
41 static const char key_format_default[] = "default";
42 static const char key_format_ecryptfs[] = "ecryptfs";
43 static const char key_format_enc32[] = "enc32";
44 static unsigned int ivsize;
45 static int blksize;
46 
47 #define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1)
48 #define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1)
49 #define KEY_ECRYPTFS_DESC_LEN 16
50 #define HASH_SIZE SHA256_DIGEST_SIZE
51 #define MAX_DATA_SIZE 4096
52 #define MIN_DATA_SIZE  20
53 #define KEY_ENC32_PAYLOAD_LEN 32
54 
55 enum {
56 	Opt_new, Opt_load, Opt_update, Opt_err
57 };
58 
59 enum {
60 	Opt_default, Opt_ecryptfs, Opt_enc32, Opt_error
61 };
62 
63 static const match_table_t key_format_tokens = {
64 	{Opt_default, "default"},
65 	{Opt_ecryptfs, "ecryptfs"},
66 	{Opt_enc32, "enc32"},
67 	{Opt_error, NULL}
68 };
69 
70 static const match_table_t key_tokens = {
71 	{Opt_new, "new"},
72 	{Opt_load, "load"},
73 	{Opt_update, "update"},
74 	{Opt_err, NULL}
75 };
76 
77 static bool user_decrypted_data = IS_ENABLED(CONFIG_USER_DECRYPTED_DATA);
78 module_param(user_decrypted_data, bool, 0);
79 MODULE_PARM_DESC(user_decrypted_data,
80 	"Allow instantiation of encrypted keys using provided decrypted data");
81 
82 static int aes_get_sizes(void)
83 {
84 	struct crypto_skcipher *tfm;
85 
86 	tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
87 	if (IS_ERR(tfm)) {
88 		pr_err("encrypted_key: failed to alloc_cipher (%ld)\n",
89 		       PTR_ERR(tfm));
90 		return PTR_ERR(tfm);
91 	}
92 	ivsize = crypto_skcipher_ivsize(tfm);
93 	blksize = crypto_skcipher_blocksize(tfm);
94 	crypto_free_skcipher(tfm);
95 	return 0;
96 }
97 
98 /*
99  * valid_ecryptfs_desc - verify the description of a new/loaded encrypted key
100  *
101  * The description of a encrypted key with format 'ecryptfs' must contain
102  * exactly 16 hexadecimal characters.
103  *
104  */
105 static int valid_ecryptfs_desc(const char *ecryptfs_desc)
106 {
107 	int i;
108 
109 	if (strlen(ecryptfs_desc) != KEY_ECRYPTFS_DESC_LEN) {
110 		pr_err("encrypted_key: key description must be %d hexadecimal "
111 		       "characters long\n", KEY_ECRYPTFS_DESC_LEN);
112 		return -EINVAL;
113 	}
114 
115 	for (i = 0; i < KEY_ECRYPTFS_DESC_LEN; i++) {
116 		if (!isxdigit(ecryptfs_desc[i])) {
117 			pr_err("encrypted_key: key description must contain "
118 			       "only hexadecimal characters\n");
119 			return -EINVAL;
120 		}
121 	}
122 
123 	return 0;
124 }
125 
126 /*
127  * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key
128  *
129  * key-type:= "trusted:" | "user:"
130  * desc:= master-key description
131  *
132  * Verify that 'key-type' is valid and that 'desc' exists. On key update,
133  * only the master key description is permitted to change, not the key-type.
134  * The key-type remains constant.
135  *
136  * On success returns 0, otherwise -EINVAL.
137  */
138 static int valid_master_desc(const char *new_desc, const char *orig_desc)
139 {
140 	int prefix_len;
141 
142 	if (!strncmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN))
143 		prefix_len = KEY_TRUSTED_PREFIX_LEN;
144 	else if (!strncmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN))
145 		prefix_len = KEY_USER_PREFIX_LEN;
146 	else
147 		return -EINVAL;
148 
149 	if (!new_desc[prefix_len])
150 		return -EINVAL;
151 
152 	if (orig_desc && strncmp(new_desc, orig_desc, prefix_len))
153 		return -EINVAL;
154 
155 	return 0;
156 }
157 
158 /*
159  * datablob_parse - parse the keyctl data
160  *
161  * datablob format:
162  * new [<format>] <master-key name> <decrypted data length> [<decrypted data>]
163  * load [<format>] <master-key name> <decrypted data length>
164  *     <encrypted iv + data>
165  * update <new-master-key name>
166  *
167  * Tokenizes a copy of the keyctl data, returning a pointer to each token,
168  * which is null terminated.
169  *
170  * On success returns 0, otherwise -EINVAL.
171  */
172 static int datablob_parse(char *datablob, const char **format,
173 			  char **master_desc, char **decrypted_datalen,
174 			  char **hex_encoded_iv, char **decrypted_data)
175 {
176 	substring_t args[MAX_OPT_ARGS];
177 	int ret = -EINVAL;
178 	int key_cmd;
179 	int key_format;
180 	char *p, *keyword;
181 
182 	keyword = strsep(&datablob, " \t");
183 	if (!keyword) {
184 		pr_info("encrypted_key: insufficient parameters specified\n");
185 		return ret;
186 	}
187 	key_cmd = match_token(keyword, key_tokens, args);
188 
189 	/* Get optional format: default | ecryptfs */
190 	p = strsep(&datablob, " \t");
191 	if (!p) {
192 		pr_err("encrypted_key: insufficient parameters specified\n");
193 		return ret;
194 	}
195 
196 	key_format = match_token(p, key_format_tokens, args);
197 	switch (key_format) {
198 	case Opt_ecryptfs:
199 	case Opt_enc32:
200 	case Opt_default:
201 		*format = p;
202 		*master_desc = strsep(&datablob, " \t");
203 		break;
204 	case Opt_error:
205 		*master_desc = p;
206 		break;
207 	}
208 
209 	if (!*master_desc) {
210 		pr_info("encrypted_key: master key parameter is missing\n");
211 		goto out;
212 	}
213 
214 	if (valid_master_desc(*master_desc, NULL) < 0) {
215 		pr_info("encrypted_key: master key parameter \'%s\' "
216 			"is invalid\n", *master_desc);
217 		goto out;
218 	}
219 
220 	if (decrypted_datalen) {
221 		*decrypted_datalen = strsep(&datablob, " \t");
222 		if (!*decrypted_datalen) {
223 			pr_info("encrypted_key: keylen parameter is missing\n");
224 			goto out;
225 		}
226 	}
227 
228 	switch (key_cmd) {
229 	case Opt_new:
230 		if (!decrypted_datalen) {
231 			pr_info("encrypted_key: keyword \'%s\' not allowed "
232 				"when called from .update method\n", keyword);
233 			break;
234 		}
235 		*decrypted_data = strsep(&datablob, " \t");
236 		ret = 0;
237 		break;
238 	case Opt_load:
239 		if (!decrypted_datalen) {
240 			pr_info("encrypted_key: keyword \'%s\' not allowed "
241 				"when called from .update method\n", keyword);
242 			break;
243 		}
244 		*hex_encoded_iv = strsep(&datablob, " \t");
245 		if (!*hex_encoded_iv) {
246 			pr_info("encrypted_key: hex blob is missing\n");
247 			break;
248 		}
249 		ret = 0;
250 		break;
251 	case Opt_update:
252 		if (decrypted_datalen) {
253 			pr_info("encrypted_key: keyword \'%s\' not allowed "
254 				"when called from .instantiate method\n",
255 				keyword);
256 			break;
257 		}
258 		ret = 0;
259 		break;
260 	case Opt_err:
261 		pr_info("encrypted_key: keyword \'%s\' not recognized\n",
262 			keyword);
263 		break;
264 	}
265 out:
266 	return ret;
267 }
268 
269 /*
270  * datablob_format - format as an ascii string, before copying to userspace
271  */
272 static char *datablob_format(struct encrypted_key_payload *epayload,
273 			     size_t asciiblob_len)
274 {
275 	char *ascii_buf, *bufp;
276 	u8 *iv = epayload->iv;
277 	int len;
278 	int i;
279 
280 	ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL);
281 	if (!ascii_buf)
282 		goto out;
283 
284 	ascii_buf[asciiblob_len] = '\0';
285 
286 	/* copy datablob master_desc and datalen strings */
287 	len = sprintf(ascii_buf, "%s %s %s ", epayload->format,
288 		      epayload->master_desc, epayload->datalen);
289 
290 	/* convert the hex encoded iv, encrypted-data and HMAC to ascii */
291 	bufp = &ascii_buf[len];
292 	for (i = 0; i < (asciiblob_len - len) / 2; i++)
293 		bufp = hex_byte_pack(bufp, iv[i]);
294 out:
295 	return ascii_buf;
296 }
297 
298 /*
299  * request_user_key - request the user key
300  *
301  * Use a user provided key to encrypt/decrypt an encrypted-key.
302  */
303 static struct key *request_user_key(const char *master_desc, const u8 **master_key,
304 				    size_t *master_keylen)
305 {
306 	const struct user_key_payload *upayload;
307 	struct key *ukey;
308 
309 	ukey = request_key(&key_type_user, master_desc, NULL);
310 	if (IS_ERR(ukey))
311 		goto error;
312 
313 	down_read(&ukey->sem);
314 	upayload = user_key_payload_locked(ukey);
315 	if (!upayload) {
316 		/* key was revoked before we acquired its semaphore */
317 		up_read(&ukey->sem);
318 		key_put(ukey);
319 		ukey = ERR_PTR(-EKEYREVOKED);
320 		goto error;
321 	}
322 	*master_key = upayload->data;
323 	*master_keylen = upayload->datalen;
324 error:
325 	return ukey;
326 }
327 
328 enum derived_key_type { ENC_KEY, AUTH_KEY };
329 
330 /* Derive authentication/encryption key from trusted key */
331 static int get_derived_key(u8 *derived_key, enum derived_key_type key_type,
332 			   const u8 *master_key, size_t master_keylen)
333 {
334 	u8 *derived_buf;
335 	unsigned int derived_buf_len;
336 
337 	derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen;
338 	if (derived_buf_len < HASH_SIZE)
339 		derived_buf_len = HASH_SIZE;
340 
341 	derived_buf = kzalloc(derived_buf_len, GFP_KERNEL);
342 	if (!derived_buf)
343 		return -ENOMEM;
344 
345 	if (key_type)
346 		strcpy(derived_buf, "AUTH_KEY");
347 	else
348 		strcpy(derived_buf, "ENC_KEY");
349 
350 	memcpy(derived_buf + strlen(derived_buf) + 1, master_key,
351 	       master_keylen);
352 	sha256(derived_buf, derived_buf_len, derived_key);
353 	kfree_sensitive(derived_buf);
354 	return 0;
355 }
356 
357 static struct skcipher_request *init_skcipher_req(const u8 *key,
358 						  unsigned int key_len)
359 {
360 	struct skcipher_request *req;
361 	struct crypto_skcipher *tfm;
362 	int ret;
363 
364 	tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
365 	if (IS_ERR(tfm)) {
366 		pr_err("encrypted_key: failed to load %s transform (%ld)\n",
367 		       blkcipher_alg, PTR_ERR(tfm));
368 		return ERR_CAST(tfm);
369 	}
370 
371 	ret = crypto_skcipher_setkey(tfm, key, key_len);
372 	if (ret < 0) {
373 		pr_err("encrypted_key: failed to setkey (%d)\n", ret);
374 		crypto_free_skcipher(tfm);
375 		return ERR_PTR(ret);
376 	}
377 
378 	req = skcipher_request_alloc(tfm, GFP_KERNEL);
379 	if (!req) {
380 		pr_err("encrypted_key: failed to allocate request for %s\n",
381 		       blkcipher_alg);
382 		crypto_free_skcipher(tfm);
383 		return ERR_PTR(-ENOMEM);
384 	}
385 
386 	skcipher_request_set_callback(req, 0, NULL, NULL);
387 	return req;
388 }
389 
390 static struct key *request_master_key(struct encrypted_key_payload *epayload,
391 				      const u8 **master_key, size_t *master_keylen)
392 {
393 	struct key *mkey = ERR_PTR(-EINVAL);
394 
395 	if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX,
396 		     KEY_TRUSTED_PREFIX_LEN)) {
397 		mkey = request_trusted_key(epayload->master_desc +
398 					   KEY_TRUSTED_PREFIX_LEN,
399 					   master_key, master_keylen);
400 	} else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX,
401 			    KEY_USER_PREFIX_LEN)) {
402 		mkey = request_user_key(epayload->master_desc +
403 					KEY_USER_PREFIX_LEN,
404 					master_key, master_keylen);
405 	} else
406 		goto out;
407 
408 	if (IS_ERR(mkey)) {
409 		int ret = PTR_ERR(mkey);
410 
411 		if (ret == -ENOTSUPP)
412 			pr_info("encrypted_key: key %s not supported",
413 				epayload->master_desc);
414 		else
415 			pr_info("encrypted_key: key %s not found",
416 				epayload->master_desc);
417 		goto out;
418 	}
419 
420 	dump_master_key(*master_key, *master_keylen);
421 out:
422 	return mkey;
423 }
424 
425 /* Before returning data to userspace, encrypt decrypted data. */
426 static int derived_key_encrypt(struct encrypted_key_payload *epayload,
427 			       const u8 *derived_key,
428 			       unsigned int derived_keylen)
429 {
430 	struct scatterlist sg_in[2];
431 	struct scatterlist sg_out[1];
432 	struct crypto_skcipher *tfm;
433 	struct skcipher_request *req;
434 	unsigned int encrypted_datalen;
435 	u8 iv[AES_BLOCK_SIZE];
436 	int ret;
437 
438 	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
439 
440 	req = init_skcipher_req(derived_key, derived_keylen);
441 	ret = PTR_ERR(req);
442 	if (IS_ERR(req))
443 		goto out;
444 	dump_decrypted_data(epayload);
445 
446 	sg_init_table(sg_in, 2);
447 	sg_set_buf(&sg_in[0], epayload->decrypted_data,
448 		   epayload->decrypted_datalen);
449 	sg_set_page(&sg_in[1], ZERO_PAGE(0), AES_BLOCK_SIZE, 0);
450 
451 	sg_init_table(sg_out, 1);
452 	sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen);
453 
454 	memcpy(iv, epayload->iv, sizeof(iv));
455 	skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
456 	ret = crypto_skcipher_encrypt(req);
457 	tfm = crypto_skcipher_reqtfm(req);
458 	skcipher_request_free(req);
459 	crypto_free_skcipher(tfm);
460 	if (ret < 0)
461 		pr_err("encrypted_key: failed to encrypt (%d)\n", ret);
462 	else
463 		dump_encrypted_data(epayload, encrypted_datalen);
464 out:
465 	return ret;
466 }
467 
468 static int datablob_hmac_append(struct encrypted_key_payload *epayload,
469 				const u8 *master_key, size_t master_keylen)
470 {
471 	u8 derived_key[HASH_SIZE];
472 	u8 *digest;
473 	int ret;
474 
475 	ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
476 	if (ret < 0)
477 		goto out;
478 
479 	digest = epayload->format + epayload->datablob_len;
480 	hmac_sha256_usingrawkey(derived_key, sizeof(derived_key),
481 				epayload->format, epayload->datablob_len,
482 				digest);
483 	dump_hmac(NULL, digest, HASH_SIZE);
484 out:
485 	memzero_explicit(derived_key, sizeof(derived_key));
486 	return ret;
487 }
488 
489 /* verify HMAC before decrypting encrypted key */
490 static int datablob_hmac_verify(struct encrypted_key_payload *epayload,
491 				const u8 *format, const u8 *master_key,
492 				size_t master_keylen)
493 {
494 	u8 derived_key[HASH_SIZE];
495 	u8 digest[HASH_SIZE];
496 	int ret;
497 	char *p;
498 	unsigned short len;
499 
500 	ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
501 	if (ret < 0)
502 		goto out;
503 
504 	len = epayload->datablob_len;
505 	if (!format) {
506 		p = epayload->master_desc;
507 		len -= strlen(epayload->format) + 1;
508 	} else
509 		p = epayload->format;
510 
511 	hmac_sha256_usingrawkey(derived_key, sizeof(derived_key), p, len,
512 				digest);
513 	ret = crypto_memneq(digest, epayload->format + epayload->datablob_len,
514 			    sizeof(digest));
515 	if (ret) {
516 		ret = -EINVAL;
517 		dump_hmac("datablob",
518 			  epayload->format + epayload->datablob_len,
519 			  HASH_SIZE);
520 		dump_hmac("calc", digest, HASH_SIZE);
521 	}
522 out:
523 	memzero_explicit(derived_key, sizeof(derived_key));
524 	return ret;
525 }
526 
527 static int derived_key_decrypt(struct encrypted_key_payload *epayload,
528 			       const u8 *derived_key,
529 			       unsigned int derived_keylen)
530 {
531 	struct scatterlist sg_in[1];
532 	struct scatterlist sg_out[2];
533 	struct crypto_skcipher *tfm;
534 	struct skcipher_request *req;
535 	unsigned int encrypted_datalen;
536 	u8 iv[AES_BLOCK_SIZE];
537 	u8 *pad;
538 	int ret;
539 
540 	/* Throwaway buffer to hold the unused zero padding at the end */
541 	pad = kmalloc(AES_BLOCK_SIZE, GFP_KERNEL);
542 	if (!pad)
543 		return -ENOMEM;
544 
545 	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
546 	req = init_skcipher_req(derived_key, derived_keylen);
547 	ret = PTR_ERR(req);
548 	if (IS_ERR(req))
549 		goto out;
550 	dump_encrypted_data(epayload, encrypted_datalen);
551 
552 	sg_init_table(sg_in, 1);
553 	sg_init_table(sg_out, 2);
554 	sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen);
555 	sg_set_buf(&sg_out[0], epayload->decrypted_data,
556 		   epayload->decrypted_datalen);
557 	sg_set_buf(&sg_out[1], pad, AES_BLOCK_SIZE);
558 
559 	memcpy(iv, epayload->iv, sizeof(iv));
560 	skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
561 	ret = crypto_skcipher_decrypt(req);
562 	tfm = crypto_skcipher_reqtfm(req);
563 	skcipher_request_free(req);
564 	crypto_free_skcipher(tfm);
565 	if (ret < 0)
566 		goto out;
567 	dump_decrypted_data(epayload);
568 out:
569 	kfree(pad);
570 	return ret;
571 }
572 
573 /* Allocate memory for decrypted key and datablob. */
574 static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
575 							 const char *format,
576 							 const char *master_desc,
577 							 const char *datalen,
578 							 const char *decrypted_data)
579 {
580 	struct encrypted_key_payload *epayload = NULL;
581 	unsigned short datablob_len;
582 	unsigned short decrypted_datalen;
583 	unsigned short payload_datalen;
584 	unsigned int encrypted_datalen;
585 	unsigned int format_len;
586 	long dlen;
587 	int i;
588 	int ret;
589 
590 	ret = kstrtol(datalen, 10, &dlen);
591 	if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE)
592 		return ERR_PTR(-EINVAL);
593 
594 	format_len = (!format) ? strlen(key_format_default) : strlen(format);
595 	decrypted_datalen = dlen;
596 	payload_datalen = decrypted_datalen;
597 
598 	if (decrypted_data) {
599 		if (!user_decrypted_data) {
600 			pr_err("encrypted key: instantiation of keys using provided decrypted data is disabled since CONFIG_USER_DECRYPTED_DATA is set to false\n");
601 			return ERR_PTR(-EINVAL);
602 		}
603 		if (strlen(decrypted_data) != decrypted_datalen * 2) {
604 			pr_err("encrypted key: decrypted data provided does not match decrypted data length provided\n");
605 			return ERR_PTR(-EINVAL);
606 		}
607 		for (i = 0; i < strlen(decrypted_data); i++) {
608 			if (!isxdigit(decrypted_data[i])) {
609 				pr_err("encrypted key: decrypted data provided must contain only hexadecimal characters\n");
610 				return ERR_PTR(-EINVAL);
611 			}
612 		}
613 	}
614 
615 	if (format) {
616 		if (!strcmp(format, key_format_ecryptfs)) {
617 			if (dlen != ECRYPTFS_MAX_KEY_BYTES) {
618 				pr_err("encrypted_key: keylen for the ecryptfs format must be equal to %d bytes\n",
619 					ECRYPTFS_MAX_KEY_BYTES);
620 				return ERR_PTR(-EINVAL);
621 			}
622 			decrypted_datalen = ECRYPTFS_MAX_KEY_BYTES;
623 			payload_datalen = sizeof(struct ecryptfs_auth_tok);
624 		} else if (!strcmp(format, key_format_enc32)) {
625 			if (decrypted_datalen != KEY_ENC32_PAYLOAD_LEN) {
626 				pr_err("encrypted_key: enc32 key payload incorrect length: %d\n",
627 						decrypted_datalen);
628 				return ERR_PTR(-EINVAL);
629 			}
630 		}
631 	}
632 
633 	encrypted_datalen = roundup(decrypted_datalen, blksize);
634 
635 	datablob_len = format_len + 1 + strlen(master_desc) + 1
636 	    + strlen(datalen) + 1 + ivsize + 1 + encrypted_datalen;
637 
638 	ret = key_payload_reserve(key, payload_datalen + datablob_len
639 				  + HASH_SIZE + 1);
640 	if (ret < 0)
641 		return ERR_PTR(ret);
642 
643 	epayload = kzalloc(sizeof(*epayload) + payload_datalen +
644 			   datablob_len + HASH_SIZE + 1, GFP_KERNEL);
645 	if (!epayload)
646 		return ERR_PTR(-ENOMEM);
647 
648 	epayload->payload_datalen = payload_datalen;
649 	epayload->decrypted_datalen = decrypted_datalen;
650 	epayload->datablob_len = datablob_len;
651 	return epayload;
652 }
653 
654 static int encrypted_key_decrypt(struct encrypted_key_payload *epayload,
655 				 const char *format, const char *hex_encoded_iv)
656 {
657 	struct key *mkey;
658 	u8 derived_key[HASH_SIZE];
659 	const u8 *master_key;
660 	u8 *hmac;
661 	const char *hex_encoded_data;
662 	unsigned int encrypted_datalen;
663 	size_t master_keylen;
664 	size_t asciilen;
665 	int ret;
666 
667 	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
668 	asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2;
669 	if (strlen(hex_encoded_iv) != asciilen)
670 		return -EINVAL;
671 
672 	hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2;
673 	ret = hex2bin(epayload->iv, hex_encoded_iv, ivsize);
674 	if (ret < 0)
675 		return -EINVAL;
676 	ret = hex2bin(epayload->encrypted_data, hex_encoded_data,
677 		      encrypted_datalen);
678 	if (ret < 0)
679 		return -EINVAL;
680 
681 	hmac = epayload->format + epayload->datablob_len;
682 	ret = hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2),
683 		      HASH_SIZE);
684 	if (ret < 0)
685 		return -EINVAL;
686 
687 	mkey = request_master_key(epayload, &master_key, &master_keylen);
688 	if (IS_ERR(mkey))
689 		return PTR_ERR(mkey);
690 
691 	ret = datablob_hmac_verify(epayload, format, master_key, master_keylen);
692 	if (ret < 0) {
693 		pr_err("encrypted_key: bad hmac (%d)\n", ret);
694 		goto out;
695 	}
696 
697 	ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
698 	if (ret < 0)
699 		goto out;
700 
701 	ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key);
702 	if (ret < 0)
703 		pr_err("encrypted_key: failed to decrypt key (%d)\n", ret);
704 out:
705 	up_read(&mkey->sem);
706 	key_put(mkey);
707 	memzero_explicit(derived_key, sizeof(derived_key));
708 	return ret;
709 }
710 
711 static void __ekey_init(struct encrypted_key_payload *epayload,
712 			const char *format, const char *master_desc,
713 			const char *datalen)
714 {
715 	unsigned int format_len;
716 
717 	format_len = (!format) ? strlen(key_format_default) : strlen(format);
718 	epayload->format = epayload->payload_data + epayload->payload_datalen;
719 	epayload->master_desc = epayload->format + format_len + 1;
720 	epayload->datalen = epayload->master_desc + strlen(master_desc) + 1;
721 	epayload->iv = epayload->datalen + strlen(datalen) + 1;
722 	epayload->encrypted_data = epayload->iv + ivsize + 1;
723 	epayload->decrypted_data = epayload->payload_data;
724 
725 	if (!format)
726 		memcpy(epayload->format, key_format_default, format_len);
727 	else {
728 		if (!strcmp(format, key_format_ecryptfs))
729 			epayload->decrypted_data =
730 				ecryptfs_get_auth_tok_key((struct ecryptfs_auth_tok *)epayload->payload_data);
731 
732 		memcpy(epayload->format, format, format_len);
733 	}
734 
735 	memcpy(epayload->master_desc, master_desc, strlen(master_desc));
736 	memcpy(epayload->datalen, datalen, strlen(datalen));
737 }
738 
739 /*
740  * encrypted_init - initialize an encrypted key
741  *
742  * For a new key, use either a random number or user-provided decrypted data in
743  * case it is provided. A random number is used for the iv in both cases. For
744  * an old key, decrypt the hex encoded data.
745  */
746 static int encrypted_init(struct encrypted_key_payload *epayload,
747 			  const char *key_desc, const char *format,
748 			  const char *master_desc, const char *datalen,
749 			  const char *hex_encoded_iv, const char *decrypted_data)
750 {
751 	int ret = 0;
752 
753 	if (format && !strcmp(format, key_format_ecryptfs)) {
754 		ret = valid_ecryptfs_desc(key_desc);
755 		if (ret < 0)
756 			return ret;
757 
758 		ecryptfs_fill_auth_tok((struct ecryptfs_auth_tok *)epayload->payload_data,
759 				       key_desc);
760 	}
761 
762 	__ekey_init(epayload, format, master_desc, datalen);
763 	if (hex_encoded_iv) {
764 		ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv);
765 	} else if (decrypted_data) {
766 		get_random_bytes(epayload->iv, ivsize);
767 		ret = hex2bin(epayload->decrypted_data, decrypted_data,
768 			      epayload->decrypted_datalen);
769 	} else {
770 		get_random_bytes(epayload->iv, ivsize);
771 		get_random_bytes(epayload->decrypted_data, epayload->decrypted_datalen);
772 	}
773 	return ret;
774 }
775 
776 /*
777  * encrypted_instantiate - instantiate an encrypted key
778  *
779  * Instantiates the key:
780  * - by decrypting an existing encrypted datablob, or
781  * - by creating a new encrypted key based on a kernel random number, or
782  * - using provided decrypted data.
783  *
784  * On success, return 0. Otherwise return errno.
785  */
786 static int encrypted_instantiate(struct key *key,
787 				 struct key_preparsed_payload *prep)
788 {
789 	struct encrypted_key_payload *epayload = NULL;
790 	char *datablob = NULL;
791 	const char *format = NULL;
792 	char *master_desc = NULL;
793 	char *decrypted_datalen = NULL;
794 	char *hex_encoded_iv = NULL;
795 	char *decrypted_data = NULL;
796 	size_t datalen = prep->datalen;
797 	int ret;
798 
799 	if (datalen == 0 || datalen > 32767 || !prep->data)
800 		return -EINVAL;
801 
802 	datablob = kmalloc(datalen + 1, GFP_KERNEL);
803 	if (!datablob)
804 		return -ENOMEM;
805 	datablob[datalen] = 0;
806 	memcpy(datablob, prep->data, datalen);
807 	ret = datablob_parse(datablob, &format, &master_desc,
808 			     &decrypted_datalen, &hex_encoded_iv, &decrypted_data);
809 	if (ret < 0)
810 		goto out;
811 
812 	epayload = encrypted_key_alloc(key, format, master_desc,
813 				       decrypted_datalen, decrypted_data);
814 	if (IS_ERR(epayload)) {
815 		ret = PTR_ERR(epayload);
816 		goto out;
817 	}
818 	ret = encrypted_init(epayload, key->description, format, master_desc,
819 			     decrypted_datalen, hex_encoded_iv, decrypted_data);
820 	if (ret < 0) {
821 		kfree_sensitive(epayload);
822 		goto out;
823 	}
824 
825 	rcu_assign_keypointer(key, epayload);
826 out:
827 	kfree_sensitive(datablob);
828 	return ret;
829 }
830 
831 static void encrypted_rcu_free(struct rcu_head *rcu)
832 {
833 	struct encrypted_key_payload *epayload;
834 
835 	epayload = container_of(rcu, struct encrypted_key_payload, rcu);
836 	kfree_sensitive(epayload);
837 }
838 
839 /*
840  * encrypted_update - update the master key description
841  *
842  * Change the master key description for an existing encrypted key.
843  * The next read will return an encrypted datablob using the new
844  * master key description.
845  *
846  * On success, return 0. Otherwise return errno.
847  */
848 static int encrypted_update(struct key *key, struct key_preparsed_payload *prep)
849 {
850 	struct encrypted_key_payload *epayload = key->payload.data[0];
851 	struct encrypted_key_payload *new_epayload;
852 	char *buf;
853 	char *new_master_desc = NULL;
854 	const char *format = NULL;
855 	size_t datalen = prep->datalen;
856 	int ret = 0;
857 
858 	if (key_is_negative(key))
859 		return -ENOKEY;
860 	if (datalen == 0 || datalen > 32767 || !prep->data)
861 		return -EINVAL;
862 
863 	buf = kmalloc(datalen + 1, GFP_KERNEL);
864 	if (!buf)
865 		return -ENOMEM;
866 
867 	buf[datalen] = 0;
868 	memcpy(buf, prep->data, datalen);
869 	ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL, NULL);
870 	if (ret < 0)
871 		goto out;
872 
873 	ret = valid_master_desc(new_master_desc, epayload->master_desc);
874 	if (ret < 0)
875 		goto out;
876 
877 	new_epayload = encrypted_key_alloc(key, epayload->format,
878 					   new_master_desc, epayload->datalen, NULL);
879 	if (IS_ERR(new_epayload)) {
880 		ret = PTR_ERR(new_epayload);
881 		goto out;
882 	}
883 
884 	__ekey_init(new_epayload, epayload->format, new_master_desc,
885 		    epayload->datalen);
886 
887 	memcpy(new_epayload->iv, epayload->iv, ivsize);
888 	memcpy(new_epayload->payload_data, epayload->payload_data,
889 	       epayload->payload_datalen);
890 
891 	rcu_assign_keypointer(key, new_epayload);
892 	call_rcu(&epayload->rcu, encrypted_rcu_free);
893 out:
894 	kfree_sensitive(buf);
895 	return ret;
896 }
897 
898 /*
899  * encrypted_read - format and copy out the encrypted data
900  *
901  * The resulting datablob format is:
902  * <master-key name> <decrypted data length> <encrypted iv> <encrypted data>
903  *
904  * On success, return to userspace the encrypted key datablob size.
905  */
906 static long encrypted_read(const struct key *key, char *buffer,
907 			   size_t buflen)
908 {
909 	struct encrypted_key_payload *epayload;
910 	struct key *mkey;
911 	const u8 *master_key;
912 	size_t master_keylen;
913 	char derived_key[HASH_SIZE];
914 	char *ascii_buf;
915 	size_t asciiblob_len;
916 	int ret;
917 
918 	epayload = dereference_key_locked(key);
919 
920 	/* returns the hex encoded iv, encrypted-data, and hmac as ascii */
921 	asciiblob_len = epayload->datablob_len + ivsize + 1
922 	    + roundup(epayload->decrypted_datalen, blksize)
923 	    + (HASH_SIZE * 2);
924 
925 	if (!buffer || buflen < asciiblob_len)
926 		return asciiblob_len;
927 
928 	mkey = request_master_key(epayload, &master_key, &master_keylen);
929 	if (IS_ERR(mkey))
930 		return PTR_ERR(mkey);
931 
932 	ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
933 	if (ret < 0)
934 		goto out;
935 
936 	ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key);
937 	if (ret < 0)
938 		goto out;
939 
940 	ret = datablob_hmac_append(epayload, master_key, master_keylen);
941 	if (ret < 0)
942 		goto out;
943 
944 	ascii_buf = datablob_format(epayload, asciiblob_len);
945 	if (!ascii_buf) {
946 		ret = -ENOMEM;
947 		goto out;
948 	}
949 
950 	up_read(&mkey->sem);
951 	key_put(mkey);
952 	memzero_explicit(derived_key, sizeof(derived_key));
953 
954 	memcpy(buffer, ascii_buf, asciiblob_len);
955 	kfree_sensitive(ascii_buf);
956 
957 	return asciiblob_len;
958 out:
959 	up_read(&mkey->sem);
960 	key_put(mkey);
961 	memzero_explicit(derived_key, sizeof(derived_key));
962 	return ret;
963 }
964 
965 /*
966  * encrypted_destroy - clear and free the key's payload
967  */
968 static void encrypted_destroy(struct key *key)
969 {
970 	kfree_sensitive(key->payload.data[0]);
971 }
972 
973 struct key_type key_type_encrypted = {
974 	.name = "encrypted",
975 	.instantiate = encrypted_instantiate,
976 	.update = encrypted_update,
977 	.destroy = encrypted_destroy,
978 	.describe = user_describe,
979 	.read = encrypted_read,
980 };
981 EXPORT_SYMBOL_GPL(key_type_encrypted);
982 
983 static int __init init_encrypted(void)
984 {
985 	int ret;
986 
987 	ret = aes_get_sizes();
988 	if (ret < 0)
989 		return ret;
990 	return register_key_type(&key_type_encrypted);
991 }
992 
993 static void __exit cleanup_encrypted(void)
994 {
995 	unregister_key_type(&key_type_encrypted);
996 }
997 
998 late_initcall(init_encrypted);
999 module_exit(cleanup_encrypted);
1000 
1001 MODULE_DESCRIPTION("Encrypted key type");
1002 MODULE_LICENSE("GPL");
1003