1 // SPDX-License-Identifier: (GPL-2.0 OR MIT)
2 /* Google virtual Ethernet (gve) driver
3 *
4 * Copyright (C) 2015-2024 Google LLC
5 */
6
7 #include <linux/bitmap.h>
8 #include <linux/bpf.h>
9 #include <linux/cpumask.h>
10 #include <linux/etherdevice.h>
11 #include <linux/filter.h>
12 #include <linux/interrupt.h>
13 #include <linux/irq.h>
14 #include <linux/module.h>
15 #include <linux/pci.h>
16 #include <linux/sched.h>
17 #include <linux/timer.h>
18 #include <linux/workqueue.h>
19 #include <linux/utsname.h>
20 #include <linux/version.h>
21 #include <net/netdev_queues.h>
22 #include <net/sch_generic.h>
23 #include <net/xdp_sock_drv.h>
24 #include "gve.h"
25 #include "gve_dqo.h"
26 #include "gve_adminq.h"
27 #include "gve_register.h"
28 #include "gve_utils.h"
29
30 #define GVE_DEFAULT_RX_COPYBREAK (256)
31
32 #define DEFAULT_MSG_LEVEL (NETIF_MSG_DRV | NETIF_MSG_LINK)
33 #define GVE_VERSION "1.0.0"
34 #define GVE_VERSION_PREFIX "GVE-"
35
36 // Minimum amount of time between queue kicks in msec (10 seconds)
37 #define MIN_TX_TIMEOUT_GAP (1000 * 10)
38
39 char gve_driver_name[] = "gve";
40 const char gve_version_str[] = GVE_VERSION;
41 static const char gve_version_prefix[] = GVE_VERSION_PREFIX;
42
gve_verify_driver_compatibility(struct gve_priv * priv)43 static int gve_verify_driver_compatibility(struct gve_priv *priv)
44 {
45 int err;
46 struct gve_driver_info *driver_info;
47 dma_addr_t driver_info_bus;
48
49 driver_info = dma_alloc_coherent(&priv->pdev->dev,
50 sizeof(struct gve_driver_info),
51 &driver_info_bus, GFP_KERNEL);
52 if (!driver_info)
53 return -ENOMEM;
54
55 *driver_info = (struct gve_driver_info) {
56 .os_type = 1, /* Linux */
57 .os_version_major = cpu_to_be32(LINUX_VERSION_MAJOR),
58 .os_version_minor = cpu_to_be32(LINUX_VERSION_SUBLEVEL),
59 .os_version_sub = cpu_to_be32(LINUX_VERSION_PATCHLEVEL),
60 .driver_capability_flags = {
61 cpu_to_be64(GVE_DRIVER_CAPABILITY_FLAGS1),
62 cpu_to_be64(GVE_DRIVER_CAPABILITY_FLAGS2),
63 cpu_to_be64(GVE_DRIVER_CAPABILITY_FLAGS3),
64 cpu_to_be64(GVE_DRIVER_CAPABILITY_FLAGS4),
65 },
66 };
67 strscpy(driver_info->os_version_str1, utsname()->release,
68 sizeof(driver_info->os_version_str1));
69 strscpy(driver_info->os_version_str2, utsname()->version,
70 sizeof(driver_info->os_version_str2));
71
72 err = gve_adminq_verify_driver_compatibility(priv,
73 sizeof(struct gve_driver_info),
74 driver_info_bus);
75
76 /* It's ok if the device doesn't support this */
77 if (err == -EOPNOTSUPP)
78 err = 0;
79
80 dma_free_coherent(&priv->pdev->dev,
81 sizeof(struct gve_driver_info),
82 driver_info, driver_info_bus);
83 return err;
84 }
85
gve_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)86 static netdev_features_t gve_features_check(struct sk_buff *skb,
87 struct net_device *dev,
88 netdev_features_t features)
89 {
90 struct gve_priv *priv = netdev_priv(dev);
91
92 if (!gve_is_gqi(priv))
93 return gve_features_check_dqo(skb, dev, features);
94
95 return features;
96 }
97
gve_start_xmit(struct sk_buff * skb,struct net_device * dev)98 static netdev_tx_t gve_start_xmit(struct sk_buff *skb, struct net_device *dev)
99 {
100 struct gve_priv *priv = netdev_priv(dev);
101
102 if (gve_is_gqi(priv))
103 return gve_tx(skb, dev);
104 else
105 return gve_tx_dqo(skb, dev);
106 }
107
gve_get_stats(struct net_device * dev,struct rtnl_link_stats64 * s)108 static void gve_get_stats(struct net_device *dev, struct rtnl_link_stats64 *s)
109 {
110 struct gve_priv *priv = netdev_priv(dev);
111 unsigned int start;
112 u64 packets, bytes;
113 int num_tx_queues;
114 int ring;
115
116 num_tx_queues = gve_num_tx_queues(priv);
117 if (priv->rx) {
118 for (ring = 0; ring < priv->rx_cfg.num_queues; ring++) {
119 do {
120 start =
121 u64_stats_fetch_begin(&priv->rx[ring].statss);
122 packets = priv->rx[ring].rpackets;
123 bytes = priv->rx[ring].rbytes;
124 } while (u64_stats_fetch_retry(&priv->rx[ring].statss,
125 start));
126 s->rx_packets += packets;
127 s->rx_bytes += bytes;
128 }
129 }
130 if (priv->tx) {
131 for (ring = 0; ring < num_tx_queues; ring++) {
132 do {
133 start =
134 u64_stats_fetch_begin(&priv->tx[ring].statss);
135 packets = priv->tx[ring].pkt_done;
136 bytes = priv->tx[ring].bytes_done;
137 } while (u64_stats_fetch_retry(&priv->tx[ring].statss,
138 start));
139 s->tx_packets += packets;
140 s->tx_bytes += bytes;
141 }
142 }
143 }
144
gve_alloc_flow_rule_caches(struct gve_priv * priv)145 static int gve_alloc_flow_rule_caches(struct gve_priv *priv)
146 {
147 struct gve_flow_rules_cache *flow_rules_cache = &priv->flow_rules_cache;
148 int err = 0;
149
150 if (!priv->max_flow_rules)
151 return 0;
152
153 flow_rules_cache->rules_cache =
154 kvcalloc(GVE_FLOW_RULES_CACHE_SIZE, sizeof(*flow_rules_cache->rules_cache),
155 GFP_KERNEL);
156 if (!flow_rules_cache->rules_cache) {
157 dev_err(&priv->pdev->dev, "Cannot alloc flow rules cache\n");
158 return -ENOMEM;
159 }
160
161 flow_rules_cache->rule_ids_cache =
162 kvcalloc(GVE_FLOW_RULE_IDS_CACHE_SIZE, sizeof(*flow_rules_cache->rule_ids_cache),
163 GFP_KERNEL);
164 if (!flow_rules_cache->rule_ids_cache) {
165 dev_err(&priv->pdev->dev, "Cannot alloc flow rule ids cache\n");
166 err = -ENOMEM;
167 goto free_rules_cache;
168 }
169
170 return 0;
171
172 free_rules_cache:
173 kvfree(flow_rules_cache->rules_cache);
174 flow_rules_cache->rules_cache = NULL;
175 return err;
176 }
177
gve_free_flow_rule_caches(struct gve_priv * priv)178 static void gve_free_flow_rule_caches(struct gve_priv *priv)
179 {
180 struct gve_flow_rules_cache *flow_rules_cache = &priv->flow_rules_cache;
181
182 kvfree(flow_rules_cache->rule_ids_cache);
183 flow_rules_cache->rule_ids_cache = NULL;
184 kvfree(flow_rules_cache->rules_cache);
185 flow_rules_cache->rules_cache = NULL;
186 }
187
gve_alloc_rss_config_cache(struct gve_priv * priv)188 static int gve_alloc_rss_config_cache(struct gve_priv *priv)
189 {
190 struct gve_rss_config *rss_config = &priv->rss_config;
191
192 if (!priv->cache_rss_config)
193 return 0;
194
195 rss_config->hash_key = kcalloc(priv->rss_key_size,
196 sizeof(rss_config->hash_key[0]),
197 GFP_KERNEL);
198 if (!rss_config->hash_key)
199 return -ENOMEM;
200
201 rss_config->hash_lut = kcalloc(priv->rss_lut_size,
202 sizeof(rss_config->hash_lut[0]),
203 GFP_KERNEL);
204 if (!rss_config->hash_lut)
205 goto free_rss_key_cache;
206
207 return 0;
208
209 free_rss_key_cache:
210 kfree(rss_config->hash_key);
211 rss_config->hash_key = NULL;
212 return -ENOMEM;
213 }
214
gve_free_rss_config_cache(struct gve_priv * priv)215 static void gve_free_rss_config_cache(struct gve_priv *priv)
216 {
217 struct gve_rss_config *rss_config = &priv->rss_config;
218
219 kfree(rss_config->hash_key);
220 kfree(rss_config->hash_lut);
221
222 memset(rss_config, 0, sizeof(*rss_config));
223 }
224
gve_alloc_counter_array(struct gve_priv * priv)225 static int gve_alloc_counter_array(struct gve_priv *priv)
226 {
227 priv->counter_array =
228 dma_alloc_coherent(&priv->pdev->dev,
229 priv->num_event_counters *
230 sizeof(*priv->counter_array),
231 &priv->counter_array_bus, GFP_KERNEL);
232 if (!priv->counter_array)
233 return -ENOMEM;
234
235 return 0;
236 }
237
gve_free_counter_array(struct gve_priv * priv)238 static void gve_free_counter_array(struct gve_priv *priv)
239 {
240 if (!priv->counter_array)
241 return;
242
243 dma_free_coherent(&priv->pdev->dev,
244 priv->num_event_counters *
245 sizeof(*priv->counter_array),
246 priv->counter_array, priv->counter_array_bus);
247 priv->counter_array = NULL;
248 }
249
250 /* NIC requests to report stats */
gve_stats_report_task(struct work_struct * work)251 static void gve_stats_report_task(struct work_struct *work)
252 {
253 struct gve_priv *priv = container_of(work, struct gve_priv,
254 stats_report_task);
255 if (gve_get_do_report_stats(priv)) {
256 gve_handle_report_stats(priv);
257 gve_clear_do_report_stats(priv);
258 }
259 }
260
gve_stats_report_schedule(struct gve_priv * priv)261 static void gve_stats_report_schedule(struct gve_priv *priv)
262 {
263 if (!gve_get_probe_in_progress(priv) &&
264 !gve_get_reset_in_progress(priv)) {
265 gve_set_do_report_stats(priv);
266 queue_work(priv->gve_wq, &priv->stats_report_task);
267 }
268 }
269
gve_stats_report_timer(struct timer_list * t)270 static void gve_stats_report_timer(struct timer_list *t)
271 {
272 struct gve_priv *priv = timer_container_of(priv, t,
273 stats_report_timer);
274
275 mod_timer(&priv->stats_report_timer,
276 round_jiffies(jiffies +
277 msecs_to_jiffies(priv->stats_report_timer_period)));
278 gve_stats_report_schedule(priv);
279 }
280
gve_alloc_stats_report(struct gve_priv * priv)281 static int gve_alloc_stats_report(struct gve_priv *priv)
282 {
283 int tx_stats_num, rx_stats_num;
284
285 tx_stats_num = (GVE_TX_STATS_REPORT_NUM + NIC_TX_STATS_REPORT_NUM) *
286 gve_num_tx_queues(priv);
287 rx_stats_num = (GVE_RX_STATS_REPORT_NUM + NIC_RX_STATS_REPORT_NUM) *
288 priv->rx_cfg.num_queues;
289 priv->stats_report_len = struct_size(priv->stats_report, stats,
290 size_add(tx_stats_num, rx_stats_num));
291 priv->stats_report =
292 dma_alloc_coherent(&priv->pdev->dev, priv->stats_report_len,
293 &priv->stats_report_bus, GFP_KERNEL);
294 if (!priv->stats_report)
295 return -ENOMEM;
296 /* Set up timer for the report-stats task */
297 timer_setup(&priv->stats_report_timer, gve_stats_report_timer, 0);
298 priv->stats_report_timer_period = GVE_STATS_REPORT_TIMER_PERIOD;
299 return 0;
300 }
301
gve_free_stats_report(struct gve_priv * priv)302 static void gve_free_stats_report(struct gve_priv *priv)
303 {
304 if (!priv->stats_report)
305 return;
306
307 timer_delete_sync(&priv->stats_report_timer);
308 dma_free_coherent(&priv->pdev->dev, priv->stats_report_len,
309 priv->stats_report, priv->stats_report_bus);
310 priv->stats_report = NULL;
311 }
312
gve_mgmnt_intr(int irq,void * arg)313 static irqreturn_t gve_mgmnt_intr(int irq, void *arg)
314 {
315 struct gve_priv *priv = arg;
316
317 queue_work(priv->gve_wq, &priv->service_task);
318 return IRQ_HANDLED;
319 }
320
gve_intr(int irq,void * arg)321 static irqreturn_t gve_intr(int irq, void *arg)
322 {
323 struct gve_notify_block *block = arg;
324 struct gve_priv *priv = block->priv;
325
326 iowrite32be(GVE_IRQ_MASK, gve_irq_doorbell(priv, block));
327 napi_schedule_irqoff(&block->napi);
328 return IRQ_HANDLED;
329 }
330
gve_intr_dqo(int irq,void * arg)331 static irqreturn_t gve_intr_dqo(int irq, void *arg)
332 {
333 struct gve_notify_block *block = arg;
334
335 /* Interrupts are automatically masked */
336 napi_schedule_irqoff(&block->napi);
337 return IRQ_HANDLED;
338 }
339
gve_is_napi_on_home_cpu(struct gve_priv * priv,u32 irq)340 static int gve_is_napi_on_home_cpu(struct gve_priv *priv, u32 irq)
341 {
342 int cpu_curr = smp_processor_id();
343 const struct cpumask *aff_mask;
344
345 aff_mask = irq_get_effective_affinity_mask(irq);
346 if (unlikely(!aff_mask))
347 return 1;
348
349 return cpumask_test_cpu(cpu_curr, aff_mask);
350 }
351
gve_napi_poll(struct napi_struct * napi,int budget)352 int gve_napi_poll(struct napi_struct *napi, int budget)
353 {
354 struct gve_notify_block *block;
355 __be32 __iomem *irq_doorbell;
356 bool reschedule = false;
357 struct gve_priv *priv;
358 int work_done = 0;
359
360 block = container_of(napi, struct gve_notify_block, napi);
361 priv = block->priv;
362
363 if (block->tx) {
364 if (block->tx->q_num < priv->tx_cfg.num_queues)
365 reschedule |= gve_tx_poll(block, budget);
366 else if (budget)
367 reschedule |= gve_xdp_poll(block, budget);
368 }
369
370 if (!budget)
371 return 0;
372
373 if (block->rx) {
374 work_done = gve_rx_poll(block, budget);
375
376 /* Poll XSK TX as part of RX NAPI. Setup re-poll based on max of
377 * TX and RX work done.
378 */
379 if (priv->xdp_prog)
380 work_done = max_t(int, work_done,
381 gve_xsk_tx_poll(block, budget));
382
383 reschedule |= work_done == budget;
384 }
385
386 if (reschedule)
387 return budget;
388
389 /* Complete processing - don't unmask irq if busy polling is enabled */
390 if (likely(napi_complete_done(napi, work_done))) {
391 irq_doorbell = gve_irq_doorbell(priv, block);
392 iowrite32be(GVE_IRQ_ACK | GVE_IRQ_EVENT, irq_doorbell);
393
394 /* Ensure IRQ ACK is visible before we check pending work.
395 * If queue had issued updates, it would be truly visible.
396 */
397 mb();
398
399 if (block->tx)
400 reschedule |= gve_tx_clean_pending(priv, block->tx);
401 if (block->rx)
402 reschedule |= gve_rx_work_pending(block->rx);
403
404 if (reschedule && napi_schedule(napi))
405 iowrite32be(GVE_IRQ_MASK, irq_doorbell);
406 }
407 return work_done;
408 }
409
gve_napi_poll_dqo(struct napi_struct * napi,int budget)410 int gve_napi_poll_dqo(struct napi_struct *napi, int budget)
411 {
412 struct gve_notify_block *block =
413 container_of(napi, struct gve_notify_block, napi);
414 struct gve_priv *priv = block->priv;
415 bool reschedule = false;
416 int work_done = 0;
417
418 if (block->tx) {
419 if (block->tx->q_num < priv->tx_cfg.num_queues)
420 reschedule |= gve_tx_poll_dqo(block, /*do_clean=*/true);
421 else
422 reschedule |= gve_xdp_poll_dqo(block);
423 }
424
425 if (!budget)
426 return 0;
427
428 if (block->rx) {
429 work_done = gve_rx_poll_dqo(block, budget);
430
431 /* Poll XSK TX as part of RX NAPI. Setup re-poll based on if
432 * either datapath has more work to do.
433 */
434 if (priv->xdp_prog)
435 reschedule |= gve_xsk_tx_poll_dqo(block, budget);
436 reschedule |= work_done == budget;
437 }
438
439 if (reschedule) {
440 /* Reschedule by returning budget only if already on the correct
441 * cpu.
442 */
443 if (likely(gve_is_napi_on_home_cpu(priv, block->irq)))
444 return budget;
445
446 /* If not on the cpu with which this queue's irq has affinity
447 * with, we avoid rescheduling napi and arm the irq instead so
448 * that napi gets rescheduled back eventually onto the right
449 * cpu.
450 */
451 if (work_done == budget)
452 work_done--;
453 }
454
455 if (likely(napi_complete_done(napi, work_done))) {
456 /* Enable interrupts again.
457 *
458 * We don't need to repoll afterwards because HW supports the
459 * PCI MSI-X PBA feature.
460 *
461 * Another interrupt would be triggered if a new event came in
462 * since the last one.
463 */
464 gve_write_irq_doorbell_dqo(priv, block,
465 GVE_ITR_NO_UPDATE_DQO | GVE_ITR_ENABLE_BIT_DQO);
466 }
467
468 return work_done;
469 }
470
gve_get_node_mask(struct gve_priv * priv)471 static const struct cpumask *gve_get_node_mask(struct gve_priv *priv)
472 {
473 if (priv->numa_node == NUMA_NO_NODE)
474 return cpu_all_mask;
475 else
476 return cpumask_of_node(priv->numa_node);
477 }
478
gve_alloc_notify_blocks(struct gve_priv * priv)479 static int gve_alloc_notify_blocks(struct gve_priv *priv)
480 {
481 int num_vecs_requested = priv->num_ntfy_blks + 1;
482 const struct cpumask *node_mask;
483 unsigned int cur_cpu;
484 int vecs_enabled;
485 int i, j;
486 int err;
487
488 priv->msix_vectors = kvcalloc(num_vecs_requested,
489 sizeof(*priv->msix_vectors), GFP_KERNEL);
490 if (!priv->msix_vectors)
491 return -ENOMEM;
492 for (i = 0; i < num_vecs_requested; i++)
493 priv->msix_vectors[i].entry = i;
494 vecs_enabled = pci_enable_msix_range(priv->pdev, priv->msix_vectors,
495 GVE_MIN_MSIX, num_vecs_requested);
496 if (vecs_enabled < 0) {
497 dev_err(&priv->pdev->dev, "Could not enable min msix %d/%d\n",
498 GVE_MIN_MSIX, vecs_enabled);
499 err = vecs_enabled;
500 goto abort_with_msix_vectors;
501 }
502 if (vecs_enabled != num_vecs_requested) {
503 int new_num_ntfy_blks = (vecs_enabled - 1) & ~0x1;
504 int vecs_per_type = new_num_ntfy_blks / 2;
505 int vecs_left = new_num_ntfy_blks % 2;
506
507 priv->num_ntfy_blks = new_num_ntfy_blks;
508 priv->mgmt_msix_idx = priv->num_ntfy_blks;
509 priv->tx_cfg.max_queues = min_t(int, priv->tx_cfg.max_queues,
510 vecs_per_type);
511 priv->rx_cfg.max_queues = min_t(int, priv->rx_cfg.max_queues,
512 vecs_per_type + vecs_left);
513 dev_err(&priv->pdev->dev,
514 "Could not enable desired msix, only enabled %d, adjusting tx max queues to %d, and rx max queues to %d\n",
515 vecs_enabled, priv->tx_cfg.max_queues,
516 priv->rx_cfg.max_queues);
517 if (priv->tx_cfg.num_queues > priv->tx_cfg.max_queues)
518 priv->tx_cfg.num_queues = priv->tx_cfg.max_queues;
519 if (priv->rx_cfg.num_queues > priv->rx_cfg.max_queues)
520 priv->rx_cfg.num_queues = priv->rx_cfg.max_queues;
521 }
522
523 /* Setup Management Vector - the last vector */
524 snprintf(priv->mgmt_msix_name, sizeof(priv->mgmt_msix_name), "gve-mgmnt@pci:%s",
525 pci_name(priv->pdev));
526 err = request_irq(priv->msix_vectors[priv->mgmt_msix_idx].vector,
527 gve_mgmnt_intr, 0, priv->mgmt_msix_name, priv);
528 if (err) {
529 dev_err(&priv->pdev->dev, "Did not receive management vector.\n");
530 goto abort_with_msix_enabled;
531 }
532 priv->irq_db_indices =
533 dma_alloc_coherent(&priv->pdev->dev,
534 priv->num_ntfy_blks *
535 sizeof(*priv->irq_db_indices),
536 &priv->irq_db_indices_bus, GFP_KERNEL);
537 if (!priv->irq_db_indices) {
538 err = -ENOMEM;
539 goto abort_with_mgmt_vector;
540 }
541
542 priv->ntfy_blocks = kvzalloc(priv->num_ntfy_blks *
543 sizeof(*priv->ntfy_blocks), GFP_KERNEL);
544 if (!priv->ntfy_blocks) {
545 err = -ENOMEM;
546 goto abort_with_irq_db_indices;
547 }
548
549 /* Setup the other blocks - the first n-1 vectors */
550 node_mask = gve_get_node_mask(priv);
551 cur_cpu = cpumask_first(node_mask);
552 for (i = 0; i < priv->num_ntfy_blks; i++) {
553 struct gve_notify_block *block = &priv->ntfy_blocks[i];
554 int msix_idx = i;
555
556 snprintf(block->name, sizeof(block->name), "gve-ntfy-blk%d@pci:%s",
557 i, pci_name(priv->pdev));
558 block->priv = priv;
559 err = request_irq(priv->msix_vectors[msix_idx].vector,
560 gve_is_gqi(priv) ? gve_intr : gve_intr_dqo,
561 IRQF_NO_AUTOEN, block->name, block);
562 if (err) {
563 dev_err(&priv->pdev->dev,
564 "Failed to receive msix vector %d\n", i);
565 goto abort_with_some_ntfy_blocks;
566 }
567 block->irq = priv->msix_vectors[msix_idx].vector;
568 irq_set_affinity_and_hint(block->irq,
569 cpumask_of(cur_cpu));
570 block->irq_db_index = &priv->irq_db_indices[i].index;
571
572 cur_cpu = cpumask_next(cur_cpu, node_mask);
573 /* Wrap once CPUs in the node have been exhausted, or when
574 * starting RX queue affinities. TX and RX queues of the same
575 * index share affinity.
576 */
577 if (cur_cpu >= nr_cpu_ids || (i + 1) == priv->tx_cfg.max_queues)
578 cur_cpu = cpumask_first(node_mask);
579 }
580 return 0;
581 abort_with_some_ntfy_blocks:
582 for (j = 0; j < i; j++) {
583 struct gve_notify_block *block = &priv->ntfy_blocks[j];
584 int msix_idx = j;
585
586 irq_set_affinity_hint(priv->msix_vectors[msix_idx].vector,
587 NULL);
588 free_irq(priv->msix_vectors[msix_idx].vector, block);
589 block->irq = 0;
590 }
591 kvfree(priv->ntfy_blocks);
592 priv->ntfy_blocks = NULL;
593 abort_with_irq_db_indices:
594 dma_free_coherent(&priv->pdev->dev, priv->num_ntfy_blks *
595 sizeof(*priv->irq_db_indices),
596 priv->irq_db_indices, priv->irq_db_indices_bus);
597 priv->irq_db_indices = NULL;
598 abort_with_mgmt_vector:
599 free_irq(priv->msix_vectors[priv->mgmt_msix_idx].vector, priv);
600 abort_with_msix_enabled:
601 pci_disable_msix(priv->pdev);
602 abort_with_msix_vectors:
603 kvfree(priv->msix_vectors);
604 priv->msix_vectors = NULL;
605 return err;
606 }
607
gve_free_notify_blocks(struct gve_priv * priv)608 static void gve_free_notify_blocks(struct gve_priv *priv)
609 {
610 int i;
611
612 if (!priv->msix_vectors)
613 return;
614
615 /* Free the irqs */
616 for (i = 0; i < priv->num_ntfy_blks; i++) {
617 struct gve_notify_block *block = &priv->ntfy_blocks[i];
618 int msix_idx = i;
619
620 irq_set_affinity_hint(priv->msix_vectors[msix_idx].vector,
621 NULL);
622 free_irq(priv->msix_vectors[msix_idx].vector, block);
623 block->irq = 0;
624 }
625 free_irq(priv->msix_vectors[priv->mgmt_msix_idx].vector, priv);
626 kvfree(priv->ntfy_blocks);
627 priv->ntfy_blocks = NULL;
628 dma_free_coherent(&priv->pdev->dev, priv->num_ntfy_blks *
629 sizeof(*priv->irq_db_indices),
630 priv->irq_db_indices, priv->irq_db_indices_bus);
631 priv->irq_db_indices = NULL;
632 pci_disable_msix(priv->pdev);
633 kvfree(priv->msix_vectors);
634 priv->msix_vectors = NULL;
635 }
636
gve_setup_device_resources(struct gve_priv * priv)637 static int gve_setup_device_resources(struct gve_priv *priv)
638 {
639 int err;
640
641 err = gve_alloc_flow_rule_caches(priv);
642 if (err)
643 return err;
644 err = gve_alloc_rss_config_cache(priv);
645 if (err)
646 goto abort_with_flow_rule_caches;
647 err = gve_alloc_counter_array(priv);
648 if (err)
649 goto abort_with_rss_config_cache;
650 err = gve_alloc_notify_blocks(priv);
651 if (err)
652 goto abort_with_counter;
653 err = gve_alloc_stats_report(priv);
654 if (err)
655 goto abort_with_ntfy_blocks;
656 err = gve_adminq_configure_device_resources(priv,
657 priv->counter_array_bus,
658 priv->num_event_counters,
659 priv->irq_db_indices_bus,
660 priv->num_ntfy_blks);
661 if (unlikely(err)) {
662 dev_err(&priv->pdev->dev,
663 "could not setup device_resources: err=%d\n", err);
664 err = -ENXIO;
665 goto abort_with_stats_report;
666 }
667
668 if (!gve_is_gqi(priv)) {
669 priv->ptype_lut_dqo = kvzalloc(sizeof(*priv->ptype_lut_dqo),
670 GFP_KERNEL);
671 if (!priv->ptype_lut_dqo) {
672 err = -ENOMEM;
673 goto abort_with_stats_report;
674 }
675 err = gve_adminq_get_ptype_map_dqo(priv, priv->ptype_lut_dqo);
676 if (err) {
677 dev_err(&priv->pdev->dev,
678 "Failed to get ptype map: err=%d\n", err);
679 goto abort_with_ptype_lut;
680 }
681 }
682
683 err = gve_init_clock(priv);
684 if (err) {
685 dev_err(&priv->pdev->dev, "Failed to init clock");
686 goto abort_with_ptype_lut;
687 }
688
689 err = gve_init_rss_config(priv, priv->rx_cfg.num_queues);
690 if (err) {
691 dev_err(&priv->pdev->dev, "Failed to init RSS config");
692 goto abort_with_clock;
693 }
694
695 err = gve_adminq_report_stats(priv, priv->stats_report_len,
696 priv->stats_report_bus,
697 GVE_STATS_REPORT_TIMER_PERIOD);
698 if (err)
699 dev_err(&priv->pdev->dev,
700 "Failed to report stats: err=%d\n", err);
701 gve_set_device_resources_ok(priv);
702 return 0;
703
704 abort_with_clock:
705 gve_teardown_clock(priv);
706 abort_with_ptype_lut:
707 kvfree(priv->ptype_lut_dqo);
708 priv->ptype_lut_dqo = NULL;
709 abort_with_stats_report:
710 gve_free_stats_report(priv);
711 abort_with_ntfy_blocks:
712 gve_free_notify_blocks(priv);
713 abort_with_counter:
714 gve_free_counter_array(priv);
715 abort_with_rss_config_cache:
716 gve_free_rss_config_cache(priv);
717 abort_with_flow_rule_caches:
718 gve_free_flow_rule_caches(priv);
719
720 return err;
721 }
722
723 static void gve_trigger_reset(struct gve_priv *priv);
724
gve_teardown_device_resources(struct gve_priv * priv)725 static void gve_teardown_device_resources(struct gve_priv *priv)
726 {
727 int err;
728
729 /* Tell device its resources are being freed */
730 if (gve_get_device_resources_ok(priv)) {
731 err = gve_flow_rules_reset(priv);
732 if (err) {
733 dev_err(&priv->pdev->dev,
734 "Failed to reset flow rules: err=%d\n", err);
735 gve_trigger_reset(priv);
736 }
737 /* detach the stats report */
738 err = gve_adminq_report_stats(priv, 0, 0x0, GVE_STATS_REPORT_TIMER_PERIOD);
739 if (err) {
740 dev_err(&priv->pdev->dev,
741 "Failed to detach stats report: err=%d\n", err);
742 gve_trigger_reset(priv);
743 }
744 err = gve_adminq_deconfigure_device_resources(priv);
745 if (err) {
746 dev_err(&priv->pdev->dev,
747 "Could not deconfigure device resources: err=%d\n",
748 err);
749 gve_trigger_reset(priv);
750 }
751 }
752
753 kvfree(priv->ptype_lut_dqo);
754 priv->ptype_lut_dqo = NULL;
755
756 gve_free_flow_rule_caches(priv);
757 gve_free_rss_config_cache(priv);
758 gve_free_counter_array(priv);
759 gve_free_notify_blocks(priv);
760 gve_free_stats_report(priv);
761 gve_teardown_clock(priv);
762 gve_clear_device_resources_ok(priv);
763 }
764
gve_unregister_qpl(struct gve_priv * priv,struct gve_queue_page_list * qpl)765 static int gve_unregister_qpl(struct gve_priv *priv,
766 struct gve_queue_page_list *qpl)
767 {
768 int err;
769
770 if (!qpl)
771 return 0;
772
773 err = gve_adminq_unregister_page_list(priv, qpl->id);
774 if (err) {
775 netif_err(priv, drv, priv->dev,
776 "Failed to unregister queue page list %d\n",
777 qpl->id);
778 return err;
779 }
780
781 priv->num_registered_pages -= qpl->num_entries;
782 return 0;
783 }
784
gve_register_qpl(struct gve_priv * priv,struct gve_queue_page_list * qpl)785 static int gve_register_qpl(struct gve_priv *priv,
786 struct gve_queue_page_list *qpl)
787 {
788 int pages;
789 int err;
790
791 if (!qpl)
792 return 0;
793
794 pages = qpl->num_entries;
795
796 if (pages + priv->num_registered_pages > priv->max_registered_pages) {
797 netif_err(priv, drv, priv->dev,
798 "Reached max number of registered pages %llu > %llu\n",
799 pages + priv->num_registered_pages,
800 priv->max_registered_pages);
801 return -EINVAL;
802 }
803
804 err = gve_adminq_register_page_list(priv, qpl);
805 if (err) {
806 netif_err(priv, drv, priv->dev,
807 "failed to register queue page list %d\n",
808 qpl->id);
809 return err;
810 }
811
812 priv->num_registered_pages += pages;
813 return 0;
814 }
815
gve_tx_get_qpl(struct gve_priv * priv,int idx)816 static struct gve_queue_page_list *gve_tx_get_qpl(struct gve_priv *priv, int idx)
817 {
818 struct gve_tx_ring *tx = &priv->tx[idx];
819
820 if (gve_is_gqi(priv))
821 return tx->tx_fifo.qpl;
822 else
823 return tx->dqo.qpl;
824 }
825
gve_rx_get_qpl(struct gve_priv * priv,int idx)826 static struct gve_queue_page_list *gve_rx_get_qpl(struct gve_priv *priv, int idx)
827 {
828 struct gve_rx_ring *rx = &priv->rx[idx];
829
830 if (gve_is_gqi(priv))
831 return rx->data.qpl;
832 else
833 return rx->dqo.qpl;
834 }
835
gve_register_qpls(struct gve_priv * priv)836 static int gve_register_qpls(struct gve_priv *priv)
837 {
838 int num_tx_qpls, num_rx_qpls;
839 int err;
840 int i;
841
842 num_tx_qpls = gve_num_tx_qpls(&priv->tx_cfg, gve_is_qpl(priv));
843 num_rx_qpls = gve_num_rx_qpls(&priv->rx_cfg, gve_is_qpl(priv));
844
845 for (i = 0; i < num_tx_qpls; i++) {
846 err = gve_register_qpl(priv, gve_tx_get_qpl(priv, i));
847 if (err)
848 return err;
849 }
850
851 for (i = 0; i < num_rx_qpls; i++) {
852 err = gve_register_qpl(priv, gve_rx_get_qpl(priv, i));
853 if (err)
854 return err;
855 }
856
857 return 0;
858 }
859
gve_unregister_qpls(struct gve_priv * priv)860 static int gve_unregister_qpls(struct gve_priv *priv)
861 {
862 int num_tx_qpls, num_rx_qpls;
863 int err;
864 int i;
865
866 num_tx_qpls = gve_num_tx_qpls(&priv->tx_cfg, gve_is_qpl(priv));
867 num_rx_qpls = gve_num_rx_qpls(&priv->rx_cfg, gve_is_qpl(priv));
868
869 for (i = 0; i < num_tx_qpls; i++) {
870 err = gve_unregister_qpl(priv, gve_tx_get_qpl(priv, i));
871 /* This failure will trigger a reset - no need to clean */
872 if (err)
873 return err;
874 }
875
876 for (i = 0; i < num_rx_qpls; i++) {
877 err = gve_unregister_qpl(priv, gve_rx_get_qpl(priv, i));
878 /* This failure will trigger a reset - no need to clean */
879 if (err)
880 return err;
881 }
882 return 0;
883 }
884
gve_create_rings(struct gve_priv * priv)885 static int gve_create_rings(struct gve_priv *priv)
886 {
887 int num_tx_queues = gve_num_tx_queues(priv);
888 int err;
889 int i;
890
891 err = gve_adminq_create_tx_queues(priv, 0, num_tx_queues);
892 if (err) {
893 netif_err(priv, drv, priv->dev, "failed to create %d tx queues\n",
894 num_tx_queues);
895 /* This failure will trigger a reset - no need to clean
896 * up
897 */
898 return err;
899 }
900 netif_dbg(priv, drv, priv->dev, "created %d tx queues\n",
901 num_tx_queues);
902
903 err = gve_adminq_create_rx_queues(priv, priv->rx_cfg.num_queues);
904 if (err) {
905 netif_err(priv, drv, priv->dev, "failed to create %d rx queues\n",
906 priv->rx_cfg.num_queues);
907 /* This failure will trigger a reset - no need to clean
908 * up
909 */
910 return err;
911 }
912 netif_dbg(priv, drv, priv->dev, "created %d rx queues\n",
913 priv->rx_cfg.num_queues);
914
915 if (gve_is_gqi(priv)) {
916 /* Rx data ring has been prefilled with packet buffers at queue
917 * allocation time.
918 *
919 * Write the doorbell to provide descriptor slots and packet
920 * buffers to the NIC.
921 */
922 for (i = 0; i < priv->rx_cfg.num_queues; i++)
923 gve_rx_write_doorbell(priv, &priv->rx[i]);
924 } else {
925 for (i = 0; i < priv->rx_cfg.num_queues; i++) {
926 /* Post buffers and ring doorbell. */
927 gve_rx_post_buffers_dqo(&priv->rx[i]);
928 }
929 }
930
931 return 0;
932 }
933
init_xdp_sync_stats(struct gve_priv * priv)934 static void init_xdp_sync_stats(struct gve_priv *priv)
935 {
936 int start_id = gve_xdp_tx_start_queue_id(priv);
937 int i;
938
939 /* Init stats */
940 for (i = start_id; i < start_id + priv->tx_cfg.num_xdp_queues; i++) {
941 int ntfy_idx = gve_tx_idx_to_ntfy(priv, i);
942
943 u64_stats_init(&priv->tx[i].statss);
944 priv->tx[i].ntfy_id = ntfy_idx;
945 }
946 }
947
gve_init_sync_stats(struct gve_priv * priv)948 static void gve_init_sync_stats(struct gve_priv *priv)
949 {
950 int i;
951
952 for (i = 0; i < priv->tx_cfg.num_queues; i++)
953 u64_stats_init(&priv->tx[i].statss);
954
955 /* Init stats for XDP TX queues */
956 init_xdp_sync_stats(priv);
957
958 for (i = 0; i < priv->rx_cfg.num_queues; i++)
959 u64_stats_init(&priv->rx[i].statss);
960 }
961
gve_tx_get_curr_alloc_cfg(struct gve_priv * priv,struct gve_tx_alloc_rings_cfg * cfg)962 static void gve_tx_get_curr_alloc_cfg(struct gve_priv *priv,
963 struct gve_tx_alloc_rings_cfg *cfg)
964 {
965 cfg->qcfg = &priv->tx_cfg;
966 cfg->raw_addressing = !gve_is_qpl(priv);
967 cfg->ring_size = priv->tx_desc_cnt;
968 cfg->num_xdp_rings = cfg->qcfg->num_xdp_queues;
969 cfg->tx = priv->tx;
970 }
971
gve_tx_stop_rings(struct gve_priv * priv,int num_rings)972 static void gve_tx_stop_rings(struct gve_priv *priv, int num_rings)
973 {
974 int i;
975
976 if (!priv->tx)
977 return;
978
979 for (i = 0; i < num_rings; i++) {
980 if (gve_is_gqi(priv))
981 gve_tx_stop_ring_gqi(priv, i);
982 else
983 gve_tx_stop_ring_dqo(priv, i);
984 }
985 }
986
gve_tx_start_rings(struct gve_priv * priv,int num_rings)987 static void gve_tx_start_rings(struct gve_priv *priv, int num_rings)
988 {
989 int i;
990
991 for (i = 0; i < num_rings; i++) {
992 if (gve_is_gqi(priv))
993 gve_tx_start_ring_gqi(priv, i);
994 else
995 gve_tx_start_ring_dqo(priv, i);
996 }
997 }
998
gve_queues_mem_alloc(struct gve_priv * priv,struct gve_tx_alloc_rings_cfg * tx_alloc_cfg,struct gve_rx_alloc_rings_cfg * rx_alloc_cfg)999 static int gve_queues_mem_alloc(struct gve_priv *priv,
1000 struct gve_tx_alloc_rings_cfg *tx_alloc_cfg,
1001 struct gve_rx_alloc_rings_cfg *rx_alloc_cfg)
1002 {
1003 int err;
1004
1005 if (gve_is_gqi(priv))
1006 err = gve_tx_alloc_rings_gqi(priv, tx_alloc_cfg);
1007 else
1008 err = gve_tx_alloc_rings_dqo(priv, tx_alloc_cfg);
1009 if (err)
1010 return err;
1011
1012 if (gve_is_gqi(priv))
1013 err = gve_rx_alloc_rings_gqi(priv, rx_alloc_cfg);
1014 else
1015 err = gve_rx_alloc_rings_dqo(priv, rx_alloc_cfg);
1016 if (err)
1017 goto free_tx;
1018
1019 return 0;
1020
1021 free_tx:
1022 if (gve_is_gqi(priv))
1023 gve_tx_free_rings_gqi(priv, tx_alloc_cfg);
1024 else
1025 gve_tx_free_rings_dqo(priv, tx_alloc_cfg);
1026 return err;
1027 }
1028
gve_destroy_rings(struct gve_priv * priv)1029 static int gve_destroy_rings(struct gve_priv *priv)
1030 {
1031 int num_tx_queues = gve_num_tx_queues(priv);
1032 int err;
1033
1034 err = gve_adminq_destroy_tx_queues(priv, 0, num_tx_queues);
1035 if (err) {
1036 netif_err(priv, drv, priv->dev,
1037 "failed to destroy tx queues\n");
1038 /* This failure will trigger a reset - no need to clean up */
1039 return err;
1040 }
1041 netif_dbg(priv, drv, priv->dev, "destroyed tx queues\n");
1042 err = gve_adminq_destroy_rx_queues(priv, priv->rx_cfg.num_queues);
1043 if (err) {
1044 netif_err(priv, drv, priv->dev,
1045 "failed to destroy rx queues\n");
1046 /* This failure will trigger a reset - no need to clean up */
1047 return err;
1048 }
1049 netif_dbg(priv, drv, priv->dev, "destroyed rx queues\n");
1050 return 0;
1051 }
1052
gve_queues_mem_free(struct gve_priv * priv,struct gve_tx_alloc_rings_cfg * tx_cfg,struct gve_rx_alloc_rings_cfg * rx_cfg)1053 static void gve_queues_mem_free(struct gve_priv *priv,
1054 struct gve_tx_alloc_rings_cfg *tx_cfg,
1055 struct gve_rx_alloc_rings_cfg *rx_cfg)
1056 {
1057 if (gve_is_gqi(priv)) {
1058 gve_tx_free_rings_gqi(priv, tx_cfg);
1059 gve_rx_free_rings_gqi(priv, rx_cfg);
1060 } else {
1061 gve_tx_free_rings_dqo(priv, tx_cfg);
1062 gve_rx_free_rings_dqo(priv, rx_cfg);
1063 }
1064 }
1065
gve_alloc_page(struct gve_priv * priv,struct device * dev,struct page ** page,dma_addr_t * dma,enum dma_data_direction dir,gfp_t gfp_flags)1066 int gve_alloc_page(struct gve_priv *priv, struct device *dev,
1067 struct page **page, dma_addr_t *dma,
1068 enum dma_data_direction dir, gfp_t gfp_flags)
1069 {
1070 *page = alloc_pages_node(priv->numa_node, gfp_flags, 0);
1071 if (!*page) {
1072 priv->page_alloc_fail++;
1073 return -ENOMEM;
1074 }
1075 *dma = dma_map_page(dev, *page, 0, PAGE_SIZE, dir);
1076 if (dma_mapping_error(dev, *dma)) {
1077 priv->dma_mapping_error++;
1078 put_page(*page);
1079 return -ENOMEM;
1080 }
1081 return 0;
1082 }
1083
gve_alloc_queue_page_list(struct gve_priv * priv,u32 id,int pages)1084 struct gve_queue_page_list *gve_alloc_queue_page_list(struct gve_priv *priv,
1085 u32 id, int pages)
1086 {
1087 struct gve_queue_page_list *qpl;
1088 int err;
1089 int i;
1090
1091 qpl = kvzalloc(sizeof(*qpl), GFP_KERNEL);
1092 if (!qpl)
1093 return NULL;
1094
1095 qpl->id = id;
1096 qpl->num_entries = 0;
1097 qpl->pages = kvcalloc(pages, sizeof(*qpl->pages), GFP_KERNEL);
1098 if (!qpl->pages)
1099 goto abort;
1100
1101 qpl->page_buses = kvcalloc(pages, sizeof(*qpl->page_buses), GFP_KERNEL);
1102 if (!qpl->page_buses)
1103 goto abort;
1104
1105 for (i = 0; i < pages; i++) {
1106 err = gve_alloc_page(priv, &priv->pdev->dev, &qpl->pages[i],
1107 &qpl->page_buses[i],
1108 gve_qpl_dma_dir(priv, id), GFP_KERNEL);
1109 if (err)
1110 goto abort;
1111 qpl->num_entries++;
1112 }
1113
1114 return qpl;
1115
1116 abort:
1117 gve_free_queue_page_list(priv, qpl, id);
1118 return NULL;
1119 }
1120
gve_free_page(struct device * dev,struct page * page,dma_addr_t dma,enum dma_data_direction dir)1121 void gve_free_page(struct device *dev, struct page *page, dma_addr_t dma,
1122 enum dma_data_direction dir)
1123 {
1124 if (!dma_mapping_error(dev, dma))
1125 dma_unmap_page(dev, dma, PAGE_SIZE, dir);
1126 if (page)
1127 put_page(page);
1128 }
1129
gve_free_queue_page_list(struct gve_priv * priv,struct gve_queue_page_list * qpl,u32 id)1130 void gve_free_queue_page_list(struct gve_priv *priv,
1131 struct gve_queue_page_list *qpl,
1132 u32 id)
1133 {
1134 int i;
1135
1136 if (!qpl)
1137 return;
1138 if (!qpl->pages)
1139 goto free_qpl;
1140 if (!qpl->page_buses)
1141 goto free_pages;
1142
1143 for (i = 0; i < qpl->num_entries; i++)
1144 gve_free_page(&priv->pdev->dev, qpl->pages[i],
1145 qpl->page_buses[i], gve_qpl_dma_dir(priv, id));
1146
1147 kvfree(qpl->page_buses);
1148 qpl->page_buses = NULL;
1149 free_pages:
1150 kvfree(qpl->pages);
1151 qpl->pages = NULL;
1152 free_qpl:
1153 kvfree(qpl);
1154 }
1155
1156 /* Use this to schedule a reset when the device is capable of continuing
1157 * to handle other requests in its current state. If it is not, do a reset
1158 * in thread instead.
1159 */
gve_schedule_reset(struct gve_priv * priv)1160 void gve_schedule_reset(struct gve_priv *priv)
1161 {
1162 gve_set_do_reset(priv);
1163 queue_work(priv->gve_wq, &priv->service_task);
1164 }
1165
1166 static void gve_reset_and_teardown(struct gve_priv *priv, bool was_up);
1167 static int gve_reset_recovery(struct gve_priv *priv, bool was_up);
1168 static void gve_turndown(struct gve_priv *priv);
1169 static void gve_turnup(struct gve_priv *priv);
1170
gve_unreg_xsk_pool(struct gve_priv * priv,u16 qid)1171 static void gve_unreg_xsk_pool(struct gve_priv *priv, u16 qid)
1172 {
1173 struct gve_rx_ring *rx;
1174
1175 if (!priv->rx)
1176 return;
1177
1178 rx = &priv->rx[qid];
1179 rx->xsk_pool = NULL;
1180 if (xdp_rxq_info_is_reg(&rx->xdp_rxq))
1181 xdp_rxq_info_unreg_mem_model(&rx->xdp_rxq);
1182
1183 if (!priv->tx)
1184 return;
1185 priv->tx[gve_xdp_tx_queue_id(priv, qid)].xsk_pool = NULL;
1186 }
1187
gve_reg_xsk_pool(struct gve_priv * priv,struct net_device * dev,struct xsk_buff_pool * pool,u16 qid)1188 static int gve_reg_xsk_pool(struct gve_priv *priv, struct net_device *dev,
1189 struct xsk_buff_pool *pool, u16 qid)
1190 {
1191 struct gve_rx_ring *rx;
1192 u16 tx_qid;
1193 int err;
1194
1195 rx = &priv->rx[qid];
1196 err = xdp_rxq_info_reg_mem_model(&rx->xdp_rxq,
1197 MEM_TYPE_XSK_BUFF_POOL, pool);
1198 if (err) {
1199 gve_unreg_xsk_pool(priv, qid);
1200 return err;
1201 }
1202
1203 rx->xsk_pool = pool;
1204
1205 tx_qid = gve_xdp_tx_queue_id(priv, qid);
1206 priv->tx[tx_qid].xsk_pool = pool;
1207
1208 return 0;
1209 }
1210
gve_unreg_xdp_info(struct gve_priv * priv)1211 static void gve_unreg_xdp_info(struct gve_priv *priv)
1212 {
1213 int i;
1214
1215 if (!priv->tx_cfg.num_xdp_queues || !priv->rx)
1216 return;
1217
1218 for (i = 0; i < priv->rx_cfg.num_queues; i++) {
1219 struct gve_rx_ring *rx = &priv->rx[i];
1220
1221 if (xdp_rxq_info_is_reg(&rx->xdp_rxq))
1222 xdp_rxq_info_unreg(&rx->xdp_rxq);
1223
1224 gve_unreg_xsk_pool(priv, i);
1225 }
1226 }
1227
gve_get_xsk_pool(struct gve_priv * priv,int qid)1228 static struct xsk_buff_pool *gve_get_xsk_pool(struct gve_priv *priv, int qid)
1229 {
1230 if (!test_bit(qid, priv->xsk_pools))
1231 return NULL;
1232
1233 return xsk_get_pool_from_qid(priv->dev, qid);
1234 }
1235
gve_reg_xdp_info(struct gve_priv * priv,struct net_device * dev)1236 static int gve_reg_xdp_info(struct gve_priv *priv, struct net_device *dev)
1237 {
1238 struct napi_struct *napi;
1239 struct gve_rx_ring *rx;
1240 int err = 0;
1241 int i;
1242
1243 if (!priv->tx_cfg.num_xdp_queues)
1244 return 0;
1245
1246 for (i = 0; i < priv->rx_cfg.num_queues; i++) {
1247 struct xsk_buff_pool *xsk_pool;
1248
1249 rx = &priv->rx[i];
1250 napi = &priv->ntfy_blocks[rx->ntfy_id].napi;
1251
1252 err = xdp_rxq_info_reg(&rx->xdp_rxq, dev, i,
1253 napi->napi_id);
1254 if (err)
1255 goto err;
1256
1257 xsk_pool = gve_get_xsk_pool(priv, i);
1258 if (xsk_pool)
1259 err = gve_reg_xsk_pool(priv, dev, xsk_pool, i);
1260 else if (gve_is_qpl(priv))
1261 err = xdp_rxq_info_reg_mem_model(&rx->xdp_rxq,
1262 MEM_TYPE_PAGE_SHARED,
1263 NULL);
1264 else
1265 err = xdp_rxq_info_reg_mem_model(&rx->xdp_rxq,
1266 MEM_TYPE_PAGE_POOL,
1267 rx->dqo.page_pool);
1268 if (err)
1269 goto err;
1270 }
1271 return 0;
1272
1273 err:
1274 gve_unreg_xdp_info(priv);
1275 return err;
1276 }
1277
1278
gve_drain_page_cache(struct gve_priv * priv)1279 static void gve_drain_page_cache(struct gve_priv *priv)
1280 {
1281 int i;
1282
1283 for (i = 0; i < priv->rx_cfg.num_queues; i++)
1284 page_frag_cache_drain(&priv->rx[i].page_cache);
1285 }
1286
gve_rx_get_curr_alloc_cfg(struct gve_priv * priv,struct gve_rx_alloc_rings_cfg * cfg)1287 static void gve_rx_get_curr_alloc_cfg(struct gve_priv *priv,
1288 struct gve_rx_alloc_rings_cfg *cfg)
1289 {
1290 cfg->qcfg_rx = &priv->rx_cfg;
1291 cfg->qcfg_tx = &priv->tx_cfg;
1292 cfg->raw_addressing = !gve_is_qpl(priv);
1293 cfg->enable_header_split = priv->header_split_enabled;
1294 cfg->ring_size = priv->rx_desc_cnt;
1295 cfg->packet_buffer_size = priv->rx_cfg.packet_buffer_size;
1296 cfg->rx = priv->rx;
1297 cfg->xdp = !!cfg->qcfg_tx->num_xdp_queues;
1298 }
1299
gve_get_curr_alloc_cfgs(struct gve_priv * priv,struct gve_tx_alloc_rings_cfg * tx_alloc_cfg,struct gve_rx_alloc_rings_cfg * rx_alloc_cfg)1300 void gve_get_curr_alloc_cfgs(struct gve_priv *priv,
1301 struct gve_tx_alloc_rings_cfg *tx_alloc_cfg,
1302 struct gve_rx_alloc_rings_cfg *rx_alloc_cfg)
1303 {
1304 gve_tx_get_curr_alloc_cfg(priv, tx_alloc_cfg);
1305 gve_rx_get_curr_alloc_cfg(priv, rx_alloc_cfg);
1306 }
1307
gve_rx_start_ring(struct gve_priv * priv,int i)1308 static void gve_rx_start_ring(struct gve_priv *priv, int i)
1309 {
1310 if (gve_is_gqi(priv))
1311 gve_rx_start_ring_gqi(priv, i);
1312 else
1313 gve_rx_start_ring_dqo(priv, i);
1314 }
1315
gve_rx_start_rings(struct gve_priv * priv,int num_rings)1316 static void gve_rx_start_rings(struct gve_priv *priv, int num_rings)
1317 {
1318 int i;
1319
1320 for (i = 0; i < num_rings; i++)
1321 gve_rx_start_ring(priv, i);
1322 }
1323
gve_rx_stop_ring(struct gve_priv * priv,int i)1324 static void gve_rx_stop_ring(struct gve_priv *priv, int i)
1325 {
1326 if (gve_is_gqi(priv))
1327 gve_rx_stop_ring_gqi(priv, i);
1328 else
1329 gve_rx_stop_ring_dqo(priv, i);
1330 }
1331
gve_rx_stop_rings(struct gve_priv * priv,int num_rings)1332 static void gve_rx_stop_rings(struct gve_priv *priv, int num_rings)
1333 {
1334 int i;
1335
1336 if (!priv->rx)
1337 return;
1338
1339 for (i = 0; i < num_rings; i++)
1340 gve_rx_stop_ring(priv, i);
1341 }
1342
gve_queues_mem_remove(struct gve_priv * priv)1343 static void gve_queues_mem_remove(struct gve_priv *priv)
1344 {
1345 struct gve_tx_alloc_rings_cfg tx_alloc_cfg = {0};
1346 struct gve_rx_alloc_rings_cfg rx_alloc_cfg = {0};
1347
1348 gve_get_curr_alloc_cfgs(priv, &tx_alloc_cfg, &rx_alloc_cfg);
1349 gve_queues_mem_free(priv, &tx_alloc_cfg, &rx_alloc_cfg);
1350 priv->tx = NULL;
1351 priv->rx = NULL;
1352 }
1353
1354 /* The passed-in queue memory is stored into priv and the queues are made live.
1355 * No memory is allocated. Passed-in memory is freed on errors.
1356 */
gve_queues_start(struct gve_priv * priv,struct gve_tx_alloc_rings_cfg * tx_alloc_cfg,struct gve_rx_alloc_rings_cfg * rx_alloc_cfg)1357 static int gve_queues_start(struct gve_priv *priv,
1358 struct gve_tx_alloc_rings_cfg *tx_alloc_cfg,
1359 struct gve_rx_alloc_rings_cfg *rx_alloc_cfg)
1360 {
1361 struct net_device *dev = priv->dev;
1362 int err;
1363
1364 /* Record new resources into priv */
1365 priv->tx = tx_alloc_cfg->tx;
1366 priv->rx = rx_alloc_cfg->rx;
1367
1368 /* Record new configs into priv */
1369 priv->tx_cfg = *tx_alloc_cfg->qcfg;
1370 priv->tx_cfg.num_xdp_queues = tx_alloc_cfg->num_xdp_rings;
1371 priv->rx_cfg = *rx_alloc_cfg->qcfg_rx;
1372 priv->tx_desc_cnt = tx_alloc_cfg->ring_size;
1373 priv->rx_desc_cnt = rx_alloc_cfg->ring_size;
1374
1375 gve_tx_start_rings(priv, gve_num_tx_queues(priv));
1376 gve_rx_start_rings(priv, rx_alloc_cfg->qcfg_rx->num_queues);
1377 gve_init_sync_stats(priv);
1378
1379 err = netif_set_real_num_tx_queues(dev, priv->tx_cfg.num_queues);
1380 if (err)
1381 goto stop_and_free_rings;
1382 err = netif_set_real_num_rx_queues(dev, priv->rx_cfg.num_queues);
1383 if (err)
1384 goto stop_and_free_rings;
1385
1386 err = gve_reg_xdp_info(priv, dev);
1387 if (err)
1388 goto stop_and_free_rings;
1389
1390 if (rx_alloc_cfg->reset_rss) {
1391 err = gve_init_rss_config(priv, priv->rx_cfg.num_queues);
1392 if (err)
1393 goto reset;
1394 }
1395
1396 err = gve_register_qpls(priv);
1397 if (err)
1398 goto reset;
1399
1400 priv->header_split_enabled = rx_alloc_cfg->enable_header_split;
1401 priv->rx_cfg.packet_buffer_size = rx_alloc_cfg->packet_buffer_size;
1402
1403 err = gve_create_rings(priv);
1404 if (err)
1405 goto reset;
1406
1407 gve_set_device_rings_ok(priv);
1408
1409 if (gve_get_report_stats(priv))
1410 mod_timer(&priv->stats_report_timer,
1411 round_jiffies(jiffies +
1412 msecs_to_jiffies(priv->stats_report_timer_period)));
1413
1414 gve_turnup(priv);
1415 queue_work(priv->gve_wq, &priv->service_task);
1416 priv->interface_up_cnt++;
1417 return 0;
1418
1419 reset:
1420 if (gve_get_reset_in_progress(priv))
1421 goto stop_and_free_rings;
1422 gve_reset_and_teardown(priv, true);
1423 /* if this fails there is nothing we can do so just ignore the return */
1424 gve_reset_recovery(priv, false);
1425 /* return the original error */
1426 return err;
1427 stop_and_free_rings:
1428 gve_tx_stop_rings(priv, gve_num_tx_queues(priv));
1429 gve_rx_stop_rings(priv, priv->rx_cfg.num_queues);
1430 gve_queues_mem_remove(priv);
1431 return err;
1432 }
1433
gve_open(struct net_device * dev)1434 static int gve_open(struct net_device *dev)
1435 {
1436 struct gve_tx_alloc_rings_cfg tx_alloc_cfg = {0};
1437 struct gve_rx_alloc_rings_cfg rx_alloc_cfg = {0};
1438 struct gve_priv *priv = netdev_priv(dev);
1439 int err;
1440
1441 gve_get_curr_alloc_cfgs(priv, &tx_alloc_cfg, &rx_alloc_cfg);
1442
1443 err = gve_queues_mem_alloc(priv, &tx_alloc_cfg, &rx_alloc_cfg);
1444 if (err)
1445 return err;
1446
1447 /* No need to free on error: ownership of resources is lost after
1448 * calling gve_queues_start.
1449 */
1450 err = gve_queues_start(priv, &tx_alloc_cfg, &rx_alloc_cfg);
1451 if (err)
1452 return err;
1453
1454 return 0;
1455 }
1456
gve_queues_stop(struct gve_priv * priv)1457 static int gve_queues_stop(struct gve_priv *priv)
1458 {
1459 int err;
1460
1461 netif_carrier_off(priv->dev);
1462 if (gve_get_device_rings_ok(priv)) {
1463 gve_turndown(priv);
1464 gve_drain_page_cache(priv);
1465 err = gve_destroy_rings(priv);
1466 if (err)
1467 goto err;
1468 err = gve_unregister_qpls(priv);
1469 if (err)
1470 goto err;
1471 gve_clear_device_rings_ok(priv);
1472 }
1473 timer_delete_sync(&priv->stats_report_timer);
1474
1475 gve_unreg_xdp_info(priv);
1476
1477 gve_tx_stop_rings(priv, gve_num_tx_queues(priv));
1478 gve_rx_stop_rings(priv, priv->rx_cfg.num_queues);
1479
1480 priv->interface_down_cnt++;
1481 return 0;
1482
1483 err:
1484 /* This must have been called from a reset due to the rtnl lock
1485 * so just return at this point.
1486 */
1487 if (gve_get_reset_in_progress(priv))
1488 return err;
1489 /* Otherwise reset before returning */
1490 gve_reset_and_teardown(priv, true);
1491 return gve_reset_recovery(priv, false);
1492 }
1493
gve_close(struct net_device * dev)1494 static int gve_close(struct net_device *dev)
1495 {
1496 struct gve_priv *priv = netdev_priv(dev);
1497 int err;
1498
1499 err = gve_queues_stop(priv);
1500 if (err)
1501 return err;
1502
1503 gve_queues_mem_remove(priv);
1504 return 0;
1505 }
1506
gve_handle_link_status(struct gve_priv * priv,bool link_status)1507 static void gve_handle_link_status(struct gve_priv *priv, bool link_status)
1508 {
1509 if (!gve_get_napi_enabled(priv))
1510 return;
1511
1512 if (link_status == netif_carrier_ok(priv->dev))
1513 return;
1514
1515 if (link_status) {
1516 netdev_info(priv->dev, "Device link is up.\n");
1517 netif_carrier_on(priv->dev);
1518 } else {
1519 netdev_info(priv->dev, "Device link is down.\n");
1520 netif_carrier_off(priv->dev);
1521 }
1522 }
1523
gve_configure_rings_xdp(struct gve_priv * priv,u16 num_xdp_rings)1524 static int gve_configure_rings_xdp(struct gve_priv *priv,
1525 u16 num_xdp_rings)
1526 {
1527 struct gve_tx_alloc_rings_cfg tx_alloc_cfg = {0};
1528 struct gve_rx_alloc_rings_cfg rx_alloc_cfg = {0};
1529
1530 gve_get_curr_alloc_cfgs(priv, &tx_alloc_cfg, &rx_alloc_cfg);
1531 tx_alloc_cfg.num_xdp_rings = num_xdp_rings;
1532
1533 rx_alloc_cfg.xdp = !!num_xdp_rings;
1534 return gve_adjust_config(priv, &tx_alloc_cfg, &rx_alloc_cfg);
1535 }
1536
gve_set_xdp(struct gve_priv * priv,struct bpf_prog * prog,struct netlink_ext_ack * extack)1537 static int gve_set_xdp(struct gve_priv *priv, struct bpf_prog *prog,
1538 struct netlink_ext_ack *extack)
1539 {
1540 struct bpf_prog *old_prog;
1541 int err = 0;
1542 u32 status;
1543
1544 old_prog = READ_ONCE(priv->xdp_prog);
1545 if (!netif_running(priv->dev)) {
1546 WRITE_ONCE(priv->xdp_prog, prog);
1547 if (old_prog)
1548 bpf_prog_put(old_prog);
1549
1550 /* Update priv XDP queue configuration */
1551 priv->tx_cfg.num_xdp_queues = priv->xdp_prog ?
1552 priv->rx_cfg.num_queues : 0;
1553 return 0;
1554 }
1555
1556 if (!old_prog && prog)
1557 err = gve_configure_rings_xdp(priv, priv->rx_cfg.num_queues);
1558 else if (old_prog && !prog)
1559 err = gve_configure_rings_xdp(priv, 0);
1560
1561 if (err)
1562 goto out;
1563
1564 WRITE_ONCE(priv->xdp_prog, prog);
1565 if (old_prog)
1566 bpf_prog_put(old_prog);
1567
1568 out:
1569 status = ioread32be(&priv->reg_bar0->device_status);
1570 gve_handle_link_status(priv, GVE_DEVICE_STATUS_LINK_STATUS_MASK & status);
1571 return err;
1572 }
1573
gve_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)1574 static int gve_xdp_xmit(struct net_device *dev, int n,
1575 struct xdp_frame **frames, u32 flags)
1576 {
1577 struct gve_priv *priv = netdev_priv(dev);
1578
1579 if (priv->queue_format == GVE_GQI_QPL_FORMAT)
1580 return gve_xdp_xmit_gqi(dev, n, frames, flags);
1581 else if (priv->queue_format == GVE_DQO_RDA_FORMAT)
1582 return gve_xdp_xmit_dqo(dev, n, frames, flags);
1583
1584 return -EOPNOTSUPP;
1585 }
1586
gve_xsk_pool_enable(struct net_device * dev,struct xsk_buff_pool * pool,u16 qid)1587 static int gve_xsk_pool_enable(struct net_device *dev,
1588 struct xsk_buff_pool *pool,
1589 u16 qid)
1590 {
1591 struct gve_priv *priv = netdev_priv(dev);
1592 int err;
1593
1594 if (qid >= priv->rx_cfg.num_queues) {
1595 dev_err(&priv->pdev->dev, "xsk pool invalid qid %d", qid);
1596 return -EINVAL;
1597 }
1598 if (xsk_pool_get_rx_frame_size(pool) <
1599 priv->dev->max_mtu + sizeof(struct ethhdr)) {
1600 dev_err(&priv->pdev->dev, "xsk pool frame_len too small");
1601 return -EINVAL;
1602 }
1603
1604 err = xsk_pool_dma_map(pool, &priv->pdev->dev,
1605 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING);
1606 if (err)
1607 return err;
1608
1609 set_bit(qid, priv->xsk_pools);
1610
1611 /* If XDP prog is not installed or interface is down, return. */
1612 if (!priv->xdp_prog || !netif_running(dev))
1613 return 0;
1614
1615 err = gve_reg_xsk_pool(priv, dev, pool, qid);
1616 if (err)
1617 goto err_xsk_pool_dma_mapped;
1618
1619 /* Stop and start RDA queues to repost buffers. */
1620 if (!gve_is_qpl(priv)) {
1621 err = gve_configure_rings_xdp(priv, priv->rx_cfg.num_queues);
1622 if (err)
1623 goto err_xsk_pool_registered;
1624 }
1625 return 0;
1626
1627 err_xsk_pool_registered:
1628 gve_unreg_xsk_pool(priv, qid);
1629 err_xsk_pool_dma_mapped:
1630 clear_bit(qid, priv->xsk_pools);
1631 xsk_pool_dma_unmap(pool,
1632 DMA_ATTR_SKIP_CPU_SYNC |
1633 DMA_ATTR_WEAK_ORDERING);
1634 return err;
1635 }
1636
gve_xsk_pool_disable(struct net_device * dev,u16 qid)1637 static int gve_xsk_pool_disable(struct net_device *dev,
1638 u16 qid)
1639 {
1640 struct gve_priv *priv = netdev_priv(dev);
1641 struct napi_struct *napi_rx;
1642 struct napi_struct *napi_tx;
1643 struct xsk_buff_pool *pool;
1644 int tx_qid;
1645 int err;
1646
1647 if (qid >= priv->rx_cfg.num_queues)
1648 return -EINVAL;
1649
1650 clear_bit(qid, priv->xsk_pools);
1651
1652 pool = xsk_get_pool_from_qid(dev, qid);
1653 if (pool)
1654 xsk_pool_dma_unmap(pool,
1655 DMA_ATTR_SKIP_CPU_SYNC |
1656 DMA_ATTR_WEAK_ORDERING);
1657
1658 if (!netif_running(dev) || !priv->tx_cfg.num_xdp_queues)
1659 return 0;
1660
1661 /* Stop and start RDA queues to repost buffers. */
1662 if (!gve_is_qpl(priv) && priv->xdp_prog) {
1663 err = gve_configure_rings_xdp(priv, priv->rx_cfg.num_queues);
1664 if (err)
1665 return err;
1666 }
1667
1668 napi_rx = &priv->ntfy_blocks[priv->rx[qid].ntfy_id].napi;
1669 napi_disable(napi_rx); /* make sure current rx poll is done */
1670
1671 tx_qid = gve_xdp_tx_queue_id(priv, qid);
1672 napi_tx = &priv->ntfy_blocks[priv->tx[tx_qid].ntfy_id].napi;
1673 napi_disable(napi_tx); /* make sure current tx poll is done */
1674
1675 gve_unreg_xsk_pool(priv, qid);
1676 smp_mb(); /* Make sure it is visible to the workers on datapath */
1677
1678 napi_enable(napi_rx);
1679 napi_enable(napi_tx);
1680 if (gve_is_gqi(priv)) {
1681 if (gve_rx_work_pending(&priv->rx[qid]))
1682 napi_schedule(napi_rx);
1683
1684 if (gve_tx_clean_pending(priv, &priv->tx[tx_qid]))
1685 napi_schedule(napi_tx);
1686 }
1687
1688 return 0;
1689 }
1690
gve_xsk_wakeup(struct net_device * dev,u32 queue_id,u32 flags)1691 static int gve_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
1692 {
1693 struct gve_priv *priv = netdev_priv(dev);
1694 struct napi_struct *napi;
1695
1696 if (!gve_get_napi_enabled(priv))
1697 return -ENETDOWN;
1698
1699 if (queue_id >= priv->rx_cfg.num_queues || !priv->xdp_prog)
1700 return -EINVAL;
1701
1702 napi = &priv->ntfy_blocks[gve_rx_idx_to_ntfy(priv, queue_id)].napi;
1703 if (!napi_if_scheduled_mark_missed(napi)) {
1704 /* Call local_bh_enable to trigger SoftIRQ processing */
1705 local_bh_disable();
1706 napi_schedule(napi);
1707 local_bh_enable();
1708 }
1709
1710 return 0;
1711 }
1712
gve_verify_xdp_configuration(struct net_device * dev,struct netlink_ext_ack * extack)1713 static int gve_verify_xdp_configuration(struct net_device *dev,
1714 struct netlink_ext_ack *extack)
1715 {
1716 struct gve_priv *priv = netdev_priv(dev);
1717 u16 max_xdp_mtu;
1718
1719 if (dev->features & NETIF_F_LRO) {
1720 NL_SET_ERR_MSG_MOD(extack,
1721 "XDP is not supported when LRO is on.");
1722 return -EOPNOTSUPP;
1723 }
1724
1725 if (priv->header_split_enabled) {
1726 NL_SET_ERR_MSG_MOD(extack,
1727 "XDP is not supported when header-data split is enabled.");
1728 return -EOPNOTSUPP;
1729 }
1730
1731 if (priv->rx_cfg.packet_buffer_size != SZ_2K) {
1732 NL_SET_ERR_MSG_FMT_MOD(extack,
1733 "XDP is not supported for Rx buf len %d, only %d supported.",
1734 priv->rx_cfg.packet_buffer_size, SZ_2K);
1735 return -EOPNOTSUPP;
1736 }
1737
1738 max_xdp_mtu = priv->rx_cfg.packet_buffer_size - sizeof(struct ethhdr);
1739 if (priv->queue_format == GVE_GQI_QPL_FORMAT)
1740 max_xdp_mtu -= GVE_RX_PAD;
1741
1742 if (dev->mtu > max_xdp_mtu) {
1743 NL_SET_ERR_MSG_FMT_MOD(extack,
1744 "XDP is not supported for mtu %d.",
1745 dev->mtu);
1746 return -EOPNOTSUPP;
1747 }
1748
1749 if (priv->rx_cfg.num_queues != priv->tx_cfg.num_queues ||
1750 (2 * priv->tx_cfg.num_queues > priv->tx_cfg.max_queues)) {
1751 netdev_warn(dev,
1752 "XDP load failed: The number of configured RX queues %d should be equal to the number of configured TX queues %d and the number of configured RX/TX queues should be less than or equal to half the maximum number of RX/TX queues %d.",
1753 priv->rx_cfg.num_queues, priv->tx_cfg.num_queues,
1754 priv->tx_cfg.max_queues);
1755 NL_SET_ERR_MSG_MOD(extack,
1756 "XDP load failed: The number of configured RX queues should be equal to the number of configured TX queues and the number of configured RX/TX queues should be less than or equal to half the maximum number of RX/TX queues");
1757 return -EINVAL;
1758 }
1759 return 0;
1760 }
1761
gve_xdp(struct net_device * dev,struct netdev_bpf * xdp)1762 static int gve_xdp(struct net_device *dev, struct netdev_bpf *xdp)
1763 {
1764 struct gve_priv *priv = netdev_priv(dev);
1765 int err;
1766
1767 err = gve_verify_xdp_configuration(dev, xdp->extack);
1768 if (err)
1769 return err;
1770 switch (xdp->command) {
1771 case XDP_SETUP_PROG:
1772 return gve_set_xdp(priv, xdp->prog, xdp->extack);
1773 case XDP_SETUP_XSK_POOL:
1774 if (xdp->xsk.pool)
1775 return gve_xsk_pool_enable(dev, xdp->xsk.pool, xdp->xsk.queue_id);
1776 else
1777 return gve_xsk_pool_disable(dev, xdp->xsk.queue_id);
1778 default:
1779 return -EINVAL;
1780 }
1781 }
1782
gve_init_rss_config(struct gve_priv * priv,u16 num_queues)1783 int gve_init_rss_config(struct gve_priv *priv, u16 num_queues)
1784 {
1785 struct gve_rss_config *rss_config = &priv->rss_config;
1786 struct ethtool_rxfh_param rxfh = {0};
1787 u16 i;
1788
1789 if (!priv->cache_rss_config)
1790 return 0;
1791
1792 for (i = 0; i < priv->rss_lut_size; i++)
1793 rss_config->hash_lut[i] =
1794 ethtool_rxfh_indir_default(i, num_queues);
1795
1796 netdev_rss_key_fill(rss_config->hash_key, priv->rss_key_size);
1797
1798 rxfh.hfunc = ETH_RSS_HASH_TOP;
1799
1800 return gve_adminq_configure_rss(priv, &rxfh);
1801 }
1802
gve_flow_rules_reset(struct gve_priv * priv)1803 int gve_flow_rules_reset(struct gve_priv *priv)
1804 {
1805 if (!priv->max_flow_rules)
1806 return 0;
1807
1808 return gve_adminq_reset_flow_rules(priv);
1809 }
1810
gve_adjust_config(struct gve_priv * priv,struct gve_tx_alloc_rings_cfg * tx_alloc_cfg,struct gve_rx_alloc_rings_cfg * rx_alloc_cfg)1811 int gve_adjust_config(struct gve_priv *priv,
1812 struct gve_tx_alloc_rings_cfg *tx_alloc_cfg,
1813 struct gve_rx_alloc_rings_cfg *rx_alloc_cfg)
1814 {
1815 int err;
1816
1817 /* Allocate resources for the new configuration */
1818 err = gve_queues_mem_alloc(priv, tx_alloc_cfg, rx_alloc_cfg);
1819 if (err) {
1820 netif_err(priv, drv, priv->dev,
1821 "Adjust config failed to alloc new queues");
1822 return err;
1823 }
1824
1825 /* Teardown the device and free existing resources */
1826 err = gve_close(priv->dev);
1827 if (err) {
1828 netif_err(priv, drv, priv->dev,
1829 "Adjust config failed to close old queues");
1830 gve_queues_mem_free(priv, tx_alloc_cfg, rx_alloc_cfg);
1831 return err;
1832 }
1833
1834 /* Bring the device back up again with the new resources. */
1835 err = gve_queues_start(priv, tx_alloc_cfg, rx_alloc_cfg);
1836 if (err) {
1837 netif_err(priv, drv, priv->dev,
1838 "Adjust config failed to start new queues, !!! DISABLING ALL QUEUES !!!\n");
1839 /* No need to free on error: ownership of resources is lost after
1840 * calling gve_queues_start.
1841 */
1842 gve_turndown(priv);
1843 return err;
1844 }
1845
1846 return 0;
1847 }
1848
gve_adjust_queues(struct gve_priv * priv,struct gve_rx_queue_config new_rx_config,struct gve_tx_queue_config new_tx_config,bool reset_rss)1849 int gve_adjust_queues(struct gve_priv *priv,
1850 struct gve_rx_queue_config new_rx_config,
1851 struct gve_tx_queue_config new_tx_config,
1852 bool reset_rss)
1853 {
1854 struct gve_tx_alloc_rings_cfg tx_alloc_cfg = {0};
1855 struct gve_rx_alloc_rings_cfg rx_alloc_cfg = {0};
1856 int err;
1857
1858 gve_get_curr_alloc_cfgs(priv, &tx_alloc_cfg, &rx_alloc_cfg);
1859
1860 /* Relay the new config from ethtool */
1861 tx_alloc_cfg.qcfg = &new_tx_config;
1862 rx_alloc_cfg.qcfg_tx = &new_tx_config;
1863 rx_alloc_cfg.qcfg_rx = &new_rx_config;
1864 rx_alloc_cfg.reset_rss = reset_rss;
1865
1866 if (netif_running(priv->dev)) {
1867 err = gve_adjust_config(priv, &tx_alloc_cfg, &rx_alloc_cfg);
1868 return err;
1869 }
1870 /* Set the config for the next up. */
1871 if (reset_rss) {
1872 err = gve_init_rss_config(priv, new_rx_config.num_queues);
1873 if (err)
1874 return err;
1875 }
1876 priv->tx_cfg = new_tx_config;
1877 priv->rx_cfg = new_rx_config;
1878
1879 return 0;
1880 }
1881
gve_turndown(struct gve_priv * priv)1882 static void gve_turndown(struct gve_priv *priv)
1883 {
1884 int idx;
1885
1886 if (netif_carrier_ok(priv->dev))
1887 netif_carrier_off(priv->dev);
1888
1889 if (!gve_get_napi_enabled(priv))
1890 return;
1891
1892 /* Disable napi to prevent more work from coming in */
1893 for (idx = 0; idx < gve_num_tx_queues(priv); idx++) {
1894 int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx);
1895 struct gve_notify_block *block = &priv->ntfy_blocks[ntfy_idx];
1896
1897 if (!gve_tx_was_added_to_block(priv, idx))
1898 continue;
1899
1900 if (idx < priv->tx_cfg.num_queues)
1901 netif_queue_set_napi(priv->dev, idx,
1902 NETDEV_QUEUE_TYPE_TX, NULL);
1903
1904 napi_disable_locked(&block->napi);
1905 }
1906 for (idx = 0; idx < priv->rx_cfg.num_queues; idx++) {
1907 int ntfy_idx = gve_rx_idx_to_ntfy(priv, idx);
1908 struct gve_notify_block *block = &priv->ntfy_blocks[ntfy_idx];
1909
1910 if (!gve_rx_was_added_to_block(priv, idx))
1911 continue;
1912
1913 netif_queue_set_napi(priv->dev, idx, NETDEV_QUEUE_TYPE_RX,
1914 NULL);
1915 napi_disable_locked(&block->napi);
1916 }
1917
1918 /* Stop tx queues */
1919 netif_tx_disable(priv->dev);
1920
1921 xdp_features_clear_redirect_target_locked(priv->dev);
1922
1923 gve_clear_napi_enabled(priv);
1924 gve_clear_report_stats(priv);
1925
1926 /* Make sure that all traffic is finished processing. */
1927 synchronize_net();
1928 }
1929
gve_turnup(struct gve_priv * priv)1930 static void gve_turnup(struct gve_priv *priv)
1931 {
1932 int idx;
1933
1934 /* Start the tx queues */
1935 netif_tx_start_all_queues(priv->dev);
1936
1937 /* Enable napi and unmask interrupts for all queues */
1938 for (idx = 0; idx < gve_num_tx_queues(priv); idx++) {
1939 int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx);
1940 struct gve_notify_block *block = &priv->ntfy_blocks[ntfy_idx];
1941
1942 if (!gve_tx_was_added_to_block(priv, idx))
1943 continue;
1944
1945 napi_enable_locked(&block->napi);
1946
1947 if (idx < priv->tx_cfg.num_queues)
1948 netif_queue_set_napi(priv->dev, idx,
1949 NETDEV_QUEUE_TYPE_TX,
1950 &block->napi);
1951
1952 if (gve_is_gqi(priv)) {
1953 iowrite32be(0, gve_irq_doorbell(priv, block));
1954 } else {
1955 gve_set_itr_coalesce_usecs_dqo(priv, block,
1956 priv->tx_coalesce_usecs);
1957 }
1958
1959 /* Any descs written by the NIC before this barrier will be
1960 * handled by the one-off napi schedule below. Whereas any
1961 * descs after the barrier will generate interrupts.
1962 */
1963 mb();
1964 napi_schedule(&block->napi);
1965 }
1966 for (idx = 0; idx < priv->rx_cfg.num_queues; idx++) {
1967 int ntfy_idx = gve_rx_idx_to_ntfy(priv, idx);
1968 struct gve_notify_block *block = &priv->ntfy_blocks[ntfy_idx];
1969
1970 if (!gve_rx_was_added_to_block(priv, idx))
1971 continue;
1972
1973 napi_enable_locked(&block->napi);
1974 netif_queue_set_napi(priv->dev, idx, NETDEV_QUEUE_TYPE_RX,
1975 &block->napi);
1976
1977 if (gve_is_gqi(priv)) {
1978 iowrite32be(0, gve_irq_doorbell(priv, block));
1979 } else {
1980 gve_set_itr_coalesce_usecs_dqo(priv, block,
1981 priv->rx_coalesce_usecs);
1982 }
1983
1984 /* Any descs written by the NIC before this barrier will be
1985 * handled by the one-off napi schedule below. Whereas any
1986 * descs after the barrier will generate interrupts.
1987 */
1988 mb();
1989 napi_schedule(&block->napi);
1990 }
1991
1992 if (priv->tx_cfg.num_xdp_queues && gve_supports_xdp_xmit(priv))
1993 xdp_features_set_redirect_target_locked(priv->dev, false);
1994
1995 gve_set_napi_enabled(priv);
1996 }
1997
gve_turnup_and_check_status(struct gve_priv * priv)1998 static void gve_turnup_and_check_status(struct gve_priv *priv)
1999 {
2000 u32 status;
2001
2002 gve_turnup(priv);
2003 status = ioread32be(&priv->reg_bar0->device_status);
2004 gve_handle_link_status(priv, GVE_DEVICE_STATUS_LINK_STATUS_MASK & status);
2005 }
2006
gve_get_tx_notify_block(struct gve_priv * priv,unsigned int txqueue)2007 static struct gve_notify_block *gve_get_tx_notify_block(struct gve_priv *priv,
2008 unsigned int txqueue)
2009 {
2010 u32 ntfy_idx;
2011
2012 if (txqueue > priv->tx_cfg.num_queues)
2013 return NULL;
2014
2015 ntfy_idx = gve_tx_idx_to_ntfy(priv, txqueue);
2016 if (ntfy_idx >= priv->num_ntfy_blks)
2017 return NULL;
2018
2019 return &priv->ntfy_blocks[ntfy_idx];
2020 }
2021
gve_tx_timeout_try_q_kick(struct gve_priv * priv,unsigned int txqueue)2022 static bool gve_tx_timeout_try_q_kick(struct gve_priv *priv,
2023 unsigned int txqueue)
2024 {
2025 struct gve_notify_block *block;
2026 u32 current_time;
2027
2028 block = gve_get_tx_notify_block(priv, txqueue);
2029
2030 if (!block)
2031 return false;
2032
2033 current_time = jiffies_to_msecs(jiffies);
2034 if (block->tx->last_kick_msec + MIN_TX_TIMEOUT_GAP > current_time)
2035 return false;
2036
2037 netdev_info(priv->dev, "Kicking queue %d", txqueue);
2038 napi_schedule(&block->napi);
2039 block->tx->last_kick_msec = current_time;
2040 return true;
2041 }
2042
gve_tx_timeout(struct net_device * dev,unsigned int txqueue)2043 static void gve_tx_timeout(struct net_device *dev, unsigned int txqueue)
2044 {
2045 struct gve_notify_block *block;
2046 struct gve_priv *priv;
2047
2048 netdev_info(dev, "Timeout on tx queue, %d", txqueue);
2049 priv = netdev_priv(dev);
2050
2051 if (!gve_tx_timeout_try_q_kick(priv, txqueue))
2052 gve_schedule_reset(priv);
2053
2054 block = gve_get_tx_notify_block(priv, txqueue);
2055 if (block)
2056 block->tx->queue_timeout++;
2057 priv->tx_timeo_cnt++;
2058 }
2059
2060 /* Header split is only supported on DQ RDA queue format. If XDP is enabled,
2061 * header split is not allowed.
2062 */
gve_header_split_supported(const struct gve_priv * priv)2063 bool gve_header_split_supported(const struct gve_priv *priv)
2064 {
2065 return priv->header_buf_size &&
2066 priv->queue_format == GVE_DQO_RDA_FORMAT && !priv->xdp_prog;
2067 }
2068
gve_set_rx_buf_len_config(struct gve_priv * priv,u32 rx_buf_len,struct netlink_ext_ack * extack,struct gve_rx_alloc_rings_cfg * rx_alloc_cfg)2069 int gve_set_rx_buf_len_config(struct gve_priv *priv, u32 rx_buf_len,
2070 struct netlink_ext_ack *extack,
2071 struct gve_rx_alloc_rings_cfg *rx_alloc_cfg)
2072 {
2073 u32 old_rx_buf_len = rx_alloc_cfg->packet_buffer_size;
2074
2075 if (rx_buf_len == old_rx_buf_len)
2076 return 0;
2077
2078 /* device options may not always contain support for 4K buffers */
2079 if (!gve_is_dqo(priv) || priv->max_rx_buffer_size < SZ_4K) {
2080 NL_SET_ERR_MSG_MOD(extack,
2081 "Modifying Rx buf len is not supported");
2082 return -EOPNOTSUPP;
2083 }
2084
2085 if (priv->xdp_prog && rx_buf_len != SZ_2K) {
2086 NL_SET_ERR_MSG_MOD(extack,
2087 "Rx buf len can only be 2048 when XDP is on");
2088 return -EINVAL;
2089 }
2090
2091 if (rx_buf_len != SZ_2K && rx_buf_len != SZ_4K) {
2092 NL_SET_ERR_MSG_MOD(extack,
2093 "Rx buf len can only be 2048 or 4096");
2094 return -EINVAL;
2095 }
2096 rx_alloc_cfg->packet_buffer_size = rx_buf_len;
2097
2098 return 0;
2099 }
2100
gve_set_hsplit_config(struct gve_priv * priv,u8 tcp_data_split,struct gve_rx_alloc_rings_cfg * rx_alloc_cfg)2101 int gve_set_hsplit_config(struct gve_priv *priv, u8 tcp_data_split,
2102 struct gve_rx_alloc_rings_cfg *rx_alloc_cfg)
2103 {
2104 bool enable_hdr_split;
2105
2106 if (tcp_data_split == ETHTOOL_TCP_DATA_SPLIT_UNKNOWN)
2107 return 0;
2108
2109 if (!gve_header_split_supported(priv)) {
2110 dev_err(&priv->pdev->dev, "Header-split not supported\n");
2111 return -EOPNOTSUPP;
2112 }
2113
2114 if (tcp_data_split == ETHTOOL_TCP_DATA_SPLIT_ENABLED)
2115 enable_hdr_split = true;
2116 else
2117 enable_hdr_split = false;
2118
2119 if (enable_hdr_split == priv->header_split_enabled)
2120 return 0;
2121
2122 rx_alloc_cfg->enable_header_split = enable_hdr_split;
2123
2124 return 0;
2125 }
2126
gve_set_features(struct net_device * netdev,netdev_features_t features)2127 static int gve_set_features(struct net_device *netdev,
2128 netdev_features_t features)
2129 {
2130 const netdev_features_t orig_features = netdev->features;
2131 struct gve_tx_alloc_rings_cfg tx_alloc_cfg = {0};
2132 struct gve_rx_alloc_rings_cfg rx_alloc_cfg = {0};
2133 struct gve_priv *priv = netdev_priv(netdev);
2134 int err;
2135
2136 gve_get_curr_alloc_cfgs(priv, &tx_alloc_cfg, &rx_alloc_cfg);
2137
2138 if ((netdev->features & NETIF_F_LRO) != (features & NETIF_F_LRO)) {
2139 netdev->features ^= NETIF_F_LRO;
2140 if (priv->xdp_prog && (netdev->features & NETIF_F_LRO)) {
2141 netdev_warn(netdev,
2142 "XDP is not supported when LRO is on.\n");
2143 err = -EOPNOTSUPP;
2144 goto revert_features;
2145 }
2146 if (netif_running(netdev)) {
2147 err = gve_adjust_config(priv, &tx_alloc_cfg, &rx_alloc_cfg);
2148 if (err)
2149 goto revert_features;
2150 }
2151 }
2152 if ((netdev->features & NETIF_F_NTUPLE) && !(features & NETIF_F_NTUPLE)) {
2153 err = gve_flow_rules_reset(priv);
2154 if (err)
2155 goto revert_features;
2156 }
2157
2158 return 0;
2159
2160 revert_features:
2161 netdev->features = orig_features;
2162 return err;
2163 }
2164
gve_get_ts_config(struct net_device * dev,struct kernel_hwtstamp_config * kernel_config)2165 static int gve_get_ts_config(struct net_device *dev,
2166 struct kernel_hwtstamp_config *kernel_config)
2167 {
2168 struct gve_priv *priv = netdev_priv(dev);
2169
2170 *kernel_config = priv->ts_config;
2171 return 0;
2172 }
2173
gve_set_ts_config(struct net_device * dev,struct kernel_hwtstamp_config * kernel_config,struct netlink_ext_ack * extack)2174 static int gve_set_ts_config(struct net_device *dev,
2175 struct kernel_hwtstamp_config *kernel_config,
2176 struct netlink_ext_ack *extack)
2177 {
2178 struct gve_priv *priv = netdev_priv(dev);
2179
2180 if (kernel_config->tx_type != HWTSTAMP_TX_OFF) {
2181 NL_SET_ERR_MSG_MOD(extack, "TX timestamping is not supported");
2182 return -ERANGE;
2183 }
2184
2185 if (kernel_config->rx_filter != HWTSTAMP_FILTER_NONE) {
2186 if (!priv->nic_ts_report) {
2187 NL_SET_ERR_MSG_MOD(extack,
2188 "RX timestamping is not supported");
2189 kernel_config->rx_filter = HWTSTAMP_FILTER_NONE;
2190 return -EOPNOTSUPP;
2191 }
2192
2193 kernel_config->rx_filter = HWTSTAMP_FILTER_ALL;
2194 }
2195
2196 priv->ts_config.rx_filter = kernel_config->rx_filter;
2197
2198 return 0;
2199 }
2200
2201 static const struct net_device_ops gve_netdev_ops = {
2202 .ndo_start_xmit = gve_start_xmit,
2203 .ndo_features_check = gve_features_check,
2204 .ndo_open = gve_open,
2205 .ndo_stop = gve_close,
2206 .ndo_get_stats64 = gve_get_stats,
2207 .ndo_tx_timeout = gve_tx_timeout,
2208 .ndo_set_features = gve_set_features,
2209 .ndo_bpf = gve_xdp,
2210 .ndo_xdp_xmit = gve_xdp_xmit,
2211 .ndo_xsk_wakeup = gve_xsk_wakeup,
2212 .ndo_hwtstamp_get = gve_get_ts_config,
2213 .ndo_hwtstamp_set = gve_set_ts_config,
2214 };
2215
gve_handle_status(struct gve_priv * priv,u32 status)2216 static void gve_handle_status(struct gve_priv *priv, u32 status)
2217 {
2218 if (GVE_DEVICE_STATUS_RESET_MASK & status) {
2219 dev_info(&priv->pdev->dev, "Device requested reset.\n");
2220 gve_set_do_reset(priv);
2221 }
2222 if (GVE_DEVICE_STATUS_REPORT_STATS_MASK & status) {
2223 priv->stats_report_trigger_cnt++;
2224 gve_set_do_report_stats(priv);
2225 }
2226 }
2227
gve_handle_reset(struct gve_priv * priv)2228 static void gve_handle_reset(struct gve_priv *priv)
2229 {
2230 /* A service task will be scheduled at the end of probe to catch any
2231 * resets that need to happen, and we don't want to reset until
2232 * probe is done.
2233 */
2234 if (gve_get_probe_in_progress(priv))
2235 return;
2236
2237 if (gve_get_do_reset(priv)) {
2238 rtnl_lock();
2239 netdev_lock(priv->dev);
2240 gve_reset(priv, false);
2241 netdev_unlock(priv->dev);
2242 rtnl_unlock();
2243 }
2244 }
2245
gve_handle_report_stats(struct gve_priv * priv)2246 void gve_handle_report_stats(struct gve_priv *priv)
2247 {
2248 struct stats *stats = priv->stats_report->stats;
2249 int idx, stats_idx = 0;
2250 unsigned int start = 0;
2251 u64 tx_bytes;
2252
2253 if (!gve_get_report_stats(priv))
2254 return;
2255
2256 be64_add_cpu(&priv->stats_report->written_count, 1);
2257 /* tx stats */
2258 if (priv->tx) {
2259 for (idx = 0; idx < gve_num_tx_queues(priv); idx++) {
2260 u32 last_completion = 0;
2261 u32 tx_frames = 0;
2262
2263 /* DQO doesn't currently support these metrics. */
2264 if (gve_is_gqi(priv)) {
2265 last_completion = priv->tx[idx].done;
2266 tx_frames = priv->tx[idx].req;
2267 }
2268
2269 do {
2270 start = u64_stats_fetch_begin(&priv->tx[idx].statss);
2271 tx_bytes = priv->tx[idx].bytes_done;
2272 } while (u64_stats_fetch_retry(&priv->tx[idx].statss, start));
2273 stats[stats_idx++] = (struct stats) {
2274 .stat_name = cpu_to_be32(TX_WAKE_CNT),
2275 .value = cpu_to_be64(priv->tx[idx].wake_queue),
2276 .queue_id = cpu_to_be32(idx),
2277 };
2278 stats[stats_idx++] = (struct stats) {
2279 .stat_name = cpu_to_be32(TX_STOP_CNT),
2280 .value = cpu_to_be64(priv->tx[idx].stop_queue),
2281 .queue_id = cpu_to_be32(idx),
2282 };
2283 stats[stats_idx++] = (struct stats) {
2284 .stat_name = cpu_to_be32(TX_FRAMES_SENT),
2285 .value = cpu_to_be64(tx_frames),
2286 .queue_id = cpu_to_be32(idx),
2287 };
2288 stats[stats_idx++] = (struct stats) {
2289 .stat_name = cpu_to_be32(TX_BYTES_SENT),
2290 .value = cpu_to_be64(tx_bytes),
2291 .queue_id = cpu_to_be32(idx),
2292 };
2293 stats[stats_idx++] = (struct stats) {
2294 .stat_name = cpu_to_be32(TX_LAST_COMPLETION_PROCESSED),
2295 .value = cpu_to_be64(last_completion),
2296 .queue_id = cpu_to_be32(idx),
2297 };
2298 stats[stats_idx++] = (struct stats) {
2299 .stat_name = cpu_to_be32(TX_TIMEOUT_CNT),
2300 .value = cpu_to_be64(priv->tx[idx].queue_timeout),
2301 .queue_id = cpu_to_be32(idx),
2302 };
2303 }
2304 }
2305 /* rx stats */
2306 if (priv->rx) {
2307 for (idx = 0; idx < priv->rx_cfg.num_queues; idx++) {
2308 stats[stats_idx++] = (struct stats) {
2309 .stat_name = cpu_to_be32(RX_NEXT_EXPECTED_SEQUENCE),
2310 .value = cpu_to_be64(priv->rx[idx].desc.seqno),
2311 .queue_id = cpu_to_be32(idx),
2312 };
2313 stats[stats_idx++] = (struct stats) {
2314 .stat_name = cpu_to_be32(RX_BUFFERS_POSTED),
2315 .value = cpu_to_be64(priv->rx[idx].fill_cnt),
2316 .queue_id = cpu_to_be32(idx),
2317 };
2318 }
2319 }
2320 }
2321
2322 /* Handle NIC status register changes, reset requests and report stats */
gve_service_task(struct work_struct * work)2323 static void gve_service_task(struct work_struct *work)
2324 {
2325 struct gve_priv *priv = container_of(work, struct gve_priv,
2326 service_task);
2327 u32 status = ioread32be(&priv->reg_bar0->device_status);
2328
2329 gve_handle_status(priv, status);
2330
2331 gve_handle_reset(priv);
2332 gve_handle_link_status(priv, GVE_DEVICE_STATUS_LINK_STATUS_MASK & status);
2333 }
2334
gve_set_netdev_xdp_features(struct gve_priv * priv)2335 static void gve_set_netdev_xdp_features(struct gve_priv *priv)
2336 {
2337 xdp_features_t xdp_features;
2338
2339 if (priv->queue_format == GVE_GQI_QPL_FORMAT) {
2340 xdp_features = NETDEV_XDP_ACT_BASIC;
2341 xdp_features |= NETDEV_XDP_ACT_REDIRECT;
2342 xdp_features |= NETDEV_XDP_ACT_XSK_ZEROCOPY;
2343 } else if (priv->queue_format == GVE_DQO_RDA_FORMAT) {
2344 xdp_features = NETDEV_XDP_ACT_BASIC;
2345 xdp_features |= NETDEV_XDP_ACT_REDIRECT;
2346 xdp_features |= NETDEV_XDP_ACT_XSK_ZEROCOPY;
2347 } else {
2348 xdp_features = 0;
2349 }
2350
2351 xdp_set_features_flag_locked(priv->dev, xdp_features);
2352 }
2353
2354 static const struct xdp_metadata_ops gve_xdp_metadata_ops = {
2355 .xmo_rx_timestamp = gve_xdp_rx_timestamp,
2356 };
2357
gve_init_priv(struct gve_priv * priv,bool skip_describe_device)2358 static int gve_init_priv(struct gve_priv *priv, bool skip_describe_device)
2359 {
2360 int num_ntfy;
2361 int err;
2362
2363 /* Set up the adminq */
2364 err = gve_adminq_alloc(&priv->pdev->dev, priv);
2365 if (err) {
2366 dev_err(&priv->pdev->dev,
2367 "Failed to alloc admin queue: err=%d\n", err);
2368 return err;
2369 }
2370
2371 err = gve_verify_driver_compatibility(priv);
2372 if (err) {
2373 dev_err(&priv->pdev->dev,
2374 "Could not verify driver compatibility: err=%d\n", err);
2375 goto err;
2376 }
2377
2378 priv->num_registered_pages = 0;
2379
2380 if (skip_describe_device)
2381 goto setup_device;
2382
2383 priv->queue_format = GVE_QUEUE_FORMAT_UNSPECIFIED;
2384 /* Get the initial information we need from the device */
2385 err = gve_adminq_describe_device(priv);
2386 if (err) {
2387 dev_err(&priv->pdev->dev,
2388 "Could not get device information: err=%d\n", err);
2389 goto err;
2390 }
2391 priv->dev->mtu = priv->dev->max_mtu;
2392 num_ntfy = pci_msix_vec_count(priv->pdev);
2393 if (num_ntfy <= 0) {
2394 dev_err(&priv->pdev->dev,
2395 "could not count MSI-x vectors: err=%d\n", num_ntfy);
2396 err = num_ntfy;
2397 goto err;
2398 } else if (num_ntfy < GVE_MIN_MSIX) {
2399 dev_err(&priv->pdev->dev, "gve needs at least %d MSI-x vectors, but only has %d\n",
2400 GVE_MIN_MSIX, num_ntfy);
2401 err = -EINVAL;
2402 goto err;
2403 }
2404
2405 /* Big TCP is only supported on DQO */
2406 if (!gve_is_gqi(priv))
2407 netif_set_tso_max_size(priv->dev, GVE_DQO_TX_MAX);
2408
2409 priv->rx_copybreak = GVE_DEFAULT_RX_COPYBREAK;
2410 /* gvnic has one Notification Block per MSI-x vector, except for the
2411 * management vector
2412 */
2413 priv->num_ntfy_blks = (num_ntfy - 1) & ~0x1;
2414 priv->mgmt_msix_idx = priv->num_ntfy_blks;
2415 priv->numa_node = dev_to_node(&priv->pdev->dev);
2416
2417 priv->tx_cfg.max_queues =
2418 min_t(int, priv->tx_cfg.max_queues, priv->num_ntfy_blks / 2);
2419 priv->rx_cfg.max_queues =
2420 min_t(int, priv->rx_cfg.max_queues, priv->num_ntfy_blks / 2);
2421
2422 priv->tx_cfg.num_queues = priv->tx_cfg.max_queues;
2423 priv->rx_cfg.num_queues = priv->rx_cfg.max_queues;
2424 if (priv->default_num_queues > 0) {
2425 priv->tx_cfg.num_queues = min_t(int, priv->default_num_queues,
2426 priv->tx_cfg.num_queues);
2427 priv->rx_cfg.num_queues = min_t(int, priv->default_num_queues,
2428 priv->rx_cfg.num_queues);
2429 }
2430 priv->tx_cfg.num_xdp_queues = 0;
2431
2432 dev_info(&priv->pdev->dev, "TX queues %d, RX queues %d\n",
2433 priv->tx_cfg.num_queues, priv->rx_cfg.num_queues);
2434 dev_info(&priv->pdev->dev, "Max TX queues %d, Max RX queues %d\n",
2435 priv->tx_cfg.max_queues, priv->rx_cfg.max_queues);
2436
2437 if (!gve_is_gqi(priv)) {
2438 priv->tx_coalesce_usecs = GVE_TX_IRQ_RATELIMIT_US_DQO;
2439 priv->rx_coalesce_usecs = GVE_RX_IRQ_RATELIMIT_US_DQO;
2440 }
2441
2442 priv->ts_config.tx_type = HWTSTAMP_TX_OFF;
2443 priv->ts_config.rx_filter = HWTSTAMP_FILTER_NONE;
2444
2445 setup_device:
2446 priv->xsk_pools = bitmap_zalloc(priv->rx_cfg.max_queues, GFP_KERNEL);
2447 if (!priv->xsk_pools) {
2448 err = -ENOMEM;
2449 goto err;
2450 }
2451
2452 gve_set_netdev_xdp_features(priv);
2453 if (!gve_is_gqi(priv))
2454 priv->dev->xdp_metadata_ops = &gve_xdp_metadata_ops;
2455
2456 err = gve_setup_device_resources(priv);
2457 if (err)
2458 goto err_free_xsk_bitmap;
2459
2460 return 0;
2461
2462 err_free_xsk_bitmap:
2463 bitmap_free(priv->xsk_pools);
2464 priv->xsk_pools = NULL;
2465 err:
2466 gve_adminq_free(&priv->pdev->dev, priv);
2467 return err;
2468 }
2469
gve_teardown_priv_resources(struct gve_priv * priv)2470 static void gve_teardown_priv_resources(struct gve_priv *priv)
2471 {
2472 gve_teardown_device_resources(priv);
2473 gve_adminq_free(&priv->pdev->dev, priv);
2474 bitmap_free(priv->xsk_pools);
2475 priv->xsk_pools = NULL;
2476 }
2477
gve_trigger_reset(struct gve_priv * priv)2478 static void gve_trigger_reset(struct gve_priv *priv)
2479 {
2480 /* Reset the device by releasing the AQ */
2481 gve_adminq_release(priv);
2482 }
2483
gve_reset_and_teardown(struct gve_priv * priv,bool was_up)2484 static void gve_reset_and_teardown(struct gve_priv *priv, bool was_up)
2485 {
2486 gve_trigger_reset(priv);
2487 /* With the reset having already happened, close cannot fail */
2488 if (was_up)
2489 gve_close(priv->dev);
2490 gve_teardown_priv_resources(priv);
2491 }
2492
gve_reset_recovery(struct gve_priv * priv,bool was_up)2493 static int gve_reset_recovery(struct gve_priv *priv, bool was_up)
2494 {
2495 int err;
2496
2497 err = gve_init_priv(priv, true);
2498 if (err)
2499 goto err;
2500 if (was_up) {
2501 err = gve_open(priv->dev);
2502 if (err)
2503 goto err;
2504 }
2505 return 0;
2506 err:
2507 dev_err(&priv->pdev->dev, "Reset failed! !!! DISABLING ALL QUEUES !!!\n");
2508 gve_turndown(priv);
2509 return err;
2510 }
2511
gve_reset(struct gve_priv * priv,bool attempt_teardown)2512 int gve_reset(struct gve_priv *priv, bool attempt_teardown)
2513 {
2514 bool was_up = netif_running(priv->dev);
2515 int err;
2516
2517 dev_info(&priv->pdev->dev, "Performing reset\n");
2518 gve_clear_do_reset(priv);
2519 gve_set_reset_in_progress(priv);
2520 /* If we aren't attempting to teardown normally, just go turndown and
2521 * reset right away.
2522 */
2523 if (!attempt_teardown) {
2524 gve_turndown(priv);
2525 gve_reset_and_teardown(priv, was_up);
2526 } else {
2527 /* Otherwise attempt to close normally */
2528 if (was_up) {
2529 err = gve_close(priv->dev);
2530 /* If that fails reset as we did above */
2531 if (err)
2532 gve_reset_and_teardown(priv, was_up);
2533 }
2534 /* Clean up any remaining resources */
2535 gve_teardown_priv_resources(priv);
2536 }
2537
2538 /* Set it all back up */
2539 err = gve_reset_recovery(priv, was_up);
2540 gve_clear_reset_in_progress(priv);
2541 priv->reset_cnt++;
2542 priv->interface_up_cnt = 0;
2543 priv->interface_down_cnt = 0;
2544 priv->stats_report_trigger_cnt = 0;
2545 return err;
2546 }
2547
gve_write_version(u8 __iomem * driver_version_register)2548 static void gve_write_version(u8 __iomem *driver_version_register)
2549 {
2550 const char *c = gve_version_prefix;
2551
2552 while (*c) {
2553 writeb(*c, driver_version_register);
2554 c++;
2555 }
2556
2557 c = gve_version_str;
2558 while (*c) {
2559 writeb(*c, driver_version_register);
2560 c++;
2561 }
2562 writeb('\n', driver_version_register);
2563 }
2564
gve_rx_queue_stop(struct net_device * dev,void * per_q_mem,int idx)2565 static int gve_rx_queue_stop(struct net_device *dev, void *per_q_mem, int idx)
2566 {
2567 struct gve_priv *priv = netdev_priv(dev);
2568 struct gve_rx_ring *gve_per_q_mem;
2569 int err;
2570
2571 if (!priv->rx)
2572 return -EAGAIN;
2573
2574 /* Destroying queue 0 while other queues exist is not supported in DQO */
2575 if (!gve_is_gqi(priv) && idx == 0)
2576 return -ERANGE;
2577
2578 /* Single-queue destruction requires quiescence on all queues */
2579 gve_turndown(priv);
2580
2581 /* This failure will trigger a reset - no need to clean up */
2582 err = gve_adminq_destroy_single_rx_queue(priv, idx);
2583 if (err)
2584 return err;
2585
2586 if (gve_is_qpl(priv)) {
2587 /* This failure will trigger a reset - no need to clean up */
2588 err = gve_unregister_qpl(priv, gve_rx_get_qpl(priv, idx));
2589 if (err)
2590 return err;
2591 }
2592
2593 gve_rx_stop_ring(priv, idx);
2594
2595 /* Turn the unstopped queues back up */
2596 gve_turnup_and_check_status(priv);
2597
2598 gve_per_q_mem = (struct gve_rx_ring *)per_q_mem;
2599 *gve_per_q_mem = priv->rx[idx];
2600 memset(&priv->rx[idx], 0, sizeof(priv->rx[idx]));
2601 return 0;
2602 }
2603
gve_rx_queue_mem_free(struct net_device * dev,void * per_q_mem)2604 static void gve_rx_queue_mem_free(struct net_device *dev, void *per_q_mem)
2605 {
2606 struct gve_priv *priv = netdev_priv(dev);
2607 struct gve_rx_alloc_rings_cfg cfg = {0};
2608 struct gve_rx_ring *gve_per_q_mem;
2609
2610 gve_per_q_mem = (struct gve_rx_ring *)per_q_mem;
2611 gve_rx_get_curr_alloc_cfg(priv, &cfg);
2612
2613 if (gve_is_gqi(priv))
2614 gve_rx_free_ring_gqi(priv, gve_per_q_mem, &cfg);
2615 else
2616 gve_rx_free_ring_dqo(priv, gve_per_q_mem, &cfg);
2617 }
2618
gve_rx_queue_mem_alloc(struct net_device * dev,void * per_q_mem,int idx)2619 static int gve_rx_queue_mem_alloc(struct net_device *dev, void *per_q_mem,
2620 int idx)
2621 {
2622 struct gve_priv *priv = netdev_priv(dev);
2623 struct gve_rx_alloc_rings_cfg cfg = {0};
2624 struct gve_rx_ring *gve_per_q_mem;
2625 int err;
2626
2627 if (!priv->rx)
2628 return -EAGAIN;
2629
2630 gve_per_q_mem = (struct gve_rx_ring *)per_q_mem;
2631 gve_rx_get_curr_alloc_cfg(priv, &cfg);
2632
2633 if (gve_is_gqi(priv))
2634 err = gve_rx_alloc_ring_gqi(priv, &cfg, gve_per_q_mem, idx);
2635 else
2636 err = gve_rx_alloc_ring_dqo(priv, &cfg, gve_per_q_mem, idx);
2637
2638 return err;
2639 }
2640
gve_rx_queue_start(struct net_device * dev,void * per_q_mem,int idx)2641 static int gve_rx_queue_start(struct net_device *dev, void *per_q_mem, int idx)
2642 {
2643 struct gve_priv *priv = netdev_priv(dev);
2644 struct gve_rx_ring *gve_per_q_mem;
2645 int err;
2646
2647 if (!priv->rx)
2648 return -EAGAIN;
2649
2650 gve_per_q_mem = (struct gve_rx_ring *)per_q_mem;
2651 priv->rx[idx] = *gve_per_q_mem;
2652
2653 /* Single-queue creation requires quiescence on all queues */
2654 gve_turndown(priv);
2655
2656 gve_rx_start_ring(priv, idx);
2657
2658 if (gve_is_qpl(priv)) {
2659 /* This failure will trigger a reset - no need to clean up */
2660 err = gve_register_qpl(priv, gve_rx_get_qpl(priv, idx));
2661 if (err)
2662 goto abort;
2663 }
2664
2665 /* This failure will trigger a reset - no need to clean up */
2666 err = gve_adminq_create_single_rx_queue(priv, idx);
2667 if (err)
2668 goto abort;
2669
2670 if (gve_is_gqi(priv))
2671 gve_rx_write_doorbell(priv, &priv->rx[idx]);
2672 else
2673 gve_rx_post_buffers_dqo(&priv->rx[idx]);
2674
2675 /* Turn the unstopped queues back up */
2676 gve_turnup_and_check_status(priv);
2677 return 0;
2678
2679 abort:
2680 gve_rx_stop_ring(priv, idx);
2681
2682 /* All failures in this func result in a reset, by clearing the struct
2683 * at idx, we prevent a double free when that reset runs. The reset,
2684 * which needs the rtnl lock, will not run till this func returns and
2685 * its caller gives up the lock.
2686 */
2687 memset(&priv->rx[idx], 0, sizeof(priv->rx[idx]));
2688 return err;
2689 }
2690
2691 static const struct netdev_queue_mgmt_ops gve_queue_mgmt_ops = {
2692 .ndo_queue_mem_size = sizeof(struct gve_rx_ring),
2693 .ndo_queue_mem_alloc = gve_rx_queue_mem_alloc,
2694 .ndo_queue_mem_free = gve_rx_queue_mem_free,
2695 .ndo_queue_start = gve_rx_queue_start,
2696 .ndo_queue_stop = gve_rx_queue_stop,
2697 };
2698
gve_get_rx_queue_stats(struct net_device * dev,int idx,struct netdev_queue_stats_rx * rx_stats)2699 static void gve_get_rx_queue_stats(struct net_device *dev, int idx,
2700 struct netdev_queue_stats_rx *rx_stats)
2701 {
2702 struct gve_priv *priv = netdev_priv(dev);
2703 struct gve_rx_ring *rx = &priv->rx[idx];
2704 unsigned int start;
2705
2706 do {
2707 start = u64_stats_fetch_begin(&rx->statss);
2708 rx_stats->packets = rx->rpackets;
2709 rx_stats->bytes = rx->rbytes;
2710 rx_stats->alloc_fail = rx->rx_skb_alloc_fail +
2711 rx->rx_buf_alloc_fail;
2712 } while (u64_stats_fetch_retry(&rx->statss, start));
2713 }
2714
gve_get_tx_queue_stats(struct net_device * dev,int idx,struct netdev_queue_stats_tx * tx_stats)2715 static void gve_get_tx_queue_stats(struct net_device *dev, int idx,
2716 struct netdev_queue_stats_tx *tx_stats)
2717 {
2718 struct gve_priv *priv = netdev_priv(dev);
2719 struct gve_tx_ring *tx = &priv->tx[idx];
2720 unsigned int start;
2721
2722 do {
2723 start = u64_stats_fetch_begin(&tx->statss);
2724 tx_stats->packets = tx->pkt_done;
2725 tx_stats->bytes = tx->bytes_done;
2726 } while (u64_stats_fetch_retry(&tx->statss, start));
2727 }
2728
gve_get_base_stats(struct net_device * dev,struct netdev_queue_stats_rx * rx,struct netdev_queue_stats_tx * tx)2729 static void gve_get_base_stats(struct net_device *dev,
2730 struct netdev_queue_stats_rx *rx,
2731 struct netdev_queue_stats_tx *tx)
2732 {
2733 rx->packets = 0;
2734 rx->bytes = 0;
2735 rx->alloc_fail = 0;
2736
2737 tx->packets = 0;
2738 tx->bytes = 0;
2739 }
2740
2741 static const struct netdev_stat_ops gve_stat_ops = {
2742 .get_queue_stats_rx = gve_get_rx_queue_stats,
2743 .get_queue_stats_tx = gve_get_tx_queue_stats,
2744 .get_base_stats = gve_get_base_stats,
2745 };
2746
gve_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2747 static int gve_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2748 {
2749 int max_tx_queues, max_rx_queues;
2750 struct net_device *dev;
2751 __be32 __iomem *db_bar;
2752 struct gve_registers __iomem *reg_bar;
2753 struct gve_priv *priv;
2754 int err;
2755
2756 err = pci_enable_device(pdev);
2757 if (err)
2758 return err;
2759
2760 err = pci_request_regions(pdev, gve_driver_name);
2761 if (err)
2762 goto abort_with_enabled;
2763
2764 pci_set_master(pdev);
2765
2766 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2767 if (err) {
2768 dev_err(&pdev->dev, "Failed to set dma mask: err=%d\n", err);
2769 goto abort_with_pci_region;
2770 }
2771
2772 reg_bar = pci_iomap(pdev, GVE_REGISTER_BAR, 0);
2773 if (!reg_bar) {
2774 dev_err(&pdev->dev, "Failed to map pci bar!\n");
2775 err = -ENOMEM;
2776 goto abort_with_pci_region;
2777 }
2778
2779 db_bar = pci_iomap(pdev, GVE_DOORBELL_BAR, 0);
2780 if (!db_bar) {
2781 dev_err(&pdev->dev, "Failed to map doorbell bar!\n");
2782 err = -ENOMEM;
2783 goto abort_with_reg_bar;
2784 }
2785
2786 gve_write_version(®_bar->driver_version);
2787 /* Get max queues to alloc etherdev */
2788 max_tx_queues = ioread32be(®_bar->max_tx_queues);
2789 max_rx_queues = ioread32be(®_bar->max_rx_queues);
2790 /* Alloc and setup the netdev and priv */
2791 dev = alloc_etherdev_mqs(sizeof(*priv), max_tx_queues, max_rx_queues);
2792 if (!dev) {
2793 dev_err(&pdev->dev, "could not allocate netdev\n");
2794 err = -ENOMEM;
2795 goto abort_with_db_bar;
2796 }
2797 SET_NETDEV_DEV(dev, &pdev->dev);
2798 pci_set_drvdata(pdev, dev);
2799 dev->ethtool_ops = &gve_ethtool_ops;
2800 dev->netdev_ops = &gve_netdev_ops;
2801 dev->queue_mgmt_ops = &gve_queue_mgmt_ops;
2802 dev->stat_ops = &gve_stat_ops;
2803
2804 /* Set default and supported features.
2805 *
2806 * Features might be set in other locations as well (such as
2807 * `gve_adminq_describe_device`).
2808 */
2809 dev->hw_features = NETIF_F_HIGHDMA;
2810 dev->hw_features |= NETIF_F_SG;
2811 dev->hw_features |= NETIF_F_HW_CSUM;
2812 dev->hw_features |= NETIF_F_TSO;
2813 dev->hw_features |= NETIF_F_TSO6;
2814 dev->hw_features |= NETIF_F_TSO_ECN;
2815 dev->hw_features |= NETIF_F_RXCSUM;
2816 dev->hw_features |= NETIF_F_RXHASH;
2817 dev->features = dev->hw_features;
2818 dev->watchdog_timeo = 5 * HZ;
2819 dev->min_mtu = ETH_MIN_MTU;
2820 netif_carrier_off(dev);
2821
2822 priv = netdev_priv(dev);
2823 priv->dev = dev;
2824 priv->pdev = pdev;
2825 priv->msg_enable = DEFAULT_MSG_LEVEL;
2826 priv->reg_bar0 = reg_bar;
2827 priv->db_bar2 = db_bar;
2828 priv->service_task_flags = 0x0;
2829 priv->state_flags = 0x0;
2830 priv->ethtool_flags = 0x0;
2831 priv->rx_cfg.packet_buffer_size = GVE_DEFAULT_RX_BUFFER_SIZE;
2832 priv->max_rx_buffer_size = GVE_DEFAULT_RX_BUFFER_SIZE;
2833
2834 gve_set_probe_in_progress(priv);
2835 priv->gve_wq = alloc_ordered_workqueue("gve", 0);
2836 if (!priv->gve_wq) {
2837 dev_err(&pdev->dev, "Could not allocate workqueue");
2838 err = -ENOMEM;
2839 goto abort_with_netdev;
2840 }
2841 INIT_WORK(&priv->service_task, gve_service_task);
2842 INIT_WORK(&priv->stats_report_task, gve_stats_report_task);
2843 priv->tx_cfg.max_queues = max_tx_queues;
2844 priv->rx_cfg.max_queues = max_rx_queues;
2845
2846 err = gve_init_priv(priv, false);
2847 if (err)
2848 goto abort_with_wq;
2849
2850 if (!gve_is_gqi(priv) && !gve_is_qpl(priv))
2851 dev->netmem_tx = true;
2852
2853 err = register_netdev(dev);
2854 if (err)
2855 goto abort_with_gve_init;
2856
2857 dev_info(&pdev->dev, "GVE version %s\n", gve_version_str);
2858 dev_info(&pdev->dev, "GVE queue format %d\n", (int)priv->queue_format);
2859 gve_clear_probe_in_progress(priv);
2860 queue_work(priv->gve_wq, &priv->service_task);
2861 return 0;
2862
2863 abort_with_gve_init:
2864 gve_teardown_priv_resources(priv);
2865
2866 abort_with_wq:
2867 destroy_workqueue(priv->gve_wq);
2868
2869 abort_with_netdev:
2870 free_netdev(dev);
2871
2872 abort_with_db_bar:
2873 pci_iounmap(pdev, db_bar);
2874
2875 abort_with_reg_bar:
2876 pci_iounmap(pdev, reg_bar);
2877
2878 abort_with_pci_region:
2879 pci_release_regions(pdev);
2880
2881 abort_with_enabled:
2882 pci_disable_device(pdev);
2883 return err;
2884 }
2885
gve_remove(struct pci_dev * pdev)2886 static void gve_remove(struct pci_dev *pdev)
2887 {
2888 struct net_device *netdev = pci_get_drvdata(pdev);
2889 struct gve_priv *priv = netdev_priv(netdev);
2890 __be32 __iomem *db_bar = priv->db_bar2;
2891 void __iomem *reg_bar = priv->reg_bar0;
2892
2893 unregister_netdev(netdev);
2894 gve_teardown_priv_resources(priv);
2895 destroy_workqueue(priv->gve_wq);
2896 free_netdev(netdev);
2897 pci_iounmap(pdev, db_bar);
2898 pci_iounmap(pdev, reg_bar);
2899 pci_release_regions(pdev);
2900 pci_disable_device(pdev);
2901 }
2902
gve_shutdown(struct pci_dev * pdev)2903 static void gve_shutdown(struct pci_dev *pdev)
2904 {
2905 struct net_device *netdev = pci_get_drvdata(pdev);
2906 struct gve_priv *priv = netdev_priv(netdev);
2907 bool was_up = netif_running(priv->dev);
2908
2909 netif_device_detach(netdev);
2910
2911 rtnl_lock();
2912 netdev_lock(netdev);
2913 if (was_up && gve_close(priv->dev)) {
2914 /* If the dev was up, attempt to close, if close fails, reset */
2915 gve_reset_and_teardown(priv, was_up);
2916 } else {
2917 /* If the dev wasn't up or close worked, finish tearing down */
2918 gve_teardown_priv_resources(priv);
2919 }
2920 netdev_unlock(netdev);
2921 rtnl_unlock();
2922 }
2923
2924 #ifdef CONFIG_PM
gve_suspend(struct pci_dev * pdev,pm_message_t state)2925 static int gve_suspend(struct pci_dev *pdev, pm_message_t state)
2926 {
2927 struct net_device *netdev = pci_get_drvdata(pdev);
2928 struct gve_priv *priv = netdev_priv(netdev);
2929 bool was_up = netif_running(priv->dev);
2930
2931 priv->suspend_cnt++;
2932 rtnl_lock();
2933 netdev_lock(netdev);
2934 if (was_up && gve_close(priv->dev)) {
2935 /* If the dev was up, attempt to close, if close fails, reset */
2936 gve_reset_and_teardown(priv, was_up);
2937 } else {
2938 /* If the dev wasn't up or close worked, finish tearing down */
2939 gve_teardown_priv_resources(priv);
2940 }
2941 priv->up_before_suspend = was_up;
2942 netdev_unlock(netdev);
2943 rtnl_unlock();
2944 return 0;
2945 }
2946
gve_resume(struct pci_dev * pdev)2947 static int gve_resume(struct pci_dev *pdev)
2948 {
2949 struct net_device *netdev = pci_get_drvdata(pdev);
2950 struct gve_priv *priv = netdev_priv(netdev);
2951 int err;
2952
2953 priv->resume_cnt++;
2954 rtnl_lock();
2955 netdev_lock(netdev);
2956 err = gve_reset_recovery(priv, priv->up_before_suspend);
2957 netdev_unlock(netdev);
2958 rtnl_unlock();
2959 return err;
2960 }
2961 #endif /* CONFIG_PM */
2962
2963 static const struct pci_device_id gve_id_table[] = {
2964 { PCI_DEVICE(PCI_VENDOR_ID_GOOGLE, PCI_DEV_ID_GVNIC) },
2965 { }
2966 };
2967
2968 static struct pci_driver gve_driver = {
2969 .name = gve_driver_name,
2970 .id_table = gve_id_table,
2971 .probe = gve_probe,
2972 .remove = gve_remove,
2973 .shutdown = gve_shutdown,
2974 #ifdef CONFIG_PM
2975 .suspend = gve_suspend,
2976 .resume = gve_resume,
2977 #endif
2978 };
2979
2980 module_pci_driver(gve_driver);
2981
2982 MODULE_DEVICE_TABLE(pci, gve_id_table);
2983 MODULE_AUTHOR("Google, Inc.");
2984 MODULE_DESCRIPTION("Google Virtual NIC Driver");
2985 MODULE_LICENSE("Dual MIT/GPL");
2986 MODULE_VERSION(GVE_VERSION);
2987