1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
2 /*
3 * Copyright 2015-2020 Amazon.com, Inc. or its affiliates. All rights reserved.
4 */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/ethtool.h>
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/numa.h>
12 #include <linux/pci.h>
13 #include <linux/utsname.h>
14 #include <linux/version.h>
15 #include <linux/vmalloc.h>
16 #include <net/ip.h>
17
18 #include "ena_netdev.h"
19 #include "ena_pci_id_tbl.h"
20 #include "ena_xdp.h"
21
22 MODULE_AUTHOR("Amazon.com, Inc. or its affiliates");
23 MODULE_DESCRIPTION(DEVICE_NAME);
24 MODULE_LICENSE("GPL");
25
26 /* Time in jiffies before concluding the transmitter is hung. */
27 #define TX_TIMEOUT (5 * HZ)
28
29 #define ENA_MAX_RINGS min_t(unsigned int, ENA_MAX_NUM_IO_QUEUES, num_possible_cpus())
30
31 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | \
32 NETIF_MSG_IFDOWN | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR)
33
34 static struct ena_aenq_handlers aenq_handlers;
35
36 static struct workqueue_struct *ena_wq;
37
38 MODULE_DEVICE_TABLE(pci, ena_pci_tbl);
39
40 static int ena_rss_init_default(struct ena_adapter *adapter);
41 static void check_for_admin_com_state(struct ena_adapter *adapter);
42 static int ena_destroy_device(struct ena_adapter *adapter, bool graceful);
43 static int ena_restore_device(struct ena_adapter *adapter);
44
ena_tx_timeout(struct net_device * dev,unsigned int txqueue)45 static void ena_tx_timeout(struct net_device *dev, unsigned int txqueue)
46 {
47 enum ena_regs_reset_reason_types reset_reason = ENA_REGS_RESET_OS_NETDEV_WD;
48 struct ena_adapter *adapter = netdev_priv(dev);
49 unsigned int time_since_last_napi, threshold;
50 struct ena_ring *tx_ring;
51 int napi_scheduled;
52
53 if (txqueue >= adapter->num_io_queues) {
54 netdev_err(dev, "TX timeout on invalid queue %u\n", txqueue);
55 goto schedule_reset;
56 }
57
58 threshold = jiffies_to_usecs(dev->watchdog_timeo);
59 tx_ring = &adapter->tx_ring[txqueue];
60
61 time_since_last_napi = jiffies_to_usecs(jiffies - tx_ring->tx_stats.last_napi_jiffies);
62 napi_scheduled = !!(tx_ring->napi->state & NAPIF_STATE_SCHED);
63
64 netdev_err(dev,
65 "TX q %d is paused for too long (threshold %u). Time since last napi %u usec. napi scheduled: %d\n",
66 txqueue,
67 threshold,
68 time_since_last_napi,
69 napi_scheduled);
70
71 if (threshold < time_since_last_napi && napi_scheduled) {
72 netdev_err(dev,
73 "napi handler hasn't been called for a long time but is scheduled\n");
74 reset_reason = ENA_REGS_RESET_SUSPECTED_POLL_STARVATION;
75 }
76 schedule_reset:
77 /* Change the state of the device to trigger reset
78 * Check that we are not in the middle or a trigger already
79 */
80 if (test_and_set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
81 return;
82
83 ena_reset_device(adapter, reset_reason);
84 ena_increase_stat(&adapter->dev_stats.tx_timeout, 1, &adapter->syncp);
85 }
86
update_rx_ring_mtu(struct ena_adapter * adapter,int mtu)87 static void update_rx_ring_mtu(struct ena_adapter *adapter, int mtu)
88 {
89 int i;
90
91 for (i = 0; i < adapter->num_io_queues; i++)
92 adapter->rx_ring[i].mtu = mtu;
93 }
94
ena_change_mtu(struct net_device * dev,int new_mtu)95 static int ena_change_mtu(struct net_device *dev, int new_mtu)
96 {
97 struct ena_adapter *adapter = netdev_priv(dev);
98 int ret;
99
100 ret = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
101 if (!ret) {
102 netif_dbg(adapter, drv, dev, "Set MTU to %d\n", new_mtu);
103 update_rx_ring_mtu(adapter, new_mtu);
104 WRITE_ONCE(dev->mtu, new_mtu);
105 } else {
106 netif_err(adapter, drv, dev, "Failed to set MTU to %d\n",
107 new_mtu);
108 }
109
110 return ret;
111 }
112
ena_xmit_common(struct ena_adapter * adapter,struct ena_ring * ring,struct ena_tx_buffer * tx_info,struct ena_com_tx_ctx * ena_tx_ctx,u16 next_to_use,u32 bytes)113 int ena_xmit_common(struct ena_adapter *adapter,
114 struct ena_ring *ring,
115 struct ena_tx_buffer *tx_info,
116 struct ena_com_tx_ctx *ena_tx_ctx,
117 u16 next_to_use,
118 u32 bytes)
119 {
120 int rc, nb_hw_desc;
121
122 if (unlikely(ena_com_is_doorbell_needed(ring->ena_com_io_sq,
123 ena_tx_ctx))) {
124 netif_dbg(adapter, tx_queued, adapter->netdev,
125 "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n",
126 ring->qid);
127 ena_ring_tx_doorbell(ring);
128 }
129
130 /* prepare the packet's descriptors to dma engine */
131 rc = ena_com_prepare_tx(ring->ena_com_io_sq, ena_tx_ctx,
132 &nb_hw_desc);
133
134 /* In case there isn't enough space in the queue for the packet,
135 * we simply drop it. All other failure reasons of
136 * ena_com_prepare_tx() are fatal and therefore require a device reset.
137 */
138 if (unlikely(rc)) {
139 netif_err(adapter, tx_queued, adapter->netdev,
140 "Failed to prepare tx bufs\n");
141 ena_increase_stat(&ring->tx_stats.prepare_ctx_err, 1, &ring->syncp);
142 if (rc != -ENOMEM)
143 ena_reset_device(adapter, ENA_REGS_RESET_DRIVER_INVALID_STATE);
144 return rc;
145 }
146
147 u64_stats_update_begin(&ring->syncp);
148 ring->tx_stats.cnt++;
149 ring->tx_stats.bytes += bytes;
150 u64_stats_update_end(&ring->syncp);
151
152 tx_info->tx_descs = nb_hw_desc;
153 tx_info->total_tx_size = bytes;
154 tx_info->last_jiffies = jiffies;
155 tx_info->print_once = 0;
156
157 ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
158 ring->ring_size);
159 return 0;
160 }
161
ena_init_io_rings_common(struct ena_adapter * adapter,struct ena_ring * ring,u16 qid)162 static void ena_init_io_rings_common(struct ena_adapter *adapter,
163 struct ena_ring *ring, u16 qid)
164 {
165 ring->qid = qid;
166 ring->pdev = adapter->pdev;
167 ring->dev = &adapter->pdev->dev;
168 ring->netdev = adapter->netdev;
169 ring->napi = &adapter->ena_napi[qid].napi;
170 ring->adapter = adapter;
171 ring->ena_dev = adapter->ena_dev;
172 ring->per_napi_packets = 0;
173 ring->cpu = 0;
174 ring->numa_node = 0;
175 ring->no_interrupt_event_cnt = 0;
176 u64_stats_init(&ring->syncp);
177 }
178
ena_init_io_rings(struct ena_adapter * adapter,int first_index,int count)179 void ena_init_io_rings(struct ena_adapter *adapter,
180 int first_index, int count)
181 {
182 struct ena_com_dev *ena_dev;
183 struct ena_ring *txr, *rxr;
184 int i;
185
186 ena_dev = adapter->ena_dev;
187
188 for (i = first_index; i < first_index + count; i++) {
189 txr = &adapter->tx_ring[i];
190 rxr = &adapter->rx_ring[i];
191
192 /* TX common ring state */
193 ena_init_io_rings_common(adapter, txr, i);
194
195 /* TX specific ring state */
196 txr->ring_size = adapter->requested_tx_ring_size;
197 txr->tx_max_header_size = ena_dev->tx_max_header_size;
198 txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
199 txr->sgl_size = adapter->max_tx_sgl_size;
200 txr->smoothed_interval =
201 ena_com_get_nonadaptive_moderation_interval_tx(ena_dev);
202 txr->disable_meta_caching = adapter->disable_meta_caching;
203 spin_lock_init(&txr->xdp_tx_lock);
204
205 /* Don't init RX queues for xdp queues */
206 if (!ENA_IS_XDP_INDEX(adapter, i)) {
207 /* RX common ring state */
208 ena_init_io_rings_common(adapter, rxr, i);
209
210 /* RX specific ring state */
211 rxr->ring_size = adapter->requested_rx_ring_size;
212 rxr->rx_copybreak = adapter->rx_copybreak;
213 rxr->sgl_size = adapter->max_rx_sgl_size;
214 rxr->smoothed_interval =
215 ena_com_get_nonadaptive_moderation_interval_rx(ena_dev);
216 rxr->empty_rx_queue = 0;
217 rxr->rx_headroom = NET_SKB_PAD;
218 adapter->ena_napi[i].dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
219 rxr->xdp_ring = &adapter->tx_ring[i + adapter->num_io_queues];
220 }
221 }
222 }
223
224 /* ena_setup_tx_resources - allocate I/O Tx resources (Descriptors)
225 * @adapter: network interface device structure
226 * @qid: queue index
227 *
228 * Return 0 on success, negative on failure
229 */
ena_setup_tx_resources(struct ena_adapter * adapter,int qid)230 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
231 {
232 struct ena_ring *tx_ring = &adapter->tx_ring[qid];
233 struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)];
234 int size, i, node;
235
236 if (tx_ring->tx_buffer_info) {
237 netif_err(adapter, ifup,
238 adapter->netdev, "tx_buffer_info info is not NULL");
239 return -EEXIST;
240 }
241
242 size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
243 node = cpu_to_node(ena_irq->cpu);
244
245 tx_ring->tx_buffer_info = vzalloc_node(size, node);
246 if (!tx_ring->tx_buffer_info) {
247 tx_ring->tx_buffer_info = vzalloc(size);
248 if (!tx_ring->tx_buffer_info)
249 goto err_tx_buffer_info;
250 }
251
252 size = sizeof(u16) * tx_ring->ring_size;
253 tx_ring->free_ids = vzalloc_node(size, node);
254 if (!tx_ring->free_ids) {
255 tx_ring->free_ids = vzalloc(size);
256 if (!tx_ring->free_ids)
257 goto err_tx_free_ids;
258 }
259
260 size = tx_ring->tx_max_header_size;
261 tx_ring->push_buf_intermediate_buf = vzalloc_node(size, node);
262 if (!tx_ring->push_buf_intermediate_buf) {
263 tx_ring->push_buf_intermediate_buf = vzalloc(size);
264 if (!tx_ring->push_buf_intermediate_buf)
265 goto err_push_buf_intermediate_buf;
266 }
267
268 /* Req id ring for TX out of order completions */
269 for (i = 0; i < tx_ring->ring_size; i++)
270 tx_ring->free_ids[i] = i;
271
272 /* Reset tx statistics */
273 memset(&tx_ring->tx_stats, 0x0, sizeof(tx_ring->tx_stats));
274
275 tx_ring->next_to_use = 0;
276 tx_ring->next_to_clean = 0;
277 tx_ring->cpu = ena_irq->cpu;
278 tx_ring->numa_node = node;
279 return 0;
280
281 err_push_buf_intermediate_buf:
282 vfree(tx_ring->free_ids);
283 tx_ring->free_ids = NULL;
284 err_tx_free_ids:
285 vfree(tx_ring->tx_buffer_info);
286 tx_ring->tx_buffer_info = NULL;
287 err_tx_buffer_info:
288 return -ENOMEM;
289 }
290
291 /* ena_free_tx_resources - Free I/O Tx Resources per Queue
292 * @adapter: network interface device structure
293 * @qid: queue index
294 *
295 * Free all transmit software resources
296 */
ena_free_tx_resources(struct ena_adapter * adapter,int qid)297 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid)
298 {
299 struct ena_ring *tx_ring = &adapter->tx_ring[qid];
300
301 vfree(tx_ring->tx_buffer_info);
302 tx_ring->tx_buffer_info = NULL;
303
304 vfree(tx_ring->free_ids);
305 tx_ring->free_ids = NULL;
306
307 vfree(tx_ring->push_buf_intermediate_buf);
308 tx_ring->push_buf_intermediate_buf = NULL;
309 }
310
ena_setup_tx_resources_in_range(struct ena_adapter * adapter,int first_index,int count)311 int ena_setup_tx_resources_in_range(struct ena_adapter *adapter,
312 int first_index, int count)
313 {
314 int i, rc = 0;
315
316 for (i = first_index; i < first_index + count; i++) {
317 rc = ena_setup_tx_resources(adapter, i);
318 if (rc)
319 goto err_setup_tx;
320 }
321
322 return 0;
323
324 err_setup_tx:
325
326 netif_err(adapter, ifup, adapter->netdev,
327 "Tx queue %d: allocation failed\n", i);
328
329 /* rewind the index freeing the rings as we go */
330 while (first_index < i--)
331 ena_free_tx_resources(adapter, i);
332 return rc;
333 }
334
ena_free_all_io_tx_resources_in_range(struct ena_adapter * adapter,int first_index,int count)335 void ena_free_all_io_tx_resources_in_range(struct ena_adapter *adapter,
336 int first_index, int count)
337 {
338 int i;
339
340 for (i = first_index; i < first_index + count; i++)
341 ena_free_tx_resources(adapter, i);
342 }
343
344 /* ena_free_all_io_tx_resources - Free I/O Tx Resources for All Queues
345 * @adapter: board private structure
346 *
347 * Free all transmit software resources
348 */
ena_free_all_io_tx_resources(struct ena_adapter * adapter)349 void ena_free_all_io_tx_resources(struct ena_adapter *adapter)
350 {
351 ena_free_all_io_tx_resources_in_range(adapter,
352 0,
353 adapter->xdp_num_queues +
354 adapter->num_io_queues);
355 }
356
357 /* ena_setup_rx_resources - allocate I/O Rx resources (Descriptors)
358 * @adapter: network interface device structure
359 * @qid: queue index
360 *
361 * Returns 0 on success, negative on failure
362 */
ena_setup_rx_resources(struct ena_adapter * adapter,u32 qid)363 static int ena_setup_rx_resources(struct ena_adapter *adapter,
364 u32 qid)
365 {
366 struct ena_ring *rx_ring = &adapter->rx_ring[qid];
367 struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)];
368 int size, node, i;
369
370 if (rx_ring->rx_buffer_info) {
371 netif_err(adapter, ifup, adapter->netdev,
372 "rx_buffer_info is not NULL");
373 return -EEXIST;
374 }
375
376 /* alloc extra element so in rx path
377 * we can always prefetch rx_info + 1
378 */
379 size = sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1);
380 node = cpu_to_node(ena_irq->cpu);
381
382 rx_ring->rx_buffer_info = vzalloc_node(size, node);
383 if (!rx_ring->rx_buffer_info) {
384 rx_ring->rx_buffer_info = vzalloc(size);
385 if (!rx_ring->rx_buffer_info)
386 return -ENOMEM;
387 }
388
389 size = sizeof(u16) * rx_ring->ring_size;
390 rx_ring->free_ids = vzalloc_node(size, node);
391 if (!rx_ring->free_ids) {
392 rx_ring->free_ids = vzalloc(size);
393 if (!rx_ring->free_ids) {
394 vfree(rx_ring->rx_buffer_info);
395 rx_ring->rx_buffer_info = NULL;
396 return -ENOMEM;
397 }
398 }
399
400 /* Req id ring for receiving RX pkts out of order */
401 for (i = 0; i < rx_ring->ring_size; i++)
402 rx_ring->free_ids[i] = i;
403
404 /* Reset rx statistics */
405 memset(&rx_ring->rx_stats, 0x0, sizeof(rx_ring->rx_stats));
406
407 rx_ring->next_to_clean = 0;
408 rx_ring->next_to_use = 0;
409 rx_ring->cpu = ena_irq->cpu;
410 rx_ring->numa_node = node;
411
412 return 0;
413 }
414
415 /* ena_free_rx_resources - Free I/O Rx Resources
416 * @adapter: network interface device structure
417 * @qid: queue index
418 *
419 * Free all receive software resources
420 */
ena_free_rx_resources(struct ena_adapter * adapter,u32 qid)421 static void ena_free_rx_resources(struct ena_adapter *adapter,
422 u32 qid)
423 {
424 struct ena_ring *rx_ring = &adapter->rx_ring[qid];
425
426 vfree(rx_ring->rx_buffer_info);
427 rx_ring->rx_buffer_info = NULL;
428
429 vfree(rx_ring->free_ids);
430 rx_ring->free_ids = NULL;
431 }
432
433 /* ena_setup_all_rx_resources - allocate I/O Rx queues resources for all queues
434 * @adapter: board private structure
435 *
436 * Return 0 on success, negative on failure
437 */
ena_setup_all_rx_resources(struct ena_adapter * adapter)438 static int ena_setup_all_rx_resources(struct ena_adapter *adapter)
439 {
440 int i, rc = 0;
441
442 for (i = 0; i < adapter->num_io_queues; i++) {
443 rc = ena_setup_rx_resources(adapter, i);
444 if (rc)
445 goto err_setup_rx;
446 }
447
448 return 0;
449
450 err_setup_rx:
451
452 netif_err(adapter, ifup, adapter->netdev,
453 "Rx queue %d: allocation failed\n", i);
454
455 /* rewind the index freeing the rings as we go */
456 while (i--)
457 ena_free_rx_resources(adapter, i);
458 return rc;
459 }
460
461 /* ena_free_all_io_rx_resources - Free I/O Rx Resources for All Queues
462 * @adapter: board private structure
463 *
464 * Free all receive software resources
465 */
ena_free_all_io_rx_resources(struct ena_adapter * adapter)466 static void ena_free_all_io_rx_resources(struct ena_adapter *adapter)
467 {
468 int i;
469
470 for (i = 0; i < adapter->num_io_queues; i++)
471 ena_free_rx_resources(adapter, i);
472 }
473
ena_alloc_map_page(struct ena_ring * rx_ring,dma_addr_t * dma)474 static struct page *ena_alloc_map_page(struct ena_ring *rx_ring,
475 dma_addr_t *dma)
476 {
477 struct page *page;
478
479 /* This would allocate the page on the same NUMA node the executing code
480 * is running on.
481 */
482 page = dev_alloc_page();
483 if (!page) {
484 ena_increase_stat(&rx_ring->rx_stats.page_alloc_fail, 1, &rx_ring->syncp);
485 return ERR_PTR(-ENOSPC);
486 }
487
488 /* To enable NIC-side port-mirroring, AKA SPAN port,
489 * we make the buffer readable from the nic as well
490 */
491 *dma = dma_map_page(rx_ring->dev, page, 0, ENA_PAGE_SIZE,
492 DMA_BIDIRECTIONAL);
493 if (unlikely(dma_mapping_error(rx_ring->dev, *dma))) {
494 ena_increase_stat(&rx_ring->rx_stats.dma_mapping_err, 1,
495 &rx_ring->syncp);
496 __free_page(page);
497 return ERR_PTR(-EIO);
498 }
499
500 return page;
501 }
502
ena_alloc_rx_buffer(struct ena_ring * rx_ring,struct ena_rx_buffer * rx_info)503 static int ena_alloc_rx_buffer(struct ena_ring *rx_ring,
504 struct ena_rx_buffer *rx_info)
505 {
506 int headroom = rx_ring->rx_headroom;
507 struct ena_com_buf *ena_buf;
508 struct page *page;
509 dma_addr_t dma;
510 int tailroom;
511
512 /* restore page offset value in case it has been changed by device */
513 rx_info->buf_offset = headroom;
514
515 /* if previous allocated page is not used */
516 if (unlikely(rx_info->page))
517 return 0;
518
519 /* We handle DMA here */
520 page = ena_alloc_map_page(rx_ring, &dma);
521 if (IS_ERR(page))
522 return PTR_ERR(page);
523
524 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
525 "Allocate page %p, rx_info %p\n", page, rx_info);
526
527 tailroom = SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
528
529 rx_info->page = page;
530 rx_info->dma_addr = dma;
531 rx_info->page_offset = 0;
532 ena_buf = &rx_info->ena_buf;
533 ena_buf->paddr = dma + headroom;
534 ena_buf->len = ENA_PAGE_SIZE - headroom - tailroom;
535
536 return 0;
537 }
538
ena_unmap_rx_buff_attrs(struct ena_ring * rx_ring,struct ena_rx_buffer * rx_info,unsigned long attrs)539 static void ena_unmap_rx_buff_attrs(struct ena_ring *rx_ring,
540 struct ena_rx_buffer *rx_info,
541 unsigned long attrs)
542 {
543 dma_unmap_page_attrs(rx_ring->dev, rx_info->dma_addr, ENA_PAGE_SIZE, DMA_BIDIRECTIONAL,
544 attrs);
545 }
546
ena_free_rx_page(struct ena_ring * rx_ring,struct ena_rx_buffer * rx_info)547 static void ena_free_rx_page(struct ena_ring *rx_ring,
548 struct ena_rx_buffer *rx_info)
549 {
550 struct page *page = rx_info->page;
551
552 if (unlikely(!page)) {
553 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
554 "Trying to free unallocated buffer\n");
555 return;
556 }
557
558 ena_unmap_rx_buff_attrs(rx_ring, rx_info, 0);
559
560 __free_page(page);
561 rx_info->page = NULL;
562 }
563
ena_refill_rx_bufs(struct ena_ring * rx_ring,u32 num)564 static int ena_refill_rx_bufs(struct ena_ring *rx_ring, u32 num)
565 {
566 u16 next_to_use, req_id;
567 u32 i;
568 int rc;
569
570 next_to_use = rx_ring->next_to_use;
571
572 for (i = 0; i < num; i++) {
573 struct ena_rx_buffer *rx_info;
574
575 req_id = rx_ring->free_ids[next_to_use];
576
577 rx_info = &rx_ring->rx_buffer_info[req_id];
578
579 rc = ena_alloc_rx_buffer(rx_ring, rx_info);
580 if (unlikely(rc < 0)) {
581 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
582 "Failed to allocate buffer for rx queue %d\n",
583 rx_ring->qid);
584 break;
585 }
586 rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
587 &rx_info->ena_buf,
588 req_id);
589 if (unlikely(rc)) {
590 netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev,
591 "Failed to add buffer for rx queue %d\n",
592 rx_ring->qid);
593 break;
594 }
595 next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
596 rx_ring->ring_size);
597 }
598
599 if (unlikely(i < num)) {
600 ena_increase_stat(&rx_ring->rx_stats.refil_partial, 1,
601 &rx_ring->syncp);
602 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
603 "Refilled rx qid %d with only %d buffers (from %d)\n",
604 rx_ring->qid, i, num);
605 }
606
607 /* ena_com_write_sq_doorbell issues a wmb() */
608 if (likely(i))
609 ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
610
611 rx_ring->next_to_use = next_to_use;
612
613 return i;
614 }
615
ena_free_rx_bufs(struct ena_adapter * adapter,u32 qid)616 static void ena_free_rx_bufs(struct ena_adapter *adapter,
617 u32 qid)
618 {
619 struct ena_ring *rx_ring = &adapter->rx_ring[qid];
620 u32 i;
621
622 for (i = 0; i < rx_ring->ring_size; i++) {
623 struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];
624
625 if (rx_info->page)
626 ena_free_rx_page(rx_ring, rx_info);
627 }
628 }
629
630 /* ena_refill_all_rx_bufs - allocate all queues Rx buffers
631 * @adapter: board private structure
632 */
ena_refill_all_rx_bufs(struct ena_adapter * adapter)633 static void ena_refill_all_rx_bufs(struct ena_adapter *adapter)
634 {
635 struct ena_ring *rx_ring;
636 int i, rc, bufs_num;
637
638 for (i = 0; i < adapter->num_io_queues; i++) {
639 rx_ring = &adapter->rx_ring[i];
640 bufs_num = rx_ring->ring_size - 1;
641 rc = ena_refill_rx_bufs(rx_ring, bufs_num);
642
643 if (unlikely(rc != bufs_num))
644 netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev,
645 "Refilling Queue %d failed. allocated %d buffers from: %d\n",
646 i, rc, bufs_num);
647 }
648 }
649
ena_free_all_rx_bufs(struct ena_adapter * adapter)650 static void ena_free_all_rx_bufs(struct ena_adapter *adapter)
651 {
652 int i;
653
654 for (i = 0; i < adapter->num_io_queues; i++)
655 ena_free_rx_bufs(adapter, i);
656 }
657
ena_unmap_tx_buff(struct ena_ring * tx_ring,struct ena_tx_buffer * tx_info)658 void ena_unmap_tx_buff(struct ena_ring *tx_ring,
659 struct ena_tx_buffer *tx_info)
660 {
661 struct ena_com_buf *ena_buf;
662 u32 cnt;
663 int i;
664
665 ena_buf = tx_info->bufs;
666 cnt = tx_info->num_of_bufs;
667
668 if (unlikely(!cnt))
669 return;
670
671 if (tx_info->map_linear_data) {
672 dma_unmap_single(tx_ring->dev,
673 dma_unmap_addr(ena_buf, paddr),
674 dma_unmap_len(ena_buf, len),
675 DMA_TO_DEVICE);
676 ena_buf++;
677 cnt--;
678 }
679
680 /* unmap remaining mapped pages */
681 for (i = 0; i < cnt; i++) {
682 dma_unmap_page(tx_ring->dev, dma_unmap_addr(ena_buf, paddr),
683 dma_unmap_len(ena_buf, len), DMA_TO_DEVICE);
684 ena_buf++;
685 }
686 }
687
688 /* ena_free_tx_bufs - Free Tx Buffers per Queue
689 * @tx_ring: TX ring for which buffers be freed
690 */
ena_free_tx_bufs(struct ena_ring * tx_ring)691 static void ena_free_tx_bufs(struct ena_ring *tx_ring)
692 {
693 bool print_once = true;
694 bool is_xdp_ring;
695 u32 i;
696
697 is_xdp_ring = ENA_IS_XDP_INDEX(tx_ring->adapter, tx_ring->qid);
698
699 for (i = 0; i < tx_ring->ring_size; i++) {
700 struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];
701
702 if (!tx_info->skb)
703 continue;
704
705 if (print_once) {
706 netif_notice(tx_ring->adapter, ifdown, tx_ring->netdev,
707 "Free uncompleted tx skb qid %d idx 0x%x\n",
708 tx_ring->qid, i);
709 print_once = false;
710 } else {
711 netif_dbg(tx_ring->adapter, ifdown, tx_ring->netdev,
712 "Free uncompleted tx skb qid %d idx 0x%x\n",
713 tx_ring->qid, i);
714 }
715
716 ena_unmap_tx_buff(tx_ring, tx_info);
717
718 if (is_xdp_ring)
719 xdp_return_frame(tx_info->xdpf);
720 else
721 dev_kfree_skb_any(tx_info->skb);
722 }
723
724 if (!is_xdp_ring)
725 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
726 tx_ring->qid));
727 }
728
ena_free_all_tx_bufs(struct ena_adapter * adapter)729 static void ena_free_all_tx_bufs(struct ena_adapter *adapter)
730 {
731 struct ena_ring *tx_ring;
732 int i;
733
734 for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) {
735 tx_ring = &adapter->tx_ring[i];
736 ena_free_tx_bufs(tx_ring);
737 }
738 }
739
ena_destroy_all_tx_queues(struct ena_adapter * adapter)740 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter)
741 {
742 u16 ena_qid;
743 int i;
744
745 for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) {
746 ena_qid = ENA_IO_TXQ_IDX(i);
747 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
748 }
749 }
750
ena_destroy_all_rx_queues(struct ena_adapter * adapter)751 static void ena_destroy_all_rx_queues(struct ena_adapter *adapter)
752 {
753 u16 ena_qid;
754 int i;
755
756 for (i = 0; i < adapter->num_io_queues; i++) {
757 ena_qid = ENA_IO_RXQ_IDX(i);
758 cancel_work_sync(&adapter->ena_napi[i].dim.work);
759 ena_xdp_unregister_rxq_info(&adapter->rx_ring[i]);
760 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
761 }
762 }
763
ena_destroy_all_io_queues(struct ena_adapter * adapter)764 static void ena_destroy_all_io_queues(struct ena_adapter *adapter)
765 {
766 ena_destroy_all_tx_queues(adapter);
767 ena_destroy_all_rx_queues(adapter);
768 }
769
handle_invalid_req_id(struct ena_ring * ring,u16 req_id,struct ena_tx_buffer * tx_info,bool is_xdp)770 int handle_invalid_req_id(struct ena_ring *ring, u16 req_id,
771 struct ena_tx_buffer *tx_info, bool is_xdp)
772 {
773 if (tx_info)
774 netif_err(ring->adapter,
775 tx_done,
776 ring->netdev,
777 "tx_info doesn't have valid %s. qid %u req_id %u",
778 is_xdp ? "xdp frame" : "skb", ring->qid, req_id);
779 else
780 netif_err(ring->adapter,
781 tx_done,
782 ring->netdev,
783 "Invalid req_id %u in qid %u\n",
784 req_id, ring->qid);
785
786 ena_increase_stat(&ring->tx_stats.bad_req_id, 1, &ring->syncp);
787 ena_reset_device(ring->adapter, ENA_REGS_RESET_INV_TX_REQ_ID);
788
789 return -EFAULT;
790 }
791
validate_tx_req_id(struct ena_ring * tx_ring,u16 req_id)792 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
793 {
794 struct ena_tx_buffer *tx_info;
795
796 tx_info = &tx_ring->tx_buffer_info[req_id];
797 if (likely(tx_info->skb))
798 return 0;
799
800 return handle_invalid_req_id(tx_ring, req_id, tx_info, false);
801 }
802
ena_clean_tx_irq(struct ena_ring * tx_ring,u32 budget)803 static int ena_clean_tx_irq(struct ena_ring *tx_ring, u32 budget)
804 {
805 struct netdev_queue *txq;
806 bool above_thresh;
807 u32 tx_bytes = 0;
808 u32 total_done = 0;
809 u16 next_to_clean;
810 u16 req_id;
811 int tx_pkts = 0;
812 int rc;
813
814 next_to_clean = tx_ring->next_to_clean;
815 txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->qid);
816
817 while (tx_pkts < budget) {
818 struct ena_tx_buffer *tx_info;
819 struct sk_buff *skb;
820
821 rc = ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq,
822 &req_id);
823 if (rc) {
824 if (unlikely(rc == -EINVAL))
825 handle_invalid_req_id(tx_ring, req_id, NULL, false);
826 break;
827 }
828
829 /* validate that the request id points to a valid skb */
830 rc = validate_tx_req_id(tx_ring, req_id);
831 if (rc)
832 break;
833
834 tx_info = &tx_ring->tx_buffer_info[req_id];
835 skb = tx_info->skb;
836
837 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
838 prefetch(&skb->end);
839
840 tx_info->skb = NULL;
841 tx_info->last_jiffies = 0;
842
843 ena_unmap_tx_buff(tx_ring, tx_info);
844
845 netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev,
846 "tx_poll: q %d skb %p completed\n", tx_ring->qid,
847 skb);
848
849 tx_bytes += tx_info->total_tx_size;
850 dev_kfree_skb(skb);
851 tx_pkts++;
852 total_done += tx_info->tx_descs;
853
854 tx_ring->free_ids[next_to_clean] = req_id;
855 next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
856 tx_ring->ring_size);
857 }
858
859 tx_ring->next_to_clean = next_to_clean;
860 ena_com_comp_ack(tx_ring->ena_com_io_sq, total_done);
861
862 netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
863
864 netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev,
865 "tx_poll: q %d done. total pkts: %d\n",
866 tx_ring->qid, tx_pkts);
867
868 /* need to make the rings circular update visible to
869 * ena_start_xmit() before checking for netif_queue_stopped().
870 */
871 smp_mb();
872
873 above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
874 ENA_TX_WAKEUP_THRESH);
875 if (unlikely(netif_tx_queue_stopped(txq) && above_thresh)) {
876 __netif_tx_lock(txq, smp_processor_id());
877 above_thresh =
878 ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
879 ENA_TX_WAKEUP_THRESH);
880 if (netif_tx_queue_stopped(txq) && above_thresh &&
881 test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags)) {
882 netif_tx_wake_queue(txq);
883 ena_increase_stat(&tx_ring->tx_stats.queue_wakeup, 1,
884 &tx_ring->syncp);
885 }
886 __netif_tx_unlock(txq);
887 }
888
889 return tx_pkts;
890 }
891
ena_alloc_skb(struct ena_ring * rx_ring,void * first_frag,u16 len)892 static struct sk_buff *ena_alloc_skb(struct ena_ring *rx_ring, void *first_frag, u16 len)
893 {
894 struct sk_buff *skb;
895
896 if (!first_frag)
897 skb = napi_alloc_skb(rx_ring->napi, len);
898 else
899 skb = napi_build_skb(first_frag, len);
900
901 if (unlikely(!skb)) {
902 ena_increase_stat(&rx_ring->rx_stats.skb_alloc_fail, 1,
903 &rx_ring->syncp);
904
905 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
906 "Failed to allocate skb. first_frag %s\n",
907 first_frag ? "provided" : "not provided");
908 }
909
910 return skb;
911 }
912
ena_try_rx_buf_page_reuse(struct ena_rx_buffer * rx_info,u16 buf_len,u16 len,int pkt_offset)913 static bool ena_try_rx_buf_page_reuse(struct ena_rx_buffer *rx_info, u16 buf_len,
914 u16 len, int pkt_offset)
915 {
916 struct ena_com_buf *ena_buf = &rx_info->ena_buf;
917
918 /* More than ENA_MIN_RX_BUF_SIZE left in the reused buffer
919 * for data + headroom + tailroom.
920 */
921 if (SKB_DATA_ALIGN(len + pkt_offset) + ENA_MIN_RX_BUF_SIZE <= ena_buf->len) {
922 page_ref_inc(rx_info->page);
923 rx_info->page_offset += buf_len;
924 ena_buf->paddr += buf_len;
925 ena_buf->len -= buf_len;
926 return true;
927 }
928
929 return false;
930 }
931
ena_rx_skb(struct ena_ring * rx_ring,struct ena_com_rx_buf_info * ena_bufs,u32 descs,u16 * next_to_clean)932 static struct sk_buff *ena_rx_skb(struct ena_ring *rx_ring,
933 struct ena_com_rx_buf_info *ena_bufs,
934 u32 descs,
935 u16 *next_to_clean)
936 {
937 int tailroom = SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
938 bool is_xdp_loaded = ena_xdp_present_ring(rx_ring);
939 struct ena_rx_buffer *rx_info;
940 struct ena_adapter *adapter;
941 int page_offset, pkt_offset;
942 dma_addr_t pre_reuse_paddr;
943 u16 len, req_id, buf = 0;
944 bool reuse_rx_buf_page;
945 struct sk_buff *skb;
946 void *buf_addr;
947 int buf_offset;
948 u16 buf_len;
949
950 len = ena_bufs[buf].len;
951 req_id = ena_bufs[buf].req_id;
952
953 rx_info = &rx_ring->rx_buffer_info[req_id];
954
955 if (unlikely(!rx_info->page)) {
956 adapter = rx_ring->adapter;
957 netif_err(adapter, rx_err, rx_ring->netdev,
958 "Page is NULL. qid %u req_id %u\n", rx_ring->qid, req_id);
959 ena_increase_stat(&rx_ring->rx_stats.bad_req_id, 1, &rx_ring->syncp);
960 ena_reset_device(adapter, ENA_REGS_RESET_INV_RX_REQ_ID);
961 return NULL;
962 }
963
964 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
965 "rx_info %p page %p\n",
966 rx_info, rx_info->page);
967
968 buf_offset = rx_info->buf_offset;
969 pkt_offset = buf_offset - rx_ring->rx_headroom;
970 page_offset = rx_info->page_offset;
971 buf_addr = page_address(rx_info->page) + page_offset;
972
973 if (len <= rx_ring->rx_copybreak) {
974 skb = ena_alloc_skb(rx_ring, NULL, len);
975 if (unlikely(!skb))
976 return NULL;
977
978 skb_copy_to_linear_data(skb, buf_addr + buf_offset, len);
979 dma_sync_single_for_device(rx_ring->dev,
980 dma_unmap_addr(&rx_info->ena_buf, paddr) + pkt_offset,
981 len,
982 DMA_FROM_DEVICE);
983
984 skb_put(skb, len);
985 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
986 "RX allocated small packet. len %d.\n", skb->len);
987 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
988 rx_ring->free_ids[*next_to_clean] = req_id;
989 *next_to_clean = ENA_RX_RING_IDX_ADD(*next_to_clean, descs,
990 rx_ring->ring_size);
991 return skb;
992 }
993
994 buf_len = SKB_DATA_ALIGN(len + buf_offset + tailroom);
995
996 /* If XDP isn't loaded try to reuse part of the RX buffer */
997 reuse_rx_buf_page = !is_xdp_loaded &&
998 ena_try_rx_buf_page_reuse(rx_info, buf_len, len, pkt_offset);
999
1000 if (!reuse_rx_buf_page)
1001 ena_unmap_rx_buff_attrs(rx_ring, rx_info, DMA_ATTR_SKIP_CPU_SYNC);
1002
1003 skb = ena_alloc_skb(rx_ring, buf_addr, buf_len);
1004 if (unlikely(!skb))
1005 return NULL;
1006
1007 /* Populate skb's linear part */
1008 skb_reserve(skb, buf_offset);
1009 skb_put(skb, len);
1010 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1011
1012 do {
1013 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1014 "RX skb updated. len %d. data_len %d\n",
1015 skb->len, skb->data_len);
1016
1017 if (!reuse_rx_buf_page)
1018 rx_info->page = NULL;
1019
1020 rx_ring->free_ids[*next_to_clean] = req_id;
1021 *next_to_clean =
1022 ENA_RX_RING_IDX_NEXT(*next_to_clean,
1023 rx_ring->ring_size);
1024 if (likely(--descs == 0))
1025 break;
1026
1027 buf++;
1028 len = ena_bufs[buf].len;
1029 req_id = ena_bufs[buf].req_id;
1030
1031 rx_info = &rx_ring->rx_buffer_info[req_id];
1032
1033 /* rx_info->buf_offset includes rx_ring->rx_headroom */
1034 buf_offset = rx_info->buf_offset;
1035 pkt_offset = buf_offset - rx_ring->rx_headroom;
1036 buf_len = SKB_DATA_ALIGN(len + buf_offset + tailroom);
1037 page_offset = rx_info->page_offset;
1038
1039 pre_reuse_paddr = dma_unmap_addr(&rx_info->ena_buf, paddr);
1040
1041 reuse_rx_buf_page = !is_xdp_loaded &&
1042 ena_try_rx_buf_page_reuse(rx_info, buf_len, len, pkt_offset);
1043
1044 dma_sync_single_for_cpu(rx_ring->dev,
1045 pre_reuse_paddr + pkt_offset,
1046 len,
1047 DMA_FROM_DEVICE);
1048
1049 if (!reuse_rx_buf_page)
1050 ena_unmap_rx_buff_attrs(rx_ring, rx_info, DMA_ATTR_SKIP_CPU_SYNC);
1051
1052 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_info->page,
1053 page_offset + buf_offset, len, buf_len);
1054
1055 } while (1);
1056
1057 return skb;
1058 }
1059
1060 /* ena_rx_checksum - indicate in skb if hw indicated a good cksum
1061 * @adapter: structure containing adapter specific data
1062 * @ena_rx_ctx: received packet context/metadata
1063 * @skb: skb currently being received and modified
1064 */
ena_rx_checksum(struct ena_ring * rx_ring,struct ena_com_rx_ctx * ena_rx_ctx,struct sk_buff * skb)1065 static void ena_rx_checksum(struct ena_ring *rx_ring,
1066 struct ena_com_rx_ctx *ena_rx_ctx,
1067 struct sk_buff *skb)
1068 {
1069 /* Rx csum disabled */
1070 if (unlikely(!(rx_ring->netdev->features & NETIF_F_RXCSUM))) {
1071 skb->ip_summed = CHECKSUM_NONE;
1072 return;
1073 }
1074
1075 /* For fragmented packets the checksum isn't valid */
1076 if (ena_rx_ctx->frag) {
1077 skb->ip_summed = CHECKSUM_NONE;
1078 return;
1079 }
1080
1081 /* if IP and error */
1082 if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) &&
1083 (ena_rx_ctx->l3_csum_err))) {
1084 /* ipv4 checksum error */
1085 skb->ip_summed = CHECKSUM_NONE;
1086 ena_increase_stat(&rx_ring->rx_stats.csum_bad, 1,
1087 &rx_ring->syncp);
1088 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
1089 "RX IPv4 header checksum error\n");
1090 return;
1091 }
1092
1093 /* if TCP/UDP */
1094 if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1095 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) {
1096 if (unlikely(ena_rx_ctx->l4_csum_err)) {
1097 /* TCP/UDP checksum error */
1098 ena_increase_stat(&rx_ring->rx_stats.csum_bad, 1,
1099 &rx_ring->syncp);
1100 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
1101 "RX L4 checksum error\n");
1102 skb->ip_summed = CHECKSUM_NONE;
1103 return;
1104 }
1105
1106 if (likely(ena_rx_ctx->l4_csum_checked)) {
1107 skb->ip_summed = CHECKSUM_UNNECESSARY;
1108 ena_increase_stat(&rx_ring->rx_stats.csum_good, 1,
1109 &rx_ring->syncp);
1110 } else {
1111 ena_increase_stat(&rx_ring->rx_stats.csum_unchecked, 1,
1112 &rx_ring->syncp);
1113 skb->ip_summed = CHECKSUM_NONE;
1114 }
1115 } else {
1116 skb->ip_summed = CHECKSUM_NONE;
1117 return;
1118 }
1119
1120 }
1121
ena_set_rx_hash(struct ena_ring * rx_ring,struct ena_com_rx_ctx * ena_rx_ctx,struct sk_buff * skb)1122 static void ena_set_rx_hash(struct ena_ring *rx_ring,
1123 struct ena_com_rx_ctx *ena_rx_ctx,
1124 struct sk_buff *skb)
1125 {
1126 enum pkt_hash_types hash_type;
1127
1128 if (likely(rx_ring->netdev->features & NETIF_F_RXHASH)) {
1129 if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1130 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)))
1131
1132 hash_type = PKT_HASH_TYPE_L4;
1133 else
1134 hash_type = PKT_HASH_TYPE_NONE;
1135
1136 /* Override hash type if the packet is fragmented */
1137 if (ena_rx_ctx->frag)
1138 hash_type = PKT_HASH_TYPE_NONE;
1139
1140 skb_set_hash(skb, ena_rx_ctx->hash, hash_type);
1141 }
1142 }
1143
ena_xdp_handle_buff(struct ena_ring * rx_ring,struct xdp_buff * xdp,u16 num_descs)1144 static int ena_xdp_handle_buff(struct ena_ring *rx_ring, struct xdp_buff *xdp, u16 num_descs)
1145 {
1146 struct ena_rx_buffer *rx_info;
1147 int ret;
1148
1149 /* XDP multi-buffer packets not supported */
1150 if (unlikely(num_descs > 1)) {
1151 netdev_err_once(rx_ring->adapter->netdev,
1152 "xdp: dropped unsupported multi-buffer packets\n");
1153 ena_increase_stat(&rx_ring->rx_stats.xdp_drop, 1, &rx_ring->syncp);
1154 return ENA_XDP_DROP;
1155 }
1156
1157 rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id];
1158 xdp_prepare_buff(xdp, page_address(rx_info->page),
1159 rx_info->buf_offset,
1160 rx_ring->ena_bufs[0].len, false);
1161
1162 ret = ena_xdp_execute(rx_ring, xdp);
1163
1164 /* The xdp program might expand the headers */
1165 if (ret == ENA_XDP_PASS) {
1166 rx_info->buf_offset = xdp->data - xdp->data_hard_start;
1167 rx_ring->ena_bufs[0].len = xdp->data_end - xdp->data;
1168 }
1169
1170 return ret;
1171 }
1172
1173 /* ena_clean_rx_irq - Cleanup RX irq
1174 * @rx_ring: RX ring to clean
1175 * @napi: napi handler
1176 * @budget: how many packets driver is allowed to clean
1177 *
1178 * Returns the number of cleaned buffers.
1179 */
ena_clean_rx_irq(struct ena_ring * rx_ring,struct napi_struct * napi,u32 budget)1180 static int ena_clean_rx_irq(struct ena_ring *rx_ring, struct napi_struct *napi,
1181 u32 budget)
1182 {
1183 u16 next_to_clean = rx_ring->next_to_clean;
1184 struct ena_com_rx_ctx ena_rx_ctx;
1185 struct ena_rx_buffer *rx_info;
1186 struct ena_adapter *adapter;
1187 u32 res_budget, work_done;
1188 int rx_copybreak_pkt = 0;
1189 int refill_threshold;
1190 struct sk_buff *skb;
1191 int refill_required;
1192 struct xdp_buff xdp;
1193 int xdp_flags = 0;
1194 int total_len = 0;
1195 int xdp_verdict;
1196 u8 pkt_offset;
1197 int rc = 0;
1198 int i;
1199
1200 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1201 "%s qid %d\n", __func__, rx_ring->qid);
1202 res_budget = budget;
1203 xdp_init_buff(&xdp, ENA_PAGE_SIZE, &rx_ring->xdp_rxq);
1204
1205 do {
1206 xdp_verdict = ENA_XDP_PASS;
1207 skb = NULL;
1208 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
1209 ena_rx_ctx.max_bufs = rx_ring->sgl_size;
1210 ena_rx_ctx.descs = 0;
1211 ena_rx_ctx.pkt_offset = 0;
1212 rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
1213 rx_ring->ena_com_io_sq,
1214 &ena_rx_ctx);
1215 if (unlikely(rc))
1216 goto error;
1217
1218 if (unlikely(ena_rx_ctx.descs == 0))
1219 break;
1220
1221 /* First descriptor might have an offset set by the device */
1222 rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id];
1223 pkt_offset = ena_rx_ctx.pkt_offset;
1224 rx_info->buf_offset += pkt_offset;
1225
1226 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1227 "rx_poll: q %d got packet from ena. descs #: %d l3 proto %d l4 proto %d hash: %x\n",
1228 rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
1229 ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
1230
1231 dma_sync_single_for_cpu(rx_ring->dev,
1232 dma_unmap_addr(&rx_info->ena_buf, paddr) + pkt_offset,
1233 rx_ring->ena_bufs[0].len,
1234 DMA_FROM_DEVICE);
1235
1236 if (ena_xdp_present_ring(rx_ring))
1237 xdp_verdict = ena_xdp_handle_buff(rx_ring, &xdp, ena_rx_ctx.descs);
1238
1239 /* allocate skb and fill it */
1240 if (xdp_verdict == ENA_XDP_PASS)
1241 skb = ena_rx_skb(rx_ring,
1242 rx_ring->ena_bufs,
1243 ena_rx_ctx.descs,
1244 &next_to_clean);
1245
1246 if (unlikely(!skb)) {
1247 for (i = 0; i < ena_rx_ctx.descs; i++) {
1248 int req_id = rx_ring->ena_bufs[i].req_id;
1249
1250 rx_ring->free_ids[next_to_clean] = req_id;
1251 next_to_clean =
1252 ENA_RX_RING_IDX_NEXT(next_to_clean,
1253 rx_ring->ring_size);
1254
1255 /* Packets was passed for transmission, unmap it
1256 * from RX side.
1257 */
1258 if (xdp_verdict & ENA_XDP_FORWARDED) {
1259 ena_unmap_rx_buff_attrs(rx_ring,
1260 &rx_ring->rx_buffer_info[req_id],
1261 DMA_ATTR_SKIP_CPU_SYNC);
1262 rx_ring->rx_buffer_info[req_id].page = NULL;
1263 }
1264 }
1265 if (xdp_verdict != ENA_XDP_PASS) {
1266 xdp_flags |= xdp_verdict;
1267 total_len += ena_rx_ctx.ena_bufs[0].len;
1268 res_budget--;
1269 continue;
1270 }
1271 break;
1272 }
1273
1274 ena_rx_checksum(rx_ring, &ena_rx_ctx, skb);
1275
1276 ena_set_rx_hash(rx_ring, &ena_rx_ctx, skb);
1277
1278 skb_record_rx_queue(skb, rx_ring->qid);
1279
1280 if (rx_ring->ena_bufs[0].len <= rx_ring->rx_copybreak)
1281 rx_copybreak_pkt++;
1282
1283 total_len += skb->len;
1284
1285 napi_gro_receive(napi, skb);
1286
1287 res_budget--;
1288 } while (likely(res_budget));
1289
1290 work_done = budget - res_budget;
1291 rx_ring->per_napi_packets += work_done;
1292 u64_stats_update_begin(&rx_ring->syncp);
1293 rx_ring->rx_stats.bytes += total_len;
1294 rx_ring->rx_stats.cnt += work_done;
1295 rx_ring->rx_stats.rx_copybreak_pkt += rx_copybreak_pkt;
1296 u64_stats_update_end(&rx_ring->syncp);
1297
1298 rx_ring->next_to_clean = next_to_clean;
1299
1300 refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
1301 refill_threshold =
1302 min_t(int, rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER,
1303 ENA_RX_REFILL_THRESH_PACKET);
1304
1305 /* Optimization, try to batch new rx buffers */
1306 if (refill_required > refill_threshold)
1307 ena_refill_rx_bufs(rx_ring, refill_required);
1308
1309 if (xdp_flags & ENA_XDP_REDIRECT)
1310 xdp_do_flush();
1311
1312 return work_done;
1313
1314 error:
1315 if (xdp_flags & ENA_XDP_REDIRECT)
1316 xdp_do_flush();
1317
1318 adapter = netdev_priv(rx_ring->netdev);
1319
1320 if (rc == -ENOSPC) {
1321 ena_increase_stat(&rx_ring->rx_stats.bad_desc_num, 1, &rx_ring->syncp);
1322 ena_reset_device(adapter, ENA_REGS_RESET_TOO_MANY_RX_DESCS);
1323 } else if (rc == -EFAULT) {
1324 ena_reset_device(adapter, ENA_REGS_RESET_RX_DESCRIPTOR_MALFORMED);
1325 } else {
1326 ena_increase_stat(&rx_ring->rx_stats.bad_req_id, 1,
1327 &rx_ring->syncp);
1328 ena_reset_device(adapter, ENA_REGS_RESET_INV_RX_REQ_ID);
1329 }
1330 return 0;
1331 }
1332
ena_dim_work(struct work_struct * w)1333 static void ena_dim_work(struct work_struct *w)
1334 {
1335 struct dim *dim = container_of(w, struct dim, work);
1336 struct dim_cq_moder cur_moder =
1337 net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
1338 struct ena_napi *ena_napi = container_of(dim, struct ena_napi, dim);
1339
1340 ena_napi->rx_ring->smoothed_interval = cur_moder.usec;
1341 dim->state = DIM_START_MEASURE;
1342 }
1343
ena_adjust_adaptive_rx_intr_moderation(struct ena_napi * ena_napi)1344 static void ena_adjust_adaptive_rx_intr_moderation(struct ena_napi *ena_napi)
1345 {
1346 struct dim_sample dim_sample;
1347 struct ena_ring *rx_ring = ena_napi->rx_ring;
1348
1349 if (!rx_ring->per_napi_packets)
1350 return;
1351
1352 rx_ring->non_empty_napi_events++;
1353
1354 dim_update_sample(rx_ring->non_empty_napi_events,
1355 rx_ring->rx_stats.cnt,
1356 rx_ring->rx_stats.bytes,
1357 &dim_sample);
1358
1359 net_dim(&ena_napi->dim, &dim_sample);
1360
1361 rx_ring->per_napi_packets = 0;
1362 }
1363
ena_unmask_interrupt(struct ena_ring * tx_ring,struct ena_ring * rx_ring)1364 void ena_unmask_interrupt(struct ena_ring *tx_ring,
1365 struct ena_ring *rx_ring)
1366 {
1367 u32 rx_interval = tx_ring->smoothed_interval;
1368 struct ena_eth_io_intr_reg intr_reg;
1369
1370 /* Rx ring can be NULL when for XDP tx queues which don't have an
1371 * accompanying rx_ring pair.
1372 */
1373 if (rx_ring)
1374 rx_interval = ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev) ?
1375 rx_ring->smoothed_interval :
1376 ena_com_get_nonadaptive_moderation_interval_rx(rx_ring->ena_dev);
1377
1378 /* Update intr register: rx intr delay,
1379 * tx intr delay and interrupt unmask
1380 */
1381 ena_com_update_intr_reg(&intr_reg,
1382 rx_interval,
1383 tx_ring->smoothed_interval,
1384 true);
1385
1386 ena_increase_stat(&tx_ring->tx_stats.unmask_interrupt, 1,
1387 &tx_ring->syncp);
1388
1389 /* It is a shared MSI-X.
1390 * Tx and Rx CQ have pointer to it.
1391 * So we use one of them to reach the intr reg
1392 * The Tx ring is used because the rx_ring is NULL for XDP queues
1393 */
1394 ena_com_unmask_intr(tx_ring->ena_com_io_cq, &intr_reg);
1395 }
1396
ena_update_ring_numa_node(struct ena_ring * tx_ring,struct ena_ring * rx_ring)1397 void ena_update_ring_numa_node(struct ena_ring *tx_ring,
1398 struct ena_ring *rx_ring)
1399 {
1400 int cpu = get_cpu();
1401 int numa_node;
1402
1403 /* Check only one ring since the 2 rings are running on the same cpu */
1404 if (likely(tx_ring->cpu == cpu))
1405 goto out;
1406
1407 tx_ring->cpu = cpu;
1408 if (rx_ring)
1409 rx_ring->cpu = cpu;
1410
1411 numa_node = cpu_to_node(cpu);
1412
1413 if (likely(tx_ring->numa_node == numa_node))
1414 goto out;
1415
1416 put_cpu();
1417
1418 if (numa_node != NUMA_NO_NODE) {
1419 ena_com_update_numa_node(tx_ring->ena_com_io_cq, numa_node);
1420 tx_ring->numa_node = numa_node;
1421 if (rx_ring) {
1422 rx_ring->numa_node = numa_node;
1423 ena_com_update_numa_node(rx_ring->ena_com_io_cq,
1424 numa_node);
1425 }
1426 }
1427
1428 return;
1429 out:
1430 put_cpu();
1431 }
1432
ena_io_poll(struct napi_struct * napi,int budget)1433 static int ena_io_poll(struct napi_struct *napi, int budget)
1434 {
1435 struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi);
1436 struct ena_ring *tx_ring, *rx_ring;
1437 int tx_work_done;
1438 int rx_work_done = 0;
1439 int tx_budget;
1440 int napi_comp_call = 0;
1441 int ret;
1442
1443 tx_ring = ena_napi->tx_ring;
1444 rx_ring = ena_napi->rx_ring;
1445
1446 tx_budget = tx_ring->ring_size / ENA_TX_POLL_BUDGET_DIVIDER;
1447
1448 if (!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) ||
1449 test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags)) {
1450 napi_complete_done(napi, 0);
1451 return 0;
1452 }
1453
1454 tx_work_done = ena_clean_tx_irq(tx_ring, tx_budget);
1455 /* On netpoll the budget is zero and the handler should only clean the
1456 * tx completions.
1457 */
1458 if (likely(budget))
1459 rx_work_done = ena_clean_rx_irq(rx_ring, napi, budget);
1460
1461 /* If the device is about to reset or down, avoid unmask
1462 * the interrupt and return 0 so NAPI won't reschedule
1463 */
1464 if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) ||
1465 test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags))) {
1466 napi_complete_done(napi, 0);
1467 ret = 0;
1468
1469 } else if ((budget > rx_work_done) && (tx_budget > tx_work_done)) {
1470 napi_comp_call = 1;
1471
1472 /* Update numa and unmask the interrupt only when schedule
1473 * from the interrupt context (vs from sk_busy_loop)
1474 */
1475 if (napi_complete_done(napi, rx_work_done) &&
1476 READ_ONCE(ena_napi->interrupts_masked)) {
1477 smp_rmb(); /* make sure interrupts_masked is read */
1478 WRITE_ONCE(ena_napi->interrupts_masked, false);
1479 /* We apply adaptive moderation on Rx path only.
1480 * Tx uses static interrupt moderation.
1481 */
1482 if (ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev))
1483 ena_adjust_adaptive_rx_intr_moderation(ena_napi);
1484
1485 ena_update_ring_numa_node(tx_ring, rx_ring);
1486 ena_unmask_interrupt(tx_ring, rx_ring);
1487 }
1488
1489 ret = rx_work_done;
1490 } else {
1491 ret = budget;
1492 }
1493
1494 u64_stats_update_begin(&tx_ring->syncp);
1495 tx_ring->tx_stats.napi_comp += napi_comp_call;
1496 tx_ring->tx_stats.tx_poll++;
1497 u64_stats_update_end(&tx_ring->syncp);
1498
1499 tx_ring->tx_stats.last_napi_jiffies = jiffies;
1500
1501 return ret;
1502 }
1503
ena_intr_msix_mgmnt(int irq,void * data)1504 static irqreturn_t ena_intr_msix_mgmnt(int irq, void *data)
1505 {
1506 struct ena_adapter *adapter = (struct ena_adapter *)data;
1507
1508 ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
1509
1510 /* Don't call the aenq handler before probe is done */
1511 if (likely(test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)))
1512 ena_com_aenq_intr_handler(adapter->ena_dev, data);
1513
1514 return IRQ_HANDLED;
1515 }
1516
1517 /* ena_intr_msix_io - MSI-X Interrupt Handler for Tx/Rx
1518 * @irq: interrupt number
1519 * @data: pointer to a network interface private napi device structure
1520 */
ena_intr_msix_io(int irq,void * data)1521 static irqreturn_t ena_intr_msix_io(int irq, void *data)
1522 {
1523 struct ena_napi *ena_napi = data;
1524
1525 /* Used to check HW health */
1526 WRITE_ONCE(ena_napi->first_interrupt, true);
1527
1528 WRITE_ONCE(ena_napi->interrupts_masked, true);
1529 smp_wmb(); /* write interrupts_masked before calling napi */
1530
1531 napi_schedule_irqoff(&ena_napi->napi);
1532
1533 return IRQ_HANDLED;
1534 }
1535
1536 /* Reserve a single MSI-X vector for management (admin + aenq).
1537 * plus reserve one vector for each potential io queue.
1538 * the number of potential io queues is the minimum of what the device
1539 * supports and the number of vCPUs.
1540 */
ena_enable_msix(struct ena_adapter * adapter)1541 static int ena_enable_msix(struct ena_adapter *adapter)
1542 {
1543 int msix_vecs, irq_cnt;
1544
1545 if (test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) {
1546 netif_err(adapter, probe, adapter->netdev,
1547 "Error, MSI-X is already enabled\n");
1548 return -EPERM;
1549 }
1550
1551 /* Reserved the max msix vectors we might need */
1552 msix_vecs = ENA_MAX_MSIX_VEC(adapter->max_num_io_queues);
1553 netif_dbg(adapter, probe, adapter->netdev,
1554 "Trying to enable MSI-X, vectors %d\n", msix_vecs);
1555
1556 irq_cnt = pci_alloc_irq_vectors(adapter->pdev, ENA_MIN_MSIX_VEC,
1557 msix_vecs, PCI_IRQ_MSIX);
1558
1559 if (irq_cnt < 0) {
1560 netif_err(adapter, probe, adapter->netdev,
1561 "Failed to enable MSI-X. irq_cnt %d\n", irq_cnt);
1562 return -ENOSPC;
1563 }
1564
1565 if (irq_cnt != msix_vecs) {
1566 netif_notice(adapter, probe, adapter->netdev,
1567 "Enable only %d MSI-X (out of %d), reduce the number of queues\n",
1568 irq_cnt, msix_vecs);
1569 adapter->num_io_queues = irq_cnt - ENA_ADMIN_MSIX_VEC;
1570 }
1571
1572 if (netif_enable_cpu_rmap(adapter->netdev, adapter->num_io_queues))
1573 netif_warn(adapter, probe, adapter->netdev,
1574 "Failed to map IRQs to CPUs\n");
1575
1576 adapter->msix_vecs = irq_cnt;
1577 set_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags);
1578
1579 return 0;
1580 }
1581
ena_setup_mgmnt_intr(struct ena_adapter * adapter)1582 static void ena_setup_mgmnt_intr(struct ena_adapter *adapter)
1583 {
1584 u32 cpu;
1585
1586 snprintf(adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].name,
1587 ENA_IRQNAME_SIZE, "ena-mgmnt@pci:%s",
1588 pci_name(adapter->pdev));
1589 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].handler =
1590 ena_intr_msix_mgmnt;
1591 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].data = adapter;
1592 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].vector =
1593 pci_irq_vector(adapter->pdev, ENA_MGMNT_IRQ_IDX);
1594 cpu = cpumask_first(cpu_online_mask);
1595 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].cpu = cpu;
1596 cpumask_set_cpu(cpu,
1597 &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].affinity_hint_mask);
1598 }
1599
ena_setup_io_intr(struct ena_adapter * adapter)1600 static void ena_setup_io_intr(struct ena_adapter *adapter)
1601 {
1602 struct net_device *netdev;
1603 int irq_idx, i, cpu;
1604 int io_queue_count;
1605
1606 netdev = adapter->netdev;
1607 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
1608
1609 for (i = 0; i < io_queue_count; i++) {
1610 irq_idx = ENA_IO_IRQ_IDX(i);
1611 cpu = i % num_online_cpus();
1612
1613 snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
1614 "%s-Tx-Rx-%d", netdev->name, i);
1615 adapter->irq_tbl[irq_idx].handler = ena_intr_msix_io;
1616 adapter->irq_tbl[irq_idx].data = &adapter->ena_napi[i];
1617 adapter->irq_tbl[irq_idx].vector =
1618 pci_irq_vector(adapter->pdev, irq_idx);
1619 adapter->irq_tbl[irq_idx].cpu = cpu;
1620
1621 cpumask_set_cpu(cpu,
1622 &adapter->irq_tbl[irq_idx].affinity_hint_mask);
1623 }
1624 }
1625
ena_request_mgmnt_irq(struct ena_adapter * adapter)1626 static int ena_request_mgmnt_irq(struct ena_adapter *adapter)
1627 {
1628 unsigned long flags = 0;
1629 struct ena_irq *irq;
1630 int rc;
1631
1632 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
1633 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
1634 irq->data);
1635 if (rc) {
1636 netif_err(adapter, probe, adapter->netdev,
1637 "Failed to request admin irq\n");
1638 return rc;
1639 }
1640
1641 netif_dbg(adapter, probe, adapter->netdev,
1642 "Set affinity hint of mgmnt irq.to 0x%lx (irq vector: %d)\n",
1643 irq->affinity_hint_mask.bits[0], irq->vector);
1644
1645 irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask);
1646
1647 return rc;
1648 }
1649
ena_request_io_irq(struct ena_adapter * adapter)1650 static int ena_request_io_irq(struct ena_adapter *adapter)
1651 {
1652 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
1653 int rc = 0, i, k, irq_idx;
1654 unsigned long flags = 0;
1655 struct ena_irq *irq;
1656
1657 if (!test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) {
1658 netif_err(adapter, ifup, adapter->netdev,
1659 "Failed to request I/O IRQ: MSI-X is not enabled\n");
1660 return -EINVAL;
1661 }
1662
1663 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) {
1664 irq = &adapter->irq_tbl[i];
1665 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
1666 irq->data);
1667 if (rc) {
1668 netif_err(adapter, ifup, adapter->netdev,
1669 "Failed to request I/O IRQ. index %d rc %d\n",
1670 i, rc);
1671 goto err;
1672 }
1673
1674 netif_dbg(adapter, ifup, adapter->netdev,
1675 "Set affinity hint of irq. index %d to 0x%lx (irq vector: %d)\n",
1676 i, irq->affinity_hint_mask.bits[0], irq->vector);
1677
1678 irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask);
1679 }
1680
1681 /* Now that IO IRQs have been successfully allocated map them to the
1682 * corresponding IO NAPI instance. Note that the mgmnt IRQ does not
1683 * have a NAPI, so care must be taken to correctly map IRQs to NAPIs.
1684 */
1685 for (i = 0; i < io_queue_count; i++) {
1686 irq_idx = ENA_IO_IRQ_IDX(i);
1687 irq = &adapter->irq_tbl[irq_idx];
1688 netif_napi_set_irq(&adapter->ena_napi[i].napi, irq->vector);
1689 }
1690
1691 return rc;
1692
1693 err:
1694 for (k = ENA_IO_IRQ_FIRST_IDX; k < i; k++) {
1695 irq = &adapter->irq_tbl[k];
1696 free_irq(irq->vector, irq->data);
1697 }
1698
1699 return rc;
1700 }
1701
ena_free_mgmnt_irq(struct ena_adapter * adapter)1702 static void ena_free_mgmnt_irq(struct ena_adapter *adapter)
1703 {
1704 struct ena_irq *irq;
1705
1706 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
1707 synchronize_irq(irq->vector);
1708 irq_set_affinity_hint(irq->vector, NULL);
1709 free_irq(irq->vector, irq->data);
1710 }
1711
ena_free_io_irq(struct ena_adapter * adapter)1712 static void ena_free_io_irq(struct ena_adapter *adapter)
1713 {
1714 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
1715 struct ena_irq *irq;
1716 int i;
1717
1718 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) {
1719 struct ena_napi *ena_napi;
1720
1721 irq = &adapter->irq_tbl[i];
1722 irq_set_affinity_hint(irq->vector, NULL);
1723 ena_napi = irq->data;
1724 netif_napi_set_irq(&ena_napi->napi, -1);
1725 free_irq(irq->vector, irq->data);
1726 }
1727 }
1728
ena_disable_msix(struct ena_adapter * adapter)1729 static void ena_disable_msix(struct ena_adapter *adapter)
1730 {
1731 if (test_and_clear_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags))
1732 pci_free_irq_vectors(adapter->pdev);
1733 }
1734
ena_disable_io_intr_sync(struct ena_adapter * adapter)1735 static void ena_disable_io_intr_sync(struct ena_adapter *adapter)
1736 {
1737 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
1738 int i;
1739
1740 if (!netif_running(adapter->netdev))
1741 return;
1742
1743 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++)
1744 synchronize_irq(adapter->irq_tbl[i].vector);
1745 }
1746
ena_del_napi_in_range(struct ena_adapter * adapter,int first_index,int count)1747 static void ena_del_napi_in_range(struct ena_adapter *adapter,
1748 int first_index,
1749 int count)
1750 {
1751 int i;
1752
1753 for (i = first_index; i < first_index + count; i++) {
1754 netif_napi_del(&adapter->ena_napi[i].napi);
1755
1756 WARN_ON(ENA_IS_XDP_INDEX(adapter, i) &&
1757 adapter->ena_napi[i].rx_ring);
1758 }
1759 }
1760
ena_init_napi_in_range(struct ena_adapter * adapter,int first_index,int count)1761 static void ena_init_napi_in_range(struct ena_adapter *adapter,
1762 int first_index, int count)
1763 {
1764 int (*napi_handler)(struct napi_struct *napi, int budget);
1765 int i;
1766
1767 for (i = first_index; i < first_index + count; i++) {
1768 struct ena_napi *napi = &adapter->ena_napi[i];
1769 struct ena_ring *rx_ring, *tx_ring;
1770
1771 memset(napi, 0, sizeof(*napi));
1772
1773 rx_ring = &adapter->rx_ring[i];
1774 tx_ring = &adapter->tx_ring[i];
1775
1776 napi_handler = ena_io_poll;
1777 if (ENA_IS_XDP_INDEX(adapter, i))
1778 napi_handler = ena_xdp_io_poll;
1779
1780 netif_napi_add(adapter->netdev, &napi->napi, napi_handler);
1781
1782 if (!ENA_IS_XDP_INDEX(adapter, i))
1783 napi->rx_ring = rx_ring;
1784
1785 napi->tx_ring = tx_ring;
1786 napi->qid = i;
1787 }
1788 }
1789
ena_napi_disable_in_range(struct ena_adapter * adapter,int first_index,int count)1790 static void ena_napi_disable_in_range(struct ena_adapter *adapter,
1791 int first_index,
1792 int count)
1793 {
1794 struct napi_struct *napi;
1795 int i;
1796
1797 for (i = first_index; i < first_index + count; i++) {
1798 napi = &adapter->ena_napi[i].napi;
1799 if (!ENA_IS_XDP_INDEX(adapter, i)) {
1800 /* This API is supported for non-XDP queues only */
1801 netif_queue_set_napi(adapter->netdev, i,
1802 NETDEV_QUEUE_TYPE_TX, NULL);
1803 netif_queue_set_napi(adapter->netdev, i,
1804 NETDEV_QUEUE_TYPE_RX, NULL);
1805 }
1806 napi_disable(napi);
1807 }
1808 }
1809
ena_napi_enable_in_range(struct ena_adapter * adapter,int first_index,int count)1810 static void ena_napi_enable_in_range(struct ena_adapter *adapter,
1811 int first_index,
1812 int count)
1813 {
1814 struct napi_struct *napi;
1815 int i;
1816
1817 for (i = first_index; i < first_index + count; i++) {
1818 napi = &adapter->ena_napi[i].napi;
1819 napi_enable(napi);
1820 if (!ENA_IS_XDP_INDEX(adapter, i)) {
1821 /* This API is supported for non-XDP queues only */
1822 netif_queue_set_napi(adapter->netdev, i,
1823 NETDEV_QUEUE_TYPE_RX, napi);
1824 netif_queue_set_napi(adapter->netdev, i,
1825 NETDEV_QUEUE_TYPE_TX, napi);
1826 }
1827 }
1828 }
1829
1830 /* Configure the Rx forwarding */
ena_rss_configure(struct ena_adapter * adapter)1831 static int ena_rss_configure(struct ena_adapter *adapter)
1832 {
1833 struct ena_com_dev *ena_dev = adapter->ena_dev;
1834 int rc;
1835
1836 /* In case the RSS table wasn't initialized by probe */
1837 if (!ena_dev->rss.tbl_log_size) {
1838 rc = ena_rss_init_default(adapter);
1839 if (rc && (rc != -EOPNOTSUPP)) {
1840 netif_err(adapter, ifup, adapter->netdev, "Failed to init RSS rc: %d\n", rc);
1841 return rc;
1842 }
1843 }
1844
1845 /* Set indirect table */
1846 rc = ena_com_indirect_table_set(ena_dev);
1847 if (unlikely(rc && rc != -EOPNOTSUPP))
1848 return rc;
1849
1850 /* Configure hash function (if supported) */
1851 rc = ena_com_set_hash_function(ena_dev);
1852 if (unlikely(rc && (rc != -EOPNOTSUPP)))
1853 return rc;
1854
1855 /* Configure hash inputs (if supported) */
1856 rc = ena_com_set_hash_ctrl(ena_dev);
1857 if (unlikely(rc && (rc != -EOPNOTSUPP)))
1858 return rc;
1859
1860 return 0;
1861 }
1862
ena_up_complete(struct ena_adapter * adapter)1863 static int ena_up_complete(struct ena_adapter *adapter)
1864 {
1865 int rc;
1866
1867 rc = ena_rss_configure(adapter);
1868 if (rc)
1869 return rc;
1870
1871 ena_change_mtu(adapter->netdev, adapter->netdev->mtu);
1872
1873 ena_refill_all_rx_bufs(adapter);
1874
1875 /* enable transmits */
1876 netif_tx_start_all_queues(adapter->netdev);
1877
1878 ena_napi_enable_in_range(adapter,
1879 0,
1880 adapter->xdp_num_queues + adapter->num_io_queues);
1881
1882 return 0;
1883 }
1884
ena_create_io_tx_queue(struct ena_adapter * adapter,int qid)1885 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid)
1886 {
1887 struct ena_com_create_io_ctx ctx;
1888 struct ena_com_dev *ena_dev;
1889 struct ena_ring *tx_ring;
1890 u32 msix_vector;
1891 u16 ena_qid;
1892 int rc;
1893
1894 ena_dev = adapter->ena_dev;
1895
1896 tx_ring = &adapter->tx_ring[qid];
1897 msix_vector = ENA_IO_IRQ_IDX(qid);
1898 ena_qid = ENA_IO_TXQ_IDX(qid);
1899
1900 memset(&ctx, 0x0, sizeof(ctx));
1901
1902 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1903 ctx.qid = ena_qid;
1904 ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1905 ctx.msix_vector = msix_vector;
1906 ctx.queue_size = tx_ring->ring_size;
1907 ctx.numa_node = tx_ring->numa_node;
1908
1909 rc = ena_com_create_io_queue(ena_dev, &ctx);
1910 if (rc) {
1911 netif_err(adapter, ifup, adapter->netdev,
1912 "Failed to create I/O TX queue num %d rc: %d\n",
1913 qid, rc);
1914 return rc;
1915 }
1916
1917 rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1918 &tx_ring->ena_com_io_sq,
1919 &tx_ring->ena_com_io_cq);
1920 if (rc) {
1921 netif_err(adapter, ifup, adapter->netdev,
1922 "Failed to get TX queue handlers. TX queue num %d rc: %d\n",
1923 qid, rc);
1924 ena_com_destroy_io_queue(ena_dev, ena_qid);
1925 return rc;
1926 }
1927
1928 ena_com_update_numa_node(tx_ring->ena_com_io_cq, ctx.numa_node);
1929 return rc;
1930 }
1931
ena_create_io_tx_queues_in_range(struct ena_adapter * adapter,int first_index,int count)1932 int ena_create_io_tx_queues_in_range(struct ena_adapter *adapter,
1933 int first_index, int count)
1934 {
1935 struct ena_com_dev *ena_dev = adapter->ena_dev;
1936 int rc, i;
1937
1938 for (i = first_index; i < first_index + count; i++) {
1939 rc = ena_create_io_tx_queue(adapter, i);
1940 if (rc)
1941 goto create_err;
1942 }
1943
1944 return 0;
1945
1946 create_err:
1947 while (i-- > first_index)
1948 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));
1949
1950 return rc;
1951 }
1952
ena_create_io_rx_queue(struct ena_adapter * adapter,int qid)1953 static int ena_create_io_rx_queue(struct ena_adapter *adapter, int qid)
1954 {
1955 struct ena_com_dev *ena_dev;
1956 struct ena_com_create_io_ctx ctx;
1957 struct ena_ring *rx_ring;
1958 u32 msix_vector;
1959 u16 ena_qid;
1960 int rc;
1961
1962 ena_dev = adapter->ena_dev;
1963
1964 rx_ring = &adapter->rx_ring[qid];
1965 msix_vector = ENA_IO_IRQ_IDX(qid);
1966 ena_qid = ENA_IO_RXQ_IDX(qid);
1967
1968 memset(&ctx, 0x0, sizeof(ctx));
1969
1970 ctx.qid = ena_qid;
1971 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1972 ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1973 ctx.msix_vector = msix_vector;
1974 ctx.queue_size = rx_ring->ring_size;
1975 ctx.numa_node = rx_ring->numa_node;
1976
1977 rc = ena_com_create_io_queue(ena_dev, &ctx);
1978 if (rc) {
1979 netif_err(adapter, ifup, adapter->netdev,
1980 "Failed to create I/O RX queue num %d rc: %d\n",
1981 qid, rc);
1982 return rc;
1983 }
1984
1985 rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1986 &rx_ring->ena_com_io_sq,
1987 &rx_ring->ena_com_io_cq);
1988 if (rc) {
1989 netif_err(adapter, ifup, adapter->netdev,
1990 "Failed to get RX queue handlers. RX queue num %d rc: %d\n",
1991 qid, rc);
1992 goto err;
1993 }
1994
1995 ena_com_update_numa_node(rx_ring->ena_com_io_cq, ctx.numa_node);
1996
1997 return rc;
1998 err:
1999 ena_com_destroy_io_queue(ena_dev, ena_qid);
2000 return rc;
2001 }
2002
ena_create_all_io_rx_queues(struct ena_adapter * adapter)2003 static int ena_create_all_io_rx_queues(struct ena_adapter *adapter)
2004 {
2005 struct ena_com_dev *ena_dev = adapter->ena_dev;
2006 int rc, i;
2007
2008 for (i = 0; i < adapter->num_io_queues; i++) {
2009 rc = ena_create_io_rx_queue(adapter, i);
2010 if (rc)
2011 goto create_err;
2012 INIT_WORK(&adapter->ena_napi[i].dim.work, ena_dim_work);
2013
2014 ena_xdp_register_rxq_info(&adapter->rx_ring[i]);
2015 }
2016
2017 return 0;
2018
2019 create_err:
2020 while (i--) {
2021 ena_xdp_unregister_rxq_info(&adapter->rx_ring[i]);
2022 cancel_work_sync(&adapter->ena_napi[i].dim.work);
2023 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
2024 }
2025
2026 return rc;
2027 }
2028
set_io_rings_size(struct ena_adapter * adapter,int new_tx_size,int new_rx_size)2029 static void set_io_rings_size(struct ena_adapter *adapter,
2030 int new_tx_size,
2031 int new_rx_size)
2032 {
2033 int i;
2034
2035 for (i = 0; i < adapter->num_io_queues; i++) {
2036 adapter->tx_ring[i].ring_size = new_tx_size;
2037 adapter->rx_ring[i].ring_size = new_rx_size;
2038 }
2039 }
2040
2041 /* This function allows queue allocation to backoff when the system is
2042 * low on memory. If there is not enough memory to allocate io queues
2043 * the driver will try to allocate smaller queues.
2044 *
2045 * The backoff algorithm is as follows:
2046 * 1. Try to allocate TX and RX and if successful.
2047 * 1.1. return success
2048 *
2049 * 2. Divide by 2 the size of the larger of RX and TX queues (or both if their size is the same).
2050 *
2051 * 3. If TX or RX is smaller than 256
2052 * 3.1. return failure.
2053 * 4. else
2054 * 4.1. go back to 1.
2055 */
create_queues_with_size_backoff(struct ena_adapter * adapter)2056 static int create_queues_with_size_backoff(struct ena_adapter *adapter)
2057 {
2058 int rc, cur_rx_ring_size, cur_tx_ring_size;
2059 int new_rx_ring_size, new_tx_ring_size;
2060
2061 /* current queue sizes might be set to smaller than the requested
2062 * ones due to past queue allocation failures.
2063 */
2064 set_io_rings_size(adapter, adapter->requested_tx_ring_size,
2065 adapter->requested_rx_ring_size);
2066
2067 while (1) {
2068 if (ena_xdp_present(adapter)) {
2069 rc = ena_setup_and_create_all_xdp_queues(adapter);
2070
2071 if (rc)
2072 goto err_setup_tx;
2073 }
2074 rc = ena_setup_tx_resources_in_range(adapter,
2075 0,
2076 adapter->num_io_queues);
2077 if (rc)
2078 goto err_setup_tx;
2079
2080 rc = ena_create_io_tx_queues_in_range(adapter,
2081 0,
2082 adapter->num_io_queues);
2083 if (rc)
2084 goto err_create_tx_queues;
2085
2086 rc = ena_setup_all_rx_resources(adapter);
2087 if (rc)
2088 goto err_setup_rx;
2089
2090 rc = ena_create_all_io_rx_queues(adapter);
2091 if (rc)
2092 goto err_create_rx_queues;
2093
2094 return 0;
2095
2096 err_create_rx_queues:
2097 ena_free_all_io_rx_resources(adapter);
2098 err_setup_rx:
2099 ena_destroy_all_tx_queues(adapter);
2100 err_create_tx_queues:
2101 ena_free_all_io_tx_resources(adapter);
2102 err_setup_tx:
2103 if (rc != -ENOMEM) {
2104 netif_err(adapter, ifup, adapter->netdev,
2105 "Queue creation failed with error code %d\n",
2106 rc);
2107 return rc;
2108 }
2109
2110 cur_tx_ring_size = adapter->tx_ring[0].ring_size;
2111 cur_rx_ring_size = adapter->rx_ring[0].ring_size;
2112
2113 netif_err(adapter, ifup, adapter->netdev,
2114 "Not enough memory to create queues with sizes TX=%d, RX=%d\n",
2115 cur_tx_ring_size, cur_rx_ring_size);
2116
2117 new_tx_ring_size = cur_tx_ring_size;
2118 new_rx_ring_size = cur_rx_ring_size;
2119
2120 /* Decrease the size of the larger queue, or
2121 * decrease both if they are the same size.
2122 */
2123 if (cur_rx_ring_size <= cur_tx_ring_size)
2124 new_tx_ring_size = cur_tx_ring_size / 2;
2125 if (cur_rx_ring_size >= cur_tx_ring_size)
2126 new_rx_ring_size = cur_rx_ring_size / 2;
2127
2128 if (new_tx_ring_size < ENA_MIN_RING_SIZE ||
2129 new_rx_ring_size < ENA_MIN_RING_SIZE) {
2130 netif_err(adapter, ifup, adapter->netdev,
2131 "Queue creation failed with the smallest possible queue size of %d for both queues. Not retrying with smaller queues\n",
2132 ENA_MIN_RING_SIZE);
2133 return rc;
2134 }
2135
2136 netif_err(adapter, ifup, adapter->netdev,
2137 "Retrying queue creation with sizes TX=%d, RX=%d\n",
2138 new_tx_ring_size,
2139 new_rx_ring_size);
2140
2141 set_io_rings_size(adapter, new_tx_ring_size,
2142 new_rx_ring_size);
2143 }
2144 }
2145
ena_up(struct ena_adapter * adapter)2146 int ena_up(struct ena_adapter *adapter)
2147 {
2148 int io_queue_count, rc, i;
2149
2150 netif_dbg(adapter, ifup, adapter->netdev, "%s\n", __func__);
2151
2152 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2153 ena_setup_io_intr(adapter);
2154
2155 /* napi poll functions should be initialized before running
2156 * request_irq(), to handle a rare condition where there is a pending
2157 * interrupt, causing the ISR to fire immediately while the poll
2158 * function wasn't set yet, causing a null dereference
2159 */
2160 ena_init_napi_in_range(adapter, 0, io_queue_count);
2161
2162 /* Enabling DIM needs to happen before enabling IRQs since DIM
2163 * is run from napi routine
2164 */
2165 if (ena_com_interrupt_moderation_supported(adapter->ena_dev))
2166 ena_com_enable_adaptive_moderation(adapter->ena_dev);
2167
2168 rc = ena_request_io_irq(adapter);
2169 if (rc)
2170 goto err_req_irq;
2171
2172 rc = create_queues_with_size_backoff(adapter);
2173 if (rc)
2174 goto err_create_queues_with_backoff;
2175
2176 rc = ena_up_complete(adapter);
2177 if (rc)
2178 goto err_up;
2179
2180 if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags))
2181 netif_carrier_on(adapter->netdev);
2182
2183 ena_increase_stat(&adapter->dev_stats.interface_up, 1,
2184 &adapter->syncp);
2185
2186 set_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2187
2188 /* Enable completion queues interrupt */
2189 for (i = 0; i < adapter->num_io_queues; i++)
2190 ena_unmask_interrupt(&adapter->tx_ring[i],
2191 &adapter->rx_ring[i]);
2192
2193 /* schedule napi in case we had pending packets
2194 * from the last time we disable napi
2195 */
2196 for (i = 0; i < io_queue_count; i++)
2197 napi_schedule(&adapter->ena_napi[i].napi);
2198
2199 return rc;
2200
2201 err_up:
2202 ena_destroy_all_tx_queues(adapter);
2203 ena_free_all_io_tx_resources(adapter);
2204 ena_destroy_all_rx_queues(adapter);
2205 ena_free_all_io_rx_resources(adapter);
2206 err_create_queues_with_backoff:
2207 ena_free_io_irq(adapter);
2208 err_req_irq:
2209 ena_del_napi_in_range(adapter, 0, io_queue_count);
2210
2211 return rc;
2212 }
2213
ena_down(struct ena_adapter * adapter)2214 void ena_down(struct ena_adapter *adapter)
2215 {
2216 int io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2217
2218 netif_dbg(adapter, ifdown, adapter->netdev, "%s\n", __func__);
2219
2220 clear_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2221
2222 ena_increase_stat(&adapter->dev_stats.interface_down, 1,
2223 &adapter->syncp);
2224
2225 netif_carrier_off(adapter->netdev);
2226 netif_tx_disable(adapter->netdev);
2227
2228 /* After this point the napi handler won't enable the tx queue */
2229 ena_napi_disable_in_range(adapter, 0, io_queue_count);
2230
2231 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) {
2232 int rc;
2233
2234 rc = ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason);
2235 if (rc)
2236 netif_err(adapter, ifdown, adapter->netdev,
2237 "Device reset failed\n");
2238 /* stop submitting admin commands on a device that was reset */
2239 ena_com_set_admin_running_state(adapter->ena_dev, false);
2240 }
2241
2242 ena_destroy_all_io_queues(adapter);
2243
2244 ena_disable_io_intr_sync(adapter);
2245 ena_free_io_irq(adapter);
2246 ena_del_napi_in_range(adapter, 0, io_queue_count);
2247
2248 ena_free_all_tx_bufs(adapter);
2249 ena_free_all_rx_bufs(adapter);
2250 ena_free_all_io_tx_resources(adapter);
2251 ena_free_all_io_rx_resources(adapter);
2252 }
2253
2254 /* ena_open - Called when a network interface is made active
2255 * @netdev: network interface device structure
2256 *
2257 * Returns 0 on success, negative value on failure
2258 *
2259 * The open entry point is called when a network interface is made
2260 * active by the system (IFF_UP). At this point all resources needed
2261 * for transmit and receive operations are allocated, the interrupt
2262 * handler is registered with the OS, the watchdog timer is started,
2263 * and the stack is notified that the interface is ready.
2264 */
ena_open(struct net_device * netdev)2265 static int ena_open(struct net_device *netdev)
2266 {
2267 struct ena_adapter *adapter = netdev_priv(netdev);
2268 int rc;
2269
2270 /* Notify the stack of the actual queue counts. */
2271 rc = netif_set_real_num_tx_queues(netdev, adapter->num_io_queues);
2272 if (rc) {
2273 netif_err(adapter, ifup, netdev, "Can't set num tx queues\n");
2274 return rc;
2275 }
2276
2277 rc = netif_set_real_num_rx_queues(netdev, adapter->num_io_queues);
2278 if (rc) {
2279 netif_err(adapter, ifup, netdev, "Can't set num rx queues\n");
2280 return rc;
2281 }
2282
2283 rc = ena_up(adapter);
2284 if (rc)
2285 return rc;
2286
2287 return rc;
2288 }
2289
2290 /* ena_close - Disables a network interface
2291 * @netdev: network interface device structure
2292 *
2293 * Returns 0, this is not allowed to fail
2294 *
2295 * The close entry point is called when an interface is de-activated
2296 * by the OS. The hardware is still under the drivers control, but
2297 * needs to be disabled. A global MAC reset is issued to stop the
2298 * hardware, and all transmit and receive resources are freed.
2299 */
ena_close(struct net_device * netdev)2300 static int ena_close(struct net_device *netdev)
2301 {
2302 struct ena_adapter *adapter = netdev_priv(netdev);
2303
2304 netif_dbg(adapter, ifdown, netdev, "%s\n", __func__);
2305
2306 if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))
2307 return 0;
2308
2309 if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
2310 ena_down(adapter);
2311
2312 /* Check for device status and issue reset if needed*/
2313 check_for_admin_com_state(adapter);
2314 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
2315 netif_err(adapter, ifdown, adapter->netdev,
2316 "Destroy failure, restarting device\n");
2317 ena_dump_stats_to_dmesg(adapter);
2318 /* rtnl lock already obtained in dev_ioctl() layer */
2319 ena_destroy_device(adapter, false);
2320 ena_restore_device(adapter);
2321 }
2322
2323 return 0;
2324 }
2325
ena_update_queue_params(struct ena_adapter * adapter,u32 new_tx_size,u32 new_rx_size,u32 new_llq_header_len)2326 int ena_update_queue_params(struct ena_adapter *adapter,
2327 u32 new_tx_size,
2328 u32 new_rx_size,
2329 u32 new_llq_header_len)
2330 {
2331 bool dev_was_up, large_llq_changed = false;
2332 int rc = 0;
2333
2334 dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2335 ena_close(adapter->netdev);
2336 adapter->requested_tx_ring_size = new_tx_size;
2337 adapter->requested_rx_ring_size = new_rx_size;
2338 ena_init_io_rings(adapter,
2339 0,
2340 adapter->xdp_num_queues +
2341 adapter->num_io_queues);
2342
2343 large_llq_changed = adapter->ena_dev->tx_mem_queue_type ==
2344 ENA_ADMIN_PLACEMENT_POLICY_DEV;
2345 large_llq_changed &=
2346 new_llq_header_len != adapter->ena_dev->tx_max_header_size;
2347
2348 /* a check that the configuration is valid is done by caller */
2349 if (large_llq_changed) {
2350 adapter->large_llq_header_enabled = !adapter->large_llq_header_enabled;
2351
2352 ena_destroy_device(adapter, false);
2353 rc = ena_restore_device(adapter);
2354 }
2355
2356 return dev_was_up && !rc ? ena_up(adapter) : rc;
2357 }
2358
ena_set_rx_copybreak(struct ena_adapter * adapter,u32 rx_copybreak)2359 int ena_set_rx_copybreak(struct ena_adapter *adapter, u32 rx_copybreak)
2360 {
2361 struct ena_ring *rx_ring;
2362 int i;
2363
2364 if (rx_copybreak > min_t(u16, adapter->netdev->mtu, ENA_PAGE_SIZE))
2365 return -EINVAL;
2366
2367 adapter->rx_copybreak = rx_copybreak;
2368
2369 for (i = 0; i < adapter->num_io_queues; i++) {
2370 rx_ring = &adapter->rx_ring[i];
2371 rx_ring->rx_copybreak = rx_copybreak;
2372 }
2373
2374 return 0;
2375 }
2376
ena_update_queue_count(struct ena_adapter * adapter,u32 new_channel_count)2377 int ena_update_queue_count(struct ena_adapter *adapter, u32 new_channel_count)
2378 {
2379 struct ena_com_dev *ena_dev = adapter->ena_dev;
2380 int prev_channel_count;
2381 bool dev_was_up;
2382
2383 dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2384 ena_close(adapter->netdev);
2385 prev_channel_count = adapter->num_io_queues;
2386 adapter->num_io_queues = new_channel_count;
2387 if (ena_xdp_present(adapter) &&
2388 ena_xdp_allowed(adapter) == ENA_XDP_ALLOWED) {
2389 adapter->xdp_first_ring = new_channel_count;
2390 adapter->xdp_num_queues = new_channel_count;
2391 if (prev_channel_count > new_channel_count)
2392 ena_xdp_exchange_program_rx_in_range(adapter,
2393 NULL,
2394 new_channel_count,
2395 prev_channel_count);
2396 else
2397 ena_xdp_exchange_program_rx_in_range(adapter,
2398 adapter->xdp_bpf_prog,
2399 prev_channel_count,
2400 new_channel_count);
2401 }
2402
2403 /* We need to destroy the rss table so that the indirection
2404 * table will be reinitialized by ena_up()
2405 */
2406 ena_com_rss_destroy(ena_dev);
2407 ena_init_io_rings(adapter,
2408 0,
2409 adapter->xdp_num_queues +
2410 adapter->num_io_queues);
2411 return dev_was_up ? ena_open(adapter->netdev) : 0;
2412 }
2413
ena_tx_csum(struct ena_com_tx_ctx * ena_tx_ctx,struct sk_buff * skb,bool disable_meta_caching)2414 static void ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx,
2415 struct sk_buff *skb,
2416 bool disable_meta_caching)
2417 {
2418 u32 mss = skb_shinfo(skb)->gso_size;
2419 struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
2420 u8 l4_protocol = 0;
2421
2422 if ((skb->ip_summed == CHECKSUM_PARTIAL) || mss) {
2423 ena_tx_ctx->l4_csum_enable = 1;
2424 if (mss) {
2425 ena_tx_ctx->tso_enable = 1;
2426 ena_meta->l4_hdr_len = tcp_hdr(skb)->doff;
2427 ena_tx_ctx->l4_csum_partial = 0;
2428 } else {
2429 ena_tx_ctx->tso_enable = 0;
2430 ena_meta->l4_hdr_len = 0;
2431 ena_tx_ctx->l4_csum_partial = 1;
2432 }
2433
2434 switch (ip_hdr(skb)->version) {
2435 case IPVERSION:
2436 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
2437 if (ip_hdr(skb)->frag_off & htons(IP_DF))
2438 ena_tx_ctx->df = 1;
2439 if (mss)
2440 ena_tx_ctx->l3_csum_enable = 1;
2441 l4_protocol = ip_hdr(skb)->protocol;
2442 break;
2443 case 6:
2444 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
2445 l4_protocol = ipv6_hdr(skb)->nexthdr;
2446 break;
2447 default:
2448 break;
2449 }
2450
2451 if (l4_protocol == IPPROTO_TCP)
2452 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
2453 else
2454 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
2455
2456 ena_meta->mss = mss;
2457 ena_meta->l3_hdr_len = skb_network_header_len(skb);
2458 ena_meta->l3_hdr_offset = skb_network_offset(skb);
2459 ena_tx_ctx->meta_valid = 1;
2460 } else if (disable_meta_caching) {
2461 memset(ena_meta, 0, sizeof(*ena_meta));
2462 ena_tx_ctx->meta_valid = 1;
2463 } else {
2464 ena_tx_ctx->meta_valid = 0;
2465 }
2466 }
2467
ena_check_and_linearize_skb(struct ena_ring * tx_ring,struct sk_buff * skb)2468 static int ena_check_and_linearize_skb(struct ena_ring *tx_ring,
2469 struct sk_buff *skb)
2470 {
2471 int num_frags, header_len, rc;
2472
2473 num_frags = skb_shinfo(skb)->nr_frags;
2474 header_len = skb_headlen(skb);
2475
2476 if (num_frags < tx_ring->sgl_size)
2477 return 0;
2478
2479 if ((num_frags == tx_ring->sgl_size) &&
2480 (header_len < tx_ring->tx_max_header_size))
2481 return 0;
2482
2483 ena_increase_stat(&tx_ring->tx_stats.linearize, 1, &tx_ring->syncp);
2484
2485 rc = skb_linearize(skb);
2486 if (unlikely(rc)) {
2487 ena_increase_stat(&tx_ring->tx_stats.linearize_failed, 1,
2488 &tx_ring->syncp);
2489 }
2490
2491 return rc;
2492 }
2493
ena_tx_map_skb(struct ena_ring * tx_ring,struct ena_tx_buffer * tx_info,struct sk_buff * skb,void ** push_hdr,u16 * header_len)2494 static int ena_tx_map_skb(struct ena_ring *tx_ring,
2495 struct ena_tx_buffer *tx_info,
2496 struct sk_buff *skb,
2497 void **push_hdr,
2498 u16 *header_len)
2499 {
2500 struct ena_adapter *adapter = tx_ring->adapter;
2501 struct ena_com_buf *ena_buf;
2502 dma_addr_t dma;
2503 u32 skb_head_len, frag_len, last_frag;
2504 u16 push_len = 0;
2505 u16 delta = 0;
2506 int i = 0;
2507
2508 skb_head_len = skb_headlen(skb);
2509 tx_info->skb = skb;
2510 ena_buf = tx_info->bufs;
2511
2512 if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2513 /* When the device is LLQ mode, the driver will copy
2514 * the header into the device memory space.
2515 * the ena_com layer assume the header is in a linear
2516 * memory space.
2517 * This assumption might be wrong since part of the header
2518 * can be in the fragmented buffers.
2519 * Use skb_header_pointer to make sure the header is in a
2520 * linear memory space.
2521 */
2522
2523 push_len = min_t(u32, skb->len, tx_ring->tx_max_header_size);
2524 *push_hdr = skb_header_pointer(skb, 0, push_len,
2525 tx_ring->push_buf_intermediate_buf);
2526 *header_len = push_len;
2527 if (unlikely(skb->data != *push_hdr)) {
2528 ena_increase_stat(&tx_ring->tx_stats.llq_buffer_copy, 1,
2529 &tx_ring->syncp);
2530
2531 delta = push_len - skb_head_len;
2532 }
2533 } else {
2534 *push_hdr = NULL;
2535 *header_len = min_t(u32, skb_head_len,
2536 tx_ring->tx_max_header_size);
2537 }
2538
2539 netif_dbg(adapter, tx_queued, adapter->netdev,
2540 "skb: %p header_buf->vaddr: %p push_len: %d\n", skb,
2541 *push_hdr, push_len);
2542
2543 if (skb_head_len > push_len) {
2544 dma = dma_map_single(tx_ring->dev, skb->data + push_len,
2545 skb_head_len - push_len, DMA_TO_DEVICE);
2546 if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
2547 goto error_report_dma_error;
2548
2549 ena_buf->paddr = dma;
2550 ena_buf->len = skb_head_len - push_len;
2551
2552 ena_buf++;
2553 tx_info->num_of_bufs++;
2554 tx_info->map_linear_data = 1;
2555 } else {
2556 tx_info->map_linear_data = 0;
2557 }
2558
2559 last_frag = skb_shinfo(skb)->nr_frags;
2560
2561 for (i = 0; i < last_frag; i++) {
2562 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2563
2564 frag_len = skb_frag_size(frag);
2565
2566 if (unlikely(delta >= frag_len)) {
2567 delta -= frag_len;
2568 continue;
2569 }
2570
2571 dma = skb_frag_dma_map(tx_ring->dev, frag, delta,
2572 frag_len - delta, DMA_TO_DEVICE);
2573 if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
2574 goto error_report_dma_error;
2575
2576 ena_buf->paddr = dma;
2577 ena_buf->len = frag_len - delta;
2578 ena_buf++;
2579 tx_info->num_of_bufs++;
2580 delta = 0;
2581 }
2582
2583 return 0;
2584
2585 error_report_dma_error:
2586 ena_increase_stat(&tx_ring->tx_stats.dma_mapping_err, 1,
2587 &tx_ring->syncp);
2588 netif_warn(adapter, tx_queued, adapter->netdev, "Failed to map skb\n");
2589
2590 tx_info->skb = NULL;
2591
2592 tx_info->num_of_bufs += i;
2593 ena_unmap_tx_buff(tx_ring, tx_info);
2594
2595 return -EINVAL;
2596 }
2597
2598 /* Called with netif_tx_lock. */
ena_start_xmit(struct sk_buff * skb,struct net_device * dev)2599 static netdev_tx_t ena_start_xmit(struct sk_buff *skb, struct net_device *dev)
2600 {
2601 struct ena_adapter *adapter = netdev_priv(dev);
2602 struct ena_tx_buffer *tx_info;
2603 struct ena_com_tx_ctx ena_tx_ctx;
2604 struct ena_ring *tx_ring;
2605 struct netdev_queue *txq;
2606 void *push_hdr;
2607 u16 next_to_use, req_id, header_len;
2608 int qid, rc;
2609
2610 netif_dbg(adapter, tx_queued, dev, "%s skb %p\n", __func__, skb);
2611 /* Determine which tx ring we will be placed on */
2612 qid = skb_get_queue_mapping(skb);
2613 tx_ring = &adapter->tx_ring[qid];
2614 txq = netdev_get_tx_queue(dev, qid);
2615
2616 rc = ena_check_and_linearize_skb(tx_ring, skb);
2617 if (unlikely(rc))
2618 goto error_drop_packet;
2619
2620 next_to_use = tx_ring->next_to_use;
2621 req_id = tx_ring->free_ids[next_to_use];
2622 tx_info = &tx_ring->tx_buffer_info[req_id];
2623 tx_info->num_of_bufs = 0;
2624
2625 WARN(tx_info->skb, "SKB isn't NULL req_id %d\n", req_id);
2626
2627 rc = ena_tx_map_skb(tx_ring, tx_info, skb, &push_hdr, &header_len);
2628 if (unlikely(rc))
2629 goto error_drop_packet;
2630
2631 memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
2632 ena_tx_ctx.ena_bufs = tx_info->bufs;
2633 ena_tx_ctx.push_header = push_hdr;
2634 ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2635 ena_tx_ctx.req_id = req_id;
2636 ena_tx_ctx.header_len = header_len;
2637
2638 /* set flags and meta data */
2639 ena_tx_csum(&ena_tx_ctx, skb, tx_ring->disable_meta_caching);
2640
2641 rc = ena_xmit_common(adapter,
2642 tx_ring,
2643 tx_info,
2644 &ena_tx_ctx,
2645 next_to_use,
2646 skb->len);
2647 if (rc)
2648 goto error_unmap_dma;
2649
2650 netdev_tx_sent_queue(txq, skb->len);
2651
2652 /* stop the queue when no more space available, the packet can have up
2653 * to sgl_size + 2. one for the meta descriptor and one for header
2654 * (if the header is larger than tx_max_header_size).
2655 */
2656 if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2657 tx_ring->sgl_size + 2))) {
2658 netif_dbg(adapter, tx_queued, dev, "%s stop queue %d\n",
2659 __func__, qid);
2660
2661 netif_tx_stop_queue(txq);
2662 ena_increase_stat(&tx_ring->tx_stats.queue_stop, 1,
2663 &tx_ring->syncp);
2664
2665 /* There is a rare condition where this function decide to
2666 * stop the queue but meanwhile clean_tx_irq updates
2667 * next_to_completion and terminates.
2668 * The queue will remain stopped forever.
2669 * To solve this issue add a mb() to make sure that
2670 * netif_tx_stop_queue() write is vissible before checking if
2671 * there is additional space in the queue.
2672 */
2673 smp_mb();
2674
2675 if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2676 ENA_TX_WAKEUP_THRESH)) {
2677 netif_tx_wake_queue(txq);
2678 ena_increase_stat(&tx_ring->tx_stats.queue_wakeup, 1,
2679 &tx_ring->syncp);
2680 }
2681 }
2682
2683 skb_tx_timestamp(skb);
2684
2685 if (netif_xmit_stopped(txq) || !netdev_xmit_more())
2686 /* trigger the dma engine. ena_ring_tx_doorbell()
2687 * calls a memory barrier inside it.
2688 */
2689 ena_ring_tx_doorbell(tx_ring);
2690
2691 return NETDEV_TX_OK;
2692
2693 error_unmap_dma:
2694 ena_unmap_tx_buff(tx_ring, tx_info);
2695 tx_info->skb = NULL;
2696
2697 error_drop_packet:
2698 dev_kfree_skb(skb);
2699 return NETDEV_TX_OK;
2700 }
2701
ena_config_host_info(struct ena_com_dev * ena_dev,struct pci_dev * pdev)2702 static void ena_config_host_info(struct ena_com_dev *ena_dev, struct pci_dev *pdev)
2703 {
2704 struct device *dev = &pdev->dev;
2705 struct ena_admin_host_info *host_info;
2706 ssize_t ret;
2707 int rc;
2708
2709 /* Allocate only the host info */
2710 rc = ena_com_allocate_host_info(ena_dev);
2711 if (rc) {
2712 dev_err(dev, "Cannot allocate host info\n");
2713 return;
2714 }
2715
2716 host_info = ena_dev->host_attr.host_info;
2717
2718 host_info->bdf = pci_dev_id(pdev);
2719 host_info->os_type = ENA_ADMIN_OS_LINUX;
2720 host_info->kernel_ver = LINUX_VERSION_CODE;
2721 ret = strscpy(host_info->kernel_ver_str, utsname()->version,
2722 sizeof(host_info->kernel_ver_str));
2723 if (ret < 0)
2724 dev_dbg(dev,
2725 "kernel version string will be truncated, status = %zd\n", ret);
2726
2727 host_info->os_dist = 0;
2728 ret = strscpy(host_info->os_dist_str, utsname()->release,
2729 sizeof(host_info->os_dist_str));
2730 if (ret < 0)
2731 dev_dbg(dev,
2732 "OS distribution string will be truncated, status = %zd\n", ret);
2733
2734 host_info->driver_version =
2735 (DRV_MODULE_GEN_MAJOR) |
2736 (DRV_MODULE_GEN_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
2737 (DRV_MODULE_GEN_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT) |
2738 ("K"[0] << ENA_ADMIN_HOST_INFO_MODULE_TYPE_SHIFT);
2739 host_info->num_cpus = num_online_cpus();
2740
2741 host_info->driver_supported_features =
2742 ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
2743 ENA_ADMIN_HOST_INFO_INTERRUPT_MODERATION_MASK |
2744 ENA_ADMIN_HOST_INFO_RX_BUF_MIRRORING_MASK |
2745 ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK |
2746 ENA_ADMIN_HOST_INFO_RX_PAGE_REUSE_MASK;
2747
2748 rc = ena_com_set_host_attributes(ena_dev);
2749 if (rc) {
2750 if (rc == -EOPNOTSUPP)
2751 dev_warn(dev, "Cannot set host attributes\n");
2752 else
2753 dev_err(dev, "Cannot set host attributes\n");
2754
2755 goto err;
2756 }
2757
2758 return;
2759
2760 err:
2761 ena_com_delete_host_info(ena_dev);
2762 }
2763
ena_config_debug_area(struct ena_adapter * adapter)2764 static void ena_config_debug_area(struct ena_adapter *adapter)
2765 {
2766 u32 debug_area_size;
2767 int rc, ss_count;
2768
2769 ss_count = ena_get_sset_count(adapter->netdev, ETH_SS_STATS);
2770 if (ss_count <= 0) {
2771 netif_err(adapter, drv, adapter->netdev,
2772 "SS count is negative\n");
2773 return;
2774 }
2775
2776 /* allocate 32 bytes for each string and 64bit for the value */
2777 debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
2778
2779 rc = ena_com_allocate_debug_area(adapter->ena_dev, debug_area_size);
2780 if (rc) {
2781 netif_err(adapter, drv, adapter->netdev,
2782 "Cannot allocate debug area\n");
2783 return;
2784 }
2785
2786 rc = ena_com_set_host_attributes(adapter->ena_dev);
2787 if (rc) {
2788 if (rc == -EOPNOTSUPP)
2789 netif_warn(adapter, drv, adapter->netdev, "Cannot set host attributes\n");
2790 else
2791 netif_err(adapter, drv, adapter->netdev,
2792 "Cannot set host attributes\n");
2793 goto err;
2794 }
2795
2796 return;
2797 err:
2798 ena_com_delete_debug_area(adapter->ena_dev);
2799 }
2800
ena_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)2801 static void ena_get_stats64(struct net_device *netdev,
2802 struct rtnl_link_stats64 *stats)
2803 {
2804 struct ena_adapter *adapter = netdev_priv(netdev);
2805 struct ena_ring *rx_ring, *tx_ring;
2806 u64 total_xdp_rx_drops = 0;
2807 unsigned int start;
2808 u64 rx_drops;
2809 u64 tx_drops;
2810 int i;
2811
2812 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
2813 return;
2814
2815 for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) {
2816 u64 bytes, packets, xdp_rx_drops;
2817
2818 tx_ring = &adapter->tx_ring[i];
2819
2820 do {
2821 start = u64_stats_fetch_begin(&tx_ring->syncp);
2822 packets = tx_ring->tx_stats.cnt;
2823 bytes = tx_ring->tx_stats.bytes;
2824 } while (u64_stats_fetch_retry(&tx_ring->syncp, start));
2825
2826 stats->tx_packets += packets;
2827 stats->tx_bytes += bytes;
2828
2829 /* In XDP there isn't an RX queue counterpart */
2830 if (ENA_IS_XDP_INDEX(adapter, i))
2831 continue;
2832
2833 rx_ring = &adapter->rx_ring[i];
2834
2835 do {
2836 start = u64_stats_fetch_begin(&rx_ring->syncp);
2837 packets = rx_ring->rx_stats.cnt;
2838 bytes = rx_ring->rx_stats.bytes;
2839 xdp_rx_drops = rx_ring->rx_stats.xdp_drop;
2840 } while (u64_stats_fetch_retry(&rx_ring->syncp, start));
2841
2842 stats->rx_packets += packets;
2843 stats->rx_bytes += bytes;
2844 total_xdp_rx_drops += xdp_rx_drops;
2845 }
2846
2847 do {
2848 start = u64_stats_fetch_begin(&adapter->syncp);
2849 rx_drops = adapter->dev_stats.rx_drops;
2850 tx_drops = adapter->dev_stats.tx_drops;
2851 } while (u64_stats_fetch_retry(&adapter->syncp, start));
2852
2853 stats->rx_dropped = rx_drops + total_xdp_rx_drops;
2854 stats->tx_dropped = tx_drops;
2855
2856 stats->multicast = 0;
2857 stats->collisions = 0;
2858
2859 stats->rx_length_errors = 0;
2860 stats->rx_crc_errors = 0;
2861 stats->rx_frame_errors = 0;
2862 stats->rx_fifo_errors = 0;
2863 stats->rx_missed_errors = 0;
2864 stats->tx_window_errors = 0;
2865
2866 stats->rx_errors = 0;
2867 stats->tx_errors = 0;
2868 }
2869
2870 static const struct net_device_ops ena_netdev_ops = {
2871 .ndo_open = ena_open,
2872 .ndo_stop = ena_close,
2873 .ndo_start_xmit = ena_start_xmit,
2874 .ndo_get_stats64 = ena_get_stats64,
2875 .ndo_tx_timeout = ena_tx_timeout,
2876 .ndo_change_mtu = ena_change_mtu,
2877 .ndo_validate_addr = eth_validate_addr,
2878 .ndo_bpf = ena_xdp,
2879 .ndo_xdp_xmit = ena_xdp_xmit,
2880 };
2881
ena_calc_io_queue_size(struct ena_adapter * adapter,struct ena_com_dev_get_features_ctx * get_feat_ctx)2882 static int ena_calc_io_queue_size(struct ena_adapter *adapter,
2883 struct ena_com_dev_get_features_ctx *get_feat_ctx)
2884 {
2885 struct ena_admin_feature_llq_desc *llq = &get_feat_ctx->llq;
2886 struct ena_com_dev *ena_dev = adapter->ena_dev;
2887 u32 tx_queue_size = ENA_DEFAULT_RING_SIZE;
2888 u32 rx_queue_size = ENA_DEFAULT_RING_SIZE;
2889 u32 max_tx_queue_size;
2890 u32 max_rx_queue_size;
2891
2892 /* If this function is called after driver load, the ring sizes have already
2893 * been configured. Take it into account when recalculating ring size.
2894 */
2895 if (adapter->tx_ring->ring_size)
2896 tx_queue_size = adapter->tx_ring->ring_size;
2897
2898 if (adapter->rx_ring->ring_size)
2899 rx_queue_size = adapter->rx_ring->ring_size;
2900
2901 if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
2902 struct ena_admin_queue_ext_feature_fields *max_queue_ext =
2903 &get_feat_ctx->max_queue_ext.max_queue_ext;
2904 max_rx_queue_size = min_t(u32, max_queue_ext->max_rx_cq_depth,
2905 max_queue_ext->max_rx_sq_depth);
2906 max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
2907
2908 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
2909 max_tx_queue_size = min_t(u32, max_tx_queue_size,
2910 llq->max_llq_depth);
2911 else
2912 max_tx_queue_size = min_t(u32, max_tx_queue_size,
2913 max_queue_ext->max_tx_sq_depth);
2914
2915 adapter->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
2916 max_queue_ext->max_per_packet_tx_descs);
2917 adapter->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
2918 max_queue_ext->max_per_packet_rx_descs);
2919 } else {
2920 struct ena_admin_queue_feature_desc *max_queues =
2921 &get_feat_ctx->max_queues;
2922 max_rx_queue_size = min_t(u32, max_queues->max_cq_depth,
2923 max_queues->max_sq_depth);
2924 max_tx_queue_size = max_queues->max_cq_depth;
2925
2926 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
2927 max_tx_queue_size = min_t(u32, max_tx_queue_size,
2928 llq->max_llq_depth);
2929 else
2930 max_tx_queue_size = min_t(u32, max_tx_queue_size,
2931 max_queues->max_sq_depth);
2932
2933 adapter->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
2934 max_queues->max_packet_tx_descs);
2935 adapter->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
2936 max_queues->max_packet_rx_descs);
2937 }
2938
2939 max_tx_queue_size = rounddown_pow_of_two(max_tx_queue_size);
2940 max_rx_queue_size = rounddown_pow_of_two(max_rx_queue_size);
2941
2942 if (max_tx_queue_size < ENA_MIN_RING_SIZE) {
2943 netdev_err(adapter->netdev, "Device max TX queue size: %d < minimum: %d\n",
2944 max_tx_queue_size, ENA_MIN_RING_SIZE);
2945 return -EINVAL;
2946 }
2947
2948 if (max_rx_queue_size < ENA_MIN_RING_SIZE) {
2949 netdev_err(adapter->netdev, "Device max RX queue size: %d < minimum: %d\n",
2950 max_rx_queue_size, ENA_MIN_RING_SIZE);
2951 return -EINVAL;
2952 }
2953
2954 /* When forcing large headers, we multiply the entry size by 2, and therefore divide
2955 * the queue size by 2, leaving the amount of memory used by the queues unchanged.
2956 */
2957 if (adapter->large_llq_header_enabled) {
2958 if ((llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
2959 ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2960 max_tx_queue_size /= 2;
2961 dev_info(&adapter->pdev->dev,
2962 "Forcing large headers and decreasing maximum TX queue size to %d\n",
2963 max_tx_queue_size);
2964 } else {
2965 dev_err(&adapter->pdev->dev,
2966 "Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
2967
2968 adapter->large_llq_header_enabled = false;
2969 }
2970 }
2971
2972 tx_queue_size = clamp_val(tx_queue_size, ENA_MIN_RING_SIZE,
2973 max_tx_queue_size);
2974 rx_queue_size = clamp_val(rx_queue_size, ENA_MIN_RING_SIZE,
2975 max_rx_queue_size);
2976
2977 tx_queue_size = rounddown_pow_of_two(tx_queue_size);
2978 rx_queue_size = rounddown_pow_of_two(rx_queue_size);
2979
2980 adapter->max_tx_ring_size = max_tx_queue_size;
2981 adapter->max_rx_ring_size = max_rx_queue_size;
2982 adapter->requested_tx_ring_size = tx_queue_size;
2983 adapter->requested_rx_ring_size = rx_queue_size;
2984
2985 return 0;
2986 }
2987
ena_device_validate_params(struct ena_adapter * adapter,struct ena_com_dev_get_features_ctx * get_feat_ctx)2988 static int ena_device_validate_params(struct ena_adapter *adapter,
2989 struct ena_com_dev_get_features_ctx *get_feat_ctx)
2990 {
2991 struct net_device *netdev = adapter->netdev;
2992 int rc;
2993
2994 rc = ether_addr_equal(get_feat_ctx->dev_attr.mac_addr,
2995 adapter->mac_addr);
2996 if (!rc) {
2997 netif_err(adapter, drv, netdev,
2998 "Error, mac address are different\n");
2999 return -EINVAL;
3000 }
3001
3002 if (get_feat_ctx->dev_attr.max_mtu < netdev->mtu) {
3003 netif_err(adapter, drv, netdev,
3004 "Error, device max mtu is smaller than netdev MTU\n");
3005 return -EINVAL;
3006 }
3007
3008 return 0;
3009 }
3010
set_default_llq_configurations(struct ena_adapter * adapter,struct ena_llq_configurations * llq_config,struct ena_admin_feature_llq_desc * llq)3011 static void set_default_llq_configurations(struct ena_adapter *adapter,
3012 struct ena_llq_configurations *llq_config,
3013 struct ena_admin_feature_llq_desc *llq)
3014 {
3015 struct ena_com_dev *ena_dev = adapter->ena_dev;
3016
3017 llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
3018 llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
3019 llq_config->llq_num_decs_before_header = ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
3020
3021 adapter->large_llq_header_supported =
3022 !!(ena_dev->supported_features & BIT(ENA_ADMIN_LLQ));
3023 adapter->large_llq_header_supported &=
3024 !!(llq->entry_size_ctrl_supported &
3025 ENA_ADMIN_LIST_ENTRY_SIZE_256B);
3026
3027 if ((llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
3028 adapter->large_llq_header_enabled) {
3029 llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_256B;
3030 llq_config->llq_ring_entry_size_value = 256;
3031 } else {
3032 llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B;
3033 llq_config->llq_ring_entry_size_value = 128;
3034 }
3035 }
3036
ena_set_queues_placement_policy(struct pci_dev * pdev,struct ena_com_dev * ena_dev,struct ena_admin_feature_llq_desc * llq,struct ena_llq_configurations * llq_default_configurations)3037 static int ena_set_queues_placement_policy(struct pci_dev *pdev,
3038 struct ena_com_dev *ena_dev,
3039 struct ena_admin_feature_llq_desc *llq,
3040 struct ena_llq_configurations *llq_default_configurations)
3041 {
3042 int rc;
3043 u32 llq_feature_mask;
3044
3045 llq_feature_mask = 1 << ENA_ADMIN_LLQ;
3046 if (!(ena_dev->supported_features & llq_feature_mask)) {
3047 dev_warn(&pdev->dev,
3048 "LLQ is not supported Fallback to host mode policy.\n");
3049 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3050 return 0;
3051 }
3052
3053 if (!ena_dev->mem_bar) {
3054 netdev_err(ena_dev->net_device,
3055 "LLQ is advertised as supported but device doesn't expose mem bar\n");
3056 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3057 return 0;
3058 }
3059
3060 rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
3061 if (unlikely(rc)) {
3062 dev_err(&pdev->dev,
3063 "Failed to configure the device mode. Fallback to host mode policy.\n");
3064 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3065 }
3066
3067 return 0;
3068 }
3069
ena_map_llq_mem_bar(struct pci_dev * pdev,struct ena_com_dev * ena_dev,int bars)3070 static int ena_map_llq_mem_bar(struct pci_dev *pdev, struct ena_com_dev *ena_dev,
3071 int bars)
3072 {
3073 bool has_mem_bar = !!(bars & BIT(ENA_MEM_BAR));
3074
3075 if (!has_mem_bar)
3076 return 0;
3077
3078 ena_dev->mem_bar = devm_ioremap_wc(&pdev->dev,
3079 pci_resource_start(pdev, ENA_MEM_BAR),
3080 pci_resource_len(pdev, ENA_MEM_BAR));
3081
3082 if (!ena_dev->mem_bar)
3083 return -EFAULT;
3084
3085 return 0;
3086 }
3087
ena_device_init(struct ena_adapter * adapter,struct pci_dev * pdev,struct ena_com_dev_get_features_ctx * get_feat_ctx,bool * wd_state)3088 static int ena_device_init(struct ena_adapter *adapter, struct pci_dev *pdev,
3089 struct ena_com_dev_get_features_ctx *get_feat_ctx,
3090 bool *wd_state)
3091 {
3092 struct ena_com_dev *ena_dev = adapter->ena_dev;
3093 struct net_device *netdev = adapter->netdev;
3094 struct ena_llq_configurations llq_config;
3095 struct device *dev = &pdev->dev;
3096 bool readless_supported;
3097 u32 aenq_groups;
3098 int dma_width;
3099 int rc;
3100
3101 rc = ena_com_mmio_reg_read_request_init(ena_dev);
3102 if (rc) {
3103 dev_err(dev, "Failed to init mmio read less\n");
3104 return rc;
3105 }
3106
3107 /* The PCIe configuration space revision id indicate if mmio reg
3108 * read is disabled
3109 */
3110 readless_supported = !(pdev->revision & ENA_MMIO_DISABLE_REG_READ);
3111 ena_com_set_mmio_read_mode(ena_dev, readless_supported);
3112
3113 rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
3114 if (rc) {
3115 dev_err(dev, "Can not reset device\n");
3116 goto err_mmio_read_less;
3117 }
3118
3119 rc = ena_com_validate_version(ena_dev);
3120 if (rc) {
3121 dev_err(dev, "Device version is too low\n");
3122 goto err_mmio_read_less;
3123 }
3124
3125 dma_width = ena_com_get_dma_width(ena_dev);
3126 if (dma_width < 0) {
3127 dev_err(dev, "Invalid dma width value %d", dma_width);
3128 rc = dma_width;
3129 goto err_mmio_read_less;
3130 }
3131
3132 rc = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(dma_width));
3133 if (rc) {
3134 dev_err(dev, "dma_set_mask_and_coherent failed %d\n", rc);
3135 goto err_mmio_read_less;
3136 }
3137
3138 /* ENA admin level init */
3139 rc = ena_com_admin_init(ena_dev, &aenq_handlers);
3140 if (rc) {
3141 dev_err(dev,
3142 "Can not initialize ena admin queue with device\n");
3143 goto err_mmio_read_less;
3144 }
3145
3146 /* To enable the msix interrupts the driver needs to know the number
3147 * of queues. So the driver uses polling mode to retrieve this
3148 * information
3149 */
3150 ena_com_set_admin_polling_mode(ena_dev, true);
3151
3152 ena_config_host_info(ena_dev, pdev);
3153
3154 /* Get Device Attributes*/
3155 rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
3156 if (rc) {
3157 dev_err(dev, "Cannot get attribute for ena device rc=%d\n", rc);
3158 goto err_admin_init;
3159 }
3160
3161 /* Try to turn all the available aenq groups */
3162 aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
3163 BIT(ENA_ADMIN_FATAL_ERROR) |
3164 BIT(ENA_ADMIN_WARNING) |
3165 BIT(ENA_ADMIN_NOTIFICATION) |
3166 BIT(ENA_ADMIN_KEEP_ALIVE);
3167
3168 aenq_groups &= get_feat_ctx->aenq.supported_groups;
3169
3170 rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
3171 if (rc) {
3172 dev_err(dev, "Cannot configure aenq groups rc= %d\n", rc);
3173 goto err_admin_init;
3174 }
3175
3176 *wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
3177
3178 set_default_llq_configurations(adapter, &llq_config, &get_feat_ctx->llq);
3179
3180 rc = ena_set_queues_placement_policy(pdev, ena_dev, &get_feat_ctx->llq,
3181 &llq_config);
3182 if (rc) {
3183 netdev_err(netdev, "Cannot set queues placement policy rc= %d\n", rc);
3184 goto err_admin_init;
3185 }
3186
3187 rc = ena_calc_io_queue_size(adapter, get_feat_ctx);
3188 if (unlikely(rc))
3189 goto err_admin_init;
3190
3191 return 0;
3192
3193 err_admin_init:
3194 ena_com_abort_admin_commands(ena_dev);
3195 ena_com_wait_for_abort_completion(ena_dev);
3196 ena_com_delete_host_info(ena_dev);
3197 ena_com_admin_destroy(ena_dev);
3198 err_mmio_read_less:
3199 ena_com_mmio_reg_read_request_destroy(ena_dev);
3200
3201 return rc;
3202 }
3203
ena_enable_msix_and_set_admin_interrupts(struct ena_adapter * adapter)3204 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter)
3205 {
3206 struct ena_com_dev *ena_dev = adapter->ena_dev;
3207 struct device *dev = &adapter->pdev->dev;
3208 int rc;
3209
3210 rc = ena_enable_msix(adapter);
3211 if (rc) {
3212 dev_err(dev, "Can not reserve msix vectors\n");
3213 return rc;
3214 }
3215
3216 ena_setup_mgmnt_intr(adapter);
3217
3218 rc = ena_request_mgmnt_irq(adapter);
3219 if (rc) {
3220 dev_err(dev, "Can not setup management interrupts\n");
3221 goto err_disable_msix;
3222 }
3223
3224 ena_com_set_admin_polling_mode(ena_dev, false);
3225
3226 ena_com_admin_aenq_enable(ena_dev);
3227
3228 return 0;
3229
3230 err_disable_msix:
3231 ena_disable_msix(adapter);
3232
3233 return rc;
3234 }
3235
ena_destroy_device(struct ena_adapter * adapter,bool graceful)3236 static int ena_destroy_device(struct ena_adapter *adapter, bool graceful)
3237 {
3238 struct net_device *netdev = adapter->netdev;
3239 struct ena_com_dev *ena_dev = adapter->ena_dev;
3240 bool dev_up;
3241 int rc = 0;
3242
3243 if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))
3244 return 0;
3245
3246 netif_carrier_off(netdev);
3247
3248 del_timer_sync(&adapter->timer_service);
3249
3250 dev_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
3251 adapter->dev_up_before_reset = dev_up;
3252 if (!graceful)
3253 ena_com_set_admin_running_state(ena_dev, false);
3254
3255 if (dev_up)
3256 ena_down(adapter);
3257
3258 /* Stop the device from sending AENQ events (in case reset flag is set
3259 * and device is up, ena_down() already reset the device.
3260 */
3261 if (!(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags) && dev_up))
3262 rc = ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason);
3263
3264 ena_free_mgmnt_irq(adapter);
3265
3266 ena_disable_msix(adapter);
3267
3268 ena_com_abort_admin_commands(ena_dev);
3269
3270 ena_com_wait_for_abort_completion(ena_dev);
3271
3272 ena_com_admin_destroy(ena_dev);
3273
3274 ena_com_mmio_reg_read_request_destroy(ena_dev);
3275
3276 /* return reset reason to default value */
3277 adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3278
3279 clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3280 clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3281
3282 return rc;
3283 }
3284
ena_restore_device(struct ena_adapter * adapter)3285 static int ena_restore_device(struct ena_adapter *adapter)
3286 {
3287 struct ena_com_dev_get_features_ctx get_feat_ctx;
3288 struct ena_com_dev *ena_dev = adapter->ena_dev;
3289 struct pci_dev *pdev = adapter->pdev;
3290 struct ena_ring *txr;
3291 int rc, count, i;
3292 bool wd_state;
3293
3294 set_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
3295 rc = ena_device_init(adapter, adapter->pdev, &get_feat_ctx, &wd_state);
3296 if (rc) {
3297 dev_err(&pdev->dev, "Can not initialize device\n");
3298 goto err;
3299 }
3300 adapter->wd_state = wd_state;
3301
3302 count = adapter->xdp_num_queues + adapter->num_io_queues;
3303 for (i = 0 ; i < count; i++) {
3304 txr = &adapter->tx_ring[i];
3305 txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
3306 txr->tx_max_header_size = ena_dev->tx_max_header_size;
3307 }
3308
3309 rc = ena_device_validate_params(adapter, &get_feat_ctx);
3310 if (rc) {
3311 dev_err(&pdev->dev, "Validation of device parameters failed\n");
3312 goto err_device_destroy;
3313 }
3314
3315 rc = ena_enable_msix_and_set_admin_interrupts(adapter);
3316 if (rc) {
3317 dev_err(&pdev->dev, "Enable MSI-X failed\n");
3318 goto err_device_destroy;
3319 }
3320 /* If the interface was up before the reset bring it up */
3321 if (adapter->dev_up_before_reset) {
3322 rc = ena_up(adapter);
3323 if (rc) {
3324 dev_err(&pdev->dev, "Failed to create I/O queues\n");
3325 goto err_disable_msix;
3326 }
3327 }
3328
3329 set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3330
3331 clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
3332 if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags))
3333 netif_carrier_on(adapter->netdev);
3334
3335 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
3336 adapter->last_keep_alive_jiffies = jiffies;
3337
3338 return rc;
3339 err_disable_msix:
3340 ena_free_mgmnt_irq(adapter);
3341 ena_disable_msix(adapter);
3342 err_device_destroy:
3343 ena_com_abort_admin_commands(ena_dev);
3344 ena_com_wait_for_abort_completion(ena_dev);
3345 ena_com_admin_destroy(ena_dev);
3346 ena_com_dev_reset(ena_dev, ENA_REGS_RESET_DRIVER_INVALID_STATE);
3347 ena_com_mmio_reg_read_request_destroy(ena_dev);
3348 err:
3349 clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3350 clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
3351 dev_err(&pdev->dev,
3352 "Reset attempt failed. Can not reset the device\n");
3353
3354 return rc;
3355 }
3356
ena_fw_reset_device(struct work_struct * work)3357 static void ena_fw_reset_device(struct work_struct *work)
3358 {
3359 int rc = 0;
3360
3361 struct ena_adapter *adapter =
3362 container_of(work, struct ena_adapter, reset_task);
3363
3364 rtnl_lock();
3365
3366 if (likely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
3367 rc |= ena_destroy_device(adapter, false);
3368 rc |= ena_restore_device(adapter);
3369 adapter->dev_stats.reset_fail += !!rc;
3370
3371 dev_err(&adapter->pdev->dev, "Device reset completed successfully\n");
3372 }
3373
3374 rtnl_unlock();
3375 }
3376
check_for_rx_interrupt_queue(struct ena_adapter * adapter,struct ena_ring * rx_ring)3377 static int check_for_rx_interrupt_queue(struct ena_adapter *adapter,
3378 struct ena_ring *rx_ring)
3379 {
3380 struct ena_napi *ena_napi = container_of(rx_ring->napi, struct ena_napi, napi);
3381
3382 if (likely(READ_ONCE(ena_napi->first_interrupt)))
3383 return 0;
3384
3385 if (ena_com_cq_empty(rx_ring->ena_com_io_cq))
3386 return 0;
3387
3388 rx_ring->no_interrupt_event_cnt++;
3389
3390 if (rx_ring->no_interrupt_event_cnt == ENA_MAX_NO_INTERRUPT_ITERATIONS) {
3391 netif_err(adapter, rx_err, adapter->netdev,
3392 "Potential MSIX issue on Rx side Queue = %d. Reset the device\n",
3393 rx_ring->qid);
3394
3395 ena_reset_device(adapter, ENA_REGS_RESET_MISS_INTERRUPT);
3396 return -EIO;
3397 }
3398
3399 return 0;
3400 }
3401
check_missing_comp_in_tx_queue(struct ena_adapter * adapter,struct ena_ring * tx_ring)3402 static int check_missing_comp_in_tx_queue(struct ena_adapter *adapter,
3403 struct ena_ring *tx_ring)
3404 {
3405 struct ena_napi *ena_napi = container_of(tx_ring->napi, struct ena_napi, napi);
3406 enum ena_regs_reset_reason_types reset_reason = ENA_REGS_RESET_MISS_TX_CMPL;
3407 unsigned int time_since_last_napi;
3408 unsigned int missing_tx_comp_to;
3409 bool is_tx_comp_time_expired;
3410 struct ena_tx_buffer *tx_buf;
3411 unsigned long last_jiffies;
3412 int napi_scheduled;
3413 u32 missed_tx = 0;
3414 int i, rc = 0;
3415
3416 missing_tx_comp_to = jiffies_to_msecs(adapter->missing_tx_completion_to);
3417
3418 for (i = 0; i < tx_ring->ring_size; i++) {
3419 tx_buf = &tx_ring->tx_buffer_info[i];
3420 last_jiffies = tx_buf->last_jiffies;
3421
3422 if (last_jiffies == 0)
3423 /* no pending Tx at this location */
3424 continue;
3425
3426 is_tx_comp_time_expired = time_is_before_jiffies(last_jiffies +
3427 2 * adapter->missing_tx_completion_to);
3428
3429 if (unlikely(!READ_ONCE(ena_napi->first_interrupt) && is_tx_comp_time_expired)) {
3430 /* If after graceful period interrupt is still not
3431 * received, we schedule a reset
3432 */
3433 netif_err(adapter, tx_err, adapter->netdev,
3434 "Potential MSIX issue on Tx side Queue = %d. Reset the device\n",
3435 tx_ring->qid);
3436 ena_reset_device(adapter, ENA_REGS_RESET_MISS_INTERRUPT);
3437 return -EIO;
3438 }
3439
3440 is_tx_comp_time_expired = time_is_before_jiffies(last_jiffies +
3441 adapter->missing_tx_completion_to);
3442
3443 if (unlikely(is_tx_comp_time_expired)) {
3444 time_since_last_napi =
3445 jiffies_to_usecs(jiffies - tx_ring->tx_stats.last_napi_jiffies);
3446 napi_scheduled = !!(ena_napi->napi.state & NAPIF_STATE_SCHED);
3447
3448 if (missing_tx_comp_to < time_since_last_napi && napi_scheduled) {
3449 /* We suspect napi isn't called because the
3450 * bottom half is not run. Require a bigger
3451 * timeout for these cases
3452 */
3453 if (!time_is_before_jiffies(last_jiffies +
3454 2 * adapter->missing_tx_completion_to))
3455 continue;
3456
3457 reset_reason = ENA_REGS_RESET_SUSPECTED_POLL_STARVATION;
3458 }
3459
3460 missed_tx++;
3461
3462 if (tx_buf->print_once)
3463 continue;
3464
3465 netif_notice(adapter, tx_err, adapter->netdev,
3466 "TX hasn't completed, qid %d, index %d. %u usecs from last napi execution, napi scheduled: %d\n",
3467 tx_ring->qid, i, time_since_last_napi, napi_scheduled);
3468
3469 tx_buf->print_once = 1;
3470 }
3471 }
3472
3473 if (unlikely(missed_tx > adapter->missing_tx_completion_threshold)) {
3474 netif_err(adapter, tx_err, adapter->netdev,
3475 "Lost TX completions are above the threshold (%d > %d). Completion transmission timeout: %u.\n",
3476 missed_tx,
3477 adapter->missing_tx_completion_threshold,
3478 missing_tx_comp_to);
3479 netif_err(adapter, tx_err, adapter->netdev,
3480 "Resetting the device\n");
3481
3482 ena_reset_device(adapter, reset_reason);
3483 rc = -EIO;
3484 }
3485
3486 ena_increase_stat(&tx_ring->tx_stats.missed_tx, missed_tx,
3487 &tx_ring->syncp);
3488
3489 return rc;
3490 }
3491
check_for_missing_completions(struct ena_adapter * adapter)3492 static void check_for_missing_completions(struct ena_adapter *adapter)
3493 {
3494 struct ena_ring *tx_ring;
3495 struct ena_ring *rx_ring;
3496 int qid, budget, rc;
3497 int io_queue_count;
3498
3499 io_queue_count = adapter->xdp_num_queues + adapter->num_io_queues;
3500
3501 /* Make sure the driver doesn't turn the device in other process */
3502 smp_rmb();
3503
3504 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
3505 return;
3506
3507 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
3508 return;
3509
3510 if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
3511 return;
3512
3513 budget = min_t(u32, io_queue_count, ENA_MONITORED_TX_QUEUES);
3514
3515 qid = adapter->last_monitored_tx_qid;
3516
3517 while (budget) {
3518 qid = (qid + 1) % io_queue_count;
3519
3520 tx_ring = &adapter->tx_ring[qid];
3521 rx_ring = &adapter->rx_ring[qid];
3522
3523 rc = check_missing_comp_in_tx_queue(adapter, tx_ring);
3524 if (unlikely(rc))
3525 return;
3526
3527 rc = !ENA_IS_XDP_INDEX(adapter, qid) ?
3528 check_for_rx_interrupt_queue(adapter, rx_ring) : 0;
3529 if (unlikely(rc))
3530 return;
3531
3532 budget--;
3533 }
3534
3535 adapter->last_monitored_tx_qid = qid;
3536 }
3537
3538 /* trigger napi schedule after 2 consecutive detections */
3539 #define EMPTY_RX_REFILL 2
3540 /* For the rare case where the device runs out of Rx descriptors and the
3541 * napi handler failed to refill new Rx descriptors (due to a lack of memory
3542 * for example).
3543 * This case will lead to a deadlock:
3544 * The device won't send interrupts since all the new Rx packets will be dropped
3545 * The napi handler won't allocate new Rx descriptors so the device will be
3546 * able to send new packets.
3547 *
3548 * This scenario can happen when the kernel's vm.min_free_kbytes is too small.
3549 * It is recommended to have at least 512MB, with a minimum of 128MB for
3550 * constrained environment).
3551 *
3552 * When such a situation is detected - Reschedule napi
3553 */
check_for_empty_rx_ring(struct ena_adapter * adapter)3554 static void check_for_empty_rx_ring(struct ena_adapter *adapter)
3555 {
3556 struct ena_ring *rx_ring;
3557 int i, refill_required;
3558
3559 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
3560 return;
3561
3562 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
3563 return;
3564
3565 for (i = 0; i < adapter->num_io_queues; i++) {
3566 rx_ring = &adapter->rx_ring[i];
3567
3568 refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
3569 if (unlikely(refill_required == (rx_ring->ring_size - 1))) {
3570 rx_ring->empty_rx_queue++;
3571
3572 if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) {
3573 ena_increase_stat(&rx_ring->rx_stats.empty_rx_ring, 1,
3574 &rx_ring->syncp);
3575
3576 netif_err(adapter, drv, adapter->netdev,
3577 "Trigger refill for ring %d\n", i);
3578
3579 napi_schedule(rx_ring->napi);
3580 rx_ring->empty_rx_queue = 0;
3581 }
3582 } else {
3583 rx_ring->empty_rx_queue = 0;
3584 }
3585 }
3586 }
3587
3588 /* Check for keep alive expiration */
check_for_missing_keep_alive(struct ena_adapter * adapter)3589 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
3590 {
3591 unsigned long keep_alive_expired;
3592
3593 if (!adapter->wd_state)
3594 return;
3595
3596 if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
3597 return;
3598
3599 keep_alive_expired = adapter->last_keep_alive_jiffies +
3600 adapter->keep_alive_timeout;
3601 if (unlikely(time_is_before_jiffies(keep_alive_expired))) {
3602 netif_err(adapter, drv, adapter->netdev,
3603 "Keep alive watchdog timeout.\n");
3604 ena_increase_stat(&adapter->dev_stats.wd_expired, 1,
3605 &adapter->syncp);
3606 ena_reset_device(adapter, ENA_REGS_RESET_KEEP_ALIVE_TO);
3607 }
3608 }
3609
check_for_admin_com_state(struct ena_adapter * adapter)3610 static void check_for_admin_com_state(struct ena_adapter *adapter)
3611 {
3612 if (unlikely(!ena_com_get_admin_running_state(adapter->ena_dev))) {
3613 netif_err(adapter, drv, adapter->netdev,
3614 "ENA admin queue is not in running state!\n");
3615 ena_increase_stat(&adapter->dev_stats.admin_q_pause, 1,
3616 &adapter->syncp);
3617 ena_reset_device(adapter, ENA_REGS_RESET_ADMIN_TO);
3618 }
3619 }
3620
ena_update_hints(struct ena_adapter * adapter,struct ena_admin_ena_hw_hints * hints)3621 static void ena_update_hints(struct ena_adapter *adapter,
3622 struct ena_admin_ena_hw_hints *hints)
3623 {
3624 struct net_device *netdev = adapter->netdev;
3625
3626 if (hints->admin_completion_tx_timeout)
3627 adapter->ena_dev->admin_queue.completion_timeout =
3628 hints->admin_completion_tx_timeout * 1000;
3629
3630 if (hints->mmio_read_timeout)
3631 /* convert to usec */
3632 adapter->ena_dev->mmio_read.reg_read_to =
3633 hints->mmio_read_timeout * 1000;
3634
3635 if (hints->missed_tx_completion_count_threshold_to_reset)
3636 adapter->missing_tx_completion_threshold =
3637 hints->missed_tx_completion_count_threshold_to_reset;
3638
3639 if (hints->missing_tx_completion_timeout) {
3640 if (hints->missing_tx_completion_timeout == ENA_HW_HINTS_NO_TIMEOUT)
3641 adapter->missing_tx_completion_to = ENA_HW_HINTS_NO_TIMEOUT;
3642 else
3643 adapter->missing_tx_completion_to =
3644 msecs_to_jiffies(hints->missing_tx_completion_timeout);
3645 }
3646
3647 if (hints->netdev_wd_timeout)
3648 netdev->watchdog_timeo = msecs_to_jiffies(hints->netdev_wd_timeout);
3649
3650 if (hints->driver_watchdog_timeout) {
3651 if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
3652 adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
3653 else
3654 adapter->keep_alive_timeout =
3655 msecs_to_jiffies(hints->driver_watchdog_timeout);
3656 }
3657 }
3658
ena_update_host_info(struct ena_admin_host_info * host_info,struct net_device * netdev)3659 static void ena_update_host_info(struct ena_admin_host_info *host_info,
3660 struct net_device *netdev)
3661 {
3662 host_info->supported_network_features[0] =
3663 netdev->features & GENMASK_ULL(31, 0);
3664 host_info->supported_network_features[1] =
3665 (netdev->features & GENMASK_ULL(63, 32)) >> 32;
3666 }
3667
ena_timer_service(struct timer_list * t)3668 static void ena_timer_service(struct timer_list *t)
3669 {
3670 struct ena_adapter *adapter = from_timer(adapter, t, timer_service);
3671 u8 *debug_area = adapter->ena_dev->host_attr.debug_area_virt_addr;
3672 struct ena_admin_host_info *host_info =
3673 adapter->ena_dev->host_attr.host_info;
3674
3675 check_for_missing_keep_alive(adapter);
3676
3677 check_for_admin_com_state(adapter);
3678
3679 check_for_missing_completions(adapter);
3680
3681 check_for_empty_rx_ring(adapter);
3682
3683 if (debug_area)
3684 ena_dump_stats_to_buf(adapter, debug_area);
3685
3686 if (host_info)
3687 ena_update_host_info(host_info, adapter->netdev);
3688
3689 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
3690 netif_err(adapter, drv, adapter->netdev,
3691 "Trigger reset is on\n");
3692 ena_dump_stats_to_dmesg(adapter);
3693 queue_work(ena_wq, &adapter->reset_task);
3694 return;
3695 }
3696
3697 /* Reset the timer */
3698 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
3699 }
3700
ena_calc_max_io_queue_num(struct pci_dev * pdev,struct ena_com_dev * ena_dev,struct ena_com_dev_get_features_ctx * get_feat_ctx)3701 static u32 ena_calc_max_io_queue_num(struct pci_dev *pdev,
3702 struct ena_com_dev *ena_dev,
3703 struct ena_com_dev_get_features_ctx *get_feat_ctx)
3704 {
3705 u32 io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
3706
3707 if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
3708 struct ena_admin_queue_ext_feature_fields *max_queue_ext =
3709 &get_feat_ctx->max_queue_ext.max_queue_ext;
3710 io_rx_num = min_t(u32, max_queue_ext->max_rx_sq_num,
3711 max_queue_ext->max_rx_cq_num);
3712
3713 io_tx_sq_num = max_queue_ext->max_tx_sq_num;
3714 io_tx_cq_num = max_queue_ext->max_tx_cq_num;
3715 } else {
3716 struct ena_admin_queue_feature_desc *max_queues =
3717 &get_feat_ctx->max_queues;
3718 io_tx_sq_num = max_queues->max_sq_num;
3719 io_tx_cq_num = max_queues->max_cq_num;
3720 io_rx_num = min_t(u32, io_tx_sq_num, io_tx_cq_num);
3721 }
3722
3723 /* In case of LLQ use the llq fields for the tx SQ/CQ */
3724 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
3725 io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
3726
3727 max_num_io_queues = min_t(u32, num_online_cpus(), ENA_MAX_NUM_IO_QUEUES);
3728 max_num_io_queues = min_t(u32, max_num_io_queues, io_rx_num);
3729 max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_sq_num);
3730 max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_cq_num);
3731 /* 1 IRQ for mgmnt and 1 IRQs for each IO direction */
3732 max_num_io_queues = min_t(u32, max_num_io_queues, pci_msix_vec_count(pdev) - 1);
3733
3734 return max_num_io_queues;
3735 }
3736
ena_set_dev_offloads(struct ena_com_dev_get_features_ctx * feat,struct net_device * netdev)3737 static void ena_set_dev_offloads(struct ena_com_dev_get_features_ctx *feat,
3738 struct net_device *netdev)
3739 {
3740 netdev_features_t dev_features = 0;
3741
3742 /* Set offload features */
3743 if (feat->offload.tx &
3744 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
3745 dev_features |= NETIF_F_IP_CSUM;
3746
3747 if (feat->offload.tx &
3748 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
3749 dev_features |= NETIF_F_IPV6_CSUM;
3750
3751 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
3752 dev_features |= NETIF_F_TSO;
3753
3754 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK)
3755 dev_features |= NETIF_F_TSO6;
3756
3757 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_ECN_MASK)
3758 dev_features |= NETIF_F_TSO_ECN;
3759
3760 if (feat->offload.rx_supported &
3761 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
3762 dev_features |= NETIF_F_RXCSUM;
3763
3764 if (feat->offload.rx_supported &
3765 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
3766 dev_features |= NETIF_F_RXCSUM;
3767
3768 netdev->features =
3769 dev_features |
3770 NETIF_F_SG |
3771 NETIF_F_RXHASH |
3772 NETIF_F_HIGHDMA;
3773
3774 netdev->hw_features |= netdev->features;
3775 netdev->vlan_features |= netdev->features;
3776 }
3777
ena_set_conf_feat_params(struct ena_adapter * adapter,struct ena_com_dev_get_features_ctx * feat)3778 static void ena_set_conf_feat_params(struct ena_adapter *adapter,
3779 struct ena_com_dev_get_features_ctx *feat)
3780 {
3781 struct net_device *netdev = adapter->netdev;
3782
3783 /* Copy mac address */
3784 if (!is_valid_ether_addr(feat->dev_attr.mac_addr)) {
3785 eth_hw_addr_random(netdev);
3786 ether_addr_copy(adapter->mac_addr, netdev->dev_addr);
3787 } else {
3788 ether_addr_copy(adapter->mac_addr, feat->dev_attr.mac_addr);
3789 eth_hw_addr_set(netdev, adapter->mac_addr);
3790 }
3791
3792 /* Set offload features */
3793 ena_set_dev_offloads(feat, netdev);
3794
3795 adapter->max_mtu = feat->dev_attr.max_mtu;
3796 netdev->max_mtu = adapter->max_mtu;
3797 netdev->min_mtu = ENA_MIN_MTU;
3798 }
3799
ena_rss_init_default(struct ena_adapter * adapter)3800 static int ena_rss_init_default(struct ena_adapter *adapter)
3801 {
3802 struct ena_com_dev *ena_dev = adapter->ena_dev;
3803 struct device *dev = &adapter->pdev->dev;
3804 int rc, i;
3805 u32 val;
3806
3807 rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
3808 if (unlikely(rc)) {
3809 dev_err(dev, "Cannot init indirect table\n");
3810 goto err_rss_init;
3811 }
3812
3813 for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
3814 val = ethtool_rxfh_indir_default(i, adapter->num_io_queues);
3815 rc = ena_com_indirect_table_fill_entry(ena_dev, i,
3816 ENA_IO_RXQ_IDX(val));
3817 if (unlikely(rc)) {
3818 dev_err(dev, "Cannot fill indirect table\n");
3819 goto err_fill_indir;
3820 }
3821 }
3822
3823 rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_TOEPLITZ, NULL, ENA_HASH_KEY_SIZE,
3824 0xFFFFFFFF);
3825 if (unlikely(rc && (rc != -EOPNOTSUPP))) {
3826 dev_err(dev, "Cannot fill hash function\n");
3827 goto err_fill_indir;
3828 }
3829
3830 rc = ena_com_set_default_hash_ctrl(ena_dev);
3831 if (unlikely(rc && (rc != -EOPNOTSUPP))) {
3832 dev_err(dev, "Cannot fill hash control\n");
3833 goto err_fill_indir;
3834 }
3835
3836 return 0;
3837
3838 err_fill_indir:
3839 ena_com_rss_destroy(ena_dev);
3840 err_rss_init:
3841
3842 return rc;
3843 }
3844
ena_release_bars(struct ena_com_dev * ena_dev,struct pci_dev * pdev)3845 static void ena_release_bars(struct ena_com_dev *ena_dev, struct pci_dev *pdev)
3846 {
3847 int release_bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK;
3848
3849 pci_release_selected_regions(pdev, release_bars);
3850 }
3851
3852 /* ena_probe - Device Initialization Routine
3853 * @pdev: PCI device information struct
3854 * @ent: entry in ena_pci_tbl
3855 *
3856 * Returns 0 on success, negative on failure
3857 *
3858 * ena_probe initializes an adapter identified by a pci_dev structure.
3859 * The OS initialization, configuring of the adapter private structure,
3860 * and a hardware reset occur.
3861 */
ena_probe(struct pci_dev * pdev,const struct pci_device_id * ent)3862 static int ena_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3863 {
3864 struct ena_com_dev_get_features_ctx get_feat_ctx;
3865 struct ena_com_dev *ena_dev = NULL;
3866 struct ena_adapter *adapter;
3867 struct net_device *netdev;
3868 static int adapters_found;
3869 u32 max_num_io_queues;
3870 bool wd_state;
3871 int bars, rc;
3872
3873 dev_dbg(&pdev->dev, "%s\n", __func__);
3874
3875 rc = pci_enable_device_mem(pdev);
3876 if (rc) {
3877 dev_err(&pdev->dev, "pci_enable_device_mem() failed!\n");
3878 return rc;
3879 }
3880
3881 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(ENA_MAX_PHYS_ADDR_SIZE_BITS));
3882 if (rc) {
3883 dev_err(&pdev->dev, "dma_set_mask_and_coherent failed %d\n", rc);
3884 goto err_disable_device;
3885 }
3886
3887 pci_set_master(pdev);
3888
3889 ena_dev = vzalloc(sizeof(*ena_dev));
3890 if (!ena_dev) {
3891 rc = -ENOMEM;
3892 goto err_disable_device;
3893 }
3894
3895 bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK;
3896 rc = pci_request_selected_regions(pdev, bars, DRV_MODULE_NAME);
3897 if (rc) {
3898 dev_err(&pdev->dev, "pci_request_selected_regions failed %d\n",
3899 rc);
3900 goto err_free_ena_dev;
3901 }
3902
3903 ena_dev->reg_bar = devm_ioremap(&pdev->dev,
3904 pci_resource_start(pdev, ENA_REG_BAR),
3905 pci_resource_len(pdev, ENA_REG_BAR));
3906 if (!ena_dev->reg_bar) {
3907 dev_err(&pdev->dev, "Failed to remap regs bar\n");
3908 rc = -EFAULT;
3909 goto err_free_region;
3910 }
3911
3912 ena_dev->ena_min_poll_delay_us = ENA_ADMIN_POLL_DELAY_US;
3913
3914 ena_dev->dmadev = &pdev->dev;
3915
3916 netdev = alloc_etherdev_mq(sizeof(struct ena_adapter), ENA_MAX_RINGS);
3917 if (!netdev) {
3918 dev_err(&pdev->dev, "alloc_etherdev_mq failed\n");
3919 rc = -ENOMEM;
3920 goto err_free_region;
3921 }
3922
3923 SET_NETDEV_DEV(netdev, &pdev->dev);
3924 adapter = netdev_priv(netdev);
3925 adapter->ena_dev = ena_dev;
3926 adapter->netdev = netdev;
3927 adapter->pdev = pdev;
3928 adapter->msg_enable = DEFAULT_MSG_ENABLE;
3929
3930 ena_dev->net_device = netdev;
3931
3932 pci_set_drvdata(pdev, adapter);
3933
3934 rc = ena_com_allocate_customer_metrics_buffer(ena_dev);
3935 if (rc) {
3936 netdev_err(netdev, "ena_com_allocate_customer_metrics_buffer failed\n");
3937 goto err_netdev_destroy;
3938 }
3939
3940 rc = ena_map_llq_mem_bar(pdev, ena_dev, bars);
3941 if (rc) {
3942 dev_err(&pdev->dev, "ENA LLQ bar mapping failed\n");
3943 goto err_metrics_destroy;
3944 }
3945
3946 rc = ena_device_init(adapter, pdev, &get_feat_ctx, &wd_state);
3947 if (rc) {
3948 dev_err(&pdev->dev, "ENA device init failed\n");
3949 if (rc == -ETIME)
3950 rc = -EPROBE_DEFER;
3951 goto err_metrics_destroy;
3952 }
3953
3954 /* Initial TX and RX interrupt delay. Assumes 1 usec granularity.
3955 * Updated during device initialization with the real granularity
3956 */
3957 ena_dev->intr_moder_tx_interval = ENA_INTR_INITIAL_TX_INTERVAL_USECS;
3958 ena_dev->intr_moder_rx_interval = ENA_INTR_INITIAL_RX_INTERVAL_USECS;
3959 ena_dev->intr_delay_resolution = ENA_DEFAULT_INTR_DELAY_RESOLUTION;
3960 max_num_io_queues = ena_calc_max_io_queue_num(pdev, ena_dev, &get_feat_ctx);
3961 if (unlikely(!max_num_io_queues)) {
3962 rc = -EFAULT;
3963 goto err_device_destroy;
3964 }
3965
3966 ena_set_conf_feat_params(adapter, &get_feat_ctx);
3967
3968 adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3969
3970 adapter->num_io_queues = max_num_io_queues;
3971 adapter->max_num_io_queues = max_num_io_queues;
3972 adapter->last_monitored_tx_qid = 0;
3973
3974 adapter->xdp_first_ring = 0;
3975 adapter->xdp_num_queues = 0;
3976
3977 adapter->rx_copybreak = ENA_DEFAULT_RX_COPYBREAK;
3978 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
3979 adapter->disable_meta_caching =
3980 !!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
3981 BIT(ENA_ADMIN_DISABLE_META_CACHING));
3982
3983 adapter->wd_state = wd_state;
3984
3985 snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d", adapters_found);
3986
3987 rc = ena_com_init_interrupt_moderation(adapter->ena_dev);
3988 if (rc) {
3989 dev_err(&pdev->dev,
3990 "Failed to query interrupt moderation feature\n");
3991 goto err_device_destroy;
3992 }
3993
3994 ena_init_io_rings(adapter,
3995 0,
3996 adapter->xdp_num_queues +
3997 adapter->num_io_queues);
3998
3999 netdev->netdev_ops = &ena_netdev_ops;
4000 netdev->watchdog_timeo = TX_TIMEOUT;
4001 ena_set_ethtool_ops(netdev);
4002
4003 netdev->priv_flags |= IFF_UNICAST_FLT;
4004
4005 u64_stats_init(&adapter->syncp);
4006
4007 rc = ena_enable_msix_and_set_admin_interrupts(adapter);
4008 if (rc) {
4009 dev_err(&pdev->dev,
4010 "Failed to enable and set the admin interrupts\n");
4011 goto err_worker_destroy;
4012 }
4013 rc = ena_rss_init_default(adapter);
4014 if (rc && (rc != -EOPNOTSUPP)) {
4015 dev_err(&pdev->dev, "Cannot init RSS rc: %d\n", rc);
4016 goto err_free_msix;
4017 }
4018
4019 ena_config_debug_area(adapter);
4020
4021 if (ena_xdp_legal_queue_count(adapter, adapter->num_io_queues))
4022 netdev->xdp_features = NETDEV_XDP_ACT_BASIC |
4023 NETDEV_XDP_ACT_REDIRECT;
4024
4025 memcpy(adapter->netdev->perm_addr, adapter->mac_addr, netdev->addr_len);
4026
4027 netif_carrier_off(netdev);
4028
4029 rc = register_netdev(netdev);
4030 if (rc) {
4031 dev_err(&pdev->dev, "Cannot register net device\n");
4032 goto err_rss;
4033 }
4034
4035 INIT_WORK(&adapter->reset_task, ena_fw_reset_device);
4036
4037 adapter->last_keep_alive_jiffies = jiffies;
4038 adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
4039 adapter->missing_tx_completion_to = TX_TIMEOUT;
4040 adapter->missing_tx_completion_threshold = MAX_NUM_OF_TIMEOUTED_PACKETS;
4041
4042 ena_update_hints(adapter, &get_feat_ctx.hw_hints);
4043
4044 timer_setup(&adapter->timer_service, ena_timer_service, 0);
4045 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
4046
4047 dev_info(&pdev->dev,
4048 "%s found at mem %lx, mac addr %pM\n",
4049 DEVICE_NAME, (long)pci_resource_start(pdev, 0),
4050 netdev->dev_addr);
4051
4052 set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
4053
4054 adapters_found++;
4055
4056 return 0;
4057
4058 err_rss:
4059 ena_com_delete_debug_area(ena_dev);
4060 ena_com_rss_destroy(ena_dev);
4061 err_free_msix:
4062 ena_com_dev_reset(ena_dev, ENA_REGS_RESET_INIT_ERR);
4063 /* stop submitting admin commands on a device that was reset */
4064 ena_com_set_admin_running_state(ena_dev, false);
4065 ena_free_mgmnt_irq(adapter);
4066 ena_disable_msix(adapter);
4067 err_worker_destroy:
4068 del_timer(&adapter->timer_service);
4069 err_device_destroy:
4070 ena_com_delete_host_info(ena_dev);
4071 ena_com_admin_destroy(ena_dev);
4072 err_metrics_destroy:
4073 ena_com_delete_customer_metrics_buffer(ena_dev);
4074 err_netdev_destroy:
4075 free_netdev(netdev);
4076 err_free_region:
4077 ena_release_bars(ena_dev, pdev);
4078 err_free_ena_dev:
4079 vfree(ena_dev);
4080 err_disable_device:
4081 pci_disable_device(pdev);
4082 return rc;
4083 }
4084
4085 /*****************************************************************************/
4086
4087 /* __ena_shutoff - Helper used in both PCI remove/shutdown routines
4088 * @pdev: PCI device information struct
4089 * @shutdown: Is it a shutdown operation? If false, means it is a removal
4090 *
4091 * __ena_shutoff is a helper routine that does the real work on shutdown and
4092 * removal paths; the difference between those paths is with regards to whether
4093 * dettach or unregister the netdevice.
4094 */
__ena_shutoff(struct pci_dev * pdev,bool shutdown)4095 static void __ena_shutoff(struct pci_dev *pdev, bool shutdown)
4096 {
4097 struct ena_adapter *adapter = pci_get_drvdata(pdev);
4098 struct ena_com_dev *ena_dev;
4099 struct net_device *netdev;
4100
4101 ena_dev = adapter->ena_dev;
4102 netdev = adapter->netdev;
4103
4104 /* Make sure timer and reset routine won't be called after
4105 * freeing device resources.
4106 */
4107 del_timer_sync(&adapter->timer_service);
4108 cancel_work_sync(&adapter->reset_task);
4109
4110 rtnl_lock(); /* lock released inside the below if-else block */
4111 adapter->reset_reason = ENA_REGS_RESET_SHUTDOWN;
4112 ena_destroy_device(adapter, true);
4113
4114 if (shutdown) {
4115 netif_device_detach(netdev);
4116 dev_close(netdev);
4117 rtnl_unlock();
4118 } else {
4119 rtnl_unlock();
4120 unregister_netdev(netdev);
4121 free_netdev(netdev);
4122 }
4123
4124 ena_com_rss_destroy(ena_dev);
4125
4126 ena_com_delete_debug_area(ena_dev);
4127
4128 ena_com_delete_host_info(ena_dev);
4129
4130 ena_com_delete_customer_metrics_buffer(ena_dev);
4131
4132 ena_release_bars(ena_dev, pdev);
4133
4134 pci_disable_device(pdev);
4135
4136 vfree(ena_dev);
4137 }
4138
4139 /* ena_remove - Device Removal Routine
4140 * @pdev: PCI device information struct
4141 *
4142 * ena_remove is called by the PCI subsystem to alert the driver
4143 * that it should release a PCI device.
4144 */
4145
ena_remove(struct pci_dev * pdev)4146 static void ena_remove(struct pci_dev *pdev)
4147 {
4148 __ena_shutoff(pdev, false);
4149 }
4150
4151 /* ena_shutdown - Device Shutdown Routine
4152 * @pdev: PCI device information struct
4153 *
4154 * ena_shutdown is called by the PCI subsystem to alert the driver that
4155 * a shutdown/reboot (or kexec) is happening and device must be disabled.
4156 */
4157
ena_shutdown(struct pci_dev * pdev)4158 static void ena_shutdown(struct pci_dev *pdev)
4159 {
4160 __ena_shutoff(pdev, true);
4161 }
4162
4163 /* ena_suspend - PM suspend callback
4164 * @dev_d: Device information struct
4165 */
ena_suspend(struct device * dev_d)4166 static int __maybe_unused ena_suspend(struct device *dev_d)
4167 {
4168 struct pci_dev *pdev = to_pci_dev(dev_d);
4169 struct ena_adapter *adapter = pci_get_drvdata(pdev);
4170
4171 ena_increase_stat(&adapter->dev_stats.suspend, 1, &adapter->syncp);
4172
4173 rtnl_lock();
4174 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
4175 dev_err(&pdev->dev,
4176 "Ignoring device reset request as the device is being suspended\n");
4177 clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
4178 }
4179 ena_destroy_device(adapter, true);
4180 rtnl_unlock();
4181 return 0;
4182 }
4183
4184 /* ena_resume - PM resume callback
4185 * @dev_d: Device information struct
4186 */
ena_resume(struct device * dev_d)4187 static int __maybe_unused ena_resume(struct device *dev_d)
4188 {
4189 struct ena_adapter *adapter = dev_get_drvdata(dev_d);
4190 int rc;
4191
4192 ena_increase_stat(&adapter->dev_stats.resume, 1, &adapter->syncp);
4193
4194 rtnl_lock();
4195 rc = ena_restore_device(adapter);
4196 rtnl_unlock();
4197 return rc;
4198 }
4199
4200 static SIMPLE_DEV_PM_OPS(ena_pm_ops, ena_suspend, ena_resume);
4201
4202 static struct pci_driver ena_pci_driver = {
4203 .name = DRV_MODULE_NAME,
4204 .id_table = ena_pci_tbl,
4205 .probe = ena_probe,
4206 .remove = ena_remove,
4207 .shutdown = ena_shutdown,
4208 .driver.pm = &ena_pm_ops,
4209 .sriov_configure = pci_sriov_configure_simple,
4210 };
4211
ena_init(void)4212 static int __init ena_init(void)
4213 {
4214 int ret;
4215
4216 ena_wq = create_singlethread_workqueue(DRV_MODULE_NAME);
4217 if (!ena_wq) {
4218 pr_err("Failed to create workqueue\n");
4219 return -ENOMEM;
4220 }
4221
4222 ret = pci_register_driver(&ena_pci_driver);
4223 if (ret)
4224 destroy_workqueue(ena_wq);
4225
4226 return ret;
4227 }
4228
ena_cleanup(void)4229 static void __exit ena_cleanup(void)
4230 {
4231 pci_unregister_driver(&ena_pci_driver);
4232
4233 if (ena_wq) {
4234 destroy_workqueue(ena_wq);
4235 ena_wq = NULL;
4236 }
4237 }
4238
4239 /******************************************************************************
4240 ******************************** AENQ Handlers *******************************
4241 *****************************************************************************/
4242 /* ena_update_on_link_change:
4243 * Notify the network interface about the change in link status
4244 */
ena_update_on_link_change(void * adapter_data,struct ena_admin_aenq_entry * aenq_e)4245 static void ena_update_on_link_change(void *adapter_data,
4246 struct ena_admin_aenq_entry *aenq_e)
4247 {
4248 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
4249 struct ena_admin_aenq_link_change_desc *aenq_desc =
4250 (struct ena_admin_aenq_link_change_desc *)aenq_e;
4251 int status = aenq_desc->flags &
4252 ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;
4253
4254 if (status) {
4255 netif_dbg(adapter, ifup, adapter->netdev, "%s\n", __func__);
4256 set_bit(ENA_FLAG_LINK_UP, &adapter->flags);
4257 if (!test_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags))
4258 netif_carrier_on(adapter->netdev);
4259 } else {
4260 clear_bit(ENA_FLAG_LINK_UP, &adapter->flags);
4261 netif_carrier_off(adapter->netdev);
4262 }
4263 }
4264
ena_keep_alive_wd(void * adapter_data,struct ena_admin_aenq_entry * aenq_e)4265 static void ena_keep_alive_wd(void *adapter_data,
4266 struct ena_admin_aenq_entry *aenq_e)
4267 {
4268 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
4269 struct ena_admin_aenq_keep_alive_desc *desc;
4270 u64 rx_drops;
4271 u64 tx_drops;
4272
4273 desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
4274 adapter->last_keep_alive_jiffies = jiffies;
4275
4276 rx_drops = ((u64)desc->rx_drops_high << 32) | desc->rx_drops_low;
4277 tx_drops = ((u64)desc->tx_drops_high << 32) | desc->tx_drops_low;
4278
4279 u64_stats_update_begin(&adapter->syncp);
4280 /* These stats are accumulated by the device, so the counters indicate
4281 * all drops since last reset.
4282 */
4283 adapter->dev_stats.rx_drops = rx_drops;
4284 adapter->dev_stats.tx_drops = tx_drops;
4285 u64_stats_update_end(&adapter->syncp);
4286 }
4287
ena_notification(void * adapter_data,struct ena_admin_aenq_entry * aenq_e)4288 static void ena_notification(void *adapter_data,
4289 struct ena_admin_aenq_entry *aenq_e)
4290 {
4291 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
4292 struct ena_admin_ena_hw_hints *hints;
4293
4294 WARN(aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION,
4295 "Invalid group(%x) expected %x\n",
4296 aenq_e->aenq_common_desc.group,
4297 ENA_ADMIN_NOTIFICATION);
4298
4299 switch (aenq_e->aenq_common_desc.syndrome) {
4300 case ENA_ADMIN_UPDATE_HINTS:
4301 hints = (struct ena_admin_ena_hw_hints *)
4302 (&aenq_e->inline_data_w4);
4303 ena_update_hints(adapter, hints);
4304 break;
4305 default:
4306 netif_err(adapter, drv, adapter->netdev,
4307 "Invalid aenq notification link state %d\n",
4308 aenq_e->aenq_common_desc.syndrome);
4309 }
4310 }
4311
4312 /* This handler will called for unknown event group or unimplemented handlers*/
unimplemented_aenq_handler(void * data,struct ena_admin_aenq_entry * aenq_e)4313 static void unimplemented_aenq_handler(void *data,
4314 struct ena_admin_aenq_entry *aenq_e)
4315 {
4316 struct ena_adapter *adapter = (struct ena_adapter *)data;
4317
4318 netif_err(adapter, drv, adapter->netdev,
4319 "Unknown event was received or event with unimplemented handler\n");
4320 }
4321
4322 static struct ena_aenq_handlers aenq_handlers = {
4323 .handlers = {
4324 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
4325 [ENA_ADMIN_NOTIFICATION] = ena_notification,
4326 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
4327 },
4328 .unimplemented_handler = unimplemented_aenq_handler
4329 };
4330
4331 module_init(ena_init);
4332 module_exit(ena_cleanup);
4333