1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
2 /*
3 * Copyright 2015-2020 Amazon.com, Inc. or its affiliates. All rights reserved.
4 */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #ifdef CONFIG_RFS_ACCEL
9 #include <linux/cpu_rmap.h>
10 #endif /* CONFIG_RFS_ACCEL */
11 #include <linux/ethtool.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/numa.h>
15 #include <linux/pci.h>
16 #include <linux/utsname.h>
17 #include <linux/version.h>
18 #include <linux/vmalloc.h>
19 #include <net/ip.h>
20
21 #include "ena_netdev.h"
22 #include "ena_pci_id_tbl.h"
23 #include "ena_xdp.h"
24
25 MODULE_AUTHOR("Amazon.com, Inc. or its affiliates");
26 MODULE_DESCRIPTION(DEVICE_NAME);
27 MODULE_LICENSE("GPL");
28
29 /* Time in jiffies before concluding the transmitter is hung. */
30 #define TX_TIMEOUT (5 * HZ)
31
32 #define ENA_MAX_RINGS min_t(unsigned int, ENA_MAX_NUM_IO_QUEUES, num_possible_cpus())
33
34 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | \
35 NETIF_MSG_IFDOWN | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR)
36
37 static struct ena_aenq_handlers aenq_handlers;
38
39 static struct workqueue_struct *ena_wq;
40
41 MODULE_DEVICE_TABLE(pci, ena_pci_tbl);
42
43 static int ena_rss_init_default(struct ena_adapter *adapter);
44 static void check_for_admin_com_state(struct ena_adapter *adapter);
45 static int ena_destroy_device(struct ena_adapter *adapter, bool graceful);
46 static int ena_restore_device(struct ena_adapter *adapter);
47
ena_tx_timeout(struct net_device * dev,unsigned int txqueue)48 static void ena_tx_timeout(struct net_device *dev, unsigned int txqueue)
49 {
50 enum ena_regs_reset_reason_types reset_reason = ENA_REGS_RESET_OS_NETDEV_WD;
51 struct ena_adapter *adapter = netdev_priv(dev);
52 unsigned int time_since_last_napi, threshold;
53 struct ena_ring *tx_ring;
54 int napi_scheduled;
55
56 if (txqueue >= adapter->num_io_queues) {
57 netdev_err(dev, "TX timeout on invalid queue %u\n", txqueue);
58 goto schedule_reset;
59 }
60
61 threshold = jiffies_to_usecs(dev->watchdog_timeo);
62 tx_ring = &adapter->tx_ring[txqueue];
63
64 time_since_last_napi = jiffies_to_usecs(jiffies - tx_ring->tx_stats.last_napi_jiffies);
65 napi_scheduled = !!(tx_ring->napi->state & NAPIF_STATE_SCHED);
66
67 netdev_err(dev,
68 "TX q %d is paused for too long (threshold %u). Time since last napi %u usec. napi scheduled: %d\n",
69 txqueue,
70 threshold,
71 time_since_last_napi,
72 napi_scheduled);
73
74 if (threshold < time_since_last_napi && napi_scheduled) {
75 netdev_err(dev,
76 "napi handler hasn't been called for a long time but is scheduled\n");
77 reset_reason = ENA_REGS_RESET_SUSPECTED_POLL_STARVATION;
78 }
79 schedule_reset:
80 /* Change the state of the device to trigger reset
81 * Check that we are not in the middle or a trigger already
82 */
83 if (test_and_set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
84 return;
85
86 ena_reset_device(adapter, reset_reason);
87 ena_increase_stat(&adapter->dev_stats.tx_timeout, 1, &adapter->syncp);
88 }
89
update_rx_ring_mtu(struct ena_adapter * adapter,int mtu)90 static void update_rx_ring_mtu(struct ena_adapter *adapter, int mtu)
91 {
92 int i;
93
94 for (i = 0; i < adapter->num_io_queues; i++)
95 adapter->rx_ring[i].mtu = mtu;
96 }
97
ena_change_mtu(struct net_device * dev,int new_mtu)98 static int ena_change_mtu(struct net_device *dev, int new_mtu)
99 {
100 struct ena_adapter *adapter = netdev_priv(dev);
101 int ret;
102
103 ret = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
104 if (!ret) {
105 netif_dbg(adapter, drv, dev, "Set MTU to %d\n", new_mtu);
106 update_rx_ring_mtu(adapter, new_mtu);
107 WRITE_ONCE(dev->mtu, new_mtu);
108 } else {
109 netif_err(adapter, drv, dev, "Failed to set MTU to %d\n",
110 new_mtu);
111 }
112
113 return ret;
114 }
115
ena_xmit_common(struct ena_adapter * adapter,struct ena_ring * ring,struct ena_tx_buffer * tx_info,struct ena_com_tx_ctx * ena_tx_ctx,u16 next_to_use,u32 bytes)116 int ena_xmit_common(struct ena_adapter *adapter,
117 struct ena_ring *ring,
118 struct ena_tx_buffer *tx_info,
119 struct ena_com_tx_ctx *ena_tx_ctx,
120 u16 next_to_use,
121 u32 bytes)
122 {
123 int rc, nb_hw_desc;
124
125 if (unlikely(ena_com_is_doorbell_needed(ring->ena_com_io_sq,
126 ena_tx_ctx))) {
127 netif_dbg(adapter, tx_queued, adapter->netdev,
128 "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n",
129 ring->qid);
130 ena_ring_tx_doorbell(ring);
131 }
132
133 /* prepare the packet's descriptors to dma engine */
134 rc = ena_com_prepare_tx(ring->ena_com_io_sq, ena_tx_ctx,
135 &nb_hw_desc);
136
137 /* In case there isn't enough space in the queue for the packet,
138 * we simply drop it. All other failure reasons of
139 * ena_com_prepare_tx() are fatal and therefore require a device reset.
140 */
141 if (unlikely(rc)) {
142 netif_err(adapter, tx_queued, adapter->netdev,
143 "Failed to prepare tx bufs\n");
144 ena_increase_stat(&ring->tx_stats.prepare_ctx_err, 1, &ring->syncp);
145 if (rc != -ENOMEM)
146 ena_reset_device(adapter, ENA_REGS_RESET_DRIVER_INVALID_STATE);
147 return rc;
148 }
149
150 u64_stats_update_begin(&ring->syncp);
151 ring->tx_stats.cnt++;
152 ring->tx_stats.bytes += bytes;
153 u64_stats_update_end(&ring->syncp);
154
155 tx_info->tx_descs = nb_hw_desc;
156 tx_info->total_tx_size = bytes;
157 tx_info->last_jiffies = jiffies;
158 tx_info->print_once = 0;
159
160 ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
161 ring->ring_size);
162 return 0;
163 }
164
ena_init_rx_cpu_rmap(struct ena_adapter * adapter)165 static int ena_init_rx_cpu_rmap(struct ena_adapter *adapter)
166 {
167 #ifdef CONFIG_RFS_ACCEL
168 u32 i;
169 int rc;
170
171 adapter->netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(adapter->num_io_queues);
172 if (!adapter->netdev->rx_cpu_rmap)
173 return -ENOMEM;
174 for (i = 0; i < adapter->num_io_queues; i++) {
175 int irq_idx = ENA_IO_IRQ_IDX(i);
176
177 rc = irq_cpu_rmap_add(adapter->netdev->rx_cpu_rmap,
178 pci_irq_vector(adapter->pdev, irq_idx));
179 if (rc) {
180 free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
181 adapter->netdev->rx_cpu_rmap = NULL;
182 return rc;
183 }
184 }
185 #endif /* CONFIG_RFS_ACCEL */
186 return 0;
187 }
188
ena_init_io_rings_common(struct ena_adapter * adapter,struct ena_ring * ring,u16 qid)189 static void ena_init_io_rings_common(struct ena_adapter *adapter,
190 struct ena_ring *ring, u16 qid)
191 {
192 ring->qid = qid;
193 ring->pdev = adapter->pdev;
194 ring->dev = &adapter->pdev->dev;
195 ring->netdev = adapter->netdev;
196 ring->napi = &adapter->ena_napi[qid].napi;
197 ring->adapter = adapter;
198 ring->ena_dev = adapter->ena_dev;
199 ring->per_napi_packets = 0;
200 ring->cpu = 0;
201 ring->numa_node = 0;
202 ring->no_interrupt_event_cnt = 0;
203 u64_stats_init(&ring->syncp);
204 }
205
ena_init_io_rings(struct ena_adapter * adapter,int first_index,int count)206 void ena_init_io_rings(struct ena_adapter *adapter,
207 int first_index, int count)
208 {
209 struct ena_com_dev *ena_dev;
210 struct ena_ring *txr, *rxr;
211 int i;
212
213 ena_dev = adapter->ena_dev;
214
215 for (i = first_index; i < first_index + count; i++) {
216 txr = &adapter->tx_ring[i];
217 rxr = &adapter->rx_ring[i];
218
219 /* TX common ring state */
220 ena_init_io_rings_common(adapter, txr, i);
221
222 /* TX specific ring state */
223 txr->ring_size = adapter->requested_tx_ring_size;
224 txr->tx_max_header_size = ena_dev->tx_max_header_size;
225 txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
226 txr->sgl_size = adapter->max_tx_sgl_size;
227 txr->smoothed_interval =
228 ena_com_get_nonadaptive_moderation_interval_tx(ena_dev);
229 txr->disable_meta_caching = adapter->disable_meta_caching;
230 spin_lock_init(&txr->xdp_tx_lock);
231
232 /* Don't init RX queues for xdp queues */
233 if (!ENA_IS_XDP_INDEX(adapter, i)) {
234 /* RX common ring state */
235 ena_init_io_rings_common(adapter, rxr, i);
236
237 /* RX specific ring state */
238 rxr->ring_size = adapter->requested_rx_ring_size;
239 rxr->rx_copybreak = adapter->rx_copybreak;
240 rxr->sgl_size = adapter->max_rx_sgl_size;
241 rxr->smoothed_interval =
242 ena_com_get_nonadaptive_moderation_interval_rx(ena_dev);
243 rxr->empty_rx_queue = 0;
244 rxr->rx_headroom = NET_SKB_PAD;
245 adapter->ena_napi[i].dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
246 rxr->xdp_ring = &adapter->tx_ring[i + adapter->num_io_queues];
247 }
248 }
249 }
250
251 /* ena_setup_tx_resources - allocate I/O Tx resources (Descriptors)
252 * @adapter: network interface device structure
253 * @qid: queue index
254 *
255 * Return 0 on success, negative on failure
256 */
ena_setup_tx_resources(struct ena_adapter * adapter,int qid)257 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
258 {
259 struct ena_ring *tx_ring = &adapter->tx_ring[qid];
260 struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)];
261 int size, i, node;
262
263 if (tx_ring->tx_buffer_info) {
264 netif_err(adapter, ifup,
265 adapter->netdev, "tx_buffer_info info is not NULL");
266 return -EEXIST;
267 }
268
269 size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
270 node = cpu_to_node(ena_irq->cpu);
271
272 tx_ring->tx_buffer_info = vzalloc_node(size, node);
273 if (!tx_ring->tx_buffer_info) {
274 tx_ring->tx_buffer_info = vzalloc(size);
275 if (!tx_ring->tx_buffer_info)
276 goto err_tx_buffer_info;
277 }
278
279 size = sizeof(u16) * tx_ring->ring_size;
280 tx_ring->free_ids = vzalloc_node(size, node);
281 if (!tx_ring->free_ids) {
282 tx_ring->free_ids = vzalloc(size);
283 if (!tx_ring->free_ids)
284 goto err_tx_free_ids;
285 }
286
287 size = tx_ring->tx_max_header_size;
288 tx_ring->push_buf_intermediate_buf = vzalloc_node(size, node);
289 if (!tx_ring->push_buf_intermediate_buf) {
290 tx_ring->push_buf_intermediate_buf = vzalloc(size);
291 if (!tx_ring->push_buf_intermediate_buf)
292 goto err_push_buf_intermediate_buf;
293 }
294
295 /* Req id ring for TX out of order completions */
296 for (i = 0; i < tx_ring->ring_size; i++)
297 tx_ring->free_ids[i] = i;
298
299 /* Reset tx statistics */
300 memset(&tx_ring->tx_stats, 0x0, sizeof(tx_ring->tx_stats));
301
302 tx_ring->next_to_use = 0;
303 tx_ring->next_to_clean = 0;
304 tx_ring->cpu = ena_irq->cpu;
305 tx_ring->numa_node = node;
306 return 0;
307
308 err_push_buf_intermediate_buf:
309 vfree(tx_ring->free_ids);
310 tx_ring->free_ids = NULL;
311 err_tx_free_ids:
312 vfree(tx_ring->tx_buffer_info);
313 tx_ring->tx_buffer_info = NULL;
314 err_tx_buffer_info:
315 return -ENOMEM;
316 }
317
318 /* ena_free_tx_resources - Free I/O Tx Resources per Queue
319 * @adapter: network interface device structure
320 * @qid: queue index
321 *
322 * Free all transmit software resources
323 */
ena_free_tx_resources(struct ena_adapter * adapter,int qid)324 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid)
325 {
326 struct ena_ring *tx_ring = &adapter->tx_ring[qid];
327
328 vfree(tx_ring->tx_buffer_info);
329 tx_ring->tx_buffer_info = NULL;
330
331 vfree(tx_ring->free_ids);
332 tx_ring->free_ids = NULL;
333
334 vfree(tx_ring->push_buf_intermediate_buf);
335 tx_ring->push_buf_intermediate_buf = NULL;
336 }
337
ena_setup_tx_resources_in_range(struct ena_adapter * adapter,int first_index,int count)338 int ena_setup_tx_resources_in_range(struct ena_adapter *adapter,
339 int first_index, int count)
340 {
341 int i, rc = 0;
342
343 for (i = first_index; i < first_index + count; i++) {
344 rc = ena_setup_tx_resources(adapter, i);
345 if (rc)
346 goto err_setup_tx;
347 }
348
349 return 0;
350
351 err_setup_tx:
352
353 netif_err(adapter, ifup, adapter->netdev,
354 "Tx queue %d: allocation failed\n", i);
355
356 /* rewind the index freeing the rings as we go */
357 while (first_index < i--)
358 ena_free_tx_resources(adapter, i);
359 return rc;
360 }
361
ena_free_all_io_tx_resources_in_range(struct ena_adapter * adapter,int first_index,int count)362 void ena_free_all_io_tx_resources_in_range(struct ena_adapter *adapter,
363 int first_index, int count)
364 {
365 int i;
366
367 for (i = first_index; i < first_index + count; i++)
368 ena_free_tx_resources(adapter, i);
369 }
370
371 /* ena_free_all_io_tx_resources - Free I/O Tx Resources for All Queues
372 * @adapter: board private structure
373 *
374 * Free all transmit software resources
375 */
ena_free_all_io_tx_resources(struct ena_adapter * adapter)376 void ena_free_all_io_tx_resources(struct ena_adapter *adapter)
377 {
378 ena_free_all_io_tx_resources_in_range(adapter,
379 0,
380 adapter->xdp_num_queues +
381 adapter->num_io_queues);
382 }
383
384 /* ena_setup_rx_resources - allocate I/O Rx resources (Descriptors)
385 * @adapter: network interface device structure
386 * @qid: queue index
387 *
388 * Returns 0 on success, negative on failure
389 */
ena_setup_rx_resources(struct ena_adapter * adapter,u32 qid)390 static int ena_setup_rx_resources(struct ena_adapter *adapter,
391 u32 qid)
392 {
393 struct ena_ring *rx_ring = &adapter->rx_ring[qid];
394 struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)];
395 int size, node, i;
396
397 if (rx_ring->rx_buffer_info) {
398 netif_err(adapter, ifup, adapter->netdev,
399 "rx_buffer_info is not NULL");
400 return -EEXIST;
401 }
402
403 /* alloc extra element so in rx path
404 * we can always prefetch rx_info + 1
405 */
406 size = sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1);
407 node = cpu_to_node(ena_irq->cpu);
408
409 rx_ring->rx_buffer_info = vzalloc_node(size, node);
410 if (!rx_ring->rx_buffer_info) {
411 rx_ring->rx_buffer_info = vzalloc(size);
412 if (!rx_ring->rx_buffer_info)
413 return -ENOMEM;
414 }
415
416 size = sizeof(u16) * rx_ring->ring_size;
417 rx_ring->free_ids = vzalloc_node(size, node);
418 if (!rx_ring->free_ids) {
419 rx_ring->free_ids = vzalloc(size);
420 if (!rx_ring->free_ids) {
421 vfree(rx_ring->rx_buffer_info);
422 rx_ring->rx_buffer_info = NULL;
423 return -ENOMEM;
424 }
425 }
426
427 /* Req id ring for receiving RX pkts out of order */
428 for (i = 0; i < rx_ring->ring_size; i++)
429 rx_ring->free_ids[i] = i;
430
431 /* Reset rx statistics */
432 memset(&rx_ring->rx_stats, 0x0, sizeof(rx_ring->rx_stats));
433
434 rx_ring->next_to_clean = 0;
435 rx_ring->next_to_use = 0;
436 rx_ring->cpu = ena_irq->cpu;
437 rx_ring->numa_node = node;
438
439 return 0;
440 }
441
442 /* ena_free_rx_resources - Free I/O Rx Resources
443 * @adapter: network interface device structure
444 * @qid: queue index
445 *
446 * Free all receive software resources
447 */
ena_free_rx_resources(struct ena_adapter * adapter,u32 qid)448 static void ena_free_rx_resources(struct ena_adapter *adapter,
449 u32 qid)
450 {
451 struct ena_ring *rx_ring = &adapter->rx_ring[qid];
452
453 vfree(rx_ring->rx_buffer_info);
454 rx_ring->rx_buffer_info = NULL;
455
456 vfree(rx_ring->free_ids);
457 rx_ring->free_ids = NULL;
458 }
459
460 /* ena_setup_all_rx_resources - allocate I/O Rx queues resources for all queues
461 * @adapter: board private structure
462 *
463 * Return 0 on success, negative on failure
464 */
ena_setup_all_rx_resources(struct ena_adapter * adapter)465 static int ena_setup_all_rx_resources(struct ena_adapter *adapter)
466 {
467 int i, rc = 0;
468
469 for (i = 0; i < adapter->num_io_queues; i++) {
470 rc = ena_setup_rx_resources(adapter, i);
471 if (rc)
472 goto err_setup_rx;
473 }
474
475 return 0;
476
477 err_setup_rx:
478
479 netif_err(adapter, ifup, adapter->netdev,
480 "Rx queue %d: allocation failed\n", i);
481
482 /* rewind the index freeing the rings as we go */
483 while (i--)
484 ena_free_rx_resources(adapter, i);
485 return rc;
486 }
487
488 /* ena_free_all_io_rx_resources - Free I/O Rx Resources for All Queues
489 * @adapter: board private structure
490 *
491 * Free all receive software resources
492 */
ena_free_all_io_rx_resources(struct ena_adapter * adapter)493 static void ena_free_all_io_rx_resources(struct ena_adapter *adapter)
494 {
495 int i;
496
497 for (i = 0; i < adapter->num_io_queues; i++)
498 ena_free_rx_resources(adapter, i);
499 }
500
ena_alloc_map_page(struct ena_ring * rx_ring,dma_addr_t * dma)501 static struct page *ena_alloc_map_page(struct ena_ring *rx_ring,
502 dma_addr_t *dma)
503 {
504 struct page *page;
505
506 /* This would allocate the page on the same NUMA node the executing code
507 * is running on.
508 */
509 page = dev_alloc_page();
510 if (!page) {
511 ena_increase_stat(&rx_ring->rx_stats.page_alloc_fail, 1, &rx_ring->syncp);
512 return ERR_PTR(-ENOSPC);
513 }
514
515 /* To enable NIC-side port-mirroring, AKA SPAN port,
516 * we make the buffer readable from the nic as well
517 */
518 *dma = dma_map_page(rx_ring->dev, page, 0, ENA_PAGE_SIZE,
519 DMA_BIDIRECTIONAL);
520 if (unlikely(dma_mapping_error(rx_ring->dev, *dma))) {
521 ena_increase_stat(&rx_ring->rx_stats.dma_mapping_err, 1,
522 &rx_ring->syncp);
523 __free_page(page);
524 return ERR_PTR(-EIO);
525 }
526
527 return page;
528 }
529
ena_alloc_rx_buffer(struct ena_ring * rx_ring,struct ena_rx_buffer * rx_info)530 static int ena_alloc_rx_buffer(struct ena_ring *rx_ring,
531 struct ena_rx_buffer *rx_info)
532 {
533 int headroom = rx_ring->rx_headroom;
534 struct ena_com_buf *ena_buf;
535 struct page *page;
536 dma_addr_t dma;
537 int tailroom;
538
539 /* restore page offset value in case it has been changed by device */
540 rx_info->buf_offset = headroom;
541
542 /* if previous allocated page is not used */
543 if (unlikely(rx_info->page))
544 return 0;
545
546 /* We handle DMA here */
547 page = ena_alloc_map_page(rx_ring, &dma);
548 if (IS_ERR(page))
549 return PTR_ERR(page);
550
551 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
552 "Allocate page %p, rx_info %p\n", page, rx_info);
553
554 tailroom = SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
555
556 rx_info->page = page;
557 rx_info->dma_addr = dma;
558 rx_info->page_offset = 0;
559 ena_buf = &rx_info->ena_buf;
560 ena_buf->paddr = dma + headroom;
561 ena_buf->len = ENA_PAGE_SIZE - headroom - tailroom;
562
563 return 0;
564 }
565
ena_unmap_rx_buff_attrs(struct ena_ring * rx_ring,struct ena_rx_buffer * rx_info,unsigned long attrs)566 static void ena_unmap_rx_buff_attrs(struct ena_ring *rx_ring,
567 struct ena_rx_buffer *rx_info,
568 unsigned long attrs)
569 {
570 dma_unmap_page_attrs(rx_ring->dev, rx_info->dma_addr, ENA_PAGE_SIZE, DMA_BIDIRECTIONAL,
571 attrs);
572 }
573
ena_free_rx_page(struct ena_ring * rx_ring,struct ena_rx_buffer * rx_info)574 static void ena_free_rx_page(struct ena_ring *rx_ring,
575 struct ena_rx_buffer *rx_info)
576 {
577 struct page *page = rx_info->page;
578
579 if (unlikely(!page)) {
580 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
581 "Trying to free unallocated buffer\n");
582 return;
583 }
584
585 ena_unmap_rx_buff_attrs(rx_ring, rx_info, 0);
586
587 __free_page(page);
588 rx_info->page = NULL;
589 }
590
ena_refill_rx_bufs(struct ena_ring * rx_ring,u32 num)591 static int ena_refill_rx_bufs(struct ena_ring *rx_ring, u32 num)
592 {
593 u16 next_to_use, req_id;
594 u32 i;
595 int rc;
596
597 next_to_use = rx_ring->next_to_use;
598
599 for (i = 0; i < num; i++) {
600 struct ena_rx_buffer *rx_info;
601
602 req_id = rx_ring->free_ids[next_to_use];
603
604 rx_info = &rx_ring->rx_buffer_info[req_id];
605
606 rc = ena_alloc_rx_buffer(rx_ring, rx_info);
607 if (unlikely(rc < 0)) {
608 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
609 "Failed to allocate buffer for rx queue %d\n",
610 rx_ring->qid);
611 break;
612 }
613 rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
614 &rx_info->ena_buf,
615 req_id);
616 if (unlikely(rc)) {
617 netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev,
618 "Failed to add buffer for rx queue %d\n",
619 rx_ring->qid);
620 break;
621 }
622 next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
623 rx_ring->ring_size);
624 }
625
626 if (unlikely(i < num)) {
627 ena_increase_stat(&rx_ring->rx_stats.refil_partial, 1,
628 &rx_ring->syncp);
629 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
630 "Refilled rx qid %d with only %d buffers (from %d)\n",
631 rx_ring->qid, i, num);
632 }
633
634 /* ena_com_write_sq_doorbell issues a wmb() */
635 if (likely(i))
636 ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
637
638 rx_ring->next_to_use = next_to_use;
639
640 return i;
641 }
642
ena_free_rx_bufs(struct ena_adapter * adapter,u32 qid)643 static void ena_free_rx_bufs(struct ena_adapter *adapter,
644 u32 qid)
645 {
646 struct ena_ring *rx_ring = &adapter->rx_ring[qid];
647 u32 i;
648
649 for (i = 0; i < rx_ring->ring_size; i++) {
650 struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];
651
652 if (rx_info->page)
653 ena_free_rx_page(rx_ring, rx_info);
654 }
655 }
656
657 /* ena_refill_all_rx_bufs - allocate all queues Rx buffers
658 * @adapter: board private structure
659 */
ena_refill_all_rx_bufs(struct ena_adapter * adapter)660 static void ena_refill_all_rx_bufs(struct ena_adapter *adapter)
661 {
662 struct ena_ring *rx_ring;
663 int i, rc, bufs_num;
664
665 for (i = 0; i < adapter->num_io_queues; i++) {
666 rx_ring = &adapter->rx_ring[i];
667 bufs_num = rx_ring->ring_size - 1;
668 rc = ena_refill_rx_bufs(rx_ring, bufs_num);
669
670 if (unlikely(rc != bufs_num))
671 netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev,
672 "Refilling Queue %d failed. allocated %d buffers from: %d\n",
673 i, rc, bufs_num);
674 }
675 }
676
ena_free_all_rx_bufs(struct ena_adapter * adapter)677 static void ena_free_all_rx_bufs(struct ena_adapter *adapter)
678 {
679 int i;
680
681 for (i = 0; i < adapter->num_io_queues; i++)
682 ena_free_rx_bufs(adapter, i);
683 }
684
ena_unmap_tx_buff(struct ena_ring * tx_ring,struct ena_tx_buffer * tx_info)685 void ena_unmap_tx_buff(struct ena_ring *tx_ring,
686 struct ena_tx_buffer *tx_info)
687 {
688 struct ena_com_buf *ena_buf;
689 u32 cnt;
690 int i;
691
692 ena_buf = tx_info->bufs;
693 cnt = tx_info->num_of_bufs;
694
695 if (unlikely(!cnt))
696 return;
697
698 if (tx_info->map_linear_data) {
699 dma_unmap_single(tx_ring->dev,
700 dma_unmap_addr(ena_buf, paddr),
701 dma_unmap_len(ena_buf, len),
702 DMA_TO_DEVICE);
703 ena_buf++;
704 cnt--;
705 }
706
707 /* unmap remaining mapped pages */
708 for (i = 0; i < cnt; i++) {
709 dma_unmap_page(tx_ring->dev, dma_unmap_addr(ena_buf, paddr),
710 dma_unmap_len(ena_buf, len), DMA_TO_DEVICE);
711 ena_buf++;
712 }
713 }
714
715 /* ena_free_tx_bufs - Free Tx Buffers per Queue
716 * @tx_ring: TX ring for which buffers be freed
717 */
ena_free_tx_bufs(struct ena_ring * tx_ring)718 static void ena_free_tx_bufs(struct ena_ring *tx_ring)
719 {
720 bool print_once = true;
721 bool is_xdp_ring;
722 u32 i;
723
724 is_xdp_ring = ENA_IS_XDP_INDEX(tx_ring->adapter, tx_ring->qid);
725
726 for (i = 0; i < tx_ring->ring_size; i++) {
727 struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];
728
729 if (!tx_info->skb)
730 continue;
731
732 if (print_once) {
733 netif_notice(tx_ring->adapter, ifdown, tx_ring->netdev,
734 "Free uncompleted tx skb qid %d idx 0x%x\n",
735 tx_ring->qid, i);
736 print_once = false;
737 } else {
738 netif_dbg(tx_ring->adapter, ifdown, tx_ring->netdev,
739 "Free uncompleted tx skb qid %d idx 0x%x\n",
740 tx_ring->qid, i);
741 }
742
743 ena_unmap_tx_buff(tx_ring, tx_info);
744
745 if (is_xdp_ring)
746 xdp_return_frame(tx_info->xdpf);
747 else
748 dev_kfree_skb_any(tx_info->skb);
749 }
750
751 if (!is_xdp_ring)
752 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
753 tx_ring->qid));
754 }
755
ena_free_all_tx_bufs(struct ena_adapter * adapter)756 static void ena_free_all_tx_bufs(struct ena_adapter *adapter)
757 {
758 struct ena_ring *tx_ring;
759 int i;
760
761 for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) {
762 tx_ring = &adapter->tx_ring[i];
763 ena_free_tx_bufs(tx_ring);
764 }
765 }
766
ena_destroy_all_tx_queues(struct ena_adapter * adapter)767 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter)
768 {
769 u16 ena_qid;
770 int i;
771
772 for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) {
773 ena_qid = ENA_IO_TXQ_IDX(i);
774 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
775 }
776 }
777
ena_destroy_all_rx_queues(struct ena_adapter * adapter)778 static void ena_destroy_all_rx_queues(struct ena_adapter *adapter)
779 {
780 u16 ena_qid;
781 int i;
782
783 for (i = 0; i < adapter->num_io_queues; i++) {
784 ena_qid = ENA_IO_RXQ_IDX(i);
785 cancel_work_sync(&adapter->ena_napi[i].dim.work);
786 ena_xdp_unregister_rxq_info(&adapter->rx_ring[i]);
787 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
788 }
789 }
790
ena_destroy_all_io_queues(struct ena_adapter * adapter)791 static void ena_destroy_all_io_queues(struct ena_adapter *adapter)
792 {
793 ena_destroy_all_tx_queues(adapter);
794 ena_destroy_all_rx_queues(adapter);
795 }
796
handle_invalid_req_id(struct ena_ring * ring,u16 req_id,struct ena_tx_buffer * tx_info,bool is_xdp)797 int handle_invalid_req_id(struct ena_ring *ring, u16 req_id,
798 struct ena_tx_buffer *tx_info, bool is_xdp)
799 {
800 if (tx_info)
801 netif_err(ring->adapter,
802 tx_done,
803 ring->netdev,
804 "tx_info doesn't have valid %s. qid %u req_id %u",
805 is_xdp ? "xdp frame" : "skb", ring->qid, req_id);
806 else
807 netif_err(ring->adapter,
808 tx_done,
809 ring->netdev,
810 "Invalid req_id %u in qid %u\n",
811 req_id, ring->qid);
812
813 ena_increase_stat(&ring->tx_stats.bad_req_id, 1, &ring->syncp);
814 ena_reset_device(ring->adapter, ENA_REGS_RESET_INV_TX_REQ_ID);
815
816 return -EFAULT;
817 }
818
validate_tx_req_id(struct ena_ring * tx_ring,u16 req_id)819 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
820 {
821 struct ena_tx_buffer *tx_info;
822
823 tx_info = &tx_ring->tx_buffer_info[req_id];
824 if (likely(tx_info->skb))
825 return 0;
826
827 return handle_invalid_req_id(tx_ring, req_id, tx_info, false);
828 }
829
ena_clean_tx_irq(struct ena_ring * tx_ring,u32 budget)830 static int ena_clean_tx_irq(struct ena_ring *tx_ring, u32 budget)
831 {
832 struct netdev_queue *txq;
833 bool above_thresh;
834 u32 tx_bytes = 0;
835 u32 total_done = 0;
836 u16 next_to_clean;
837 u16 req_id;
838 int tx_pkts = 0;
839 int rc;
840
841 next_to_clean = tx_ring->next_to_clean;
842 txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->qid);
843
844 while (tx_pkts < budget) {
845 struct ena_tx_buffer *tx_info;
846 struct sk_buff *skb;
847
848 rc = ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq,
849 &req_id);
850 if (rc) {
851 if (unlikely(rc == -EINVAL))
852 handle_invalid_req_id(tx_ring, req_id, NULL, false);
853 break;
854 }
855
856 /* validate that the request id points to a valid skb */
857 rc = validate_tx_req_id(tx_ring, req_id);
858 if (rc)
859 break;
860
861 tx_info = &tx_ring->tx_buffer_info[req_id];
862 skb = tx_info->skb;
863
864 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
865 prefetch(&skb->end);
866
867 tx_info->skb = NULL;
868 tx_info->last_jiffies = 0;
869
870 ena_unmap_tx_buff(tx_ring, tx_info);
871
872 netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev,
873 "tx_poll: q %d skb %p completed\n", tx_ring->qid,
874 skb);
875
876 tx_bytes += tx_info->total_tx_size;
877 dev_kfree_skb(skb);
878 tx_pkts++;
879 total_done += tx_info->tx_descs;
880
881 tx_ring->free_ids[next_to_clean] = req_id;
882 next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
883 tx_ring->ring_size);
884 }
885
886 tx_ring->next_to_clean = next_to_clean;
887 ena_com_comp_ack(tx_ring->ena_com_io_sq, total_done);
888
889 netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
890
891 netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev,
892 "tx_poll: q %d done. total pkts: %d\n",
893 tx_ring->qid, tx_pkts);
894
895 /* need to make the rings circular update visible to
896 * ena_start_xmit() before checking for netif_queue_stopped().
897 */
898 smp_mb();
899
900 above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
901 ENA_TX_WAKEUP_THRESH);
902 if (unlikely(netif_tx_queue_stopped(txq) && above_thresh)) {
903 __netif_tx_lock(txq, smp_processor_id());
904 above_thresh =
905 ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
906 ENA_TX_WAKEUP_THRESH);
907 if (netif_tx_queue_stopped(txq) && above_thresh &&
908 test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags)) {
909 netif_tx_wake_queue(txq);
910 ena_increase_stat(&tx_ring->tx_stats.queue_wakeup, 1,
911 &tx_ring->syncp);
912 }
913 __netif_tx_unlock(txq);
914 }
915
916 return tx_pkts;
917 }
918
ena_alloc_skb(struct ena_ring * rx_ring,void * first_frag,u16 len)919 static struct sk_buff *ena_alloc_skb(struct ena_ring *rx_ring, void *first_frag, u16 len)
920 {
921 struct sk_buff *skb;
922
923 if (!first_frag)
924 skb = napi_alloc_skb(rx_ring->napi, len);
925 else
926 skb = napi_build_skb(first_frag, len);
927
928 if (unlikely(!skb)) {
929 ena_increase_stat(&rx_ring->rx_stats.skb_alloc_fail, 1,
930 &rx_ring->syncp);
931
932 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
933 "Failed to allocate skb. first_frag %s\n",
934 first_frag ? "provided" : "not provided");
935 }
936
937 return skb;
938 }
939
ena_try_rx_buf_page_reuse(struct ena_rx_buffer * rx_info,u16 buf_len,u16 len,int pkt_offset)940 static bool ena_try_rx_buf_page_reuse(struct ena_rx_buffer *rx_info, u16 buf_len,
941 u16 len, int pkt_offset)
942 {
943 struct ena_com_buf *ena_buf = &rx_info->ena_buf;
944
945 /* More than ENA_MIN_RX_BUF_SIZE left in the reused buffer
946 * for data + headroom + tailroom.
947 */
948 if (SKB_DATA_ALIGN(len + pkt_offset) + ENA_MIN_RX_BUF_SIZE <= ena_buf->len) {
949 page_ref_inc(rx_info->page);
950 rx_info->page_offset += buf_len;
951 ena_buf->paddr += buf_len;
952 ena_buf->len -= buf_len;
953 return true;
954 }
955
956 return false;
957 }
958
ena_rx_skb(struct ena_ring * rx_ring,struct ena_com_rx_buf_info * ena_bufs,u32 descs,u16 * next_to_clean)959 static struct sk_buff *ena_rx_skb(struct ena_ring *rx_ring,
960 struct ena_com_rx_buf_info *ena_bufs,
961 u32 descs,
962 u16 *next_to_clean)
963 {
964 int tailroom = SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
965 bool is_xdp_loaded = ena_xdp_present_ring(rx_ring);
966 struct ena_rx_buffer *rx_info;
967 struct ena_adapter *adapter;
968 int page_offset, pkt_offset;
969 dma_addr_t pre_reuse_paddr;
970 u16 len, req_id, buf = 0;
971 bool reuse_rx_buf_page;
972 struct sk_buff *skb;
973 void *buf_addr;
974 int buf_offset;
975 u16 buf_len;
976
977 len = ena_bufs[buf].len;
978 req_id = ena_bufs[buf].req_id;
979
980 rx_info = &rx_ring->rx_buffer_info[req_id];
981
982 if (unlikely(!rx_info->page)) {
983 adapter = rx_ring->adapter;
984 netif_err(adapter, rx_err, rx_ring->netdev,
985 "Page is NULL. qid %u req_id %u\n", rx_ring->qid, req_id);
986 ena_increase_stat(&rx_ring->rx_stats.bad_req_id, 1, &rx_ring->syncp);
987 ena_reset_device(adapter, ENA_REGS_RESET_INV_RX_REQ_ID);
988 return NULL;
989 }
990
991 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
992 "rx_info %p page %p\n",
993 rx_info, rx_info->page);
994
995 buf_offset = rx_info->buf_offset;
996 pkt_offset = buf_offset - rx_ring->rx_headroom;
997 page_offset = rx_info->page_offset;
998 buf_addr = page_address(rx_info->page) + page_offset;
999
1000 if (len <= rx_ring->rx_copybreak) {
1001 skb = ena_alloc_skb(rx_ring, NULL, len);
1002 if (unlikely(!skb))
1003 return NULL;
1004
1005 skb_copy_to_linear_data(skb, buf_addr + buf_offset, len);
1006 dma_sync_single_for_device(rx_ring->dev,
1007 dma_unmap_addr(&rx_info->ena_buf, paddr) + pkt_offset,
1008 len,
1009 DMA_FROM_DEVICE);
1010
1011 skb_put(skb, len);
1012 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1013 "RX allocated small packet. len %d.\n", skb->len);
1014 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1015 rx_ring->free_ids[*next_to_clean] = req_id;
1016 *next_to_clean = ENA_RX_RING_IDX_ADD(*next_to_clean, descs,
1017 rx_ring->ring_size);
1018 return skb;
1019 }
1020
1021 buf_len = SKB_DATA_ALIGN(len + buf_offset + tailroom);
1022
1023 /* If XDP isn't loaded try to reuse part of the RX buffer */
1024 reuse_rx_buf_page = !is_xdp_loaded &&
1025 ena_try_rx_buf_page_reuse(rx_info, buf_len, len, pkt_offset);
1026
1027 if (!reuse_rx_buf_page)
1028 ena_unmap_rx_buff_attrs(rx_ring, rx_info, DMA_ATTR_SKIP_CPU_SYNC);
1029
1030 skb = ena_alloc_skb(rx_ring, buf_addr, buf_len);
1031 if (unlikely(!skb))
1032 return NULL;
1033
1034 /* Populate skb's linear part */
1035 skb_reserve(skb, buf_offset);
1036 skb_put(skb, len);
1037 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1038
1039 do {
1040 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1041 "RX skb updated. len %d. data_len %d\n",
1042 skb->len, skb->data_len);
1043
1044 if (!reuse_rx_buf_page)
1045 rx_info->page = NULL;
1046
1047 rx_ring->free_ids[*next_to_clean] = req_id;
1048 *next_to_clean =
1049 ENA_RX_RING_IDX_NEXT(*next_to_clean,
1050 rx_ring->ring_size);
1051 if (likely(--descs == 0))
1052 break;
1053
1054 buf++;
1055 len = ena_bufs[buf].len;
1056 req_id = ena_bufs[buf].req_id;
1057
1058 rx_info = &rx_ring->rx_buffer_info[req_id];
1059
1060 /* rx_info->buf_offset includes rx_ring->rx_headroom */
1061 buf_offset = rx_info->buf_offset;
1062 pkt_offset = buf_offset - rx_ring->rx_headroom;
1063 buf_len = SKB_DATA_ALIGN(len + buf_offset + tailroom);
1064 page_offset = rx_info->page_offset;
1065
1066 pre_reuse_paddr = dma_unmap_addr(&rx_info->ena_buf, paddr);
1067
1068 reuse_rx_buf_page = !is_xdp_loaded &&
1069 ena_try_rx_buf_page_reuse(rx_info, buf_len, len, pkt_offset);
1070
1071 dma_sync_single_for_cpu(rx_ring->dev,
1072 pre_reuse_paddr + pkt_offset,
1073 len,
1074 DMA_FROM_DEVICE);
1075
1076 if (!reuse_rx_buf_page)
1077 ena_unmap_rx_buff_attrs(rx_ring, rx_info, DMA_ATTR_SKIP_CPU_SYNC);
1078
1079 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_info->page,
1080 page_offset + buf_offset, len, buf_len);
1081
1082 } while (1);
1083
1084 return skb;
1085 }
1086
1087 /* ena_rx_checksum - indicate in skb if hw indicated a good cksum
1088 * @adapter: structure containing adapter specific data
1089 * @ena_rx_ctx: received packet context/metadata
1090 * @skb: skb currently being received and modified
1091 */
ena_rx_checksum(struct ena_ring * rx_ring,struct ena_com_rx_ctx * ena_rx_ctx,struct sk_buff * skb)1092 static void ena_rx_checksum(struct ena_ring *rx_ring,
1093 struct ena_com_rx_ctx *ena_rx_ctx,
1094 struct sk_buff *skb)
1095 {
1096 /* Rx csum disabled */
1097 if (unlikely(!(rx_ring->netdev->features & NETIF_F_RXCSUM))) {
1098 skb->ip_summed = CHECKSUM_NONE;
1099 return;
1100 }
1101
1102 /* For fragmented packets the checksum isn't valid */
1103 if (ena_rx_ctx->frag) {
1104 skb->ip_summed = CHECKSUM_NONE;
1105 return;
1106 }
1107
1108 /* if IP and error */
1109 if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) &&
1110 (ena_rx_ctx->l3_csum_err))) {
1111 /* ipv4 checksum error */
1112 skb->ip_summed = CHECKSUM_NONE;
1113 ena_increase_stat(&rx_ring->rx_stats.csum_bad, 1,
1114 &rx_ring->syncp);
1115 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
1116 "RX IPv4 header checksum error\n");
1117 return;
1118 }
1119
1120 /* if TCP/UDP */
1121 if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1122 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) {
1123 if (unlikely(ena_rx_ctx->l4_csum_err)) {
1124 /* TCP/UDP checksum error */
1125 ena_increase_stat(&rx_ring->rx_stats.csum_bad, 1,
1126 &rx_ring->syncp);
1127 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
1128 "RX L4 checksum error\n");
1129 skb->ip_summed = CHECKSUM_NONE;
1130 return;
1131 }
1132
1133 if (likely(ena_rx_ctx->l4_csum_checked)) {
1134 skb->ip_summed = CHECKSUM_UNNECESSARY;
1135 ena_increase_stat(&rx_ring->rx_stats.csum_good, 1,
1136 &rx_ring->syncp);
1137 } else {
1138 ena_increase_stat(&rx_ring->rx_stats.csum_unchecked, 1,
1139 &rx_ring->syncp);
1140 skb->ip_summed = CHECKSUM_NONE;
1141 }
1142 } else {
1143 skb->ip_summed = CHECKSUM_NONE;
1144 return;
1145 }
1146
1147 }
1148
ena_set_rx_hash(struct ena_ring * rx_ring,struct ena_com_rx_ctx * ena_rx_ctx,struct sk_buff * skb)1149 static void ena_set_rx_hash(struct ena_ring *rx_ring,
1150 struct ena_com_rx_ctx *ena_rx_ctx,
1151 struct sk_buff *skb)
1152 {
1153 enum pkt_hash_types hash_type;
1154
1155 if (likely(rx_ring->netdev->features & NETIF_F_RXHASH)) {
1156 if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1157 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)))
1158
1159 hash_type = PKT_HASH_TYPE_L4;
1160 else
1161 hash_type = PKT_HASH_TYPE_NONE;
1162
1163 /* Override hash type if the packet is fragmented */
1164 if (ena_rx_ctx->frag)
1165 hash_type = PKT_HASH_TYPE_NONE;
1166
1167 skb_set_hash(skb, ena_rx_ctx->hash, hash_type);
1168 }
1169 }
1170
ena_xdp_handle_buff(struct ena_ring * rx_ring,struct xdp_buff * xdp,u16 num_descs)1171 static int ena_xdp_handle_buff(struct ena_ring *rx_ring, struct xdp_buff *xdp, u16 num_descs)
1172 {
1173 struct ena_rx_buffer *rx_info;
1174 int ret;
1175
1176 /* XDP multi-buffer packets not supported */
1177 if (unlikely(num_descs > 1)) {
1178 netdev_err_once(rx_ring->adapter->netdev,
1179 "xdp: dropped unsupported multi-buffer packets\n");
1180 ena_increase_stat(&rx_ring->rx_stats.xdp_drop, 1, &rx_ring->syncp);
1181 return ENA_XDP_DROP;
1182 }
1183
1184 rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id];
1185 xdp_prepare_buff(xdp, page_address(rx_info->page),
1186 rx_info->buf_offset,
1187 rx_ring->ena_bufs[0].len, false);
1188
1189 ret = ena_xdp_execute(rx_ring, xdp);
1190
1191 /* The xdp program might expand the headers */
1192 if (ret == ENA_XDP_PASS) {
1193 rx_info->buf_offset = xdp->data - xdp->data_hard_start;
1194 rx_ring->ena_bufs[0].len = xdp->data_end - xdp->data;
1195 }
1196
1197 return ret;
1198 }
1199
1200 /* ena_clean_rx_irq - Cleanup RX irq
1201 * @rx_ring: RX ring to clean
1202 * @napi: napi handler
1203 * @budget: how many packets driver is allowed to clean
1204 *
1205 * Returns the number of cleaned buffers.
1206 */
ena_clean_rx_irq(struct ena_ring * rx_ring,struct napi_struct * napi,u32 budget)1207 static int ena_clean_rx_irq(struct ena_ring *rx_ring, struct napi_struct *napi,
1208 u32 budget)
1209 {
1210 u16 next_to_clean = rx_ring->next_to_clean;
1211 struct ena_com_rx_ctx ena_rx_ctx;
1212 struct ena_rx_buffer *rx_info;
1213 struct ena_adapter *adapter;
1214 u32 res_budget, work_done;
1215 int rx_copybreak_pkt = 0;
1216 int refill_threshold;
1217 struct sk_buff *skb;
1218 int refill_required;
1219 struct xdp_buff xdp;
1220 int xdp_flags = 0;
1221 int total_len = 0;
1222 int xdp_verdict;
1223 u8 pkt_offset;
1224 int rc = 0;
1225 int i;
1226
1227 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1228 "%s qid %d\n", __func__, rx_ring->qid);
1229 res_budget = budget;
1230 xdp_init_buff(&xdp, ENA_PAGE_SIZE, &rx_ring->xdp_rxq);
1231
1232 do {
1233 xdp_verdict = ENA_XDP_PASS;
1234 skb = NULL;
1235 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
1236 ena_rx_ctx.max_bufs = rx_ring->sgl_size;
1237 ena_rx_ctx.descs = 0;
1238 ena_rx_ctx.pkt_offset = 0;
1239 rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
1240 rx_ring->ena_com_io_sq,
1241 &ena_rx_ctx);
1242 if (unlikely(rc))
1243 goto error;
1244
1245 if (unlikely(ena_rx_ctx.descs == 0))
1246 break;
1247
1248 /* First descriptor might have an offset set by the device */
1249 rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id];
1250 pkt_offset = ena_rx_ctx.pkt_offset;
1251 rx_info->buf_offset += pkt_offset;
1252
1253 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1254 "rx_poll: q %d got packet from ena. descs #: %d l3 proto %d l4 proto %d hash: %x\n",
1255 rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
1256 ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
1257
1258 dma_sync_single_for_cpu(rx_ring->dev,
1259 dma_unmap_addr(&rx_info->ena_buf, paddr) + pkt_offset,
1260 rx_ring->ena_bufs[0].len,
1261 DMA_FROM_DEVICE);
1262
1263 if (ena_xdp_present_ring(rx_ring))
1264 xdp_verdict = ena_xdp_handle_buff(rx_ring, &xdp, ena_rx_ctx.descs);
1265
1266 /* allocate skb and fill it */
1267 if (xdp_verdict == ENA_XDP_PASS)
1268 skb = ena_rx_skb(rx_ring,
1269 rx_ring->ena_bufs,
1270 ena_rx_ctx.descs,
1271 &next_to_clean);
1272
1273 if (unlikely(!skb)) {
1274 for (i = 0; i < ena_rx_ctx.descs; i++) {
1275 int req_id = rx_ring->ena_bufs[i].req_id;
1276
1277 rx_ring->free_ids[next_to_clean] = req_id;
1278 next_to_clean =
1279 ENA_RX_RING_IDX_NEXT(next_to_clean,
1280 rx_ring->ring_size);
1281
1282 /* Packets was passed for transmission, unmap it
1283 * from RX side.
1284 */
1285 if (xdp_verdict & ENA_XDP_FORWARDED) {
1286 ena_unmap_rx_buff_attrs(rx_ring,
1287 &rx_ring->rx_buffer_info[req_id],
1288 DMA_ATTR_SKIP_CPU_SYNC);
1289 rx_ring->rx_buffer_info[req_id].page = NULL;
1290 }
1291 }
1292 if (xdp_verdict != ENA_XDP_PASS) {
1293 xdp_flags |= xdp_verdict;
1294 total_len += ena_rx_ctx.ena_bufs[0].len;
1295 res_budget--;
1296 continue;
1297 }
1298 break;
1299 }
1300
1301 ena_rx_checksum(rx_ring, &ena_rx_ctx, skb);
1302
1303 ena_set_rx_hash(rx_ring, &ena_rx_ctx, skb);
1304
1305 skb_record_rx_queue(skb, rx_ring->qid);
1306
1307 if (rx_ring->ena_bufs[0].len <= rx_ring->rx_copybreak)
1308 rx_copybreak_pkt++;
1309
1310 total_len += skb->len;
1311
1312 napi_gro_receive(napi, skb);
1313
1314 res_budget--;
1315 } while (likely(res_budget));
1316
1317 work_done = budget - res_budget;
1318 rx_ring->per_napi_packets += work_done;
1319 u64_stats_update_begin(&rx_ring->syncp);
1320 rx_ring->rx_stats.bytes += total_len;
1321 rx_ring->rx_stats.cnt += work_done;
1322 rx_ring->rx_stats.rx_copybreak_pkt += rx_copybreak_pkt;
1323 u64_stats_update_end(&rx_ring->syncp);
1324
1325 rx_ring->next_to_clean = next_to_clean;
1326
1327 refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
1328 refill_threshold =
1329 min_t(int, rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER,
1330 ENA_RX_REFILL_THRESH_PACKET);
1331
1332 /* Optimization, try to batch new rx buffers */
1333 if (refill_required > refill_threshold)
1334 ena_refill_rx_bufs(rx_ring, refill_required);
1335
1336 if (xdp_flags & ENA_XDP_REDIRECT)
1337 xdp_do_flush();
1338
1339 return work_done;
1340
1341 error:
1342 if (xdp_flags & ENA_XDP_REDIRECT)
1343 xdp_do_flush();
1344
1345 adapter = netdev_priv(rx_ring->netdev);
1346
1347 if (rc == -ENOSPC) {
1348 ena_increase_stat(&rx_ring->rx_stats.bad_desc_num, 1, &rx_ring->syncp);
1349 ena_reset_device(adapter, ENA_REGS_RESET_TOO_MANY_RX_DESCS);
1350 } else if (rc == -EFAULT) {
1351 ena_reset_device(adapter, ENA_REGS_RESET_RX_DESCRIPTOR_MALFORMED);
1352 } else {
1353 ena_increase_stat(&rx_ring->rx_stats.bad_req_id, 1,
1354 &rx_ring->syncp);
1355 ena_reset_device(adapter, ENA_REGS_RESET_INV_RX_REQ_ID);
1356 }
1357 return 0;
1358 }
1359
ena_dim_work(struct work_struct * w)1360 static void ena_dim_work(struct work_struct *w)
1361 {
1362 struct dim *dim = container_of(w, struct dim, work);
1363 struct dim_cq_moder cur_moder =
1364 net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
1365 struct ena_napi *ena_napi = container_of(dim, struct ena_napi, dim);
1366
1367 ena_napi->rx_ring->smoothed_interval = cur_moder.usec;
1368 dim->state = DIM_START_MEASURE;
1369 }
1370
ena_adjust_adaptive_rx_intr_moderation(struct ena_napi * ena_napi)1371 static void ena_adjust_adaptive_rx_intr_moderation(struct ena_napi *ena_napi)
1372 {
1373 struct dim_sample dim_sample;
1374 struct ena_ring *rx_ring = ena_napi->rx_ring;
1375
1376 if (!rx_ring->per_napi_packets)
1377 return;
1378
1379 rx_ring->non_empty_napi_events++;
1380
1381 dim_update_sample(rx_ring->non_empty_napi_events,
1382 rx_ring->rx_stats.cnt,
1383 rx_ring->rx_stats.bytes,
1384 &dim_sample);
1385
1386 net_dim(&ena_napi->dim, dim_sample);
1387
1388 rx_ring->per_napi_packets = 0;
1389 }
1390
ena_unmask_interrupt(struct ena_ring * tx_ring,struct ena_ring * rx_ring)1391 void ena_unmask_interrupt(struct ena_ring *tx_ring,
1392 struct ena_ring *rx_ring)
1393 {
1394 u32 rx_interval = tx_ring->smoothed_interval;
1395 struct ena_eth_io_intr_reg intr_reg;
1396
1397 /* Rx ring can be NULL when for XDP tx queues which don't have an
1398 * accompanying rx_ring pair.
1399 */
1400 if (rx_ring)
1401 rx_interval = ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev) ?
1402 rx_ring->smoothed_interval :
1403 ena_com_get_nonadaptive_moderation_interval_rx(rx_ring->ena_dev);
1404
1405 /* Update intr register: rx intr delay,
1406 * tx intr delay and interrupt unmask
1407 */
1408 ena_com_update_intr_reg(&intr_reg,
1409 rx_interval,
1410 tx_ring->smoothed_interval,
1411 true);
1412
1413 ena_increase_stat(&tx_ring->tx_stats.unmask_interrupt, 1,
1414 &tx_ring->syncp);
1415
1416 /* It is a shared MSI-X.
1417 * Tx and Rx CQ have pointer to it.
1418 * So we use one of them to reach the intr reg
1419 * The Tx ring is used because the rx_ring is NULL for XDP queues
1420 */
1421 ena_com_unmask_intr(tx_ring->ena_com_io_cq, &intr_reg);
1422 }
1423
ena_update_ring_numa_node(struct ena_ring * tx_ring,struct ena_ring * rx_ring)1424 void ena_update_ring_numa_node(struct ena_ring *tx_ring,
1425 struct ena_ring *rx_ring)
1426 {
1427 int cpu = get_cpu();
1428 int numa_node;
1429
1430 /* Check only one ring since the 2 rings are running on the same cpu */
1431 if (likely(tx_ring->cpu == cpu))
1432 goto out;
1433
1434 tx_ring->cpu = cpu;
1435 if (rx_ring)
1436 rx_ring->cpu = cpu;
1437
1438 numa_node = cpu_to_node(cpu);
1439
1440 if (likely(tx_ring->numa_node == numa_node))
1441 goto out;
1442
1443 put_cpu();
1444
1445 if (numa_node != NUMA_NO_NODE) {
1446 ena_com_update_numa_node(tx_ring->ena_com_io_cq, numa_node);
1447 tx_ring->numa_node = numa_node;
1448 if (rx_ring) {
1449 rx_ring->numa_node = numa_node;
1450 ena_com_update_numa_node(rx_ring->ena_com_io_cq,
1451 numa_node);
1452 }
1453 }
1454
1455 return;
1456 out:
1457 put_cpu();
1458 }
1459
ena_io_poll(struct napi_struct * napi,int budget)1460 static int ena_io_poll(struct napi_struct *napi, int budget)
1461 {
1462 struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi);
1463 struct ena_ring *tx_ring, *rx_ring;
1464 int tx_work_done;
1465 int rx_work_done = 0;
1466 int tx_budget;
1467 int napi_comp_call = 0;
1468 int ret;
1469
1470 tx_ring = ena_napi->tx_ring;
1471 rx_ring = ena_napi->rx_ring;
1472
1473 tx_budget = tx_ring->ring_size / ENA_TX_POLL_BUDGET_DIVIDER;
1474
1475 if (!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) ||
1476 test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags)) {
1477 napi_complete_done(napi, 0);
1478 return 0;
1479 }
1480
1481 tx_work_done = ena_clean_tx_irq(tx_ring, tx_budget);
1482 /* On netpoll the budget is zero and the handler should only clean the
1483 * tx completions.
1484 */
1485 if (likely(budget))
1486 rx_work_done = ena_clean_rx_irq(rx_ring, napi, budget);
1487
1488 /* If the device is about to reset or down, avoid unmask
1489 * the interrupt and return 0 so NAPI won't reschedule
1490 */
1491 if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) ||
1492 test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags))) {
1493 napi_complete_done(napi, 0);
1494 ret = 0;
1495
1496 } else if ((budget > rx_work_done) && (tx_budget > tx_work_done)) {
1497 napi_comp_call = 1;
1498
1499 /* Update numa and unmask the interrupt only when schedule
1500 * from the interrupt context (vs from sk_busy_loop)
1501 */
1502 if (napi_complete_done(napi, rx_work_done) &&
1503 READ_ONCE(ena_napi->interrupts_masked)) {
1504 smp_rmb(); /* make sure interrupts_masked is read */
1505 WRITE_ONCE(ena_napi->interrupts_masked, false);
1506 /* We apply adaptive moderation on Rx path only.
1507 * Tx uses static interrupt moderation.
1508 */
1509 if (ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev))
1510 ena_adjust_adaptive_rx_intr_moderation(ena_napi);
1511
1512 ena_update_ring_numa_node(tx_ring, rx_ring);
1513 ena_unmask_interrupt(tx_ring, rx_ring);
1514 }
1515
1516 ret = rx_work_done;
1517 } else {
1518 ret = budget;
1519 }
1520
1521 u64_stats_update_begin(&tx_ring->syncp);
1522 tx_ring->tx_stats.napi_comp += napi_comp_call;
1523 tx_ring->tx_stats.tx_poll++;
1524 u64_stats_update_end(&tx_ring->syncp);
1525
1526 tx_ring->tx_stats.last_napi_jiffies = jiffies;
1527
1528 return ret;
1529 }
1530
ena_intr_msix_mgmnt(int irq,void * data)1531 static irqreturn_t ena_intr_msix_mgmnt(int irq, void *data)
1532 {
1533 struct ena_adapter *adapter = (struct ena_adapter *)data;
1534
1535 ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
1536
1537 /* Don't call the aenq handler before probe is done */
1538 if (likely(test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)))
1539 ena_com_aenq_intr_handler(adapter->ena_dev, data);
1540
1541 return IRQ_HANDLED;
1542 }
1543
1544 /* ena_intr_msix_io - MSI-X Interrupt Handler for Tx/Rx
1545 * @irq: interrupt number
1546 * @data: pointer to a network interface private napi device structure
1547 */
ena_intr_msix_io(int irq,void * data)1548 static irqreturn_t ena_intr_msix_io(int irq, void *data)
1549 {
1550 struct ena_napi *ena_napi = data;
1551
1552 /* Used to check HW health */
1553 WRITE_ONCE(ena_napi->first_interrupt, true);
1554
1555 WRITE_ONCE(ena_napi->interrupts_masked, true);
1556 smp_wmb(); /* write interrupts_masked before calling napi */
1557
1558 napi_schedule_irqoff(&ena_napi->napi);
1559
1560 return IRQ_HANDLED;
1561 }
1562
1563 /* Reserve a single MSI-X vector for management (admin + aenq).
1564 * plus reserve one vector for each potential io queue.
1565 * the number of potential io queues is the minimum of what the device
1566 * supports and the number of vCPUs.
1567 */
ena_enable_msix(struct ena_adapter * adapter)1568 static int ena_enable_msix(struct ena_adapter *adapter)
1569 {
1570 int msix_vecs, irq_cnt;
1571
1572 if (test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) {
1573 netif_err(adapter, probe, adapter->netdev,
1574 "Error, MSI-X is already enabled\n");
1575 return -EPERM;
1576 }
1577
1578 /* Reserved the max msix vectors we might need */
1579 msix_vecs = ENA_MAX_MSIX_VEC(adapter->max_num_io_queues);
1580 netif_dbg(adapter, probe, adapter->netdev,
1581 "Trying to enable MSI-X, vectors %d\n", msix_vecs);
1582
1583 irq_cnt = pci_alloc_irq_vectors(adapter->pdev, ENA_MIN_MSIX_VEC,
1584 msix_vecs, PCI_IRQ_MSIX);
1585
1586 if (irq_cnt < 0) {
1587 netif_err(adapter, probe, adapter->netdev,
1588 "Failed to enable MSI-X. irq_cnt %d\n", irq_cnt);
1589 return -ENOSPC;
1590 }
1591
1592 if (irq_cnt != msix_vecs) {
1593 netif_notice(adapter, probe, adapter->netdev,
1594 "Enable only %d MSI-X (out of %d), reduce the number of queues\n",
1595 irq_cnt, msix_vecs);
1596 adapter->num_io_queues = irq_cnt - ENA_ADMIN_MSIX_VEC;
1597 }
1598
1599 if (ena_init_rx_cpu_rmap(adapter))
1600 netif_warn(adapter, probe, adapter->netdev,
1601 "Failed to map IRQs to CPUs\n");
1602
1603 adapter->msix_vecs = irq_cnt;
1604 set_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags);
1605
1606 return 0;
1607 }
1608
ena_setup_mgmnt_intr(struct ena_adapter * adapter)1609 static void ena_setup_mgmnt_intr(struct ena_adapter *adapter)
1610 {
1611 u32 cpu;
1612
1613 snprintf(adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].name,
1614 ENA_IRQNAME_SIZE, "ena-mgmnt@pci:%s",
1615 pci_name(adapter->pdev));
1616 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].handler =
1617 ena_intr_msix_mgmnt;
1618 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].data = adapter;
1619 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].vector =
1620 pci_irq_vector(adapter->pdev, ENA_MGMNT_IRQ_IDX);
1621 cpu = cpumask_first(cpu_online_mask);
1622 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].cpu = cpu;
1623 cpumask_set_cpu(cpu,
1624 &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].affinity_hint_mask);
1625 }
1626
ena_setup_io_intr(struct ena_adapter * adapter)1627 static void ena_setup_io_intr(struct ena_adapter *adapter)
1628 {
1629 struct net_device *netdev;
1630 int irq_idx, i, cpu;
1631 int io_queue_count;
1632
1633 netdev = adapter->netdev;
1634 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
1635
1636 for (i = 0; i < io_queue_count; i++) {
1637 irq_idx = ENA_IO_IRQ_IDX(i);
1638 cpu = i % num_online_cpus();
1639
1640 snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
1641 "%s-Tx-Rx-%d", netdev->name, i);
1642 adapter->irq_tbl[irq_idx].handler = ena_intr_msix_io;
1643 adapter->irq_tbl[irq_idx].data = &adapter->ena_napi[i];
1644 adapter->irq_tbl[irq_idx].vector =
1645 pci_irq_vector(adapter->pdev, irq_idx);
1646 adapter->irq_tbl[irq_idx].cpu = cpu;
1647
1648 cpumask_set_cpu(cpu,
1649 &adapter->irq_tbl[irq_idx].affinity_hint_mask);
1650 }
1651 }
1652
ena_request_mgmnt_irq(struct ena_adapter * adapter)1653 static int ena_request_mgmnt_irq(struct ena_adapter *adapter)
1654 {
1655 unsigned long flags = 0;
1656 struct ena_irq *irq;
1657 int rc;
1658
1659 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
1660 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
1661 irq->data);
1662 if (rc) {
1663 netif_err(adapter, probe, adapter->netdev,
1664 "Failed to request admin irq\n");
1665 return rc;
1666 }
1667
1668 netif_dbg(adapter, probe, adapter->netdev,
1669 "Set affinity hint of mgmnt irq.to 0x%lx (irq vector: %d)\n",
1670 irq->affinity_hint_mask.bits[0], irq->vector);
1671
1672 irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask);
1673
1674 return rc;
1675 }
1676
ena_request_io_irq(struct ena_adapter * adapter)1677 static int ena_request_io_irq(struct ena_adapter *adapter)
1678 {
1679 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
1680 unsigned long flags = 0;
1681 struct ena_irq *irq;
1682 int rc = 0, i, k;
1683
1684 if (!test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) {
1685 netif_err(adapter, ifup, adapter->netdev,
1686 "Failed to request I/O IRQ: MSI-X is not enabled\n");
1687 return -EINVAL;
1688 }
1689
1690 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) {
1691 irq = &adapter->irq_tbl[i];
1692 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
1693 irq->data);
1694 if (rc) {
1695 netif_err(adapter, ifup, adapter->netdev,
1696 "Failed to request I/O IRQ. index %d rc %d\n",
1697 i, rc);
1698 goto err;
1699 }
1700
1701 netif_dbg(adapter, ifup, adapter->netdev,
1702 "Set affinity hint of irq. index %d to 0x%lx (irq vector: %d)\n",
1703 i, irq->affinity_hint_mask.bits[0], irq->vector);
1704
1705 irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask);
1706 }
1707
1708 return rc;
1709
1710 err:
1711 for (k = ENA_IO_IRQ_FIRST_IDX; k < i; k++) {
1712 irq = &adapter->irq_tbl[k];
1713 free_irq(irq->vector, irq->data);
1714 }
1715
1716 return rc;
1717 }
1718
ena_free_mgmnt_irq(struct ena_adapter * adapter)1719 static void ena_free_mgmnt_irq(struct ena_adapter *adapter)
1720 {
1721 struct ena_irq *irq;
1722
1723 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
1724 synchronize_irq(irq->vector);
1725 irq_set_affinity_hint(irq->vector, NULL);
1726 free_irq(irq->vector, irq->data);
1727 }
1728
ena_free_io_irq(struct ena_adapter * adapter)1729 static void ena_free_io_irq(struct ena_adapter *adapter)
1730 {
1731 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
1732 struct ena_irq *irq;
1733 int i;
1734
1735 #ifdef CONFIG_RFS_ACCEL
1736 if (adapter->msix_vecs >= 1) {
1737 free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
1738 adapter->netdev->rx_cpu_rmap = NULL;
1739 }
1740 #endif /* CONFIG_RFS_ACCEL */
1741
1742 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) {
1743 irq = &adapter->irq_tbl[i];
1744 irq_set_affinity_hint(irq->vector, NULL);
1745 free_irq(irq->vector, irq->data);
1746 }
1747 }
1748
ena_disable_msix(struct ena_adapter * adapter)1749 static void ena_disable_msix(struct ena_adapter *adapter)
1750 {
1751 if (test_and_clear_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags))
1752 pci_free_irq_vectors(adapter->pdev);
1753 }
1754
ena_disable_io_intr_sync(struct ena_adapter * adapter)1755 static void ena_disable_io_intr_sync(struct ena_adapter *adapter)
1756 {
1757 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
1758 int i;
1759
1760 if (!netif_running(adapter->netdev))
1761 return;
1762
1763 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++)
1764 synchronize_irq(adapter->irq_tbl[i].vector);
1765 }
1766
ena_del_napi_in_range(struct ena_adapter * adapter,int first_index,int count)1767 static void ena_del_napi_in_range(struct ena_adapter *adapter,
1768 int first_index,
1769 int count)
1770 {
1771 int i;
1772
1773 for (i = first_index; i < first_index + count; i++) {
1774 netif_napi_del(&adapter->ena_napi[i].napi);
1775
1776 WARN_ON(ENA_IS_XDP_INDEX(adapter, i) &&
1777 adapter->ena_napi[i].rx_ring);
1778 }
1779 }
1780
ena_init_napi_in_range(struct ena_adapter * adapter,int first_index,int count)1781 static void ena_init_napi_in_range(struct ena_adapter *adapter,
1782 int first_index, int count)
1783 {
1784 int (*napi_handler)(struct napi_struct *napi, int budget);
1785 int i;
1786
1787 for (i = first_index; i < first_index + count; i++) {
1788 struct ena_napi *napi = &adapter->ena_napi[i];
1789 struct ena_ring *rx_ring, *tx_ring;
1790
1791 memset(napi, 0, sizeof(*napi));
1792
1793 rx_ring = &adapter->rx_ring[i];
1794 tx_ring = &adapter->tx_ring[i];
1795
1796 napi_handler = ena_io_poll;
1797 if (ENA_IS_XDP_INDEX(adapter, i))
1798 napi_handler = ena_xdp_io_poll;
1799
1800 netif_napi_add(adapter->netdev, &napi->napi, napi_handler);
1801
1802 if (!ENA_IS_XDP_INDEX(adapter, i))
1803 napi->rx_ring = rx_ring;
1804
1805 napi->tx_ring = tx_ring;
1806 napi->qid = i;
1807 }
1808 }
1809
ena_napi_disable_in_range(struct ena_adapter * adapter,int first_index,int count)1810 static void ena_napi_disable_in_range(struct ena_adapter *adapter,
1811 int first_index,
1812 int count)
1813 {
1814 int i;
1815
1816 for (i = first_index; i < first_index + count; i++)
1817 napi_disable(&adapter->ena_napi[i].napi);
1818 }
1819
ena_napi_enable_in_range(struct ena_adapter * adapter,int first_index,int count)1820 static void ena_napi_enable_in_range(struct ena_adapter *adapter,
1821 int first_index,
1822 int count)
1823 {
1824 int i;
1825
1826 for (i = first_index; i < first_index + count; i++)
1827 napi_enable(&adapter->ena_napi[i].napi);
1828 }
1829
1830 /* Configure the Rx forwarding */
ena_rss_configure(struct ena_adapter * adapter)1831 static int ena_rss_configure(struct ena_adapter *adapter)
1832 {
1833 struct ena_com_dev *ena_dev = adapter->ena_dev;
1834 int rc;
1835
1836 /* In case the RSS table wasn't initialized by probe */
1837 if (!ena_dev->rss.tbl_log_size) {
1838 rc = ena_rss_init_default(adapter);
1839 if (rc && (rc != -EOPNOTSUPP)) {
1840 netif_err(adapter, ifup, adapter->netdev, "Failed to init RSS rc: %d\n", rc);
1841 return rc;
1842 }
1843 }
1844
1845 /* Set indirect table */
1846 rc = ena_com_indirect_table_set(ena_dev);
1847 if (unlikely(rc && rc != -EOPNOTSUPP))
1848 return rc;
1849
1850 /* Configure hash function (if supported) */
1851 rc = ena_com_set_hash_function(ena_dev);
1852 if (unlikely(rc && (rc != -EOPNOTSUPP)))
1853 return rc;
1854
1855 /* Configure hash inputs (if supported) */
1856 rc = ena_com_set_hash_ctrl(ena_dev);
1857 if (unlikely(rc && (rc != -EOPNOTSUPP)))
1858 return rc;
1859
1860 return 0;
1861 }
1862
ena_up_complete(struct ena_adapter * adapter)1863 static int ena_up_complete(struct ena_adapter *adapter)
1864 {
1865 int rc;
1866
1867 rc = ena_rss_configure(adapter);
1868 if (rc)
1869 return rc;
1870
1871 ena_change_mtu(adapter->netdev, adapter->netdev->mtu);
1872
1873 ena_refill_all_rx_bufs(adapter);
1874
1875 /* enable transmits */
1876 netif_tx_start_all_queues(adapter->netdev);
1877
1878 ena_napi_enable_in_range(adapter,
1879 0,
1880 adapter->xdp_num_queues + adapter->num_io_queues);
1881
1882 return 0;
1883 }
1884
ena_create_io_tx_queue(struct ena_adapter * adapter,int qid)1885 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid)
1886 {
1887 struct ena_com_create_io_ctx ctx;
1888 struct ena_com_dev *ena_dev;
1889 struct ena_ring *tx_ring;
1890 u32 msix_vector;
1891 u16 ena_qid;
1892 int rc;
1893
1894 ena_dev = adapter->ena_dev;
1895
1896 tx_ring = &adapter->tx_ring[qid];
1897 msix_vector = ENA_IO_IRQ_IDX(qid);
1898 ena_qid = ENA_IO_TXQ_IDX(qid);
1899
1900 memset(&ctx, 0x0, sizeof(ctx));
1901
1902 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1903 ctx.qid = ena_qid;
1904 ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1905 ctx.msix_vector = msix_vector;
1906 ctx.queue_size = tx_ring->ring_size;
1907 ctx.numa_node = tx_ring->numa_node;
1908
1909 rc = ena_com_create_io_queue(ena_dev, &ctx);
1910 if (rc) {
1911 netif_err(adapter, ifup, adapter->netdev,
1912 "Failed to create I/O TX queue num %d rc: %d\n",
1913 qid, rc);
1914 return rc;
1915 }
1916
1917 rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1918 &tx_ring->ena_com_io_sq,
1919 &tx_ring->ena_com_io_cq);
1920 if (rc) {
1921 netif_err(adapter, ifup, adapter->netdev,
1922 "Failed to get TX queue handlers. TX queue num %d rc: %d\n",
1923 qid, rc);
1924 ena_com_destroy_io_queue(ena_dev, ena_qid);
1925 return rc;
1926 }
1927
1928 ena_com_update_numa_node(tx_ring->ena_com_io_cq, ctx.numa_node);
1929 return rc;
1930 }
1931
ena_create_io_tx_queues_in_range(struct ena_adapter * adapter,int first_index,int count)1932 int ena_create_io_tx_queues_in_range(struct ena_adapter *adapter,
1933 int first_index, int count)
1934 {
1935 struct ena_com_dev *ena_dev = adapter->ena_dev;
1936 int rc, i;
1937
1938 for (i = first_index; i < first_index + count; i++) {
1939 rc = ena_create_io_tx_queue(adapter, i);
1940 if (rc)
1941 goto create_err;
1942 }
1943
1944 return 0;
1945
1946 create_err:
1947 while (i-- > first_index)
1948 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));
1949
1950 return rc;
1951 }
1952
ena_create_io_rx_queue(struct ena_adapter * adapter,int qid)1953 static int ena_create_io_rx_queue(struct ena_adapter *adapter, int qid)
1954 {
1955 struct ena_com_dev *ena_dev;
1956 struct ena_com_create_io_ctx ctx;
1957 struct ena_ring *rx_ring;
1958 u32 msix_vector;
1959 u16 ena_qid;
1960 int rc;
1961
1962 ena_dev = adapter->ena_dev;
1963
1964 rx_ring = &adapter->rx_ring[qid];
1965 msix_vector = ENA_IO_IRQ_IDX(qid);
1966 ena_qid = ENA_IO_RXQ_IDX(qid);
1967
1968 memset(&ctx, 0x0, sizeof(ctx));
1969
1970 ctx.qid = ena_qid;
1971 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1972 ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1973 ctx.msix_vector = msix_vector;
1974 ctx.queue_size = rx_ring->ring_size;
1975 ctx.numa_node = rx_ring->numa_node;
1976
1977 rc = ena_com_create_io_queue(ena_dev, &ctx);
1978 if (rc) {
1979 netif_err(adapter, ifup, adapter->netdev,
1980 "Failed to create I/O RX queue num %d rc: %d\n",
1981 qid, rc);
1982 return rc;
1983 }
1984
1985 rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1986 &rx_ring->ena_com_io_sq,
1987 &rx_ring->ena_com_io_cq);
1988 if (rc) {
1989 netif_err(adapter, ifup, adapter->netdev,
1990 "Failed to get RX queue handlers. RX queue num %d rc: %d\n",
1991 qid, rc);
1992 goto err;
1993 }
1994
1995 ena_com_update_numa_node(rx_ring->ena_com_io_cq, ctx.numa_node);
1996
1997 return rc;
1998 err:
1999 ena_com_destroy_io_queue(ena_dev, ena_qid);
2000 return rc;
2001 }
2002
ena_create_all_io_rx_queues(struct ena_adapter * adapter)2003 static int ena_create_all_io_rx_queues(struct ena_adapter *adapter)
2004 {
2005 struct ena_com_dev *ena_dev = adapter->ena_dev;
2006 int rc, i;
2007
2008 for (i = 0; i < adapter->num_io_queues; i++) {
2009 rc = ena_create_io_rx_queue(adapter, i);
2010 if (rc)
2011 goto create_err;
2012 INIT_WORK(&adapter->ena_napi[i].dim.work, ena_dim_work);
2013
2014 ena_xdp_register_rxq_info(&adapter->rx_ring[i]);
2015 }
2016
2017 return 0;
2018
2019 create_err:
2020 while (i--) {
2021 ena_xdp_unregister_rxq_info(&adapter->rx_ring[i]);
2022 cancel_work_sync(&adapter->ena_napi[i].dim.work);
2023 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
2024 }
2025
2026 return rc;
2027 }
2028
set_io_rings_size(struct ena_adapter * adapter,int new_tx_size,int new_rx_size)2029 static void set_io_rings_size(struct ena_adapter *adapter,
2030 int new_tx_size,
2031 int new_rx_size)
2032 {
2033 int i;
2034
2035 for (i = 0; i < adapter->num_io_queues; i++) {
2036 adapter->tx_ring[i].ring_size = new_tx_size;
2037 adapter->rx_ring[i].ring_size = new_rx_size;
2038 }
2039 }
2040
2041 /* This function allows queue allocation to backoff when the system is
2042 * low on memory. If there is not enough memory to allocate io queues
2043 * the driver will try to allocate smaller queues.
2044 *
2045 * The backoff algorithm is as follows:
2046 * 1. Try to allocate TX and RX and if successful.
2047 * 1.1. return success
2048 *
2049 * 2. Divide by 2 the size of the larger of RX and TX queues (or both if their size is the same).
2050 *
2051 * 3. If TX or RX is smaller than 256
2052 * 3.1. return failure.
2053 * 4. else
2054 * 4.1. go back to 1.
2055 */
create_queues_with_size_backoff(struct ena_adapter * adapter)2056 static int create_queues_with_size_backoff(struct ena_adapter *adapter)
2057 {
2058 int rc, cur_rx_ring_size, cur_tx_ring_size;
2059 int new_rx_ring_size, new_tx_ring_size;
2060
2061 /* current queue sizes might be set to smaller than the requested
2062 * ones due to past queue allocation failures.
2063 */
2064 set_io_rings_size(adapter, adapter->requested_tx_ring_size,
2065 adapter->requested_rx_ring_size);
2066
2067 while (1) {
2068 if (ena_xdp_present(adapter)) {
2069 rc = ena_setup_and_create_all_xdp_queues(adapter);
2070
2071 if (rc)
2072 goto err_setup_tx;
2073 }
2074 rc = ena_setup_tx_resources_in_range(adapter,
2075 0,
2076 adapter->num_io_queues);
2077 if (rc)
2078 goto err_setup_tx;
2079
2080 rc = ena_create_io_tx_queues_in_range(adapter,
2081 0,
2082 adapter->num_io_queues);
2083 if (rc)
2084 goto err_create_tx_queues;
2085
2086 rc = ena_setup_all_rx_resources(adapter);
2087 if (rc)
2088 goto err_setup_rx;
2089
2090 rc = ena_create_all_io_rx_queues(adapter);
2091 if (rc)
2092 goto err_create_rx_queues;
2093
2094 return 0;
2095
2096 err_create_rx_queues:
2097 ena_free_all_io_rx_resources(adapter);
2098 err_setup_rx:
2099 ena_destroy_all_tx_queues(adapter);
2100 err_create_tx_queues:
2101 ena_free_all_io_tx_resources(adapter);
2102 err_setup_tx:
2103 if (rc != -ENOMEM) {
2104 netif_err(adapter, ifup, adapter->netdev,
2105 "Queue creation failed with error code %d\n",
2106 rc);
2107 return rc;
2108 }
2109
2110 cur_tx_ring_size = adapter->tx_ring[0].ring_size;
2111 cur_rx_ring_size = adapter->rx_ring[0].ring_size;
2112
2113 netif_err(adapter, ifup, adapter->netdev,
2114 "Not enough memory to create queues with sizes TX=%d, RX=%d\n",
2115 cur_tx_ring_size, cur_rx_ring_size);
2116
2117 new_tx_ring_size = cur_tx_ring_size;
2118 new_rx_ring_size = cur_rx_ring_size;
2119
2120 /* Decrease the size of the larger queue, or
2121 * decrease both if they are the same size.
2122 */
2123 if (cur_rx_ring_size <= cur_tx_ring_size)
2124 new_tx_ring_size = cur_tx_ring_size / 2;
2125 if (cur_rx_ring_size >= cur_tx_ring_size)
2126 new_rx_ring_size = cur_rx_ring_size / 2;
2127
2128 if (new_tx_ring_size < ENA_MIN_RING_SIZE ||
2129 new_rx_ring_size < ENA_MIN_RING_SIZE) {
2130 netif_err(adapter, ifup, adapter->netdev,
2131 "Queue creation failed with the smallest possible queue size of %d for both queues. Not retrying with smaller queues\n",
2132 ENA_MIN_RING_SIZE);
2133 return rc;
2134 }
2135
2136 netif_err(adapter, ifup, adapter->netdev,
2137 "Retrying queue creation with sizes TX=%d, RX=%d\n",
2138 new_tx_ring_size,
2139 new_rx_ring_size);
2140
2141 set_io_rings_size(adapter, new_tx_ring_size,
2142 new_rx_ring_size);
2143 }
2144 }
2145
ena_up(struct ena_adapter * adapter)2146 int ena_up(struct ena_adapter *adapter)
2147 {
2148 int io_queue_count, rc, i;
2149
2150 netif_dbg(adapter, ifup, adapter->netdev, "%s\n", __func__);
2151
2152 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2153 ena_setup_io_intr(adapter);
2154
2155 /* napi poll functions should be initialized before running
2156 * request_irq(), to handle a rare condition where there is a pending
2157 * interrupt, causing the ISR to fire immediately while the poll
2158 * function wasn't set yet, causing a null dereference
2159 */
2160 ena_init_napi_in_range(adapter, 0, io_queue_count);
2161
2162 /* Enabling DIM needs to happen before enabling IRQs since DIM
2163 * is run from napi routine
2164 */
2165 if (ena_com_interrupt_moderation_supported(adapter->ena_dev))
2166 ena_com_enable_adaptive_moderation(adapter->ena_dev);
2167
2168 rc = ena_request_io_irq(adapter);
2169 if (rc)
2170 goto err_req_irq;
2171
2172 rc = create_queues_with_size_backoff(adapter);
2173 if (rc)
2174 goto err_create_queues_with_backoff;
2175
2176 rc = ena_up_complete(adapter);
2177 if (rc)
2178 goto err_up;
2179
2180 if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags))
2181 netif_carrier_on(adapter->netdev);
2182
2183 ena_increase_stat(&adapter->dev_stats.interface_up, 1,
2184 &adapter->syncp);
2185
2186 set_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2187
2188 /* Enable completion queues interrupt */
2189 for (i = 0; i < adapter->num_io_queues; i++)
2190 ena_unmask_interrupt(&adapter->tx_ring[i],
2191 &adapter->rx_ring[i]);
2192
2193 /* schedule napi in case we had pending packets
2194 * from the last time we disable napi
2195 */
2196 for (i = 0; i < io_queue_count; i++)
2197 napi_schedule(&adapter->ena_napi[i].napi);
2198
2199 return rc;
2200
2201 err_up:
2202 ena_destroy_all_tx_queues(adapter);
2203 ena_free_all_io_tx_resources(adapter);
2204 ena_destroy_all_rx_queues(adapter);
2205 ena_free_all_io_rx_resources(adapter);
2206 err_create_queues_with_backoff:
2207 ena_free_io_irq(adapter);
2208 err_req_irq:
2209 ena_del_napi_in_range(adapter, 0, io_queue_count);
2210
2211 return rc;
2212 }
2213
ena_down(struct ena_adapter * adapter)2214 void ena_down(struct ena_adapter *adapter)
2215 {
2216 int io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2217
2218 netif_dbg(adapter, ifdown, adapter->netdev, "%s\n", __func__);
2219
2220 clear_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2221
2222 ena_increase_stat(&adapter->dev_stats.interface_down, 1,
2223 &adapter->syncp);
2224
2225 netif_carrier_off(adapter->netdev);
2226 netif_tx_disable(adapter->netdev);
2227
2228 /* After this point the napi handler won't enable the tx queue */
2229 ena_napi_disable_in_range(adapter, 0, io_queue_count);
2230
2231 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) {
2232 int rc;
2233
2234 rc = ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason);
2235 if (rc)
2236 netif_err(adapter, ifdown, adapter->netdev,
2237 "Device reset failed\n");
2238 /* stop submitting admin commands on a device that was reset */
2239 ena_com_set_admin_running_state(adapter->ena_dev, false);
2240 }
2241
2242 ena_destroy_all_io_queues(adapter);
2243
2244 ena_disable_io_intr_sync(adapter);
2245 ena_free_io_irq(adapter);
2246 ena_del_napi_in_range(adapter, 0, io_queue_count);
2247
2248 ena_free_all_tx_bufs(adapter);
2249 ena_free_all_rx_bufs(adapter);
2250 ena_free_all_io_tx_resources(adapter);
2251 ena_free_all_io_rx_resources(adapter);
2252 }
2253
2254 /* ena_open - Called when a network interface is made active
2255 * @netdev: network interface device structure
2256 *
2257 * Returns 0 on success, negative value on failure
2258 *
2259 * The open entry point is called when a network interface is made
2260 * active by the system (IFF_UP). At this point all resources needed
2261 * for transmit and receive operations are allocated, the interrupt
2262 * handler is registered with the OS, the watchdog timer is started,
2263 * and the stack is notified that the interface is ready.
2264 */
ena_open(struct net_device * netdev)2265 static int ena_open(struct net_device *netdev)
2266 {
2267 struct ena_adapter *adapter = netdev_priv(netdev);
2268 int rc;
2269
2270 /* Notify the stack of the actual queue counts. */
2271 rc = netif_set_real_num_tx_queues(netdev, adapter->num_io_queues);
2272 if (rc) {
2273 netif_err(adapter, ifup, netdev, "Can't set num tx queues\n");
2274 return rc;
2275 }
2276
2277 rc = netif_set_real_num_rx_queues(netdev, adapter->num_io_queues);
2278 if (rc) {
2279 netif_err(adapter, ifup, netdev, "Can't set num rx queues\n");
2280 return rc;
2281 }
2282
2283 rc = ena_up(adapter);
2284 if (rc)
2285 return rc;
2286
2287 return rc;
2288 }
2289
2290 /* ena_close - Disables a network interface
2291 * @netdev: network interface device structure
2292 *
2293 * Returns 0, this is not allowed to fail
2294 *
2295 * The close entry point is called when an interface is de-activated
2296 * by the OS. The hardware is still under the drivers control, but
2297 * needs to be disabled. A global MAC reset is issued to stop the
2298 * hardware, and all transmit and receive resources are freed.
2299 */
ena_close(struct net_device * netdev)2300 static int ena_close(struct net_device *netdev)
2301 {
2302 struct ena_adapter *adapter = netdev_priv(netdev);
2303
2304 netif_dbg(adapter, ifdown, netdev, "%s\n", __func__);
2305
2306 if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))
2307 return 0;
2308
2309 if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
2310 ena_down(adapter);
2311
2312 /* Check for device status and issue reset if needed*/
2313 check_for_admin_com_state(adapter);
2314 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
2315 netif_err(adapter, ifdown, adapter->netdev,
2316 "Destroy failure, restarting device\n");
2317 ena_dump_stats_to_dmesg(adapter);
2318 /* rtnl lock already obtained in dev_ioctl() layer */
2319 ena_destroy_device(adapter, false);
2320 ena_restore_device(adapter);
2321 }
2322
2323 return 0;
2324 }
2325
ena_update_queue_params(struct ena_adapter * adapter,u32 new_tx_size,u32 new_rx_size,u32 new_llq_header_len)2326 int ena_update_queue_params(struct ena_adapter *adapter,
2327 u32 new_tx_size,
2328 u32 new_rx_size,
2329 u32 new_llq_header_len)
2330 {
2331 bool dev_was_up, large_llq_changed = false;
2332 int rc = 0;
2333
2334 dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2335 ena_close(adapter->netdev);
2336 adapter->requested_tx_ring_size = new_tx_size;
2337 adapter->requested_rx_ring_size = new_rx_size;
2338 ena_init_io_rings(adapter,
2339 0,
2340 adapter->xdp_num_queues +
2341 adapter->num_io_queues);
2342
2343 large_llq_changed = adapter->ena_dev->tx_mem_queue_type ==
2344 ENA_ADMIN_PLACEMENT_POLICY_DEV;
2345 large_llq_changed &=
2346 new_llq_header_len != adapter->ena_dev->tx_max_header_size;
2347
2348 /* a check that the configuration is valid is done by caller */
2349 if (large_llq_changed) {
2350 adapter->large_llq_header_enabled = !adapter->large_llq_header_enabled;
2351
2352 ena_destroy_device(adapter, false);
2353 rc = ena_restore_device(adapter);
2354 }
2355
2356 return dev_was_up && !rc ? ena_up(adapter) : rc;
2357 }
2358
ena_set_rx_copybreak(struct ena_adapter * adapter,u32 rx_copybreak)2359 int ena_set_rx_copybreak(struct ena_adapter *adapter, u32 rx_copybreak)
2360 {
2361 struct ena_ring *rx_ring;
2362 int i;
2363
2364 if (rx_copybreak > min_t(u16, adapter->netdev->mtu, ENA_PAGE_SIZE))
2365 return -EINVAL;
2366
2367 adapter->rx_copybreak = rx_copybreak;
2368
2369 for (i = 0; i < adapter->num_io_queues; i++) {
2370 rx_ring = &adapter->rx_ring[i];
2371 rx_ring->rx_copybreak = rx_copybreak;
2372 }
2373
2374 return 0;
2375 }
2376
ena_update_queue_count(struct ena_adapter * adapter,u32 new_channel_count)2377 int ena_update_queue_count(struct ena_adapter *adapter, u32 new_channel_count)
2378 {
2379 struct ena_com_dev *ena_dev = adapter->ena_dev;
2380 int prev_channel_count;
2381 bool dev_was_up;
2382
2383 dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2384 ena_close(adapter->netdev);
2385 prev_channel_count = adapter->num_io_queues;
2386 adapter->num_io_queues = new_channel_count;
2387 if (ena_xdp_present(adapter) &&
2388 ena_xdp_allowed(adapter) == ENA_XDP_ALLOWED) {
2389 adapter->xdp_first_ring = new_channel_count;
2390 adapter->xdp_num_queues = new_channel_count;
2391 if (prev_channel_count > new_channel_count)
2392 ena_xdp_exchange_program_rx_in_range(adapter,
2393 NULL,
2394 new_channel_count,
2395 prev_channel_count);
2396 else
2397 ena_xdp_exchange_program_rx_in_range(adapter,
2398 adapter->xdp_bpf_prog,
2399 prev_channel_count,
2400 new_channel_count);
2401 }
2402
2403 /* We need to destroy the rss table so that the indirection
2404 * table will be reinitialized by ena_up()
2405 */
2406 ena_com_rss_destroy(ena_dev);
2407 ena_init_io_rings(adapter,
2408 0,
2409 adapter->xdp_num_queues +
2410 adapter->num_io_queues);
2411 return dev_was_up ? ena_open(adapter->netdev) : 0;
2412 }
2413
ena_tx_csum(struct ena_com_tx_ctx * ena_tx_ctx,struct sk_buff * skb,bool disable_meta_caching)2414 static void ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx,
2415 struct sk_buff *skb,
2416 bool disable_meta_caching)
2417 {
2418 u32 mss = skb_shinfo(skb)->gso_size;
2419 struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
2420 u8 l4_protocol = 0;
2421
2422 if ((skb->ip_summed == CHECKSUM_PARTIAL) || mss) {
2423 ena_tx_ctx->l4_csum_enable = 1;
2424 if (mss) {
2425 ena_tx_ctx->tso_enable = 1;
2426 ena_meta->l4_hdr_len = tcp_hdr(skb)->doff;
2427 ena_tx_ctx->l4_csum_partial = 0;
2428 } else {
2429 ena_tx_ctx->tso_enable = 0;
2430 ena_meta->l4_hdr_len = 0;
2431 ena_tx_ctx->l4_csum_partial = 1;
2432 }
2433
2434 switch (ip_hdr(skb)->version) {
2435 case IPVERSION:
2436 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
2437 if (ip_hdr(skb)->frag_off & htons(IP_DF))
2438 ena_tx_ctx->df = 1;
2439 if (mss)
2440 ena_tx_ctx->l3_csum_enable = 1;
2441 l4_protocol = ip_hdr(skb)->protocol;
2442 break;
2443 case 6:
2444 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
2445 l4_protocol = ipv6_hdr(skb)->nexthdr;
2446 break;
2447 default:
2448 break;
2449 }
2450
2451 if (l4_protocol == IPPROTO_TCP)
2452 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
2453 else
2454 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
2455
2456 ena_meta->mss = mss;
2457 ena_meta->l3_hdr_len = skb_network_header_len(skb);
2458 ena_meta->l3_hdr_offset = skb_network_offset(skb);
2459 ena_tx_ctx->meta_valid = 1;
2460 } else if (disable_meta_caching) {
2461 memset(ena_meta, 0, sizeof(*ena_meta));
2462 ena_tx_ctx->meta_valid = 1;
2463 } else {
2464 ena_tx_ctx->meta_valid = 0;
2465 }
2466 }
2467
ena_check_and_linearize_skb(struct ena_ring * tx_ring,struct sk_buff * skb)2468 static int ena_check_and_linearize_skb(struct ena_ring *tx_ring,
2469 struct sk_buff *skb)
2470 {
2471 int num_frags, header_len, rc;
2472
2473 num_frags = skb_shinfo(skb)->nr_frags;
2474 header_len = skb_headlen(skb);
2475
2476 if (num_frags < tx_ring->sgl_size)
2477 return 0;
2478
2479 if ((num_frags == tx_ring->sgl_size) &&
2480 (header_len < tx_ring->tx_max_header_size))
2481 return 0;
2482
2483 ena_increase_stat(&tx_ring->tx_stats.linearize, 1, &tx_ring->syncp);
2484
2485 rc = skb_linearize(skb);
2486 if (unlikely(rc)) {
2487 ena_increase_stat(&tx_ring->tx_stats.linearize_failed, 1,
2488 &tx_ring->syncp);
2489 }
2490
2491 return rc;
2492 }
2493
ena_tx_map_skb(struct ena_ring * tx_ring,struct ena_tx_buffer * tx_info,struct sk_buff * skb,void ** push_hdr,u16 * header_len)2494 static int ena_tx_map_skb(struct ena_ring *tx_ring,
2495 struct ena_tx_buffer *tx_info,
2496 struct sk_buff *skb,
2497 void **push_hdr,
2498 u16 *header_len)
2499 {
2500 struct ena_adapter *adapter = tx_ring->adapter;
2501 struct ena_com_buf *ena_buf;
2502 dma_addr_t dma;
2503 u32 skb_head_len, frag_len, last_frag;
2504 u16 push_len = 0;
2505 u16 delta = 0;
2506 int i = 0;
2507
2508 skb_head_len = skb_headlen(skb);
2509 tx_info->skb = skb;
2510 ena_buf = tx_info->bufs;
2511
2512 if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2513 /* When the device is LLQ mode, the driver will copy
2514 * the header into the device memory space.
2515 * the ena_com layer assume the header is in a linear
2516 * memory space.
2517 * This assumption might be wrong since part of the header
2518 * can be in the fragmented buffers.
2519 * Use skb_header_pointer to make sure the header is in a
2520 * linear memory space.
2521 */
2522
2523 push_len = min_t(u32, skb->len, tx_ring->tx_max_header_size);
2524 *push_hdr = skb_header_pointer(skb, 0, push_len,
2525 tx_ring->push_buf_intermediate_buf);
2526 *header_len = push_len;
2527 if (unlikely(skb->data != *push_hdr)) {
2528 ena_increase_stat(&tx_ring->tx_stats.llq_buffer_copy, 1,
2529 &tx_ring->syncp);
2530
2531 delta = push_len - skb_head_len;
2532 }
2533 } else {
2534 *push_hdr = NULL;
2535 *header_len = min_t(u32, skb_head_len,
2536 tx_ring->tx_max_header_size);
2537 }
2538
2539 netif_dbg(adapter, tx_queued, adapter->netdev,
2540 "skb: %p header_buf->vaddr: %p push_len: %d\n", skb,
2541 *push_hdr, push_len);
2542
2543 if (skb_head_len > push_len) {
2544 dma = dma_map_single(tx_ring->dev, skb->data + push_len,
2545 skb_head_len - push_len, DMA_TO_DEVICE);
2546 if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
2547 goto error_report_dma_error;
2548
2549 ena_buf->paddr = dma;
2550 ena_buf->len = skb_head_len - push_len;
2551
2552 ena_buf++;
2553 tx_info->num_of_bufs++;
2554 tx_info->map_linear_data = 1;
2555 } else {
2556 tx_info->map_linear_data = 0;
2557 }
2558
2559 last_frag = skb_shinfo(skb)->nr_frags;
2560
2561 for (i = 0; i < last_frag; i++) {
2562 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2563
2564 frag_len = skb_frag_size(frag);
2565
2566 if (unlikely(delta >= frag_len)) {
2567 delta -= frag_len;
2568 continue;
2569 }
2570
2571 dma = skb_frag_dma_map(tx_ring->dev, frag, delta,
2572 frag_len - delta, DMA_TO_DEVICE);
2573 if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
2574 goto error_report_dma_error;
2575
2576 ena_buf->paddr = dma;
2577 ena_buf->len = frag_len - delta;
2578 ena_buf++;
2579 tx_info->num_of_bufs++;
2580 delta = 0;
2581 }
2582
2583 return 0;
2584
2585 error_report_dma_error:
2586 ena_increase_stat(&tx_ring->tx_stats.dma_mapping_err, 1,
2587 &tx_ring->syncp);
2588 netif_warn(adapter, tx_queued, adapter->netdev, "Failed to map skb\n");
2589
2590 tx_info->skb = NULL;
2591
2592 tx_info->num_of_bufs += i;
2593 ena_unmap_tx_buff(tx_ring, tx_info);
2594
2595 return -EINVAL;
2596 }
2597
2598 /* Called with netif_tx_lock. */
ena_start_xmit(struct sk_buff * skb,struct net_device * dev)2599 static netdev_tx_t ena_start_xmit(struct sk_buff *skb, struct net_device *dev)
2600 {
2601 struct ena_adapter *adapter = netdev_priv(dev);
2602 struct ena_tx_buffer *tx_info;
2603 struct ena_com_tx_ctx ena_tx_ctx;
2604 struct ena_ring *tx_ring;
2605 struct netdev_queue *txq;
2606 void *push_hdr;
2607 u16 next_to_use, req_id, header_len;
2608 int qid, rc;
2609
2610 netif_dbg(adapter, tx_queued, dev, "%s skb %p\n", __func__, skb);
2611 /* Determine which tx ring we will be placed on */
2612 qid = skb_get_queue_mapping(skb);
2613 tx_ring = &adapter->tx_ring[qid];
2614 txq = netdev_get_tx_queue(dev, qid);
2615
2616 rc = ena_check_and_linearize_skb(tx_ring, skb);
2617 if (unlikely(rc))
2618 goto error_drop_packet;
2619
2620 next_to_use = tx_ring->next_to_use;
2621 req_id = tx_ring->free_ids[next_to_use];
2622 tx_info = &tx_ring->tx_buffer_info[req_id];
2623 tx_info->num_of_bufs = 0;
2624
2625 WARN(tx_info->skb, "SKB isn't NULL req_id %d\n", req_id);
2626
2627 rc = ena_tx_map_skb(tx_ring, tx_info, skb, &push_hdr, &header_len);
2628 if (unlikely(rc))
2629 goto error_drop_packet;
2630
2631 memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
2632 ena_tx_ctx.ena_bufs = tx_info->bufs;
2633 ena_tx_ctx.push_header = push_hdr;
2634 ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2635 ena_tx_ctx.req_id = req_id;
2636 ena_tx_ctx.header_len = header_len;
2637
2638 /* set flags and meta data */
2639 ena_tx_csum(&ena_tx_ctx, skb, tx_ring->disable_meta_caching);
2640
2641 rc = ena_xmit_common(adapter,
2642 tx_ring,
2643 tx_info,
2644 &ena_tx_ctx,
2645 next_to_use,
2646 skb->len);
2647 if (rc)
2648 goto error_unmap_dma;
2649
2650 netdev_tx_sent_queue(txq, skb->len);
2651
2652 /* stop the queue when no more space available, the packet can have up
2653 * to sgl_size + 2. one for the meta descriptor and one for header
2654 * (if the header is larger than tx_max_header_size).
2655 */
2656 if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2657 tx_ring->sgl_size + 2))) {
2658 netif_dbg(adapter, tx_queued, dev, "%s stop queue %d\n",
2659 __func__, qid);
2660
2661 netif_tx_stop_queue(txq);
2662 ena_increase_stat(&tx_ring->tx_stats.queue_stop, 1,
2663 &tx_ring->syncp);
2664
2665 /* There is a rare condition where this function decide to
2666 * stop the queue but meanwhile clean_tx_irq updates
2667 * next_to_completion and terminates.
2668 * The queue will remain stopped forever.
2669 * To solve this issue add a mb() to make sure that
2670 * netif_tx_stop_queue() write is vissible before checking if
2671 * there is additional space in the queue.
2672 */
2673 smp_mb();
2674
2675 if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2676 ENA_TX_WAKEUP_THRESH)) {
2677 netif_tx_wake_queue(txq);
2678 ena_increase_stat(&tx_ring->tx_stats.queue_wakeup, 1,
2679 &tx_ring->syncp);
2680 }
2681 }
2682
2683 skb_tx_timestamp(skb);
2684
2685 if (netif_xmit_stopped(txq) || !netdev_xmit_more())
2686 /* trigger the dma engine. ena_ring_tx_doorbell()
2687 * calls a memory barrier inside it.
2688 */
2689 ena_ring_tx_doorbell(tx_ring);
2690
2691 return NETDEV_TX_OK;
2692
2693 error_unmap_dma:
2694 ena_unmap_tx_buff(tx_ring, tx_info);
2695 tx_info->skb = NULL;
2696
2697 error_drop_packet:
2698 dev_kfree_skb(skb);
2699 return NETDEV_TX_OK;
2700 }
2701
ena_config_host_info(struct ena_com_dev * ena_dev,struct pci_dev * pdev)2702 static void ena_config_host_info(struct ena_com_dev *ena_dev, struct pci_dev *pdev)
2703 {
2704 struct device *dev = &pdev->dev;
2705 struct ena_admin_host_info *host_info;
2706 ssize_t ret;
2707 int rc;
2708
2709 /* Allocate only the host info */
2710 rc = ena_com_allocate_host_info(ena_dev);
2711 if (rc) {
2712 dev_err(dev, "Cannot allocate host info\n");
2713 return;
2714 }
2715
2716 host_info = ena_dev->host_attr.host_info;
2717
2718 host_info->bdf = pci_dev_id(pdev);
2719 host_info->os_type = ENA_ADMIN_OS_LINUX;
2720 host_info->kernel_ver = LINUX_VERSION_CODE;
2721 ret = strscpy(host_info->kernel_ver_str, utsname()->version,
2722 sizeof(host_info->kernel_ver_str));
2723 if (ret < 0)
2724 dev_dbg(dev,
2725 "kernel version string will be truncated, status = %zd\n", ret);
2726
2727 host_info->os_dist = 0;
2728 ret = strscpy(host_info->os_dist_str, utsname()->release,
2729 sizeof(host_info->os_dist_str));
2730 if (ret < 0)
2731 dev_dbg(dev,
2732 "OS distribution string will be truncated, status = %zd\n", ret);
2733
2734 host_info->driver_version =
2735 (DRV_MODULE_GEN_MAJOR) |
2736 (DRV_MODULE_GEN_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
2737 (DRV_MODULE_GEN_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT) |
2738 ("K"[0] << ENA_ADMIN_HOST_INFO_MODULE_TYPE_SHIFT);
2739 host_info->num_cpus = num_online_cpus();
2740
2741 host_info->driver_supported_features =
2742 ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
2743 ENA_ADMIN_HOST_INFO_INTERRUPT_MODERATION_MASK |
2744 ENA_ADMIN_HOST_INFO_RX_BUF_MIRRORING_MASK |
2745 ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK |
2746 ENA_ADMIN_HOST_INFO_RX_PAGE_REUSE_MASK;
2747
2748 rc = ena_com_set_host_attributes(ena_dev);
2749 if (rc) {
2750 if (rc == -EOPNOTSUPP)
2751 dev_warn(dev, "Cannot set host attributes\n");
2752 else
2753 dev_err(dev, "Cannot set host attributes\n");
2754
2755 goto err;
2756 }
2757
2758 return;
2759
2760 err:
2761 ena_com_delete_host_info(ena_dev);
2762 }
2763
ena_config_debug_area(struct ena_adapter * adapter)2764 static void ena_config_debug_area(struct ena_adapter *adapter)
2765 {
2766 u32 debug_area_size;
2767 int rc, ss_count;
2768
2769 ss_count = ena_get_sset_count(adapter->netdev, ETH_SS_STATS);
2770 if (ss_count <= 0) {
2771 netif_err(adapter, drv, adapter->netdev,
2772 "SS count is negative\n");
2773 return;
2774 }
2775
2776 /* allocate 32 bytes for each string and 64bit for the value */
2777 debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
2778
2779 rc = ena_com_allocate_debug_area(adapter->ena_dev, debug_area_size);
2780 if (rc) {
2781 netif_err(adapter, drv, adapter->netdev,
2782 "Cannot allocate debug area\n");
2783 return;
2784 }
2785
2786 rc = ena_com_set_host_attributes(adapter->ena_dev);
2787 if (rc) {
2788 if (rc == -EOPNOTSUPP)
2789 netif_warn(adapter, drv, adapter->netdev, "Cannot set host attributes\n");
2790 else
2791 netif_err(adapter, drv, adapter->netdev,
2792 "Cannot set host attributes\n");
2793 goto err;
2794 }
2795
2796 return;
2797 err:
2798 ena_com_delete_debug_area(adapter->ena_dev);
2799 }
2800
ena_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)2801 static void ena_get_stats64(struct net_device *netdev,
2802 struct rtnl_link_stats64 *stats)
2803 {
2804 struct ena_adapter *adapter = netdev_priv(netdev);
2805 struct ena_ring *rx_ring, *tx_ring;
2806 u64 total_xdp_rx_drops = 0;
2807 unsigned int start;
2808 u64 rx_drops;
2809 u64 tx_drops;
2810 int i;
2811
2812 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
2813 return;
2814
2815 for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) {
2816 u64 bytes, packets, xdp_rx_drops;
2817
2818 tx_ring = &adapter->tx_ring[i];
2819
2820 do {
2821 start = u64_stats_fetch_begin(&tx_ring->syncp);
2822 packets = tx_ring->tx_stats.cnt;
2823 bytes = tx_ring->tx_stats.bytes;
2824 } while (u64_stats_fetch_retry(&tx_ring->syncp, start));
2825
2826 stats->tx_packets += packets;
2827 stats->tx_bytes += bytes;
2828
2829 /* In XDP there isn't an RX queue counterpart */
2830 if (ENA_IS_XDP_INDEX(adapter, i))
2831 continue;
2832
2833 rx_ring = &adapter->rx_ring[i];
2834
2835 do {
2836 start = u64_stats_fetch_begin(&rx_ring->syncp);
2837 packets = rx_ring->rx_stats.cnt;
2838 bytes = rx_ring->rx_stats.bytes;
2839 xdp_rx_drops = rx_ring->rx_stats.xdp_drop;
2840 } while (u64_stats_fetch_retry(&rx_ring->syncp, start));
2841
2842 stats->rx_packets += packets;
2843 stats->rx_bytes += bytes;
2844 total_xdp_rx_drops += xdp_rx_drops;
2845 }
2846
2847 do {
2848 start = u64_stats_fetch_begin(&adapter->syncp);
2849 rx_drops = adapter->dev_stats.rx_drops;
2850 tx_drops = adapter->dev_stats.tx_drops;
2851 } while (u64_stats_fetch_retry(&adapter->syncp, start));
2852
2853 stats->rx_dropped = rx_drops + total_xdp_rx_drops;
2854 stats->tx_dropped = tx_drops;
2855
2856 stats->multicast = 0;
2857 stats->collisions = 0;
2858
2859 stats->rx_length_errors = 0;
2860 stats->rx_crc_errors = 0;
2861 stats->rx_frame_errors = 0;
2862 stats->rx_fifo_errors = 0;
2863 stats->rx_missed_errors = 0;
2864 stats->tx_window_errors = 0;
2865
2866 stats->rx_errors = 0;
2867 stats->tx_errors = 0;
2868 }
2869
2870 static const struct net_device_ops ena_netdev_ops = {
2871 .ndo_open = ena_open,
2872 .ndo_stop = ena_close,
2873 .ndo_start_xmit = ena_start_xmit,
2874 .ndo_get_stats64 = ena_get_stats64,
2875 .ndo_tx_timeout = ena_tx_timeout,
2876 .ndo_change_mtu = ena_change_mtu,
2877 .ndo_validate_addr = eth_validate_addr,
2878 .ndo_bpf = ena_xdp,
2879 .ndo_xdp_xmit = ena_xdp_xmit,
2880 };
2881
ena_calc_io_queue_size(struct ena_adapter * adapter,struct ena_com_dev_get_features_ctx * get_feat_ctx)2882 static int ena_calc_io_queue_size(struct ena_adapter *adapter,
2883 struct ena_com_dev_get_features_ctx *get_feat_ctx)
2884 {
2885 struct ena_admin_feature_llq_desc *llq = &get_feat_ctx->llq;
2886 struct ena_com_dev *ena_dev = adapter->ena_dev;
2887 u32 tx_queue_size = ENA_DEFAULT_RING_SIZE;
2888 u32 rx_queue_size = ENA_DEFAULT_RING_SIZE;
2889 u32 max_tx_queue_size;
2890 u32 max_rx_queue_size;
2891
2892 /* If this function is called after driver load, the ring sizes have already
2893 * been configured. Take it into account when recalculating ring size.
2894 */
2895 if (adapter->tx_ring->ring_size)
2896 tx_queue_size = adapter->tx_ring->ring_size;
2897
2898 if (adapter->rx_ring->ring_size)
2899 rx_queue_size = adapter->rx_ring->ring_size;
2900
2901 if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
2902 struct ena_admin_queue_ext_feature_fields *max_queue_ext =
2903 &get_feat_ctx->max_queue_ext.max_queue_ext;
2904 max_rx_queue_size = min_t(u32, max_queue_ext->max_rx_cq_depth,
2905 max_queue_ext->max_rx_sq_depth);
2906 max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
2907
2908 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
2909 max_tx_queue_size = min_t(u32, max_tx_queue_size,
2910 llq->max_llq_depth);
2911 else
2912 max_tx_queue_size = min_t(u32, max_tx_queue_size,
2913 max_queue_ext->max_tx_sq_depth);
2914
2915 adapter->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
2916 max_queue_ext->max_per_packet_tx_descs);
2917 adapter->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
2918 max_queue_ext->max_per_packet_rx_descs);
2919 } else {
2920 struct ena_admin_queue_feature_desc *max_queues =
2921 &get_feat_ctx->max_queues;
2922 max_rx_queue_size = min_t(u32, max_queues->max_cq_depth,
2923 max_queues->max_sq_depth);
2924 max_tx_queue_size = max_queues->max_cq_depth;
2925
2926 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
2927 max_tx_queue_size = min_t(u32, max_tx_queue_size,
2928 llq->max_llq_depth);
2929 else
2930 max_tx_queue_size = min_t(u32, max_tx_queue_size,
2931 max_queues->max_sq_depth);
2932
2933 adapter->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
2934 max_queues->max_packet_tx_descs);
2935 adapter->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
2936 max_queues->max_packet_rx_descs);
2937 }
2938
2939 max_tx_queue_size = rounddown_pow_of_two(max_tx_queue_size);
2940 max_rx_queue_size = rounddown_pow_of_two(max_rx_queue_size);
2941
2942 if (max_tx_queue_size < ENA_MIN_RING_SIZE) {
2943 netdev_err(adapter->netdev, "Device max TX queue size: %d < minimum: %d\n",
2944 max_tx_queue_size, ENA_MIN_RING_SIZE);
2945 return -EINVAL;
2946 }
2947
2948 if (max_rx_queue_size < ENA_MIN_RING_SIZE) {
2949 netdev_err(adapter->netdev, "Device max RX queue size: %d < minimum: %d\n",
2950 max_rx_queue_size, ENA_MIN_RING_SIZE);
2951 return -EINVAL;
2952 }
2953
2954 /* When forcing large headers, we multiply the entry size by 2, and therefore divide
2955 * the queue size by 2, leaving the amount of memory used by the queues unchanged.
2956 */
2957 if (adapter->large_llq_header_enabled) {
2958 if ((llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
2959 ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2960 max_tx_queue_size /= 2;
2961 dev_info(&adapter->pdev->dev,
2962 "Forcing large headers and decreasing maximum TX queue size to %d\n",
2963 max_tx_queue_size);
2964 } else {
2965 dev_err(&adapter->pdev->dev,
2966 "Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
2967
2968 adapter->large_llq_header_enabled = false;
2969 }
2970 }
2971
2972 tx_queue_size = clamp_val(tx_queue_size, ENA_MIN_RING_SIZE,
2973 max_tx_queue_size);
2974 rx_queue_size = clamp_val(rx_queue_size, ENA_MIN_RING_SIZE,
2975 max_rx_queue_size);
2976
2977 tx_queue_size = rounddown_pow_of_two(tx_queue_size);
2978 rx_queue_size = rounddown_pow_of_two(rx_queue_size);
2979
2980 adapter->max_tx_ring_size = max_tx_queue_size;
2981 adapter->max_rx_ring_size = max_rx_queue_size;
2982 adapter->requested_tx_ring_size = tx_queue_size;
2983 adapter->requested_rx_ring_size = rx_queue_size;
2984
2985 return 0;
2986 }
2987
ena_device_validate_params(struct ena_adapter * adapter,struct ena_com_dev_get_features_ctx * get_feat_ctx)2988 static int ena_device_validate_params(struct ena_adapter *adapter,
2989 struct ena_com_dev_get_features_ctx *get_feat_ctx)
2990 {
2991 struct net_device *netdev = adapter->netdev;
2992 int rc;
2993
2994 rc = ether_addr_equal(get_feat_ctx->dev_attr.mac_addr,
2995 adapter->mac_addr);
2996 if (!rc) {
2997 netif_err(adapter, drv, netdev,
2998 "Error, mac address are different\n");
2999 return -EINVAL;
3000 }
3001
3002 if (get_feat_ctx->dev_attr.max_mtu < netdev->mtu) {
3003 netif_err(adapter, drv, netdev,
3004 "Error, device max mtu is smaller than netdev MTU\n");
3005 return -EINVAL;
3006 }
3007
3008 return 0;
3009 }
3010
set_default_llq_configurations(struct ena_adapter * adapter,struct ena_llq_configurations * llq_config,struct ena_admin_feature_llq_desc * llq)3011 static void set_default_llq_configurations(struct ena_adapter *adapter,
3012 struct ena_llq_configurations *llq_config,
3013 struct ena_admin_feature_llq_desc *llq)
3014 {
3015 struct ena_com_dev *ena_dev = adapter->ena_dev;
3016
3017 llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
3018 llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
3019 llq_config->llq_num_decs_before_header = ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
3020
3021 adapter->large_llq_header_supported =
3022 !!(ena_dev->supported_features & BIT(ENA_ADMIN_LLQ));
3023 adapter->large_llq_header_supported &=
3024 !!(llq->entry_size_ctrl_supported &
3025 ENA_ADMIN_LIST_ENTRY_SIZE_256B);
3026
3027 if ((llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
3028 adapter->large_llq_header_enabled) {
3029 llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_256B;
3030 llq_config->llq_ring_entry_size_value = 256;
3031 } else {
3032 llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B;
3033 llq_config->llq_ring_entry_size_value = 128;
3034 }
3035 }
3036
ena_set_queues_placement_policy(struct pci_dev * pdev,struct ena_com_dev * ena_dev,struct ena_admin_feature_llq_desc * llq,struct ena_llq_configurations * llq_default_configurations)3037 static int ena_set_queues_placement_policy(struct pci_dev *pdev,
3038 struct ena_com_dev *ena_dev,
3039 struct ena_admin_feature_llq_desc *llq,
3040 struct ena_llq_configurations *llq_default_configurations)
3041 {
3042 int rc;
3043 u32 llq_feature_mask;
3044
3045 llq_feature_mask = 1 << ENA_ADMIN_LLQ;
3046 if (!(ena_dev->supported_features & llq_feature_mask)) {
3047 dev_warn(&pdev->dev,
3048 "LLQ is not supported Fallback to host mode policy.\n");
3049 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3050 return 0;
3051 }
3052
3053 if (!ena_dev->mem_bar) {
3054 netdev_err(ena_dev->net_device,
3055 "LLQ is advertised as supported but device doesn't expose mem bar\n");
3056 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3057 return 0;
3058 }
3059
3060 rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
3061 if (unlikely(rc)) {
3062 dev_err(&pdev->dev,
3063 "Failed to configure the device mode. Fallback to host mode policy.\n");
3064 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3065 }
3066
3067 return 0;
3068 }
3069
ena_map_llq_mem_bar(struct pci_dev * pdev,struct ena_com_dev * ena_dev,int bars)3070 static int ena_map_llq_mem_bar(struct pci_dev *pdev, struct ena_com_dev *ena_dev,
3071 int bars)
3072 {
3073 bool has_mem_bar = !!(bars & BIT(ENA_MEM_BAR));
3074
3075 if (!has_mem_bar)
3076 return 0;
3077
3078 ena_dev->mem_bar = devm_ioremap_wc(&pdev->dev,
3079 pci_resource_start(pdev, ENA_MEM_BAR),
3080 pci_resource_len(pdev, ENA_MEM_BAR));
3081
3082 if (!ena_dev->mem_bar)
3083 return -EFAULT;
3084
3085 return 0;
3086 }
3087
ena_device_init(struct ena_adapter * adapter,struct pci_dev * pdev,struct ena_com_dev_get_features_ctx * get_feat_ctx,bool * wd_state)3088 static int ena_device_init(struct ena_adapter *adapter, struct pci_dev *pdev,
3089 struct ena_com_dev_get_features_ctx *get_feat_ctx,
3090 bool *wd_state)
3091 {
3092 struct ena_com_dev *ena_dev = adapter->ena_dev;
3093 struct net_device *netdev = adapter->netdev;
3094 struct ena_llq_configurations llq_config;
3095 struct device *dev = &pdev->dev;
3096 bool readless_supported;
3097 u32 aenq_groups;
3098 int dma_width;
3099 int rc;
3100
3101 rc = ena_com_mmio_reg_read_request_init(ena_dev);
3102 if (rc) {
3103 dev_err(dev, "Failed to init mmio read less\n");
3104 return rc;
3105 }
3106
3107 /* The PCIe configuration space revision id indicate if mmio reg
3108 * read is disabled
3109 */
3110 readless_supported = !(pdev->revision & ENA_MMIO_DISABLE_REG_READ);
3111 ena_com_set_mmio_read_mode(ena_dev, readless_supported);
3112
3113 rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
3114 if (rc) {
3115 dev_err(dev, "Can not reset device\n");
3116 goto err_mmio_read_less;
3117 }
3118
3119 rc = ena_com_validate_version(ena_dev);
3120 if (rc) {
3121 dev_err(dev, "Device version is too low\n");
3122 goto err_mmio_read_less;
3123 }
3124
3125 dma_width = ena_com_get_dma_width(ena_dev);
3126 if (dma_width < 0) {
3127 dev_err(dev, "Invalid dma width value %d", dma_width);
3128 rc = dma_width;
3129 goto err_mmio_read_less;
3130 }
3131
3132 rc = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(dma_width));
3133 if (rc) {
3134 dev_err(dev, "dma_set_mask_and_coherent failed %d\n", rc);
3135 goto err_mmio_read_less;
3136 }
3137
3138 /* ENA admin level init */
3139 rc = ena_com_admin_init(ena_dev, &aenq_handlers);
3140 if (rc) {
3141 dev_err(dev,
3142 "Can not initialize ena admin queue with device\n");
3143 goto err_mmio_read_less;
3144 }
3145
3146 /* To enable the msix interrupts the driver needs to know the number
3147 * of queues. So the driver uses polling mode to retrieve this
3148 * information
3149 */
3150 ena_com_set_admin_polling_mode(ena_dev, true);
3151
3152 ena_config_host_info(ena_dev, pdev);
3153
3154 /* Get Device Attributes*/
3155 rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
3156 if (rc) {
3157 dev_err(dev, "Cannot get attribute for ena device rc=%d\n", rc);
3158 goto err_admin_init;
3159 }
3160
3161 /* Try to turn all the available aenq groups */
3162 aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
3163 BIT(ENA_ADMIN_FATAL_ERROR) |
3164 BIT(ENA_ADMIN_WARNING) |
3165 BIT(ENA_ADMIN_NOTIFICATION) |
3166 BIT(ENA_ADMIN_KEEP_ALIVE);
3167
3168 aenq_groups &= get_feat_ctx->aenq.supported_groups;
3169
3170 rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
3171 if (rc) {
3172 dev_err(dev, "Cannot configure aenq groups rc= %d\n", rc);
3173 goto err_admin_init;
3174 }
3175
3176 *wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
3177
3178 set_default_llq_configurations(adapter, &llq_config, &get_feat_ctx->llq);
3179
3180 rc = ena_set_queues_placement_policy(pdev, ena_dev, &get_feat_ctx->llq,
3181 &llq_config);
3182 if (rc) {
3183 netdev_err(netdev, "Cannot set queues placement policy rc= %d\n", rc);
3184 goto err_admin_init;
3185 }
3186
3187 rc = ena_calc_io_queue_size(adapter, get_feat_ctx);
3188 if (unlikely(rc))
3189 goto err_admin_init;
3190
3191 return 0;
3192
3193 err_admin_init:
3194 ena_com_abort_admin_commands(ena_dev);
3195 ena_com_wait_for_abort_completion(ena_dev);
3196 ena_com_delete_host_info(ena_dev);
3197 ena_com_admin_destroy(ena_dev);
3198 err_mmio_read_less:
3199 ena_com_mmio_reg_read_request_destroy(ena_dev);
3200
3201 return rc;
3202 }
3203
ena_enable_msix_and_set_admin_interrupts(struct ena_adapter * adapter)3204 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter)
3205 {
3206 struct ena_com_dev *ena_dev = adapter->ena_dev;
3207 struct device *dev = &adapter->pdev->dev;
3208 int rc;
3209
3210 rc = ena_enable_msix(adapter);
3211 if (rc) {
3212 dev_err(dev, "Can not reserve msix vectors\n");
3213 return rc;
3214 }
3215
3216 ena_setup_mgmnt_intr(adapter);
3217
3218 rc = ena_request_mgmnt_irq(adapter);
3219 if (rc) {
3220 dev_err(dev, "Can not setup management interrupts\n");
3221 goto err_disable_msix;
3222 }
3223
3224 ena_com_set_admin_polling_mode(ena_dev, false);
3225
3226 ena_com_admin_aenq_enable(ena_dev);
3227
3228 return 0;
3229
3230 err_disable_msix:
3231 ena_disable_msix(adapter);
3232
3233 return rc;
3234 }
3235
ena_destroy_device(struct ena_adapter * adapter,bool graceful)3236 static int ena_destroy_device(struct ena_adapter *adapter, bool graceful)
3237 {
3238 struct net_device *netdev = adapter->netdev;
3239 struct ena_com_dev *ena_dev = adapter->ena_dev;
3240 bool dev_up;
3241 int rc = 0;
3242
3243 if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))
3244 return 0;
3245
3246 netif_carrier_off(netdev);
3247
3248 del_timer_sync(&adapter->timer_service);
3249
3250 dev_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
3251 adapter->dev_up_before_reset = dev_up;
3252 if (!graceful)
3253 ena_com_set_admin_running_state(ena_dev, false);
3254
3255 if (dev_up)
3256 ena_down(adapter);
3257
3258 /* Stop the device from sending AENQ events (in case reset flag is set
3259 * and device is up, ena_down() already reset the device.
3260 */
3261 if (!(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags) && dev_up))
3262 rc = ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason);
3263
3264 ena_free_mgmnt_irq(adapter);
3265
3266 ena_disable_msix(adapter);
3267
3268 ena_com_abort_admin_commands(ena_dev);
3269
3270 ena_com_wait_for_abort_completion(ena_dev);
3271
3272 ena_com_admin_destroy(ena_dev);
3273
3274 ena_com_mmio_reg_read_request_destroy(ena_dev);
3275
3276 /* return reset reason to default value */
3277 adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3278
3279 clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3280 clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3281
3282 return rc;
3283 }
3284
ena_restore_device(struct ena_adapter * adapter)3285 static int ena_restore_device(struct ena_adapter *adapter)
3286 {
3287 struct ena_com_dev_get_features_ctx get_feat_ctx;
3288 struct ena_com_dev *ena_dev = adapter->ena_dev;
3289 struct pci_dev *pdev = adapter->pdev;
3290 struct ena_ring *txr;
3291 int rc, count, i;
3292 bool wd_state;
3293
3294 set_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
3295 rc = ena_device_init(adapter, adapter->pdev, &get_feat_ctx, &wd_state);
3296 if (rc) {
3297 dev_err(&pdev->dev, "Can not initialize device\n");
3298 goto err;
3299 }
3300 adapter->wd_state = wd_state;
3301
3302 count = adapter->xdp_num_queues + adapter->num_io_queues;
3303 for (i = 0 ; i < count; i++) {
3304 txr = &adapter->tx_ring[i];
3305 txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
3306 txr->tx_max_header_size = ena_dev->tx_max_header_size;
3307 }
3308
3309 rc = ena_device_validate_params(adapter, &get_feat_ctx);
3310 if (rc) {
3311 dev_err(&pdev->dev, "Validation of device parameters failed\n");
3312 goto err_device_destroy;
3313 }
3314
3315 rc = ena_enable_msix_and_set_admin_interrupts(adapter);
3316 if (rc) {
3317 dev_err(&pdev->dev, "Enable MSI-X failed\n");
3318 goto err_device_destroy;
3319 }
3320 /* If the interface was up before the reset bring it up */
3321 if (adapter->dev_up_before_reset) {
3322 rc = ena_up(adapter);
3323 if (rc) {
3324 dev_err(&pdev->dev, "Failed to create I/O queues\n");
3325 goto err_disable_msix;
3326 }
3327 }
3328
3329 set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3330
3331 clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
3332 if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags))
3333 netif_carrier_on(adapter->netdev);
3334
3335 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
3336 adapter->last_keep_alive_jiffies = jiffies;
3337
3338 return rc;
3339 err_disable_msix:
3340 ena_free_mgmnt_irq(adapter);
3341 ena_disable_msix(adapter);
3342 err_device_destroy:
3343 ena_com_abort_admin_commands(ena_dev);
3344 ena_com_wait_for_abort_completion(ena_dev);
3345 ena_com_admin_destroy(ena_dev);
3346 ena_com_dev_reset(ena_dev, ENA_REGS_RESET_DRIVER_INVALID_STATE);
3347 ena_com_mmio_reg_read_request_destroy(ena_dev);
3348 err:
3349 clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3350 clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
3351 dev_err(&pdev->dev,
3352 "Reset attempt failed. Can not reset the device\n");
3353
3354 return rc;
3355 }
3356
ena_fw_reset_device(struct work_struct * work)3357 static void ena_fw_reset_device(struct work_struct *work)
3358 {
3359 int rc = 0;
3360
3361 struct ena_adapter *adapter =
3362 container_of(work, struct ena_adapter, reset_task);
3363
3364 rtnl_lock();
3365
3366 if (likely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
3367 rc |= ena_destroy_device(adapter, false);
3368 rc |= ena_restore_device(adapter);
3369 adapter->dev_stats.reset_fail += !!rc;
3370
3371 dev_err(&adapter->pdev->dev, "Device reset completed successfully\n");
3372 }
3373
3374 rtnl_unlock();
3375 }
3376
check_for_rx_interrupt_queue(struct ena_adapter * adapter,struct ena_ring * rx_ring)3377 static int check_for_rx_interrupt_queue(struct ena_adapter *adapter,
3378 struct ena_ring *rx_ring)
3379 {
3380 struct ena_napi *ena_napi = container_of(rx_ring->napi, struct ena_napi, napi);
3381
3382 if (likely(READ_ONCE(ena_napi->first_interrupt)))
3383 return 0;
3384
3385 if (ena_com_cq_empty(rx_ring->ena_com_io_cq))
3386 return 0;
3387
3388 rx_ring->no_interrupt_event_cnt++;
3389
3390 if (rx_ring->no_interrupt_event_cnt == ENA_MAX_NO_INTERRUPT_ITERATIONS) {
3391 netif_err(adapter, rx_err, adapter->netdev,
3392 "Potential MSIX issue on Rx side Queue = %d. Reset the device\n",
3393 rx_ring->qid);
3394
3395 ena_reset_device(adapter, ENA_REGS_RESET_MISS_INTERRUPT);
3396 return -EIO;
3397 }
3398
3399 return 0;
3400 }
3401
check_missing_comp_in_tx_queue(struct ena_adapter * adapter,struct ena_ring * tx_ring)3402 static int check_missing_comp_in_tx_queue(struct ena_adapter *adapter,
3403 struct ena_ring *tx_ring)
3404 {
3405 struct ena_napi *ena_napi = container_of(tx_ring->napi, struct ena_napi, napi);
3406 enum ena_regs_reset_reason_types reset_reason = ENA_REGS_RESET_MISS_TX_CMPL;
3407 unsigned int time_since_last_napi;
3408 unsigned int missing_tx_comp_to;
3409 bool is_tx_comp_time_expired;
3410 struct ena_tx_buffer *tx_buf;
3411 unsigned long last_jiffies;
3412 int napi_scheduled;
3413 u32 missed_tx = 0;
3414 int i, rc = 0;
3415
3416 missing_tx_comp_to = jiffies_to_msecs(adapter->missing_tx_completion_to);
3417
3418 for (i = 0; i < tx_ring->ring_size; i++) {
3419 tx_buf = &tx_ring->tx_buffer_info[i];
3420 last_jiffies = tx_buf->last_jiffies;
3421
3422 if (last_jiffies == 0)
3423 /* no pending Tx at this location */
3424 continue;
3425
3426 is_tx_comp_time_expired = time_is_before_jiffies(last_jiffies +
3427 2 * adapter->missing_tx_completion_to);
3428
3429 if (unlikely(!READ_ONCE(ena_napi->first_interrupt) && is_tx_comp_time_expired)) {
3430 /* If after graceful period interrupt is still not
3431 * received, we schedule a reset
3432 */
3433 netif_err(adapter, tx_err, adapter->netdev,
3434 "Potential MSIX issue on Tx side Queue = %d. Reset the device\n",
3435 tx_ring->qid);
3436 ena_reset_device(adapter, ENA_REGS_RESET_MISS_INTERRUPT);
3437 return -EIO;
3438 }
3439
3440 is_tx_comp_time_expired = time_is_before_jiffies(last_jiffies +
3441 adapter->missing_tx_completion_to);
3442
3443 if (unlikely(is_tx_comp_time_expired)) {
3444 time_since_last_napi =
3445 jiffies_to_usecs(jiffies - tx_ring->tx_stats.last_napi_jiffies);
3446 napi_scheduled = !!(ena_napi->napi.state & NAPIF_STATE_SCHED);
3447
3448 if (missing_tx_comp_to < time_since_last_napi && napi_scheduled) {
3449 /* We suspect napi isn't called because the
3450 * bottom half is not run. Require a bigger
3451 * timeout for these cases
3452 */
3453 if (!time_is_before_jiffies(last_jiffies +
3454 2 * adapter->missing_tx_completion_to))
3455 continue;
3456
3457 reset_reason = ENA_REGS_RESET_SUSPECTED_POLL_STARVATION;
3458 }
3459
3460 missed_tx++;
3461
3462 if (tx_buf->print_once)
3463 continue;
3464
3465 netif_notice(adapter, tx_err, adapter->netdev,
3466 "TX hasn't completed, qid %d, index %d. %u usecs from last napi execution, napi scheduled: %d\n",
3467 tx_ring->qid, i, time_since_last_napi, napi_scheduled);
3468
3469 tx_buf->print_once = 1;
3470 }
3471 }
3472
3473 if (unlikely(missed_tx > adapter->missing_tx_completion_threshold)) {
3474 netif_err(adapter, tx_err, adapter->netdev,
3475 "Lost TX completions are above the threshold (%d > %d). Completion transmission timeout: %u.\n",
3476 missed_tx,
3477 adapter->missing_tx_completion_threshold,
3478 missing_tx_comp_to);
3479 netif_err(adapter, tx_err, adapter->netdev,
3480 "Resetting the device\n");
3481
3482 ena_reset_device(adapter, reset_reason);
3483 rc = -EIO;
3484 }
3485
3486 ena_increase_stat(&tx_ring->tx_stats.missed_tx, missed_tx,
3487 &tx_ring->syncp);
3488
3489 return rc;
3490 }
3491
check_for_missing_completions(struct ena_adapter * adapter)3492 static void check_for_missing_completions(struct ena_adapter *adapter)
3493 {
3494 struct ena_ring *tx_ring;
3495 struct ena_ring *rx_ring;
3496 int qid, budget, rc;
3497 int io_queue_count;
3498
3499 io_queue_count = adapter->xdp_num_queues + adapter->num_io_queues;
3500
3501 /* Make sure the driver doesn't turn the device in other process */
3502 smp_rmb();
3503
3504 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
3505 return;
3506
3507 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
3508 return;
3509
3510 if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
3511 return;
3512
3513 budget = min_t(u32, io_queue_count, ENA_MONITORED_TX_QUEUES);
3514
3515 qid = adapter->last_monitored_tx_qid;
3516
3517 while (budget) {
3518 qid = (qid + 1) % io_queue_count;
3519
3520 tx_ring = &adapter->tx_ring[qid];
3521 rx_ring = &adapter->rx_ring[qid];
3522
3523 rc = check_missing_comp_in_tx_queue(adapter, tx_ring);
3524 if (unlikely(rc))
3525 return;
3526
3527 rc = !ENA_IS_XDP_INDEX(adapter, qid) ?
3528 check_for_rx_interrupt_queue(adapter, rx_ring) : 0;
3529 if (unlikely(rc))
3530 return;
3531
3532 budget--;
3533 }
3534
3535 adapter->last_monitored_tx_qid = qid;
3536 }
3537
3538 /* trigger napi schedule after 2 consecutive detections */
3539 #define EMPTY_RX_REFILL 2
3540 /* For the rare case where the device runs out of Rx descriptors and the
3541 * napi handler failed to refill new Rx descriptors (due to a lack of memory
3542 * for example).
3543 * This case will lead to a deadlock:
3544 * The device won't send interrupts since all the new Rx packets will be dropped
3545 * The napi handler won't allocate new Rx descriptors so the device will be
3546 * able to send new packets.
3547 *
3548 * This scenario can happen when the kernel's vm.min_free_kbytes is too small.
3549 * It is recommended to have at least 512MB, with a minimum of 128MB for
3550 * constrained environment).
3551 *
3552 * When such a situation is detected - Reschedule napi
3553 */
check_for_empty_rx_ring(struct ena_adapter * adapter)3554 static void check_for_empty_rx_ring(struct ena_adapter *adapter)
3555 {
3556 struct ena_ring *rx_ring;
3557 int i, refill_required;
3558
3559 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
3560 return;
3561
3562 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
3563 return;
3564
3565 for (i = 0; i < adapter->num_io_queues; i++) {
3566 rx_ring = &adapter->rx_ring[i];
3567
3568 refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
3569 if (unlikely(refill_required == (rx_ring->ring_size - 1))) {
3570 rx_ring->empty_rx_queue++;
3571
3572 if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) {
3573 ena_increase_stat(&rx_ring->rx_stats.empty_rx_ring, 1,
3574 &rx_ring->syncp);
3575
3576 netif_err(adapter, drv, adapter->netdev,
3577 "Trigger refill for ring %d\n", i);
3578
3579 napi_schedule(rx_ring->napi);
3580 rx_ring->empty_rx_queue = 0;
3581 }
3582 } else {
3583 rx_ring->empty_rx_queue = 0;
3584 }
3585 }
3586 }
3587
3588 /* Check for keep alive expiration */
check_for_missing_keep_alive(struct ena_adapter * adapter)3589 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
3590 {
3591 unsigned long keep_alive_expired;
3592
3593 if (!adapter->wd_state)
3594 return;
3595
3596 if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
3597 return;
3598
3599 keep_alive_expired = adapter->last_keep_alive_jiffies +
3600 adapter->keep_alive_timeout;
3601 if (unlikely(time_is_before_jiffies(keep_alive_expired))) {
3602 netif_err(adapter, drv, adapter->netdev,
3603 "Keep alive watchdog timeout.\n");
3604 ena_increase_stat(&adapter->dev_stats.wd_expired, 1,
3605 &adapter->syncp);
3606 ena_reset_device(adapter, ENA_REGS_RESET_KEEP_ALIVE_TO);
3607 }
3608 }
3609
check_for_admin_com_state(struct ena_adapter * adapter)3610 static void check_for_admin_com_state(struct ena_adapter *adapter)
3611 {
3612 if (unlikely(!ena_com_get_admin_running_state(adapter->ena_dev))) {
3613 netif_err(adapter, drv, adapter->netdev,
3614 "ENA admin queue is not in running state!\n");
3615 ena_increase_stat(&adapter->dev_stats.admin_q_pause, 1,
3616 &adapter->syncp);
3617 ena_reset_device(adapter, ENA_REGS_RESET_ADMIN_TO);
3618 }
3619 }
3620
ena_update_hints(struct ena_adapter * adapter,struct ena_admin_ena_hw_hints * hints)3621 static void ena_update_hints(struct ena_adapter *adapter,
3622 struct ena_admin_ena_hw_hints *hints)
3623 {
3624 struct net_device *netdev = adapter->netdev;
3625
3626 if (hints->admin_completion_tx_timeout)
3627 adapter->ena_dev->admin_queue.completion_timeout =
3628 hints->admin_completion_tx_timeout * 1000;
3629
3630 if (hints->mmio_read_timeout)
3631 /* convert to usec */
3632 adapter->ena_dev->mmio_read.reg_read_to =
3633 hints->mmio_read_timeout * 1000;
3634
3635 if (hints->missed_tx_completion_count_threshold_to_reset)
3636 adapter->missing_tx_completion_threshold =
3637 hints->missed_tx_completion_count_threshold_to_reset;
3638
3639 if (hints->missing_tx_completion_timeout) {
3640 if (hints->missing_tx_completion_timeout == ENA_HW_HINTS_NO_TIMEOUT)
3641 adapter->missing_tx_completion_to = ENA_HW_HINTS_NO_TIMEOUT;
3642 else
3643 adapter->missing_tx_completion_to =
3644 msecs_to_jiffies(hints->missing_tx_completion_timeout);
3645 }
3646
3647 if (hints->netdev_wd_timeout)
3648 netdev->watchdog_timeo = msecs_to_jiffies(hints->netdev_wd_timeout);
3649
3650 if (hints->driver_watchdog_timeout) {
3651 if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
3652 adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
3653 else
3654 adapter->keep_alive_timeout =
3655 msecs_to_jiffies(hints->driver_watchdog_timeout);
3656 }
3657 }
3658
ena_update_host_info(struct ena_admin_host_info * host_info,struct net_device * netdev)3659 static void ena_update_host_info(struct ena_admin_host_info *host_info,
3660 struct net_device *netdev)
3661 {
3662 host_info->supported_network_features[0] =
3663 netdev->features & GENMASK_ULL(31, 0);
3664 host_info->supported_network_features[1] =
3665 (netdev->features & GENMASK_ULL(63, 32)) >> 32;
3666 }
3667
ena_timer_service(struct timer_list * t)3668 static void ena_timer_service(struct timer_list *t)
3669 {
3670 struct ena_adapter *adapter = from_timer(adapter, t, timer_service);
3671 u8 *debug_area = adapter->ena_dev->host_attr.debug_area_virt_addr;
3672 struct ena_admin_host_info *host_info =
3673 adapter->ena_dev->host_attr.host_info;
3674
3675 check_for_missing_keep_alive(adapter);
3676
3677 check_for_admin_com_state(adapter);
3678
3679 check_for_missing_completions(adapter);
3680
3681 check_for_empty_rx_ring(adapter);
3682
3683 if (debug_area)
3684 ena_dump_stats_to_buf(adapter, debug_area);
3685
3686 if (host_info)
3687 ena_update_host_info(host_info, adapter->netdev);
3688
3689 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
3690 netif_err(adapter, drv, adapter->netdev,
3691 "Trigger reset is on\n");
3692 ena_dump_stats_to_dmesg(adapter);
3693 queue_work(ena_wq, &adapter->reset_task);
3694 return;
3695 }
3696
3697 /* Reset the timer */
3698 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
3699 }
3700
ena_calc_max_io_queue_num(struct pci_dev * pdev,struct ena_com_dev * ena_dev,struct ena_com_dev_get_features_ctx * get_feat_ctx)3701 static u32 ena_calc_max_io_queue_num(struct pci_dev *pdev,
3702 struct ena_com_dev *ena_dev,
3703 struct ena_com_dev_get_features_ctx *get_feat_ctx)
3704 {
3705 u32 io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
3706
3707 if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
3708 struct ena_admin_queue_ext_feature_fields *max_queue_ext =
3709 &get_feat_ctx->max_queue_ext.max_queue_ext;
3710 io_rx_num = min_t(u32, max_queue_ext->max_rx_sq_num,
3711 max_queue_ext->max_rx_cq_num);
3712
3713 io_tx_sq_num = max_queue_ext->max_tx_sq_num;
3714 io_tx_cq_num = max_queue_ext->max_tx_cq_num;
3715 } else {
3716 struct ena_admin_queue_feature_desc *max_queues =
3717 &get_feat_ctx->max_queues;
3718 io_tx_sq_num = max_queues->max_sq_num;
3719 io_tx_cq_num = max_queues->max_cq_num;
3720 io_rx_num = min_t(u32, io_tx_sq_num, io_tx_cq_num);
3721 }
3722
3723 /* In case of LLQ use the llq fields for the tx SQ/CQ */
3724 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
3725 io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
3726
3727 max_num_io_queues = min_t(u32, num_online_cpus(), ENA_MAX_NUM_IO_QUEUES);
3728 max_num_io_queues = min_t(u32, max_num_io_queues, io_rx_num);
3729 max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_sq_num);
3730 max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_cq_num);
3731 /* 1 IRQ for mgmnt and 1 IRQs for each IO direction */
3732 max_num_io_queues = min_t(u32, max_num_io_queues, pci_msix_vec_count(pdev) - 1);
3733
3734 return max_num_io_queues;
3735 }
3736
ena_set_dev_offloads(struct ena_com_dev_get_features_ctx * feat,struct net_device * netdev)3737 static void ena_set_dev_offloads(struct ena_com_dev_get_features_ctx *feat,
3738 struct net_device *netdev)
3739 {
3740 netdev_features_t dev_features = 0;
3741
3742 /* Set offload features */
3743 if (feat->offload.tx &
3744 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
3745 dev_features |= NETIF_F_IP_CSUM;
3746
3747 if (feat->offload.tx &
3748 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
3749 dev_features |= NETIF_F_IPV6_CSUM;
3750
3751 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
3752 dev_features |= NETIF_F_TSO;
3753
3754 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK)
3755 dev_features |= NETIF_F_TSO6;
3756
3757 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_ECN_MASK)
3758 dev_features |= NETIF_F_TSO_ECN;
3759
3760 if (feat->offload.rx_supported &
3761 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
3762 dev_features |= NETIF_F_RXCSUM;
3763
3764 if (feat->offload.rx_supported &
3765 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
3766 dev_features |= NETIF_F_RXCSUM;
3767
3768 netdev->features =
3769 dev_features |
3770 NETIF_F_SG |
3771 NETIF_F_RXHASH |
3772 NETIF_F_HIGHDMA;
3773
3774 netdev->hw_features |= netdev->features;
3775 netdev->vlan_features |= netdev->features;
3776 }
3777
ena_set_conf_feat_params(struct ena_adapter * adapter,struct ena_com_dev_get_features_ctx * feat)3778 static void ena_set_conf_feat_params(struct ena_adapter *adapter,
3779 struct ena_com_dev_get_features_ctx *feat)
3780 {
3781 struct net_device *netdev = adapter->netdev;
3782
3783 /* Copy mac address */
3784 if (!is_valid_ether_addr(feat->dev_attr.mac_addr)) {
3785 eth_hw_addr_random(netdev);
3786 ether_addr_copy(adapter->mac_addr, netdev->dev_addr);
3787 } else {
3788 ether_addr_copy(adapter->mac_addr, feat->dev_attr.mac_addr);
3789 eth_hw_addr_set(netdev, adapter->mac_addr);
3790 }
3791
3792 /* Set offload features */
3793 ena_set_dev_offloads(feat, netdev);
3794
3795 adapter->max_mtu = feat->dev_attr.max_mtu;
3796 netdev->max_mtu = adapter->max_mtu;
3797 netdev->min_mtu = ENA_MIN_MTU;
3798 }
3799
ena_rss_init_default(struct ena_adapter * adapter)3800 static int ena_rss_init_default(struct ena_adapter *adapter)
3801 {
3802 struct ena_com_dev *ena_dev = adapter->ena_dev;
3803 struct device *dev = &adapter->pdev->dev;
3804 int rc, i;
3805 u32 val;
3806
3807 rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
3808 if (unlikely(rc)) {
3809 dev_err(dev, "Cannot init indirect table\n");
3810 goto err_rss_init;
3811 }
3812
3813 for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
3814 val = ethtool_rxfh_indir_default(i, adapter->num_io_queues);
3815 rc = ena_com_indirect_table_fill_entry(ena_dev, i,
3816 ENA_IO_RXQ_IDX(val));
3817 if (unlikely(rc)) {
3818 dev_err(dev, "Cannot fill indirect table\n");
3819 goto err_fill_indir;
3820 }
3821 }
3822
3823 rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_TOEPLITZ, NULL, ENA_HASH_KEY_SIZE,
3824 0xFFFFFFFF);
3825 if (unlikely(rc && (rc != -EOPNOTSUPP))) {
3826 dev_err(dev, "Cannot fill hash function\n");
3827 goto err_fill_indir;
3828 }
3829
3830 rc = ena_com_set_default_hash_ctrl(ena_dev);
3831 if (unlikely(rc && (rc != -EOPNOTSUPP))) {
3832 dev_err(dev, "Cannot fill hash control\n");
3833 goto err_fill_indir;
3834 }
3835
3836 return 0;
3837
3838 err_fill_indir:
3839 ena_com_rss_destroy(ena_dev);
3840 err_rss_init:
3841
3842 return rc;
3843 }
3844
ena_release_bars(struct ena_com_dev * ena_dev,struct pci_dev * pdev)3845 static void ena_release_bars(struct ena_com_dev *ena_dev, struct pci_dev *pdev)
3846 {
3847 int release_bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK;
3848
3849 pci_release_selected_regions(pdev, release_bars);
3850 }
3851
3852 /* ena_probe - Device Initialization Routine
3853 * @pdev: PCI device information struct
3854 * @ent: entry in ena_pci_tbl
3855 *
3856 * Returns 0 on success, negative on failure
3857 *
3858 * ena_probe initializes an adapter identified by a pci_dev structure.
3859 * The OS initialization, configuring of the adapter private structure,
3860 * and a hardware reset occur.
3861 */
ena_probe(struct pci_dev * pdev,const struct pci_device_id * ent)3862 static int ena_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3863 {
3864 struct ena_com_dev_get_features_ctx get_feat_ctx;
3865 struct ena_com_dev *ena_dev = NULL;
3866 struct ena_adapter *adapter;
3867 struct net_device *netdev;
3868 static int adapters_found;
3869 u32 max_num_io_queues;
3870 bool wd_state;
3871 int bars, rc;
3872
3873 dev_dbg(&pdev->dev, "%s\n", __func__);
3874
3875 rc = pci_enable_device_mem(pdev);
3876 if (rc) {
3877 dev_err(&pdev->dev, "pci_enable_device_mem() failed!\n");
3878 return rc;
3879 }
3880
3881 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(ENA_MAX_PHYS_ADDR_SIZE_BITS));
3882 if (rc) {
3883 dev_err(&pdev->dev, "dma_set_mask_and_coherent failed %d\n", rc);
3884 goto err_disable_device;
3885 }
3886
3887 pci_set_master(pdev);
3888
3889 ena_dev = vzalloc(sizeof(*ena_dev));
3890 if (!ena_dev) {
3891 rc = -ENOMEM;
3892 goto err_disable_device;
3893 }
3894
3895 bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK;
3896 rc = pci_request_selected_regions(pdev, bars, DRV_MODULE_NAME);
3897 if (rc) {
3898 dev_err(&pdev->dev, "pci_request_selected_regions failed %d\n",
3899 rc);
3900 goto err_free_ena_dev;
3901 }
3902
3903 ena_dev->reg_bar = devm_ioremap(&pdev->dev,
3904 pci_resource_start(pdev, ENA_REG_BAR),
3905 pci_resource_len(pdev, ENA_REG_BAR));
3906 if (!ena_dev->reg_bar) {
3907 dev_err(&pdev->dev, "Failed to remap regs bar\n");
3908 rc = -EFAULT;
3909 goto err_free_region;
3910 }
3911
3912 ena_dev->ena_min_poll_delay_us = ENA_ADMIN_POLL_DELAY_US;
3913
3914 ena_dev->dmadev = &pdev->dev;
3915
3916 netdev = alloc_etherdev_mq(sizeof(struct ena_adapter), ENA_MAX_RINGS);
3917 if (!netdev) {
3918 dev_err(&pdev->dev, "alloc_etherdev_mq failed\n");
3919 rc = -ENOMEM;
3920 goto err_free_region;
3921 }
3922
3923 SET_NETDEV_DEV(netdev, &pdev->dev);
3924 adapter = netdev_priv(netdev);
3925 adapter->ena_dev = ena_dev;
3926 adapter->netdev = netdev;
3927 adapter->pdev = pdev;
3928 adapter->msg_enable = DEFAULT_MSG_ENABLE;
3929
3930 ena_dev->net_device = netdev;
3931
3932 pci_set_drvdata(pdev, adapter);
3933
3934 rc = ena_com_allocate_customer_metrics_buffer(ena_dev);
3935 if (rc) {
3936 netdev_err(netdev, "ena_com_allocate_customer_metrics_buffer failed\n");
3937 goto err_netdev_destroy;
3938 }
3939
3940 rc = ena_map_llq_mem_bar(pdev, ena_dev, bars);
3941 if (rc) {
3942 dev_err(&pdev->dev, "ENA LLQ bar mapping failed\n");
3943 goto err_metrics_destroy;
3944 }
3945
3946 rc = ena_device_init(adapter, pdev, &get_feat_ctx, &wd_state);
3947 if (rc) {
3948 dev_err(&pdev->dev, "ENA device init failed\n");
3949 if (rc == -ETIME)
3950 rc = -EPROBE_DEFER;
3951 goto err_metrics_destroy;
3952 }
3953
3954 /* Initial TX and RX interrupt delay. Assumes 1 usec granularity.
3955 * Updated during device initialization with the real granularity
3956 */
3957 ena_dev->intr_moder_tx_interval = ENA_INTR_INITIAL_TX_INTERVAL_USECS;
3958 ena_dev->intr_moder_rx_interval = ENA_INTR_INITIAL_RX_INTERVAL_USECS;
3959 ena_dev->intr_delay_resolution = ENA_DEFAULT_INTR_DELAY_RESOLUTION;
3960 max_num_io_queues = ena_calc_max_io_queue_num(pdev, ena_dev, &get_feat_ctx);
3961 if (unlikely(!max_num_io_queues)) {
3962 rc = -EFAULT;
3963 goto err_device_destroy;
3964 }
3965
3966 ena_set_conf_feat_params(adapter, &get_feat_ctx);
3967
3968 adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3969
3970 adapter->num_io_queues = max_num_io_queues;
3971 adapter->max_num_io_queues = max_num_io_queues;
3972 adapter->last_monitored_tx_qid = 0;
3973
3974 adapter->xdp_first_ring = 0;
3975 adapter->xdp_num_queues = 0;
3976
3977 adapter->rx_copybreak = ENA_DEFAULT_RX_COPYBREAK;
3978 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
3979 adapter->disable_meta_caching =
3980 !!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
3981 BIT(ENA_ADMIN_DISABLE_META_CACHING));
3982
3983 adapter->wd_state = wd_state;
3984
3985 snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d", adapters_found);
3986
3987 rc = ena_com_init_interrupt_moderation(adapter->ena_dev);
3988 if (rc) {
3989 dev_err(&pdev->dev,
3990 "Failed to query interrupt moderation feature\n");
3991 goto err_device_destroy;
3992 }
3993
3994 ena_init_io_rings(adapter,
3995 0,
3996 adapter->xdp_num_queues +
3997 adapter->num_io_queues);
3998
3999 netdev->netdev_ops = &ena_netdev_ops;
4000 netdev->watchdog_timeo = TX_TIMEOUT;
4001 ena_set_ethtool_ops(netdev);
4002
4003 netdev->priv_flags |= IFF_UNICAST_FLT;
4004
4005 u64_stats_init(&adapter->syncp);
4006
4007 rc = ena_enable_msix_and_set_admin_interrupts(adapter);
4008 if (rc) {
4009 dev_err(&pdev->dev,
4010 "Failed to enable and set the admin interrupts\n");
4011 goto err_worker_destroy;
4012 }
4013 rc = ena_rss_init_default(adapter);
4014 if (rc && (rc != -EOPNOTSUPP)) {
4015 dev_err(&pdev->dev, "Cannot init RSS rc: %d\n", rc);
4016 goto err_free_msix;
4017 }
4018
4019 ena_config_debug_area(adapter);
4020
4021 if (ena_xdp_legal_queue_count(adapter, adapter->num_io_queues))
4022 netdev->xdp_features = NETDEV_XDP_ACT_BASIC |
4023 NETDEV_XDP_ACT_REDIRECT;
4024
4025 memcpy(adapter->netdev->perm_addr, adapter->mac_addr, netdev->addr_len);
4026
4027 netif_carrier_off(netdev);
4028
4029 rc = register_netdev(netdev);
4030 if (rc) {
4031 dev_err(&pdev->dev, "Cannot register net device\n");
4032 goto err_rss;
4033 }
4034
4035 INIT_WORK(&adapter->reset_task, ena_fw_reset_device);
4036
4037 adapter->last_keep_alive_jiffies = jiffies;
4038 adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
4039 adapter->missing_tx_completion_to = TX_TIMEOUT;
4040 adapter->missing_tx_completion_threshold = MAX_NUM_OF_TIMEOUTED_PACKETS;
4041
4042 ena_update_hints(adapter, &get_feat_ctx.hw_hints);
4043
4044 timer_setup(&adapter->timer_service, ena_timer_service, 0);
4045 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
4046
4047 dev_info(&pdev->dev,
4048 "%s found at mem %lx, mac addr %pM\n",
4049 DEVICE_NAME, (long)pci_resource_start(pdev, 0),
4050 netdev->dev_addr);
4051
4052 set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
4053
4054 adapters_found++;
4055
4056 return 0;
4057
4058 err_rss:
4059 ena_com_delete_debug_area(ena_dev);
4060 ena_com_rss_destroy(ena_dev);
4061 err_free_msix:
4062 ena_com_dev_reset(ena_dev, ENA_REGS_RESET_INIT_ERR);
4063 /* stop submitting admin commands on a device that was reset */
4064 ena_com_set_admin_running_state(ena_dev, false);
4065 ena_free_mgmnt_irq(adapter);
4066 ena_disable_msix(adapter);
4067 err_worker_destroy:
4068 del_timer(&adapter->timer_service);
4069 err_device_destroy:
4070 ena_com_delete_host_info(ena_dev);
4071 ena_com_admin_destroy(ena_dev);
4072 err_metrics_destroy:
4073 ena_com_delete_customer_metrics_buffer(ena_dev);
4074 err_netdev_destroy:
4075 free_netdev(netdev);
4076 err_free_region:
4077 ena_release_bars(ena_dev, pdev);
4078 err_free_ena_dev:
4079 vfree(ena_dev);
4080 err_disable_device:
4081 pci_disable_device(pdev);
4082 return rc;
4083 }
4084
4085 /*****************************************************************************/
4086
4087 /* __ena_shutoff - Helper used in both PCI remove/shutdown routines
4088 * @pdev: PCI device information struct
4089 * @shutdown: Is it a shutdown operation? If false, means it is a removal
4090 *
4091 * __ena_shutoff is a helper routine that does the real work on shutdown and
4092 * removal paths; the difference between those paths is with regards to whether
4093 * dettach or unregister the netdevice.
4094 */
__ena_shutoff(struct pci_dev * pdev,bool shutdown)4095 static void __ena_shutoff(struct pci_dev *pdev, bool shutdown)
4096 {
4097 struct ena_adapter *adapter = pci_get_drvdata(pdev);
4098 struct ena_com_dev *ena_dev;
4099 struct net_device *netdev;
4100
4101 ena_dev = adapter->ena_dev;
4102 netdev = adapter->netdev;
4103
4104 #ifdef CONFIG_RFS_ACCEL
4105 if ((adapter->msix_vecs >= 1) && (netdev->rx_cpu_rmap)) {
4106 free_irq_cpu_rmap(netdev->rx_cpu_rmap);
4107 netdev->rx_cpu_rmap = NULL;
4108 }
4109
4110 #endif /* CONFIG_RFS_ACCEL */
4111 /* Make sure timer and reset routine won't be called after
4112 * freeing device resources.
4113 */
4114 del_timer_sync(&adapter->timer_service);
4115 cancel_work_sync(&adapter->reset_task);
4116
4117 rtnl_lock(); /* lock released inside the below if-else block */
4118 adapter->reset_reason = ENA_REGS_RESET_SHUTDOWN;
4119 ena_destroy_device(adapter, true);
4120
4121 if (shutdown) {
4122 netif_device_detach(netdev);
4123 dev_close(netdev);
4124 rtnl_unlock();
4125 } else {
4126 rtnl_unlock();
4127 unregister_netdev(netdev);
4128 free_netdev(netdev);
4129 }
4130
4131 ena_com_rss_destroy(ena_dev);
4132
4133 ena_com_delete_debug_area(ena_dev);
4134
4135 ena_com_delete_host_info(ena_dev);
4136
4137 ena_com_delete_customer_metrics_buffer(ena_dev);
4138
4139 ena_release_bars(ena_dev, pdev);
4140
4141 pci_disable_device(pdev);
4142
4143 vfree(ena_dev);
4144 }
4145
4146 /* ena_remove - Device Removal Routine
4147 * @pdev: PCI device information struct
4148 *
4149 * ena_remove is called by the PCI subsystem to alert the driver
4150 * that it should release a PCI device.
4151 */
4152
ena_remove(struct pci_dev * pdev)4153 static void ena_remove(struct pci_dev *pdev)
4154 {
4155 __ena_shutoff(pdev, false);
4156 }
4157
4158 /* ena_shutdown - Device Shutdown Routine
4159 * @pdev: PCI device information struct
4160 *
4161 * ena_shutdown is called by the PCI subsystem to alert the driver that
4162 * a shutdown/reboot (or kexec) is happening and device must be disabled.
4163 */
4164
ena_shutdown(struct pci_dev * pdev)4165 static void ena_shutdown(struct pci_dev *pdev)
4166 {
4167 __ena_shutoff(pdev, true);
4168 }
4169
4170 /* ena_suspend - PM suspend callback
4171 * @dev_d: Device information struct
4172 */
ena_suspend(struct device * dev_d)4173 static int __maybe_unused ena_suspend(struct device *dev_d)
4174 {
4175 struct pci_dev *pdev = to_pci_dev(dev_d);
4176 struct ena_adapter *adapter = pci_get_drvdata(pdev);
4177
4178 ena_increase_stat(&adapter->dev_stats.suspend, 1, &adapter->syncp);
4179
4180 rtnl_lock();
4181 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
4182 dev_err(&pdev->dev,
4183 "Ignoring device reset request as the device is being suspended\n");
4184 clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
4185 }
4186 ena_destroy_device(adapter, true);
4187 rtnl_unlock();
4188 return 0;
4189 }
4190
4191 /* ena_resume - PM resume callback
4192 * @dev_d: Device information struct
4193 */
ena_resume(struct device * dev_d)4194 static int __maybe_unused ena_resume(struct device *dev_d)
4195 {
4196 struct ena_adapter *adapter = dev_get_drvdata(dev_d);
4197 int rc;
4198
4199 ena_increase_stat(&adapter->dev_stats.resume, 1, &adapter->syncp);
4200
4201 rtnl_lock();
4202 rc = ena_restore_device(adapter);
4203 rtnl_unlock();
4204 return rc;
4205 }
4206
4207 static SIMPLE_DEV_PM_OPS(ena_pm_ops, ena_suspend, ena_resume);
4208
4209 static struct pci_driver ena_pci_driver = {
4210 .name = DRV_MODULE_NAME,
4211 .id_table = ena_pci_tbl,
4212 .probe = ena_probe,
4213 .remove = ena_remove,
4214 .shutdown = ena_shutdown,
4215 .driver.pm = &ena_pm_ops,
4216 .sriov_configure = pci_sriov_configure_simple,
4217 };
4218
ena_init(void)4219 static int __init ena_init(void)
4220 {
4221 int ret;
4222
4223 ena_wq = create_singlethread_workqueue(DRV_MODULE_NAME);
4224 if (!ena_wq) {
4225 pr_err("Failed to create workqueue\n");
4226 return -ENOMEM;
4227 }
4228
4229 ret = pci_register_driver(&ena_pci_driver);
4230 if (ret)
4231 destroy_workqueue(ena_wq);
4232
4233 return ret;
4234 }
4235
ena_cleanup(void)4236 static void __exit ena_cleanup(void)
4237 {
4238 pci_unregister_driver(&ena_pci_driver);
4239
4240 if (ena_wq) {
4241 destroy_workqueue(ena_wq);
4242 ena_wq = NULL;
4243 }
4244 }
4245
4246 /******************************************************************************
4247 ******************************** AENQ Handlers *******************************
4248 *****************************************************************************/
4249 /* ena_update_on_link_change:
4250 * Notify the network interface about the change in link status
4251 */
ena_update_on_link_change(void * adapter_data,struct ena_admin_aenq_entry * aenq_e)4252 static void ena_update_on_link_change(void *adapter_data,
4253 struct ena_admin_aenq_entry *aenq_e)
4254 {
4255 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
4256 struct ena_admin_aenq_link_change_desc *aenq_desc =
4257 (struct ena_admin_aenq_link_change_desc *)aenq_e;
4258 int status = aenq_desc->flags &
4259 ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;
4260
4261 if (status) {
4262 netif_dbg(adapter, ifup, adapter->netdev, "%s\n", __func__);
4263 set_bit(ENA_FLAG_LINK_UP, &adapter->flags);
4264 if (!test_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags))
4265 netif_carrier_on(adapter->netdev);
4266 } else {
4267 clear_bit(ENA_FLAG_LINK_UP, &adapter->flags);
4268 netif_carrier_off(adapter->netdev);
4269 }
4270 }
4271
ena_keep_alive_wd(void * adapter_data,struct ena_admin_aenq_entry * aenq_e)4272 static void ena_keep_alive_wd(void *adapter_data,
4273 struct ena_admin_aenq_entry *aenq_e)
4274 {
4275 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
4276 struct ena_admin_aenq_keep_alive_desc *desc;
4277 u64 rx_drops;
4278 u64 tx_drops;
4279
4280 desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
4281 adapter->last_keep_alive_jiffies = jiffies;
4282
4283 rx_drops = ((u64)desc->rx_drops_high << 32) | desc->rx_drops_low;
4284 tx_drops = ((u64)desc->tx_drops_high << 32) | desc->tx_drops_low;
4285
4286 u64_stats_update_begin(&adapter->syncp);
4287 /* These stats are accumulated by the device, so the counters indicate
4288 * all drops since last reset.
4289 */
4290 adapter->dev_stats.rx_drops = rx_drops;
4291 adapter->dev_stats.tx_drops = tx_drops;
4292 u64_stats_update_end(&adapter->syncp);
4293 }
4294
ena_notification(void * adapter_data,struct ena_admin_aenq_entry * aenq_e)4295 static void ena_notification(void *adapter_data,
4296 struct ena_admin_aenq_entry *aenq_e)
4297 {
4298 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
4299 struct ena_admin_ena_hw_hints *hints;
4300
4301 WARN(aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION,
4302 "Invalid group(%x) expected %x\n",
4303 aenq_e->aenq_common_desc.group,
4304 ENA_ADMIN_NOTIFICATION);
4305
4306 switch (aenq_e->aenq_common_desc.syndrome) {
4307 case ENA_ADMIN_UPDATE_HINTS:
4308 hints = (struct ena_admin_ena_hw_hints *)
4309 (&aenq_e->inline_data_w4);
4310 ena_update_hints(adapter, hints);
4311 break;
4312 default:
4313 netif_err(adapter, drv, adapter->netdev,
4314 "Invalid aenq notification link state %d\n",
4315 aenq_e->aenq_common_desc.syndrome);
4316 }
4317 }
4318
4319 /* This handler will called for unknown event group or unimplemented handlers*/
unimplemented_aenq_handler(void * data,struct ena_admin_aenq_entry * aenq_e)4320 static void unimplemented_aenq_handler(void *data,
4321 struct ena_admin_aenq_entry *aenq_e)
4322 {
4323 struct ena_adapter *adapter = (struct ena_adapter *)data;
4324
4325 netif_err(adapter, drv, adapter->netdev,
4326 "Unknown event was received or event with unimplemented handler\n");
4327 }
4328
4329 static struct ena_aenq_handlers aenq_handlers = {
4330 .handlers = {
4331 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
4332 [ENA_ADMIN_NOTIFICATION] = ena_notification,
4333 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
4334 },
4335 .unimplemented_handler = unimplemented_aenq_handler
4336 };
4337
4338 module_init(ena_init);
4339 module_exit(ena_cleanup);
4340