1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 * emulate.c
4 *
5 * Generic x86 (32-bit and 64-bit) instruction decoder and emulator.
6 *
7 * Copyright (c) 2005 Keir Fraser
8 *
9 * Linux coding style, mod r/m decoder, segment base fixes, real-mode
10 * privileged instructions:
11 *
12 * Copyright (C) 2006 Qumranet
13 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
14 *
15 * Avi Kivity <avi@qumranet.com>
16 * Yaniv Kamay <yaniv@qumranet.com>
17 *
18 * From: xen-unstable 10676:af9809f51f81a3c43f276f00c81a52ef558afda4
19 */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/kvm_host.h>
23 #include "kvm_cache_regs.h"
24 #include "kvm_emulate.h"
25 #include <linux/stringify.h>
26 #include <asm/debugreg.h>
27 #include <asm/nospec-branch.h>
28 #include <asm/ibt.h>
29 #include <asm/text-patching.h>
30
31 #include "x86.h"
32 #include "tss.h"
33 #include "mmu.h"
34 #include "pmu.h"
35
36 /*
37 * Operand types
38 */
39 #define OpNone 0ull
40 #define OpImplicit 1ull /* No generic decode */
41 #define OpReg 2ull /* Register */
42 #define OpMem 3ull /* Memory */
43 #define OpAcc 4ull /* Accumulator: AL/AX/EAX/RAX */
44 #define OpDI 5ull /* ES:DI/EDI/RDI */
45 #define OpMem64 6ull /* Memory, 64-bit */
46 #define OpImmUByte 7ull /* Zero-extended 8-bit immediate */
47 #define OpDX 8ull /* DX register */
48 #define OpCL 9ull /* CL register (for shifts) */
49 #define OpImmByte 10ull /* 8-bit sign extended immediate */
50 #define OpOne 11ull /* Implied 1 */
51 #define OpImm 12ull /* Sign extended up to 32-bit immediate */
52 #define OpMem16 13ull /* Memory operand (16-bit). */
53 #define OpMem32 14ull /* Memory operand (32-bit). */
54 #define OpImmU 15ull /* Immediate operand, zero extended */
55 #define OpSI 16ull /* SI/ESI/RSI */
56 #define OpImmFAddr 17ull /* Immediate far address */
57 #define OpMemFAddr 18ull /* Far address in memory */
58 #define OpImmU16 19ull /* Immediate operand, 16 bits, zero extended */
59 #define OpES 20ull /* ES */
60 #define OpCS 21ull /* CS */
61 #define OpSS 22ull /* SS */
62 #define OpDS 23ull /* DS */
63 #define OpFS 24ull /* FS */
64 #define OpGS 25ull /* GS */
65 #define OpMem8 26ull /* 8-bit zero extended memory operand */
66 #define OpImm64 27ull /* Sign extended 16/32/64-bit immediate */
67 #define OpXLat 28ull /* memory at BX/EBX/RBX + zero-extended AL */
68 #define OpAccLo 29ull /* Low part of extended acc (AX/AX/EAX/RAX) */
69 #define OpAccHi 30ull /* High part of extended acc (-/DX/EDX/RDX) */
70
71 #define OpBits 5 /* Width of operand field */
72 #define OpMask ((1ull << OpBits) - 1)
73
74 /*
75 * Opcode effective-address decode tables.
76 * Note that we only emulate instructions that have at least one memory
77 * operand (excluding implicit stack references). We assume that stack
78 * references and instruction fetches will never occur in special memory
79 * areas that require emulation. So, for example, 'mov <imm>,<reg>' need
80 * not be handled.
81 */
82
83 /* Operand sizes: 8-bit operands or specified/overridden size. */
84 #define ByteOp (1<<0) /* 8-bit operands. */
85 #define DstShift 1 /* Destination operand type at bits 1-5 */
86 #define ImplicitOps (OpImplicit << DstShift)
87 #define DstReg (OpReg << DstShift)
88 #define DstMem (OpMem << DstShift)
89 #define DstAcc (OpAcc << DstShift)
90 #define DstDI (OpDI << DstShift)
91 #define DstMem64 (OpMem64 << DstShift)
92 #define DstMem16 (OpMem16 << DstShift)
93 #define DstImmUByte (OpImmUByte << DstShift)
94 #define DstDX (OpDX << DstShift)
95 #define DstAccLo (OpAccLo << DstShift)
96 #define DstMask (OpMask << DstShift)
97 #define SrcShift 6 /* Source operand type at bits 6-10 */
98 #define SrcNone (OpNone << SrcShift)
99 #define SrcReg (OpReg << SrcShift)
100 #define SrcMem (OpMem << SrcShift)
101 #define SrcMem16 (OpMem16 << SrcShift)
102 #define SrcMem32 (OpMem32 << SrcShift)
103 #define SrcImm (OpImm << SrcShift)
104 #define SrcImmByte (OpImmByte << SrcShift)
105 #define SrcOne (OpOne << SrcShift)
106 #define SrcImmUByte (OpImmUByte << SrcShift)
107 #define SrcImmU (OpImmU << SrcShift)
108 #define SrcSI (OpSI << SrcShift)
109 #define SrcXLat (OpXLat << SrcShift)
110 #define SrcImmFAddr (OpImmFAddr << SrcShift)
111 #define SrcMemFAddr (OpMemFAddr << SrcShift)
112 #define SrcAcc (OpAcc << SrcShift)
113 #define SrcImmU16 (OpImmU16 << SrcShift)
114 #define SrcImm64 (OpImm64 << SrcShift)
115 #define SrcDX (OpDX << SrcShift)
116 #define SrcMem8 (OpMem8 << SrcShift)
117 #define SrcAccHi (OpAccHi << SrcShift)
118 #define SrcMask (OpMask << SrcShift)
119 #define BitOp (1<<11)
120 #define MemAbs (1<<12) /* Memory operand is absolute displacement */
121 #define String (1<<13) /* String instruction (rep capable) */
122 #define Stack (1<<14) /* Stack instruction (push/pop) */
123 #define GroupMask (7<<15) /* Group mechanisms, at bits 15-17 */
124 #define Group (1<<15) /* Bits 3:5 of modrm byte extend opcode */
125 #define GroupDual (2<<15) /* Alternate decoding of mod == 3 */
126 #define Prefix (3<<15) /* Instruction varies with 66/f2/f3 prefix */
127 #define RMExt (4<<15) /* Opcode extension in ModRM r/m if mod == 3 */
128 #define Escape (5<<15) /* Escape to coprocessor instruction */
129 #define InstrDual (6<<15) /* Alternate instruction decoding of mod == 3 */
130 #define ModeDual (7<<15) /* Different instruction for 32/64 bit */
131 #define Sse (1<<18) /* SSE Vector instruction */
132 #define ModRM (1<<19) /* Generic ModRM decode. */
133 #define Mov (1<<20) /* Destination is only written; never read. */
134 #define Prot (1<<21) /* instruction generates #UD if not in prot-mode */
135 #define EmulateOnUD (1<<22) /* Emulate if unsupported by the host */
136 #define NoAccess (1<<23) /* Don't access memory (lea/invlpg/verr etc) */
137 #define Op3264 (1<<24) /* Operand is 64b in long mode, 32b otherwise */
138 #define Undefined (1<<25) /* No Such Instruction */
139 #define Lock (1<<26) /* lock prefix is allowed for the instruction */
140 #define Priv (1<<27) /* instruction generates #GP if current CPL != 0 */
141 #define No64 (1<<28) /* Instruction generates #UD in 64-bit mode */
142 #define PageTable (1 << 29) /* instruction used to write page table */
143 #define NotImpl (1 << 30) /* instruction is not implemented */
144 #define Avx ((u64)1 << 31) /* Instruction uses VEX prefix */
145 #define Src2Shift (32) /* Source 2 operand type at bits 32-36 */
146 #define Src2None (OpNone << Src2Shift)
147 #define Src2Mem (OpMem << Src2Shift)
148 #define Src2CL (OpCL << Src2Shift)
149 #define Src2ImmByte (OpImmByte << Src2Shift)
150 #define Src2One (OpOne << Src2Shift)
151 #define Src2Imm (OpImm << Src2Shift)
152 #define Src2ES (OpES << Src2Shift)
153 #define Src2CS (OpCS << Src2Shift)
154 #define Src2SS (OpSS << Src2Shift)
155 #define Src2DS (OpDS << Src2Shift)
156 #define Src2FS (OpFS << Src2Shift)
157 #define Src2GS (OpGS << Src2Shift)
158 #define Src2Mask (OpMask << Src2Shift)
159 /* free: 37-39 */
160 #define Mmx ((u64)1 << 40) /* MMX Vector instruction */
161 #define AlignMask ((u64)3 << 41) /* Memory alignment requirement at bits 41-42 */
162 #define Aligned ((u64)1 << 41) /* Explicitly aligned (e.g. MOVDQA) */
163 #define Unaligned ((u64)2 << 41) /* Explicitly unaligned (e.g. MOVDQU) */
164 #define Aligned16 ((u64)3 << 41) /* Aligned to 16 byte boundary (e.g. FXSAVE) */
165 /* free: 43-44 */
166 #define NoWrite ((u64)1 << 45) /* No writeback */
167 #define SrcWrite ((u64)1 << 46) /* Write back src operand */
168 #define NoMod ((u64)1 << 47) /* Mod field is ignored */
169 #define Intercept ((u64)1 << 48) /* Has valid intercept field */
170 #define CheckPerm ((u64)1 << 49) /* Has valid check_perm field */
171 #define PrivUD ((u64)1 << 51) /* #UD instead of #GP on CPL > 0 */
172 #define NearBranch ((u64)1 << 52) /* Near branches */
173 #define No16 ((u64)1 << 53) /* No 16 bit operand */
174 #define IncSP ((u64)1 << 54) /* SP is incremented before ModRM calc */
175 #define TwoMemOp ((u64)1 << 55) /* Instruction has two memory operand */
176 #define IsBranch ((u64)1 << 56) /* Instruction is considered a branch. */
177 #define ShadowStack ((u64)1 << 57) /* Instruction affects Shadow Stacks. */
178
179 #define DstXacc (DstAccLo | SrcAccHi | SrcWrite)
180
181 #define X2(x...) x, x
182 #define X3(x...) X2(x), x
183 #define X4(x...) X2(x), X2(x)
184 #define X5(x...) X4(x), x
185 #define X6(x...) X4(x), X2(x)
186 #define X7(x...) X4(x), X3(x)
187 #define X8(x...) X4(x), X4(x)
188 #define X16(x...) X8(x), X8(x)
189
190 struct opcode {
191 u64 flags;
192 u8 intercept;
193 u8 pad[7];
194 union {
195 int (*execute)(struct x86_emulate_ctxt *ctxt);
196 const struct opcode *group;
197 const struct group_dual *gdual;
198 const struct gprefix *gprefix;
199 const struct escape *esc;
200 const struct instr_dual *idual;
201 const struct mode_dual *mdual;
202 } u;
203 int (*check_perm)(struct x86_emulate_ctxt *ctxt);
204 };
205
206 struct group_dual {
207 struct opcode mod012[8];
208 struct opcode mod3[8];
209 };
210
211 struct gprefix {
212 struct opcode pfx_no;
213 struct opcode pfx_66;
214 struct opcode pfx_f2;
215 struct opcode pfx_f3;
216 };
217
218 struct escape {
219 struct opcode op[8];
220 struct opcode high[64];
221 };
222
223 struct instr_dual {
224 struct opcode mod012;
225 struct opcode mod3;
226 };
227
228 struct mode_dual {
229 struct opcode mode32;
230 struct opcode mode64;
231 };
232
233 #define EFLG_RESERVED_ZEROS_MASK 0xffc0802a
234
235 enum x86_transfer_type {
236 X86_TRANSFER_NONE,
237 X86_TRANSFER_CALL_JMP,
238 X86_TRANSFER_RET,
239 X86_TRANSFER_TASK_SWITCH,
240 };
241
242 enum rex_bits {
243 REX_B = 1,
244 REX_X = 2,
245 REX_R = 4,
246 REX_W = 8,
247 };
248
writeback_registers(struct x86_emulate_ctxt * ctxt)249 static void writeback_registers(struct x86_emulate_ctxt *ctxt)
250 {
251 unsigned long dirty = ctxt->regs_dirty;
252 unsigned reg;
253
254 for_each_set_bit(reg, &dirty, NR_EMULATOR_GPRS)
255 ctxt->ops->write_gpr(ctxt, reg, ctxt->_regs[reg]);
256 }
257
invalidate_registers(struct x86_emulate_ctxt * ctxt)258 static void invalidate_registers(struct x86_emulate_ctxt *ctxt)
259 {
260 ctxt->regs_dirty = 0;
261 ctxt->regs_valid = 0;
262 }
263
264 /*
265 * These EFLAGS bits are restored from saved value during emulation, and
266 * any changes are written back to the saved value after emulation.
267 */
268 #define EFLAGS_MASK (X86_EFLAGS_OF|X86_EFLAGS_SF|X86_EFLAGS_ZF|X86_EFLAGS_AF|\
269 X86_EFLAGS_PF|X86_EFLAGS_CF)
270
271 #ifdef CONFIG_X86_64
272 #define ON64(x...) x
273 #else
274 #define ON64(x...)
275 #endif
276
277 #define EM_ASM_START(op) \
278 static int em_##op(struct x86_emulate_ctxt *ctxt) \
279 { \
280 unsigned long flags = (ctxt->eflags & EFLAGS_MASK) | X86_EFLAGS_IF; \
281 int bytes = 1, ok = 1; \
282 if (!(ctxt->d & ByteOp)) \
283 bytes = ctxt->dst.bytes; \
284 switch (bytes) {
285
286 #define __EM_ASM(str) \
287 asm("push %[flags]; popf \n\t" \
288 "10: " str \
289 "pushf; pop %[flags] \n\t" \
290 "11: \n\t" \
291 : "+a" (ctxt->dst.val), \
292 "+d" (ctxt->src.val), \
293 [flags] "+D" (flags), \
294 "+S" (ok) \
295 : "c" (ctxt->src2.val))
296
297 #define __EM_ASM_1(op, dst) \
298 __EM_ASM(#op " %%" #dst " \n\t")
299
300 #define __EM_ASM_1_EX(op, dst) \
301 __EM_ASM(#op " %%" #dst " \n\t" \
302 _ASM_EXTABLE_TYPE_REG(10b, 11f, EX_TYPE_ZERO_REG, %%esi))
303
304 #define __EM_ASM_2(op, dst, src) \
305 __EM_ASM(#op " %%" #src ", %%" #dst " \n\t")
306
307 #define __EM_ASM_3(op, dst, src, src2) \
308 __EM_ASM(#op " %%" #src2 ", %%" #src ", %%" #dst " \n\t")
309
310 #define EM_ASM_END \
311 } \
312 ctxt->eflags = (ctxt->eflags & ~EFLAGS_MASK) | (flags & EFLAGS_MASK); \
313 return !ok ? emulate_de(ctxt) : X86EMUL_CONTINUE; \
314 }
315
316 /* 1-operand, using "a" (dst) */
317 #define EM_ASM_1(op) \
318 EM_ASM_START(op) \
319 case 1: __EM_ASM_1(op##b, al); break; \
320 case 2: __EM_ASM_1(op##w, ax); break; \
321 case 4: __EM_ASM_1(op##l, eax); break; \
322 ON64(case 8: __EM_ASM_1(op##q, rax); break;) \
323 EM_ASM_END
324
325 /* 1-operand, using "c" (src2) */
326 #define EM_ASM_1SRC2(op, name) \
327 EM_ASM_START(name) \
328 case 1: __EM_ASM_1(op##b, cl); break; \
329 case 2: __EM_ASM_1(op##w, cx); break; \
330 case 4: __EM_ASM_1(op##l, ecx); break; \
331 ON64(case 8: __EM_ASM_1(op##q, rcx); break;) \
332 EM_ASM_END
333
334 /* 1-operand, using "c" (src2) with exception */
335 #define EM_ASM_1SRC2EX(op, name) \
336 EM_ASM_START(name) \
337 case 1: __EM_ASM_1_EX(op##b, cl); break; \
338 case 2: __EM_ASM_1_EX(op##w, cx); break; \
339 case 4: __EM_ASM_1_EX(op##l, ecx); break; \
340 ON64(case 8: __EM_ASM_1_EX(op##q, rcx); break;) \
341 EM_ASM_END
342
343 /* 2-operand, using "a" (dst), "d" (src) */
344 #define EM_ASM_2(op) \
345 EM_ASM_START(op) \
346 case 1: __EM_ASM_2(op##b, al, dl); break; \
347 case 2: __EM_ASM_2(op##w, ax, dx); break; \
348 case 4: __EM_ASM_2(op##l, eax, edx); break; \
349 ON64(case 8: __EM_ASM_2(op##q, rax, rdx); break;) \
350 EM_ASM_END
351
352 /* 2-operand, reversed */
353 #define EM_ASM_2R(op, name) \
354 EM_ASM_START(name) \
355 case 1: __EM_ASM_2(op##b, dl, al); break; \
356 case 2: __EM_ASM_2(op##w, dx, ax); break; \
357 case 4: __EM_ASM_2(op##l, edx, eax); break; \
358 ON64(case 8: __EM_ASM_2(op##q, rdx, rax); break;) \
359 EM_ASM_END
360
361 /* 2-operand, word only (no byte op) */
362 #define EM_ASM_2W(op) \
363 EM_ASM_START(op) \
364 case 1: break; \
365 case 2: __EM_ASM_2(op##w, ax, dx); break; \
366 case 4: __EM_ASM_2(op##l, eax, edx); break; \
367 ON64(case 8: __EM_ASM_2(op##q, rax, rdx); break;) \
368 EM_ASM_END
369
370 /* 2-operand, using "a" (dst) and CL (src2) */
371 #define EM_ASM_2CL(op) \
372 EM_ASM_START(op) \
373 case 1: __EM_ASM_2(op##b, al, cl); break; \
374 case 2: __EM_ASM_2(op##w, ax, cl); break; \
375 case 4: __EM_ASM_2(op##l, eax, cl); break; \
376 ON64(case 8: __EM_ASM_2(op##q, rax, cl); break;) \
377 EM_ASM_END
378
379 /* 3-operand, using "a" (dst), "d" (src) and CL (src2) */
380 #define EM_ASM_3WCL(op) \
381 EM_ASM_START(op) \
382 case 1: break; \
383 case 2: __EM_ASM_3(op##w, ax, dx, cl); break; \
384 case 4: __EM_ASM_3(op##l, eax, edx, cl); break; \
385 ON64(case 8: __EM_ASM_3(op##q, rax, rdx, cl); break;) \
386 EM_ASM_END
387
em_salc(struct x86_emulate_ctxt * ctxt)388 static int em_salc(struct x86_emulate_ctxt *ctxt)
389 {
390 /*
391 * Set AL 0xFF if CF is set, or 0x00 when clear.
392 */
393 ctxt->dst.val = 0xFF * !!(ctxt->eflags & X86_EFLAGS_CF);
394 return X86EMUL_CONTINUE;
395 }
396
397 /*
398 * XXX: inoutclob user must know where the argument is being expanded.
399 * Using asm goto would allow us to remove _fault.
400 */
401 #define asm_safe(insn, inoutclob...) \
402 ({ \
403 int _fault = 0; \
404 \
405 asm volatile("1:" insn "\n" \
406 "2:\n" \
407 _ASM_EXTABLE_TYPE_REG(1b, 2b, EX_TYPE_ONE_REG, %[_fault]) \
408 : [_fault] "+r"(_fault) inoutclob ); \
409 \
410 _fault ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; \
411 })
412
emulator_check_intercept(struct x86_emulate_ctxt * ctxt,enum x86_intercept intercept,enum x86_intercept_stage stage)413 static int emulator_check_intercept(struct x86_emulate_ctxt *ctxt,
414 enum x86_intercept intercept,
415 enum x86_intercept_stage stage)
416 {
417 struct x86_instruction_info info = {
418 .intercept = intercept,
419 .rep_prefix = ctxt->rep_prefix,
420 .modrm_mod = ctxt->modrm_mod,
421 .modrm_reg = ctxt->modrm_reg,
422 .modrm_rm = ctxt->modrm_rm,
423 .src_val = ctxt->src.val64,
424 .dst_val = ctxt->dst.val64,
425 .src_bytes = ctxt->src.bytes,
426 .dst_bytes = ctxt->dst.bytes,
427 .src_type = ctxt->src.type,
428 .dst_type = ctxt->dst.type,
429 .ad_bytes = ctxt->ad_bytes,
430 .rip = ctxt->eip,
431 .next_rip = ctxt->_eip,
432 };
433
434 return ctxt->ops->intercept(ctxt, &info, stage);
435 }
436
assign_masked(ulong * dest,ulong src,ulong mask)437 static void assign_masked(ulong *dest, ulong src, ulong mask)
438 {
439 *dest = (*dest & ~mask) | (src & mask);
440 }
441
assign_register(unsigned long * reg,u64 val,int bytes)442 static void assign_register(unsigned long *reg, u64 val, int bytes)
443 {
444 /* The 4-byte case *is* correct: in 64-bit mode we zero-extend. */
445 switch (bytes) {
446 case 1:
447 *(u8 *)reg = (u8)val;
448 break;
449 case 2:
450 *(u16 *)reg = (u16)val;
451 break;
452 case 4:
453 *reg = (u32)val;
454 break; /* 64b: zero-extend */
455 case 8:
456 *reg = val;
457 break;
458 }
459 }
460
ad_mask(struct x86_emulate_ctxt * ctxt)461 static inline unsigned long ad_mask(struct x86_emulate_ctxt *ctxt)
462 {
463 return (1UL << (ctxt->ad_bytes << 3)) - 1;
464 }
465
stack_mask(struct x86_emulate_ctxt * ctxt)466 static ulong stack_mask(struct x86_emulate_ctxt *ctxt)
467 {
468 u16 sel;
469 struct desc_struct ss;
470
471 if (ctxt->mode == X86EMUL_MODE_PROT64)
472 return ~0UL;
473 ctxt->ops->get_segment(ctxt, &sel, &ss, NULL, VCPU_SREG_SS);
474 return ~0U >> ((ss.d ^ 1) * 16); /* d=0: 0xffff; d=1: 0xffffffff */
475 }
476
stack_size(struct x86_emulate_ctxt * ctxt)477 static int stack_size(struct x86_emulate_ctxt *ctxt)
478 {
479 return (__fls(stack_mask(ctxt)) + 1) >> 3;
480 }
481
482 /* Access/update address held in a register, based on addressing mode. */
483 static inline unsigned long
address_mask(struct x86_emulate_ctxt * ctxt,unsigned long reg)484 address_mask(struct x86_emulate_ctxt *ctxt, unsigned long reg)
485 {
486 if (ctxt->ad_bytes == sizeof(unsigned long))
487 return reg;
488 else
489 return reg & ad_mask(ctxt);
490 }
491
492 static inline unsigned long
register_address(struct x86_emulate_ctxt * ctxt,int reg)493 register_address(struct x86_emulate_ctxt *ctxt, int reg)
494 {
495 return address_mask(ctxt, reg_read(ctxt, reg));
496 }
497
masked_increment(ulong * reg,ulong mask,int inc)498 static void masked_increment(ulong *reg, ulong mask, int inc)
499 {
500 assign_masked(reg, *reg + inc, mask);
501 }
502
503 static inline void
register_address_increment(struct x86_emulate_ctxt * ctxt,int reg,int inc)504 register_address_increment(struct x86_emulate_ctxt *ctxt, int reg, int inc)
505 {
506 ulong *preg = reg_rmw(ctxt, reg);
507
508 assign_register(preg, *preg + inc, ctxt->ad_bytes);
509 }
510
rsp_increment(struct x86_emulate_ctxt * ctxt,int inc)511 static void rsp_increment(struct x86_emulate_ctxt *ctxt, int inc)
512 {
513 masked_increment(reg_rmw(ctxt, VCPU_REGS_RSP), stack_mask(ctxt), inc);
514 }
515
desc_limit_scaled(struct desc_struct * desc)516 static u32 desc_limit_scaled(struct desc_struct *desc)
517 {
518 u32 limit = get_desc_limit(desc);
519
520 return desc->g ? (limit << 12) | 0xfff : limit;
521 }
522
seg_base(struct x86_emulate_ctxt * ctxt,int seg)523 static unsigned long seg_base(struct x86_emulate_ctxt *ctxt, int seg)
524 {
525 if (ctxt->mode == X86EMUL_MODE_PROT64 && seg < VCPU_SREG_FS)
526 return 0;
527
528 return ctxt->ops->get_cached_segment_base(ctxt, seg);
529 }
530
emulate_exception(struct x86_emulate_ctxt * ctxt,int vec,u32 error,bool valid)531 static int emulate_exception(struct x86_emulate_ctxt *ctxt, int vec,
532 u32 error, bool valid)
533 {
534 if (KVM_EMULATOR_BUG_ON(vec > 0x1f, ctxt))
535 return X86EMUL_UNHANDLEABLE;
536
537 ctxt->exception.vector = vec;
538 ctxt->exception.error_code = error;
539 ctxt->exception.error_code_valid = valid;
540 return X86EMUL_PROPAGATE_FAULT;
541 }
542
emulate_db(struct x86_emulate_ctxt * ctxt)543 static int emulate_db(struct x86_emulate_ctxt *ctxt)
544 {
545 return emulate_exception(ctxt, DB_VECTOR, 0, false);
546 }
547
emulate_gp(struct x86_emulate_ctxt * ctxt,int err)548 static int emulate_gp(struct x86_emulate_ctxt *ctxt, int err)
549 {
550 return emulate_exception(ctxt, GP_VECTOR, err, true);
551 }
552
emulate_ss(struct x86_emulate_ctxt * ctxt,int err)553 static int emulate_ss(struct x86_emulate_ctxt *ctxt, int err)
554 {
555 return emulate_exception(ctxt, SS_VECTOR, err, true);
556 }
557
emulate_ud(struct x86_emulate_ctxt * ctxt)558 static int emulate_ud(struct x86_emulate_ctxt *ctxt)
559 {
560 return emulate_exception(ctxt, UD_VECTOR, 0, false);
561 }
562
emulate_ts(struct x86_emulate_ctxt * ctxt,int err)563 static int emulate_ts(struct x86_emulate_ctxt *ctxt, int err)
564 {
565 return emulate_exception(ctxt, TS_VECTOR, err, true);
566 }
567
emulate_de(struct x86_emulate_ctxt * ctxt)568 static int emulate_de(struct x86_emulate_ctxt *ctxt)
569 {
570 return emulate_exception(ctxt, DE_VECTOR, 0, false);
571 }
572
emulate_nm(struct x86_emulate_ctxt * ctxt)573 static int emulate_nm(struct x86_emulate_ctxt *ctxt)
574 {
575 return emulate_exception(ctxt, NM_VECTOR, 0, false);
576 }
577
get_segment_selector(struct x86_emulate_ctxt * ctxt,unsigned seg)578 static u16 get_segment_selector(struct x86_emulate_ctxt *ctxt, unsigned seg)
579 {
580 u16 selector;
581 struct desc_struct desc;
582
583 ctxt->ops->get_segment(ctxt, &selector, &desc, NULL, seg);
584 return selector;
585 }
586
set_segment_selector(struct x86_emulate_ctxt * ctxt,u16 selector,unsigned seg)587 static void set_segment_selector(struct x86_emulate_ctxt *ctxt, u16 selector,
588 unsigned seg)
589 {
590 u16 dummy;
591 u32 base3;
592 struct desc_struct desc;
593
594 ctxt->ops->get_segment(ctxt, &dummy, &desc, &base3, seg);
595 ctxt->ops->set_segment(ctxt, selector, &desc, base3, seg);
596 }
597
ctxt_virt_addr_bits(struct x86_emulate_ctxt * ctxt)598 static inline u8 ctxt_virt_addr_bits(struct x86_emulate_ctxt *ctxt)
599 {
600 return (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_LA57) ? 57 : 48;
601 }
602
emul_is_noncanonical_address(u64 la,struct x86_emulate_ctxt * ctxt,unsigned int flags)603 static inline bool emul_is_noncanonical_address(u64 la,
604 struct x86_emulate_ctxt *ctxt,
605 unsigned int flags)
606 {
607 return !ctxt->ops->is_canonical_addr(ctxt, la, flags);
608 }
609
610 /*
611 * x86 defines three classes of vector instructions: explicitly
612 * aligned, explicitly unaligned, and the rest, which change behaviour
613 * depending on whether they're AVX encoded or not.
614 *
615 * Also included is CMPXCHG16B which is not a vector instruction, yet it is
616 * subject to the same check. FXSAVE and FXRSTOR are checked here too as their
617 * 512 bytes of data must be aligned to a 16 byte boundary.
618 */
insn_alignment(struct x86_emulate_ctxt * ctxt,unsigned size)619 static unsigned insn_alignment(struct x86_emulate_ctxt *ctxt, unsigned size)
620 {
621 u64 alignment = ctxt->d & AlignMask;
622
623 if (likely(size < 16))
624 return 1;
625
626 switch (alignment) {
627 case Unaligned:
628 return 1;
629 case Aligned16:
630 return 16;
631 case Aligned:
632 default:
633 return size;
634 }
635 }
636
__linearize(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,unsigned * max_size,unsigned size,enum x86emul_mode mode,ulong * linear,unsigned int flags)637 static __always_inline int __linearize(struct x86_emulate_ctxt *ctxt,
638 struct segmented_address addr,
639 unsigned *max_size, unsigned size,
640 enum x86emul_mode mode, ulong *linear,
641 unsigned int flags)
642 {
643 struct desc_struct desc;
644 bool usable;
645 ulong la;
646 u32 lim;
647 u16 sel;
648 u8 va_bits;
649
650 la = seg_base(ctxt, addr.seg) + addr.ea;
651 *max_size = 0;
652 switch (mode) {
653 case X86EMUL_MODE_PROT64:
654 *linear = la = ctxt->ops->get_untagged_addr(ctxt, la, flags);
655 va_bits = ctxt_virt_addr_bits(ctxt);
656 if (!__is_canonical_address(la, va_bits))
657 goto bad;
658
659 *max_size = min_t(u64, ~0u, (1ull << va_bits) - la);
660 if (size > *max_size)
661 goto bad;
662 break;
663 default:
664 *linear = la = (u32)la;
665 usable = ctxt->ops->get_segment(ctxt, &sel, &desc, NULL,
666 addr.seg);
667 if (!usable)
668 goto bad;
669 /* code segment in protected mode or read-only data segment */
670 if ((((ctxt->mode != X86EMUL_MODE_REAL) && (desc.type & 8)) || !(desc.type & 2)) &&
671 (flags & X86EMUL_F_WRITE))
672 goto bad;
673 /* unreadable code segment */
674 if (!(flags & X86EMUL_F_FETCH) && (desc.type & 8) && !(desc.type & 2))
675 goto bad;
676 lim = desc_limit_scaled(&desc);
677 if (!(desc.type & 8) && (desc.type & 4)) {
678 /* expand-down segment */
679 if (addr.ea <= lim)
680 goto bad;
681 lim = desc.d ? 0xffffffff : 0xffff;
682 }
683 if (addr.ea > lim)
684 goto bad;
685 if (lim == 0xffffffff)
686 *max_size = ~0u;
687 else {
688 *max_size = (u64)lim + 1 - addr.ea;
689 if (size > *max_size)
690 goto bad;
691 }
692 break;
693 }
694 if (la & (insn_alignment(ctxt, size) - 1))
695 return emulate_gp(ctxt, 0);
696 return X86EMUL_CONTINUE;
697 bad:
698 if (addr.seg == VCPU_SREG_SS)
699 return emulate_ss(ctxt, 0);
700 else
701 return emulate_gp(ctxt, 0);
702 }
703
linearize(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,unsigned size,bool write,ulong * linear)704 static int linearize(struct x86_emulate_ctxt *ctxt,
705 struct segmented_address addr,
706 unsigned size, bool write,
707 ulong *linear)
708 {
709 unsigned max_size;
710 return __linearize(ctxt, addr, &max_size, size, ctxt->mode, linear,
711 write ? X86EMUL_F_WRITE : 0);
712 }
713
assign_eip(struct x86_emulate_ctxt * ctxt,ulong dst)714 static inline int assign_eip(struct x86_emulate_ctxt *ctxt, ulong dst)
715 {
716 ulong linear;
717 int rc;
718 unsigned max_size;
719 struct segmented_address addr = { .seg = VCPU_SREG_CS,
720 .ea = dst };
721
722 if (ctxt->op_bytes != sizeof(unsigned long))
723 addr.ea = dst & ((1UL << (ctxt->op_bytes << 3)) - 1);
724 rc = __linearize(ctxt, addr, &max_size, 1, ctxt->mode, &linear,
725 X86EMUL_F_FETCH);
726 if (rc == X86EMUL_CONTINUE)
727 ctxt->_eip = addr.ea;
728 return rc;
729 }
730
emulator_recalc_and_set_mode(struct x86_emulate_ctxt * ctxt)731 static inline int emulator_recalc_and_set_mode(struct x86_emulate_ctxt *ctxt)
732 {
733 u64 efer;
734 struct desc_struct cs;
735 u16 selector;
736 u32 base3;
737
738 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
739
740 if (!(ctxt->ops->get_cr(ctxt, 0) & X86_CR0_PE)) {
741 /* Real mode. cpu must not have long mode active */
742 if (efer & EFER_LMA)
743 return X86EMUL_UNHANDLEABLE;
744 ctxt->mode = X86EMUL_MODE_REAL;
745 return X86EMUL_CONTINUE;
746 }
747
748 if (ctxt->eflags & X86_EFLAGS_VM) {
749 /* Protected/VM86 mode. cpu must not have long mode active */
750 if (efer & EFER_LMA)
751 return X86EMUL_UNHANDLEABLE;
752 ctxt->mode = X86EMUL_MODE_VM86;
753 return X86EMUL_CONTINUE;
754 }
755
756 if (!ctxt->ops->get_segment(ctxt, &selector, &cs, &base3, VCPU_SREG_CS))
757 return X86EMUL_UNHANDLEABLE;
758
759 if (efer & EFER_LMA) {
760 if (cs.l) {
761 /* Proper long mode */
762 ctxt->mode = X86EMUL_MODE_PROT64;
763 } else if (cs.d) {
764 /* 32 bit compatibility mode*/
765 ctxt->mode = X86EMUL_MODE_PROT32;
766 } else {
767 ctxt->mode = X86EMUL_MODE_PROT16;
768 }
769 } else {
770 /* Legacy 32 bit / 16 bit mode */
771 ctxt->mode = cs.d ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
772 }
773
774 return X86EMUL_CONTINUE;
775 }
776
assign_eip_near(struct x86_emulate_ctxt * ctxt,ulong dst)777 static inline int assign_eip_near(struct x86_emulate_ctxt *ctxt, ulong dst)
778 {
779 return assign_eip(ctxt, dst);
780 }
781
assign_eip_far(struct x86_emulate_ctxt * ctxt,ulong dst)782 static int assign_eip_far(struct x86_emulate_ctxt *ctxt, ulong dst)
783 {
784 int rc = emulator_recalc_and_set_mode(ctxt);
785
786 if (rc != X86EMUL_CONTINUE)
787 return rc;
788
789 return assign_eip(ctxt, dst);
790 }
791
jmp_rel(struct x86_emulate_ctxt * ctxt,int rel)792 static inline int jmp_rel(struct x86_emulate_ctxt *ctxt, int rel)
793 {
794 return assign_eip_near(ctxt, ctxt->_eip + rel);
795 }
796
linear_read_system(struct x86_emulate_ctxt * ctxt,ulong linear,void * data,unsigned size)797 static int linear_read_system(struct x86_emulate_ctxt *ctxt, ulong linear,
798 void *data, unsigned size)
799 {
800 return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception, true);
801 }
802
linear_write_system(struct x86_emulate_ctxt * ctxt,ulong linear,void * data,unsigned int size)803 static int linear_write_system(struct x86_emulate_ctxt *ctxt,
804 ulong linear, void *data,
805 unsigned int size)
806 {
807 return ctxt->ops->write_std(ctxt, linear, data, size, &ctxt->exception, true);
808 }
809
segmented_read_std(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,void * data,unsigned size)810 static int segmented_read_std(struct x86_emulate_ctxt *ctxt,
811 struct segmented_address addr,
812 void *data,
813 unsigned size)
814 {
815 int rc;
816 ulong linear;
817
818 rc = linearize(ctxt, addr, size, false, &linear);
819 if (rc != X86EMUL_CONTINUE)
820 return rc;
821 return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception, false);
822 }
823
segmented_write_std(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,void * data,unsigned int size)824 static int segmented_write_std(struct x86_emulate_ctxt *ctxt,
825 struct segmented_address addr,
826 void *data,
827 unsigned int size)
828 {
829 int rc;
830 ulong linear;
831
832 rc = linearize(ctxt, addr, size, true, &linear);
833 if (rc != X86EMUL_CONTINUE)
834 return rc;
835 return ctxt->ops->write_std(ctxt, linear, data, size, &ctxt->exception, false);
836 }
837
838 /*
839 * Prefetch the remaining bytes of the instruction without crossing page
840 * boundary if they are not in fetch_cache yet.
841 */
__do_insn_fetch_bytes(struct x86_emulate_ctxt * ctxt,int op_size)842 static int __do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt, int op_size)
843 {
844 int rc;
845 unsigned size, max_size;
846 unsigned long linear;
847 int cur_size = ctxt->fetch.end - ctxt->fetch.data;
848 struct segmented_address addr = { .seg = VCPU_SREG_CS,
849 .ea = ctxt->eip + cur_size };
850
851 /*
852 * We do not know exactly how many bytes will be needed, and
853 * __linearize is expensive, so fetch as much as possible. We
854 * just have to avoid going beyond the 15 byte limit, the end
855 * of the segment, or the end of the page.
856 *
857 * __linearize is called with size 0 so that it does not do any
858 * boundary check itself. Instead, we use max_size to check
859 * against op_size.
860 */
861 rc = __linearize(ctxt, addr, &max_size, 0, ctxt->mode, &linear,
862 X86EMUL_F_FETCH);
863 if (unlikely(rc != X86EMUL_CONTINUE))
864 return rc;
865
866 size = min_t(unsigned, 15UL ^ cur_size, max_size);
867 size = min_t(unsigned, size, PAGE_SIZE - offset_in_page(linear));
868
869 /*
870 * One instruction can only straddle two pages,
871 * and one has been loaded at the beginning of
872 * x86_decode_insn. So, if not enough bytes
873 * still, we must have hit the 15-byte boundary.
874 */
875 if (unlikely(size < op_size))
876 return emulate_gp(ctxt, 0);
877
878 rc = ctxt->ops->fetch(ctxt, linear, ctxt->fetch.end,
879 size, &ctxt->exception);
880 if (unlikely(rc != X86EMUL_CONTINUE))
881 return rc;
882 ctxt->fetch.end += size;
883 return X86EMUL_CONTINUE;
884 }
885
do_insn_fetch_bytes(struct x86_emulate_ctxt * ctxt,unsigned size)886 static __always_inline int do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt,
887 unsigned size)
888 {
889 unsigned done_size = ctxt->fetch.end - ctxt->fetch.ptr;
890
891 if (unlikely(done_size < size))
892 return __do_insn_fetch_bytes(ctxt, size - done_size);
893 else
894 return X86EMUL_CONTINUE;
895 }
896
897 /* Fetch next part of the instruction being emulated. */
898 #define insn_fetch(_type, _ctxt) \
899 ({ _type _x; \
900 \
901 rc = do_insn_fetch_bytes(_ctxt, sizeof(_type)); \
902 if (rc != X86EMUL_CONTINUE) \
903 goto done; \
904 ctxt->_eip += sizeof(_type); \
905 memcpy(&_x, ctxt->fetch.ptr, sizeof(_type)); \
906 ctxt->fetch.ptr += sizeof(_type); \
907 _x; \
908 })
909
910 #define insn_fetch_arr(_arr, _size, _ctxt) \
911 ({ \
912 rc = do_insn_fetch_bytes(_ctxt, _size); \
913 if (rc != X86EMUL_CONTINUE) \
914 goto done; \
915 ctxt->_eip += (_size); \
916 memcpy(_arr, ctxt->fetch.ptr, _size); \
917 ctxt->fetch.ptr += (_size); \
918 })
919
920 /*
921 * Given the 'reg' portion of a ModRM byte, and a register block, return a
922 * pointer into the block that addresses the relevant register.
923 * @highbyte_regs specifies whether to decode AH,CH,DH,BH.
924 */
decode_register(struct x86_emulate_ctxt * ctxt,u8 modrm_reg,int byteop)925 static void *decode_register(struct x86_emulate_ctxt *ctxt, u8 modrm_reg,
926 int byteop)
927 {
928 void *p;
929 int highbyte_regs = (ctxt->rex_prefix == REX_NONE) && byteop;
930
931 if (highbyte_regs && modrm_reg >= 4 && modrm_reg < 8)
932 p = (unsigned char *)reg_rmw(ctxt, modrm_reg & 3) + 1;
933 else
934 p = reg_rmw(ctxt, modrm_reg);
935 return p;
936 }
937
read_descriptor(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,u16 * size,unsigned long * address,int op_bytes)938 static int read_descriptor(struct x86_emulate_ctxt *ctxt,
939 struct segmented_address addr,
940 u16 *size, unsigned long *address, int op_bytes)
941 {
942 int rc;
943
944 if (op_bytes == 2)
945 op_bytes = 3;
946 *address = 0;
947 rc = segmented_read_std(ctxt, addr, size, 2);
948 if (rc != X86EMUL_CONTINUE)
949 return rc;
950 addr.ea += 2;
951 rc = segmented_read_std(ctxt, addr, address, op_bytes);
952 return rc;
953 }
954
955 EM_ASM_2(add);
956 EM_ASM_2(or);
957 EM_ASM_2(adc);
958 EM_ASM_2(sbb);
959 EM_ASM_2(and);
960 EM_ASM_2(sub);
961 EM_ASM_2(xor);
962 EM_ASM_2(cmp);
963 EM_ASM_2(test);
964 EM_ASM_2(xadd);
965
966 EM_ASM_1SRC2(mul, mul_ex);
967 EM_ASM_1SRC2(imul, imul_ex);
968 EM_ASM_1SRC2EX(div, div_ex);
969 EM_ASM_1SRC2EX(idiv, idiv_ex);
970
971 EM_ASM_3WCL(shld);
972 EM_ASM_3WCL(shrd);
973
974 EM_ASM_2W(imul);
975
976 EM_ASM_1(not);
977 EM_ASM_1(neg);
978 EM_ASM_1(inc);
979 EM_ASM_1(dec);
980
981 EM_ASM_2CL(rol);
982 EM_ASM_2CL(ror);
983 EM_ASM_2CL(rcl);
984 EM_ASM_2CL(rcr);
985 EM_ASM_2CL(shl);
986 EM_ASM_2CL(shr);
987 EM_ASM_2CL(sar);
988
989 EM_ASM_2W(bsf);
990 EM_ASM_2W(bsr);
991 EM_ASM_2W(bt);
992 EM_ASM_2W(bts);
993 EM_ASM_2W(btr);
994 EM_ASM_2W(btc);
995
996 EM_ASM_2R(cmp, cmp_r);
997
em_bsf_c(struct x86_emulate_ctxt * ctxt)998 static int em_bsf_c(struct x86_emulate_ctxt *ctxt)
999 {
1000 /* If src is zero, do not writeback, but update flags */
1001 if (ctxt->src.val == 0)
1002 ctxt->dst.type = OP_NONE;
1003 return em_bsf(ctxt);
1004 }
1005
em_bsr_c(struct x86_emulate_ctxt * ctxt)1006 static int em_bsr_c(struct x86_emulate_ctxt *ctxt)
1007 {
1008 /* If src is zero, do not writeback, but update flags */
1009 if (ctxt->src.val == 0)
1010 ctxt->dst.type = OP_NONE;
1011 return em_bsr(ctxt);
1012 }
1013
test_cc(unsigned int condition,unsigned long flags)1014 static __always_inline u8 test_cc(unsigned int condition, unsigned long flags)
1015 {
1016 return __emulate_cc(flags, condition & 0xf);
1017 }
1018
fetch_register_operand(struct operand * op)1019 static void fetch_register_operand(struct operand *op)
1020 {
1021 switch (op->bytes) {
1022 case 1:
1023 op->val = *(u8 *)op->addr.reg;
1024 break;
1025 case 2:
1026 op->val = *(u16 *)op->addr.reg;
1027 break;
1028 case 4:
1029 op->val = *(u32 *)op->addr.reg;
1030 break;
1031 case 8:
1032 op->val = *(u64 *)op->addr.reg;
1033 break;
1034 }
1035 op->orig_val = op->val;
1036 }
1037
em_fninit(struct x86_emulate_ctxt * ctxt)1038 static int em_fninit(struct x86_emulate_ctxt *ctxt)
1039 {
1040 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
1041 return emulate_nm(ctxt);
1042
1043 kvm_fpu_get();
1044 asm volatile("fninit");
1045 kvm_fpu_put();
1046 return X86EMUL_CONTINUE;
1047 }
1048
em_fnstcw(struct x86_emulate_ctxt * ctxt)1049 static int em_fnstcw(struct x86_emulate_ctxt *ctxt)
1050 {
1051 u16 fcw;
1052
1053 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
1054 return emulate_nm(ctxt);
1055
1056 kvm_fpu_get();
1057 asm volatile("fnstcw %0": "+m"(fcw));
1058 kvm_fpu_put();
1059
1060 ctxt->dst.val = fcw;
1061
1062 return X86EMUL_CONTINUE;
1063 }
1064
em_fnstsw(struct x86_emulate_ctxt * ctxt)1065 static int em_fnstsw(struct x86_emulate_ctxt *ctxt)
1066 {
1067 u16 fsw;
1068
1069 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
1070 return emulate_nm(ctxt);
1071
1072 kvm_fpu_get();
1073 asm volatile("fnstsw %0": "+m"(fsw));
1074 kvm_fpu_put();
1075
1076 ctxt->dst.val = fsw;
1077
1078 return X86EMUL_CONTINUE;
1079 }
1080
__decode_register_operand(struct x86_emulate_ctxt * ctxt,struct operand * op,int reg)1081 static void __decode_register_operand(struct x86_emulate_ctxt *ctxt,
1082 struct operand *op, int reg)
1083 {
1084 if ((ctxt->d & Avx) && ctxt->op_bytes == 32) {
1085 op->type = OP_YMM;
1086 op->bytes = 32;
1087 op->addr.xmm = reg;
1088 kvm_read_avx_reg(reg, &op->vec_val2);
1089 return;
1090 }
1091 if (ctxt->d & (Avx|Sse)) {
1092 op->type = OP_XMM;
1093 op->bytes = 16;
1094 op->addr.xmm = reg;
1095 kvm_read_sse_reg(reg, &op->vec_val);
1096 return;
1097 }
1098 if (ctxt->d & Mmx) {
1099 reg &= 7;
1100 op->type = OP_MM;
1101 op->bytes = 8;
1102 op->addr.mm = reg;
1103 return;
1104 }
1105
1106 op->type = OP_REG;
1107 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
1108 op->addr.reg = decode_register(ctxt, reg, ctxt->d & ByteOp);
1109 fetch_register_operand(op);
1110 }
1111
decode_register_operand(struct x86_emulate_ctxt * ctxt,struct operand * op)1112 static void decode_register_operand(struct x86_emulate_ctxt *ctxt,
1113 struct operand *op)
1114 {
1115 unsigned int reg;
1116
1117 if (ctxt->d & ModRM)
1118 reg = ctxt->modrm_reg;
1119 else
1120 reg = (ctxt->b & 7) | (ctxt->rex_bits & REX_B ? 8 : 0);
1121
1122 __decode_register_operand(ctxt, op, reg);
1123 }
1124
adjust_modrm_seg(struct x86_emulate_ctxt * ctxt,int base_reg)1125 static void adjust_modrm_seg(struct x86_emulate_ctxt *ctxt, int base_reg)
1126 {
1127 if (base_reg == VCPU_REGS_RSP || base_reg == VCPU_REGS_RBP)
1128 ctxt->modrm_seg = VCPU_SREG_SS;
1129 }
1130
decode_modrm(struct x86_emulate_ctxt * ctxt,struct operand * op)1131 static int decode_modrm(struct x86_emulate_ctxt *ctxt,
1132 struct operand *op)
1133 {
1134 u8 sib;
1135 int index_reg, base_reg, scale;
1136 int rc = X86EMUL_CONTINUE;
1137 ulong modrm_ea = 0;
1138
1139 ctxt->modrm_reg = (ctxt->rex_bits & REX_R ? 8 : 0);
1140 index_reg = (ctxt->rex_bits & REX_X ? 8 : 0);
1141 base_reg = (ctxt->rex_bits & REX_B ? 8 : 0);
1142
1143 ctxt->modrm_mod = (ctxt->modrm & 0xc0) >> 6;
1144 ctxt->modrm_reg |= (ctxt->modrm & 0x38) >> 3;
1145 ctxt->modrm_rm = base_reg | (ctxt->modrm & 0x07);
1146 ctxt->modrm_seg = VCPU_SREG_DS;
1147
1148 if (ctxt->modrm_mod == 3 || (ctxt->d & NoMod)) {
1149 __decode_register_operand(ctxt, op, ctxt->modrm_rm);
1150 return rc;
1151 }
1152
1153 op->type = OP_MEM;
1154
1155 if (ctxt->ad_bytes == 2) {
1156 unsigned bx = reg_read(ctxt, VCPU_REGS_RBX);
1157 unsigned bp = reg_read(ctxt, VCPU_REGS_RBP);
1158 unsigned si = reg_read(ctxt, VCPU_REGS_RSI);
1159 unsigned di = reg_read(ctxt, VCPU_REGS_RDI);
1160
1161 /* 16-bit ModR/M decode. */
1162 switch (ctxt->modrm_mod) {
1163 case 0:
1164 if (ctxt->modrm_rm == 6)
1165 modrm_ea += insn_fetch(u16, ctxt);
1166 break;
1167 case 1:
1168 modrm_ea += insn_fetch(s8, ctxt);
1169 break;
1170 case 2:
1171 modrm_ea += insn_fetch(u16, ctxt);
1172 break;
1173 }
1174 switch (ctxt->modrm_rm) {
1175 case 0:
1176 modrm_ea += bx + si;
1177 break;
1178 case 1:
1179 modrm_ea += bx + di;
1180 break;
1181 case 2:
1182 modrm_ea += bp + si;
1183 break;
1184 case 3:
1185 modrm_ea += bp + di;
1186 break;
1187 case 4:
1188 modrm_ea += si;
1189 break;
1190 case 5:
1191 modrm_ea += di;
1192 break;
1193 case 6:
1194 if (ctxt->modrm_mod != 0)
1195 modrm_ea += bp;
1196 break;
1197 case 7:
1198 modrm_ea += bx;
1199 break;
1200 }
1201 if (ctxt->modrm_rm == 2 || ctxt->modrm_rm == 3 ||
1202 (ctxt->modrm_rm == 6 && ctxt->modrm_mod != 0))
1203 ctxt->modrm_seg = VCPU_SREG_SS;
1204 modrm_ea = (u16)modrm_ea;
1205 } else {
1206 /* 32/64-bit ModR/M decode. */
1207 if ((ctxt->modrm_rm & 7) == 4) {
1208 sib = insn_fetch(u8, ctxt);
1209 index_reg |= (sib >> 3) & 7;
1210 base_reg |= sib & 7;
1211 scale = sib >> 6;
1212
1213 if ((base_reg & 7) == 5 && ctxt->modrm_mod == 0)
1214 modrm_ea += insn_fetch(s32, ctxt);
1215 else {
1216 modrm_ea += reg_read(ctxt, base_reg);
1217 adjust_modrm_seg(ctxt, base_reg);
1218 /* Increment ESP on POP [ESP] */
1219 if ((ctxt->d & IncSP) &&
1220 base_reg == VCPU_REGS_RSP)
1221 modrm_ea += ctxt->op_bytes;
1222 }
1223 if (index_reg != 4)
1224 modrm_ea += reg_read(ctxt, index_reg) << scale;
1225 } else if ((ctxt->modrm_rm & 7) == 5 && ctxt->modrm_mod == 0) {
1226 modrm_ea += insn_fetch(s32, ctxt);
1227 if (ctxt->mode == X86EMUL_MODE_PROT64)
1228 ctxt->rip_relative = 1;
1229 } else {
1230 base_reg = ctxt->modrm_rm;
1231 modrm_ea += reg_read(ctxt, base_reg);
1232 adjust_modrm_seg(ctxt, base_reg);
1233 }
1234 switch (ctxt->modrm_mod) {
1235 case 1:
1236 modrm_ea += insn_fetch(s8, ctxt);
1237 break;
1238 case 2:
1239 modrm_ea += insn_fetch(s32, ctxt);
1240 break;
1241 }
1242 }
1243 op->addr.mem.ea = modrm_ea;
1244 if (ctxt->ad_bytes != 8)
1245 ctxt->memop.addr.mem.ea = (u32)ctxt->memop.addr.mem.ea;
1246
1247 done:
1248 return rc;
1249 }
1250
decode_abs(struct x86_emulate_ctxt * ctxt,struct operand * op)1251 static int decode_abs(struct x86_emulate_ctxt *ctxt,
1252 struct operand *op)
1253 {
1254 int rc = X86EMUL_CONTINUE;
1255
1256 op->type = OP_MEM;
1257 switch (ctxt->ad_bytes) {
1258 case 2:
1259 op->addr.mem.ea = insn_fetch(u16, ctxt);
1260 break;
1261 case 4:
1262 op->addr.mem.ea = insn_fetch(u32, ctxt);
1263 break;
1264 case 8:
1265 op->addr.mem.ea = insn_fetch(u64, ctxt);
1266 break;
1267 }
1268 done:
1269 return rc;
1270 }
1271
fetch_bit_operand(struct x86_emulate_ctxt * ctxt)1272 static void fetch_bit_operand(struct x86_emulate_ctxt *ctxt)
1273 {
1274 long sv = 0, mask;
1275
1276 if (ctxt->dst.type == OP_MEM && ctxt->src.type == OP_REG) {
1277 mask = ~((long)ctxt->dst.bytes * 8 - 1);
1278
1279 if (ctxt->src.bytes == 2)
1280 sv = (s16)ctxt->src.val & (s16)mask;
1281 else if (ctxt->src.bytes == 4)
1282 sv = (s32)ctxt->src.val & (s32)mask;
1283 else
1284 sv = (s64)ctxt->src.val & (s64)mask;
1285
1286 ctxt->dst.addr.mem.ea = address_mask(ctxt,
1287 ctxt->dst.addr.mem.ea + (sv >> 3));
1288 }
1289
1290 /* only subword offset */
1291 ctxt->src.val &= (ctxt->dst.bytes << 3) - 1;
1292 }
1293
read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * dest,unsigned size)1294 static int read_emulated(struct x86_emulate_ctxt *ctxt,
1295 unsigned long addr, void *dest, unsigned size)
1296 {
1297 int rc;
1298 struct read_cache *mc = &ctxt->mem_read;
1299
1300 if (mc->pos < mc->end)
1301 goto read_cached;
1302
1303 if (KVM_EMULATOR_BUG_ON((mc->end + size) >= sizeof(mc->data), ctxt))
1304 return X86EMUL_UNHANDLEABLE;
1305
1306 rc = ctxt->ops->read_emulated(ctxt, addr, mc->data + mc->end, size,
1307 &ctxt->exception);
1308 if (rc != X86EMUL_CONTINUE)
1309 return rc;
1310
1311 mc->end += size;
1312
1313 read_cached:
1314 memcpy(dest, mc->data + mc->pos, size);
1315 mc->pos += size;
1316 return X86EMUL_CONTINUE;
1317 }
1318
segmented_read(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,void * data,unsigned size)1319 static int segmented_read(struct x86_emulate_ctxt *ctxt,
1320 struct segmented_address addr,
1321 void *data,
1322 unsigned size)
1323 {
1324 int rc;
1325 ulong linear;
1326
1327 rc = linearize(ctxt, addr, size, false, &linear);
1328 if (rc != X86EMUL_CONTINUE)
1329 return rc;
1330 return read_emulated(ctxt, linear, data, size);
1331 }
1332
segmented_write(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,const void * data,unsigned size)1333 static int segmented_write(struct x86_emulate_ctxt *ctxt,
1334 struct segmented_address addr,
1335 const void *data,
1336 unsigned size)
1337 {
1338 int rc;
1339 ulong linear;
1340
1341 rc = linearize(ctxt, addr, size, true, &linear);
1342 if (rc != X86EMUL_CONTINUE)
1343 return rc;
1344 return ctxt->ops->write_emulated(ctxt, linear, data, size,
1345 &ctxt->exception);
1346 }
1347
segmented_cmpxchg(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,const void * orig_data,const void * data,unsigned size)1348 static int segmented_cmpxchg(struct x86_emulate_ctxt *ctxt,
1349 struct segmented_address addr,
1350 const void *orig_data, const void *data,
1351 unsigned size)
1352 {
1353 int rc;
1354 ulong linear;
1355
1356 rc = linearize(ctxt, addr, size, true, &linear);
1357 if (rc != X86EMUL_CONTINUE)
1358 return rc;
1359 return ctxt->ops->cmpxchg_emulated(ctxt, linear, orig_data, data,
1360 size, &ctxt->exception);
1361 }
1362
pio_in_emulated(struct x86_emulate_ctxt * ctxt,unsigned int size,unsigned short port,void * dest)1363 static int pio_in_emulated(struct x86_emulate_ctxt *ctxt,
1364 unsigned int size, unsigned short port,
1365 void *dest)
1366 {
1367 struct read_cache *rc = &ctxt->io_read;
1368
1369 if (rc->pos == rc->end) { /* refill pio read ahead */
1370 unsigned int in_page, n;
1371 unsigned int count = ctxt->rep_prefix ?
1372 address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) : 1;
1373 in_page = (ctxt->eflags & X86_EFLAGS_DF) ?
1374 offset_in_page(reg_read(ctxt, VCPU_REGS_RDI)) :
1375 PAGE_SIZE - offset_in_page(reg_read(ctxt, VCPU_REGS_RDI));
1376 n = min3(in_page, (unsigned int)sizeof(rc->data) / size, count);
1377 if (n == 0)
1378 n = 1;
1379 rc->pos = rc->end = 0;
1380 if (!ctxt->ops->pio_in_emulated(ctxt, size, port, rc->data, n))
1381 return 0;
1382 rc->end = n * size;
1383 }
1384
1385 if (ctxt->rep_prefix && (ctxt->d & String) &&
1386 !(ctxt->eflags & X86_EFLAGS_DF)) {
1387 ctxt->dst.data = rc->data + rc->pos;
1388 ctxt->dst.type = OP_MEM_STR;
1389 ctxt->dst.count = (rc->end - rc->pos) / size;
1390 rc->pos = rc->end;
1391 } else {
1392 memcpy(dest, rc->data + rc->pos, size);
1393 rc->pos += size;
1394 }
1395 return 1;
1396 }
1397
read_interrupt_descriptor(struct x86_emulate_ctxt * ctxt,u16 index,struct desc_struct * desc)1398 static int read_interrupt_descriptor(struct x86_emulate_ctxt *ctxt,
1399 u16 index, struct desc_struct *desc)
1400 {
1401 struct desc_ptr dt;
1402 ulong addr;
1403
1404 ctxt->ops->get_idt(ctxt, &dt);
1405
1406 if (dt.size < index * 8 + 7)
1407 return emulate_gp(ctxt, index << 3 | 0x2);
1408
1409 addr = dt.address + index * 8;
1410 return linear_read_system(ctxt, addr, desc, sizeof(*desc));
1411 }
1412
get_descriptor_table_ptr(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_ptr * dt)1413 static void get_descriptor_table_ptr(struct x86_emulate_ctxt *ctxt,
1414 u16 selector, struct desc_ptr *dt)
1415 {
1416 const struct x86_emulate_ops *ops = ctxt->ops;
1417 u32 base3 = 0;
1418
1419 if (selector & 1 << 2) {
1420 struct desc_struct desc;
1421 u16 sel;
1422
1423 memset(dt, 0, sizeof(*dt));
1424 if (!ops->get_segment(ctxt, &sel, &desc, &base3,
1425 VCPU_SREG_LDTR))
1426 return;
1427
1428 dt->size = desc_limit_scaled(&desc); /* what if limit > 65535? */
1429 dt->address = get_desc_base(&desc) | ((u64)base3 << 32);
1430 } else
1431 ops->get_gdt(ctxt, dt);
1432 }
1433
get_descriptor_ptr(struct x86_emulate_ctxt * ctxt,u16 selector,ulong * desc_addr_p)1434 static int get_descriptor_ptr(struct x86_emulate_ctxt *ctxt,
1435 u16 selector, ulong *desc_addr_p)
1436 {
1437 struct desc_ptr dt;
1438 u16 index = selector >> 3;
1439 ulong addr;
1440
1441 get_descriptor_table_ptr(ctxt, selector, &dt);
1442
1443 if (dt.size < index * 8 + 7)
1444 return emulate_gp(ctxt, selector & 0xfffc);
1445
1446 addr = dt.address + index * 8;
1447
1448 #ifdef CONFIG_X86_64
1449 if (addr >> 32 != 0) {
1450 u64 efer = 0;
1451
1452 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
1453 if (!(efer & EFER_LMA))
1454 addr &= (u32)-1;
1455 }
1456 #endif
1457
1458 *desc_addr_p = addr;
1459 return X86EMUL_CONTINUE;
1460 }
1461
1462 /* allowed just for 8 bytes segments */
read_segment_descriptor(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,ulong * desc_addr_p)1463 static int read_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1464 u16 selector, struct desc_struct *desc,
1465 ulong *desc_addr_p)
1466 {
1467 int rc;
1468
1469 rc = get_descriptor_ptr(ctxt, selector, desc_addr_p);
1470 if (rc != X86EMUL_CONTINUE)
1471 return rc;
1472
1473 return linear_read_system(ctxt, *desc_addr_p, desc, sizeof(*desc));
1474 }
1475
1476 /* allowed just for 8 bytes segments */
write_segment_descriptor(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc)1477 static int write_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1478 u16 selector, struct desc_struct *desc)
1479 {
1480 int rc;
1481 ulong addr;
1482
1483 rc = get_descriptor_ptr(ctxt, selector, &addr);
1484 if (rc != X86EMUL_CONTINUE)
1485 return rc;
1486
1487 return linear_write_system(ctxt, addr, desc, sizeof(*desc));
1488 }
1489
emulator_is_ssp_invalid(struct x86_emulate_ctxt * ctxt,u8 cpl)1490 static bool emulator_is_ssp_invalid(struct x86_emulate_ctxt *ctxt, u8 cpl)
1491 {
1492 const u32 MSR_IA32_X_CET = cpl == 3 ? MSR_IA32_U_CET : MSR_IA32_S_CET;
1493 u64 efer = 0, cet = 0, ssp = 0;
1494
1495 if (!(ctxt->ops->get_cr(ctxt, 4) & X86_CR4_CET))
1496 return false;
1497
1498 if (ctxt->ops->get_msr(ctxt, MSR_EFER, &efer))
1499 return true;
1500
1501 /* SSP is guaranteed to be valid if the vCPU was already in 32-bit mode. */
1502 if (!(efer & EFER_LMA))
1503 return false;
1504
1505 if (ctxt->ops->get_msr(ctxt, MSR_IA32_X_CET, &cet))
1506 return true;
1507
1508 if (!(cet & CET_SHSTK_EN))
1509 return false;
1510
1511 if (ctxt->ops->get_msr(ctxt, MSR_KVM_INTERNAL_GUEST_SSP, &ssp))
1512 return true;
1513
1514 /*
1515 * On transfer from 64-bit mode to compatibility mode, SSP[63:32] must
1516 * be 0, i.e. SSP must be a 32-bit value outside of 64-bit mode.
1517 */
1518 return ssp >> 32;
1519 }
1520
__load_segment_descriptor(struct x86_emulate_ctxt * ctxt,u16 selector,int seg,u8 cpl,enum x86_transfer_type transfer,struct desc_struct * desc)1521 static int __load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1522 u16 selector, int seg, u8 cpl,
1523 enum x86_transfer_type transfer,
1524 struct desc_struct *desc)
1525 {
1526 struct desc_struct seg_desc, old_desc;
1527 u8 dpl, rpl;
1528 unsigned err_vec = GP_VECTOR;
1529 u32 err_code = 0;
1530 bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */
1531 ulong desc_addr;
1532 int ret;
1533 u16 dummy;
1534 u32 base3 = 0;
1535
1536 memset(&seg_desc, 0, sizeof(seg_desc));
1537
1538 if (ctxt->mode == X86EMUL_MODE_REAL) {
1539 /* set real mode segment descriptor (keep limit etc. for
1540 * unreal mode) */
1541 ctxt->ops->get_segment(ctxt, &dummy, &seg_desc, NULL, seg);
1542 set_desc_base(&seg_desc, selector << 4);
1543 goto load;
1544 } else if (seg <= VCPU_SREG_GS && ctxt->mode == X86EMUL_MODE_VM86) {
1545 /* VM86 needs a clean new segment descriptor */
1546 set_desc_base(&seg_desc, selector << 4);
1547 set_desc_limit(&seg_desc, 0xffff);
1548 seg_desc.type = 3;
1549 seg_desc.p = 1;
1550 seg_desc.s = 1;
1551 seg_desc.dpl = 3;
1552 goto load;
1553 }
1554
1555 rpl = selector & 3;
1556
1557 /* TR should be in GDT only */
1558 if (seg == VCPU_SREG_TR && (selector & (1 << 2)))
1559 goto exception;
1560
1561 /* NULL selector is not valid for TR, CS and (except for long mode) SS */
1562 if (null_selector) {
1563 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_TR)
1564 goto exception;
1565
1566 if (seg == VCPU_SREG_SS) {
1567 if (ctxt->mode != X86EMUL_MODE_PROT64 || rpl != cpl)
1568 goto exception;
1569
1570 /*
1571 * ctxt->ops->set_segment expects the CPL to be in
1572 * SS.DPL, so fake an expand-up 32-bit data segment.
1573 */
1574 seg_desc.type = 3;
1575 seg_desc.p = 1;
1576 seg_desc.s = 1;
1577 seg_desc.dpl = cpl;
1578 seg_desc.d = 1;
1579 seg_desc.g = 1;
1580 }
1581
1582 /* Skip all following checks */
1583 goto load;
1584 }
1585
1586 ret = read_segment_descriptor(ctxt, selector, &seg_desc, &desc_addr);
1587 if (ret != X86EMUL_CONTINUE)
1588 return ret;
1589
1590 err_code = selector & 0xfffc;
1591 err_vec = (transfer == X86_TRANSFER_TASK_SWITCH) ? TS_VECTOR :
1592 GP_VECTOR;
1593
1594 /* can't load system descriptor into segment selector */
1595 if (seg <= VCPU_SREG_GS && !seg_desc.s) {
1596 if (transfer == X86_TRANSFER_CALL_JMP)
1597 return X86EMUL_UNHANDLEABLE;
1598 goto exception;
1599 }
1600
1601 dpl = seg_desc.dpl;
1602
1603 switch (seg) {
1604 case VCPU_SREG_SS:
1605 /*
1606 * segment is not a writable data segment or segment
1607 * selector's RPL != CPL or DPL != CPL
1608 */
1609 if (rpl != cpl || (seg_desc.type & 0xa) != 0x2 || dpl != cpl)
1610 goto exception;
1611 break;
1612 case VCPU_SREG_CS:
1613 /*
1614 * KVM uses "none" when loading CS as part of emulating Real
1615 * Mode exceptions and IRET (handled above). In all other
1616 * cases, loading CS without a control transfer is a KVM bug.
1617 */
1618 if (WARN_ON_ONCE(transfer == X86_TRANSFER_NONE))
1619 goto exception;
1620
1621 if (!(seg_desc.type & 8))
1622 goto exception;
1623
1624 if (transfer == X86_TRANSFER_RET) {
1625 /* RET can never return to an inner privilege level. */
1626 if (rpl < cpl)
1627 goto exception;
1628 /* Outer-privilege level return is not implemented */
1629 if (rpl > cpl)
1630 return X86EMUL_UNHANDLEABLE;
1631 }
1632 if (transfer == X86_TRANSFER_RET || transfer == X86_TRANSFER_TASK_SWITCH) {
1633 if (seg_desc.type & 4) {
1634 /* conforming */
1635 if (dpl > rpl)
1636 goto exception;
1637 } else {
1638 /* nonconforming */
1639 if (dpl != rpl)
1640 goto exception;
1641 }
1642 } else { /* X86_TRANSFER_CALL_JMP */
1643 if (seg_desc.type & 4) {
1644 /* conforming */
1645 if (dpl > cpl)
1646 goto exception;
1647 } else {
1648 /* nonconforming */
1649 if (rpl > cpl || dpl != cpl)
1650 goto exception;
1651 }
1652 }
1653 /* in long-mode d/b must be clear if l is set */
1654 if (seg_desc.d && seg_desc.l) {
1655 u64 efer = 0;
1656
1657 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
1658 if (efer & EFER_LMA)
1659 goto exception;
1660 }
1661 if (!seg_desc.l && emulator_is_ssp_invalid(ctxt, cpl)) {
1662 err_code = 0;
1663 goto exception;
1664 }
1665
1666 /* CS(RPL) <- CPL */
1667 selector = (selector & 0xfffc) | cpl;
1668 break;
1669 case VCPU_SREG_TR:
1670 if (seg_desc.s || (seg_desc.type != 1 && seg_desc.type != 9))
1671 goto exception;
1672 break;
1673 case VCPU_SREG_LDTR:
1674 if (seg_desc.s || seg_desc.type != 2)
1675 goto exception;
1676 break;
1677 default: /* DS, ES, FS, or GS */
1678 /*
1679 * segment is not a data or readable code segment or
1680 * ((segment is a data or nonconforming code segment)
1681 * and ((RPL > DPL) or (CPL > DPL)))
1682 */
1683 if ((seg_desc.type & 0xa) == 0x8 ||
1684 (((seg_desc.type & 0xc) != 0xc) &&
1685 (rpl > dpl || cpl > dpl)))
1686 goto exception;
1687 break;
1688 }
1689
1690 if (!seg_desc.p) {
1691 err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR;
1692 goto exception;
1693 }
1694
1695 if (seg_desc.s) {
1696 /* mark segment as accessed */
1697 if (!(seg_desc.type & 1)) {
1698 seg_desc.type |= 1;
1699 ret = write_segment_descriptor(ctxt, selector,
1700 &seg_desc);
1701 if (ret != X86EMUL_CONTINUE)
1702 return ret;
1703 }
1704 } else if (ctxt->mode == X86EMUL_MODE_PROT64) {
1705 ret = linear_read_system(ctxt, desc_addr+8, &base3, sizeof(base3));
1706 if (ret != X86EMUL_CONTINUE)
1707 return ret;
1708 if (emul_is_noncanonical_address(get_desc_base(&seg_desc) |
1709 ((u64)base3 << 32), ctxt,
1710 X86EMUL_F_DT_LOAD))
1711 return emulate_gp(ctxt, err_code);
1712 }
1713
1714 if (seg == VCPU_SREG_TR) {
1715 old_desc = seg_desc;
1716 seg_desc.type |= 2; /* busy */
1717 ret = ctxt->ops->cmpxchg_emulated(ctxt, desc_addr, &old_desc, &seg_desc,
1718 sizeof(seg_desc), &ctxt->exception);
1719 if (ret != X86EMUL_CONTINUE)
1720 return ret;
1721 }
1722 load:
1723 ctxt->ops->set_segment(ctxt, selector, &seg_desc, base3, seg);
1724 if (desc)
1725 *desc = seg_desc;
1726 return X86EMUL_CONTINUE;
1727 exception:
1728 return emulate_exception(ctxt, err_vec, err_code, true);
1729 }
1730
load_segment_descriptor(struct x86_emulate_ctxt * ctxt,u16 selector,int seg)1731 static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1732 u16 selector, int seg)
1733 {
1734 u8 cpl = ctxt->ops->cpl(ctxt);
1735
1736 /*
1737 * None of MOV, POP and LSS can load a NULL selector in CPL=3, but
1738 * they can load it at CPL<3 (Intel's manual says only LSS can,
1739 * but it's wrong).
1740 *
1741 * However, the Intel manual says that putting IST=1/DPL=3 in
1742 * an interrupt gate will result in SS=3 (the AMD manual instead
1743 * says it doesn't), so allow SS=3 in __load_segment_descriptor
1744 * and only forbid it here.
1745 */
1746 if (seg == VCPU_SREG_SS && selector == 3 &&
1747 ctxt->mode == X86EMUL_MODE_PROT64)
1748 return emulate_exception(ctxt, GP_VECTOR, 0, true);
1749
1750 return __load_segment_descriptor(ctxt, selector, seg, cpl,
1751 X86_TRANSFER_NONE, NULL);
1752 }
1753
write_register_operand(struct operand * op)1754 static void write_register_operand(struct operand *op)
1755 {
1756 return assign_register(op->addr.reg, op->val, op->bytes);
1757 }
1758
writeback(struct x86_emulate_ctxt * ctxt,struct operand * op)1759 static int writeback(struct x86_emulate_ctxt *ctxt, struct operand *op)
1760 {
1761 switch (op->type) {
1762 case OP_REG:
1763 write_register_operand(op);
1764 break;
1765 case OP_MEM:
1766 if (ctxt->lock_prefix)
1767 return segmented_cmpxchg(ctxt,
1768 op->addr.mem,
1769 &op->orig_val,
1770 &op->val,
1771 op->bytes);
1772 else
1773 return segmented_write(ctxt,
1774 op->addr.mem,
1775 &op->val,
1776 op->bytes);
1777 case OP_MEM_STR:
1778 return segmented_write(ctxt,
1779 op->addr.mem,
1780 op->data,
1781 op->bytes * op->count);
1782 case OP_XMM:
1783 if (!(ctxt->d & Avx)) {
1784 kvm_write_sse_reg(op->addr.xmm, &op->vec_val);
1785 break;
1786 }
1787 /* full YMM write but with high bytes cleared */
1788 memset(op->valptr + 16, 0, 16);
1789 fallthrough;
1790 case OP_YMM:
1791 kvm_write_avx_reg(op->addr.xmm, &op->vec_val2);
1792 break;
1793 case OP_MM:
1794 kvm_write_mmx_reg(op->addr.mm, &op->mm_val);
1795 break;
1796 case OP_NONE:
1797 /* no writeback */
1798 break;
1799 default:
1800 break;
1801 }
1802 return X86EMUL_CONTINUE;
1803 }
1804
emulate_push(struct x86_emulate_ctxt * ctxt,const void * data,int len)1805 static int emulate_push(struct x86_emulate_ctxt *ctxt, const void *data, int len)
1806 {
1807 struct segmented_address addr;
1808
1809 rsp_increment(ctxt, -len);
1810 addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt);
1811 addr.seg = VCPU_SREG_SS;
1812
1813 return segmented_write(ctxt, addr, data, len);
1814 }
1815
em_push(struct x86_emulate_ctxt * ctxt)1816 static int em_push(struct x86_emulate_ctxt *ctxt)
1817 {
1818 /* Disable writeback. */
1819 ctxt->dst.type = OP_NONE;
1820 return emulate_push(ctxt, &ctxt->src.val, ctxt->op_bytes);
1821 }
1822
emulate_pop(struct x86_emulate_ctxt * ctxt,void * dest,int len)1823 static int emulate_pop(struct x86_emulate_ctxt *ctxt,
1824 void *dest, int len)
1825 {
1826 int rc;
1827 struct segmented_address addr;
1828
1829 addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt);
1830 addr.seg = VCPU_SREG_SS;
1831 rc = segmented_read(ctxt, addr, dest, len);
1832 if (rc != X86EMUL_CONTINUE)
1833 return rc;
1834
1835 rsp_increment(ctxt, len);
1836 return rc;
1837 }
1838
em_pop(struct x86_emulate_ctxt * ctxt)1839 static int em_pop(struct x86_emulate_ctxt *ctxt)
1840 {
1841 return emulate_pop(ctxt, &ctxt->dst.val, ctxt->op_bytes);
1842 }
1843
emulate_popf(struct x86_emulate_ctxt * ctxt,void * dest,int len)1844 static int emulate_popf(struct x86_emulate_ctxt *ctxt,
1845 void *dest, int len)
1846 {
1847 int rc;
1848 unsigned long val = 0;
1849 unsigned long change_mask;
1850 int iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT;
1851 int cpl = ctxt->ops->cpl(ctxt);
1852
1853 rc = emulate_pop(ctxt, &val, len);
1854 if (rc != X86EMUL_CONTINUE)
1855 return rc;
1856
1857 change_mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
1858 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF |
1859 X86_EFLAGS_TF | X86_EFLAGS_DF | X86_EFLAGS_NT |
1860 X86_EFLAGS_AC | X86_EFLAGS_ID;
1861
1862 switch(ctxt->mode) {
1863 case X86EMUL_MODE_PROT64:
1864 case X86EMUL_MODE_PROT32:
1865 case X86EMUL_MODE_PROT16:
1866 if (cpl == 0)
1867 change_mask |= X86_EFLAGS_IOPL;
1868 if (cpl <= iopl)
1869 change_mask |= X86_EFLAGS_IF;
1870 break;
1871 case X86EMUL_MODE_VM86:
1872 if (iopl < 3)
1873 return emulate_gp(ctxt, 0);
1874 change_mask |= X86_EFLAGS_IF;
1875 break;
1876 default: /* real mode */
1877 change_mask |= (X86_EFLAGS_IOPL | X86_EFLAGS_IF);
1878 break;
1879 }
1880
1881 *(unsigned long *)dest =
1882 (ctxt->eflags & ~change_mask) | (val & change_mask);
1883
1884 return rc;
1885 }
1886
em_popf(struct x86_emulate_ctxt * ctxt)1887 static int em_popf(struct x86_emulate_ctxt *ctxt)
1888 {
1889 ctxt->dst.type = OP_REG;
1890 ctxt->dst.addr.reg = &ctxt->eflags;
1891 ctxt->dst.bytes = ctxt->op_bytes;
1892 return emulate_popf(ctxt, &ctxt->dst.val, ctxt->op_bytes);
1893 }
1894
em_enter(struct x86_emulate_ctxt * ctxt)1895 static int em_enter(struct x86_emulate_ctxt *ctxt)
1896 {
1897 int rc;
1898 unsigned frame_size = ctxt->src.val;
1899 unsigned nesting_level = ctxt->src2.val & 31;
1900 ulong rbp;
1901
1902 if (nesting_level)
1903 return X86EMUL_UNHANDLEABLE;
1904
1905 rbp = reg_read(ctxt, VCPU_REGS_RBP);
1906 rc = emulate_push(ctxt, &rbp, stack_size(ctxt));
1907 if (rc != X86EMUL_CONTINUE)
1908 return rc;
1909 assign_masked(reg_rmw(ctxt, VCPU_REGS_RBP), reg_read(ctxt, VCPU_REGS_RSP),
1910 stack_mask(ctxt));
1911 assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP),
1912 reg_read(ctxt, VCPU_REGS_RSP) - frame_size,
1913 stack_mask(ctxt));
1914 return X86EMUL_CONTINUE;
1915 }
1916
em_leave(struct x86_emulate_ctxt * ctxt)1917 static int em_leave(struct x86_emulate_ctxt *ctxt)
1918 {
1919 assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP), reg_read(ctxt, VCPU_REGS_RBP),
1920 stack_mask(ctxt));
1921 return emulate_pop(ctxt, reg_rmw(ctxt, VCPU_REGS_RBP), ctxt->op_bytes);
1922 }
1923
em_push_sreg(struct x86_emulate_ctxt * ctxt)1924 static int em_push_sreg(struct x86_emulate_ctxt *ctxt)
1925 {
1926 int seg = ctxt->src2.val;
1927
1928 ctxt->src.val = get_segment_selector(ctxt, seg);
1929 if (ctxt->op_bytes == 4) {
1930 rsp_increment(ctxt, -2);
1931 ctxt->op_bytes = 2;
1932 }
1933
1934 return em_push(ctxt);
1935 }
1936
em_pop_sreg(struct x86_emulate_ctxt * ctxt)1937 static int em_pop_sreg(struct x86_emulate_ctxt *ctxt)
1938 {
1939 int seg = ctxt->src2.val;
1940 unsigned long selector = 0;
1941 int rc;
1942
1943 rc = emulate_pop(ctxt, &selector, 2);
1944 if (rc != X86EMUL_CONTINUE)
1945 return rc;
1946
1947 if (seg == VCPU_SREG_SS)
1948 ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
1949 if (ctxt->op_bytes > 2)
1950 rsp_increment(ctxt, ctxt->op_bytes - 2);
1951
1952 rc = load_segment_descriptor(ctxt, (u16)selector, seg);
1953 return rc;
1954 }
1955
em_pusha(struct x86_emulate_ctxt * ctxt)1956 static int em_pusha(struct x86_emulate_ctxt *ctxt)
1957 {
1958 unsigned long old_esp = reg_read(ctxt, VCPU_REGS_RSP);
1959 int rc = X86EMUL_CONTINUE;
1960 int reg = VCPU_REGS_RAX;
1961
1962 while (reg <= VCPU_REGS_RDI) {
1963 (reg == VCPU_REGS_RSP) ?
1964 (ctxt->src.val = old_esp) : (ctxt->src.val = reg_read(ctxt, reg));
1965
1966 rc = em_push(ctxt);
1967 if (rc != X86EMUL_CONTINUE)
1968 return rc;
1969
1970 ++reg;
1971 }
1972
1973 return rc;
1974 }
1975
em_pushf(struct x86_emulate_ctxt * ctxt)1976 static int em_pushf(struct x86_emulate_ctxt *ctxt)
1977 {
1978 ctxt->src.val = (unsigned long)ctxt->eflags & ~X86_EFLAGS_VM;
1979 return em_push(ctxt);
1980 }
1981
em_popa(struct x86_emulate_ctxt * ctxt)1982 static int em_popa(struct x86_emulate_ctxt *ctxt)
1983 {
1984 int rc = X86EMUL_CONTINUE;
1985 int reg = VCPU_REGS_RDI;
1986 u32 val = 0;
1987
1988 while (reg >= VCPU_REGS_RAX) {
1989 if (reg == VCPU_REGS_RSP) {
1990 rsp_increment(ctxt, ctxt->op_bytes);
1991 --reg;
1992 }
1993
1994 rc = emulate_pop(ctxt, &val, ctxt->op_bytes);
1995 if (rc != X86EMUL_CONTINUE)
1996 break;
1997 assign_register(reg_rmw(ctxt, reg), val, ctxt->op_bytes);
1998 --reg;
1999 }
2000 return rc;
2001 }
2002
__emulate_int_real(struct x86_emulate_ctxt * ctxt,int irq)2003 static int __emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
2004 {
2005 const struct x86_emulate_ops *ops = ctxt->ops;
2006 int rc;
2007 struct desc_ptr dt;
2008 gva_t cs_addr;
2009 gva_t eip_addr;
2010 u16 cs, eip;
2011
2012 /* TODO: Add limit checks */
2013 ctxt->src.val = ctxt->eflags;
2014 rc = em_push(ctxt);
2015 if (rc != X86EMUL_CONTINUE)
2016 return rc;
2017
2018 ctxt->eflags &= ~(X86_EFLAGS_IF | X86_EFLAGS_TF | X86_EFLAGS_AC);
2019
2020 ctxt->src.val = get_segment_selector(ctxt, VCPU_SREG_CS);
2021 rc = em_push(ctxt);
2022 if (rc != X86EMUL_CONTINUE)
2023 return rc;
2024
2025 ctxt->src.val = ctxt->_eip;
2026 rc = em_push(ctxt);
2027 if (rc != X86EMUL_CONTINUE)
2028 return rc;
2029
2030 ops->get_idt(ctxt, &dt);
2031
2032 eip_addr = dt.address + (irq << 2);
2033 cs_addr = dt.address + (irq << 2) + 2;
2034
2035 rc = linear_read_system(ctxt, cs_addr, &cs, 2);
2036 if (rc != X86EMUL_CONTINUE)
2037 return rc;
2038
2039 rc = linear_read_system(ctxt, eip_addr, &eip, 2);
2040 if (rc != X86EMUL_CONTINUE)
2041 return rc;
2042
2043 rc = load_segment_descriptor(ctxt, cs, VCPU_SREG_CS);
2044 if (rc != X86EMUL_CONTINUE)
2045 return rc;
2046
2047 ctxt->_eip = eip;
2048
2049 return rc;
2050 }
2051
emulate_int_real(struct x86_emulate_ctxt * ctxt,int irq)2052 int emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
2053 {
2054 int rc;
2055
2056 invalidate_registers(ctxt);
2057 rc = __emulate_int_real(ctxt, irq);
2058 if (rc == X86EMUL_CONTINUE)
2059 writeback_registers(ctxt);
2060 return rc;
2061 }
2062
emulate_int(struct x86_emulate_ctxt * ctxt,int irq)2063 static int emulate_int(struct x86_emulate_ctxt *ctxt, int irq)
2064 {
2065 switch(ctxt->mode) {
2066 case X86EMUL_MODE_REAL:
2067 return __emulate_int_real(ctxt, irq);
2068 case X86EMUL_MODE_VM86:
2069 case X86EMUL_MODE_PROT16:
2070 case X86EMUL_MODE_PROT32:
2071 case X86EMUL_MODE_PROT64:
2072 default:
2073 /* Protected mode interrupts unimplemented yet */
2074 return X86EMUL_UNHANDLEABLE;
2075 }
2076 }
2077
emulate_iret_real(struct x86_emulate_ctxt * ctxt)2078 static int emulate_iret_real(struct x86_emulate_ctxt *ctxt)
2079 {
2080 int rc = X86EMUL_CONTINUE;
2081 unsigned long temp_eip = 0;
2082 unsigned long temp_eflags = 0;
2083 unsigned long cs = 0;
2084 unsigned long mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
2085 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_TF |
2086 X86_EFLAGS_IF | X86_EFLAGS_DF | X86_EFLAGS_OF |
2087 X86_EFLAGS_IOPL | X86_EFLAGS_NT | X86_EFLAGS_RF |
2088 X86_EFLAGS_AC | X86_EFLAGS_ID |
2089 X86_EFLAGS_FIXED;
2090 unsigned long vm86_mask = X86_EFLAGS_VM | X86_EFLAGS_VIF |
2091 X86_EFLAGS_VIP;
2092
2093 /* TODO: Add stack limit check */
2094
2095 rc = emulate_pop(ctxt, &temp_eip, ctxt->op_bytes);
2096
2097 if (rc != X86EMUL_CONTINUE)
2098 return rc;
2099
2100 if (temp_eip & ~0xffff)
2101 return emulate_gp(ctxt, 0);
2102
2103 rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
2104
2105 if (rc != X86EMUL_CONTINUE)
2106 return rc;
2107
2108 rc = emulate_pop(ctxt, &temp_eflags, ctxt->op_bytes);
2109
2110 if (rc != X86EMUL_CONTINUE)
2111 return rc;
2112
2113 rc = load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS);
2114
2115 if (rc != X86EMUL_CONTINUE)
2116 return rc;
2117
2118 ctxt->_eip = temp_eip;
2119
2120 if (ctxt->op_bytes == 4)
2121 ctxt->eflags = ((temp_eflags & mask) | (ctxt->eflags & vm86_mask));
2122 else if (ctxt->op_bytes == 2) {
2123 ctxt->eflags &= ~0xffff;
2124 ctxt->eflags |= temp_eflags;
2125 }
2126
2127 ctxt->eflags &= ~EFLG_RESERVED_ZEROS_MASK; /* Clear reserved zeros */
2128 ctxt->eflags |= X86_EFLAGS_FIXED;
2129 ctxt->ops->set_nmi_mask(ctxt, false);
2130
2131 return rc;
2132 }
2133
em_iret(struct x86_emulate_ctxt * ctxt)2134 static int em_iret(struct x86_emulate_ctxt *ctxt)
2135 {
2136 switch(ctxt->mode) {
2137 case X86EMUL_MODE_REAL:
2138 return emulate_iret_real(ctxt);
2139 case X86EMUL_MODE_VM86:
2140 case X86EMUL_MODE_PROT16:
2141 case X86EMUL_MODE_PROT32:
2142 case X86EMUL_MODE_PROT64:
2143 default:
2144 /* iret from protected mode unimplemented yet */
2145 return X86EMUL_UNHANDLEABLE;
2146 }
2147 }
2148
em_jmp_far(struct x86_emulate_ctxt * ctxt)2149 static int em_jmp_far(struct x86_emulate_ctxt *ctxt)
2150 {
2151 int rc;
2152 unsigned short sel;
2153 struct desc_struct new_desc;
2154 u8 cpl = ctxt->ops->cpl(ctxt);
2155
2156 memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
2157
2158 rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl,
2159 X86_TRANSFER_CALL_JMP,
2160 &new_desc);
2161 if (rc != X86EMUL_CONTINUE)
2162 return rc;
2163
2164 rc = assign_eip_far(ctxt, ctxt->src.val);
2165 /* Error handling is not implemented. */
2166 if (rc != X86EMUL_CONTINUE)
2167 return X86EMUL_UNHANDLEABLE;
2168
2169 return rc;
2170 }
2171
em_jmp_abs(struct x86_emulate_ctxt * ctxt)2172 static int em_jmp_abs(struct x86_emulate_ctxt *ctxt)
2173 {
2174 return assign_eip_near(ctxt, ctxt->src.val);
2175 }
2176
em_call_near_abs(struct x86_emulate_ctxt * ctxt)2177 static int em_call_near_abs(struct x86_emulate_ctxt *ctxt)
2178 {
2179 int rc;
2180 long int old_eip;
2181
2182 old_eip = ctxt->_eip;
2183 rc = assign_eip_near(ctxt, ctxt->src.val);
2184 if (rc != X86EMUL_CONTINUE)
2185 return rc;
2186 ctxt->src.val = old_eip;
2187 rc = em_push(ctxt);
2188 return rc;
2189 }
2190
em_cmpxchg8b(struct x86_emulate_ctxt * ctxt)2191 static int em_cmpxchg8b(struct x86_emulate_ctxt *ctxt)
2192 {
2193 u64 old = ctxt->dst.orig_val64;
2194
2195 if (ctxt->dst.bytes == 16)
2196 return X86EMUL_UNHANDLEABLE;
2197
2198 if (((u32) (old >> 0) != (u32) reg_read(ctxt, VCPU_REGS_RAX)) ||
2199 ((u32) (old >> 32) != (u32) reg_read(ctxt, VCPU_REGS_RDX))) {
2200 *reg_write(ctxt, VCPU_REGS_RAX) = (u32) (old >> 0);
2201 *reg_write(ctxt, VCPU_REGS_RDX) = (u32) (old >> 32);
2202 ctxt->eflags &= ~X86_EFLAGS_ZF;
2203 } else {
2204 ctxt->dst.val64 = ((u64)reg_read(ctxt, VCPU_REGS_RCX) << 32) |
2205 (u32) reg_read(ctxt, VCPU_REGS_RBX);
2206
2207 ctxt->eflags |= X86_EFLAGS_ZF;
2208 }
2209 return X86EMUL_CONTINUE;
2210 }
2211
em_ret(struct x86_emulate_ctxt * ctxt)2212 static int em_ret(struct x86_emulate_ctxt *ctxt)
2213 {
2214 int rc;
2215 unsigned long eip = 0;
2216
2217 rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
2218 if (rc != X86EMUL_CONTINUE)
2219 return rc;
2220
2221 return assign_eip_near(ctxt, eip);
2222 }
2223
em_ret_far(struct x86_emulate_ctxt * ctxt)2224 static int em_ret_far(struct x86_emulate_ctxt *ctxt)
2225 {
2226 int rc;
2227 unsigned long eip = 0;
2228 unsigned long cs = 0;
2229 int cpl = ctxt->ops->cpl(ctxt);
2230 struct desc_struct new_desc;
2231
2232 rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
2233 if (rc != X86EMUL_CONTINUE)
2234 return rc;
2235 rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
2236 if (rc != X86EMUL_CONTINUE)
2237 return rc;
2238 rc = __load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS, cpl,
2239 X86_TRANSFER_RET,
2240 &new_desc);
2241 if (rc != X86EMUL_CONTINUE)
2242 return rc;
2243 rc = assign_eip_far(ctxt, eip);
2244 /* Error handling is not implemented. */
2245 if (rc != X86EMUL_CONTINUE)
2246 return X86EMUL_UNHANDLEABLE;
2247
2248 return rc;
2249 }
2250
em_ret_far_imm(struct x86_emulate_ctxt * ctxt)2251 static int em_ret_far_imm(struct x86_emulate_ctxt *ctxt)
2252 {
2253 int rc;
2254
2255 rc = em_ret_far(ctxt);
2256 if (rc != X86EMUL_CONTINUE)
2257 return rc;
2258 rsp_increment(ctxt, ctxt->src.val);
2259 return X86EMUL_CONTINUE;
2260 }
2261
em_cmpxchg(struct x86_emulate_ctxt * ctxt)2262 static int em_cmpxchg(struct x86_emulate_ctxt *ctxt)
2263 {
2264 /* Save real source value, then compare EAX against destination. */
2265 ctxt->dst.orig_val = ctxt->dst.val;
2266 ctxt->dst.val = reg_read(ctxt, VCPU_REGS_RAX);
2267 ctxt->src.orig_val = ctxt->src.val;
2268 ctxt->src.val = ctxt->dst.orig_val;
2269 em_cmp(ctxt);
2270
2271 if (ctxt->eflags & X86_EFLAGS_ZF) {
2272 /* Success: write back to memory; no update of EAX */
2273 ctxt->src.type = OP_NONE;
2274 ctxt->dst.val = ctxt->src.orig_val;
2275 } else {
2276 /* Failure: write the value we saw to EAX. */
2277 ctxt->src.type = OP_REG;
2278 ctxt->src.addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
2279 ctxt->src.val = ctxt->dst.orig_val;
2280 /* Create write-cycle to dest by writing the same value */
2281 ctxt->dst.val = ctxt->dst.orig_val;
2282 }
2283 return X86EMUL_CONTINUE;
2284 }
2285
em_lseg(struct x86_emulate_ctxt * ctxt)2286 static int em_lseg(struct x86_emulate_ctxt *ctxt)
2287 {
2288 int seg = ctxt->src2.val;
2289 unsigned short sel;
2290 int rc;
2291
2292 memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
2293
2294 rc = load_segment_descriptor(ctxt, sel, seg);
2295 if (rc != X86EMUL_CONTINUE)
2296 return rc;
2297
2298 ctxt->dst.val = ctxt->src.val;
2299 return rc;
2300 }
2301
em_rsm(struct x86_emulate_ctxt * ctxt)2302 static int em_rsm(struct x86_emulate_ctxt *ctxt)
2303 {
2304 if (!ctxt->ops->is_smm(ctxt))
2305 return emulate_ud(ctxt);
2306
2307 if (ctxt->ops->leave_smm(ctxt))
2308 ctxt->ops->triple_fault(ctxt);
2309
2310 return emulator_recalc_and_set_mode(ctxt);
2311 }
2312
2313 static void
setup_syscalls_segments(struct desc_struct * cs,struct desc_struct * ss)2314 setup_syscalls_segments(struct desc_struct *cs, struct desc_struct *ss)
2315 {
2316 cs->l = 0; /* will be adjusted later */
2317 set_desc_base(cs, 0); /* flat segment */
2318 cs->g = 1; /* 4kb granularity */
2319 set_desc_limit(cs, 0xfffff); /* 4GB limit */
2320 cs->type = 0x0b; /* Read, Execute, Accessed */
2321 cs->s = 1;
2322 cs->dpl = 0; /* will be adjusted later */
2323 cs->p = 1;
2324 cs->d = 1;
2325 cs->avl = 0;
2326
2327 set_desc_base(ss, 0); /* flat segment */
2328 set_desc_limit(ss, 0xfffff); /* 4GB limit */
2329 ss->g = 1; /* 4kb granularity */
2330 ss->s = 1;
2331 ss->type = 0x03; /* Read/Write, Accessed */
2332 ss->d = 1; /* 32bit stack segment */
2333 ss->dpl = 0;
2334 ss->p = 1;
2335 ss->l = 0;
2336 ss->avl = 0;
2337 }
2338
em_syscall(struct x86_emulate_ctxt * ctxt)2339 static int em_syscall(struct x86_emulate_ctxt *ctxt)
2340 {
2341 const struct x86_emulate_ops *ops = ctxt->ops;
2342 struct desc_struct cs, ss;
2343 u64 msr_data;
2344 u16 cs_sel, ss_sel;
2345 u64 efer = 0;
2346
2347 /* syscall is not available in real mode */
2348 if (ctxt->mode == X86EMUL_MODE_REAL ||
2349 ctxt->mode == X86EMUL_MODE_VM86)
2350 return emulate_ud(ctxt);
2351
2352 /*
2353 * Intel compatible CPUs only support SYSCALL in 64-bit mode, whereas
2354 * AMD allows SYSCALL in any flavor of protected mode. Note, it's
2355 * infeasible to emulate Intel behavior when running on AMD hardware,
2356 * as SYSCALL won't fault in the "wrong" mode, i.e. there is no #UD
2357 * for KVM to trap-and-emulate, unlike emulating AMD on Intel.
2358 */
2359 if (ctxt->mode != X86EMUL_MODE_PROT64 &&
2360 ctxt->ops->guest_cpuid_is_intel_compatible(ctxt))
2361 return emulate_ud(ctxt);
2362
2363 ops->get_msr(ctxt, MSR_EFER, &efer);
2364 if (!(efer & EFER_SCE))
2365 return emulate_ud(ctxt);
2366
2367 setup_syscalls_segments(&cs, &ss);
2368 ops->get_msr(ctxt, MSR_STAR, &msr_data);
2369 msr_data >>= 32;
2370 cs_sel = (u16)(msr_data & 0xfffc);
2371 ss_sel = (u16)(msr_data + 8);
2372
2373 if (efer & EFER_LMA) {
2374 cs.d = 0;
2375 cs.l = 1;
2376 }
2377 ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
2378 ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
2379
2380 *reg_write(ctxt, VCPU_REGS_RCX) = ctxt->_eip;
2381 if (efer & EFER_LMA) {
2382 #ifdef CONFIG_X86_64
2383 *reg_write(ctxt, VCPU_REGS_R11) = ctxt->eflags;
2384
2385 ops->get_msr(ctxt,
2386 ctxt->mode == X86EMUL_MODE_PROT64 ?
2387 MSR_LSTAR : MSR_CSTAR, &msr_data);
2388 ctxt->_eip = msr_data;
2389
2390 ops->get_msr(ctxt, MSR_SYSCALL_MASK, &msr_data);
2391 ctxt->eflags &= ~msr_data;
2392 ctxt->eflags |= X86_EFLAGS_FIXED;
2393 #endif
2394 } else {
2395 /* legacy mode */
2396 ops->get_msr(ctxt, MSR_STAR, &msr_data);
2397 ctxt->_eip = (u32)msr_data;
2398
2399 ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF);
2400 }
2401
2402 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
2403 return X86EMUL_CONTINUE;
2404 }
2405
em_sysenter(struct x86_emulate_ctxt * ctxt)2406 static int em_sysenter(struct x86_emulate_ctxt *ctxt)
2407 {
2408 const struct x86_emulate_ops *ops = ctxt->ops;
2409 struct desc_struct cs, ss;
2410 u64 msr_data;
2411 u16 cs_sel, ss_sel;
2412 u64 efer = 0;
2413
2414 ops->get_msr(ctxt, MSR_EFER, &efer);
2415 /* inject #GP if in real mode */
2416 if (ctxt->mode == X86EMUL_MODE_REAL)
2417 return emulate_gp(ctxt, 0);
2418
2419 /*
2420 * Intel's architecture allows SYSENTER in compatibility mode, but AMD
2421 * does not. Note, AMD does allow SYSENTER in legacy protected mode.
2422 */
2423 if ((ctxt->mode != X86EMUL_MODE_PROT64) && (efer & EFER_LMA) &&
2424 !ctxt->ops->guest_cpuid_is_intel_compatible(ctxt))
2425 return emulate_ud(ctxt);
2426
2427 /* sysenter/sysexit have not been tested in 64bit mode. */
2428 if (ctxt->mode == X86EMUL_MODE_PROT64)
2429 return X86EMUL_UNHANDLEABLE;
2430
2431 ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
2432 if ((msr_data & 0xfffc) == 0x0)
2433 return emulate_gp(ctxt, 0);
2434
2435 setup_syscalls_segments(&cs, &ss);
2436 ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF);
2437 cs_sel = (u16)msr_data & ~SEGMENT_RPL_MASK;
2438 ss_sel = cs_sel + 8;
2439 if (efer & EFER_LMA) {
2440 cs.d = 0;
2441 cs.l = 1;
2442 }
2443
2444 ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
2445 ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
2446
2447 ops->get_msr(ctxt, MSR_IA32_SYSENTER_EIP, &msr_data);
2448 ctxt->_eip = (efer & EFER_LMA) ? msr_data : (u32)msr_data;
2449
2450 ops->get_msr(ctxt, MSR_IA32_SYSENTER_ESP, &msr_data);
2451 *reg_write(ctxt, VCPU_REGS_RSP) = (efer & EFER_LMA) ? msr_data :
2452 (u32)msr_data;
2453 if (efer & EFER_LMA)
2454 ctxt->mode = X86EMUL_MODE_PROT64;
2455
2456 return X86EMUL_CONTINUE;
2457 }
2458
em_sysexit(struct x86_emulate_ctxt * ctxt)2459 static int em_sysexit(struct x86_emulate_ctxt *ctxt)
2460 {
2461 const struct x86_emulate_ops *ops = ctxt->ops;
2462 struct desc_struct cs, ss;
2463 u64 msr_data, rcx, rdx;
2464 int usermode;
2465 u16 cs_sel = 0, ss_sel = 0;
2466
2467 /* inject #GP if in real mode or Virtual 8086 mode */
2468 if (ctxt->mode == X86EMUL_MODE_REAL ||
2469 ctxt->mode == X86EMUL_MODE_VM86)
2470 return emulate_gp(ctxt, 0);
2471
2472 setup_syscalls_segments(&cs, &ss);
2473
2474 if (ctxt->rex_bits & REX_W)
2475 usermode = X86EMUL_MODE_PROT64;
2476 else
2477 usermode = X86EMUL_MODE_PROT32;
2478
2479 rcx = reg_read(ctxt, VCPU_REGS_RCX);
2480 rdx = reg_read(ctxt, VCPU_REGS_RDX);
2481
2482 cs.dpl = 3;
2483 ss.dpl = 3;
2484 ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
2485 switch (usermode) {
2486 case X86EMUL_MODE_PROT32:
2487 cs_sel = (u16)(msr_data + 16);
2488 if ((msr_data & 0xfffc) == 0x0)
2489 return emulate_gp(ctxt, 0);
2490 ss_sel = (u16)(msr_data + 24);
2491 rcx = (u32)rcx;
2492 rdx = (u32)rdx;
2493 break;
2494 case X86EMUL_MODE_PROT64:
2495 cs_sel = (u16)(msr_data + 32);
2496 if (msr_data == 0x0)
2497 return emulate_gp(ctxt, 0);
2498 ss_sel = cs_sel + 8;
2499 cs.d = 0;
2500 cs.l = 1;
2501 if (emul_is_noncanonical_address(rcx, ctxt, 0) ||
2502 emul_is_noncanonical_address(rdx, ctxt, 0))
2503 return emulate_gp(ctxt, 0);
2504 break;
2505 }
2506 cs_sel |= SEGMENT_RPL_MASK;
2507 ss_sel |= SEGMENT_RPL_MASK;
2508
2509 ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
2510 ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
2511
2512 ctxt->_eip = rdx;
2513 ctxt->mode = usermode;
2514 *reg_write(ctxt, VCPU_REGS_RSP) = rcx;
2515
2516 return X86EMUL_CONTINUE;
2517 }
2518
emulator_bad_iopl(struct x86_emulate_ctxt * ctxt)2519 static bool emulator_bad_iopl(struct x86_emulate_ctxt *ctxt)
2520 {
2521 int iopl;
2522 if (ctxt->mode == X86EMUL_MODE_REAL)
2523 return false;
2524 if (ctxt->mode == X86EMUL_MODE_VM86)
2525 return true;
2526 iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT;
2527 return ctxt->ops->cpl(ctxt) > iopl;
2528 }
2529
2530 #define VMWARE_PORT_VMPORT (0x5658)
2531 #define VMWARE_PORT_VMRPC (0x5659)
2532
emulator_io_port_access_allowed(struct x86_emulate_ctxt * ctxt,u16 port,u16 len)2533 static bool emulator_io_port_access_allowed(struct x86_emulate_ctxt *ctxt,
2534 u16 port, u16 len)
2535 {
2536 const struct x86_emulate_ops *ops = ctxt->ops;
2537 struct desc_struct tr_seg;
2538 u32 base3;
2539 int r;
2540 u16 tr, io_bitmap_ptr, perm, bit_idx = port & 0x7;
2541 unsigned mask = (1 << len) - 1;
2542 unsigned long base;
2543
2544 /*
2545 * VMware allows access to these ports even if denied
2546 * by TSS I/O permission bitmap. Mimic behavior.
2547 */
2548 if (enable_vmware_backdoor &&
2549 ((port == VMWARE_PORT_VMPORT) || (port == VMWARE_PORT_VMRPC)))
2550 return true;
2551
2552 ops->get_segment(ctxt, &tr, &tr_seg, &base3, VCPU_SREG_TR);
2553 if (!tr_seg.p)
2554 return false;
2555 if (desc_limit_scaled(&tr_seg) < 103)
2556 return false;
2557 base = get_desc_base(&tr_seg);
2558 #ifdef CONFIG_X86_64
2559 base |= ((u64)base3) << 32;
2560 #endif
2561 r = ops->read_std(ctxt, base + 102, &io_bitmap_ptr, 2, NULL, true);
2562 if (r != X86EMUL_CONTINUE)
2563 return false;
2564 if (io_bitmap_ptr + port/8 > desc_limit_scaled(&tr_seg))
2565 return false;
2566 r = ops->read_std(ctxt, base + io_bitmap_ptr + port/8, &perm, 2, NULL, true);
2567 if (r != X86EMUL_CONTINUE)
2568 return false;
2569 if ((perm >> bit_idx) & mask)
2570 return false;
2571 return true;
2572 }
2573
emulator_io_permitted(struct x86_emulate_ctxt * ctxt,u16 port,u16 len)2574 static bool emulator_io_permitted(struct x86_emulate_ctxt *ctxt,
2575 u16 port, u16 len)
2576 {
2577 if (ctxt->perm_ok)
2578 return true;
2579
2580 if (emulator_bad_iopl(ctxt))
2581 if (!emulator_io_port_access_allowed(ctxt, port, len))
2582 return false;
2583
2584 ctxt->perm_ok = true;
2585
2586 return true;
2587 }
2588
string_registers_quirk(struct x86_emulate_ctxt * ctxt)2589 static void string_registers_quirk(struct x86_emulate_ctxt *ctxt)
2590 {
2591 /*
2592 * Intel CPUs mask the counter and pointers in quite strange
2593 * manner when ECX is zero due to REP-string optimizations.
2594 */
2595 #ifdef CONFIG_X86_64
2596 u32 eax, ebx, ecx, edx;
2597
2598 if (ctxt->ad_bytes != 4)
2599 return;
2600
2601 eax = ecx = 0;
2602 ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, true);
2603 if (!is_guest_vendor_intel(ebx, ecx, edx))
2604 return;
2605
2606 *reg_write(ctxt, VCPU_REGS_RCX) = 0;
2607
2608 switch (ctxt->b) {
2609 case 0xa4: /* movsb */
2610 case 0xa5: /* movsd/w */
2611 *reg_rmw(ctxt, VCPU_REGS_RSI) &= (u32)-1;
2612 fallthrough;
2613 case 0xaa: /* stosb */
2614 case 0xab: /* stosd/w */
2615 *reg_rmw(ctxt, VCPU_REGS_RDI) &= (u32)-1;
2616 }
2617 #endif
2618 }
2619
save_state_to_tss16(struct x86_emulate_ctxt * ctxt,struct tss_segment_16 * tss)2620 static void save_state_to_tss16(struct x86_emulate_ctxt *ctxt,
2621 struct tss_segment_16 *tss)
2622 {
2623 tss->ip = ctxt->_eip;
2624 tss->flag = ctxt->eflags;
2625 tss->ax = reg_read(ctxt, VCPU_REGS_RAX);
2626 tss->cx = reg_read(ctxt, VCPU_REGS_RCX);
2627 tss->dx = reg_read(ctxt, VCPU_REGS_RDX);
2628 tss->bx = reg_read(ctxt, VCPU_REGS_RBX);
2629 tss->sp = reg_read(ctxt, VCPU_REGS_RSP);
2630 tss->bp = reg_read(ctxt, VCPU_REGS_RBP);
2631 tss->si = reg_read(ctxt, VCPU_REGS_RSI);
2632 tss->di = reg_read(ctxt, VCPU_REGS_RDI);
2633
2634 tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
2635 tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
2636 tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
2637 tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
2638 tss->ldt = get_segment_selector(ctxt, VCPU_SREG_LDTR);
2639 }
2640
load_state_from_tss16(struct x86_emulate_ctxt * ctxt,struct tss_segment_16 * tss)2641 static int load_state_from_tss16(struct x86_emulate_ctxt *ctxt,
2642 struct tss_segment_16 *tss)
2643 {
2644 int ret;
2645 u8 cpl;
2646
2647 ctxt->_eip = tss->ip;
2648 ctxt->eflags = tss->flag | 2;
2649 *reg_write(ctxt, VCPU_REGS_RAX) = tss->ax;
2650 *reg_write(ctxt, VCPU_REGS_RCX) = tss->cx;
2651 *reg_write(ctxt, VCPU_REGS_RDX) = tss->dx;
2652 *reg_write(ctxt, VCPU_REGS_RBX) = tss->bx;
2653 *reg_write(ctxt, VCPU_REGS_RSP) = tss->sp;
2654 *reg_write(ctxt, VCPU_REGS_RBP) = tss->bp;
2655 *reg_write(ctxt, VCPU_REGS_RSI) = tss->si;
2656 *reg_write(ctxt, VCPU_REGS_RDI) = tss->di;
2657
2658 /*
2659 * SDM says that segment selectors are loaded before segment
2660 * descriptors
2661 */
2662 set_segment_selector(ctxt, tss->ldt, VCPU_SREG_LDTR);
2663 set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
2664 set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
2665 set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
2666 set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
2667
2668 cpl = tss->cs & 3;
2669
2670 /*
2671 * Now load segment descriptors. If fault happens at this stage
2672 * it is handled in a context of new task
2673 */
2674 ret = __load_segment_descriptor(ctxt, tss->ldt, VCPU_SREG_LDTR, cpl,
2675 X86_TRANSFER_TASK_SWITCH, NULL);
2676 if (ret != X86EMUL_CONTINUE)
2677 return ret;
2678 ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl,
2679 X86_TRANSFER_TASK_SWITCH, NULL);
2680 if (ret != X86EMUL_CONTINUE)
2681 return ret;
2682 ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl,
2683 X86_TRANSFER_TASK_SWITCH, NULL);
2684 if (ret != X86EMUL_CONTINUE)
2685 return ret;
2686 ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl,
2687 X86_TRANSFER_TASK_SWITCH, NULL);
2688 if (ret != X86EMUL_CONTINUE)
2689 return ret;
2690 ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl,
2691 X86_TRANSFER_TASK_SWITCH, NULL);
2692 if (ret != X86EMUL_CONTINUE)
2693 return ret;
2694
2695 return X86EMUL_CONTINUE;
2696 }
2697
task_switch_16(struct x86_emulate_ctxt * ctxt,u16 old_tss_sel,ulong old_tss_base,struct desc_struct * new_desc)2698 static int task_switch_16(struct x86_emulate_ctxt *ctxt, u16 old_tss_sel,
2699 ulong old_tss_base, struct desc_struct *new_desc)
2700 {
2701 struct tss_segment_16 tss_seg;
2702 int ret;
2703 u32 new_tss_base = get_desc_base(new_desc);
2704
2705 ret = linear_read_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg));
2706 if (ret != X86EMUL_CONTINUE)
2707 return ret;
2708
2709 save_state_to_tss16(ctxt, &tss_seg);
2710
2711 ret = linear_write_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg));
2712 if (ret != X86EMUL_CONTINUE)
2713 return ret;
2714
2715 ret = linear_read_system(ctxt, new_tss_base, &tss_seg, sizeof(tss_seg));
2716 if (ret != X86EMUL_CONTINUE)
2717 return ret;
2718
2719 if (old_tss_sel != 0xffff) {
2720 tss_seg.prev_task_link = old_tss_sel;
2721
2722 ret = linear_write_system(ctxt, new_tss_base,
2723 &tss_seg.prev_task_link,
2724 sizeof(tss_seg.prev_task_link));
2725 if (ret != X86EMUL_CONTINUE)
2726 return ret;
2727 }
2728
2729 return load_state_from_tss16(ctxt, &tss_seg);
2730 }
2731
save_state_to_tss32(struct x86_emulate_ctxt * ctxt,struct tss_segment_32 * tss)2732 static void save_state_to_tss32(struct x86_emulate_ctxt *ctxt,
2733 struct tss_segment_32 *tss)
2734 {
2735 /* CR3 and ldt selector are not saved intentionally */
2736 tss->eip = ctxt->_eip;
2737 tss->eflags = ctxt->eflags;
2738 tss->eax = reg_read(ctxt, VCPU_REGS_RAX);
2739 tss->ecx = reg_read(ctxt, VCPU_REGS_RCX);
2740 tss->edx = reg_read(ctxt, VCPU_REGS_RDX);
2741 tss->ebx = reg_read(ctxt, VCPU_REGS_RBX);
2742 tss->esp = reg_read(ctxt, VCPU_REGS_RSP);
2743 tss->ebp = reg_read(ctxt, VCPU_REGS_RBP);
2744 tss->esi = reg_read(ctxt, VCPU_REGS_RSI);
2745 tss->edi = reg_read(ctxt, VCPU_REGS_RDI);
2746
2747 tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
2748 tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
2749 tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
2750 tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
2751 tss->fs = get_segment_selector(ctxt, VCPU_SREG_FS);
2752 tss->gs = get_segment_selector(ctxt, VCPU_SREG_GS);
2753 }
2754
load_state_from_tss32(struct x86_emulate_ctxt * ctxt,struct tss_segment_32 * tss)2755 static int load_state_from_tss32(struct x86_emulate_ctxt *ctxt,
2756 struct tss_segment_32 *tss)
2757 {
2758 int ret;
2759 u8 cpl;
2760
2761 if (ctxt->ops->set_cr(ctxt, 3, tss->cr3))
2762 return emulate_gp(ctxt, 0);
2763 ctxt->_eip = tss->eip;
2764 ctxt->eflags = tss->eflags | 2;
2765
2766 /* General purpose registers */
2767 *reg_write(ctxt, VCPU_REGS_RAX) = tss->eax;
2768 *reg_write(ctxt, VCPU_REGS_RCX) = tss->ecx;
2769 *reg_write(ctxt, VCPU_REGS_RDX) = tss->edx;
2770 *reg_write(ctxt, VCPU_REGS_RBX) = tss->ebx;
2771 *reg_write(ctxt, VCPU_REGS_RSP) = tss->esp;
2772 *reg_write(ctxt, VCPU_REGS_RBP) = tss->ebp;
2773 *reg_write(ctxt, VCPU_REGS_RSI) = tss->esi;
2774 *reg_write(ctxt, VCPU_REGS_RDI) = tss->edi;
2775
2776 /*
2777 * SDM says that segment selectors are loaded before segment
2778 * descriptors. This is important because CPL checks will
2779 * use CS.RPL.
2780 */
2781 set_segment_selector(ctxt, tss->ldt_selector, VCPU_SREG_LDTR);
2782 set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
2783 set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
2784 set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
2785 set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
2786 set_segment_selector(ctxt, tss->fs, VCPU_SREG_FS);
2787 set_segment_selector(ctxt, tss->gs, VCPU_SREG_GS);
2788
2789 /*
2790 * If we're switching between Protected Mode and VM86, we need to make
2791 * sure to update the mode before loading the segment descriptors so
2792 * that the selectors are interpreted correctly.
2793 */
2794 if (ctxt->eflags & X86_EFLAGS_VM) {
2795 ctxt->mode = X86EMUL_MODE_VM86;
2796 cpl = 3;
2797 } else {
2798 ctxt->mode = X86EMUL_MODE_PROT32;
2799 cpl = tss->cs & 3;
2800 }
2801
2802 /*
2803 * Now load segment descriptors. If fault happens at this stage
2804 * it is handled in a context of new task
2805 */
2806 ret = __load_segment_descriptor(ctxt, tss->ldt_selector, VCPU_SREG_LDTR,
2807 cpl, X86_TRANSFER_TASK_SWITCH, NULL);
2808 if (ret != X86EMUL_CONTINUE)
2809 return ret;
2810 ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl,
2811 X86_TRANSFER_TASK_SWITCH, NULL);
2812 if (ret != X86EMUL_CONTINUE)
2813 return ret;
2814 ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl,
2815 X86_TRANSFER_TASK_SWITCH, NULL);
2816 if (ret != X86EMUL_CONTINUE)
2817 return ret;
2818 ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl,
2819 X86_TRANSFER_TASK_SWITCH, NULL);
2820 if (ret != X86EMUL_CONTINUE)
2821 return ret;
2822 ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl,
2823 X86_TRANSFER_TASK_SWITCH, NULL);
2824 if (ret != X86EMUL_CONTINUE)
2825 return ret;
2826 ret = __load_segment_descriptor(ctxt, tss->fs, VCPU_SREG_FS, cpl,
2827 X86_TRANSFER_TASK_SWITCH, NULL);
2828 if (ret != X86EMUL_CONTINUE)
2829 return ret;
2830 ret = __load_segment_descriptor(ctxt, tss->gs, VCPU_SREG_GS, cpl,
2831 X86_TRANSFER_TASK_SWITCH, NULL);
2832
2833 return ret;
2834 }
2835
task_switch_32(struct x86_emulate_ctxt * ctxt,u16 old_tss_sel,ulong old_tss_base,struct desc_struct * new_desc)2836 static int task_switch_32(struct x86_emulate_ctxt *ctxt, u16 old_tss_sel,
2837 ulong old_tss_base, struct desc_struct *new_desc)
2838 {
2839 struct tss_segment_32 tss_seg;
2840 int ret;
2841 u32 new_tss_base = get_desc_base(new_desc);
2842 u32 eip_offset = offsetof(struct tss_segment_32, eip);
2843 u32 ldt_sel_offset = offsetof(struct tss_segment_32, ldt_selector);
2844
2845 ret = linear_read_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg));
2846 if (ret != X86EMUL_CONTINUE)
2847 return ret;
2848
2849 save_state_to_tss32(ctxt, &tss_seg);
2850
2851 /* Only GP registers and segment selectors are saved */
2852 ret = linear_write_system(ctxt, old_tss_base + eip_offset, &tss_seg.eip,
2853 ldt_sel_offset - eip_offset);
2854 if (ret != X86EMUL_CONTINUE)
2855 return ret;
2856
2857 ret = linear_read_system(ctxt, new_tss_base, &tss_seg, sizeof(tss_seg));
2858 if (ret != X86EMUL_CONTINUE)
2859 return ret;
2860
2861 if (old_tss_sel != 0xffff) {
2862 tss_seg.prev_task_link = old_tss_sel;
2863
2864 ret = linear_write_system(ctxt, new_tss_base,
2865 &tss_seg.prev_task_link,
2866 sizeof(tss_seg.prev_task_link));
2867 if (ret != X86EMUL_CONTINUE)
2868 return ret;
2869 }
2870
2871 return load_state_from_tss32(ctxt, &tss_seg);
2872 }
2873
emulator_do_task_switch(struct x86_emulate_ctxt * ctxt,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)2874 static int emulator_do_task_switch(struct x86_emulate_ctxt *ctxt,
2875 u16 tss_selector, int idt_index, int reason,
2876 bool has_error_code, u32 error_code)
2877 {
2878 const struct x86_emulate_ops *ops = ctxt->ops;
2879 struct desc_struct curr_tss_desc, next_tss_desc;
2880 int ret;
2881 u16 old_tss_sel = get_segment_selector(ctxt, VCPU_SREG_TR);
2882 ulong old_tss_base =
2883 ops->get_cached_segment_base(ctxt, VCPU_SREG_TR);
2884 u32 desc_limit;
2885 ulong desc_addr, dr7;
2886
2887 /* FIXME: old_tss_base == ~0 ? */
2888
2889 ret = read_segment_descriptor(ctxt, tss_selector, &next_tss_desc, &desc_addr);
2890 if (ret != X86EMUL_CONTINUE)
2891 return ret;
2892 ret = read_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc, &desc_addr);
2893 if (ret != X86EMUL_CONTINUE)
2894 return ret;
2895
2896 /* FIXME: check that next_tss_desc is tss */
2897
2898 /*
2899 * Check privileges. The three cases are task switch caused by...
2900 *
2901 * 1. jmp/call/int to task gate: Check against DPL of the task gate
2902 * 2. Exception/IRQ/iret: No check is performed
2903 * 3. jmp/call to TSS/task-gate: No check is performed since the
2904 * hardware checks it before exiting.
2905 */
2906 if (reason == TASK_SWITCH_GATE) {
2907 if (idt_index != -1) {
2908 /* Software interrupts */
2909 struct desc_struct task_gate_desc;
2910 int dpl;
2911
2912 ret = read_interrupt_descriptor(ctxt, idt_index,
2913 &task_gate_desc);
2914 if (ret != X86EMUL_CONTINUE)
2915 return ret;
2916
2917 dpl = task_gate_desc.dpl;
2918 if ((tss_selector & 3) > dpl || ops->cpl(ctxt) > dpl)
2919 return emulate_gp(ctxt, (idt_index << 3) | 0x2);
2920 }
2921 }
2922
2923 desc_limit = desc_limit_scaled(&next_tss_desc);
2924 if (!next_tss_desc.p ||
2925 ((desc_limit < 0x67 && (next_tss_desc.type & 8)) ||
2926 desc_limit < 0x2b)) {
2927 return emulate_ts(ctxt, tss_selector & 0xfffc);
2928 }
2929
2930 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
2931 curr_tss_desc.type &= ~(1 << 1); /* clear busy flag */
2932 write_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc);
2933 }
2934
2935 if (reason == TASK_SWITCH_IRET)
2936 ctxt->eflags = ctxt->eflags & ~X86_EFLAGS_NT;
2937
2938 /* set back link to prev task only if NT bit is set in eflags
2939 note that old_tss_sel is not used after this point */
2940 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
2941 old_tss_sel = 0xffff;
2942
2943 if (next_tss_desc.type & 8)
2944 ret = task_switch_32(ctxt, old_tss_sel, old_tss_base, &next_tss_desc);
2945 else
2946 ret = task_switch_16(ctxt, old_tss_sel,
2947 old_tss_base, &next_tss_desc);
2948 if (ret != X86EMUL_CONTINUE)
2949 return ret;
2950
2951 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE)
2952 ctxt->eflags = ctxt->eflags | X86_EFLAGS_NT;
2953
2954 if (reason != TASK_SWITCH_IRET) {
2955 next_tss_desc.type |= (1 << 1); /* set busy flag */
2956 write_segment_descriptor(ctxt, tss_selector, &next_tss_desc);
2957 }
2958
2959 ops->set_cr(ctxt, 0, ops->get_cr(ctxt, 0) | X86_CR0_TS);
2960 ops->set_segment(ctxt, tss_selector, &next_tss_desc, 0, VCPU_SREG_TR);
2961
2962 if (has_error_code) {
2963 ctxt->op_bytes = ctxt->ad_bytes = (next_tss_desc.type & 8) ? 4 : 2;
2964 ctxt->lock_prefix = 0;
2965 ctxt->src.val = (unsigned long) error_code;
2966 ret = em_push(ctxt);
2967 }
2968
2969 dr7 = ops->get_dr(ctxt, 7);
2970 ops->set_dr(ctxt, 7, dr7 & ~(DR_LOCAL_ENABLE_MASK | DR_LOCAL_SLOWDOWN));
2971
2972 return ret;
2973 }
2974
emulator_task_switch(struct x86_emulate_ctxt * ctxt,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)2975 int emulator_task_switch(struct x86_emulate_ctxt *ctxt,
2976 u16 tss_selector, int idt_index, int reason,
2977 bool has_error_code, u32 error_code)
2978 {
2979 int rc;
2980
2981 invalidate_registers(ctxt);
2982 ctxt->_eip = ctxt->eip;
2983 ctxt->dst.type = OP_NONE;
2984
2985 rc = emulator_do_task_switch(ctxt, tss_selector, idt_index, reason,
2986 has_error_code, error_code);
2987
2988 if (rc == X86EMUL_CONTINUE) {
2989 ctxt->eip = ctxt->_eip;
2990 writeback_registers(ctxt);
2991 }
2992
2993 return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
2994 }
2995
string_addr_inc(struct x86_emulate_ctxt * ctxt,int reg,struct operand * op)2996 static void string_addr_inc(struct x86_emulate_ctxt *ctxt, int reg,
2997 struct operand *op)
2998 {
2999 int df = (ctxt->eflags & X86_EFLAGS_DF) ? -op->count : op->count;
3000
3001 register_address_increment(ctxt, reg, df * op->bytes);
3002 op->addr.mem.ea = register_address(ctxt, reg);
3003 }
3004
em_das(struct x86_emulate_ctxt * ctxt)3005 static int em_das(struct x86_emulate_ctxt *ctxt)
3006 {
3007 u8 al, old_al;
3008 bool af, cf, old_cf;
3009
3010 cf = ctxt->eflags & X86_EFLAGS_CF;
3011 al = ctxt->dst.val;
3012
3013 old_al = al;
3014 old_cf = cf;
3015 cf = false;
3016 af = ctxt->eflags & X86_EFLAGS_AF;
3017 if ((al & 0x0f) > 9 || af) {
3018 al -= 6;
3019 cf = old_cf | (al >= 250);
3020 af = true;
3021 } else {
3022 af = false;
3023 }
3024 if (old_al > 0x99 || old_cf) {
3025 al -= 0x60;
3026 cf = true;
3027 }
3028
3029 ctxt->dst.val = al;
3030 /* Set PF, ZF, SF */
3031 ctxt->src.type = OP_IMM;
3032 ctxt->src.val = 0;
3033 ctxt->src.bytes = 1;
3034 em_or(ctxt);
3035 ctxt->eflags &= ~(X86_EFLAGS_AF | X86_EFLAGS_CF);
3036 if (cf)
3037 ctxt->eflags |= X86_EFLAGS_CF;
3038 if (af)
3039 ctxt->eflags |= X86_EFLAGS_AF;
3040 return X86EMUL_CONTINUE;
3041 }
3042
em_aam(struct x86_emulate_ctxt * ctxt)3043 static int em_aam(struct x86_emulate_ctxt *ctxt)
3044 {
3045 u8 al, ah;
3046
3047 if (ctxt->src.val == 0)
3048 return emulate_de(ctxt);
3049
3050 al = ctxt->dst.val & 0xff;
3051 ah = al / ctxt->src.val;
3052 al %= ctxt->src.val;
3053
3054 ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al | (ah << 8);
3055
3056 /* Set PF, ZF, SF */
3057 ctxt->src.type = OP_IMM;
3058 ctxt->src.val = 0;
3059 ctxt->src.bytes = 1;
3060 em_or(ctxt);
3061
3062 return X86EMUL_CONTINUE;
3063 }
3064
em_aad(struct x86_emulate_ctxt * ctxt)3065 static int em_aad(struct x86_emulate_ctxt *ctxt)
3066 {
3067 u8 al = ctxt->dst.val & 0xff;
3068 u8 ah = (ctxt->dst.val >> 8) & 0xff;
3069
3070 al = (al + (ah * ctxt->src.val)) & 0xff;
3071
3072 ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al;
3073
3074 /* Set PF, ZF, SF */
3075 ctxt->src.type = OP_IMM;
3076 ctxt->src.val = 0;
3077 ctxt->src.bytes = 1;
3078 em_or(ctxt);
3079
3080 return X86EMUL_CONTINUE;
3081 }
3082
em_call(struct x86_emulate_ctxt * ctxt)3083 static int em_call(struct x86_emulate_ctxt *ctxt)
3084 {
3085 int rc;
3086 long rel = ctxt->src.val;
3087
3088 ctxt->src.val = (unsigned long)ctxt->_eip;
3089 rc = jmp_rel(ctxt, rel);
3090 if (rc != X86EMUL_CONTINUE)
3091 return rc;
3092 return em_push(ctxt);
3093 }
3094
em_call_far(struct x86_emulate_ctxt * ctxt)3095 static int em_call_far(struct x86_emulate_ctxt *ctxt)
3096 {
3097 u16 sel, old_cs;
3098 ulong old_eip;
3099 int rc;
3100 struct desc_struct old_desc, new_desc;
3101 const struct x86_emulate_ops *ops = ctxt->ops;
3102 int cpl = ctxt->ops->cpl(ctxt);
3103 enum x86emul_mode prev_mode = ctxt->mode;
3104
3105 old_eip = ctxt->_eip;
3106 ops->get_segment(ctxt, &old_cs, &old_desc, NULL, VCPU_SREG_CS);
3107
3108 memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
3109 rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl,
3110 X86_TRANSFER_CALL_JMP, &new_desc);
3111 if (rc != X86EMUL_CONTINUE)
3112 return rc;
3113
3114 rc = assign_eip_far(ctxt, ctxt->src.val);
3115 if (rc != X86EMUL_CONTINUE)
3116 goto fail;
3117
3118 ctxt->src.val = old_cs;
3119 rc = em_push(ctxt);
3120 if (rc != X86EMUL_CONTINUE)
3121 goto fail;
3122
3123 ctxt->src.val = old_eip;
3124 rc = em_push(ctxt);
3125 /* If we failed, we tainted the memory, but the very least we should
3126 restore cs */
3127 if (rc != X86EMUL_CONTINUE) {
3128 pr_warn_once("faulting far call emulation tainted memory\n");
3129 goto fail;
3130 }
3131 return rc;
3132 fail:
3133 ops->set_segment(ctxt, old_cs, &old_desc, 0, VCPU_SREG_CS);
3134 ctxt->mode = prev_mode;
3135 return rc;
3136
3137 }
3138
em_ret_near_imm(struct x86_emulate_ctxt * ctxt)3139 static int em_ret_near_imm(struct x86_emulate_ctxt *ctxt)
3140 {
3141 int rc;
3142 unsigned long eip = 0;
3143
3144 rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
3145 if (rc != X86EMUL_CONTINUE)
3146 return rc;
3147 rc = assign_eip_near(ctxt, eip);
3148 if (rc != X86EMUL_CONTINUE)
3149 return rc;
3150 rsp_increment(ctxt, ctxt->src.val);
3151 return X86EMUL_CONTINUE;
3152 }
3153
em_xchg(struct x86_emulate_ctxt * ctxt)3154 static int em_xchg(struct x86_emulate_ctxt *ctxt)
3155 {
3156 /* Write back the register source. */
3157 ctxt->src.val = ctxt->dst.val;
3158 write_register_operand(&ctxt->src);
3159
3160 /* Write back the memory destination with implicit LOCK prefix. */
3161 ctxt->dst.val = ctxt->src.orig_val;
3162 ctxt->lock_prefix = 1;
3163 return X86EMUL_CONTINUE;
3164 }
3165
em_imul_3op(struct x86_emulate_ctxt * ctxt)3166 static int em_imul_3op(struct x86_emulate_ctxt *ctxt)
3167 {
3168 ctxt->dst.val = ctxt->src2.val;
3169 return em_imul(ctxt);
3170 }
3171
em_cwd(struct x86_emulate_ctxt * ctxt)3172 static int em_cwd(struct x86_emulate_ctxt *ctxt)
3173 {
3174 ctxt->dst.type = OP_REG;
3175 ctxt->dst.bytes = ctxt->src.bytes;
3176 ctxt->dst.addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
3177 ctxt->dst.val = ~((ctxt->src.val >> (ctxt->src.bytes * 8 - 1)) - 1);
3178
3179 return X86EMUL_CONTINUE;
3180 }
3181
em_rdpid(struct x86_emulate_ctxt * ctxt)3182 static int em_rdpid(struct x86_emulate_ctxt *ctxt)
3183 {
3184 u64 tsc_aux = 0;
3185
3186 if (!ctxt->ops->guest_has_rdpid(ctxt))
3187 return emulate_ud(ctxt);
3188
3189 ctxt->ops->get_msr(ctxt, MSR_TSC_AUX, &tsc_aux);
3190 ctxt->dst.val = tsc_aux;
3191 return X86EMUL_CONTINUE;
3192 }
3193
em_rdtsc(struct x86_emulate_ctxt * ctxt)3194 static int em_rdtsc(struct x86_emulate_ctxt *ctxt)
3195 {
3196 u64 tsc = 0;
3197
3198 ctxt->ops->get_msr(ctxt, MSR_IA32_TSC, &tsc);
3199 *reg_write(ctxt, VCPU_REGS_RAX) = (u32)tsc;
3200 *reg_write(ctxt, VCPU_REGS_RDX) = tsc >> 32;
3201 return X86EMUL_CONTINUE;
3202 }
3203
em_rdpmc(struct x86_emulate_ctxt * ctxt)3204 static int em_rdpmc(struct x86_emulate_ctxt *ctxt)
3205 {
3206 u64 pmc;
3207
3208 if (ctxt->ops->read_pmc(ctxt, reg_read(ctxt, VCPU_REGS_RCX), &pmc))
3209 return emulate_gp(ctxt, 0);
3210 *reg_write(ctxt, VCPU_REGS_RAX) = (u32)pmc;
3211 *reg_write(ctxt, VCPU_REGS_RDX) = pmc >> 32;
3212 return X86EMUL_CONTINUE;
3213 }
3214
em_mov(struct x86_emulate_ctxt * ctxt)3215 static int em_mov(struct x86_emulate_ctxt *ctxt)
3216 {
3217 memcpy(ctxt->dst.valptr, ctxt->src.valptr, sizeof(ctxt->src.valptr));
3218 return X86EMUL_CONTINUE;
3219 }
3220
em_movbe(struct x86_emulate_ctxt * ctxt)3221 static int em_movbe(struct x86_emulate_ctxt *ctxt)
3222 {
3223 u16 tmp;
3224
3225 if (!ctxt->ops->guest_has_movbe(ctxt))
3226 return emulate_ud(ctxt);
3227
3228 switch (ctxt->op_bytes) {
3229 case 2:
3230 /*
3231 * From MOVBE definition: "...When the operand size is 16 bits,
3232 * the upper word of the destination register remains unchanged
3233 * ..."
3234 *
3235 * Both casting ->valptr and ->val to u16 breaks strict aliasing
3236 * rules so we have to do the operation almost per hand.
3237 */
3238 tmp = (u16)ctxt->src.val;
3239 ctxt->dst.val &= ~0xffffUL;
3240 ctxt->dst.val |= (unsigned long)swab16(tmp);
3241 break;
3242 case 4:
3243 ctxt->dst.val = swab32((u32)ctxt->src.val);
3244 break;
3245 case 8:
3246 ctxt->dst.val = swab64(ctxt->src.val);
3247 break;
3248 default:
3249 BUG();
3250 }
3251 return X86EMUL_CONTINUE;
3252 }
3253
em_cr_write(struct x86_emulate_ctxt * ctxt)3254 static int em_cr_write(struct x86_emulate_ctxt *ctxt)
3255 {
3256 int cr_num = ctxt->modrm_reg;
3257 int r;
3258
3259 if (ctxt->ops->set_cr(ctxt, cr_num, ctxt->src.val))
3260 return emulate_gp(ctxt, 0);
3261
3262 /* Disable writeback. */
3263 ctxt->dst.type = OP_NONE;
3264
3265 if (cr_num == 0) {
3266 /*
3267 * CR0 write might have updated CR0.PE and/or CR0.PG
3268 * which can affect the cpu's execution mode.
3269 */
3270 r = emulator_recalc_and_set_mode(ctxt);
3271 if (r != X86EMUL_CONTINUE)
3272 return r;
3273 }
3274
3275 return X86EMUL_CONTINUE;
3276 }
3277
em_dr_write(struct x86_emulate_ctxt * ctxt)3278 static int em_dr_write(struct x86_emulate_ctxt *ctxt)
3279 {
3280 unsigned long val;
3281
3282 if (ctxt->mode == X86EMUL_MODE_PROT64)
3283 val = ctxt->src.val & ~0ULL;
3284 else
3285 val = ctxt->src.val & ~0U;
3286
3287 /* #UD condition is already handled. */
3288 if (ctxt->ops->set_dr(ctxt, ctxt->modrm_reg, val) < 0)
3289 return emulate_gp(ctxt, 0);
3290
3291 /* Disable writeback. */
3292 ctxt->dst.type = OP_NONE;
3293 return X86EMUL_CONTINUE;
3294 }
3295
em_wrmsr(struct x86_emulate_ctxt * ctxt)3296 static int em_wrmsr(struct x86_emulate_ctxt *ctxt)
3297 {
3298 u64 msr_index = reg_read(ctxt, VCPU_REGS_RCX);
3299 u64 msr_data;
3300 int r;
3301
3302 msr_data = (u32)reg_read(ctxt, VCPU_REGS_RAX)
3303 | ((u64)reg_read(ctxt, VCPU_REGS_RDX) << 32);
3304 r = ctxt->ops->set_msr_with_filter(ctxt, msr_index, msr_data);
3305
3306 if (r == X86EMUL_PROPAGATE_FAULT)
3307 return emulate_gp(ctxt, 0);
3308
3309 return r;
3310 }
3311
em_rdmsr(struct x86_emulate_ctxt * ctxt)3312 static int em_rdmsr(struct x86_emulate_ctxt *ctxt)
3313 {
3314 u64 msr_index = reg_read(ctxt, VCPU_REGS_RCX);
3315 u64 msr_data;
3316 int r;
3317
3318 r = ctxt->ops->get_msr_with_filter(ctxt, msr_index, &msr_data);
3319
3320 if (r == X86EMUL_PROPAGATE_FAULT)
3321 return emulate_gp(ctxt, 0);
3322
3323 if (r == X86EMUL_CONTINUE) {
3324 *reg_write(ctxt, VCPU_REGS_RAX) = (u32)msr_data;
3325 *reg_write(ctxt, VCPU_REGS_RDX) = msr_data >> 32;
3326 }
3327 return r;
3328 }
3329
em_store_sreg(struct x86_emulate_ctxt * ctxt,int segment)3330 static int em_store_sreg(struct x86_emulate_ctxt *ctxt, int segment)
3331 {
3332 if (segment > VCPU_SREG_GS &&
3333 (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) &&
3334 ctxt->ops->cpl(ctxt) > 0)
3335 return emulate_gp(ctxt, 0);
3336
3337 ctxt->dst.val = get_segment_selector(ctxt, segment);
3338 if (ctxt->dst.bytes == 4 && ctxt->dst.type == OP_MEM)
3339 ctxt->dst.bytes = 2;
3340 return X86EMUL_CONTINUE;
3341 }
3342
em_mov_rm_sreg(struct x86_emulate_ctxt * ctxt)3343 static int em_mov_rm_sreg(struct x86_emulate_ctxt *ctxt)
3344 {
3345 if (ctxt->modrm_reg > VCPU_SREG_GS)
3346 return emulate_ud(ctxt);
3347
3348 return em_store_sreg(ctxt, ctxt->modrm_reg);
3349 }
3350
em_mov_sreg_rm(struct x86_emulate_ctxt * ctxt)3351 static int em_mov_sreg_rm(struct x86_emulate_ctxt *ctxt)
3352 {
3353 u16 sel = ctxt->src.val;
3354
3355 if (ctxt->modrm_reg == VCPU_SREG_CS || ctxt->modrm_reg > VCPU_SREG_GS)
3356 return emulate_ud(ctxt);
3357
3358 if (ctxt->modrm_reg == VCPU_SREG_SS)
3359 ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
3360
3361 /* Disable writeback. */
3362 ctxt->dst.type = OP_NONE;
3363 return load_segment_descriptor(ctxt, sel, ctxt->modrm_reg);
3364 }
3365
em_sldt(struct x86_emulate_ctxt * ctxt)3366 static int em_sldt(struct x86_emulate_ctxt *ctxt)
3367 {
3368 return em_store_sreg(ctxt, VCPU_SREG_LDTR);
3369 }
3370
em_lldt(struct x86_emulate_ctxt * ctxt)3371 static int em_lldt(struct x86_emulate_ctxt *ctxt)
3372 {
3373 u16 sel = ctxt->src.val;
3374
3375 /* Disable writeback. */
3376 ctxt->dst.type = OP_NONE;
3377 return load_segment_descriptor(ctxt, sel, VCPU_SREG_LDTR);
3378 }
3379
em_str(struct x86_emulate_ctxt * ctxt)3380 static int em_str(struct x86_emulate_ctxt *ctxt)
3381 {
3382 return em_store_sreg(ctxt, VCPU_SREG_TR);
3383 }
3384
em_ltr(struct x86_emulate_ctxt * ctxt)3385 static int em_ltr(struct x86_emulate_ctxt *ctxt)
3386 {
3387 u16 sel = ctxt->src.val;
3388
3389 /* Disable writeback. */
3390 ctxt->dst.type = OP_NONE;
3391 return load_segment_descriptor(ctxt, sel, VCPU_SREG_TR);
3392 }
3393
em_invlpg(struct x86_emulate_ctxt * ctxt)3394 static int em_invlpg(struct x86_emulate_ctxt *ctxt)
3395 {
3396 int rc;
3397 ulong linear;
3398 unsigned int max_size;
3399
3400 rc = __linearize(ctxt, ctxt->src.addr.mem, &max_size, 1, ctxt->mode,
3401 &linear, X86EMUL_F_INVLPG);
3402 if (rc == X86EMUL_CONTINUE)
3403 ctxt->ops->invlpg(ctxt, linear);
3404 /* Disable writeback. */
3405 ctxt->dst.type = OP_NONE;
3406 return X86EMUL_CONTINUE;
3407 }
3408
em_clts(struct x86_emulate_ctxt * ctxt)3409 static int em_clts(struct x86_emulate_ctxt *ctxt)
3410 {
3411 ulong cr0;
3412
3413 cr0 = ctxt->ops->get_cr(ctxt, 0);
3414 cr0 &= ~X86_CR0_TS;
3415 ctxt->ops->set_cr(ctxt, 0, cr0);
3416 return X86EMUL_CONTINUE;
3417 }
3418
em_hypercall(struct x86_emulate_ctxt * ctxt)3419 static int em_hypercall(struct x86_emulate_ctxt *ctxt)
3420 {
3421 int rc = ctxt->ops->fix_hypercall(ctxt);
3422
3423 if (rc != X86EMUL_CONTINUE)
3424 return rc;
3425
3426 /* Let the processor re-execute the fixed hypercall */
3427 ctxt->_eip = ctxt->eip;
3428 /* Disable writeback. */
3429 ctxt->dst.type = OP_NONE;
3430 return X86EMUL_CONTINUE;
3431 }
3432
emulate_store_desc_ptr(struct x86_emulate_ctxt * ctxt,void (* get)(struct x86_emulate_ctxt * ctxt,struct desc_ptr * ptr))3433 static int emulate_store_desc_ptr(struct x86_emulate_ctxt *ctxt,
3434 void (*get)(struct x86_emulate_ctxt *ctxt,
3435 struct desc_ptr *ptr))
3436 {
3437 struct desc_ptr desc_ptr;
3438
3439 if ((ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) &&
3440 ctxt->ops->cpl(ctxt) > 0)
3441 return emulate_gp(ctxt, 0);
3442
3443 if (ctxt->mode == X86EMUL_MODE_PROT64)
3444 ctxt->op_bytes = 8;
3445 get(ctxt, &desc_ptr);
3446 if (ctxt->op_bytes == 2) {
3447 ctxt->op_bytes = 4;
3448 desc_ptr.address &= 0x00ffffff;
3449 }
3450 /* Disable writeback. */
3451 ctxt->dst.type = OP_NONE;
3452 return segmented_write_std(ctxt, ctxt->dst.addr.mem,
3453 &desc_ptr, 2 + ctxt->op_bytes);
3454 }
3455
em_sgdt(struct x86_emulate_ctxt * ctxt)3456 static int em_sgdt(struct x86_emulate_ctxt *ctxt)
3457 {
3458 return emulate_store_desc_ptr(ctxt, ctxt->ops->get_gdt);
3459 }
3460
em_sidt(struct x86_emulate_ctxt * ctxt)3461 static int em_sidt(struct x86_emulate_ctxt *ctxt)
3462 {
3463 return emulate_store_desc_ptr(ctxt, ctxt->ops->get_idt);
3464 }
3465
em_lgdt_lidt(struct x86_emulate_ctxt * ctxt,bool lgdt)3466 static int em_lgdt_lidt(struct x86_emulate_ctxt *ctxt, bool lgdt)
3467 {
3468 struct desc_ptr desc_ptr;
3469 int rc;
3470
3471 if (ctxt->mode == X86EMUL_MODE_PROT64)
3472 ctxt->op_bytes = 8;
3473 rc = read_descriptor(ctxt, ctxt->src.addr.mem,
3474 &desc_ptr.size, &desc_ptr.address,
3475 ctxt->op_bytes);
3476 if (rc != X86EMUL_CONTINUE)
3477 return rc;
3478 if (ctxt->mode == X86EMUL_MODE_PROT64 &&
3479 emul_is_noncanonical_address(desc_ptr.address, ctxt,
3480 X86EMUL_F_DT_LOAD))
3481 return emulate_gp(ctxt, 0);
3482 if (lgdt)
3483 ctxt->ops->set_gdt(ctxt, &desc_ptr);
3484 else
3485 ctxt->ops->set_idt(ctxt, &desc_ptr);
3486 /* Disable writeback. */
3487 ctxt->dst.type = OP_NONE;
3488 return X86EMUL_CONTINUE;
3489 }
3490
em_lgdt(struct x86_emulate_ctxt * ctxt)3491 static int em_lgdt(struct x86_emulate_ctxt *ctxt)
3492 {
3493 return em_lgdt_lidt(ctxt, true);
3494 }
3495
em_lidt(struct x86_emulate_ctxt * ctxt)3496 static int em_lidt(struct x86_emulate_ctxt *ctxt)
3497 {
3498 return em_lgdt_lidt(ctxt, false);
3499 }
3500
em_smsw(struct x86_emulate_ctxt * ctxt)3501 static int em_smsw(struct x86_emulate_ctxt *ctxt)
3502 {
3503 if ((ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) &&
3504 ctxt->ops->cpl(ctxt) > 0)
3505 return emulate_gp(ctxt, 0);
3506
3507 if (ctxt->dst.type == OP_MEM)
3508 ctxt->dst.bytes = 2;
3509 ctxt->dst.val = ctxt->ops->get_cr(ctxt, 0);
3510 return X86EMUL_CONTINUE;
3511 }
3512
em_lmsw(struct x86_emulate_ctxt * ctxt)3513 static int em_lmsw(struct x86_emulate_ctxt *ctxt)
3514 {
3515 ctxt->ops->set_cr(ctxt, 0, (ctxt->ops->get_cr(ctxt, 0) & ~0x0eul)
3516 | (ctxt->src.val & 0x0f));
3517 ctxt->dst.type = OP_NONE;
3518 return X86EMUL_CONTINUE;
3519 }
3520
em_loop(struct x86_emulate_ctxt * ctxt)3521 static int em_loop(struct x86_emulate_ctxt *ctxt)
3522 {
3523 int rc = X86EMUL_CONTINUE;
3524
3525 register_address_increment(ctxt, VCPU_REGS_RCX, -1);
3526 if ((address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) != 0) &&
3527 (ctxt->b == 0xe2 || test_cc(ctxt->b ^ 0x5, ctxt->eflags)))
3528 rc = jmp_rel(ctxt, ctxt->src.val);
3529
3530 return rc;
3531 }
3532
em_jcxz(struct x86_emulate_ctxt * ctxt)3533 static int em_jcxz(struct x86_emulate_ctxt *ctxt)
3534 {
3535 int rc = X86EMUL_CONTINUE;
3536
3537 if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0)
3538 rc = jmp_rel(ctxt, ctxt->src.val);
3539
3540 return rc;
3541 }
3542
em_in(struct x86_emulate_ctxt * ctxt)3543 static int em_in(struct x86_emulate_ctxt *ctxt)
3544 {
3545 if (!pio_in_emulated(ctxt, ctxt->dst.bytes, ctxt->src.val,
3546 &ctxt->dst.val))
3547 return X86EMUL_IO_NEEDED;
3548
3549 return X86EMUL_CONTINUE;
3550 }
3551
em_out(struct x86_emulate_ctxt * ctxt)3552 static int em_out(struct x86_emulate_ctxt *ctxt)
3553 {
3554 ctxt->ops->pio_out_emulated(ctxt, ctxt->src.bytes, ctxt->dst.val,
3555 &ctxt->src.val, 1);
3556 /* Disable writeback. */
3557 ctxt->dst.type = OP_NONE;
3558 return X86EMUL_CONTINUE;
3559 }
3560
em_cli(struct x86_emulate_ctxt * ctxt)3561 static int em_cli(struct x86_emulate_ctxt *ctxt)
3562 {
3563 if (emulator_bad_iopl(ctxt))
3564 return emulate_gp(ctxt, 0);
3565
3566 ctxt->eflags &= ~X86_EFLAGS_IF;
3567 return X86EMUL_CONTINUE;
3568 }
3569
em_sti(struct x86_emulate_ctxt * ctxt)3570 static int em_sti(struct x86_emulate_ctxt *ctxt)
3571 {
3572 if (emulator_bad_iopl(ctxt))
3573 return emulate_gp(ctxt, 0);
3574
3575 ctxt->interruptibility = KVM_X86_SHADOW_INT_STI;
3576 ctxt->eflags |= X86_EFLAGS_IF;
3577 return X86EMUL_CONTINUE;
3578 }
3579
em_cpuid(struct x86_emulate_ctxt * ctxt)3580 static int em_cpuid(struct x86_emulate_ctxt *ctxt)
3581 {
3582 u32 eax, ebx, ecx, edx;
3583 u64 msr = 0;
3584
3585 ctxt->ops->get_msr(ctxt, MSR_MISC_FEATURES_ENABLES, &msr);
3586 if (msr & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3587 ctxt->ops->cpl(ctxt)) {
3588 return emulate_gp(ctxt, 0);
3589 }
3590
3591 eax = reg_read(ctxt, VCPU_REGS_RAX);
3592 ecx = reg_read(ctxt, VCPU_REGS_RCX);
3593 ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, false);
3594 *reg_write(ctxt, VCPU_REGS_RAX) = eax;
3595 *reg_write(ctxt, VCPU_REGS_RBX) = ebx;
3596 *reg_write(ctxt, VCPU_REGS_RCX) = ecx;
3597 *reg_write(ctxt, VCPU_REGS_RDX) = edx;
3598 return X86EMUL_CONTINUE;
3599 }
3600
em_sahf(struct x86_emulate_ctxt * ctxt)3601 static int em_sahf(struct x86_emulate_ctxt *ctxt)
3602 {
3603 u32 flags;
3604
3605 flags = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
3606 X86_EFLAGS_SF;
3607 flags &= *reg_rmw(ctxt, VCPU_REGS_RAX) >> 8;
3608
3609 ctxt->eflags &= ~0xffUL;
3610 ctxt->eflags |= flags | X86_EFLAGS_FIXED;
3611 return X86EMUL_CONTINUE;
3612 }
3613
em_lahf(struct x86_emulate_ctxt * ctxt)3614 static int em_lahf(struct x86_emulate_ctxt *ctxt)
3615 {
3616 *reg_rmw(ctxt, VCPU_REGS_RAX) &= ~0xff00UL;
3617 *reg_rmw(ctxt, VCPU_REGS_RAX) |= (ctxt->eflags & 0xff) << 8;
3618 return X86EMUL_CONTINUE;
3619 }
3620
em_bswap(struct x86_emulate_ctxt * ctxt)3621 static int em_bswap(struct x86_emulate_ctxt *ctxt)
3622 {
3623 switch (ctxt->op_bytes) {
3624 #ifdef CONFIG_X86_64
3625 case 8:
3626 asm("bswap %0" : "+r"(ctxt->dst.val));
3627 break;
3628 #endif
3629 default:
3630 asm("bswap %0" : "+r"(*(u32 *)&ctxt->dst.val));
3631 break;
3632 }
3633 return X86EMUL_CONTINUE;
3634 }
3635
em_clflush(struct x86_emulate_ctxt * ctxt)3636 static int em_clflush(struct x86_emulate_ctxt *ctxt)
3637 {
3638 /* emulating clflush regardless of cpuid */
3639 return X86EMUL_CONTINUE;
3640 }
3641
em_clflushopt(struct x86_emulate_ctxt * ctxt)3642 static int em_clflushopt(struct x86_emulate_ctxt *ctxt)
3643 {
3644 /* emulating clflushopt regardless of cpuid */
3645 return X86EMUL_CONTINUE;
3646 }
3647
em_movsxd(struct x86_emulate_ctxt * ctxt)3648 static int em_movsxd(struct x86_emulate_ctxt *ctxt)
3649 {
3650 ctxt->dst.val = (s32) ctxt->src.val;
3651 return X86EMUL_CONTINUE;
3652 }
3653
check_fxsr(struct x86_emulate_ctxt * ctxt)3654 static int check_fxsr(struct x86_emulate_ctxt *ctxt)
3655 {
3656 if (!ctxt->ops->guest_has_fxsr(ctxt))
3657 return emulate_ud(ctxt);
3658
3659 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
3660 return emulate_nm(ctxt);
3661
3662 /*
3663 * Don't emulate a case that should never be hit, instead of working
3664 * around a lack of fxsave64/fxrstor64 on old compilers.
3665 */
3666 if (ctxt->mode >= X86EMUL_MODE_PROT64)
3667 return X86EMUL_UNHANDLEABLE;
3668
3669 return X86EMUL_CONTINUE;
3670 }
3671
3672 /*
3673 * Hardware doesn't save and restore XMM 0-7 without CR4.OSFXSR, but does save
3674 * and restore MXCSR.
3675 */
__fxstate_size(int nregs)3676 static size_t __fxstate_size(int nregs)
3677 {
3678 return offsetof(struct fxregs_state, xmm_space[0]) + nregs * 16;
3679 }
3680
fxstate_size(struct x86_emulate_ctxt * ctxt)3681 static inline size_t fxstate_size(struct x86_emulate_ctxt *ctxt)
3682 {
3683 bool cr4_osfxsr;
3684 if (ctxt->mode == X86EMUL_MODE_PROT64)
3685 return __fxstate_size(16);
3686
3687 cr4_osfxsr = ctxt->ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR;
3688 return __fxstate_size(cr4_osfxsr ? 8 : 0);
3689 }
3690
3691 /*
3692 * FXSAVE and FXRSTOR have 4 different formats depending on execution mode,
3693 * 1) 16 bit mode
3694 * 2) 32 bit mode
3695 * - like (1), but FIP and FDP (foo) are only 16 bit. At least Intel CPUs
3696 * preserve whole 32 bit values, though, so (1) and (2) are the same wrt.
3697 * save and restore
3698 * 3) 64-bit mode with REX.W prefix
3699 * - like (2), but XMM 8-15 are being saved and restored
3700 * 4) 64-bit mode without REX.W prefix
3701 * - like (3), but FIP and FDP are 64 bit
3702 *
3703 * Emulation uses (3) for (1) and (2) and preserves XMM 8-15 to reach the
3704 * desired result. (4) is not emulated.
3705 *
3706 * Note: Guest and host CPUID.(EAX=07H,ECX=0H):EBX[bit 13] (deprecate FPU CS
3707 * and FPU DS) should match.
3708 */
em_fxsave(struct x86_emulate_ctxt * ctxt)3709 static int em_fxsave(struct x86_emulate_ctxt *ctxt)
3710 {
3711 struct fxregs_state fx_state;
3712 int rc;
3713
3714 rc = check_fxsr(ctxt);
3715 if (rc != X86EMUL_CONTINUE)
3716 return rc;
3717
3718 kvm_fpu_get();
3719
3720 rc = asm_safe("fxsave %[fx]", , [fx] "+m"(fx_state));
3721
3722 kvm_fpu_put();
3723
3724 if (rc != X86EMUL_CONTINUE)
3725 return rc;
3726
3727 return segmented_write_std(ctxt, ctxt->memop.addr.mem, &fx_state,
3728 fxstate_size(ctxt));
3729 }
3730
3731 /*
3732 * FXRSTOR might restore XMM registers not provided by the guest. Fill
3733 * in the host registers (via FXSAVE) instead, so they won't be modified.
3734 * (preemption has to stay disabled until FXRSTOR).
3735 *
3736 * Use noinline to keep the stack for other functions called by callers small.
3737 */
fxregs_fixup(struct fxregs_state * fx_state,const size_t used_size)3738 static noinline int fxregs_fixup(struct fxregs_state *fx_state,
3739 const size_t used_size)
3740 {
3741 struct fxregs_state fx_tmp;
3742 int rc;
3743
3744 rc = asm_safe("fxsave %[fx]", , [fx] "+m"(fx_tmp));
3745 memcpy((void *)fx_state + used_size, (void *)&fx_tmp + used_size,
3746 __fxstate_size(16) - used_size);
3747
3748 return rc;
3749 }
3750
em_fxrstor(struct x86_emulate_ctxt * ctxt)3751 static int em_fxrstor(struct x86_emulate_ctxt *ctxt)
3752 {
3753 struct fxregs_state fx_state;
3754 int rc;
3755 size_t size;
3756
3757 rc = check_fxsr(ctxt);
3758 if (rc != X86EMUL_CONTINUE)
3759 return rc;
3760
3761 size = fxstate_size(ctxt);
3762 rc = segmented_read_std(ctxt, ctxt->memop.addr.mem, &fx_state, size);
3763 if (rc != X86EMUL_CONTINUE)
3764 return rc;
3765
3766 kvm_fpu_get();
3767
3768 if (size < __fxstate_size(16)) {
3769 rc = fxregs_fixup(&fx_state, size);
3770 if (rc != X86EMUL_CONTINUE)
3771 goto out;
3772 }
3773
3774 if (fx_state.mxcsr >> 16) {
3775 rc = emulate_gp(ctxt, 0);
3776 goto out;
3777 }
3778
3779 if (rc == X86EMUL_CONTINUE)
3780 rc = asm_safe("fxrstor %[fx]", : [fx] "m"(fx_state));
3781
3782 out:
3783 kvm_fpu_put();
3784
3785 return rc;
3786 }
3787
em_xsetbv(struct x86_emulate_ctxt * ctxt)3788 static int em_xsetbv(struct x86_emulate_ctxt *ctxt)
3789 {
3790 u32 eax, ecx, edx;
3791
3792 if (!(ctxt->ops->get_cr(ctxt, 4) & X86_CR4_OSXSAVE))
3793 return emulate_ud(ctxt);
3794
3795 eax = reg_read(ctxt, VCPU_REGS_RAX);
3796 edx = reg_read(ctxt, VCPU_REGS_RDX);
3797 ecx = reg_read(ctxt, VCPU_REGS_RCX);
3798
3799 if (ctxt->ops->set_xcr(ctxt, ecx, ((u64)edx << 32) | eax))
3800 return emulate_gp(ctxt, 0);
3801
3802 return X86EMUL_CONTINUE;
3803 }
3804
valid_cr(int nr)3805 static bool valid_cr(int nr)
3806 {
3807 switch (nr) {
3808 case 0:
3809 case 2 ... 4:
3810 case 8:
3811 return true;
3812 default:
3813 return false;
3814 }
3815 }
3816
check_cr_access(struct x86_emulate_ctxt * ctxt)3817 static int check_cr_access(struct x86_emulate_ctxt *ctxt)
3818 {
3819 if (!valid_cr(ctxt->modrm_reg))
3820 return emulate_ud(ctxt);
3821
3822 return X86EMUL_CONTINUE;
3823 }
3824
check_dr_read(struct x86_emulate_ctxt * ctxt)3825 static int check_dr_read(struct x86_emulate_ctxt *ctxt)
3826 {
3827 int dr = ctxt->modrm_reg;
3828 u64 cr4;
3829
3830 if (dr > 7)
3831 return emulate_ud(ctxt);
3832
3833 cr4 = ctxt->ops->get_cr(ctxt, 4);
3834 if ((cr4 & X86_CR4_DE) && (dr == 4 || dr == 5))
3835 return emulate_ud(ctxt);
3836
3837 if (ctxt->ops->get_dr(ctxt, 7) & DR7_GD) {
3838 ulong dr6;
3839
3840 dr6 = ctxt->ops->get_dr(ctxt, 6);
3841 dr6 &= ~DR_TRAP_BITS;
3842 dr6 |= DR6_BD | DR6_ACTIVE_LOW;
3843 ctxt->ops->set_dr(ctxt, 6, dr6);
3844 return emulate_db(ctxt);
3845 }
3846
3847 return X86EMUL_CONTINUE;
3848 }
3849
check_dr_write(struct x86_emulate_ctxt * ctxt)3850 static int check_dr_write(struct x86_emulate_ctxt *ctxt)
3851 {
3852 u64 new_val = ctxt->src.val64;
3853 int dr = ctxt->modrm_reg;
3854
3855 if ((dr == 6 || dr == 7) && (new_val & 0xffffffff00000000ULL))
3856 return emulate_gp(ctxt, 0);
3857
3858 return check_dr_read(ctxt);
3859 }
3860
check_svme(struct x86_emulate_ctxt * ctxt)3861 static int check_svme(struct x86_emulate_ctxt *ctxt)
3862 {
3863 u64 efer = 0;
3864
3865 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
3866
3867 if (!(efer & EFER_SVME))
3868 return emulate_ud(ctxt);
3869
3870 return X86EMUL_CONTINUE;
3871 }
3872
check_svme_pa(struct x86_emulate_ctxt * ctxt)3873 static int check_svme_pa(struct x86_emulate_ctxt *ctxt)
3874 {
3875 u64 rax = reg_read(ctxt, VCPU_REGS_RAX);
3876
3877 /* Valid physical address? */
3878 if (rax & 0xffff000000000000ULL)
3879 return emulate_gp(ctxt, 0);
3880
3881 return check_svme(ctxt);
3882 }
3883
check_rdtsc(struct x86_emulate_ctxt * ctxt)3884 static int check_rdtsc(struct x86_emulate_ctxt *ctxt)
3885 {
3886 u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
3887
3888 if (cr4 & X86_CR4_TSD && ctxt->ops->cpl(ctxt))
3889 return emulate_gp(ctxt, 0);
3890
3891 return X86EMUL_CONTINUE;
3892 }
3893
check_rdpmc(struct x86_emulate_ctxt * ctxt)3894 static int check_rdpmc(struct x86_emulate_ctxt *ctxt)
3895 {
3896 u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
3897 u64 rcx = reg_read(ctxt, VCPU_REGS_RCX);
3898
3899 /*
3900 * VMware allows access to these Pseduo-PMCs even when read via RDPMC
3901 * in Ring3 when CR4.PCE=0.
3902 */
3903 if (enable_vmware_backdoor && is_vmware_backdoor_pmc(rcx))
3904 return X86EMUL_CONTINUE;
3905
3906 /*
3907 * If CR4.PCE is set, the SDM requires CPL=0 or CR0.PE=0. The CR0.PE
3908 * check however is unnecessary because CPL is always 0 outside
3909 * protected mode.
3910 */
3911 if ((!(cr4 & X86_CR4_PCE) && ctxt->ops->cpl(ctxt)) ||
3912 ctxt->ops->check_rdpmc_early(ctxt, rcx))
3913 return emulate_gp(ctxt, 0);
3914
3915 return X86EMUL_CONTINUE;
3916 }
3917
check_perm_in(struct x86_emulate_ctxt * ctxt)3918 static int check_perm_in(struct x86_emulate_ctxt *ctxt)
3919 {
3920 ctxt->dst.bytes = min(ctxt->dst.bytes, 4u);
3921 if (!emulator_io_permitted(ctxt, ctxt->src.val, ctxt->dst.bytes))
3922 return emulate_gp(ctxt, 0);
3923
3924 return X86EMUL_CONTINUE;
3925 }
3926
check_perm_out(struct x86_emulate_ctxt * ctxt)3927 static int check_perm_out(struct x86_emulate_ctxt *ctxt)
3928 {
3929 ctxt->src.bytes = min(ctxt->src.bytes, 4u);
3930 if (!emulator_io_permitted(ctxt, ctxt->dst.val, ctxt->src.bytes))
3931 return emulate_gp(ctxt, 0);
3932
3933 return X86EMUL_CONTINUE;
3934 }
3935
3936 #define D(_y) { .flags = (_y) }
3937 #define DI(_y, _i) { .flags = (_y)|Intercept, .intercept = x86_intercept_##_i }
3938 #define DIP(_y, _i, _p) { .flags = (_y)|Intercept|CheckPerm, \
3939 .intercept = x86_intercept_##_i, .check_perm = (_p) }
3940 #define N D(NotImpl)
3941 #define EXT(_f, _e) { .flags = ((_f) | RMExt), .u.group = (_e) }
3942 #define G(_f, _g) { .flags = ((_f) | Group | ModRM), .u.group = (_g) }
3943 #define GD(_f, _g) { .flags = ((_f) | GroupDual | ModRM), .u.gdual = (_g) }
3944 #define ID(_f, _i) { .flags = ((_f) | InstrDual | ModRM), .u.idual = (_i) }
3945 #define MD(_f, _m) { .flags = ((_f) | ModeDual), .u.mdual = (_m) }
3946 #define E(_f, _e) { .flags = ((_f) | Escape | ModRM), .u.esc = (_e) }
3947 #define I(_f, _e) { .flags = (_f), .u.execute = (_e) }
3948 #define II(_f, _e, _i) \
3949 { .flags = (_f)|Intercept, .u.execute = (_e), .intercept = x86_intercept_##_i }
3950 #define IIP(_f, _e, _i, _p) \
3951 { .flags = (_f)|Intercept|CheckPerm, .u.execute = (_e), \
3952 .intercept = x86_intercept_##_i, .check_perm = (_p) }
3953 #define GP(_f, _g) { .flags = ((_f) | Prefix), .u.gprefix = (_g) }
3954
3955 #define D2bv(_f) D((_f) | ByteOp), D(_f)
3956 #define D2bvIP(_f, _i, _p) DIP((_f) | ByteOp, _i, _p), DIP(_f, _i, _p)
3957 #define I2bv(_f, _e) I((_f) | ByteOp, _e), I(_f, _e)
3958 #define F2bv(_f, _e) F((_f) | ByteOp, _e), F(_f, _e)
3959 #define I2bvIP(_f, _e, _i, _p) \
3960 IIP((_f) | ByteOp, _e, _i, _p), IIP(_f, _e, _i, _p)
3961
3962 #define I6ALU(_f, _e) I2bv((_f) | DstMem | SrcReg | ModRM, _e), \
3963 I2bv(((_f) | DstReg | SrcMem | ModRM) & ~Lock, _e), \
3964 I2bv(((_f) & ~Lock) | DstAcc | SrcImm, _e)
3965
3966 static const struct opcode ud = I(SrcNone, emulate_ud);
3967
3968 static const struct opcode group7_rm0[] = {
3969 N,
3970 I(SrcNone | Priv | EmulateOnUD, em_hypercall),
3971 N, N, N, N, N, N,
3972 };
3973
3974 static const struct opcode group7_rm1[] = {
3975 DI(SrcNone | Priv, monitor),
3976 DI(SrcNone | Priv, mwait),
3977 N, N, N, N, N, N,
3978 };
3979
3980 static const struct opcode group7_rm2[] = {
3981 N,
3982 II(ImplicitOps | Priv, em_xsetbv, xsetbv),
3983 N, N, N, N, N, N,
3984 };
3985
3986 static const struct opcode group7_rm3[] = {
3987 DIP(SrcNone | Prot | Priv, vmrun, check_svme_pa),
3988 II(SrcNone | Prot | EmulateOnUD, em_hypercall, vmmcall),
3989 DIP(SrcNone | Prot | Priv, vmload, check_svme_pa),
3990 DIP(SrcNone | Prot | Priv, vmsave, check_svme_pa),
3991 DIP(SrcNone | Prot | Priv, stgi, check_svme),
3992 DIP(SrcNone | Prot | Priv, clgi, check_svme),
3993 DIP(SrcNone | Prot | Priv, skinit, check_svme),
3994 DIP(SrcNone | Prot | Priv, invlpga, check_svme),
3995 };
3996
3997 static const struct opcode group7_rm7[] = {
3998 N,
3999 DIP(SrcNone, rdtscp, check_rdtsc),
4000 N, N, N, N, N, N,
4001 };
4002
4003 static const struct opcode group1[] = {
4004 I(Lock, em_add),
4005 I(Lock | PageTable, em_or),
4006 I(Lock, em_adc),
4007 I(Lock, em_sbb),
4008 I(Lock | PageTable, em_and),
4009 I(Lock, em_sub),
4010 I(Lock, em_xor),
4011 I(NoWrite, em_cmp),
4012 };
4013
4014 static const struct opcode group1A[] = {
4015 I(DstMem | SrcNone | Mov | Stack | IncSP | TwoMemOp, em_pop), N, N, N, N, N, N, N,
4016 };
4017
4018 static const struct opcode group2[] = {
4019 I(DstMem | ModRM, em_rol),
4020 I(DstMem | ModRM, em_ror),
4021 I(DstMem | ModRM, em_rcl),
4022 I(DstMem | ModRM, em_rcr),
4023 I(DstMem | ModRM, em_shl),
4024 I(DstMem | ModRM, em_shr),
4025 I(DstMem | ModRM, em_shl),
4026 I(DstMem | ModRM, em_sar),
4027 };
4028
4029 static const struct opcode group3[] = {
4030 I(DstMem | SrcImm | NoWrite, em_test),
4031 I(DstMem | SrcImm | NoWrite, em_test),
4032 I(DstMem | SrcNone | Lock, em_not),
4033 I(DstMem | SrcNone | Lock, em_neg),
4034 I(DstXacc | Src2Mem, em_mul_ex),
4035 I(DstXacc | Src2Mem, em_imul_ex),
4036 I(DstXacc | Src2Mem, em_div_ex),
4037 I(DstXacc | Src2Mem, em_idiv_ex),
4038 };
4039
4040 static const struct opcode group4[] = {
4041 I(ByteOp | DstMem | SrcNone | Lock, em_inc),
4042 I(ByteOp | DstMem | SrcNone | Lock, em_dec),
4043 N, N, N, N, N, N,
4044 };
4045
4046 static const struct opcode group5[] = {
4047 I(DstMem | SrcNone | Lock, em_inc),
4048 I(DstMem | SrcNone | Lock, em_dec),
4049 I(SrcMem | NearBranch | IsBranch | ShadowStack, em_call_near_abs),
4050 I(SrcMemFAddr | ImplicitOps | IsBranch | ShadowStack, em_call_far),
4051 I(SrcMem | NearBranch | IsBranch, em_jmp_abs),
4052 I(SrcMemFAddr | ImplicitOps | IsBranch, em_jmp_far),
4053 I(SrcMem | Stack | TwoMemOp, em_push), D(Undefined),
4054 };
4055
4056 static const struct opcode group6[] = {
4057 II(Prot | DstMem, em_sldt, sldt),
4058 II(Prot | DstMem, em_str, str),
4059 II(Prot | Priv | SrcMem16, em_lldt, lldt),
4060 II(Prot | Priv | SrcMem16, em_ltr, ltr),
4061 N, N, N, N,
4062 };
4063
4064 static const struct group_dual group7 = { {
4065 II(Mov | DstMem, em_sgdt, sgdt),
4066 II(Mov | DstMem, em_sidt, sidt),
4067 II(SrcMem | Priv, em_lgdt, lgdt),
4068 II(SrcMem | Priv, em_lidt, lidt),
4069 II(SrcNone | DstMem | Mov, em_smsw, smsw), N,
4070 II(SrcMem16 | Mov | Priv, em_lmsw, lmsw),
4071 II(SrcMem | ByteOp | Priv | NoAccess, em_invlpg, invlpg),
4072 }, {
4073 EXT(0, group7_rm0),
4074 EXT(0, group7_rm1),
4075 EXT(0, group7_rm2),
4076 EXT(0, group7_rm3),
4077 II(SrcNone | DstMem | Mov, em_smsw, smsw), N,
4078 II(SrcMem16 | Mov | Priv, em_lmsw, lmsw),
4079 EXT(0, group7_rm7),
4080 } };
4081
4082 static const struct opcode group8[] = {
4083 N, N, N, N,
4084 I(DstMem | SrcImmByte | NoWrite, em_bt),
4085 I(DstMem | SrcImmByte | Lock | PageTable, em_bts),
4086 I(DstMem | SrcImmByte | Lock, em_btr),
4087 I(DstMem | SrcImmByte | Lock | PageTable, em_btc),
4088 };
4089
4090 /*
4091 * The "memory" destination is actually always a register, since we come
4092 * from the register case of group9.
4093 */
4094 static const struct gprefix pfx_0f_c7_7 = {
4095 N, N, N, II(DstMem | ModRM | Op3264 | EmulateOnUD, em_rdpid, rdpid),
4096 };
4097
4098
4099 static const struct group_dual group9 = { {
4100 N, I(DstMem64 | Lock | PageTable, em_cmpxchg8b), N, N, N, N, N, N,
4101 }, {
4102 N, N, N, N, N, N, N,
4103 GP(0, &pfx_0f_c7_7),
4104 } };
4105
4106 static const struct opcode group11[] = {
4107 I(DstMem | SrcImm | Mov | PageTable, em_mov),
4108 X7(D(Undefined)),
4109 };
4110
4111 static const struct gprefix pfx_0f_ae_7 = {
4112 I(SrcMem | ByteOp, em_clflush), I(SrcMem | ByteOp, em_clflushopt), N, N,
4113 };
4114
4115 static const struct group_dual group15 = { {
4116 I(ModRM | Aligned16, em_fxsave),
4117 I(ModRM | Aligned16, em_fxrstor),
4118 N, N, N, N, N, GP(0, &pfx_0f_ae_7),
4119 }, {
4120 N, N, N, N, N, N, N, N,
4121 } };
4122
4123 static const struct gprefix pfx_0f_6f_0f_7f = {
4124 I(Mmx, em_mov), I(Sse | Avx | Aligned, em_mov), N, I(Sse | Avx | Unaligned, em_mov),
4125 };
4126
4127 static const struct instr_dual instr_dual_0f_2b = {
4128 I(0, em_mov), N
4129 };
4130
4131 static const struct gprefix pfx_0f_2b = {
4132 ID(0, &instr_dual_0f_2b), ID(0, &instr_dual_0f_2b), N, N,
4133 };
4134
4135 static const struct gprefix pfx_0f_10_0f_11 = {
4136 I(Unaligned, em_mov), I(Unaligned, em_mov), N, N,
4137 };
4138
4139 static const struct gprefix pfx_0f_28_0f_29 = {
4140 I(Aligned, em_mov), I(Aligned, em_mov), N, N,
4141 };
4142
4143 static const struct gprefix pfx_0f_e7_0f_38_2a = {
4144 N, I(Sse | Avx, em_mov), N, N,
4145 };
4146
4147 static const struct escape escape_d9 = { {
4148 N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstcw),
4149 }, {
4150 /* 0xC0 - 0xC7 */
4151 N, N, N, N, N, N, N, N,
4152 /* 0xC8 - 0xCF */
4153 N, N, N, N, N, N, N, N,
4154 /* 0xD0 - 0xC7 */
4155 N, N, N, N, N, N, N, N,
4156 /* 0xD8 - 0xDF */
4157 N, N, N, N, N, N, N, N,
4158 /* 0xE0 - 0xE7 */
4159 N, N, N, N, N, N, N, N,
4160 /* 0xE8 - 0xEF */
4161 N, N, N, N, N, N, N, N,
4162 /* 0xF0 - 0xF7 */
4163 N, N, N, N, N, N, N, N,
4164 /* 0xF8 - 0xFF */
4165 N, N, N, N, N, N, N, N,
4166 } };
4167
4168 static const struct escape escape_db = { {
4169 N, N, N, N, N, N, N, N,
4170 }, {
4171 /* 0xC0 - 0xC7 */
4172 N, N, N, N, N, N, N, N,
4173 /* 0xC8 - 0xCF */
4174 N, N, N, N, N, N, N, N,
4175 /* 0xD0 - 0xC7 */
4176 N, N, N, N, N, N, N, N,
4177 /* 0xD8 - 0xDF */
4178 N, N, N, N, N, N, N, N,
4179 /* 0xE0 - 0xE7 */
4180 N, N, N, I(ImplicitOps, em_fninit), N, N, N, N,
4181 /* 0xE8 - 0xEF */
4182 N, N, N, N, N, N, N, N,
4183 /* 0xF0 - 0xF7 */
4184 N, N, N, N, N, N, N, N,
4185 /* 0xF8 - 0xFF */
4186 N, N, N, N, N, N, N, N,
4187 } };
4188
4189 static const struct escape escape_dd = { {
4190 N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstsw),
4191 }, {
4192 /* 0xC0 - 0xC7 */
4193 N, N, N, N, N, N, N, N,
4194 /* 0xC8 - 0xCF */
4195 N, N, N, N, N, N, N, N,
4196 /* 0xD0 - 0xC7 */
4197 N, N, N, N, N, N, N, N,
4198 /* 0xD8 - 0xDF */
4199 N, N, N, N, N, N, N, N,
4200 /* 0xE0 - 0xE7 */
4201 N, N, N, N, N, N, N, N,
4202 /* 0xE8 - 0xEF */
4203 N, N, N, N, N, N, N, N,
4204 /* 0xF0 - 0xF7 */
4205 N, N, N, N, N, N, N, N,
4206 /* 0xF8 - 0xFF */
4207 N, N, N, N, N, N, N, N,
4208 } };
4209
4210 static const struct instr_dual instr_dual_0f_c3 = {
4211 I(DstMem | SrcReg | ModRM | No16 | Mov, em_mov), N
4212 };
4213
4214 static const struct mode_dual mode_dual_63 = {
4215 N, I(DstReg | SrcMem32 | ModRM | Mov, em_movsxd)
4216 };
4217
4218 static const struct instr_dual instr_dual_8d = {
4219 D(DstReg | SrcMem | ModRM | NoAccess), N
4220 };
4221
4222 static const struct opcode opcode_table[256] = {
4223 /* 0x00 - 0x07 */
4224 I6ALU(Lock, em_add),
4225 I(ImplicitOps | Stack | No64 | Src2ES, em_push_sreg),
4226 I(ImplicitOps | Stack | No64 | Src2ES, em_pop_sreg),
4227 /* 0x08 - 0x0F */
4228 I6ALU(Lock | PageTable, em_or),
4229 I(ImplicitOps | Stack | No64 | Src2CS, em_push_sreg),
4230 N,
4231 /* 0x10 - 0x17 */
4232 I6ALU(Lock, em_adc),
4233 I(ImplicitOps | Stack | No64 | Src2SS, em_push_sreg),
4234 I(ImplicitOps | Stack | No64 | Src2SS, em_pop_sreg),
4235 /* 0x18 - 0x1F */
4236 I6ALU(Lock, em_sbb),
4237 I(ImplicitOps | Stack | No64 | Src2DS, em_push_sreg),
4238 I(ImplicitOps | Stack | No64 | Src2DS, em_pop_sreg),
4239 /* 0x20 - 0x27 */
4240 I6ALU(Lock | PageTable, em_and), N, N,
4241 /* 0x28 - 0x2F */
4242 I6ALU(Lock, em_sub), N, I(ByteOp | DstAcc | No64, em_das),
4243 /* 0x30 - 0x37 */
4244 I6ALU(Lock, em_xor), N, N,
4245 /* 0x38 - 0x3F */
4246 I6ALU(NoWrite, em_cmp), N, N,
4247 /* 0x40 - 0x4F */
4248 X8(I(DstReg, em_inc)), X8(I(DstReg, em_dec)),
4249 /* 0x50 - 0x57 */
4250 X8(I(SrcReg | Stack, em_push)),
4251 /* 0x58 - 0x5F */
4252 X8(I(DstReg | Stack, em_pop)),
4253 /* 0x60 - 0x67 */
4254 I(ImplicitOps | Stack | No64, em_pusha),
4255 I(ImplicitOps | Stack | No64, em_popa),
4256 N, MD(ModRM, &mode_dual_63),
4257 N, N, N, N,
4258 /* 0x68 - 0x6F */
4259 I(SrcImm | Mov | Stack, em_push),
4260 I(DstReg | SrcMem | ModRM | Src2Imm, em_imul_3op),
4261 I(SrcImmByte | Mov | Stack, em_push),
4262 I(DstReg | SrcMem | ModRM | Src2ImmByte, em_imul_3op),
4263 I2bvIP(DstDI | SrcDX | Mov | String | Unaligned, em_in, ins, check_perm_in), /* insb, insw/insd */
4264 I2bvIP(SrcSI | DstDX | String, em_out, outs, check_perm_out), /* outsb, outsw/outsd */
4265 /* 0x70 - 0x7F */
4266 X16(D(SrcImmByte | NearBranch | IsBranch)),
4267 /* 0x80 - 0x87 */
4268 G(ByteOp | DstMem | SrcImm, group1),
4269 G(DstMem | SrcImm, group1),
4270 G(ByteOp | DstMem | SrcImm | No64, group1),
4271 G(DstMem | SrcImmByte, group1),
4272 I2bv(DstMem | SrcReg | ModRM | NoWrite, em_test),
4273 I2bv(DstMem | SrcReg | ModRM | Lock | PageTable, em_xchg),
4274 /* 0x88 - 0x8F */
4275 I2bv(DstMem | SrcReg | ModRM | Mov | PageTable, em_mov),
4276 I2bv(DstReg | SrcMem | ModRM | Mov, em_mov),
4277 I(DstMem | SrcNone | ModRM | Mov | PageTable, em_mov_rm_sreg),
4278 ID(0, &instr_dual_8d),
4279 I(ImplicitOps | SrcMem16 | ModRM, em_mov_sreg_rm),
4280 G(0, group1A),
4281 /* 0x90 - 0x97 */
4282 DI(SrcAcc | DstReg, pause), X7(D(SrcAcc | DstReg)),
4283 /* 0x98 - 0x9F */
4284 D(DstAcc | SrcNone), I(ImplicitOps | SrcAcc, em_cwd),
4285 I(SrcImmFAddr | No64 | IsBranch | ShadowStack, em_call_far), N,
4286 II(ImplicitOps | Stack, em_pushf, pushf),
4287 II(ImplicitOps | Stack, em_popf, popf),
4288 I(ImplicitOps, em_sahf), I(ImplicitOps, em_lahf),
4289 /* 0xA0 - 0xA7 */
4290 I2bv(DstAcc | SrcMem | Mov | MemAbs, em_mov),
4291 I2bv(DstMem | SrcAcc | Mov | MemAbs | PageTable, em_mov),
4292 I2bv(SrcSI | DstDI | Mov | String | TwoMemOp, em_mov),
4293 I2bv(SrcSI | DstDI | String | NoWrite | TwoMemOp, em_cmp_r),
4294 /* 0xA8 - 0xAF */
4295 I2bv(DstAcc | SrcImm | NoWrite, em_test),
4296 I2bv(SrcAcc | DstDI | Mov | String, em_mov),
4297 I2bv(SrcSI | DstAcc | Mov | String, em_mov),
4298 I2bv(SrcAcc | DstDI | String | NoWrite, em_cmp_r),
4299 /* 0xB0 - 0xB7 */
4300 X8(I(ByteOp | DstReg | SrcImm | Mov, em_mov)),
4301 /* 0xB8 - 0xBF */
4302 X8(I(DstReg | SrcImm64 | Mov, em_mov)),
4303 /* 0xC0 - 0xC7 */
4304 G(ByteOp | Src2ImmByte, group2), G(Src2ImmByte, group2),
4305 I(ImplicitOps | NearBranch | SrcImmU16 | IsBranch | ShadowStack, em_ret_near_imm),
4306 I(ImplicitOps | NearBranch | IsBranch | ShadowStack, em_ret),
4307 I(DstReg | SrcMemFAddr | ModRM | No64 | Src2ES, em_lseg),
4308 I(DstReg | SrcMemFAddr | ModRM | No64 | Src2DS, em_lseg),
4309 G(ByteOp, group11), G(0, group11),
4310 /* 0xC8 - 0xCF */
4311 I(Stack | SrcImmU16 | Src2ImmByte, em_enter),
4312 I(Stack, em_leave),
4313 I(ImplicitOps | SrcImmU16 | IsBranch | ShadowStack, em_ret_far_imm),
4314 I(ImplicitOps | IsBranch | ShadowStack, em_ret_far),
4315 D(ImplicitOps | IsBranch), DI(SrcImmByte | IsBranch | ShadowStack, intn),
4316 D(ImplicitOps | No64 | IsBranch),
4317 II(ImplicitOps | IsBranch | ShadowStack, em_iret, iret),
4318 /* 0xD0 - 0xD7 */
4319 G(Src2One | ByteOp, group2), G(Src2One, group2),
4320 G(Src2CL | ByteOp, group2), G(Src2CL, group2),
4321 I(DstAcc | SrcImmUByte | No64, em_aam),
4322 I(DstAcc | SrcImmUByte | No64, em_aad),
4323 I(DstAcc | ByteOp | No64, em_salc),
4324 I(DstAcc | SrcXLat | ByteOp, em_mov),
4325 /* 0xD8 - 0xDF */
4326 N, E(0, &escape_d9), N, E(0, &escape_db), N, E(0, &escape_dd), N, N,
4327 /* 0xE0 - 0xE7 */
4328 X3(I(SrcImmByte | NearBranch | IsBranch, em_loop)),
4329 I(SrcImmByte | NearBranch | IsBranch, em_jcxz),
4330 I2bvIP(SrcImmUByte | DstAcc, em_in, in, check_perm_in),
4331 I2bvIP(SrcAcc | DstImmUByte, em_out, out, check_perm_out),
4332 /* 0xE8 - 0xEF */
4333 I(SrcImm | NearBranch | IsBranch | ShadowStack, em_call),
4334 D(SrcImm | ImplicitOps | NearBranch | IsBranch),
4335 I(SrcImmFAddr | No64 | IsBranch, em_jmp_far),
4336 D(SrcImmByte | ImplicitOps | NearBranch | IsBranch),
4337 I2bvIP(SrcDX | DstAcc, em_in, in, check_perm_in),
4338 I2bvIP(SrcAcc | DstDX, em_out, out, check_perm_out),
4339 /* 0xF0 - 0xF7 */
4340 N, DI(ImplicitOps, icebp), N, N,
4341 DI(ImplicitOps | Priv, hlt), D(ImplicitOps),
4342 G(ByteOp, group3), G(0, group3),
4343 /* 0xF8 - 0xFF */
4344 D(ImplicitOps), D(ImplicitOps),
4345 I(ImplicitOps, em_cli), I(ImplicitOps, em_sti),
4346 D(ImplicitOps), D(ImplicitOps), G(0, group4), G(0, group5),
4347 };
4348
4349 static const struct opcode twobyte_table[256] = {
4350 /* 0x00 - 0x0F */
4351 G(0, group6), GD(0, &group7), N, N,
4352 N, I(ImplicitOps | EmulateOnUD | IsBranch | ShadowStack, em_syscall),
4353 II(ImplicitOps | Priv, em_clts, clts), N,
4354 DI(ImplicitOps | Priv, invd), DI(ImplicitOps | Priv, wbinvd), N, N,
4355 N, D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N,
4356 /* 0x10 - 0x1F */
4357 GP(ModRM | DstReg | SrcMem | Mov | Sse | Avx, &pfx_0f_10_0f_11),
4358 GP(ModRM | DstMem | SrcReg | Mov | Sse | Avx, &pfx_0f_10_0f_11),
4359 N, N, N, N, N, N,
4360 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 4 * prefetch + 4 * reserved NOP */
4361 D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N,
4362 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */
4363 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */
4364 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */
4365 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* NOP + 7 * reserved NOP */
4366 /* 0x20 - 0x2F */
4367 DIP(ModRM | DstMem | Priv | Op3264 | NoMod, cr_read, check_cr_access),
4368 DIP(ModRM | DstMem | Priv | Op3264 | NoMod, dr_read, check_dr_read),
4369 IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_cr_write, cr_write,
4370 check_cr_access),
4371 IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_dr_write, dr_write,
4372 check_dr_write),
4373 N, N, N, N,
4374 GP(ModRM | DstReg | SrcMem | Mov | Sse | Avx, &pfx_0f_28_0f_29),
4375 GP(ModRM | DstMem | SrcReg | Mov | Sse | Avx, &pfx_0f_28_0f_29),
4376 N, GP(ModRM | DstMem | SrcReg | Mov | Sse | Avx, &pfx_0f_2b),
4377 N, N, N, N,
4378 /* 0x30 - 0x3F */
4379 II(ImplicitOps | Priv, em_wrmsr, wrmsr),
4380 IIP(ImplicitOps, em_rdtsc, rdtsc, check_rdtsc),
4381 II(ImplicitOps | Priv, em_rdmsr, rdmsr),
4382 IIP(ImplicitOps, em_rdpmc, rdpmc, check_rdpmc),
4383 I(ImplicitOps | EmulateOnUD | IsBranch | ShadowStack, em_sysenter),
4384 I(ImplicitOps | Priv | EmulateOnUD | IsBranch | ShadowStack, em_sysexit),
4385 N, N,
4386 N, N, N, N, N, N, N, N,
4387 /* 0x40 - 0x4F */
4388 X16(D(DstReg | SrcMem | ModRM)),
4389 /* 0x50 - 0x5F */
4390 N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
4391 /* 0x60 - 0x6F */
4392 N, N, N, N,
4393 N, N, N, N,
4394 N, N, N, N,
4395 N, N, N, GP(SrcMem | DstReg | ModRM | Mov, &pfx_0f_6f_0f_7f),
4396 /* 0x70 - 0x7F */
4397 N, N, N, N,
4398 N, N, N, N,
4399 N, N, N, N,
4400 N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_6f_0f_7f),
4401 /* 0x80 - 0x8F */
4402 X16(D(SrcImm | NearBranch | IsBranch)),
4403 /* 0x90 - 0x9F */
4404 X16(D(ByteOp | DstMem | SrcNone | ModRM| Mov)),
4405 /* 0xA0 - 0xA7 */
4406 I(Stack | Src2FS, em_push_sreg), I(Stack | Src2FS, em_pop_sreg),
4407 II(ImplicitOps, em_cpuid, cpuid),
4408 I(DstMem | SrcReg | ModRM | BitOp | NoWrite, em_bt),
4409 I(DstMem | SrcReg | Src2ImmByte | ModRM, em_shld),
4410 I(DstMem | SrcReg | Src2CL | ModRM, em_shld), N, N,
4411 /* 0xA8 - 0xAF */
4412 I(Stack | Src2GS, em_push_sreg), I(Stack | Src2GS, em_pop_sreg),
4413 II(EmulateOnUD | ImplicitOps, em_rsm, rsm),
4414 I(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_bts),
4415 I(DstMem | SrcReg | Src2ImmByte | ModRM, em_shrd),
4416 I(DstMem | SrcReg | Src2CL | ModRM, em_shrd),
4417 GD(0, &group15), I(DstReg | SrcMem | ModRM, em_imul),
4418 /* 0xB0 - 0xB7 */
4419 I2bv(DstMem | SrcReg | ModRM | Lock | PageTable | SrcWrite, em_cmpxchg),
4420 I(DstReg | SrcMemFAddr | ModRM | Src2SS, em_lseg),
4421 I(DstMem | SrcReg | ModRM | BitOp | Lock, em_btr),
4422 I(DstReg | SrcMemFAddr | ModRM | Src2FS, em_lseg),
4423 I(DstReg | SrcMemFAddr | ModRM | Src2GS, em_lseg),
4424 D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
4425 /* 0xB8 - 0xBF */
4426 N, N,
4427 G(BitOp, group8),
4428 I(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_btc),
4429 I(DstReg | SrcMem | ModRM, em_bsf_c),
4430 I(DstReg | SrcMem | ModRM, em_bsr_c),
4431 D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
4432 /* 0xC0 - 0xC7 */
4433 I2bv(DstMem | SrcReg | ModRM | SrcWrite | Lock, em_xadd),
4434 N, ID(0, &instr_dual_0f_c3),
4435 N, N, N, GD(0, &group9),
4436 /* 0xC8 - 0xCF */
4437 X8(I(DstReg, em_bswap)),
4438 /* 0xD0 - 0xDF */
4439 N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
4440 /* 0xE0 - 0xEF */
4441 N, N, N, N, N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_e7_0f_38_2a),
4442 N, N, N, N, N, N, N, N,
4443 /* 0xF0 - 0xFF */
4444 N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N
4445 };
4446
4447 static const struct instr_dual instr_dual_0f_38_f0 = {
4448 I(DstReg | SrcMem | Mov, em_movbe), N
4449 };
4450
4451 static const struct instr_dual instr_dual_0f_38_f1 = {
4452 I(DstMem | SrcReg | Mov, em_movbe), N
4453 };
4454
4455 static const struct gprefix three_byte_0f_38_f0 = {
4456 ID(0, &instr_dual_0f_38_f0), ID(0, &instr_dual_0f_38_f0), N, N
4457 };
4458
4459 static const struct gprefix three_byte_0f_38_f1 = {
4460 ID(0, &instr_dual_0f_38_f1), ID(0, &instr_dual_0f_38_f1), N, N
4461 };
4462
4463 /*
4464 * Insns below are selected by the prefix which indexed by the third opcode
4465 * byte.
4466 */
4467 static const struct opcode opcode_map_0f_38[256] = {
4468 /* 0x00 - 0x1f */
4469 X16(N), X16(N),
4470 /* 0x20 - 0x2f */
4471 X8(N),
4472 X2(N), GP(SrcReg | DstMem | ModRM | Mov | Aligned, &pfx_0f_e7_0f_38_2a), N, N, N, N, N,
4473 /* 0x30 - 0x7f */
4474 X16(N), X16(N), X16(N), X16(N), X16(N),
4475 /* 0x80 - 0xef */
4476 X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N),
4477 /* 0xf0 - 0xf1 */
4478 GP(EmulateOnUD | ModRM, &three_byte_0f_38_f0),
4479 GP(EmulateOnUD | ModRM, &three_byte_0f_38_f1),
4480 /* 0xf2 - 0xff */
4481 N, N, X4(N), X8(N)
4482 };
4483
4484 #undef D
4485 #undef N
4486 #undef G
4487 #undef GD
4488 #undef I
4489 #undef GP
4490 #undef EXT
4491 #undef MD
4492 #undef ID
4493
4494 #undef D2bv
4495 #undef D2bvIP
4496 #undef I2bv
4497 #undef I2bvIP
4498 #undef I6ALU
4499
is_shstk_instruction(struct x86_emulate_ctxt * ctxt)4500 static bool is_shstk_instruction(struct x86_emulate_ctxt *ctxt)
4501 {
4502 return ctxt->d & ShadowStack;
4503 }
4504
is_ibt_instruction(struct x86_emulate_ctxt * ctxt)4505 static bool is_ibt_instruction(struct x86_emulate_ctxt *ctxt)
4506 {
4507 u64 flags = ctxt->d;
4508
4509 if (!(flags & IsBranch))
4510 return false;
4511
4512 /*
4513 * All far JMPs and CALLs (including SYSCALL, SYSENTER, and INTn) are
4514 * indirect and thus affect IBT state. All far RETs (including SYSEXIT
4515 * and IRET) are protected via Shadow Stacks and thus don't affect IBT
4516 * state. IRET #GPs when returning to virtual-8086 and IBT or SHSTK is
4517 * enabled, but that should be handled by IRET emulation (in the very
4518 * unlikely scenario that KVM adds support for fully emulating IRET).
4519 */
4520 if (!(flags & NearBranch))
4521 return ctxt->execute != em_iret &&
4522 ctxt->execute != em_ret_far &&
4523 ctxt->execute != em_ret_far_imm &&
4524 ctxt->execute != em_sysexit;
4525
4526 switch (flags & SrcMask) {
4527 case SrcReg:
4528 case SrcMem:
4529 case SrcMem16:
4530 case SrcMem32:
4531 return true;
4532 case SrcMemFAddr:
4533 case SrcImmFAddr:
4534 /* Far branches should be handled above. */
4535 WARN_ON_ONCE(1);
4536 return true;
4537 case SrcNone:
4538 case SrcImm:
4539 case SrcImmByte:
4540 /*
4541 * Note, ImmU16 is used only for the stack adjustment operand on ENTER
4542 * and RET instructions. ENTER isn't a branch and RET FAR is handled
4543 * by the NearBranch check above. RET itself isn't an indirect branch.
4544 */
4545 case SrcImmU16:
4546 return false;
4547 default:
4548 WARN_ONCE(1, "Unexpected Src operand '%llx' on branch",
4549 flags & SrcMask);
4550 return false;
4551 }
4552 }
4553
imm_size(struct x86_emulate_ctxt * ctxt)4554 static unsigned imm_size(struct x86_emulate_ctxt *ctxt)
4555 {
4556 unsigned size;
4557
4558 size = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4559 if (size == 8)
4560 size = 4;
4561 return size;
4562 }
4563
decode_imm(struct x86_emulate_ctxt * ctxt,struct operand * op,unsigned size,bool sign_extension)4564 static int decode_imm(struct x86_emulate_ctxt *ctxt, struct operand *op,
4565 unsigned size, bool sign_extension)
4566 {
4567 int rc = X86EMUL_CONTINUE;
4568
4569 op->type = OP_IMM;
4570 op->bytes = size;
4571 op->addr.mem.ea = ctxt->_eip;
4572 /* NB. Immediates are sign-extended as necessary. */
4573 switch (op->bytes) {
4574 case 1:
4575 op->val = insn_fetch(s8, ctxt);
4576 break;
4577 case 2:
4578 op->val = insn_fetch(s16, ctxt);
4579 break;
4580 case 4:
4581 op->val = insn_fetch(s32, ctxt);
4582 break;
4583 case 8:
4584 op->val = insn_fetch(s64, ctxt);
4585 break;
4586 }
4587 if (!sign_extension) {
4588 switch (op->bytes) {
4589 case 1:
4590 op->val &= 0xff;
4591 break;
4592 case 2:
4593 op->val &= 0xffff;
4594 break;
4595 case 4:
4596 op->val &= 0xffffffff;
4597 break;
4598 }
4599 }
4600 done:
4601 return rc;
4602 }
4603
decode_operand(struct x86_emulate_ctxt * ctxt,struct operand * op,unsigned d)4604 static int decode_operand(struct x86_emulate_ctxt *ctxt, struct operand *op,
4605 unsigned d)
4606 {
4607 int rc = X86EMUL_CONTINUE;
4608
4609 switch (d) {
4610 case OpReg:
4611 decode_register_operand(ctxt, op);
4612 break;
4613 case OpImmUByte:
4614 rc = decode_imm(ctxt, op, 1, false);
4615 break;
4616 case OpMem:
4617 ctxt->memop.bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4618 mem_common:
4619 *op = ctxt->memop;
4620 ctxt->memopp = op;
4621 if (ctxt->d & BitOp)
4622 fetch_bit_operand(ctxt);
4623 op->orig_val = op->val;
4624 break;
4625 case OpMem64:
4626 ctxt->memop.bytes = (ctxt->op_bytes == 8) ? 16 : 8;
4627 goto mem_common;
4628 case OpAcc:
4629 op->type = OP_REG;
4630 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4631 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
4632 fetch_register_operand(op);
4633 break;
4634 case OpAccLo:
4635 op->type = OP_REG;
4636 op->bytes = (ctxt->d & ByteOp) ? 2 : ctxt->op_bytes;
4637 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
4638 fetch_register_operand(op);
4639 break;
4640 case OpAccHi:
4641 if (ctxt->d & ByteOp) {
4642 op->type = OP_NONE;
4643 break;
4644 }
4645 op->type = OP_REG;
4646 op->bytes = ctxt->op_bytes;
4647 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
4648 fetch_register_operand(op);
4649 break;
4650 case OpDI:
4651 op->type = OP_MEM;
4652 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4653 op->addr.mem.ea =
4654 register_address(ctxt, VCPU_REGS_RDI);
4655 op->addr.mem.seg = VCPU_SREG_ES;
4656 op->val = 0;
4657 op->count = 1;
4658 break;
4659 case OpDX:
4660 op->type = OP_REG;
4661 op->bytes = 2;
4662 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
4663 fetch_register_operand(op);
4664 break;
4665 case OpCL:
4666 op->type = OP_IMM;
4667 op->bytes = 1;
4668 op->val = reg_read(ctxt, VCPU_REGS_RCX) & 0xff;
4669 break;
4670 case OpImmByte:
4671 rc = decode_imm(ctxt, op, 1, true);
4672 break;
4673 case OpOne:
4674 op->type = OP_IMM;
4675 op->bytes = 1;
4676 op->val = 1;
4677 break;
4678 case OpImm:
4679 rc = decode_imm(ctxt, op, imm_size(ctxt), true);
4680 break;
4681 case OpImm64:
4682 rc = decode_imm(ctxt, op, ctxt->op_bytes, true);
4683 break;
4684 case OpMem8:
4685 ctxt->memop.bytes = 1;
4686 if (ctxt->memop.type == OP_REG) {
4687 ctxt->memop.addr.reg = decode_register(ctxt,
4688 ctxt->modrm_rm, true);
4689 fetch_register_operand(&ctxt->memop);
4690 }
4691 goto mem_common;
4692 case OpMem16:
4693 ctxt->memop.bytes = 2;
4694 goto mem_common;
4695 case OpMem32:
4696 ctxt->memop.bytes = 4;
4697 goto mem_common;
4698 case OpImmU16:
4699 rc = decode_imm(ctxt, op, 2, false);
4700 break;
4701 case OpImmU:
4702 rc = decode_imm(ctxt, op, imm_size(ctxt), false);
4703 break;
4704 case OpSI:
4705 op->type = OP_MEM;
4706 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4707 op->addr.mem.ea =
4708 register_address(ctxt, VCPU_REGS_RSI);
4709 op->addr.mem.seg = ctxt->seg_override;
4710 op->val = 0;
4711 op->count = 1;
4712 break;
4713 case OpXLat:
4714 op->type = OP_MEM;
4715 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4716 op->addr.mem.ea =
4717 address_mask(ctxt,
4718 reg_read(ctxt, VCPU_REGS_RBX) +
4719 (reg_read(ctxt, VCPU_REGS_RAX) & 0xff));
4720 op->addr.mem.seg = ctxt->seg_override;
4721 op->val = 0;
4722 break;
4723 case OpImmFAddr:
4724 op->type = OP_IMM;
4725 op->addr.mem.ea = ctxt->_eip;
4726 op->bytes = ctxt->op_bytes + 2;
4727 insn_fetch_arr(op->valptr, op->bytes, ctxt);
4728 break;
4729 case OpMemFAddr:
4730 ctxt->memop.bytes = ctxt->op_bytes + 2;
4731 goto mem_common;
4732 case OpES:
4733 op->type = OP_IMM;
4734 op->val = VCPU_SREG_ES;
4735 break;
4736 case OpCS:
4737 op->type = OP_IMM;
4738 op->val = VCPU_SREG_CS;
4739 break;
4740 case OpSS:
4741 op->type = OP_IMM;
4742 op->val = VCPU_SREG_SS;
4743 break;
4744 case OpDS:
4745 op->type = OP_IMM;
4746 op->val = VCPU_SREG_DS;
4747 break;
4748 case OpFS:
4749 op->type = OP_IMM;
4750 op->val = VCPU_SREG_FS;
4751 break;
4752 case OpGS:
4753 op->type = OP_IMM;
4754 op->val = VCPU_SREG_GS;
4755 break;
4756 case OpImplicit:
4757 /* Special instructions do their own operand decoding. */
4758 default:
4759 op->type = OP_NONE; /* Disable writeback. */
4760 break;
4761 }
4762
4763 done:
4764 return rc;
4765 }
4766
x86_decode_avx(struct x86_emulate_ctxt * ctxt,u8 vex_1st,u8 vex_2nd,struct opcode * opcode)4767 static int x86_decode_avx(struct x86_emulate_ctxt *ctxt,
4768 u8 vex_1st, u8 vex_2nd, struct opcode *opcode)
4769 {
4770 u8 vex_3rd, map, pp, l, v;
4771 int rc = X86EMUL_CONTINUE;
4772
4773 if (ctxt->rep_prefix || ctxt->op_prefix || ctxt->rex_prefix)
4774 goto ud;
4775
4776 if (vex_1st == 0xc5) {
4777 /* Expand RVVVVlpp to VEX3 format */
4778 vex_3rd = vex_2nd & ~0x80; /* VVVVlpp from VEX2, w=0 */
4779 vex_2nd = (vex_2nd & 0x80) | 0x61; /* R from VEX2, X=1 B=1 mmmmm=00001 */
4780 } else {
4781 vex_3rd = insn_fetch(u8, ctxt);
4782 }
4783
4784 /* vex_2nd = RXBmmmmm, vex_3rd = wVVVVlpp. Fix polarity */
4785 vex_2nd ^= 0xE0; /* binary 11100000 */
4786 vex_3rd ^= 0x78; /* binary 01111000 */
4787
4788 ctxt->rex_prefix = REX_PREFIX;
4789 ctxt->rex_bits = (vex_2nd & 0xE0) >> 5; /* RXB */
4790 ctxt->rex_bits |= (vex_3rd & 0x80) >> 4; /* w */
4791 if (ctxt->rex_bits && ctxt->mode != X86EMUL_MODE_PROT64)
4792 goto ud;
4793
4794 map = vex_2nd & 0x1f;
4795 v = (vex_3rd >> 3) & 0xf;
4796 l = vex_3rd & 0x4;
4797 pp = vex_3rd & 0x3;
4798
4799 ctxt->b = insn_fetch(u8, ctxt);
4800 switch (map) {
4801 case 1:
4802 ctxt->opcode_len = 2;
4803 *opcode = twobyte_table[ctxt->b];
4804 break;
4805 case 2:
4806 ctxt->opcode_len = 3;
4807 *opcode = opcode_map_0f_38[ctxt->b];
4808 break;
4809 case 3:
4810 /* no 0f 3a instructions are supported yet */
4811 return X86EMUL_UNHANDLEABLE;
4812 default:
4813 goto ud;
4814 }
4815
4816 /*
4817 * No three operand instructions are supported yet; those that
4818 * *are* marked with the Avx flag reserve the VVVV flag.
4819 */
4820 if (v)
4821 goto ud;
4822
4823 if (l)
4824 ctxt->op_bytes = 32;
4825 else
4826 ctxt->op_bytes = 16;
4827
4828 switch (pp) {
4829 case 0: break;
4830 case 1: ctxt->op_prefix = true; break;
4831 case 2: ctxt->rep_prefix = 0xf3; break;
4832 case 3: ctxt->rep_prefix = 0xf2; break;
4833 }
4834
4835 done:
4836 return rc;
4837 ud:
4838 *opcode = ud;
4839 return rc;
4840 }
4841
x86_decode_insn(struct x86_emulate_ctxt * ctxt,void * insn,int insn_len,int emulation_type)4842 int x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len, int emulation_type)
4843 {
4844 int rc = X86EMUL_CONTINUE;
4845 int mode = ctxt->mode;
4846 int def_op_bytes, def_ad_bytes, goffset, simd_prefix;
4847 bool vex_prefix = false;
4848 bool has_seg_override = false;
4849 struct opcode opcode;
4850 u16 dummy;
4851 struct desc_struct desc;
4852
4853 ctxt->memop.type = OP_NONE;
4854 ctxt->memopp = NULL;
4855 ctxt->_eip = ctxt->eip;
4856 ctxt->fetch.ptr = ctxt->fetch.data;
4857 ctxt->fetch.end = ctxt->fetch.data + insn_len;
4858 ctxt->opcode_len = 1;
4859 ctxt->intercept = x86_intercept_none;
4860 if (insn_len > 0)
4861 memcpy(ctxt->fetch.data, insn, insn_len);
4862 else {
4863 rc = __do_insn_fetch_bytes(ctxt, 1);
4864 if (rc != X86EMUL_CONTINUE)
4865 goto done;
4866 }
4867
4868 switch (mode) {
4869 case X86EMUL_MODE_REAL:
4870 case X86EMUL_MODE_VM86:
4871 def_op_bytes = def_ad_bytes = 2;
4872 ctxt->ops->get_segment(ctxt, &dummy, &desc, NULL, VCPU_SREG_CS);
4873 if (desc.d)
4874 def_op_bytes = def_ad_bytes = 4;
4875 break;
4876 case X86EMUL_MODE_PROT16:
4877 def_op_bytes = def_ad_bytes = 2;
4878 break;
4879 case X86EMUL_MODE_PROT32:
4880 def_op_bytes = def_ad_bytes = 4;
4881 break;
4882 #ifdef CONFIG_X86_64
4883 case X86EMUL_MODE_PROT64:
4884 def_op_bytes = 4;
4885 def_ad_bytes = 8;
4886 break;
4887 #endif
4888 default:
4889 return EMULATION_FAILED;
4890 }
4891
4892 ctxt->op_bytes = def_op_bytes;
4893 ctxt->ad_bytes = def_ad_bytes;
4894
4895 /* Legacy prefixes. */
4896 for (;;) {
4897 switch (ctxt->b = insn_fetch(u8, ctxt)) {
4898 case 0x66: /* operand-size override */
4899 ctxt->op_prefix = true;
4900 /* switch between 2/4 bytes */
4901 ctxt->op_bytes = def_op_bytes ^ 6;
4902 break;
4903 case 0x67: /* address-size override */
4904 if (mode == X86EMUL_MODE_PROT64)
4905 /* switch between 4/8 bytes */
4906 ctxt->ad_bytes = def_ad_bytes ^ 12;
4907 else
4908 /* switch between 2/4 bytes */
4909 ctxt->ad_bytes = def_ad_bytes ^ 6;
4910 break;
4911 case 0x26: /* ES override */
4912 has_seg_override = true;
4913 ctxt->seg_override = VCPU_SREG_ES;
4914 break;
4915 case 0x2e: /* CS override */
4916 has_seg_override = true;
4917 ctxt->seg_override = VCPU_SREG_CS;
4918 break;
4919 case 0x36: /* SS override */
4920 has_seg_override = true;
4921 ctxt->seg_override = VCPU_SREG_SS;
4922 break;
4923 case 0x3e: /* DS override */
4924 has_seg_override = true;
4925 ctxt->seg_override = VCPU_SREG_DS;
4926 break;
4927 case 0x64: /* FS override */
4928 has_seg_override = true;
4929 ctxt->seg_override = VCPU_SREG_FS;
4930 break;
4931 case 0x65: /* GS override */
4932 has_seg_override = true;
4933 ctxt->seg_override = VCPU_SREG_GS;
4934 break;
4935 case 0x40 ... 0x4f: /* REX */
4936 if (mode != X86EMUL_MODE_PROT64)
4937 goto done_prefixes;
4938 ctxt->rex_prefix = REX_PREFIX;
4939 ctxt->rex_bits = ctxt->b & 0xf;
4940 continue;
4941 case 0xf0: /* LOCK */
4942 ctxt->lock_prefix = 1;
4943 break;
4944 case 0xf2: /* REPNE/REPNZ */
4945 case 0xf3: /* REP/REPE/REPZ */
4946 ctxt->rep_prefix = ctxt->b;
4947 break;
4948 default:
4949 goto done_prefixes;
4950 }
4951
4952 /* Any legacy prefix after a REX prefix nullifies its effect. */
4953 ctxt->rex_prefix = REX_NONE;
4954 ctxt->rex_bits = 0;
4955 }
4956
4957 done_prefixes:
4958
4959 /* REX prefix. */
4960 if (ctxt->rex_bits & REX_W)
4961 ctxt->op_bytes = 8;
4962
4963 /* Opcode byte(s). */
4964 if (ctxt->b == 0xc4 || ctxt->b == 0xc5) {
4965 /* VEX or LDS/LES */
4966 u8 vex_2nd = insn_fetch(u8, ctxt);
4967 if (mode != X86EMUL_MODE_PROT64 && (vex_2nd & 0xc0) != 0xc0) {
4968 opcode = opcode_table[ctxt->b];
4969 ctxt->modrm = vex_2nd;
4970 /* the Mod/RM byte has been fetched already! */
4971 goto done_modrm;
4972 }
4973
4974 vex_prefix = true;
4975 rc = x86_decode_avx(ctxt, ctxt->b, vex_2nd, &opcode);
4976 if (rc != X86EMUL_CONTINUE)
4977 goto done;
4978 } else if (ctxt->b == 0x0f) {
4979 /* Two- or three-byte opcode */
4980 ctxt->opcode_len = 2;
4981 ctxt->b = insn_fetch(u8, ctxt);
4982 opcode = twobyte_table[ctxt->b];
4983
4984 /* 0F_38 opcode map */
4985 if (ctxt->b == 0x38) {
4986 ctxt->opcode_len = 3;
4987 ctxt->b = insn_fetch(u8, ctxt);
4988 opcode = opcode_map_0f_38[ctxt->b];
4989 }
4990 } else {
4991 /* Opcode byte(s). */
4992 opcode = opcode_table[ctxt->b];
4993 }
4994
4995 if (opcode.flags & ModRM)
4996 ctxt->modrm = insn_fetch(u8, ctxt);
4997
4998 done_modrm:
4999 ctxt->d = opcode.flags;
5000 while (ctxt->d & GroupMask) {
5001 switch (ctxt->d & GroupMask) {
5002 case Group:
5003 goffset = (ctxt->modrm >> 3) & 7;
5004 opcode = opcode.u.group[goffset];
5005 break;
5006 case GroupDual:
5007 goffset = (ctxt->modrm >> 3) & 7;
5008 if ((ctxt->modrm >> 6) == 3)
5009 opcode = opcode.u.gdual->mod3[goffset];
5010 else
5011 opcode = opcode.u.gdual->mod012[goffset];
5012 break;
5013 case RMExt:
5014 goffset = ctxt->modrm & 7;
5015 opcode = opcode.u.group[goffset];
5016 break;
5017 case Prefix:
5018 if (ctxt->rep_prefix && ctxt->op_prefix)
5019 return EMULATION_FAILED;
5020 simd_prefix = ctxt->op_prefix ? 0x66 : ctxt->rep_prefix;
5021 switch (simd_prefix) {
5022 case 0x00: opcode = opcode.u.gprefix->pfx_no; break;
5023 case 0x66: opcode = opcode.u.gprefix->pfx_66; break;
5024 case 0xf2: opcode = opcode.u.gprefix->pfx_f2; break;
5025 case 0xf3: opcode = opcode.u.gprefix->pfx_f3; break;
5026 }
5027 break;
5028 case Escape:
5029 if (ctxt->modrm > 0xbf) {
5030 size_t size = ARRAY_SIZE(opcode.u.esc->high);
5031 u32 index = array_index_nospec(
5032 ctxt->modrm - 0xc0, size);
5033
5034 opcode = opcode.u.esc->high[index];
5035 } else {
5036 opcode = opcode.u.esc->op[(ctxt->modrm >> 3) & 7];
5037 }
5038 break;
5039 case InstrDual:
5040 if ((ctxt->modrm >> 6) == 3)
5041 opcode = opcode.u.idual->mod3;
5042 else
5043 opcode = opcode.u.idual->mod012;
5044 break;
5045 case ModeDual:
5046 if (ctxt->mode == X86EMUL_MODE_PROT64)
5047 opcode = opcode.u.mdual->mode64;
5048 else
5049 opcode = opcode.u.mdual->mode32;
5050 break;
5051 default:
5052 return EMULATION_FAILED;
5053 }
5054
5055 ctxt->d &= ~(u64)GroupMask;
5056 ctxt->d |= opcode.flags;
5057 }
5058
5059 ctxt->is_branch = opcode.flags & IsBranch;
5060
5061 /* Unrecognised? */
5062 if (ctxt->d == 0)
5063 return EMULATION_FAILED;
5064
5065 if (unlikely(vex_prefix)) {
5066 /*
5067 * Only specifically marked instructions support VEX. Since many
5068 * instructions support it but are not annotated, return not implemented
5069 * rather than #UD.
5070 */
5071 if (!(ctxt->d & Avx))
5072 return EMULATION_FAILED;
5073
5074 if (!(ctxt->d & AlignMask))
5075 ctxt->d |= Unaligned;
5076 }
5077
5078 ctxt->execute = opcode.u.execute;
5079
5080 /*
5081 * Reject emulation if KVM might need to emulate shadow stack updates
5082 * and/or indirect branch tracking enforcement, which the emulator
5083 * doesn't support.
5084 */
5085 if ((is_ibt_instruction(ctxt) || is_shstk_instruction(ctxt)) &&
5086 ctxt->ops->get_cr(ctxt, 4) & X86_CR4_CET) {
5087 u64 u_cet = 0, s_cet = 0;
5088
5089 /*
5090 * Check both User and Supervisor on far transfers as inter-
5091 * privilege level transfers are impacted by CET at the target
5092 * privilege level, and that is not known at this time. The
5093 * expectation is that the guest will not require emulation of
5094 * any CET-affected instructions at any privilege level.
5095 */
5096 if (!(ctxt->d & NearBranch))
5097 u_cet = s_cet = CET_SHSTK_EN | CET_ENDBR_EN;
5098 else if (ctxt->ops->cpl(ctxt) == 3)
5099 u_cet = CET_SHSTK_EN | CET_ENDBR_EN;
5100 else
5101 s_cet = CET_SHSTK_EN | CET_ENDBR_EN;
5102
5103 if ((u_cet && ctxt->ops->get_msr(ctxt, MSR_IA32_U_CET, &u_cet)) ||
5104 (s_cet && ctxt->ops->get_msr(ctxt, MSR_IA32_S_CET, &s_cet)))
5105 return EMULATION_FAILED;
5106
5107 if ((u_cet | s_cet) & CET_SHSTK_EN && is_shstk_instruction(ctxt))
5108 return EMULATION_FAILED;
5109
5110 if ((u_cet | s_cet) & CET_ENDBR_EN && is_ibt_instruction(ctxt))
5111 return EMULATION_FAILED;
5112 }
5113
5114 if (unlikely(emulation_type & EMULTYPE_TRAP_UD) &&
5115 likely(!(ctxt->d & EmulateOnUD)))
5116 return EMULATION_FAILED;
5117
5118 if (unlikely(ctxt->d &
5119 (NotImpl|Stack|Op3264|Sse|Mmx|Intercept|CheckPerm|NearBranch|
5120 No16))) {
5121 /*
5122 * These are copied unconditionally here, and checked unconditionally
5123 * in x86_emulate_insn.
5124 */
5125 ctxt->check_perm = opcode.check_perm;
5126 ctxt->intercept = opcode.intercept;
5127
5128 if (ctxt->d & NotImpl)
5129 return EMULATION_FAILED;
5130
5131 if (mode == X86EMUL_MODE_PROT64) {
5132 if (ctxt->op_bytes == 4 && (ctxt->d & Stack))
5133 ctxt->op_bytes = 8;
5134 else if (ctxt->d & NearBranch)
5135 ctxt->op_bytes = 8;
5136 }
5137
5138 if (ctxt->d & Op3264) {
5139 if (mode == X86EMUL_MODE_PROT64)
5140 ctxt->op_bytes = 8;
5141 else
5142 ctxt->op_bytes = 4;
5143 }
5144
5145 if ((ctxt->d & No16) && ctxt->op_bytes == 2)
5146 ctxt->op_bytes = 4;
5147
5148 if (vex_prefix)
5149 ;
5150 else if (ctxt->d & Sse)
5151 ctxt->op_bytes = 16, ctxt->d &= ~Avx;
5152 else if (ctxt->d & Mmx)
5153 ctxt->op_bytes = 8;
5154 }
5155
5156 /* ModRM and SIB bytes. */
5157 if (ctxt->d & ModRM) {
5158 rc = decode_modrm(ctxt, &ctxt->memop);
5159 if (!has_seg_override) {
5160 has_seg_override = true;
5161 ctxt->seg_override = ctxt->modrm_seg;
5162 }
5163 } else if (ctxt->d & MemAbs)
5164 rc = decode_abs(ctxt, &ctxt->memop);
5165 if (rc != X86EMUL_CONTINUE)
5166 goto done;
5167
5168 if (!has_seg_override)
5169 ctxt->seg_override = VCPU_SREG_DS;
5170
5171 ctxt->memop.addr.mem.seg = ctxt->seg_override;
5172
5173 /*
5174 * Decode and fetch the source operand: register, memory
5175 * or immediate.
5176 */
5177 rc = decode_operand(ctxt, &ctxt->src, (ctxt->d >> SrcShift) & OpMask);
5178 if (rc != X86EMUL_CONTINUE)
5179 goto done;
5180
5181 /*
5182 * Decode and fetch the second source operand: register, memory
5183 * or immediate.
5184 */
5185 rc = decode_operand(ctxt, &ctxt->src2, (ctxt->d >> Src2Shift) & OpMask);
5186 if (rc != X86EMUL_CONTINUE)
5187 goto done;
5188
5189 /* Decode and fetch the destination operand: register or memory. */
5190 rc = decode_operand(ctxt, &ctxt->dst, (ctxt->d >> DstShift) & OpMask);
5191
5192 if (ctxt->rip_relative && likely(ctxt->memopp))
5193 ctxt->memopp->addr.mem.ea = address_mask(ctxt,
5194 ctxt->memopp->addr.mem.ea + ctxt->_eip);
5195
5196 done:
5197 if (rc == X86EMUL_PROPAGATE_FAULT)
5198 ctxt->have_exception = true;
5199 return (rc != X86EMUL_CONTINUE) ? EMULATION_FAILED : EMULATION_OK;
5200 }
5201
x86_page_table_writing_insn(struct x86_emulate_ctxt * ctxt)5202 bool x86_page_table_writing_insn(struct x86_emulate_ctxt *ctxt)
5203 {
5204 return ctxt->d & PageTable;
5205 }
5206
string_insn_completed(struct x86_emulate_ctxt * ctxt)5207 static bool string_insn_completed(struct x86_emulate_ctxt *ctxt)
5208 {
5209 /* The second termination condition only applies for REPE
5210 * and REPNE. Test if the repeat string operation prefix is
5211 * REPE/REPZ or REPNE/REPNZ and if it's the case it tests the
5212 * corresponding termination condition according to:
5213 * - if REPE/REPZ and ZF = 0 then done
5214 * - if REPNE/REPNZ and ZF = 1 then done
5215 */
5216 if (((ctxt->b == 0xa6) || (ctxt->b == 0xa7) ||
5217 (ctxt->b == 0xae) || (ctxt->b == 0xaf))
5218 && (((ctxt->rep_prefix == REPE_PREFIX) &&
5219 ((ctxt->eflags & X86_EFLAGS_ZF) == 0))
5220 || ((ctxt->rep_prefix == REPNE_PREFIX) &&
5221 ((ctxt->eflags & X86_EFLAGS_ZF) == X86_EFLAGS_ZF))))
5222 return true;
5223
5224 return false;
5225 }
5226
flush_pending_x87_faults(struct x86_emulate_ctxt * ctxt)5227 static int flush_pending_x87_faults(struct x86_emulate_ctxt *ctxt)
5228 {
5229 int rc;
5230
5231 kvm_fpu_get();
5232 rc = asm_safe("fwait");
5233 kvm_fpu_put();
5234
5235 if (unlikely(rc != X86EMUL_CONTINUE))
5236 return emulate_exception(ctxt, MF_VECTOR, 0, false);
5237
5238 return X86EMUL_CONTINUE;
5239 }
5240
fetch_possible_mmx_operand(struct operand * op)5241 static void fetch_possible_mmx_operand(struct operand *op)
5242 {
5243 if (op->type == OP_MM)
5244 kvm_read_mmx_reg(op->addr.mm, &op->mm_val);
5245 }
5246
init_decode_cache(struct x86_emulate_ctxt * ctxt)5247 void init_decode_cache(struct x86_emulate_ctxt *ctxt)
5248 {
5249 /* Clear fields that are set conditionally but read without a guard. */
5250 ctxt->rip_relative = false;
5251 ctxt->rex_prefix = REX_NONE;
5252 ctxt->rex_bits = 0;
5253 ctxt->lock_prefix = 0;
5254 ctxt->op_prefix = false;
5255 ctxt->rep_prefix = 0;
5256 ctxt->regs_valid = 0;
5257 ctxt->regs_dirty = 0;
5258
5259 ctxt->io_read.pos = 0;
5260 ctxt->io_read.end = 0;
5261 ctxt->mem_read.end = 0;
5262 }
5263
x86_emulate_insn(struct x86_emulate_ctxt * ctxt,bool check_intercepts)5264 int x86_emulate_insn(struct x86_emulate_ctxt *ctxt, bool check_intercepts)
5265 {
5266 const struct x86_emulate_ops *ops = ctxt->ops;
5267 int rc = X86EMUL_CONTINUE;
5268 int saved_dst_type = ctxt->dst.type;
5269
5270 ctxt->mem_read.pos = 0;
5271
5272 /* LOCK prefix is allowed only with some instructions */
5273 if (ctxt->lock_prefix && (!(ctxt->d & Lock) || ctxt->dst.type != OP_MEM)) {
5274 rc = emulate_ud(ctxt);
5275 goto done;
5276 }
5277
5278 if ((ctxt->d & SrcMask) == SrcMemFAddr && ctxt->src.type != OP_MEM) {
5279 rc = emulate_ud(ctxt);
5280 goto done;
5281 }
5282
5283 if (unlikely(ctxt->d &
5284 (No64|Undefined|Avx|Sse|Mmx|Intercept|CheckPerm|Priv|Prot|String))) {
5285 if ((ctxt->mode == X86EMUL_MODE_PROT64 && (ctxt->d & No64)) ||
5286 (ctxt->d & Undefined)) {
5287 rc = emulate_ud(ctxt);
5288 goto done;
5289 }
5290
5291 if ((ctxt->d & (Avx|Sse|Mmx)) && ((ops->get_cr(ctxt, 0) & X86_CR0_EM))) {
5292 rc = emulate_ud(ctxt);
5293 goto done;
5294 }
5295
5296 if (ctxt->d & Avx) {
5297 u64 xcr = 0;
5298 if (!(ops->get_cr(ctxt, 4) & X86_CR4_OSXSAVE)
5299 || ops->get_xcr(ctxt, 0, &xcr)
5300 || !(xcr & XFEATURE_MASK_YMM)) {
5301 rc = emulate_ud(ctxt);
5302 goto done;
5303 }
5304 } else if (ctxt->d & Sse) {
5305 if (!(ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR)) {
5306 rc = emulate_ud(ctxt);
5307 goto done;
5308 }
5309 }
5310
5311 if ((ctxt->d & (Avx|Sse|Mmx)) && (ops->get_cr(ctxt, 0) & X86_CR0_TS)) {
5312 rc = emulate_nm(ctxt);
5313 goto done;
5314 }
5315
5316 if (ctxt->d & Mmx) {
5317 rc = flush_pending_x87_faults(ctxt);
5318 if (rc != X86EMUL_CONTINUE)
5319 goto done;
5320 /*
5321 * Now that we know the fpu is exception safe, we can fetch
5322 * operands from it.
5323 */
5324 fetch_possible_mmx_operand(&ctxt->src);
5325 fetch_possible_mmx_operand(&ctxt->src2);
5326 if (!(ctxt->d & Mov))
5327 fetch_possible_mmx_operand(&ctxt->dst);
5328 }
5329
5330 if (unlikely(check_intercepts) && ctxt->intercept) {
5331 rc = emulator_check_intercept(ctxt, ctxt->intercept,
5332 X86_ICPT_PRE_EXCEPT);
5333 if (rc != X86EMUL_CONTINUE)
5334 goto done;
5335 }
5336
5337 /* Instruction can only be executed in protected mode */
5338 if ((ctxt->d & Prot) && ctxt->mode < X86EMUL_MODE_PROT16) {
5339 rc = emulate_ud(ctxt);
5340 goto done;
5341 }
5342
5343 /* Privileged instruction can be executed only in CPL=0 */
5344 if ((ctxt->d & Priv) && ops->cpl(ctxt)) {
5345 if (ctxt->d & PrivUD)
5346 rc = emulate_ud(ctxt);
5347 else
5348 rc = emulate_gp(ctxt, 0);
5349 goto done;
5350 }
5351
5352 /* Do instruction specific permission checks */
5353 if (ctxt->d & CheckPerm) {
5354 rc = ctxt->check_perm(ctxt);
5355 if (rc != X86EMUL_CONTINUE)
5356 goto done;
5357 }
5358
5359 if (unlikely(check_intercepts) && (ctxt->d & Intercept)) {
5360 rc = emulator_check_intercept(ctxt, ctxt->intercept,
5361 X86_ICPT_POST_EXCEPT);
5362 if (rc != X86EMUL_CONTINUE)
5363 goto done;
5364 }
5365
5366 if (ctxt->rep_prefix && (ctxt->d & String)) {
5367 /* All REP prefixes have the same first termination condition */
5368 if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0) {
5369 string_registers_quirk(ctxt);
5370 ctxt->eip = ctxt->_eip;
5371 ctxt->eflags &= ~X86_EFLAGS_RF;
5372 goto done;
5373 }
5374 }
5375 }
5376
5377 if ((ctxt->src.type == OP_MEM) && !(ctxt->d & NoAccess)) {
5378 rc = segmented_read(ctxt, ctxt->src.addr.mem,
5379 ctxt->src.valptr, ctxt->src.bytes);
5380 if (rc != X86EMUL_CONTINUE)
5381 goto done;
5382 ctxt->src.orig_val64 = ctxt->src.val64;
5383 }
5384
5385 if (ctxt->src2.type == OP_MEM) {
5386 rc = segmented_read(ctxt, ctxt->src2.addr.mem,
5387 &ctxt->src2.val, ctxt->src2.bytes);
5388 if (rc != X86EMUL_CONTINUE)
5389 goto done;
5390 }
5391
5392 if ((ctxt->d & DstMask) == ImplicitOps)
5393 goto special_insn;
5394
5395
5396 if ((ctxt->dst.type == OP_MEM) && !(ctxt->d & Mov)) {
5397 /* optimisation - avoid slow emulated read if Mov */
5398 rc = segmented_read(ctxt, ctxt->dst.addr.mem,
5399 &ctxt->dst.val, ctxt->dst.bytes);
5400 if (rc != X86EMUL_CONTINUE) {
5401 if (!(ctxt->d & NoWrite) &&
5402 rc == X86EMUL_PROPAGATE_FAULT &&
5403 ctxt->exception.vector == PF_VECTOR)
5404 ctxt->exception.error_code |= PFERR_WRITE_MASK;
5405 goto done;
5406 }
5407 }
5408 /* Copy full 64-bit value for CMPXCHG8B. */
5409 ctxt->dst.orig_val64 = ctxt->dst.val64;
5410
5411 special_insn:
5412
5413 if (unlikely(check_intercepts) && (ctxt->d & Intercept)) {
5414 rc = emulator_check_intercept(ctxt, ctxt->intercept,
5415 X86_ICPT_POST_MEMACCESS);
5416 if (rc != X86EMUL_CONTINUE)
5417 goto done;
5418 }
5419
5420 if (ctxt->rep_prefix && (ctxt->d & String))
5421 ctxt->eflags |= X86_EFLAGS_RF;
5422 else
5423 ctxt->eflags &= ~X86_EFLAGS_RF;
5424
5425 if (ctxt->execute) {
5426 rc = ctxt->execute(ctxt);
5427 if (rc != X86EMUL_CONTINUE)
5428 goto done;
5429 goto writeback;
5430 }
5431
5432 if (ctxt->opcode_len == 2)
5433 goto twobyte_insn;
5434 else if (ctxt->opcode_len == 3)
5435 goto threebyte_insn;
5436
5437 switch (ctxt->b) {
5438 case 0x70 ... 0x7f: /* jcc (short) */
5439 if (test_cc(ctxt->b, ctxt->eflags))
5440 rc = jmp_rel(ctxt, ctxt->src.val);
5441 break;
5442 case 0x8d: /* lea r16/r32, m */
5443 ctxt->dst.val = ctxt->src.addr.mem.ea;
5444 break;
5445 case 0x90 ... 0x97: /* nop / xchg reg, rax */
5446 if (ctxt->dst.addr.reg == reg_rmw(ctxt, VCPU_REGS_RAX))
5447 ctxt->dst.type = OP_NONE;
5448 else
5449 rc = em_xchg(ctxt);
5450 break;
5451 case 0x98: /* cbw/cwde/cdqe */
5452 switch (ctxt->op_bytes) {
5453 case 2: ctxt->dst.val = (s8)ctxt->dst.val; break;
5454 case 4: ctxt->dst.val = (s16)ctxt->dst.val; break;
5455 case 8: ctxt->dst.val = (s32)ctxt->dst.val; break;
5456 }
5457 break;
5458 case 0xcc: /* int3 */
5459 rc = emulate_int(ctxt, 3);
5460 break;
5461 case 0xcd: /* int n */
5462 rc = emulate_int(ctxt, ctxt->src.val);
5463 break;
5464 case 0xce: /* into */
5465 if (ctxt->eflags & X86_EFLAGS_OF)
5466 rc = emulate_int(ctxt, 4);
5467 break;
5468 case 0xe9: /* jmp rel */
5469 case 0xeb: /* jmp rel short */
5470 rc = jmp_rel(ctxt, ctxt->src.val);
5471 ctxt->dst.type = OP_NONE; /* Disable writeback. */
5472 break;
5473 case 0xf4: /* hlt */
5474 ctxt->ops->halt(ctxt);
5475 break;
5476 case 0xf5: /* cmc */
5477 /* complement carry flag from eflags reg */
5478 ctxt->eflags ^= X86_EFLAGS_CF;
5479 break;
5480 case 0xf8: /* clc */
5481 ctxt->eflags &= ~X86_EFLAGS_CF;
5482 break;
5483 case 0xf9: /* stc */
5484 ctxt->eflags |= X86_EFLAGS_CF;
5485 break;
5486 case 0xfc: /* cld */
5487 ctxt->eflags &= ~X86_EFLAGS_DF;
5488 break;
5489 case 0xfd: /* std */
5490 ctxt->eflags |= X86_EFLAGS_DF;
5491 break;
5492 default:
5493 goto cannot_emulate;
5494 }
5495
5496 if (rc != X86EMUL_CONTINUE)
5497 goto done;
5498
5499 writeback:
5500 if (ctxt->d & SrcWrite) {
5501 BUG_ON(ctxt->src.type == OP_MEM || ctxt->src.type == OP_MEM_STR);
5502 rc = writeback(ctxt, &ctxt->src);
5503 if (rc != X86EMUL_CONTINUE)
5504 goto done;
5505 }
5506 if (!(ctxt->d & NoWrite)) {
5507 rc = writeback(ctxt, &ctxt->dst);
5508 if (rc != X86EMUL_CONTINUE)
5509 goto done;
5510 }
5511
5512 /*
5513 * restore dst type in case the decoding will be reused
5514 * (happens for string instruction )
5515 */
5516 ctxt->dst.type = saved_dst_type;
5517
5518 if ((ctxt->d & SrcMask) == SrcSI)
5519 string_addr_inc(ctxt, VCPU_REGS_RSI, &ctxt->src);
5520
5521 if ((ctxt->d & DstMask) == DstDI)
5522 string_addr_inc(ctxt, VCPU_REGS_RDI, &ctxt->dst);
5523
5524 if (ctxt->rep_prefix && (ctxt->d & String)) {
5525 unsigned int count;
5526 struct read_cache *r = &ctxt->io_read;
5527 if ((ctxt->d & SrcMask) == SrcSI)
5528 count = ctxt->src.count;
5529 else
5530 count = ctxt->dst.count;
5531 register_address_increment(ctxt, VCPU_REGS_RCX, -count);
5532
5533 if (!string_insn_completed(ctxt)) {
5534 /*
5535 * Re-enter guest when pio read ahead buffer is empty
5536 * or, if it is not used, after each 1024 iteration.
5537 */
5538 if ((r->end != 0 || reg_read(ctxt, VCPU_REGS_RCX) & 0x3ff) &&
5539 (r->end == 0 || r->end != r->pos)) {
5540 /*
5541 * Reset read cache. Usually happens before
5542 * decode, but since instruction is restarted
5543 * we have to do it here.
5544 */
5545 ctxt->mem_read.end = 0;
5546 writeback_registers(ctxt);
5547 return EMULATION_RESTART;
5548 }
5549 goto done; /* skip rip writeback */
5550 }
5551 ctxt->eflags &= ~X86_EFLAGS_RF;
5552 }
5553
5554 ctxt->eip = ctxt->_eip;
5555 if (ctxt->mode != X86EMUL_MODE_PROT64)
5556 ctxt->eip = (u32)ctxt->_eip;
5557
5558 done:
5559 if (rc == X86EMUL_PROPAGATE_FAULT) {
5560 if (KVM_EMULATOR_BUG_ON(ctxt->exception.vector > 0x1f, ctxt))
5561 return EMULATION_FAILED;
5562 ctxt->have_exception = true;
5563 }
5564 if (rc == X86EMUL_INTERCEPTED)
5565 return EMULATION_INTERCEPTED;
5566
5567 if (rc == X86EMUL_CONTINUE)
5568 writeback_registers(ctxt);
5569
5570 return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
5571
5572 twobyte_insn:
5573 switch (ctxt->b) {
5574 case 0x09: /* wbinvd */
5575 (ctxt->ops->wbinvd)(ctxt);
5576 break;
5577 case 0x08: /* invd */
5578 case 0x0d: /* GrpP (prefetch) */
5579 case 0x18: /* Grp16 (prefetch/nop) */
5580 case 0x1f: /* nop */
5581 break;
5582 case 0x20: /* mov cr, reg */
5583 ctxt->dst.val = ops->get_cr(ctxt, ctxt->modrm_reg);
5584 break;
5585 case 0x21: /* mov from dr to reg */
5586 ctxt->dst.val = ops->get_dr(ctxt, ctxt->modrm_reg);
5587 break;
5588 case 0x40 ... 0x4f: /* cmov */
5589 if (test_cc(ctxt->b, ctxt->eflags))
5590 ctxt->dst.val = ctxt->src.val;
5591 else if (ctxt->op_bytes != 4)
5592 ctxt->dst.type = OP_NONE; /* no writeback */
5593 break;
5594 case 0x80 ... 0x8f: /* jnz rel, etc*/
5595 if (test_cc(ctxt->b, ctxt->eflags))
5596 rc = jmp_rel(ctxt, ctxt->src.val);
5597 break;
5598 case 0x90 ... 0x9f: /* setcc r/m8 */
5599 ctxt->dst.val = test_cc(ctxt->b, ctxt->eflags);
5600 break;
5601 case 0xb6 ... 0xb7: /* movzx */
5602 ctxt->dst.bytes = ctxt->op_bytes;
5603 ctxt->dst.val = (ctxt->src.bytes == 1) ? (u8) ctxt->src.val
5604 : (u16) ctxt->src.val;
5605 break;
5606 case 0xbe ... 0xbf: /* movsx */
5607 ctxt->dst.bytes = ctxt->op_bytes;
5608 ctxt->dst.val = (ctxt->src.bytes == 1) ? (s8) ctxt->src.val :
5609 (s16) ctxt->src.val;
5610 break;
5611 default:
5612 goto cannot_emulate;
5613 }
5614
5615 threebyte_insn:
5616
5617 if (rc != X86EMUL_CONTINUE)
5618 goto done;
5619
5620 goto writeback;
5621
5622 cannot_emulate:
5623 return EMULATION_FAILED;
5624 }
5625
emulator_invalidate_register_cache(struct x86_emulate_ctxt * ctxt)5626 void emulator_invalidate_register_cache(struct x86_emulate_ctxt *ctxt)
5627 {
5628 invalidate_registers(ctxt);
5629 }
5630
emulator_writeback_register_cache(struct x86_emulate_ctxt * ctxt)5631 void emulator_writeback_register_cache(struct x86_emulate_ctxt *ctxt)
5632 {
5633 writeback_registers(ctxt);
5634 }
5635
emulator_can_use_gpa(struct x86_emulate_ctxt * ctxt)5636 bool emulator_can_use_gpa(struct x86_emulate_ctxt *ctxt)
5637 {
5638 if (ctxt->rep_prefix && (ctxt->d & String))
5639 return false;
5640
5641 if (ctxt->d & TwoMemOp)
5642 return false;
5643
5644 return true;
5645 }
5646