xref: /linux/fs/inode.c (revision 42b16d3ac371a2fac9b6f08fd75f23f34ba3955a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) 1997 Linus Torvalds
4  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5  */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/filelock.h>
9 #include <linux/mm.h>
10 #include <linux/backing-dev.h>
11 #include <linux/hash.h>
12 #include <linux/swap.h>
13 #include <linux/security.h>
14 #include <linux/cdev.h>
15 #include <linux/memblock.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <linux/rw_hint.h>
24 #include <trace/events/writeback.h>
25 #include "internal.h"
26 
27 /*
28  * Inode locking rules:
29  *
30  * inode->i_lock protects:
31  *   inode->i_state, inode->i_hash, __iget(), inode->i_io_list
32  * Inode LRU list locks protect:
33  *   inode->i_sb->s_inode_lru, inode->i_lru
34  * inode->i_sb->s_inode_list_lock protects:
35  *   inode->i_sb->s_inodes, inode->i_sb_list
36  * bdi->wb.list_lock protects:
37  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
38  * inode_hash_lock protects:
39  *   inode_hashtable, inode->i_hash
40  *
41  * Lock ordering:
42  *
43  * inode->i_sb->s_inode_list_lock
44  *   inode->i_lock
45  *     Inode LRU list locks
46  *
47  * bdi->wb.list_lock
48  *   inode->i_lock
49  *
50  * inode_hash_lock
51  *   inode->i_sb->s_inode_list_lock
52  *   inode->i_lock
53  *
54  * iunique_lock
55  *   inode_hash_lock
56  */
57 
58 static unsigned int i_hash_mask __ro_after_init;
59 static unsigned int i_hash_shift __ro_after_init;
60 static struct hlist_head *inode_hashtable __ro_after_init;
61 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
62 
63 /*
64  * Empty aops. Can be used for the cases where the user does not
65  * define any of the address_space operations.
66  */
67 const struct address_space_operations empty_aops = {
68 };
69 EXPORT_SYMBOL(empty_aops);
70 
71 static DEFINE_PER_CPU(unsigned long, nr_inodes);
72 static DEFINE_PER_CPU(unsigned long, nr_unused);
73 
74 static struct kmem_cache *inode_cachep __ro_after_init;
75 
get_nr_inodes(void)76 static long get_nr_inodes(void)
77 {
78 	int i;
79 	long sum = 0;
80 	for_each_possible_cpu(i)
81 		sum += per_cpu(nr_inodes, i);
82 	return sum < 0 ? 0 : sum;
83 }
84 
get_nr_inodes_unused(void)85 static inline long get_nr_inodes_unused(void)
86 {
87 	int i;
88 	long sum = 0;
89 	for_each_possible_cpu(i)
90 		sum += per_cpu(nr_unused, i);
91 	return sum < 0 ? 0 : sum;
92 }
93 
get_nr_dirty_inodes(void)94 long get_nr_dirty_inodes(void)
95 {
96 	/* not actually dirty inodes, but a wild approximation */
97 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
98 	return nr_dirty > 0 ? nr_dirty : 0;
99 }
100 
101 /*
102  * Handle nr_inode sysctl
103  */
104 #ifdef CONFIG_SYSCTL
105 /*
106  * Statistics gathering..
107  */
108 static struct inodes_stat_t inodes_stat;
109 
proc_nr_inodes(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)110 static int proc_nr_inodes(const struct ctl_table *table, int write, void *buffer,
111 			  size_t *lenp, loff_t *ppos)
112 {
113 	inodes_stat.nr_inodes = get_nr_inodes();
114 	inodes_stat.nr_unused = get_nr_inodes_unused();
115 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
116 }
117 
118 static struct ctl_table inodes_sysctls[] = {
119 	{
120 		.procname	= "inode-nr",
121 		.data		= &inodes_stat,
122 		.maxlen		= 2*sizeof(long),
123 		.mode		= 0444,
124 		.proc_handler	= proc_nr_inodes,
125 	},
126 	{
127 		.procname	= "inode-state",
128 		.data		= &inodes_stat,
129 		.maxlen		= 7*sizeof(long),
130 		.mode		= 0444,
131 		.proc_handler	= proc_nr_inodes,
132 	},
133 };
134 
init_fs_inode_sysctls(void)135 static int __init init_fs_inode_sysctls(void)
136 {
137 	register_sysctl_init("fs", inodes_sysctls);
138 	return 0;
139 }
140 early_initcall(init_fs_inode_sysctls);
141 #endif
142 
no_open(struct inode * inode,struct file * file)143 static int no_open(struct inode *inode, struct file *file)
144 {
145 	return -ENXIO;
146 }
147 
148 /**
149  * inode_init_always - perform inode structure initialisation
150  * @sb: superblock inode belongs to
151  * @inode: inode to initialise
152  *
153  * These are initializations that need to be done on every inode
154  * allocation as the fields are not initialised by slab allocation.
155  */
inode_init_always(struct super_block * sb,struct inode * inode)156 int inode_init_always(struct super_block *sb, struct inode *inode)
157 {
158 	static const struct inode_operations empty_iops;
159 	static const struct file_operations no_open_fops = {.open = no_open};
160 	struct address_space *const mapping = &inode->i_data;
161 
162 	inode->i_sb = sb;
163 	inode->i_blkbits = sb->s_blocksize_bits;
164 	inode->i_flags = 0;
165 	inode->i_state = 0;
166 	atomic64_set(&inode->i_sequence, 0);
167 	atomic_set(&inode->i_count, 1);
168 	inode->i_op = &empty_iops;
169 	inode->i_fop = &no_open_fops;
170 	inode->i_ino = 0;
171 	inode->__i_nlink = 1;
172 	inode->i_opflags = 0;
173 	if (sb->s_xattr)
174 		inode->i_opflags |= IOP_XATTR;
175 	i_uid_write(inode, 0);
176 	i_gid_write(inode, 0);
177 	atomic_set(&inode->i_writecount, 0);
178 	inode->i_size = 0;
179 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
180 	inode->i_blocks = 0;
181 	inode->i_bytes = 0;
182 	inode->i_generation = 0;
183 	inode->i_pipe = NULL;
184 	inode->i_cdev = NULL;
185 	inode->i_link = NULL;
186 	inode->i_dir_seq = 0;
187 	inode->i_rdev = 0;
188 	inode->dirtied_when = 0;
189 
190 #ifdef CONFIG_CGROUP_WRITEBACK
191 	inode->i_wb_frn_winner = 0;
192 	inode->i_wb_frn_avg_time = 0;
193 	inode->i_wb_frn_history = 0;
194 #endif
195 
196 	spin_lock_init(&inode->i_lock);
197 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
198 
199 	init_rwsem(&inode->i_rwsem);
200 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
201 
202 	atomic_set(&inode->i_dio_count, 0);
203 
204 	mapping->a_ops = &empty_aops;
205 	mapping->host = inode;
206 	mapping->flags = 0;
207 	mapping->wb_err = 0;
208 	atomic_set(&mapping->i_mmap_writable, 0);
209 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
210 	atomic_set(&mapping->nr_thps, 0);
211 #endif
212 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
213 	mapping->i_private_data = NULL;
214 	mapping->writeback_index = 0;
215 	init_rwsem(&mapping->invalidate_lock);
216 	lockdep_set_class_and_name(&mapping->invalidate_lock,
217 				   &sb->s_type->invalidate_lock_key,
218 				   "mapping.invalidate_lock");
219 	if (sb->s_iflags & SB_I_STABLE_WRITES)
220 		mapping_set_stable_writes(mapping);
221 	inode->i_private = NULL;
222 	inode->i_mapping = mapping;
223 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
224 #ifdef CONFIG_FS_POSIX_ACL
225 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
226 #endif
227 
228 #ifdef CONFIG_FSNOTIFY
229 	inode->i_fsnotify_mask = 0;
230 #endif
231 	inode->i_flctx = NULL;
232 
233 	if (unlikely(security_inode_alloc(inode)))
234 		return -ENOMEM;
235 
236 	this_cpu_inc(nr_inodes);
237 
238 	return 0;
239 }
240 EXPORT_SYMBOL(inode_init_always);
241 
free_inode_nonrcu(struct inode * inode)242 void free_inode_nonrcu(struct inode *inode)
243 {
244 	kmem_cache_free(inode_cachep, inode);
245 }
246 EXPORT_SYMBOL(free_inode_nonrcu);
247 
i_callback(struct rcu_head * head)248 static void i_callback(struct rcu_head *head)
249 {
250 	struct inode *inode = container_of(head, struct inode, i_rcu);
251 	if (inode->free_inode)
252 		inode->free_inode(inode);
253 	else
254 		free_inode_nonrcu(inode);
255 }
256 
alloc_inode(struct super_block * sb)257 static struct inode *alloc_inode(struct super_block *sb)
258 {
259 	const struct super_operations *ops = sb->s_op;
260 	struct inode *inode;
261 
262 	if (ops->alloc_inode)
263 		inode = ops->alloc_inode(sb);
264 	else
265 		inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
266 
267 	if (!inode)
268 		return NULL;
269 
270 	if (unlikely(inode_init_always(sb, inode))) {
271 		if (ops->destroy_inode) {
272 			ops->destroy_inode(inode);
273 			if (!ops->free_inode)
274 				return NULL;
275 		}
276 		inode->free_inode = ops->free_inode;
277 		i_callback(&inode->i_rcu);
278 		return NULL;
279 	}
280 
281 	return inode;
282 }
283 
__destroy_inode(struct inode * inode)284 void __destroy_inode(struct inode *inode)
285 {
286 	BUG_ON(inode_has_buffers(inode));
287 	inode_detach_wb(inode);
288 	security_inode_free(inode);
289 	fsnotify_inode_delete(inode);
290 	locks_free_lock_context(inode);
291 	if (!inode->i_nlink) {
292 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
293 		atomic_long_dec(&inode->i_sb->s_remove_count);
294 	}
295 
296 #ifdef CONFIG_FS_POSIX_ACL
297 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
298 		posix_acl_release(inode->i_acl);
299 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
300 		posix_acl_release(inode->i_default_acl);
301 #endif
302 	this_cpu_dec(nr_inodes);
303 }
304 EXPORT_SYMBOL(__destroy_inode);
305 
destroy_inode(struct inode * inode)306 static void destroy_inode(struct inode *inode)
307 {
308 	const struct super_operations *ops = inode->i_sb->s_op;
309 
310 	BUG_ON(!list_empty(&inode->i_lru));
311 	__destroy_inode(inode);
312 	if (ops->destroy_inode) {
313 		ops->destroy_inode(inode);
314 		if (!ops->free_inode)
315 			return;
316 	}
317 	inode->free_inode = ops->free_inode;
318 	call_rcu(&inode->i_rcu, i_callback);
319 }
320 
321 /**
322  * drop_nlink - directly drop an inode's link count
323  * @inode: inode
324  *
325  * This is a low-level filesystem helper to replace any
326  * direct filesystem manipulation of i_nlink.  In cases
327  * where we are attempting to track writes to the
328  * filesystem, a decrement to zero means an imminent
329  * write when the file is truncated and actually unlinked
330  * on the filesystem.
331  */
drop_nlink(struct inode * inode)332 void drop_nlink(struct inode *inode)
333 {
334 	WARN_ON(inode->i_nlink == 0);
335 	inode->__i_nlink--;
336 	if (!inode->i_nlink)
337 		atomic_long_inc(&inode->i_sb->s_remove_count);
338 }
339 EXPORT_SYMBOL(drop_nlink);
340 
341 /**
342  * clear_nlink - directly zero an inode's link count
343  * @inode: inode
344  *
345  * This is a low-level filesystem helper to replace any
346  * direct filesystem manipulation of i_nlink.  See
347  * drop_nlink() for why we care about i_nlink hitting zero.
348  */
clear_nlink(struct inode * inode)349 void clear_nlink(struct inode *inode)
350 {
351 	if (inode->i_nlink) {
352 		inode->__i_nlink = 0;
353 		atomic_long_inc(&inode->i_sb->s_remove_count);
354 	}
355 }
356 EXPORT_SYMBOL(clear_nlink);
357 
358 /**
359  * set_nlink - directly set an inode's link count
360  * @inode: inode
361  * @nlink: new nlink (should be non-zero)
362  *
363  * This is a low-level filesystem helper to replace any
364  * direct filesystem manipulation of i_nlink.
365  */
set_nlink(struct inode * inode,unsigned int nlink)366 void set_nlink(struct inode *inode, unsigned int nlink)
367 {
368 	if (!nlink) {
369 		clear_nlink(inode);
370 	} else {
371 		/* Yes, some filesystems do change nlink from zero to one */
372 		if (inode->i_nlink == 0)
373 			atomic_long_dec(&inode->i_sb->s_remove_count);
374 
375 		inode->__i_nlink = nlink;
376 	}
377 }
378 EXPORT_SYMBOL(set_nlink);
379 
380 /**
381  * inc_nlink - directly increment an inode's link count
382  * @inode: inode
383  *
384  * This is a low-level filesystem helper to replace any
385  * direct filesystem manipulation of i_nlink.  Currently,
386  * it is only here for parity with dec_nlink().
387  */
inc_nlink(struct inode * inode)388 void inc_nlink(struct inode *inode)
389 {
390 	if (unlikely(inode->i_nlink == 0)) {
391 		WARN_ON(!(inode->i_state & I_LINKABLE));
392 		atomic_long_dec(&inode->i_sb->s_remove_count);
393 	}
394 
395 	inode->__i_nlink++;
396 }
397 EXPORT_SYMBOL(inc_nlink);
398 
__address_space_init_once(struct address_space * mapping)399 static void __address_space_init_once(struct address_space *mapping)
400 {
401 	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
402 	init_rwsem(&mapping->i_mmap_rwsem);
403 	INIT_LIST_HEAD(&mapping->i_private_list);
404 	spin_lock_init(&mapping->i_private_lock);
405 	mapping->i_mmap = RB_ROOT_CACHED;
406 }
407 
address_space_init_once(struct address_space * mapping)408 void address_space_init_once(struct address_space *mapping)
409 {
410 	memset(mapping, 0, sizeof(*mapping));
411 	__address_space_init_once(mapping);
412 }
413 EXPORT_SYMBOL(address_space_init_once);
414 
415 /*
416  * These are initializations that only need to be done
417  * once, because the fields are idempotent across use
418  * of the inode, so let the slab aware of that.
419  */
inode_init_once(struct inode * inode)420 void inode_init_once(struct inode *inode)
421 {
422 	memset(inode, 0, sizeof(*inode));
423 	INIT_HLIST_NODE(&inode->i_hash);
424 	INIT_LIST_HEAD(&inode->i_devices);
425 	INIT_LIST_HEAD(&inode->i_io_list);
426 	INIT_LIST_HEAD(&inode->i_wb_list);
427 	INIT_LIST_HEAD(&inode->i_lru);
428 	INIT_LIST_HEAD(&inode->i_sb_list);
429 	__address_space_init_once(&inode->i_data);
430 	i_size_ordered_init(inode);
431 }
432 EXPORT_SYMBOL(inode_init_once);
433 
init_once(void * foo)434 static void init_once(void *foo)
435 {
436 	struct inode *inode = (struct inode *) foo;
437 
438 	inode_init_once(inode);
439 }
440 
441 /*
442  * get additional reference to inode; caller must already hold one.
443  */
ihold(struct inode * inode)444 void ihold(struct inode *inode)
445 {
446 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
447 }
448 EXPORT_SYMBOL(ihold);
449 
__inode_add_lru(struct inode * inode,bool rotate)450 static void __inode_add_lru(struct inode *inode, bool rotate)
451 {
452 	if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
453 		return;
454 	if (atomic_read(&inode->i_count))
455 		return;
456 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
457 		return;
458 	if (!mapping_shrinkable(&inode->i_data))
459 		return;
460 
461 	if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
462 		this_cpu_inc(nr_unused);
463 	else if (rotate)
464 		inode->i_state |= I_REFERENCED;
465 }
466 
inode_bit_waitqueue(struct wait_bit_queue_entry * wqe,struct inode * inode,u32 bit)467 struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe,
468 					    struct inode *inode, u32 bit)
469 {
470         void *bit_address;
471 
472         bit_address = inode_state_wait_address(inode, bit);
473         init_wait_var_entry(wqe, bit_address, 0);
474         return __var_waitqueue(bit_address);
475 }
476 EXPORT_SYMBOL(inode_bit_waitqueue);
477 
478 /*
479  * Add inode to LRU if needed (inode is unused and clean).
480  *
481  * Needs inode->i_lock held.
482  */
inode_add_lru(struct inode * inode)483 void inode_add_lru(struct inode *inode)
484 {
485 	__inode_add_lru(inode, false);
486 }
487 
inode_lru_list_del(struct inode * inode)488 static void inode_lru_list_del(struct inode *inode)
489 {
490 	if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
491 		this_cpu_dec(nr_unused);
492 }
493 
inode_pin_lru_isolating(struct inode * inode)494 static void inode_pin_lru_isolating(struct inode *inode)
495 {
496 	lockdep_assert_held(&inode->i_lock);
497 	WARN_ON(inode->i_state & (I_LRU_ISOLATING | I_FREEING | I_WILL_FREE));
498 	inode->i_state |= I_LRU_ISOLATING;
499 }
500 
inode_unpin_lru_isolating(struct inode * inode)501 static void inode_unpin_lru_isolating(struct inode *inode)
502 {
503 	spin_lock(&inode->i_lock);
504 	WARN_ON(!(inode->i_state & I_LRU_ISOLATING));
505 	inode->i_state &= ~I_LRU_ISOLATING;
506 	/* Called with inode->i_lock which ensures memory ordering. */
507 	inode_wake_up_bit(inode, __I_LRU_ISOLATING);
508 	spin_unlock(&inode->i_lock);
509 }
510 
inode_wait_for_lru_isolating(struct inode * inode)511 static void inode_wait_for_lru_isolating(struct inode *inode)
512 {
513 	struct wait_bit_queue_entry wqe;
514 	struct wait_queue_head *wq_head;
515 
516 	lockdep_assert_held(&inode->i_lock);
517 	if (!(inode->i_state & I_LRU_ISOLATING))
518 		return;
519 
520 	wq_head = inode_bit_waitqueue(&wqe, inode, __I_LRU_ISOLATING);
521 	for (;;) {
522 		prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
523 		/*
524 		 * Checking I_LRU_ISOLATING with inode->i_lock guarantees
525 		 * memory ordering.
526 		 */
527 		if (!(inode->i_state & I_LRU_ISOLATING))
528 			break;
529 		spin_unlock(&inode->i_lock);
530 		schedule();
531 		spin_lock(&inode->i_lock);
532 	}
533 	finish_wait(wq_head, &wqe.wq_entry);
534 	WARN_ON(inode->i_state & I_LRU_ISOLATING);
535 }
536 
537 /**
538  * inode_sb_list_add - add inode to the superblock list of inodes
539  * @inode: inode to add
540  */
inode_sb_list_add(struct inode * inode)541 void inode_sb_list_add(struct inode *inode)
542 {
543 	spin_lock(&inode->i_sb->s_inode_list_lock);
544 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
545 	spin_unlock(&inode->i_sb->s_inode_list_lock);
546 }
547 EXPORT_SYMBOL_GPL(inode_sb_list_add);
548 
inode_sb_list_del(struct inode * inode)549 static inline void inode_sb_list_del(struct inode *inode)
550 {
551 	if (!list_empty(&inode->i_sb_list)) {
552 		spin_lock(&inode->i_sb->s_inode_list_lock);
553 		list_del_init(&inode->i_sb_list);
554 		spin_unlock(&inode->i_sb->s_inode_list_lock);
555 	}
556 }
557 
hash(struct super_block * sb,unsigned long hashval)558 static unsigned long hash(struct super_block *sb, unsigned long hashval)
559 {
560 	unsigned long tmp;
561 
562 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
563 			L1_CACHE_BYTES;
564 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
565 	return tmp & i_hash_mask;
566 }
567 
568 /**
569  *	__insert_inode_hash - hash an inode
570  *	@inode: unhashed inode
571  *	@hashval: unsigned long value used to locate this object in the
572  *		inode_hashtable.
573  *
574  *	Add an inode to the inode hash for this superblock.
575  */
__insert_inode_hash(struct inode * inode,unsigned long hashval)576 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
577 {
578 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
579 
580 	spin_lock(&inode_hash_lock);
581 	spin_lock(&inode->i_lock);
582 	hlist_add_head_rcu(&inode->i_hash, b);
583 	spin_unlock(&inode->i_lock);
584 	spin_unlock(&inode_hash_lock);
585 }
586 EXPORT_SYMBOL(__insert_inode_hash);
587 
588 /**
589  *	__remove_inode_hash - remove an inode from the hash
590  *	@inode: inode to unhash
591  *
592  *	Remove an inode from the superblock.
593  */
__remove_inode_hash(struct inode * inode)594 void __remove_inode_hash(struct inode *inode)
595 {
596 	spin_lock(&inode_hash_lock);
597 	spin_lock(&inode->i_lock);
598 	hlist_del_init_rcu(&inode->i_hash);
599 	spin_unlock(&inode->i_lock);
600 	spin_unlock(&inode_hash_lock);
601 }
602 EXPORT_SYMBOL(__remove_inode_hash);
603 
dump_mapping(const struct address_space * mapping)604 void dump_mapping(const struct address_space *mapping)
605 {
606 	struct inode *host;
607 	const struct address_space_operations *a_ops;
608 	struct hlist_node *dentry_first;
609 	struct dentry *dentry_ptr;
610 	struct dentry dentry;
611 	char fname[64] = {};
612 	unsigned long ino;
613 
614 	/*
615 	 * If mapping is an invalid pointer, we don't want to crash
616 	 * accessing it, so probe everything depending on it carefully.
617 	 */
618 	if (get_kernel_nofault(host, &mapping->host) ||
619 	    get_kernel_nofault(a_ops, &mapping->a_ops)) {
620 		pr_warn("invalid mapping:%px\n", mapping);
621 		return;
622 	}
623 
624 	if (!host) {
625 		pr_warn("aops:%ps\n", a_ops);
626 		return;
627 	}
628 
629 	if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
630 	    get_kernel_nofault(ino, &host->i_ino)) {
631 		pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
632 		return;
633 	}
634 
635 	if (!dentry_first) {
636 		pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
637 		return;
638 	}
639 
640 	dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
641 	if (get_kernel_nofault(dentry, dentry_ptr) ||
642 	    !dentry.d_parent || !dentry.d_name.name) {
643 		pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
644 				a_ops, ino, dentry_ptr);
645 		return;
646 	}
647 
648 	if (strncpy_from_kernel_nofault(fname, dentry.d_name.name, 63) < 0)
649 		strscpy(fname, "<invalid>");
650 	/*
651 	 * Even if strncpy_from_kernel_nofault() succeeded,
652 	 * the fname could be unreliable
653 	 */
654 	pr_warn("aops:%ps ino:%lx dentry name(?):\"%s\"\n",
655 		a_ops, ino, fname);
656 }
657 
clear_inode(struct inode * inode)658 void clear_inode(struct inode *inode)
659 {
660 	/*
661 	 * We have to cycle the i_pages lock here because reclaim can be in the
662 	 * process of removing the last page (in __filemap_remove_folio())
663 	 * and we must not free the mapping under it.
664 	 */
665 	xa_lock_irq(&inode->i_data.i_pages);
666 	BUG_ON(inode->i_data.nrpages);
667 	/*
668 	 * Almost always, mapping_empty(&inode->i_data) here; but there are
669 	 * two known and long-standing ways in which nodes may get left behind
670 	 * (when deep radix-tree node allocation failed partway; or when THP
671 	 * collapse_file() failed). Until those two known cases are cleaned up,
672 	 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
673 	 * nor even WARN_ON(!mapping_empty).
674 	 */
675 	xa_unlock_irq(&inode->i_data.i_pages);
676 	BUG_ON(!list_empty(&inode->i_data.i_private_list));
677 	BUG_ON(!(inode->i_state & I_FREEING));
678 	BUG_ON(inode->i_state & I_CLEAR);
679 	BUG_ON(!list_empty(&inode->i_wb_list));
680 	/* don't need i_lock here, no concurrent mods to i_state */
681 	inode->i_state = I_FREEING | I_CLEAR;
682 }
683 EXPORT_SYMBOL(clear_inode);
684 
685 /*
686  * Free the inode passed in, removing it from the lists it is still connected
687  * to. We remove any pages still attached to the inode and wait for any IO that
688  * is still in progress before finally destroying the inode.
689  *
690  * An inode must already be marked I_FREEING so that we avoid the inode being
691  * moved back onto lists if we race with other code that manipulates the lists
692  * (e.g. writeback_single_inode). The caller is responsible for setting this.
693  *
694  * An inode must already be removed from the LRU list before being evicted from
695  * the cache. This should occur atomically with setting the I_FREEING state
696  * flag, so no inodes here should ever be on the LRU when being evicted.
697  */
evict(struct inode * inode)698 static void evict(struct inode *inode)
699 {
700 	const struct super_operations *op = inode->i_sb->s_op;
701 
702 	BUG_ON(!(inode->i_state & I_FREEING));
703 	BUG_ON(!list_empty(&inode->i_lru));
704 
705 	if (!list_empty(&inode->i_io_list))
706 		inode_io_list_del(inode);
707 
708 	inode_sb_list_del(inode);
709 
710 	spin_lock(&inode->i_lock);
711 	inode_wait_for_lru_isolating(inode);
712 
713 	/*
714 	 * Wait for flusher thread to be done with the inode so that filesystem
715 	 * does not start destroying it while writeback is still running. Since
716 	 * the inode has I_FREEING set, flusher thread won't start new work on
717 	 * the inode.  We just have to wait for running writeback to finish.
718 	 */
719 	inode_wait_for_writeback(inode);
720 	spin_unlock(&inode->i_lock);
721 
722 	if (op->evict_inode) {
723 		op->evict_inode(inode);
724 	} else {
725 		truncate_inode_pages_final(&inode->i_data);
726 		clear_inode(inode);
727 	}
728 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
729 		cd_forget(inode);
730 
731 	remove_inode_hash(inode);
732 
733 	/*
734 	 * Wake up waiters in __wait_on_freeing_inode().
735 	 *
736 	 * Lockless hash lookup may end up finding the inode before we removed
737 	 * it above, but only lock it *after* we are done with the wakeup below.
738 	 * In this case the potential waiter cannot safely block.
739 	 *
740 	 * The inode being unhashed after the call to remove_inode_hash() is
741 	 * used as an indicator whether blocking on it is safe.
742 	 */
743 	spin_lock(&inode->i_lock);
744 	/*
745 	 * Pairs with the barrier in prepare_to_wait_event() to make sure
746 	 * ___wait_var_event() either sees the bit cleared or
747 	 * waitqueue_active() check in wake_up_var() sees the waiter.
748 	 */
749 	smp_mb();
750 	inode_wake_up_bit(inode, __I_NEW);
751 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
752 	spin_unlock(&inode->i_lock);
753 
754 	destroy_inode(inode);
755 }
756 
757 /*
758  * dispose_list - dispose of the contents of a local list
759  * @head: the head of the list to free
760  *
761  * Dispose-list gets a local list with local inodes in it, so it doesn't
762  * need to worry about list corruption and SMP locks.
763  */
dispose_list(struct list_head * head)764 static void dispose_list(struct list_head *head)
765 {
766 	while (!list_empty(head)) {
767 		struct inode *inode;
768 
769 		inode = list_first_entry(head, struct inode, i_lru);
770 		list_del_init(&inode->i_lru);
771 
772 		evict(inode);
773 		cond_resched();
774 	}
775 }
776 
777 /**
778  * evict_inodes	- evict all evictable inodes for a superblock
779  * @sb:		superblock to operate on
780  *
781  * Make sure that no inodes with zero refcount are retained.  This is
782  * called by superblock shutdown after having SB_ACTIVE flag removed,
783  * so any inode reaching zero refcount during or after that call will
784  * be immediately evicted.
785  */
evict_inodes(struct super_block * sb)786 void evict_inodes(struct super_block *sb)
787 {
788 	struct inode *inode, *next;
789 	LIST_HEAD(dispose);
790 
791 again:
792 	spin_lock(&sb->s_inode_list_lock);
793 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
794 		if (atomic_read(&inode->i_count))
795 			continue;
796 
797 		spin_lock(&inode->i_lock);
798 		if (atomic_read(&inode->i_count)) {
799 			spin_unlock(&inode->i_lock);
800 			continue;
801 		}
802 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
803 			spin_unlock(&inode->i_lock);
804 			continue;
805 		}
806 
807 		inode->i_state |= I_FREEING;
808 		inode_lru_list_del(inode);
809 		spin_unlock(&inode->i_lock);
810 		list_add(&inode->i_lru, &dispose);
811 
812 		/*
813 		 * We can have a ton of inodes to evict at unmount time given
814 		 * enough memory, check to see if we need to go to sleep for a
815 		 * bit so we don't livelock.
816 		 */
817 		if (need_resched()) {
818 			spin_unlock(&sb->s_inode_list_lock);
819 			cond_resched();
820 			dispose_list(&dispose);
821 			goto again;
822 		}
823 	}
824 	spin_unlock(&sb->s_inode_list_lock);
825 
826 	dispose_list(&dispose);
827 }
828 EXPORT_SYMBOL_GPL(evict_inodes);
829 
830 /**
831  * invalidate_inodes	- attempt to free all inodes on a superblock
832  * @sb:		superblock to operate on
833  *
834  * Attempts to free all inodes (including dirty inodes) for a given superblock.
835  */
invalidate_inodes(struct super_block * sb)836 void invalidate_inodes(struct super_block *sb)
837 {
838 	struct inode *inode, *next;
839 	LIST_HEAD(dispose);
840 
841 again:
842 	spin_lock(&sb->s_inode_list_lock);
843 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
844 		spin_lock(&inode->i_lock);
845 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
846 			spin_unlock(&inode->i_lock);
847 			continue;
848 		}
849 		if (atomic_read(&inode->i_count)) {
850 			spin_unlock(&inode->i_lock);
851 			continue;
852 		}
853 
854 		inode->i_state |= I_FREEING;
855 		inode_lru_list_del(inode);
856 		spin_unlock(&inode->i_lock);
857 		list_add(&inode->i_lru, &dispose);
858 		if (need_resched()) {
859 			spin_unlock(&sb->s_inode_list_lock);
860 			cond_resched();
861 			dispose_list(&dispose);
862 			goto again;
863 		}
864 	}
865 	spin_unlock(&sb->s_inode_list_lock);
866 
867 	dispose_list(&dispose);
868 }
869 
870 /*
871  * Isolate the inode from the LRU in preparation for freeing it.
872  *
873  * If the inode has the I_REFERENCED flag set, then it means that it has been
874  * used recently - the flag is set in iput_final(). When we encounter such an
875  * inode, clear the flag and move it to the back of the LRU so it gets another
876  * pass through the LRU before it gets reclaimed. This is necessary because of
877  * the fact we are doing lazy LRU updates to minimise lock contention so the
878  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
879  * with this flag set because they are the inodes that are out of order.
880  */
inode_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)881 static enum lru_status inode_lru_isolate(struct list_head *item,
882 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
883 {
884 	struct list_head *freeable = arg;
885 	struct inode	*inode = container_of(item, struct inode, i_lru);
886 
887 	/*
888 	 * We are inverting the lru lock/inode->i_lock here, so use a
889 	 * trylock. If we fail to get the lock, just skip it.
890 	 */
891 	if (!spin_trylock(&inode->i_lock))
892 		return LRU_SKIP;
893 
894 	/*
895 	 * Inodes can get referenced, redirtied, or repopulated while
896 	 * they're already on the LRU, and this can make them
897 	 * unreclaimable for a while. Remove them lazily here; iput,
898 	 * sync, or the last page cache deletion will requeue them.
899 	 */
900 	if (atomic_read(&inode->i_count) ||
901 	    (inode->i_state & ~I_REFERENCED) ||
902 	    !mapping_shrinkable(&inode->i_data)) {
903 		list_lru_isolate(lru, &inode->i_lru);
904 		spin_unlock(&inode->i_lock);
905 		this_cpu_dec(nr_unused);
906 		return LRU_REMOVED;
907 	}
908 
909 	/* Recently referenced inodes get one more pass */
910 	if (inode->i_state & I_REFERENCED) {
911 		inode->i_state &= ~I_REFERENCED;
912 		spin_unlock(&inode->i_lock);
913 		return LRU_ROTATE;
914 	}
915 
916 	/*
917 	 * On highmem systems, mapping_shrinkable() permits dropping
918 	 * page cache in order to free up struct inodes: lowmem might
919 	 * be under pressure before the cache inside the highmem zone.
920 	 */
921 	if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
922 		inode_pin_lru_isolating(inode);
923 		spin_unlock(&inode->i_lock);
924 		spin_unlock(lru_lock);
925 		if (remove_inode_buffers(inode)) {
926 			unsigned long reap;
927 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
928 			if (current_is_kswapd())
929 				__count_vm_events(KSWAPD_INODESTEAL, reap);
930 			else
931 				__count_vm_events(PGINODESTEAL, reap);
932 			mm_account_reclaimed_pages(reap);
933 		}
934 		inode_unpin_lru_isolating(inode);
935 		spin_lock(lru_lock);
936 		return LRU_RETRY;
937 	}
938 
939 	WARN_ON(inode->i_state & I_NEW);
940 	inode->i_state |= I_FREEING;
941 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
942 	spin_unlock(&inode->i_lock);
943 
944 	this_cpu_dec(nr_unused);
945 	return LRU_REMOVED;
946 }
947 
948 /*
949  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
950  * This is called from the superblock shrinker function with a number of inodes
951  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
952  * then are freed outside inode_lock by dispose_list().
953  */
prune_icache_sb(struct super_block * sb,struct shrink_control * sc)954 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
955 {
956 	LIST_HEAD(freeable);
957 	long freed;
958 
959 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
960 				     inode_lru_isolate, &freeable);
961 	dispose_list(&freeable);
962 	return freed;
963 }
964 
965 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked);
966 /*
967  * Called with the inode lock held.
968  */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data,bool is_inode_hash_locked)969 static struct inode *find_inode(struct super_block *sb,
970 				struct hlist_head *head,
971 				int (*test)(struct inode *, void *),
972 				void *data, bool is_inode_hash_locked)
973 {
974 	struct inode *inode = NULL;
975 
976 	if (is_inode_hash_locked)
977 		lockdep_assert_held(&inode_hash_lock);
978 	else
979 		lockdep_assert_not_held(&inode_hash_lock);
980 
981 	rcu_read_lock();
982 repeat:
983 	hlist_for_each_entry_rcu(inode, head, i_hash) {
984 		if (inode->i_sb != sb)
985 			continue;
986 		if (!test(inode, data))
987 			continue;
988 		spin_lock(&inode->i_lock);
989 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
990 			__wait_on_freeing_inode(inode, is_inode_hash_locked);
991 			goto repeat;
992 		}
993 		if (unlikely(inode->i_state & I_CREATING)) {
994 			spin_unlock(&inode->i_lock);
995 			rcu_read_unlock();
996 			return ERR_PTR(-ESTALE);
997 		}
998 		__iget(inode);
999 		spin_unlock(&inode->i_lock);
1000 		rcu_read_unlock();
1001 		return inode;
1002 	}
1003 	rcu_read_unlock();
1004 	return NULL;
1005 }
1006 
1007 /*
1008  * find_inode_fast is the fast path version of find_inode, see the comment at
1009  * iget_locked for details.
1010  */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino,bool is_inode_hash_locked)1011 static struct inode *find_inode_fast(struct super_block *sb,
1012 				struct hlist_head *head, unsigned long ino,
1013 				bool is_inode_hash_locked)
1014 {
1015 	struct inode *inode = NULL;
1016 
1017 	if (is_inode_hash_locked)
1018 		lockdep_assert_held(&inode_hash_lock);
1019 	else
1020 		lockdep_assert_not_held(&inode_hash_lock);
1021 
1022 	rcu_read_lock();
1023 repeat:
1024 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1025 		if (inode->i_ino != ino)
1026 			continue;
1027 		if (inode->i_sb != sb)
1028 			continue;
1029 		spin_lock(&inode->i_lock);
1030 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
1031 			__wait_on_freeing_inode(inode, is_inode_hash_locked);
1032 			goto repeat;
1033 		}
1034 		if (unlikely(inode->i_state & I_CREATING)) {
1035 			spin_unlock(&inode->i_lock);
1036 			rcu_read_unlock();
1037 			return ERR_PTR(-ESTALE);
1038 		}
1039 		__iget(inode);
1040 		spin_unlock(&inode->i_lock);
1041 		rcu_read_unlock();
1042 		return inode;
1043 	}
1044 	rcu_read_unlock();
1045 	return NULL;
1046 }
1047 
1048 /*
1049  * Each cpu owns a range of LAST_INO_BATCH numbers.
1050  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
1051  * to renew the exhausted range.
1052  *
1053  * This does not significantly increase overflow rate because every CPU can
1054  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
1055  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
1056  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
1057  * overflow rate by 2x, which does not seem too significant.
1058  *
1059  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1060  * error if st_ino won't fit in target struct field. Use 32bit counter
1061  * here to attempt to avoid that.
1062  */
1063 #define LAST_INO_BATCH 1024
1064 static DEFINE_PER_CPU(unsigned int, last_ino);
1065 
get_next_ino(void)1066 unsigned int get_next_ino(void)
1067 {
1068 	unsigned int *p = &get_cpu_var(last_ino);
1069 	unsigned int res = *p;
1070 
1071 #ifdef CONFIG_SMP
1072 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
1073 		static atomic_t shared_last_ino;
1074 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
1075 
1076 		res = next - LAST_INO_BATCH;
1077 	}
1078 #endif
1079 
1080 	res++;
1081 	/* get_next_ino should not provide a 0 inode number */
1082 	if (unlikely(!res))
1083 		res++;
1084 	*p = res;
1085 	put_cpu_var(last_ino);
1086 	return res;
1087 }
1088 EXPORT_SYMBOL(get_next_ino);
1089 
1090 /**
1091  *	new_inode_pseudo 	- obtain an inode
1092  *	@sb: superblock
1093  *
1094  *	Allocates a new inode for given superblock.
1095  *	Inode wont be chained in superblock s_inodes list
1096  *	This means :
1097  *	- fs can't be unmount
1098  *	- quotas, fsnotify, writeback can't work
1099  */
new_inode_pseudo(struct super_block * sb)1100 struct inode *new_inode_pseudo(struct super_block *sb)
1101 {
1102 	return alloc_inode(sb);
1103 }
1104 
1105 /**
1106  *	new_inode 	- obtain an inode
1107  *	@sb: superblock
1108  *
1109  *	Allocates a new inode for given superblock. The default gfp_mask
1110  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1111  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
1112  *	for the page cache are not reclaimable or migratable,
1113  *	mapping_set_gfp_mask() must be called with suitable flags on the
1114  *	newly created inode's mapping
1115  *
1116  */
new_inode(struct super_block * sb)1117 struct inode *new_inode(struct super_block *sb)
1118 {
1119 	struct inode *inode;
1120 
1121 	inode = new_inode_pseudo(sb);
1122 	if (inode)
1123 		inode_sb_list_add(inode);
1124 	return inode;
1125 }
1126 EXPORT_SYMBOL(new_inode);
1127 
1128 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode * inode)1129 void lockdep_annotate_inode_mutex_key(struct inode *inode)
1130 {
1131 	if (S_ISDIR(inode->i_mode)) {
1132 		struct file_system_type *type = inode->i_sb->s_type;
1133 
1134 		/* Set new key only if filesystem hasn't already changed it */
1135 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1136 			/*
1137 			 * ensure nobody is actually holding i_mutex
1138 			 */
1139 			// mutex_destroy(&inode->i_mutex);
1140 			init_rwsem(&inode->i_rwsem);
1141 			lockdep_set_class(&inode->i_rwsem,
1142 					  &type->i_mutex_dir_key);
1143 		}
1144 	}
1145 }
1146 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1147 #endif
1148 
1149 /**
1150  * unlock_new_inode - clear the I_NEW state and wake up any waiters
1151  * @inode:	new inode to unlock
1152  *
1153  * Called when the inode is fully initialised to clear the new state of the
1154  * inode and wake up anyone waiting for the inode to finish initialisation.
1155  */
unlock_new_inode(struct inode * inode)1156 void unlock_new_inode(struct inode *inode)
1157 {
1158 	lockdep_annotate_inode_mutex_key(inode);
1159 	spin_lock(&inode->i_lock);
1160 	WARN_ON(!(inode->i_state & I_NEW));
1161 	inode->i_state &= ~I_NEW & ~I_CREATING;
1162 	/*
1163 	 * Pairs with the barrier in prepare_to_wait_event() to make sure
1164 	 * ___wait_var_event() either sees the bit cleared or
1165 	 * waitqueue_active() check in wake_up_var() sees the waiter.
1166 	 */
1167 	smp_mb();
1168 	inode_wake_up_bit(inode, __I_NEW);
1169 	spin_unlock(&inode->i_lock);
1170 }
1171 EXPORT_SYMBOL(unlock_new_inode);
1172 
discard_new_inode(struct inode * inode)1173 void discard_new_inode(struct inode *inode)
1174 {
1175 	lockdep_annotate_inode_mutex_key(inode);
1176 	spin_lock(&inode->i_lock);
1177 	WARN_ON(!(inode->i_state & I_NEW));
1178 	inode->i_state &= ~I_NEW;
1179 	/*
1180 	 * Pairs with the barrier in prepare_to_wait_event() to make sure
1181 	 * ___wait_var_event() either sees the bit cleared or
1182 	 * waitqueue_active() check in wake_up_var() sees the waiter.
1183 	 */
1184 	smp_mb();
1185 	inode_wake_up_bit(inode, __I_NEW);
1186 	spin_unlock(&inode->i_lock);
1187 	iput(inode);
1188 }
1189 EXPORT_SYMBOL(discard_new_inode);
1190 
1191 /**
1192  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1193  *
1194  * Lock any non-NULL argument. Passed objects must not be directories.
1195  * Zero, one or two objects may be locked by this function.
1196  *
1197  * @inode1: first inode to lock
1198  * @inode2: second inode to lock
1199  */
lock_two_nondirectories(struct inode * inode1,struct inode * inode2)1200 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1201 {
1202 	if (inode1)
1203 		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1204 	if (inode2)
1205 		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1206 	if (inode1 > inode2)
1207 		swap(inode1, inode2);
1208 	if (inode1)
1209 		inode_lock(inode1);
1210 	if (inode2 && inode2 != inode1)
1211 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1212 }
1213 EXPORT_SYMBOL(lock_two_nondirectories);
1214 
1215 /**
1216  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1217  * @inode1: first inode to unlock
1218  * @inode2: second inode to unlock
1219  */
unlock_two_nondirectories(struct inode * inode1,struct inode * inode2)1220 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1221 {
1222 	if (inode1) {
1223 		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1224 		inode_unlock(inode1);
1225 	}
1226 	if (inode2 && inode2 != inode1) {
1227 		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1228 		inode_unlock(inode2);
1229 	}
1230 }
1231 EXPORT_SYMBOL(unlock_two_nondirectories);
1232 
1233 /**
1234  * inode_insert5 - obtain an inode from a mounted file system
1235  * @inode:	pre-allocated inode to use for insert to cache
1236  * @hashval:	hash value (usually inode number) to get
1237  * @test:	callback used for comparisons between inodes
1238  * @set:	callback used to initialize a new struct inode
1239  * @data:	opaque data pointer to pass to @test and @set
1240  *
1241  * Search for the inode specified by @hashval and @data in the inode cache,
1242  * and if present it is return it with an increased reference count. This is
1243  * a variant of iget5_locked() for callers that don't want to fail on memory
1244  * allocation of inode.
1245  *
1246  * If the inode is not in cache, insert the pre-allocated inode to cache and
1247  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1248  * to fill it in before unlocking it via unlock_new_inode().
1249  *
1250  * Note both @test and @set are called with the inode_hash_lock held, so can't
1251  * sleep.
1252  */
inode_insert5(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1253 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1254 			    int (*test)(struct inode *, void *),
1255 			    int (*set)(struct inode *, void *), void *data)
1256 {
1257 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1258 	struct inode *old;
1259 
1260 again:
1261 	spin_lock(&inode_hash_lock);
1262 	old = find_inode(inode->i_sb, head, test, data, true);
1263 	if (unlikely(old)) {
1264 		/*
1265 		 * Uhhuh, somebody else created the same inode under us.
1266 		 * Use the old inode instead of the preallocated one.
1267 		 */
1268 		spin_unlock(&inode_hash_lock);
1269 		if (IS_ERR(old))
1270 			return NULL;
1271 		wait_on_inode(old);
1272 		if (unlikely(inode_unhashed(old))) {
1273 			iput(old);
1274 			goto again;
1275 		}
1276 		return old;
1277 	}
1278 
1279 	if (set && unlikely(set(inode, data))) {
1280 		inode = NULL;
1281 		goto unlock;
1282 	}
1283 
1284 	/*
1285 	 * Return the locked inode with I_NEW set, the
1286 	 * caller is responsible for filling in the contents
1287 	 */
1288 	spin_lock(&inode->i_lock);
1289 	inode->i_state |= I_NEW;
1290 	hlist_add_head_rcu(&inode->i_hash, head);
1291 	spin_unlock(&inode->i_lock);
1292 
1293 	/*
1294 	 * Add inode to the sb list if it's not already. It has I_NEW at this
1295 	 * point, so it should be safe to test i_sb_list locklessly.
1296 	 */
1297 	if (list_empty(&inode->i_sb_list))
1298 		inode_sb_list_add(inode);
1299 unlock:
1300 	spin_unlock(&inode_hash_lock);
1301 
1302 	return inode;
1303 }
1304 EXPORT_SYMBOL(inode_insert5);
1305 
1306 /**
1307  * iget5_locked - obtain an inode from a mounted file system
1308  * @sb:		super block of file system
1309  * @hashval:	hash value (usually inode number) to get
1310  * @test:	callback used for comparisons between inodes
1311  * @set:	callback used to initialize a new struct inode
1312  * @data:	opaque data pointer to pass to @test and @set
1313  *
1314  * Search for the inode specified by @hashval and @data in the inode cache,
1315  * and if present it is return it with an increased reference count. This is
1316  * a generalized version of iget_locked() for file systems where the inode
1317  * number is not sufficient for unique identification of an inode.
1318  *
1319  * If the inode is not in cache, allocate a new inode and return it locked,
1320  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1321  * before unlocking it via unlock_new_inode().
1322  *
1323  * Note both @test and @set are called with the inode_hash_lock held, so can't
1324  * sleep.
1325  */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1326 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1327 		int (*test)(struct inode *, void *),
1328 		int (*set)(struct inode *, void *), void *data)
1329 {
1330 	struct inode *inode = ilookup5(sb, hashval, test, data);
1331 
1332 	if (!inode) {
1333 		struct inode *new = alloc_inode(sb);
1334 
1335 		if (new) {
1336 			inode = inode_insert5(new, hashval, test, set, data);
1337 			if (unlikely(inode != new))
1338 				destroy_inode(new);
1339 		}
1340 	}
1341 	return inode;
1342 }
1343 EXPORT_SYMBOL(iget5_locked);
1344 
1345 /**
1346  * iget5_locked_rcu - obtain an inode from a mounted file system
1347  * @sb:		super block of file system
1348  * @hashval:	hash value (usually inode number) to get
1349  * @test:	callback used for comparisons between inodes
1350  * @set:	callback used to initialize a new struct inode
1351  * @data:	opaque data pointer to pass to @test and @set
1352  *
1353  * This is equivalent to iget5_locked, except the @test callback must
1354  * tolerate the inode not being stable, including being mid-teardown.
1355  */
iget5_locked_rcu(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1356 struct inode *iget5_locked_rcu(struct super_block *sb, unsigned long hashval,
1357 		int (*test)(struct inode *, void *),
1358 		int (*set)(struct inode *, void *), void *data)
1359 {
1360 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1361 	struct inode *inode, *new;
1362 
1363 again:
1364 	inode = find_inode(sb, head, test, data, false);
1365 	if (inode) {
1366 		if (IS_ERR(inode))
1367 			return NULL;
1368 		wait_on_inode(inode);
1369 		if (unlikely(inode_unhashed(inode))) {
1370 			iput(inode);
1371 			goto again;
1372 		}
1373 		return inode;
1374 	}
1375 
1376 	new = alloc_inode(sb);
1377 	if (new) {
1378 		inode = inode_insert5(new, hashval, test, set, data);
1379 		if (unlikely(inode != new))
1380 			destroy_inode(new);
1381 	}
1382 	return inode;
1383 }
1384 EXPORT_SYMBOL_GPL(iget5_locked_rcu);
1385 
1386 /**
1387  * iget_locked - obtain an inode from a mounted file system
1388  * @sb:		super block of file system
1389  * @ino:	inode number to get
1390  *
1391  * Search for the inode specified by @ino in the inode cache and if present
1392  * return it with an increased reference count. This is for file systems
1393  * where the inode number is sufficient for unique identification of an inode.
1394  *
1395  * If the inode is not in cache, allocate a new inode and return it locked,
1396  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1397  * before unlocking it via unlock_new_inode().
1398  */
iget_locked(struct super_block * sb,unsigned long ino)1399 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1400 {
1401 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1402 	struct inode *inode;
1403 again:
1404 	inode = find_inode_fast(sb, head, ino, false);
1405 	if (inode) {
1406 		if (IS_ERR(inode))
1407 			return NULL;
1408 		wait_on_inode(inode);
1409 		if (unlikely(inode_unhashed(inode))) {
1410 			iput(inode);
1411 			goto again;
1412 		}
1413 		return inode;
1414 	}
1415 
1416 	inode = alloc_inode(sb);
1417 	if (inode) {
1418 		struct inode *old;
1419 
1420 		spin_lock(&inode_hash_lock);
1421 		/* We released the lock, so.. */
1422 		old = find_inode_fast(sb, head, ino, true);
1423 		if (!old) {
1424 			inode->i_ino = ino;
1425 			spin_lock(&inode->i_lock);
1426 			inode->i_state = I_NEW;
1427 			hlist_add_head_rcu(&inode->i_hash, head);
1428 			spin_unlock(&inode->i_lock);
1429 			inode_sb_list_add(inode);
1430 			spin_unlock(&inode_hash_lock);
1431 
1432 			/* Return the locked inode with I_NEW set, the
1433 			 * caller is responsible for filling in the contents
1434 			 */
1435 			return inode;
1436 		}
1437 
1438 		/*
1439 		 * Uhhuh, somebody else created the same inode under
1440 		 * us. Use the old inode instead of the one we just
1441 		 * allocated.
1442 		 */
1443 		spin_unlock(&inode_hash_lock);
1444 		destroy_inode(inode);
1445 		if (IS_ERR(old))
1446 			return NULL;
1447 		inode = old;
1448 		wait_on_inode(inode);
1449 		if (unlikely(inode_unhashed(inode))) {
1450 			iput(inode);
1451 			goto again;
1452 		}
1453 	}
1454 	return inode;
1455 }
1456 EXPORT_SYMBOL(iget_locked);
1457 
1458 /*
1459  * search the inode cache for a matching inode number.
1460  * If we find one, then the inode number we are trying to
1461  * allocate is not unique and so we should not use it.
1462  *
1463  * Returns 1 if the inode number is unique, 0 if it is not.
1464  */
test_inode_iunique(struct super_block * sb,unsigned long ino)1465 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1466 {
1467 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1468 	struct inode *inode;
1469 
1470 	hlist_for_each_entry_rcu(inode, b, i_hash) {
1471 		if (inode->i_ino == ino && inode->i_sb == sb)
1472 			return 0;
1473 	}
1474 	return 1;
1475 }
1476 
1477 /**
1478  *	iunique - get a unique inode number
1479  *	@sb: superblock
1480  *	@max_reserved: highest reserved inode number
1481  *
1482  *	Obtain an inode number that is unique on the system for a given
1483  *	superblock. This is used by file systems that have no natural
1484  *	permanent inode numbering system. An inode number is returned that
1485  *	is higher than the reserved limit but unique.
1486  *
1487  *	BUGS:
1488  *	With a large number of inodes live on the file system this function
1489  *	currently becomes quite slow.
1490  */
iunique(struct super_block * sb,ino_t max_reserved)1491 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1492 {
1493 	/*
1494 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1495 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1496 	 * here to attempt to avoid that.
1497 	 */
1498 	static DEFINE_SPINLOCK(iunique_lock);
1499 	static unsigned int counter;
1500 	ino_t res;
1501 
1502 	rcu_read_lock();
1503 	spin_lock(&iunique_lock);
1504 	do {
1505 		if (counter <= max_reserved)
1506 			counter = max_reserved + 1;
1507 		res = counter++;
1508 	} while (!test_inode_iunique(sb, res));
1509 	spin_unlock(&iunique_lock);
1510 	rcu_read_unlock();
1511 
1512 	return res;
1513 }
1514 EXPORT_SYMBOL(iunique);
1515 
igrab(struct inode * inode)1516 struct inode *igrab(struct inode *inode)
1517 {
1518 	spin_lock(&inode->i_lock);
1519 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1520 		__iget(inode);
1521 		spin_unlock(&inode->i_lock);
1522 	} else {
1523 		spin_unlock(&inode->i_lock);
1524 		/*
1525 		 * Handle the case where s_op->clear_inode is not been
1526 		 * called yet, and somebody is calling igrab
1527 		 * while the inode is getting freed.
1528 		 */
1529 		inode = NULL;
1530 	}
1531 	return inode;
1532 }
1533 EXPORT_SYMBOL(igrab);
1534 
1535 /**
1536  * ilookup5_nowait - search for an inode in the inode cache
1537  * @sb:		super block of file system to search
1538  * @hashval:	hash value (usually inode number) to search for
1539  * @test:	callback used for comparisons between inodes
1540  * @data:	opaque data pointer to pass to @test
1541  *
1542  * Search for the inode specified by @hashval and @data in the inode cache.
1543  * If the inode is in the cache, the inode is returned with an incremented
1544  * reference count.
1545  *
1546  * Note: I_NEW is not waited upon so you have to be very careful what you do
1547  * with the returned inode.  You probably should be using ilookup5() instead.
1548  *
1549  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1550  */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1551 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1552 		int (*test)(struct inode *, void *), void *data)
1553 {
1554 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1555 	struct inode *inode;
1556 
1557 	spin_lock(&inode_hash_lock);
1558 	inode = find_inode(sb, head, test, data, true);
1559 	spin_unlock(&inode_hash_lock);
1560 
1561 	return IS_ERR(inode) ? NULL : inode;
1562 }
1563 EXPORT_SYMBOL(ilookup5_nowait);
1564 
1565 /**
1566  * ilookup5 - search for an inode in the inode cache
1567  * @sb:		super block of file system to search
1568  * @hashval:	hash value (usually inode number) to search for
1569  * @test:	callback used for comparisons between inodes
1570  * @data:	opaque data pointer to pass to @test
1571  *
1572  * Search for the inode specified by @hashval and @data in the inode cache,
1573  * and if the inode is in the cache, return the inode with an incremented
1574  * reference count.  Waits on I_NEW before returning the inode.
1575  * returned with an incremented reference count.
1576  *
1577  * This is a generalized version of ilookup() for file systems where the
1578  * inode number is not sufficient for unique identification of an inode.
1579  *
1580  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1581  */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1582 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1583 		int (*test)(struct inode *, void *), void *data)
1584 {
1585 	struct inode *inode;
1586 again:
1587 	inode = ilookup5_nowait(sb, hashval, test, data);
1588 	if (inode) {
1589 		wait_on_inode(inode);
1590 		if (unlikely(inode_unhashed(inode))) {
1591 			iput(inode);
1592 			goto again;
1593 		}
1594 	}
1595 	return inode;
1596 }
1597 EXPORT_SYMBOL(ilookup5);
1598 
1599 /**
1600  * ilookup - search for an inode in the inode cache
1601  * @sb:		super block of file system to search
1602  * @ino:	inode number to search for
1603  *
1604  * Search for the inode @ino in the inode cache, and if the inode is in the
1605  * cache, the inode is returned with an incremented reference count.
1606  */
ilookup(struct super_block * sb,unsigned long ino)1607 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1608 {
1609 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1610 	struct inode *inode;
1611 again:
1612 	inode = find_inode_fast(sb, head, ino, false);
1613 
1614 	if (inode) {
1615 		if (IS_ERR(inode))
1616 			return NULL;
1617 		wait_on_inode(inode);
1618 		if (unlikely(inode_unhashed(inode))) {
1619 			iput(inode);
1620 			goto again;
1621 		}
1622 	}
1623 	return inode;
1624 }
1625 EXPORT_SYMBOL(ilookup);
1626 
1627 /**
1628  * find_inode_nowait - find an inode in the inode cache
1629  * @sb:		super block of file system to search
1630  * @hashval:	hash value (usually inode number) to search for
1631  * @match:	callback used for comparisons between inodes
1632  * @data:	opaque data pointer to pass to @match
1633  *
1634  * Search for the inode specified by @hashval and @data in the inode
1635  * cache, where the helper function @match will return 0 if the inode
1636  * does not match, 1 if the inode does match, and -1 if the search
1637  * should be stopped.  The @match function must be responsible for
1638  * taking the i_lock spin_lock and checking i_state for an inode being
1639  * freed or being initialized, and incrementing the reference count
1640  * before returning 1.  It also must not sleep, since it is called with
1641  * the inode_hash_lock spinlock held.
1642  *
1643  * This is a even more generalized version of ilookup5() when the
1644  * function must never block --- find_inode() can block in
1645  * __wait_on_freeing_inode() --- or when the caller can not increment
1646  * the reference count because the resulting iput() might cause an
1647  * inode eviction.  The tradeoff is that the @match funtion must be
1648  * very carefully implemented.
1649  */
find_inode_nowait(struct super_block * sb,unsigned long hashval,int (* match)(struct inode *,unsigned long,void *),void * data)1650 struct inode *find_inode_nowait(struct super_block *sb,
1651 				unsigned long hashval,
1652 				int (*match)(struct inode *, unsigned long,
1653 					     void *),
1654 				void *data)
1655 {
1656 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1657 	struct inode *inode, *ret_inode = NULL;
1658 	int mval;
1659 
1660 	spin_lock(&inode_hash_lock);
1661 	hlist_for_each_entry(inode, head, i_hash) {
1662 		if (inode->i_sb != sb)
1663 			continue;
1664 		mval = match(inode, hashval, data);
1665 		if (mval == 0)
1666 			continue;
1667 		if (mval == 1)
1668 			ret_inode = inode;
1669 		goto out;
1670 	}
1671 out:
1672 	spin_unlock(&inode_hash_lock);
1673 	return ret_inode;
1674 }
1675 EXPORT_SYMBOL(find_inode_nowait);
1676 
1677 /**
1678  * find_inode_rcu - find an inode in the inode cache
1679  * @sb:		Super block of file system to search
1680  * @hashval:	Key to hash
1681  * @test:	Function to test match on an inode
1682  * @data:	Data for test function
1683  *
1684  * Search for the inode specified by @hashval and @data in the inode cache,
1685  * where the helper function @test will return 0 if the inode does not match
1686  * and 1 if it does.  The @test function must be responsible for taking the
1687  * i_lock spin_lock and checking i_state for an inode being freed or being
1688  * initialized.
1689  *
1690  * If successful, this will return the inode for which the @test function
1691  * returned 1 and NULL otherwise.
1692  *
1693  * The @test function is not permitted to take a ref on any inode presented.
1694  * It is also not permitted to sleep.
1695  *
1696  * The caller must hold the RCU read lock.
1697  */
find_inode_rcu(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1698 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1699 			     int (*test)(struct inode *, void *), void *data)
1700 {
1701 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1702 	struct inode *inode;
1703 
1704 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1705 			 "suspicious find_inode_rcu() usage");
1706 
1707 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1708 		if (inode->i_sb == sb &&
1709 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1710 		    test(inode, data))
1711 			return inode;
1712 	}
1713 	return NULL;
1714 }
1715 EXPORT_SYMBOL(find_inode_rcu);
1716 
1717 /**
1718  * find_inode_by_ino_rcu - Find an inode in the inode cache
1719  * @sb:		Super block of file system to search
1720  * @ino:	The inode number to match
1721  *
1722  * Search for the inode specified by @hashval and @data in the inode cache,
1723  * where the helper function @test will return 0 if the inode does not match
1724  * and 1 if it does.  The @test function must be responsible for taking the
1725  * i_lock spin_lock and checking i_state for an inode being freed or being
1726  * initialized.
1727  *
1728  * If successful, this will return the inode for which the @test function
1729  * returned 1 and NULL otherwise.
1730  *
1731  * The @test function is not permitted to take a ref on any inode presented.
1732  * It is also not permitted to sleep.
1733  *
1734  * The caller must hold the RCU read lock.
1735  */
find_inode_by_ino_rcu(struct super_block * sb,unsigned long ino)1736 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1737 				    unsigned long ino)
1738 {
1739 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1740 	struct inode *inode;
1741 
1742 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1743 			 "suspicious find_inode_by_ino_rcu() usage");
1744 
1745 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1746 		if (inode->i_ino == ino &&
1747 		    inode->i_sb == sb &&
1748 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1749 		    return inode;
1750 	}
1751 	return NULL;
1752 }
1753 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1754 
insert_inode_locked(struct inode * inode)1755 int insert_inode_locked(struct inode *inode)
1756 {
1757 	struct super_block *sb = inode->i_sb;
1758 	ino_t ino = inode->i_ino;
1759 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1760 
1761 	while (1) {
1762 		struct inode *old = NULL;
1763 		spin_lock(&inode_hash_lock);
1764 		hlist_for_each_entry(old, head, i_hash) {
1765 			if (old->i_ino != ino)
1766 				continue;
1767 			if (old->i_sb != sb)
1768 				continue;
1769 			spin_lock(&old->i_lock);
1770 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1771 				spin_unlock(&old->i_lock);
1772 				continue;
1773 			}
1774 			break;
1775 		}
1776 		if (likely(!old)) {
1777 			spin_lock(&inode->i_lock);
1778 			inode->i_state |= I_NEW | I_CREATING;
1779 			hlist_add_head_rcu(&inode->i_hash, head);
1780 			spin_unlock(&inode->i_lock);
1781 			spin_unlock(&inode_hash_lock);
1782 			return 0;
1783 		}
1784 		if (unlikely(old->i_state & I_CREATING)) {
1785 			spin_unlock(&old->i_lock);
1786 			spin_unlock(&inode_hash_lock);
1787 			return -EBUSY;
1788 		}
1789 		__iget(old);
1790 		spin_unlock(&old->i_lock);
1791 		spin_unlock(&inode_hash_lock);
1792 		wait_on_inode(old);
1793 		if (unlikely(!inode_unhashed(old))) {
1794 			iput(old);
1795 			return -EBUSY;
1796 		}
1797 		iput(old);
1798 	}
1799 }
1800 EXPORT_SYMBOL(insert_inode_locked);
1801 
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1802 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1803 		int (*test)(struct inode *, void *), void *data)
1804 {
1805 	struct inode *old;
1806 
1807 	inode->i_state |= I_CREATING;
1808 	old = inode_insert5(inode, hashval, test, NULL, data);
1809 
1810 	if (old != inode) {
1811 		iput(old);
1812 		return -EBUSY;
1813 	}
1814 	return 0;
1815 }
1816 EXPORT_SYMBOL(insert_inode_locked4);
1817 
1818 
generic_delete_inode(struct inode * inode)1819 int generic_delete_inode(struct inode *inode)
1820 {
1821 	return 1;
1822 }
1823 EXPORT_SYMBOL(generic_delete_inode);
1824 
1825 /*
1826  * Called when we're dropping the last reference
1827  * to an inode.
1828  *
1829  * Call the FS "drop_inode()" function, defaulting to
1830  * the legacy UNIX filesystem behaviour.  If it tells
1831  * us to evict inode, do so.  Otherwise, retain inode
1832  * in cache if fs is alive, sync and evict if fs is
1833  * shutting down.
1834  */
iput_final(struct inode * inode)1835 static void iput_final(struct inode *inode)
1836 {
1837 	struct super_block *sb = inode->i_sb;
1838 	const struct super_operations *op = inode->i_sb->s_op;
1839 	unsigned long state;
1840 	int drop;
1841 
1842 	WARN_ON(inode->i_state & I_NEW);
1843 
1844 	if (op->drop_inode)
1845 		drop = op->drop_inode(inode);
1846 	else
1847 		drop = generic_drop_inode(inode);
1848 
1849 	if (!drop &&
1850 	    !(inode->i_state & I_DONTCACHE) &&
1851 	    (sb->s_flags & SB_ACTIVE)) {
1852 		__inode_add_lru(inode, true);
1853 		spin_unlock(&inode->i_lock);
1854 		return;
1855 	}
1856 
1857 	state = inode->i_state;
1858 	if (!drop) {
1859 		WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1860 		spin_unlock(&inode->i_lock);
1861 
1862 		write_inode_now(inode, 1);
1863 
1864 		spin_lock(&inode->i_lock);
1865 		state = inode->i_state;
1866 		WARN_ON(state & I_NEW);
1867 		state &= ~I_WILL_FREE;
1868 	}
1869 
1870 	WRITE_ONCE(inode->i_state, state | I_FREEING);
1871 	if (!list_empty(&inode->i_lru))
1872 		inode_lru_list_del(inode);
1873 	spin_unlock(&inode->i_lock);
1874 
1875 	evict(inode);
1876 }
1877 
1878 /**
1879  *	iput	- put an inode
1880  *	@inode: inode to put
1881  *
1882  *	Puts an inode, dropping its usage count. If the inode use count hits
1883  *	zero, the inode is then freed and may also be destroyed.
1884  *
1885  *	Consequently, iput() can sleep.
1886  */
iput(struct inode * inode)1887 void iput(struct inode *inode)
1888 {
1889 	if (!inode)
1890 		return;
1891 	BUG_ON(inode->i_state & I_CLEAR);
1892 retry:
1893 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1894 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1895 			atomic_inc(&inode->i_count);
1896 			spin_unlock(&inode->i_lock);
1897 			trace_writeback_lazytime_iput(inode);
1898 			mark_inode_dirty_sync(inode);
1899 			goto retry;
1900 		}
1901 		iput_final(inode);
1902 	}
1903 }
1904 EXPORT_SYMBOL(iput);
1905 
1906 #ifdef CONFIG_BLOCK
1907 /**
1908  *	bmap	- find a block number in a file
1909  *	@inode:  inode owning the block number being requested
1910  *	@block: pointer containing the block to find
1911  *
1912  *	Replaces the value in ``*block`` with the block number on the device holding
1913  *	corresponding to the requested block number in the file.
1914  *	That is, asked for block 4 of inode 1 the function will replace the
1915  *	4 in ``*block``, with disk block relative to the disk start that holds that
1916  *	block of the file.
1917  *
1918  *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1919  *	hole, returns 0 and ``*block`` is also set to 0.
1920  */
bmap(struct inode * inode,sector_t * block)1921 int bmap(struct inode *inode, sector_t *block)
1922 {
1923 	if (!inode->i_mapping->a_ops->bmap)
1924 		return -EINVAL;
1925 
1926 	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1927 	return 0;
1928 }
1929 EXPORT_SYMBOL(bmap);
1930 #endif
1931 
1932 /*
1933  * With relative atime, only update atime if the previous atime is
1934  * earlier than or equal to either the ctime or mtime,
1935  * or if at least a day has passed since the last atime update.
1936  */
relatime_need_update(struct vfsmount * mnt,struct inode * inode,struct timespec64 now)1937 static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1938 			     struct timespec64 now)
1939 {
1940 	struct timespec64 atime, mtime, ctime;
1941 
1942 	if (!(mnt->mnt_flags & MNT_RELATIME))
1943 		return true;
1944 	/*
1945 	 * Is mtime younger than or equal to atime? If yes, update atime:
1946 	 */
1947 	atime = inode_get_atime(inode);
1948 	mtime = inode_get_mtime(inode);
1949 	if (timespec64_compare(&mtime, &atime) >= 0)
1950 		return true;
1951 	/*
1952 	 * Is ctime younger than or equal to atime? If yes, update atime:
1953 	 */
1954 	ctime = inode_get_ctime(inode);
1955 	if (timespec64_compare(&ctime, &atime) >= 0)
1956 		return true;
1957 
1958 	/*
1959 	 * Is the previous atime value older than a day? If yes,
1960 	 * update atime:
1961 	 */
1962 	if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60)
1963 		return true;
1964 	/*
1965 	 * Good, we can skip the atime update:
1966 	 */
1967 	return false;
1968 }
1969 
1970 /**
1971  * inode_update_timestamps - update the timestamps on the inode
1972  * @inode: inode to be updated
1973  * @flags: S_* flags that needed to be updated
1974  *
1975  * The update_time function is called when an inode's timestamps need to be
1976  * updated for a read or write operation. This function handles updating the
1977  * actual timestamps. It's up to the caller to ensure that the inode is marked
1978  * dirty appropriately.
1979  *
1980  * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated,
1981  * attempt to update all three of them. S_ATIME updates can be handled
1982  * independently of the rest.
1983  *
1984  * Returns a set of S_* flags indicating which values changed.
1985  */
inode_update_timestamps(struct inode * inode,int flags)1986 int inode_update_timestamps(struct inode *inode, int flags)
1987 {
1988 	int updated = 0;
1989 	struct timespec64 now;
1990 
1991 	if (flags & (S_MTIME|S_CTIME|S_VERSION)) {
1992 		struct timespec64 ctime = inode_get_ctime(inode);
1993 		struct timespec64 mtime = inode_get_mtime(inode);
1994 
1995 		now = inode_set_ctime_current(inode);
1996 		if (!timespec64_equal(&now, &ctime))
1997 			updated |= S_CTIME;
1998 		if (!timespec64_equal(&now, &mtime)) {
1999 			inode_set_mtime_to_ts(inode, now);
2000 			updated |= S_MTIME;
2001 		}
2002 		if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated))
2003 			updated |= S_VERSION;
2004 	} else {
2005 		now = current_time(inode);
2006 	}
2007 
2008 	if (flags & S_ATIME) {
2009 		struct timespec64 atime = inode_get_atime(inode);
2010 
2011 		if (!timespec64_equal(&now, &atime)) {
2012 			inode_set_atime_to_ts(inode, now);
2013 			updated |= S_ATIME;
2014 		}
2015 	}
2016 	return updated;
2017 }
2018 EXPORT_SYMBOL(inode_update_timestamps);
2019 
2020 /**
2021  * generic_update_time - update the timestamps on the inode
2022  * @inode: inode to be updated
2023  * @flags: S_* flags that needed to be updated
2024  *
2025  * The update_time function is called when an inode's timestamps need to be
2026  * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME,
2027  * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME
2028  * updates can be handled done independently of the rest.
2029  *
2030  * Returns a S_* mask indicating which fields were updated.
2031  */
generic_update_time(struct inode * inode,int flags)2032 int generic_update_time(struct inode *inode, int flags)
2033 {
2034 	int updated = inode_update_timestamps(inode, flags);
2035 	int dirty_flags = 0;
2036 
2037 	if (updated & (S_ATIME|S_MTIME|S_CTIME))
2038 		dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC;
2039 	if (updated & S_VERSION)
2040 		dirty_flags |= I_DIRTY_SYNC;
2041 	__mark_inode_dirty(inode, dirty_flags);
2042 	return updated;
2043 }
2044 EXPORT_SYMBOL(generic_update_time);
2045 
2046 /*
2047  * This does the actual work of updating an inodes time or version.  Must have
2048  * had called mnt_want_write() before calling this.
2049  */
inode_update_time(struct inode * inode,int flags)2050 int inode_update_time(struct inode *inode, int flags)
2051 {
2052 	if (inode->i_op->update_time)
2053 		return inode->i_op->update_time(inode, flags);
2054 	generic_update_time(inode, flags);
2055 	return 0;
2056 }
2057 EXPORT_SYMBOL(inode_update_time);
2058 
2059 /**
2060  *	atime_needs_update	-	update the access time
2061  *	@path: the &struct path to update
2062  *	@inode: inode to update
2063  *
2064  *	Update the accessed time on an inode and mark it for writeback.
2065  *	This function automatically handles read only file systems and media,
2066  *	as well as the "noatime" flag and inode specific "noatime" markers.
2067  */
atime_needs_update(const struct path * path,struct inode * inode)2068 bool atime_needs_update(const struct path *path, struct inode *inode)
2069 {
2070 	struct vfsmount *mnt = path->mnt;
2071 	struct timespec64 now, atime;
2072 
2073 	if (inode->i_flags & S_NOATIME)
2074 		return false;
2075 
2076 	/* Atime updates will likely cause i_uid and i_gid to be written
2077 	 * back improprely if their true value is unknown to the vfs.
2078 	 */
2079 	if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode))
2080 		return false;
2081 
2082 	if (IS_NOATIME(inode))
2083 		return false;
2084 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
2085 		return false;
2086 
2087 	if (mnt->mnt_flags & MNT_NOATIME)
2088 		return false;
2089 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
2090 		return false;
2091 
2092 	now = current_time(inode);
2093 
2094 	if (!relatime_need_update(mnt, inode, now))
2095 		return false;
2096 
2097 	atime = inode_get_atime(inode);
2098 	if (timespec64_equal(&atime, &now))
2099 		return false;
2100 
2101 	return true;
2102 }
2103 
touch_atime(const struct path * path)2104 void touch_atime(const struct path *path)
2105 {
2106 	struct vfsmount *mnt = path->mnt;
2107 	struct inode *inode = d_inode(path->dentry);
2108 
2109 	if (!atime_needs_update(path, inode))
2110 		return;
2111 
2112 	if (!sb_start_write_trylock(inode->i_sb))
2113 		return;
2114 
2115 	if (mnt_get_write_access(mnt) != 0)
2116 		goto skip_update;
2117 	/*
2118 	 * File systems can error out when updating inodes if they need to
2119 	 * allocate new space to modify an inode (such is the case for
2120 	 * Btrfs), but since we touch atime while walking down the path we
2121 	 * really don't care if we failed to update the atime of the file,
2122 	 * so just ignore the return value.
2123 	 * We may also fail on filesystems that have the ability to make parts
2124 	 * of the fs read only, e.g. subvolumes in Btrfs.
2125 	 */
2126 	inode_update_time(inode, S_ATIME);
2127 	mnt_put_write_access(mnt);
2128 skip_update:
2129 	sb_end_write(inode->i_sb);
2130 }
2131 EXPORT_SYMBOL(touch_atime);
2132 
2133 /*
2134  * Return mask of changes for notify_change() that need to be done as a
2135  * response to write or truncate. Return 0 if nothing has to be changed.
2136  * Negative value on error (change should be denied).
2137  */
dentry_needs_remove_privs(struct mnt_idmap * idmap,struct dentry * dentry)2138 int dentry_needs_remove_privs(struct mnt_idmap *idmap,
2139 			      struct dentry *dentry)
2140 {
2141 	struct inode *inode = d_inode(dentry);
2142 	int mask = 0;
2143 	int ret;
2144 
2145 	if (IS_NOSEC(inode))
2146 		return 0;
2147 
2148 	mask = setattr_should_drop_suidgid(idmap, inode);
2149 	ret = security_inode_need_killpriv(dentry);
2150 	if (ret < 0)
2151 		return ret;
2152 	if (ret)
2153 		mask |= ATTR_KILL_PRIV;
2154 	return mask;
2155 }
2156 
__remove_privs(struct mnt_idmap * idmap,struct dentry * dentry,int kill)2157 static int __remove_privs(struct mnt_idmap *idmap,
2158 			  struct dentry *dentry, int kill)
2159 {
2160 	struct iattr newattrs;
2161 
2162 	newattrs.ia_valid = ATTR_FORCE | kill;
2163 	/*
2164 	 * Note we call this on write, so notify_change will not
2165 	 * encounter any conflicting delegations:
2166 	 */
2167 	return notify_change(idmap, dentry, &newattrs, NULL);
2168 }
2169 
file_remove_privs_flags(struct file * file,unsigned int flags)2170 int file_remove_privs_flags(struct file *file, unsigned int flags)
2171 {
2172 	struct dentry *dentry = file_dentry(file);
2173 	struct inode *inode = file_inode(file);
2174 	int error = 0;
2175 	int kill;
2176 
2177 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
2178 		return 0;
2179 
2180 	kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry);
2181 	if (kill < 0)
2182 		return kill;
2183 
2184 	if (kill) {
2185 		if (flags & IOCB_NOWAIT)
2186 			return -EAGAIN;
2187 
2188 		error = __remove_privs(file_mnt_idmap(file), dentry, kill);
2189 	}
2190 
2191 	if (!error)
2192 		inode_has_no_xattr(inode);
2193 	return error;
2194 }
2195 EXPORT_SYMBOL_GPL(file_remove_privs_flags);
2196 
2197 /**
2198  * file_remove_privs - remove special file privileges (suid, capabilities)
2199  * @file: file to remove privileges from
2200  *
2201  * When file is modified by a write or truncation ensure that special
2202  * file privileges are removed.
2203  *
2204  * Return: 0 on success, negative errno on failure.
2205  */
file_remove_privs(struct file * file)2206 int file_remove_privs(struct file *file)
2207 {
2208 	return file_remove_privs_flags(file, 0);
2209 }
2210 EXPORT_SYMBOL(file_remove_privs);
2211 
inode_needs_update_time(struct inode * inode)2212 static int inode_needs_update_time(struct inode *inode)
2213 {
2214 	int sync_it = 0;
2215 	struct timespec64 now = current_time(inode);
2216 	struct timespec64 ts;
2217 
2218 	/* First try to exhaust all avenues to not sync */
2219 	if (IS_NOCMTIME(inode))
2220 		return 0;
2221 
2222 	ts = inode_get_mtime(inode);
2223 	if (!timespec64_equal(&ts, &now))
2224 		sync_it = S_MTIME;
2225 
2226 	ts = inode_get_ctime(inode);
2227 	if (!timespec64_equal(&ts, &now))
2228 		sync_it |= S_CTIME;
2229 
2230 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2231 		sync_it |= S_VERSION;
2232 
2233 	return sync_it;
2234 }
2235 
__file_update_time(struct file * file,int sync_mode)2236 static int __file_update_time(struct file *file, int sync_mode)
2237 {
2238 	int ret = 0;
2239 	struct inode *inode = file_inode(file);
2240 
2241 	/* try to update time settings */
2242 	if (!mnt_get_write_access_file(file)) {
2243 		ret = inode_update_time(inode, sync_mode);
2244 		mnt_put_write_access_file(file);
2245 	}
2246 
2247 	return ret;
2248 }
2249 
2250 /**
2251  * file_update_time - update mtime and ctime time
2252  * @file: file accessed
2253  *
2254  * Update the mtime and ctime members of an inode and mark the inode for
2255  * writeback. Note that this function is meant exclusively for usage in
2256  * the file write path of filesystems, and filesystems may choose to
2257  * explicitly ignore updates via this function with the _NOCMTIME inode
2258  * flag, e.g. for network filesystem where these imestamps are handled
2259  * by the server. This can return an error for file systems who need to
2260  * allocate space in order to update an inode.
2261  *
2262  * Return: 0 on success, negative errno on failure.
2263  */
file_update_time(struct file * file)2264 int file_update_time(struct file *file)
2265 {
2266 	int ret;
2267 	struct inode *inode = file_inode(file);
2268 
2269 	ret = inode_needs_update_time(inode);
2270 	if (ret <= 0)
2271 		return ret;
2272 
2273 	return __file_update_time(file, ret);
2274 }
2275 EXPORT_SYMBOL(file_update_time);
2276 
2277 /**
2278  * file_modified_flags - handle mandated vfs changes when modifying a file
2279  * @file: file that was modified
2280  * @flags: kiocb flags
2281  *
2282  * When file has been modified ensure that special
2283  * file privileges are removed and time settings are updated.
2284  *
2285  * If IOCB_NOWAIT is set, special file privileges will not be removed and
2286  * time settings will not be updated. It will return -EAGAIN.
2287  *
2288  * Context: Caller must hold the file's inode lock.
2289  *
2290  * Return: 0 on success, negative errno on failure.
2291  */
file_modified_flags(struct file * file,int flags)2292 static int file_modified_flags(struct file *file, int flags)
2293 {
2294 	int ret;
2295 	struct inode *inode = file_inode(file);
2296 
2297 	/*
2298 	 * Clear the security bits if the process is not being run by root.
2299 	 * This keeps people from modifying setuid and setgid binaries.
2300 	 */
2301 	ret = file_remove_privs_flags(file, flags);
2302 	if (ret)
2303 		return ret;
2304 
2305 	if (unlikely(file->f_mode & FMODE_NOCMTIME))
2306 		return 0;
2307 
2308 	ret = inode_needs_update_time(inode);
2309 	if (ret <= 0)
2310 		return ret;
2311 	if (flags & IOCB_NOWAIT)
2312 		return -EAGAIN;
2313 
2314 	return __file_update_time(file, ret);
2315 }
2316 
2317 /**
2318  * file_modified - handle mandated vfs changes when modifying a file
2319  * @file: file that was modified
2320  *
2321  * When file has been modified ensure that special
2322  * file privileges are removed and time settings are updated.
2323  *
2324  * Context: Caller must hold the file's inode lock.
2325  *
2326  * Return: 0 on success, negative errno on failure.
2327  */
file_modified(struct file * file)2328 int file_modified(struct file *file)
2329 {
2330 	return file_modified_flags(file, 0);
2331 }
2332 EXPORT_SYMBOL(file_modified);
2333 
2334 /**
2335  * kiocb_modified - handle mandated vfs changes when modifying a file
2336  * @iocb: iocb that was modified
2337  *
2338  * When file has been modified ensure that special
2339  * file privileges are removed and time settings are updated.
2340  *
2341  * Context: Caller must hold the file's inode lock.
2342  *
2343  * Return: 0 on success, negative errno on failure.
2344  */
kiocb_modified(struct kiocb * iocb)2345 int kiocb_modified(struct kiocb *iocb)
2346 {
2347 	return file_modified_flags(iocb->ki_filp, iocb->ki_flags);
2348 }
2349 EXPORT_SYMBOL_GPL(kiocb_modified);
2350 
inode_needs_sync(struct inode * inode)2351 int inode_needs_sync(struct inode *inode)
2352 {
2353 	if (IS_SYNC(inode))
2354 		return 1;
2355 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2356 		return 1;
2357 	return 0;
2358 }
2359 EXPORT_SYMBOL(inode_needs_sync);
2360 
2361 /*
2362  * If we try to find an inode in the inode hash while it is being
2363  * deleted, we have to wait until the filesystem completes its
2364  * deletion before reporting that it isn't found.  This function waits
2365  * until the deletion _might_ have completed.  Callers are responsible
2366  * to recheck inode state.
2367  *
2368  * It doesn't matter if I_NEW is not set initially, a call to
2369  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2370  * will DTRT.
2371  */
__wait_on_freeing_inode(struct inode * inode,bool is_inode_hash_locked)2372 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked)
2373 {
2374 	struct wait_bit_queue_entry wqe;
2375 	struct wait_queue_head *wq_head;
2376 
2377 	/*
2378 	 * Handle racing against evict(), see that routine for more details.
2379 	 */
2380 	if (unlikely(inode_unhashed(inode))) {
2381 		WARN_ON(is_inode_hash_locked);
2382 		spin_unlock(&inode->i_lock);
2383 		return;
2384 	}
2385 
2386 	wq_head = inode_bit_waitqueue(&wqe, inode, __I_NEW);
2387 	prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
2388 	spin_unlock(&inode->i_lock);
2389 	rcu_read_unlock();
2390 	if (is_inode_hash_locked)
2391 		spin_unlock(&inode_hash_lock);
2392 	schedule();
2393 	finish_wait(wq_head, &wqe.wq_entry);
2394 	if (is_inode_hash_locked)
2395 		spin_lock(&inode_hash_lock);
2396 	rcu_read_lock();
2397 }
2398 
2399 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)2400 static int __init set_ihash_entries(char *str)
2401 {
2402 	if (!str)
2403 		return 0;
2404 	ihash_entries = simple_strtoul(str, &str, 0);
2405 	return 1;
2406 }
2407 __setup("ihash_entries=", set_ihash_entries);
2408 
2409 /*
2410  * Initialize the waitqueues and inode hash table.
2411  */
inode_init_early(void)2412 void __init inode_init_early(void)
2413 {
2414 	/* If hashes are distributed across NUMA nodes, defer
2415 	 * hash allocation until vmalloc space is available.
2416 	 */
2417 	if (hashdist)
2418 		return;
2419 
2420 	inode_hashtable =
2421 		alloc_large_system_hash("Inode-cache",
2422 					sizeof(struct hlist_head),
2423 					ihash_entries,
2424 					14,
2425 					HASH_EARLY | HASH_ZERO,
2426 					&i_hash_shift,
2427 					&i_hash_mask,
2428 					0,
2429 					0);
2430 }
2431 
inode_init(void)2432 void __init inode_init(void)
2433 {
2434 	/* inode slab cache */
2435 	inode_cachep = kmem_cache_create("inode_cache",
2436 					 sizeof(struct inode),
2437 					 0,
2438 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2439 					 SLAB_ACCOUNT),
2440 					 init_once);
2441 
2442 	/* Hash may have been set up in inode_init_early */
2443 	if (!hashdist)
2444 		return;
2445 
2446 	inode_hashtable =
2447 		alloc_large_system_hash("Inode-cache",
2448 					sizeof(struct hlist_head),
2449 					ihash_entries,
2450 					14,
2451 					HASH_ZERO,
2452 					&i_hash_shift,
2453 					&i_hash_mask,
2454 					0,
2455 					0);
2456 }
2457 
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)2458 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2459 {
2460 	inode->i_mode = mode;
2461 	if (S_ISCHR(mode)) {
2462 		inode->i_fop = &def_chr_fops;
2463 		inode->i_rdev = rdev;
2464 	} else if (S_ISBLK(mode)) {
2465 		if (IS_ENABLED(CONFIG_BLOCK))
2466 			inode->i_fop = &def_blk_fops;
2467 		inode->i_rdev = rdev;
2468 	} else if (S_ISFIFO(mode))
2469 		inode->i_fop = &pipefifo_fops;
2470 	else if (S_ISSOCK(mode))
2471 		;	/* leave it no_open_fops */
2472 	else
2473 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2474 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2475 				  inode->i_ino);
2476 }
2477 EXPORT_SYMBOL(init_special_inode);
2478 
2479 /**
2480  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2481  * @idmap: idmap of the mount the inode was created from
2482  * @inode: New inode
2483  * @dir: Directory inode
2484  * @mode: mode of the new inode
2485  *
2486  * If the inode has been created through an idmapped mount the idmap of
2487  * the vfsmount must be passed through @idmap. This function will then take
2488  * care to map the inode according to @idmap before checking permissions
2489  * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2490  * checking is to be performed on the raw inode simply pass @nop_mnt_idmap.
2491  */
inode_init_owner(struct mnt_idmap * idmap,struct inode * inode,const struct inode * dir,umode_t mode)2492 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
2493 		      const struct inode *dir, umode_t mode)
2494 {
2495 	inode_fsuid_set(inode, idmap);
2496 	if (dir && dir->i_mode & S_ISGID) {
2497 		inode->i_gid = dir->i_gid;
2498 
2499 		/* Directories are special, and always inherit S_ISGID */
2500 		if (S_ISDIR(mode))
2501 			mode |= S_ISGID;
2502 	} else
2503 		inode_fsgid_set(inode, idmap);
2504 	inode->i_mode = mode;
2505 }
2506 EXPORT_SYMBOL(inode_init_owner);
2507 
2508 /**
2509  * inode_owner_or_capable - check current task permissions to inode
2510  * @idmap: idmap of the mount the inode was found from
2511  * @inode: inode being checked
2512  *
2513  * Return true if current either has CAP_FOWNER in a namespace with the
2514  * inode owner uid mapped, or owns the file.
2515  *
2516  * If the inode has been found through an idmapped mount the idmap of
2517  * the vfsmount must be passed through @idmap. This function will then take
2518  * care to map the inode according to @idmap before checking permissions.
2519  * On non-idmapped mounts or if permission checking is to be performed on the
2520  * raw inode simply pass @nop_mnt_idmap.
2521  */
inode_owner_or_capable(struct mnt_idmap * idmap,const struct inode * inode)2522 bool inode_owner_or_capable(struct mnt_idmap *idmap,
2523 			    const struct inode *inode)
2524 {
2525 	vfsuid_t vfsuid;
2526 	struct user_namespace *ns;
2527 
2528 	vfsuid = i_uid_into_vfsuid(idmap, inode);
2529 	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
2530 		return true;
2531 
2532 	ns = current_user_ns();
2533 	if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER))
2534 		return true;
2535 	return false;
2536 }
2537 EXPORT_SYMBOL(inode_owner_or_capable);
2538 
2539 /*
2540  * Direct i/o helper functions
2541  */
inode_dio_finished(const struct inode * inode)2542 bool inode_dio_finished(const struct inode *inode)
2543 {
2544 	return atomic_read(&inode->i_dio_count) == 0;
2545 }
2546 EXPORT_SYMBOL(inode_dio_finished);
2547 
2548 /**
2549  * inode_dio_wait - wait for outstanding DIO requests to finish
2550  * @inode: inode to wait for
2551  *
2552  * Waits for all pending direct I/O requests to finish so that we can
2553  * proceed with a truncate or equivalent operation.
2554  *
2555  * Must be called under a lock that serializes taking new references
2556  * to i_dio_count, usually by inode->i_mutex.
2557  */
inode_dio_wait(struct inode * inode)2558 void inode_dio_wait(struct inode *inode)
2559 {
2560 	wait_var_event(&inode->i_dio_count, inode_dio_finished(inode));
2561 }
2562 EXPORT_SYMBOL(inode_dio_wait);
2563 
inode_dio_wait_interruptible(struct inode * inode)2564 void inode_dio_wait_interruptible(struct inode *inode)
2565 {
2566 	wait_var_event_interruptible(&inode->i_dio_count,
2567 				     inode_dio_finished(inode));
2568 }
2569 EXPORT_SYMBOL(inode_dio_wait_interruptible);
2570 
2571 /*
2572  * inode_set_flags - atomically set some inode flags
2573  *
2574  * Note: the caller should be holding i_mutex, or else be sure that
2575  * they have exclusive access to the inode structure (i.e., while the
2576  * inode is being instantiated).  The reason for the cmpxchg() loop
2577  * --- which wouldn't be necessary if all code paths which modify
2578  * i_flags actually followed this rule, is that there is at least one
2579  * code path which doesn't today so we use cmpxchg() out of an abundance
2580  * of caution.
2581  *
2582  * In the long run, i_mutex is overkill, and we should probably look
2583  * at using the i_lock spinlock to protect i_flags, and then make sure
2584  * it is so documented in include/linux/fs.h and that all code follows
2585  * the locking convention!!
2586  */
inode_set_flags(struct inode * inode,unsigned int flags,unsigned int mask)2587 void inode_set_flags(struct inode *inode, unsigned int flags,
2588 		     unsigned int mask)
2589 {
2590 	WARN_ON_ONCE(flags & ~mask);
2591 	set_mask_bits(&inode->i_flags, mask, flags);
2592 }
2593 EXPORT_SYMBOL(inode_set_flags);
2594 
inode_nohighmem(struct inode * inode)2595 void inode_nohighmem(struct inode *inode)
2596 {
2597 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2598 }
2599 EXPORT_SYMBOL(inode_nohighmem);
2600 
2601 /**
2602  * timestamp_truncate - Truncate timespec to a granularity
2603  * @t: Timespec
2604  * @inode: inode being updated
2605  *
2606  * Truncate a timespec to the granularity supported by the fs
2607  * containing the inode. Always rounds down. gran must
2608  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2609  */
timestamp_truncate(struct timespec64 t,struct inode * inode)2610 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2611 {
2612 	struct super_block *sb = inode->i_sb;
2613 	unsigned int gran = sb->s_time_gran;
2614 
2615 	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2616 	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2617 		t.tv_nsec = 0;
2618 
2619 	/* Avoid division in the common cases 1 ns and 1 s. */
2620 	if (gran == 1)
2621 		; /* nothing */
2622 	else if (gran == NSEC_PER_SEC)
2623 		t.tv_nsec = 0;
2624 	else if (gran > 1 && gran < NSEC_PER_SEC)
2625 		t.tv_nsec -= t.tv_nsec % gran;
2626 	else
2627 		WARN(1, "invalid file time granularity: %u", gran);
2628 	return t;
2629 }
2630 EXPORT_SYMBOL(timestamp_truncate);
2631 
2632 /**
2633  * current_time - Return FS time
2634  * @inode: inode.
2635  *
2636  * Return the current time truncated to the time granularity supported by
2637  * the fs.
2638  *
2639  * Note that inode and inode->sb cannot be NULL.
2640  * Otherwise, the function warns and returns time without truncation.
2641  */
current_time(struct inode * inode)2642 struct timespec64 current_time(struct inode *inode)
2643 {
2644 	struct timespec64 now;
2645 
2646 	ktime_get_coarse_real_ts64(&now);
2647 	return timestamp_truncate(now, inode);
2648 }
2649 EXPORT_SYMBOL(current_time);
2650 
2651 /**
2652  * inode_set_ctime_current - set the ctime to current_time
2653  * @inode: inode
2654  *
2655  * Set the inode->i_ctime to the current value for the inode. Returns
2656  * the current value that was assigned to i_ctime.
2657  */
inode_set_ctime_current(struct inode * inode)2658 struct timespec64 inode_set_ctime_current(struct inode *inode)
2659 {
2660 	struct timespec64 now = current_time(inode);
2661 
2662 	inode_set_ctime_to_ts(inode, now);
2663 	return now;
2664 }
2665 EXPORT_SYMBOL(inode_set_ctime_current);
2666 
2667 /**
2668  * in_group_or_capable - check whether caller is CAP_FSETID privileged
2669  * @idmap:	idmap of the mount @inode was found from
2670  * @inode:	inode to check
2671  * @vfsgid:	the new/current vfsgid of @inode
2672  *
2673  * Check wether @vfsgid is in the caller's group list or if the caller is
2674  * privileged with CAP_FSETID over @inode. This can be used to determine
2675  * whether the setgid bit can be kept or must be dropped.
2676  *
2677  * Return: true if the caller is sufficiently privileged, false if not.
2678  */
in_group_or_capable(struct mnt_idmap * idmap,const struct inode * inode,vfsgid_t vfsgid)2679 bool in_group_or_capable(struct mnt_idmap *idmap,
2680 			 const struct inode *inode, vfsgid_t vfsgid)
2681 {
2682 	if (vfsgid_in_group_p(vfsgid))
2683 		return true;
2684 	if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
2685 		return true;
2686 	return false;
2687 }
2688 EXPORT_SYMBOL(in_group_or_capable);
2689 
2690 /**
2691  * mode_strip_sgid - handle the sgid bit for non-directories
2692  * @idmap: idmap of the mount the inode was created from
2693  * @dir: parent directory inode
2694  * @mode: mode of the file to be created in @dir
2695  *
2696  * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2697  * raised and @dir has the S_ISGID bit raised ensure that the caller is
2698  * either in the group of the parent directory or they have CAP_FSETID
2699  * in their user namespace and are privileged over the parent directory.
2700  * In all other cases, strip the S_ISGID bit from @mode.
2701  *
2702  * Return: the new mode to use for the file
2703  */
mode_strip_sgid(struct mnt_idmap * idmap,const struct inode * dir,umode_t mode)2704 umode_t mode_strip_sgid(struct mnt_idmap *idmap,
2705 			const struct inode *dir, umode_t mode)
2706 {
2707 	if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2708 		return mode;
2709 	if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2710 		return mode;
2711 	if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir)))
2712 		return mode;
2713 	return mode & ~S_ISGID;
2714 }
2715 EXPORT_SYMBOL(mode_strip_sgid);
2716