1 //===- SyntheticSections.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "SyntheticSections.h"
10 #include "ConcatOutputSection.h"
11 #include "Config.h"
12 #include "ExportTrie.h"
13 #include "InputFiles.h"
14 #include "MachOStructs.h"
15 #include "ObjC.h"
16 #include "OutputSegment.h"
17 #include "SymbolTable.h"
18 #include "Symbols.h"
19
20 #include "lld/Common/CommonLinkerContext.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/Config/llvm-config.h"
23 #include "llvm/Support/EndianStream.h"
24 #include "llvm/Support/FileSystem.h"
25 #include "llvm/Support/LEB128.h"
26 #include "llvm/Support/Parallel.h"
27 #include "llvm/Support/Path.h"
28 #include "llvm/Support/xxhash.h"
29
30 #if defined(__APPLE__)
31 #include <sys/mman.h>
32
33 #define COMMON_DIGEST_FOR_OPENSSL
34 #include <CommonCrypto/CommonDigest.h>
35 #else
36 #include "llvm/Support/SHA256.h"
37 #endif
38
39 using namespace llvm;
40 using namespace llvm::MachO;
41 using namespace llvm::support;
42 using namespace llvm::support::endian;
43 using namespace lld;
44 using namespace lld::macho;
45
46 // Reads `len` bytes at data and writes the 32-byte SHA256 checksum to `output`.
sha256(const uint8_t * data,size_t len,uint8_t * output)47 static void sha256(const uint8_t *data, size_t len, uint8_t *output) {
48 #if defined(__APPLE__)
49 // FIXME: Make LLVM's SHA256 faster and use it unconditionally. See PR56121
50 // for some notes on this.
51 CC_SHA256(data, len, output);
52 #else
53 ArrayRef<uint8_t> block(data, len);
54 std::array<uint8_t, 32> hash = SHA256::hash(block);
55 static_assert(hash.size() == CodeSignatureSection::hashSize);
56 memcpy(output, hash.data(), hash.size());
57 #endif
58 }
59
60 InStruct macho::in;
61 std::vector<SyntheticSection *> macho::syntheticSections;
62
SyntheticSection(const char * segname,const char * name)63 SyntheticSection::SyntheticSection(const char *segname, const char *name)
64 : OutputSection(SyntheticKind, name) {
65 std::tie(this->segname, this->name) = maybeRenameSection({segname, name});
66 isec = makeSyntheticInputSection(segname, name);
67 isec->parent = this;
68 syntheticSections.push_back(this);
69 }
70
71 // dyld3's MachOLoaded::getSlide() assumes that the __TEXT segment starts
72 // from the beginning of the file (i.e. the header).
MachHeaderSection()73 MachHeaderSection::MachHeaderSection()
74 : SyntheticSection(segment_names::text, section_names::header) {
75 // XXX: This is a hack. (See D97007)
76 // Setting the index to 1 to pretend that this section is the text
77 // section.
78 index = 1;
79 isec->isFinal = true;
80 }
81
addLoadCommand(LoadCommand * lc)82 void MachHeaderSection::addLoadCommand(LoadCommand *lc) {
83 loadCommands.push_back(lc);
84 sizeOfCmds += lc->getSize();
85 }
86
getSize() const87 uint64_t MachHeaderSection::getSize() const {
88 uint64_t size = target->headerSize + sizeOfCmds + config->headerPad;
89 // If we are emitting an encryptable binary, our load commands must have a
90 // separate (non-encrypted) page to themselves.
91 if (config->emitEncryptionInfo)
92 size = alignToPowerOf2(size, target->getPageSize());
93 return size;
94 }
95
cpuSubtype()96 static uint32_t cpuSubtype() {
97 uint32_t subtype = target->cpuSubtype;
98
99 if (config->outputType == MH_EXECUTE && !config->staticLink &&
100 target->cpuSubtype == CPU_SUBTYPE_X86_64_ALL &&
101 config->platform() == PLATFORM_MACOS &&
102 config->platformInfo.target.MinDeployment >= VersionTuple(10, 5))
103 subtype |= CPU_SUBTYPE_LIB64;
104
105 return subtype;
106 }
107
hasWeakBinding()108 static bool hasWeakBinding() {
109 return config->emitChainedFixups ? in.chainedFixups->hasWeakBinding()
110 : in.weakBinding->hasEntry();
111 }
112
hasNonWeakDefinition()113 static bool hasNonWeakDefinition() {
114 return config->emitChainedFixups ? in.chainedFixups->hasNonWeakDefinition()
115 : in.weakBinding->hasNonWeakDefinition();
116 }
117
writeTo(uint8_t * buf) const118 void MachHeaderSection::writeTo(uint8_t *buf) const {
119 auto *hdr = reinterpret_cast<mach_header *>(buf);
120 hdr->magic = target->magic;
121 hdr->cputype = target->cpuType;
122 hdr->cpusubtype = cpuSubtype();
123 hdr->filetype = config->outputType;
124 hdr->ncmds = loadCommands.size();
125 hdr->sizeofcmds = sizeOfCmds;
126 hdr->flags = MH_DYLDLINK;
127
128 if (config->namespaceKind == NamespaceKind::twolevel)
129 hdr->flags |= MH_NOUNDEFS | MH_TWOLEVEL;
130
131 if (config->outputType == MH_DYLIB && !config->hasReexports)
132 hdr->flags |= MH_NO_REEXPORTED_DYLIBS;
133
134 if (config->markDeadStrippableDylib)
135 hdr->flags |= MH_DEAD_STRIPPABLE_DYLIB;
136
137 if (config->outputType == MH_EXECUTE && config->isPic)
138 hdr->flags |= MH_PIE;
139
140 if (config->outputType == MH_DYLIB && config->applicationExtension)
141 hdr->flags |= MH_APP_EXTENSION_SAFE;
142
143 if (in.exports->hasWeakSymbol || hasNonWeakDefinition())
144 hdr->flags |= MH_WEAK_DEFINES;
145
146 if (in.exports->hasWeakSymbol || hasWeakBinding())
147 hdr->flags |= MH_BINDS_TO_WEAK;
148
149 for (const OutputSegment *seg : outputSegments) {
150 for (const OutputSection *osec : seg->getSections()) {
151 if (isThreadLocalVariables(osec->flags)) {
152 hdr->flags |= MH_HAS_TLV_DESCRIPTORS;
153 break;
154 }
155 }
156 }
157
158 uint8_t *p = reinterpret_cast<uint8_t *>(hdr) + target->headerSize;
159 for (const LoadCommand *lc : loadCommands) {
160 lc->writeTo(p);
161 p += lc->getSize();
162 }
163 }
164
PageZeroSection()165 PageZeroSection::PageZeroSection()
166 : SyntheticSection(segment_names::pageZero, section_names::pageZero) {}
167
RebaseSection()168 RebaseSection::RebaseSection()
169 : LinkEditSection(segment_names::linkEdit, section_names::rebase) {}
170
171 namespace {
172 struct RebaseState {
173 uint64_t sequenceLength;
174 uint64_t skipLength;
175 };
176 } // namespace
177
emitIncrement(uint64_t incr,raw_svector_ostream & os)178 static void emitIncrement(uint64_t incr, raw_svector_ostream &os) {
179 assert(incr != 0);
180
181 if ((incr >> target->p2WordSize) <= REBASE_IMMEDIATE_MASK &&
182 (incr % target->wordSize) == 0) {
183 os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_IMM_SCALED |
184 (incr >> target->p2WordSize));
185 } else {
186 os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_ULEB);
187 encodeULEB128(incr, os);
188 }
189 }
190
flushRebase(const RebaseState & state,raw_svector_ostream & os)191 static void flushRebase(const RebaseState &state, raw_svector_ostream &os) {
192 assert(state.sequenceLength > 0);
193
194 if (state.skipLength == target->wordSize) {
195 if (state.sequenceLength <= REBASE_IMMEDIATE_MASK) {
196 os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_IMM_TIMES |
197 state.sequenceLength);
198 } else {
199 os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ULEB_TIMES);
200 encodeULEB128(state.sequenceLength, os);
201 }
202 } else if (state.sequenceLength == 1) {
203 os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ADD_ADDR_ULEB);
204 encodeULEB128(state.skipLength - target->wordSize, os);
205 } else {
206 os << static_cast<uint8_t>(
207 REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB);
208 encodeULEB128(state.sequenceLength, os);
209 encodeULEB128(state.skipLength - target->wordSize, os);
210 }
211 }
212
213 // Rebases are communicated to dyld using a bytecode, whose opcodes cause the
214 // memory location at a specific address to be rebased and/or the address to be
215 // incremented.
216 //
217 // Opcode REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB is the most generic
218 // one, encoding a series of evenly spaced addresses. This algorithm works by
219 // splitting up the sorted list of addresses into such chunks. If the locations
220 // are consecutive or the sequence consists of a single location, flushRebase
221 // will use a smaller, more specialized encoding.
encodeRebases(const OutputSegment * seg,MutableArrayRef<Location> locations,raw_svector_ostream & os)222 static void encodeRebases(const OutputSegment *seg,
223 MutableArrayRef<Location> locations,
224 raw_svector_ostream &os) {
225 // dyld operates on segments. Translate section offsets into segment offsets.
226 for (Location &loc : locations)
227 loc.offset =
228 loc.isec->parent->getSegmentOffset() + loc.isec->getOffset(loc.offset);
229 // The algorithm assumes that locations are unique.
230 Location *end =
231 llvm::unique(locations, [](const Location &a, const Location &b) {
232 return a.offset == b.offset;
233 });
234 size_t count = end - locations.begin();
235
236 os << static_cast<uint8_t>(REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB |
237 seg->index);
238 assert(!locations.empty());
239 uint64_t offset = locations[0].offset;
240 encodeULEB128(offset, os);
241
242 RebaseState state{1, target->wordSize};
243
244 for (size_t i = 1; i < count; ++i) {
245 offset = locations[i].offset;
246
247 uint64_t skip = offset - locations[i - 1].offset;
248 assert(skip != 0 && "duplicate locations should have been weeded out");
249
250 if (skip == state.skipLength) {
251 ++state.sequenceLength;
252 } else if (state.sequenceLength == 1) {
253 ++state.sequenceLength;
254 state.skipLength = skip;
255 } else if (skip < state.skipLength) {
256 // The address is lower than what the rebase pointer would be if the last
257 // location would be part of a sequence. We start a new sequence from the
258 // previous location.
259 --state.sequenceLength;
260 flushRebase(state, os);
261
262 state.sequenceLength = 2;
263 state.skipLength = skip;
264 } else {
265 // The address is at some positive offset from the rebase pointer. We
266 // start a new sequence which begins with the current location.
267 flushRebase(state, os);
268 emitIncrement(skip - state.skipLength, os);
269 state.sequenceLength = 1;
270 state.skipLength = target->wordSize;
271 }
272 }
273 flushRebase(state, os);
274 }
275
finalizeContents()276 void RebaseSection::finalizeContents() {
277 if (locations.empty())
278 return;
279
280 raw_svector_ostream os{contents};
281 os << static_cast<uint8_t>(REBASE_OPCODE_SET_TYPE_IMM | REBASE_TYPE_POINTER);
282
283 llvm::sort(locations, [](const Location &a, const Location &b) {
284 return a.isec->getVA(a.offset) < b.isec->getVA(b.offset);
285 });
286
287 for (size_t i = 0, count = locations.size(); i < count;) {
288 const OutputSegment *seg = locations[i].isec->parent->parent;
289 size_t j = i + 1;
290 while (j < count && locations[j].isec->parent->parent == seg)
291 ++j;
292 encodeRebases(seg, {locations.data() + i, locations.data() + j}, os);
293 i = j;
294 }
295 os << static_cast<uint8_t>(REBASE_OPCODE_DONE);
296 }
297
writeTo(uint8_t * buf) const298 void RebaseSection::writeTo(uint8_t *buf) const {
299 memcpy(buf, contents.data(), contents.size());
300 }
301
NonLazyPointerSectionBase(const char * segname,const char * name)302 NonLazyPointerSectionBase::NonLazyPointerSectionBase(const char *segname,
303 const char *name)
304 : SyntheticSection(segname, name) {
305 align = target->wordSize;
306 }
307
addNonLazyBindingEntries(const Symbol * sym,const InputSection * isec,uint64_t offset,int64_t addend)308 void macho::addNonLazyBindingEntries(const Symbol *sym,
309 const InputSection *isec, uint64_t offset,
310 int64_t addend) {
311 if (config->emitChainedFixups) {
312 if (needsBinding(sym))
313 in.chainedFixups->addBinding(sym, isec, offset, addend);
314 else if (isa<Defined>(sym))
315 in.chainedFixups->addRebase(isec, offset);
316 else
317 llvm_unreachable("cannot bind to an undefined symbol");
318 return;
319 }
320
321 if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) {
322 in.binding->addEntry(dysym, isec, offset, addend);
323 if (dysym->isWeakDef())
324 in.weakBinding->addEntry(sym, isec, offset, addend);
325 } else if (const auto *defined = dyn_cast<Defined>(sym)) {
326 in.rebase->addEntry(isec, offset);
327 if (defined->isExternalWeakDef())
328 in.weakBinding->addEntry(sym, isec, offset, addend);
329 else if (defined->interposable)
330 in.binding->addEntry(sym, isec, offset, addend);
331 } else {
332 // Undefined symbols are filtered out in scanRelocations(); we should never
333 // get here
334 llvm_unreachable("cannot bind to an undefined symbol");
335 }
336 }
337
addEntry(Symbol * sym)338 void NonLazyPointerSectionBase::addEntry(Symbol *sym) {
339 if (entries.insert(sym)) {
340 assert(!sym->isInGot());
341 sym->gotIndex = entries.size() - 1;
342
343 addNonLazyBindingEntries(sym, isec, sym->gotIndex * target->wordSize);
344 }
345 }
346
writeChainedRebase(uint8_t * buf,uint64_t targetVA)347 void macho::writeChainedRebase(uint8_t *buf, uint64_t targetVA) {
348 assert(config->emitChainedFixups);
349 assert(target->wordSize == 8 && "Only 64-bit platforms are supported");
350 auto *rebase = reinterpret_cast<dyld_chained_ptr_64_rebase *>(buf);
351 rebase->target = targetVA & 0xf'ffff'ffff;
352 rebase->high8 = (targetVA >> 56);
353 rebase->reserved = 0;
354 rebase->next = 0;
355 rebase->bind = 0;
356
357 // The fixup format places a 64 GiB limit on the output's size.
358 // Should we handle this gracefully?
359 uint64_t encodedVA = rebase->target | ((uint64_t)rebase->high8 << 56);
360 if (encodedVA != targetVA)
361 error("rebase target address 0x" + Twine::utohexstr(targetVA) +
362 " does not fit into chained fixup. Re-link with -no_fixup_chains");
363 }
364
writeChainedBind(uint8_t * buf,const Symbol * sym,int64_t addend)365 static void writeChainedBind(uint8_t *buf, const Symbol *sym, int64_t addend) {
366 assert(config->emitChainedFixups);
367 assert(target->wordSize == 8 && "Only 64-bit platforms are supported");
368 auto *bind = reinterpret_cast<dyld_chained_ptr_64_bind *>(buf);
369 auto [ordinal, inlineAddend] = in.chainedFixups->getBinding(sym, addend);
370 bind->ordinal = ordinal;
371 bind->addend = inlineAddend;
372 bind->reserved = 0;
373 bind->next = 0;
374 bind->bind = 1;
375 }
376
writeChainedFixup(uint8_t * buf,const Symbol * sym,int64_t addend)377 void macho::writeChainedFixup(uint8_t *buf, const Symbol *sym, int64_t addend) {
378 if (needsBinding(sym))
379 writeChainedBind(buf, sym, addend);
380 else
381 writeChainedRebase(buf, sym->getVA() + addend);
382 }
383
writeTo(uint8_t * buf) const384 void NonLazyPointerSectionBase::writeTo(uint8_t *buf) const {
385 if (config->emitChainedFixups) {
386 for (const auto &[i, entry] : llvm::enumerate(entries))
387 writeChainedFixup(&buf[i * target->wordSize], entry, 0);
388 } else {
389 for (const auto &[i, entry] : llvm::enumerate(entries))
390 if (auto *defined = dyn_cast<Defined>(entry))
391 write64le(&buf[i * target->wordSize], defined->getVA());
392 }
393 }
394
GotSection()395 GotSection::GotSection()
396 : NonLazyPointerSectionBase(segment_names::data, section_names::got) {
397 flags = S_NON_LAZY_SYMBOL_POINTERS;
398 }
399
TlvPointerSection()400 TlvPointerSection::TlvPointerSection()
401 : NonLazyPointerSectionBase(segment_names::data,
402 section_names::threadPtrs) {
403 flags = S_THREAD_LOCAL_VARIABLE_POINTERS;
404 }
405
BindingSection()406 BindingSection::BindingSection()
407 : LinkEditSection(segment_names::linkEdit, section_names::binding) {}
408
409 namespace {
410 struct Binding {
411 OutputSegment *segment = nullptr;
412 uint64_t offset = 0;
413 int64_t addend = 0;
414 };
415 struct BindIR {
416 // Default value of 0xF0 is not valid opcode and should make the program
417 // scream instead of accidentally writing "valid" values.
418 uint8_t opcode = 0xF0;
419 uint64_t data = 0;
420 uint64_t consecutiveCount = 0;
421 };
422 } // namespace
423
424 // Encode a sequence of opcodes that tell dyld to write the address of symbol +
425 // addend at osec->addr + outSecOff.
426 //
427 // The bind opcode "interpreter" remembers the values of each binding field, so
428 // we only need to encode the differences between bindings. Hence the use of
429 // lastBinding.
encodeBinding(const OutputSection * osec,uint64_t outSecOff,int64_t addend,Binding & lastBinding,std::vector<BindIR> & opcodes)430 static void encodeBinding(const OutputSection *osec, uint64_t outSecOff,
431 int64_t addend, Binding &lastBinding,
432 std::vector<BindIR> &opcodes) {
433 OutputSegment *seg = osec->parent;
434 uint64_t offset = osec->getSegmentOffset() + outSecOff;
435 if (lastBinding.segment != seg) {
436 opcodes.push_back(
437 {static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB |
438 seg->index),
439 offset});
440 lastBinding.segment = seg;
441 lastBinding.offset = offset;
442 } else if (lastBinding.offset != offset) {
443 opcodes.push_back({BIND_OPCODE_ADD_ADDR_ULEB, offset - lastBinding.offset});
444 lastBinding.offset = offset;
445 }
446
447 if (lastBinding.addend != addend) {
448 opcodes.push_back(
449 {BIND_OPCODE_SET_ADDEND_SLEB, static_cast<uint64_t>(addend)});
450 lastBinding.addend = addend;
451 }
452
453 opcodes.push_back({BIND_OPCODE_DO_BIND, 0});
454 // DO_BIND causes dyld to both perform the binding and increment the offset
455 lastBinding.offset += target->wordSize;
456 }
457
optimizeOpcodes(std::vector<BindIR> & opcodes)458 static void optimizeOpcodes(std::vector<BindIR> &opcodes) {
459 // Pass 1: Combine bind/add pairs
460 size_t i;
461 int pWrite = 0;
462 for (i = 1; i < opcodes.size(); ++i, ++pWrite) {
463 if ((opcodes[i].opcode == BIND_OPCODE_ADD_ADDR_ULEB) &&
464 (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND)) {
465 opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB;
466 opcodes[pWrite].data = opcodes[i].data;
467 ++i;
468 } else {
469 opcodes[pWrite] = opcodes[i - 1];
470 }
471 }
472 if (i == opcodes.size())
473 opcodes[pWrite] = opcodes[i - 1];
474 opcodes.resize(pWrite + 1);
475
476 // Pass 2: Compress two or more bind_add opcodes
477 pWrite = 0;
478 for (i = 1; i < opcodes.size(); ++i, ++pWrite) {
479 if ((opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
480 (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
481 (opcodes[i].data == opcodes[i - 1].data)) {
482 opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB;
483 opcodes[pWrite].consecutiveCount = 2;
484 opcodes[pWrite].data = opcodes[i].data;
485 ++i;
486 while (i < opcodes.size() &&
487 (opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
488 (opcodes[i].data == opcodes[i - 1].data)) {
489 opcodes[pWrite].consecutiveCount++;
490 ++i;
491 }
492 } else {
493 opcodes[pWrite] = opcodes[i - 1];
494 }
495 }
496 if (i == opcodes.size())
497 opcodes[pWrite] = opcodes[i - 1];
498 opcodes.resize(pWrite + 1);
499
500 // Pass 3: Use immediate encodings
501 // Every binding is the size of one pointer. If the next binding is a
502 // multiple of wordSize away that is within BIND_IMMEDIATE_MASK, the
503 // opcode can be scaled by wordSize into a single byte and dyld will
504 // expand it to the correct address.
505 for (auto &p : opcodes) {
506 // It's unclear why the check needs to be less than BIND_IMMEDIATE_MASK,
507 // but ld64 currently does this. This could be a potential bug, but
508 // for now, perform the same behavior to prevent mysterious bugs.
509 if ((p.opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
510 ((p.data / target->wordSize) < BIND_IMMEDIATE_MASK) &&
511 ((p.data % target->wordSize) == 0)) {
512 p.opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED;
513 p.data /= target->wordSize;
514 }
515 }
516 }
517
flushOpcodes(const BindIR & op,raw_svector_ostream & os)518 static void flushOpcodes(const BindIR &op, raw_svector_ostream &os) {
519 uint8_t opcode = op.opcode & BIND_OPCODE_MASK;
520 switch (opcode) {
521 case BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB:
522 case BIND_OPCODE_ADD_ADDR_ULEB:
523 case BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB:
524 os << op.opcode;
525 encodeULEB128(op.data, os);
526 break;
527 case BIND_OPCODE_SET_ADDEND_SLEB:
528 os << op.opcode;
529 encodeSLEB128(static_cast<int64_t>(op.data), os);
530 break;
531 case BIND_OPCODE_DO_BIND:
532 os << op.opcode;
533 break;
534 case BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB:
535 os << op.opcode;
536 encodeULEB128(op.consecutiveCount, os);
537 encodeULEB128(op.data, os);
538 break;
539 case BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED:
540 os << static_cast<uint8_t>(op.opcode | op.data);
541 break;
542 default:
543 llvm_unreachable("cannot bind to an unrecognized symbol");
544 }
545 }
546
needsWeakBind(const Symbol & sym)547 static bool needsWeakBind(const Symbol &sym) {
548 if (auto *dysym = dyn_cast<DylibSymbol>(&sym))
549 return dysym->isWeakDef();
550 if (auto *defined = dyn_cast<Defined>(&sym))
551 return defined->isExternalWeakDef();
552 return false;
553 }
554
555 // Non-weak bindings need to have their dylib ordinal encoded as well.
ordinalForDylibSymbol(const DylibSymbol & dysym)556 static int16_t ordinalForDylibSymbol(const DylibSymbol &dysym) {
557 if (config->namespaceKind == NamespaceKind::flat || dysym.isDynamicLookup())
558 return static_cast<int16_t>(BIND_SPECIAL_DYLIB_FLAT_LOOKUP);
559 assert(dysym.getFile()->isReferenced());
560 return dysym.getFile()->ordinal;
561 }
562
ordinalForSymbol(const Symbol & sym)563 static int16_t ordinalForSymbol(const Symbol &sym) {
564 if (config->emitChainedFixups && needsWeakBind(sym))
565 return BIND_SPECIAL_DYLIB_WEAK_LOOKUP;
566 if (const auto *dysym = dyn_cast<DylibSymbol>(&sym))
567 return ordinalForDylibSymbol(*dysym);
568 assert(cast<Defined>(&sym)->interposable);
569 return BIND_SPECIAL_DYLIB_FLAT_LOOKUP;
570 }
571
encodeDylibOrdinal(int16_t ordinal,raw_svector_ostream & os)572 static void encodeDylibOrdinal(int16_t ordinal, raw_svector_ostream &os) {
573 if (ordinal <= 0) {
574 os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_SPECIAL_IMM |
575 (ordinal & BIND_IMMEDIATE_MASK));
576 } else if (ordinal <= BIND_IMMEDIATE_MASK) {
577 os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_IMM | ordinal);
578 } else {
579 os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB);
580 encodeULEB128(ordinal, os);
581 }
582 }
583
encodeWeakOverride(const Defined * defined,raw_svector_ostream & os)584 static void encodeWeakOverride(const Defined *defined,
585 raw_svector_ostream &os) {
586 os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM |
587 BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION)
588 << defined->getName() << '\0';
589 }
590
591 // Organize the bindings so we can encoded them with fewer opcodes.
592 //
593 // First, all bindings for a given symbol should be grouped together.
594 // BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM is the largest opcode (since it
595 // has an associated symbol string), so we only want to emit it once per symbol.
596 //
597 // Within each group, we sort the bindings by address. Since bindings are
598 // delta-encoded, sorting them allows for a more compact result. Note that
599 // sorting by address alone ensures that bindings for the same segment / section
600 // are located together, minimizing the number of times we have to emit
601 // BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB.
602 //
603 // Finally, we sort the symbols by the address of their first binding, again
604 // to facilitate the delta-encoding process.
605 template <class Sym>
606 std::vector<std::pair<const Sym *, std::vector<BindingEntry>>>
sortBindings(const BindingsMap<const Sym * > & bindingsMap)607 sortBindings(const BindingsMap<const Sym *> &bindingsMap) {
608 std::vector<std::pair<const Sym *, std::vector<BindingEntry>>> bindingsVec(
609 bindingsMap.begin(), bindingsMap.end());
610 for (auto &p : bindingsVec) {
611 std::vector<BindingEntry> &bindings = p.second;
612 llvm::sort(bindings, [](const BindingEntry &a, const BindingEntry &b) {
613 return a.target.getVA() < b.target.getVA();
614 });
615 }
616 llvm::sort(bindingsVec, [](const auto &a, const auto &b) {
617 return a.second[0].target.getVA() < b.second[0].target.getVA();
618 });
619 return bindingsVec;
620 }
621
622 // Emit bind opcodes, which are a stream of byte-sized opcodes that dyld
623 // interprets to update a record with the following fields:
624 // * segment index (of the segment to write the symbol addresses to, typically
625 // the __DATA_CONST segment which contains the GOT)
626 // * offset within the segment, indicating the next location to write a binding
627 // * symbol type
628 // * symbol library ordinal (the index of its library's LC_LOAD_DYLIB command)
629 // * symbol name
630 // * addend
631 // When dyld sees BIND_OPCODE_DO_BIND, it uses the current record state to bind
632 // a symbol in the GOT, and increments the segment offset to point to the next
633 // entry. It does *not* clear the record state after doing the bind, so
634 // subsequent opcodes only need to encode the differences between bindings.
finalizeContents()635 void BindingSection::finalizeContents() {
636 raw_svector_ostream os{contents};
637 Binding lastBinding;
638 int16_t lastOrdinal = 0;
639
640 for (auto &p : sortBindings(bindingsMap)) {
641 const Symbol *sym = p.first;
642 std::vector<BindingEntry> &bindings = p.second;
643 uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM;
644 if (sym->isWeakRef())
645 flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT;
646 os << flags << sym->getName() << '\0'
647 << static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER);
648 int16_t ordinal = ordinalForSymbol(*sym);
649 if (ordinal != lastOrdinal) {
650 encodeDylibOrdinal(ordinal, os);
651 lastOrdinal = ordinal;
652 }
653 std::vector<BindIR> opcodes;
654 for (const BindingEntry &b : bindings)
655 encodeBinding(b.target.isec->parent,
656 b.target.isec->getOffset(b.target.offset), b.addend,
657 lastBinding, opcodes);
658 if (config->optimize > 1)
659 optimizeOpcodes(opcodes);
660 for (const auto &op : opcodes)
661 flushOpcodes(op, os);
662 }
663 if (!bindingsMap.empty())
664 os << static_cast<uint8_t>(BIND_OPCODE_DONE);
665 }
666
writeTo(uint8_t * buf) const667 void BindingSection::writeTo(uint8_t *buf) const {
668 memcpy(buf, contents.data(), contents.size());
669 }
670
WeakBindingSection()671 WeakBindingSection::WeakBindingSection()
672 : LinkEditSection(segment_names::linkEdit, section_names::weakBinding) {}
673
finalizeContents()674 void WeakBindingSection::finalizeContents() {
675 raw_svector_ostream os{contents};
676 Binding lastBinding;
677
678 for (const Defined *defined : definitions)
679 encodeWeakOverride(defined, os);
680
681 for (auto &p : sortBindings(bindingsMap)) {
682 const Symbol *sym = p.first;
683 std::vector<BindingEntry> &bindings = p.second;
684 os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM)
685 << sym->getName() << '\0'
686 << static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER);
687 std::vector<BindIR> opcodes;
688 for (const BindingEntry &b : bindings)
689 encodeBinding(b.target.isec->parent,
690 b.target.isec->getOffset(b.target.offset), b.addend,
691 lastBinding, opcodes);
692 if (config->optimize > 1)
693 optimizeOpcodes(opcodes);
694 for (const auto &op : opcodes)
695 flushOpcodes(op, os);
696 }
697 if (!bindingsMap.empty() || !definitions.empty())
698 os << static_cast<uint8_t>(BIND_OPCODE_DONE);
699 }
700
writeTo(uint8_t * buf) const701 void WeakBindingSection::writeTo(uint8_t *buf) const {
702 memcpy(buf, contents.data(), contents.size());
703 }
704
StubsSection()705 StubsSection::StubsSection()
706 : SyntheticSection(segment_names::text, section_names::stubs) {
707 flags = S_SYMBOL_STUBS | S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS;
708 // The stubs section comprises machine instructions, which are aligned to
709 // 4 bytes on the archs we care about.
710 align = 4;
711 reserved2 = target->stubSize;
712 }
713
getSize() const714 uint64_t StubsSection::getSize() const {
715 return entries.size() * target->stubSize;
716 }
717
writeTo(uint8_t * buf) const718 void StubsSection::writeTo(uint8_t *buf) const {
719 size_t off = 0;
720 for (const Symbol *sym : entries) {
721 uint64_t pointerVA =
722 config->emitChainedFixups ? sym->getGotVA() : sym->getLazyPtrVA();
723 target->writeStub(buf + off, *sym, pointerVA);
724 off += target->stubSize;
725 }
726 }
727
finalize()728 void StubsSection::finalize() { isFinal = true; }
729
addBindingsForStub(Symbol * sym)730 static void addBindingsForStub(Symbol *sym) {
731 assert(!config->emitChainedFixups);
732 if (auto *dysym = dyn_cast<DylibSymbol>(sym)) {
733 if (sym->isWeakDef()) {
734 in.binding->addEntry(dysym, in.lazyPointers->isec,
735 sym->stubsIndex * target->wordSize);
736 in.weakBinding->addEntry(sym, in.lazyPointers->isec,
737 sym->stubsIndex * target->wordSize);
738 } else {
739 in.lazyBinding->addEntry(dysym);
740 }
741 } else if (auto *defined = dyn_cast<Defined>(sym)) {
742 if (defined->isExternalWeakDef()) {
743 in.rebase->addEntry(in.lazyPointers->isec,
744 sym->stubsIndex * target->wordSize);
745 in.weakBinding->addEntry(sym, in.lazyPointers->isec,
746 sym->stubsIndex * target->wordSize);
747 } else if (defined->interposable) {
748 in.lazyBinding->addEntry(sym);
749 } else {
750 llvm_unreachable("invalid stub target");
751 }
752 } else {
753 llvm_unreachable("invalid stub target symbol type");
754 }
755 }
756
addEntry(Symbol * sym)757 void StubsSection::addEntry(Symbol *sym) {
758 bool inserted = entries.insert(sym);
759 if (inserted) {
760 sym->stubsIndex = entries.size() - 1;
761
762 if (config->emitChainedFixups)
763 in.got->addEntry(sym);
764 else
765 addBindingsForStub(sym);
766 }
767 }
768
StubHelperSection()769 StubHelperSection::StubHelperSection()
770 : SyntheticSection(segment_names::text, section_names::stubHelper) {
771 flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS;
772 align = 4; // This section comprises machine instructions
773 }
774
getSize() const775 uint64_t StubHelperSection::getSize() const {
776 return target->stubHelperHeaderSize +
777 in.lazyBinding->getEntries().size() * target->stubHelperEntrySize;
778 }
779
isNeeded() const780 bool StubHelperSection::isNeeded() const { return in.lazyBinding->isNeeded(); }
781
writeTo(uint8_t * buf) const782 void StubHelperSection::writeTo(uint8_t *buf) const {
783 target->writeStubHelperHeader(buf);
784 size_t off = target->stubHelperHeaderSize;
785 for (const Symbol *sym : in.lazyBinding->getEntries()) {
786 target->writeStubHelperEntry(buf + off, *sym, addr + off);
787 off += target->stubHelperEntrySize;
788 }
789 }
790
setUp()791 void StubHelperSection::setUp() {
792 Symbol *binder = symtab->addUndefined("dyld_stub_binder", /*file=*/nullptr,
793 /*isWeakRef=*/false);
794 if (auto *undefined = dyn_cast<Undefined>(binder))
795 treatUndefinedSymbol(*undefined,
796 "lazy binding (normally in libSystem.dylib)");
797
798 // treatUndefinedSymbol() can replace binder with a DylibSymbol; re-check.
799 stubBinder = dyn_cast_or_null<DylibSymbol>(binder);
800 if (stubBinder == nullptr)
801 return;
802
803 in.got->addEntry(stubBinder);
804
805 in.imageLoaderCache->parent =
806 ConcatOutputSection::getOrCreateForInput(in.imageLoaderCache);
807 addInputSection(in.imageLoaderCache);
808 // Since this isn't in the symbol table or in any input file, the noDeadStrip
809 // argument doesn't matter.
810 dyldPrivate =
811 make<Defined>("__dyld_private", nullptr, in.imageLoaderCache, 0, 0,
812 /*isWeakDef=*/false,
813 /*isExternal=*/false, /*isPrivateExtern=*/false,
814 /*includeInSymtab=*/true,
815 /*isReferencedDynamically=*/false,
816 /*noDeadStrip=*/false);
817 dyldPrivate->used = true;
818 }
819
820 llvm::DenseMap<llvm::CachedHashStringRef, ConcatInputSection *>
821 ObjCSelRefsHelper::methnameToSelref;
initialize()822 void ObjCSelRefsHelper::initialize() {
823 // Do not fold selrefs without ICF.
824 if (config->icfLevel == ICFLevel::none)
825 return;
826
827 // Search methnames already referenced in __objc_selrefs
828 // Map the name to the corresponding selref entry
829 // which we will reuse when creating objc stubs.
830 for (ConcatInputSection *isec : inputSections) {
831 if (isec->shouldOmitFromOutput())
832 continue;
833 if (isec->getName() != section_names::objcSelrefs)
834 continue;
835 // We expect a single relocation per selref entry to __objc_methname that
836 // might be aggregated.
837 assert(isec->relocs.size() == 1);
838 auto Reloc = isec->relocs[0];
839 if (const auto *sym = Reloc.referent.dyn_cast<Symbol *>()) {
840 if (const auto *d = dyn_cast<Defined>(sym)) {
841 auto *cisec = cast<CStringInputSection>(d->isec());
842 auto methname = cisec->getStringRefAtOffset(d->value);
843 methnameToSelref[CachedHashStringRef(methname)] = isec;
844 }
845 }
846 }
847 }
848
cleanup()849 void ObjCSelRefsHelper::cleanup() { methnameToSelref.clear(); }
850
makeSelRef(StringRef methname)851 ConcatInputSection *ObjCSelRefsHelper::makeSelRef(StringRef methname) {
852 auto methnameOffset =
853 in.objcMethnameSection->getStringOffset(methname).outSecOff;
854
855 size_t wordSize = target->wordSize;
856 uint8_t *selrefData = bAlloc().Allocate<uint8_t>(wordSize);
857 write64le(selrefData, methnameOffset);
858 ConcatInputSection *objcSelref =
859 makeSyntheticInputSection(segment_names::data, section_names::objcSelrefs,
860 S_LITERAL_POINTERS | S_ATTR_NO_DEAD_STRIP,
861 ArrayRef<uint8_t>{selrefData, wordSize},
862 /*align=*/wordSize);
863 assert(objcSelref->live);
864 objcSelref->relocs.push_back({/*type=*/target->unsignedRelocType,
865 /*pcrel=*/false, /*length=*/3,
866 /*offset=*/0,
867 /*addend=*/static_cast<int64_t>(methnameOffset),
868 /*referent=*/in.objcMethnameSection->isec});
869 objcSelref->parent = ConcatOutputSection::getOrCreateForInput(objcSelref);
870 addInputSection(objcSelref);
871 objcSelref->isFinal = true;
872 methnameToSelref[CachedHashStringRef(methname)] = objcSelref;
873 return objcSelref;
874 }
875
getSelRef(StringRef methname)876 ConcatInputSection *ObjCSelRefsHelper::getSelRef(StringRef methname) {
877 auto it = methnameToSelref.find(CachedHashStringRef(methname));
878 if (it == methnameToSelref.end())
879 return nullptr;
880 return it->second;
881 }
882
ObjCStubsSection()883 ObjCStubsSection::ObjCStubsSection()
884 : SyntheticSection(segment_names::text, section_names::objcStubs) {
885 flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS;
886 align = config->objcStubsMode == ObjCStubsMode::fast
887 ? target->objcStubsFastAlignment
888 : target->objcStubsSmallAlignment;
889 }
890
isObjCStubSymbol(Symbol * sym)891 bool ObjCStubsSection::isObjCStubSymbol(Symbol *sym) {
892 return sym->getName().starts_with(symbolPrefix);
893 }
894
getMethname(Symbol * sym)895 StringRef ObjCStubsSection::getMethname(Symbol *sym) {
896 assert(isObjCStubSymbol(sym) && "not an objc stub");
897 auto name = sym->getName();
898 StringRef methname = name.drop_front(symbolPrefix.size());
899 return methname;
900 }
901
addEntry(Symbol * sym)902 void ObjCStubsSection::addEntry(Symbol *sym) {
903 StringRef methname = getMethname(sym);
904 // We create a selref entry for each unique methname.
905 if (!ObjCSelRefsHelper::getSelRef(methname))
906 ObjCSelRefsHelper::makeSelRef(methname);
907
908 auto stubSize = config->objcStubsMode == ObjCStubsMode::fast
909 ? target->objcStubsFastSize
910 : target->objcStubsSmallSize;
911 Defined *newSym = replaceSymbol<Defined>(
912 sym, sym->getName(), nullptr, isec,
913 /*value=*/symbols.size() * stubSize,
914 /*size=*/stubSize,
915 /*isWeakDef=*/false, /*isExternal=*/true, /*isPrivateExtern=*/true,
916 /*includeInSymtab=*/true, /*isReferencedDynamically=*/false,
917 /*noDeadStrip=*/false);
918 symbols.push_back(newSym);
919 }
920
setUp()921 void ObjCStubsSection::setUp() {
922 objcMsgSend = symtab->addUndefined("_objc_msgSend", /*file=*/nullptr,
923 /*isWeakRef=*/false);
924 if (auto *undefined = dyn_cast<Undefined>(objcMsgSend))
925 treatUndefinedSymbol(*undefined,
926 "lazy binding (normally in libobjc.dylib)");
927 objcMsgSend->used = true;
928 if (config->objcStubsMode == ObjCStubsMode::fast) {
929 in.got->addEntry(objcMsgSend);
930 assert(objcMsgSend->isInGot());
931 } else {
932 assert(config->objcStubsMode == ObjCStubsMode::small);
933 // In line with ld64's behavior, when objc_msgSend is a direct symbol,
934 // we directly reference it.
935 // In other cases, typically when binding in libobjc.dylib,
936 // we generate a stub to invoke objc_msgSend.
937 if (!isa<Defined>(objcMsgSend))
938 in.stubs->addEntry(objcMsgSend);
939 }
940 }
941
getSize() const942 uint64_t ObjCStubsSection::getSize() const {
943 auto stubSize = config->objcStubsMode == ObjCStubsMode::fast
944 ? target->objcStubsFastSize
945 : target->objcStubsSmallSize;
946 return stubSize * symbols.size();
947 }
948
writeTo(uint8_t * buf) const949 void ObjCStubsSection::writeTo(uint8_t *buf) const {
950 uint64_t stubOffset = 0;
951 for (size_t i = 0, n = symbols.size(); i < n; ++i) {
952 Defined *sym = symbols[i];
953
954 auto methname = getMethname(sym);
955 InputSection *selRef = ObjCSelRefsHelper::getSelRef(methname);
956 assert(selRef != nullptr && "no selref for methname");
957 auto selrefAddr = selRef->getVA(0);
958 target->writeObjCMsgSendStub(buf + stubOffset, sym, in.objcStubs->addr,
959 stubOffset, selrefAddr, objcMsgSend);
960 }
961 }
962
LazyPointerSection()963 LazyPointerSection::LazyPointerSection()
964 : SyntheticSection(segment_names::data, section_names::lazySymbolPtr) {
965 align = target->wordSize;
966 flags = S_LAZY_SYMBOL_POINTERS;
967 }
968
getSize() const969 uint64_t LazyPointerSection::getSize() const {
970 return in.stubs->getEntries().size() * target->wordSize;
971 }
972
isNeeded() const973 bool LazyPointerSection::isNeeded() const {
974 return !in.stubs->getEntries().empty();
975 }
976
writeTo(uint8_t * buf) const977 void LazyPointerSection::writeTo(uint8_t *buf) const {
978 size_t off = 0;
979 for (const Symbol *sym : in.stubs->getEntries()) {
980 if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) {
981 if (dysym->hasStubsHelper()) {
982 uint64_t stubHelperOffset =
983 target->stubHelperHeaderSize +
984 dysym->stubsHelperIndex * target->stubHelperEntrySize;
985 write64le(buf + off, in.stubHelper->addr + stubHelperOffset);
986 }
987 } else {
988 write64le(buf + off, sym->getVA());
989 }
990 off += target->wordSize;
991 }
992 }
993
LazyBindingSection()994 LazyBindingSection::LazyBindingSection()
995 : LinkEditSection(segment_names::linkEdit, section_names::lazyBinding) {}
996
finalizeContents()997 void LazyBindingSection::finalizeContents() {
998 // TODO: Just precompute output size here instead of writing to a temporary
999 // buffer
1000 for (Symbol *sym : entries)
1001 sym->lazyBindOffset = encode(*sym);
1002 }
1003
writeTo(uint8_t * buf) const1004 void LazyBindingSection::writeTo(uint8_t *buf) const {
1005 memcpy(buf, contents.data(), contents.size());
1006 }
1007
addEntry(Symbol * sym)1008 void LazyBindingSection::addEntry(Symbol *sym) {
1009 assert(!config->emitChainedFixups && "Chained fixups always bind eagerly");
1010 if (entries.insert(sym)) {
1011 sym->stubsHelperIndex = entries.size() - 1;
1012 in.rebase->addEntry(in.lazyPointers->isec,
1013 sym->stubsIndex * target->wordSize);
1014 }
1015 }
1016
1017 // Unlike the non-lazy binding section, the bind opcodes in this section aren't
1018 // interpreted all at once. Rather, dyld will start interpreting opcodes at a
1019 // given offset, typically only binding a single symbol before it finds a
1020 // BIND_OPCODE_DONE terminator. As such, unlike in the non-lazy-binding case,
1021 // we cannot encode just the differences between symbols; we have to emit the
1022 // complete bind information for each symbol.
encode(const Symbol & sym)1023 uint32_t LazyBindingSection::encode(const Symbol &sym) {
1024 uint32_t opstreamOffset = contents.size();
1025 OutputSegment *dataSeg = in.lazyPointers->parent;
1026 os << static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB |
1027 dataSeg->index);
1028 uint64_t offset =
1029 in.lazyPointers->addr - dataSeg->addr + sym.stubsIndex * target->wordSize;
1030 encodeULEB128(offset, os);
1031 encodeDylibOrdinal(ordinalForSymbol(sym), os);
1032
1033 uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM;
1034 if (sym.isWeakRef())
1035 flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT;
1036
1037 os << flags << sym.getName() << '\0'
1038 << static_cast<uint8_t>(BIND_OPCODE_DO_BIND)
1039 << static_cast<uint8_t>(BIND_OPCODE_DONE);
1040 return opstreamOffset;
1041 }
1042
ExportSection()1043 ExportSection::ExportSection()
1044 : LinkEditSection(segment_names::linkEdit, section_names::export_) {}
1045
finalizeContents()1046 void ExportSection::finalizeContents() {
1047 trieBuilder.setImageBase(in.header->addr);
1048 for (const Symbol *sym : symtab->getSymbols()) {
1049 if (const auto *defined = dyn_cast<Defined>(sym)) {
1050 if (defined->privateExtern || !defined->isLive())
1051 continue;
1052 trieBuilder.addSymbol(*defined);
1053 hasWeakSymbol = hasWeakSymbol || sym->isWeakDef();
1054 } else if (auto *dysym = dyn_cast<DylibSymbol>(sym)) {
1055 if (dysym->shouldReexport)
1056 trieBuilder.addSymbol(*dysym);
1057 }
1058 }
1059 size = trieBuilder.build();
1060 }
1061
writeTo(uint8_t * buf) const1062 void ExportSection::writeTo(uint8_t *buf) const { trieBuilder.writeTo(buf); }
1063
DataInCodeSection()1064 DataInCodeSection::DataInCodeSection()
1065 : LinkEditSection(segment_names::linkEdit, section_names::dataInCode) {}
1066
1067 template <class LP>
collectDataInCodeEntries()1068 static std::vector<MachO::data_in_code_entry> collectDataInCodeEntries() {
1069 std::vector<MachO::data_in_code_entry> dataInCodeEntries;
1070 for (const InputFile *inputFile : inputFiles) {
1071 if (!isa<ObjFile>(inputFile))
1072 continue;
1073 const ObjFile *objFile = cast<ObjFile>(inputFile);
1074 ArrayRef<MachO::data_in_code_entry> entries = objFile->getDataInCode();
1075 if (entries.empty())
1076 continue;
1077
1078 std::vector<MachO::data_in_code_entry> sortedEntries;
1079 sortedEntries.assign(entries.begin(), entries.end());
1080 llvm::sort(sortedEntries, [](const data_in_code_entry &lhs,
1081 const data_in_code_entry &rhs) {
1082 return lhs.offset < rhs.offset;
1083 });
1084
1085 // For each code subsection find 'data in code' entries residing in it.
1086 // Compute the new offset values as
1087 // <offset within subsection> + <subsection address> - <__TEXT address>.
1088 for (const Section *section : objFile->sections) {
1089 for (const Subsection &subsec : section->subsections) {
1090 const InputSection *isec = subsec.isec;
1091 if (!isCodeSection(isec))
1092 continue;
1093 if (cast<ConcatInputSection>(isec)->shouldOmitFromOutput())
1094 continue;
1095 const uint64_t beginAddr = section->addr + subsec.offset;
1096 auto it = llvm::lower_bound(
1097 sortedEntries, beginAddr,
1098 [](const MachO::data_in_code_entry &entry, uint64_t addr) {
1099 return entry.offset < addr;
1100 });
1101 const uint64_t endAddr = beginAddr + isec->getSize();
1102 for (const auto end = sortedEntries.end();
1103 it != end && it->offset + it->length <= endAddr; ++it)
1104 dataInCodeEntries.push_back(
1105 {static_cast<uint32_t>(isec->getVA(it->offset - beginAddr) -
1106 in.header->addr),
1107 it->length, it->kind});
1108 }
1109 }
1110 }
1111
1112 // ld64 emits the table in sorted order too.
1113 llvm::sort(dataInCodeEntries,
1114 [](const data_in_code_entry &lhs, const data_in_code_entry &rhs) {
1115 return lhs.offset < rhs.offset;
1116 });
1117 return dataInCodeEntries;
1118 }
1119
finalizeContents()1120 void DataInCodeSection::finalizeContents() {
1121 entries = target->wordSize == 8 ? collectDataInCodeEntries<LP64>()
1122 : collectDataInCodeEntries<ILP32>();
1123 }
1124
writeTo(uint8_t * buf) const1125 void DataInCodeSection::writeTo(uint8_t *buf) const {
1126 if (!entries.empty())
1127 memcpy(buf, entries.data(), getRawSize());
1128 }
1129
FunctionStartsSection()1130 FunctionStartsSection::FunctionStartsSection()
1131 : LinkEditSection(segment_names::linkEdit, section_names::functionStarts) {}
1132
finalizeContents()1133 void FunctionStartsSection::finalizeContents() {
1134 raw_svector_ostream os{contents};
1135 std::vector<uint64_t> addrs;
1136 for (const InputFile *file : inputFiles) {
1137 if (auto *objFile = dyn_cast<ObjFile>(file)) {
1138 for (const Symbol *sym : objFile->symbols) {
1139 if (const auto *defined = dyn_cast_or_null<Defined>(sym)) {
1140 if (!defined->isec() || !isCodeSection(defined->isec()) ||
1141 !defined->isLive())
1142 continue;
1143 addrs.push_back(defined->getVA());
1144 }
1145 }
1146 }
1147 }
1148 llvm::sort(addrs);
1149 uint64_t addr = in.header->addr;
1150 for (uint64_t nextAddr : addrs) {
1151 uint64_t delta = nextAddr - addr;
1152 if (delta == 0)
1153 continue;
1154 encodeULEB128(delta, os);
1155 addr = nextAddr;
1156 }
1157 os << '\0';
1158 }
1159
writeTo(uint8_t * buf) const1160 void FunctionStartsSection::writeTo(uint8_t *buf) const {
1161 memcpy(buf, contents.data(), contents.size());
1162 }
1163
SymtabSection(StringTableSection & stringTableSection)1164 SymtabSection::SymtabSection(StringTableSection &stringTableSection)
1165 : LinkEditSection(segment_names::linkEdit, section_names::symbolTable),
1166 stringTableSection(stringTableSection) {}
1167
emitBeginSourceStab(StringRef sourceFile)1168 void SymtabSection::emitBeginSourceStab(StringRef sourceFile) {
1169 StabsEntry stab(N_SO);
1170 stab.strx = stringTableSection.addString(saver().save(sourceFile));
1171 stabs.emplace_back(std::move(stab));
1172 }
1173
emitEndSourceStab()1174 void SymtabSection::emitEndSourceStab() {
1175 StabsEntry stab(N_SO);
1176 stab.sect = 1;
1177 stabs.emplace_back(std::move(stab));
1178 }
1179
emitObjectFileStab(ObjFile * file)1180 void SymtabSection::emitObjectFileStab(ObjFile *file) {
1181 StabsEntry stab(N_OSO);
1182 stab.sect = target->cpuSubtype;
1183 SmallString<261> path(!file->archiveName.empty() ? file->archiveName
1184 : file->getName());
1185 std::error_code ec = sys::fs::make_absolute(path);
1186 if (ec)
1187 fatal("failed to get absolute path for " + path);
1188
1189 if (!file->archiveName.empty())
1190 path.append({"(", file->getName(), ")"});
1191
1192 StringRef adjustedPath = saver().save(path.str());
1193 adjustedPath.consume_front(config->osoPrefix);
1194
1195 stab.strx = stringTableSection.addString(adjustedPath);
1196 stab.desc = 1;
1197 stab.value = file->modTime;
1198 stabs.emplace_back(std::move(stab));
1199 }
1200
emitEndFunStab(Defined * defined)1201 void SymtabSection::emitEndFunStab(Defined *defined) {
1202 StabsEntry stab(N_FUN);
1203 stab.value = defined->size;
1204 stabs.emplace_back(std::move(stab));
1205 }
1206
emitStabs()1207 void SymtabSection::emitStabs() {
1208 if (config->omitDebugInfo)
1209 return;
1210
1211 for (const std::string &s : config->astPaths) {
1212 StabsEntry astStab(N_AST);
1213 astStab.strx = stringTableSection.addString(s);
1214 stabs.emplace_back(std::move(astStab));
1215 }
1216
1217 // Cache the file ID for each symbol in an std::pair for faster sorting.
1218 using SortingPair = std::pair<Defined *, int>;
1219 std::vector<SortingPair> symbolsNeedingStabs;
1220 for (const SymtabEntry &entry :
1221 concat<SymtabEntry>(localSymbols, externalSymbols)) {
1222 Symbol *sym = entry.sym;
1223 assert(sym->isLive() &&
1224 "dead symbols should not be in localSymbols, externalSymbols");
1225 if (auto *defined = dyn_cast<Defined>(sym)) {
1226 // Excluded symbols should have been filtered out in finalizeContents().
1227 assert(defined->includeInSymtab);
1228
1229 if (defined->isAbsolute())
1230 continue;
1231
1232 // Constant-folded symbols go in the executable's symbol table, but don't
1233 // get a stabs entry unless --keep-icf-stabs flag is specified
1234 if (!config->keepICFStabs && defined->wasIdenticalCodeFolded)
1235 continue;
1236
1237 ObjFile *file = defined->getObjectFile();
1238 if (!file || !file->compileUnit)
1239 continue;
1240
1241 // We use 'originalIsec' to get the file id of the symbol since 'isec()'
1242 // might point to the merged ICF symbol's file
1243 symbolsNeedingStabs.emplace_back(defined,
1244 defined->originalIsec->getFile()->id);
1245 }
1246 }
1247
1248 llvm::stable_sort(symbolsNeedingStabs,
1249 [&](const SortingPair &a, const SortingPair &b) {
1250 return a.second < b.second;
1251 });
1252
1253 // Emit STABS symbols so that dsymutil and/or the debugger can map address
1254 // regions in the final binary to the source and object files from which they
1255 // originated.
1256 InputFile *lastFile = nullptr;
1257 for (SortingPair &pair : symbolsNeedingStabs) {
1258 Defined *defined = pair.first;
1259 // We use 'originalIsec' of the symbol since we care about the actual origin
1260 // of the symbol, not the canonical location returned by `isec()`.
1261 InputSection *isec = defined->originalIsec;
1262 ObjFile *file = cast<ObjFile>(isec->getFile());
1263
1264 if (lastFile == nullptr || lastFile != file) {
1265 if (lastFile != nullptr)
1266 emitEndSourceStab();
1267 lastFile = file;
1268
1269 emitBeginSourceStab(file->sourceFile());
1270 emitObjectFileStab(file);
1271 }
1272
1273 StabsEntry symStab;
1274 symStab.sect = isec->parent->index;
1275 symStab.strx = stringTableSection.addString(defined->getName());
1276 symStab.value = defined->getVA();
1277
1278 if (isCodeSection(isec)) {
1279 symStab.type = N_FUN;
1280 stabs.emplace_back(std::move(symStab));
1281 emitEndFunStab(defined);
1282 } else {
1283 symStab.type = defined->isExternal() ? N_GSYM : N_STSYM;
1284 stabs.emplace_back(std::move(symStab));
1285 }
1286 }
1287
1288 if (!stabs.empty())
1289 emitEndSourceStab();
1290 }
1291
finalizeContents()1292 void SymtabSection::finalizeContents() {
1293 auto addSymbol = [&](std::vector<SymtabEntry> &symbols, Symbol *sym) {
1294 uint32_t strx = stringTableSection.addString(sym->getName());
1295 symbols.push_back({sym, strx});
1296 };
1297
1298 std::function<void(Symbol *)> localSymbolsHandler;
1299 switch (config->localSymbolsPresence) {
1300 case SymtabPresence::All:
1301 localSymbolsHandler = [&](Symbol *sym) { addSymbol(localSymbols, sym); };
1302 break;
1303 case SymtabPresence::None:
1304 localSymbolsHandler = [&](Symbol *) { /* Do nothing*/ };
1305 break;
1306 case SymtabPresence::SelectivelyIncluded:
1307 localSymbolsHandler = [&](Symbol *sym) {
1308 if (config->localSymbolPatterns.match(sym->getName()))
1309 addSymbol(localSymbols, sym);
1310 };
1311 break;
1312 case SymtabPresence::SelectivelyExcluded:
1313 localSymbolsHandler = [&](Symbol *sym) {
1314 if (!config->localSymbolPatterns.match(sym->getName()))
1315 addSymbol(localSymbols, sym);
1316 };
1317 break;
1318 }
1319
1320 // Local symbols aren't in the SymbolTable, so we walk the list of object
1321 // files to gather them.
1322 // But if `-x` is set, then we don't need to. localSymbolsHandler() will do
1323 // the right thing regardless, but this check is a perf optimization because
1324 // iterating through all the input files and their symbols is expensive.
1325 if (config->localSymbolsPresence != SymtabPresence::None) {
1326 for (const InputFile *file : inputFiles) {
1327 if (auto *objFile = dyn_cast<ObjFile>(file)) {
1328 for (Symbol *sym : objFile->symbols) {
1329 if (auto *defined = dyn_cast_or_null<Defined>(sym)) {
1330 if (defined->isExternal() || !defined->isLive() ||
1331 !defined->includeInSymtab)
1332 continue;
1333 localSymbolsHandler(sym);
1334 }
1335 }
1336 }
1337 }
1338 }
1339
1340 // __dyld_private is a local symbol too. It's linker-created and doesn't
1341 // exist in any object file.
1342 if (in.stubHelper && in.stubHelper->dyldPrivate)
1343 localSymbolsHandler(in.stubHelper->dyldPrivate);
1344
1345 for (Symbol *sym : symtab->getSymbols()) {
1346 if (!sym->isLive())
1347 continue;
1348 if (auto *defined = dyn_cast<Defined>(sym)) {
1349 if (!defined->includeInSymtab)
1350 continue;
1351 assert(defined->isExternal());
1352 if (defined->privateExtern)
1353 localSymbolsHandler(defined);
1354 else
1355 addSymbol(externalSymbols, defined);
1356 } else if (auto *dysym = dyn_cast<DylibSymbol>(sym)) {
1357 if (dysym->isReferenced())
1358 addSymbol(undefinedSymbols, sym);
1359 }
1360 }
1361
1362 emitStabs();
1363 uint32_t symtabIndex = stabs.size();
1364 for (const SymtabEntry &entry :
1365 concat<SymtabEntry>(localSymbols, externalSymbols, undefinedSymbols)) {
1366 entry.sym->symtabIndex = symtabIndex++;
1367 }
1368 }
1369
getNumSymbols() const1370 uint32_t SymtabSection::getNumSymbols() const {
1371 return stabs.size() + localSymbols.size() + externalSymbols.size() +
1372 undefinedSymbols.size();
1373 }
1374
1375 // This serves to hide (type-erase) the template parameter from SymtabSection.
1376 template <class LP> class SymtabSectionImpl final : public SymtabSection {
1377 public:
SymtabSectionImpl(StringTableSection & stringTableSection)1378 SymtabSectionImpl(StringTableSection &stringTableSection)
1379 : SymtabSection(stringTableSection) {}
1380 uint64_t getRawSize() const override;
1381 void writeTo(uint8_t *buf) const override;
1382 };
1383
getRawSize() const1384 template <class LP> uint64_t SymtabSectionImpl<LP>::getRawSize() const {
1385 return getNumSymbols() * sizeof(typename LP::nlist);
1386 }
1387
writeTo(uint8_t * buf) const1388 template <class LP> void SymtabSectionImpl<LP>::writeTo(uint8_t *buf) const {
1389 auto *nList = reinterpret_cast<typename LP::nlist *>(buf);
1390 // Emit the stabs entries before the "real" symbols. We cannot emit them
1391 // after as that would render Symbol::symtabIndex inaccurate.
1392 for (const StabsEntry &entry : stabs) {
1393 nList->n_strx = entry.strx;
1394 nList->n_type = entry.type;
1395 nList->n_sect = entry.sect;
1396 nList->n_desc = entry.desc;
1397 nList->n_value = entry.value;
1398 ++nList;
1399 }
1400
1401 for (const SymtabEntry &entry : concat<const SymtabEntry>(
1402 localSymbols, externalSymbols, undefinedSymbols)) {
1403 nList->n_strx = entry.strx;
1404 // TODO populate n_desc with more flags
1405 if (auto *defined = dyn_cast<Defined>(entry.sym)) {
1406 uint8_t scope = 0;
1407 if (defined->privateExtern) {
1408 // Private external -- dylib scoped symbol.
1409 // Promote to non-external at link time.
1410 scope = N_PEXT;
1411 } else if (defined->isExternal()) {
1412 // Normal global symbol.
1413 scope = N_EXT;
1414 } else {
1415 // TU-local symbol from localSymbols.
1416 scope = 0;
1417 }
1418
1419 if (defined->isAbsolute()) {
1420 nList->n_type = scope | N_ABS;
1421 nList->n_sect = NO_SECT;
1422 nList->n_value = defined->value;
1423 } else {
1424 nList->n_type = scope | N_SECT;
1425 nList->n_sect = defined->isec()->parent->index;
1426 // For the N_SECT symbol type, n_value is the address of the symbol
1427 nList->n_value = defined->getVA();
1428 }
1429 nList->n_desc |= defined->isExternalWeakDef() ? N_WEAK_DEF : 0;
1430 nList->n_desc |=
1431 defined->referencedDynamically ? REFERENCED_DYNAMICALLY : 0;
1432 } else if (auto *dysym = dyn_cast<DylibSymbol>(entry.sym)) {
1433 uint16_t n_desc = nList->n_desc;
1434 int16_t ordinal = ordinalForDylibSymbol(*dysym);
1435 if (ordinal == BIND_SPECIAL_DYLIB_FLAT_LOOKUP)
1436 SET_LIBRARY_ORDINAL(n_desc, DYNAMIC_LOOKUP_ORDINAL);
1437 else if (ordinal == BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE)
1438 SET_LIBRARY_ORDINAL(n_desc, EXECUTABLE_ORDINAL);
1439 else {
1440 assert(ordinal > 0);
1441 SET_LIBRARY_ORDINAL(n_desc, static_cast<uint8_t>(ordinal));
1442 }
1443
1444 nList->n_type = N_EXT;
1445 n_desc |= dysym->isWeakDef() ? N_WEAK_DEF : 0;
1446 n_desc |= dysym->isWeakRef() ? N_WEAK_REF : 0;
1447 nList->n_desc = n_desc;
1448 }
1449 ++nList;
1450 }
1451 }
1452
1453 template <class LP>
1454 SymtabSection *
makeSymtabSection(StringTableSection & stringTableSection)1455 macho::makeSymtabSection(StringTableSection &stringTableSection) {
1456 return make<SymtabSectionImpl<LP>>(stringTableSection);
1457 }
1458
IndirectSymtabSection()1459 IndirectSymtabSection::IndirectSymtabSection()
1460 : LinkEditSection(segment_names::linkEdit,
1461 section_names::indirectSymbolTable) {}
1462
getNumSymbols() const1463 uint32_t IndirectSymtabSection::getNumSymbols() const {
1464 uint32_t size = in.got->getEntries().size() +
1465 in.tlvPointers->getEntries().size() +
1466 in.stubs->getEntries().size();
1467 if (!config->emitChainedFixups)
1468 size += in.stubs->getEntries().size();
1469 return size;
1470 }
1471
isNeeded() const1472 bool IndirectSymtabSection::isNeeded() const {
1473 return in.got->isNeeded() || in.tlvPointers->isNeeded() ||
1474 in.stubs->isNeeded();
1475 }
1476
finalizeContents()1477 void IndirectSymtabSection::finalizeContents() {
1478 uint32_t off = 0;
1479 in.got->reserved1 = off;
1480 off += in.got->getEntries().size();
1481 in.tlvPointers->reserved1 = off;
1482 off += in.tlvPointers->getEntries().size();
1483 in.stubs->reserved1 = off;
1484 if (in.lazyPointers) {
1485 off += in.stubs->getEntries().size();
1486 in.lazyPointers->reserved1 = off;
1487 }
1488 }
1489
indirectValue(const Symbol * sym)1490 static uint32_t indirectValue(const Symbol *sym) {
1491 if (sym->symtabIndex == UINT32_MAX || !needsBinding(sym))
1492 return INDIRECT_SYMBOL_LOCAL;
1493 return sym->symtabIndex;
1494 }
1495
writeTo(uint8_t * buf) const1496 void IndirectSymtabSection::writeTo(uint8_t *buf) const {
1497 uint32_t off = 0;
1498 for (const Symbol *sym : in.got->getEntries()) {
1499 write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
1500 ++off;
1501 }
1502 for (const Symbol *sym : in.tlvPointers->getEntries()) {
1503 write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
1504 ++off;
1505 }
1506 for (const Symbol *sym : in.stubs->getEntries()) {
1507 write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
1508 ++off;
1509 }
1510
1511 if (in.lazyPointers) {
1512 // There is a 1:1 correspondence between stubs and LazyPointerSection
1513 // entries. But giving __stubs and __la_symbol_ptr the same reserved1
1514 // (the offset into the indirect symbol table) so that they both refer
1515 // to the same range of offsets confuses `strip`, so write the stubs
1516 // symbol table offsets a second time.
1517 for (const Symbol *sym : in.stubs->getEntries()) {
1518 write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
1519 ++off;
1520 }
1521 }
1522 }
1523
StringTableSection()1524 StringTableSection::StringTableSection()
1525 : LinkEditSection(segment_names::linkEdit, section_names::stringTable) {}
1526
addString(StringRef str)1527 uint32_t StringTableSection::addString(StringRef str) {
1528 uint32_t strx = size;
1529 strings.push_back(str); // TODO: consider deduplicating strings
1530 size += str.size() + 1; // account for null terminator
1531 return strx;
1532 }
1533
writeTo(uint8_t * buf) const1534 void StringTableSection::writeTo(uint8_t *buf) const {
1535 uint32_t off = 0;
1536 for (StringRef str : strings) {
1537 memcpy(buf + off, str.data(), str.size());
1538 off += str.size() + 1; // account for null terminator
1539 }
1540 }
1541
1542 static_assert((CodeSignatureSection::blobHeadersSize % 8) == 0);
1543 static_assert((CodeSignatureSection::fixedHeadersSize % 8) == 0);
1544
CodeSignatureSection()1545 CodeSignatureSection::CodeSignatureSection()
1546 : LinkEditSection(segment_names::linkEdit, section_names::codeSignature) {
1547 align = 16; // required by libstuff
1548
1549 // XXX: This mimics LD64, where it uses the install-name as codesign
1550 // identifier, if available.
1551 if (!config->installName.empty())
1552 fileName = config->installName;
1553 else
1554 // FIXME: Consider using finalOutput instead of outputFile.
1555 fileName = config->outputFile;
1556
1557 size_t slashIndex = fileName.rfind("/");
1558 if (slashIndex != std::string::npos)
1559 fileName = fileName.drop_front(slashIndex + 1);
1560
1561 // NOTE: Any changes to these calculations should be repeated
1562 // in llvm-objcopy's MachOLayoutBuilder::layoutTail.
1563 allHeadersSize = alignTo<16>(fixedHeadersSize + fileName.size() + 1);
1564 fileNamePad = allHeadersSize - fixedHeadersSize - fileName.size();
1565 }
1566
getBlockCount() const1567 uint32_t CodeSignatureSection::getBlockCount() const {
1568 return (fileOff + blockSize - 1) / blockSize;
1569 }
1570
getRawSize() const1571 uint64_t CodeSignatureSection::getRawSize() const {
1572 return allHeadersSize + getBlockCount() * hashSize;
1573 }
1574
writeHashes(uint8_t * buf) const1575 void CodeSignatureSection::writeHashes(uint8_t *buf) const {
1576 // NOTE: Changes to this functionality should be repeated in llvm-objcopy's
1577 // MachOWriter::writeSignatureData.
1578 uint8_t *hashes = buf + fileOff + allHeadersSize;
1579 parallelFor(0, getBlockCount(), [&](size_t i) {
1580 sha256(buf + i * blockSize,
1581 std::min(static_cast<size_t>(fileOff - i * blockSize), blockSize),
1582 hashes + i * hashSize);
1583 });
1584 #if defined(__APPLE__)
1585 // This is macOS-specific work-around and makes no sense for any
1586 // other host OS. See https://openradar.appspot.com/FB8914231
1587 //
1588 // The macOS kernel maintains a signature-verification cache to
1589 // quickly validate applications at time of execve(2). The trouble
1590 // is that for the kernel creates the cache entry at the time of the
1591 // mmap(2) call, before we have a chance to write either the code to
1592 // sign or the signature header+hashes. The fix is to invalidate
1593 // all cached data associated with the output file, thus discarding
1594 // the bogus prematurely-cached signature.
1595 msync(buf, fileOff + getSize(), MS_INVALIDATE);
1596 #endif
1597 }
1598
writeTo(uint8_t * buf) const1599 void CodeSignatureSection::writeTo(uint8_t *buf) const {
1600 // NOTE: Changes to this functionality should be repeated in llvm-objcopy's
1601 // MachOWriter::writeSignatureData.
1602 uint32_t signatureSize = static_cast<uint32_t>(getSize());
1603 auto *superBlob = reinterpret_cast<CS_SuperBlob *>(buf);
1604 write32be(&superBlob->magic, CSMAGIC_EMBEDDED_SIGNATURE);
1605 write32be(&superBlob->length, signatureSize);
1606 write32be(&superBlob->count, 1);
1607 auto *blobIndex = reinterpret_cast<CS_BlobIndex *>(&superBlob[1]);
1608 write32be(&blobIndex->type, CSSLOT_CODEDIRECTORY);
1609 write32be(&blobIndex->offset, blobHeadersSize);
1610 auto *codeDirectory =
1611 reinterpret_cast<CS_CodeDirectory *>(buf + blobHeadersSize);
1612 write32be(&codeDirectory->magic, CSMAGIC_CODEDIRECTORY);
1613 write32be(&codeDirectory->length, signatureSize - blobHeadersSize);
1614 write32be(&codeDirectory->version, CS_SUPPORTSEXECSEG);
1615 write32be(&codeDirectory->flags, CS_ADHOC | CS_LINKER_SIGNED);
1616 write32be(&codeDirectory->hashOffset,
1617 sizeof(CS_CodeDirectory) + fileName.size() + fileNamePad);
1618 write32be(&codeDirectory->identOffset, sizeof(CS_CodeDirectory));
1619 codeDirectory->nSpecialSlots = 0;
1620 write32be(&codeDirectory->nCodeSlots, getBlockCount());
1621 write32be(&codeDirectory->codeLimit, fileOff);
1622 codeDirectory->hashSize = static_cast<uint8_t>(hashSize);
1623 codeDirectory->hashType = kSecCodeSignatureHashSHA256;
1624 codeDirectory->platform = 0;
1625 codeDirectory->pageSize = blockSizeShift;
1626 codeDirectory->spare2 = 0;
1627 codeDirectory->scatterOffset = 0;
1628 codeDirectory->teamOffset = 0;
1629 codeDirectory->spare3 = 0;
1630 codeDirectory->codeLimit64 = 0;
1631 OutputSegment *textSeg = getOrCreateOutputSegment(segment_names::text);
1632 write64be(&codeDirectory->execSegBase, textSeg->fileOff);
1633 write64be(&codeDirectory->execSegLimit, textSeg->fileSize);
1634 write64be(&codeDirectory->execSegFlags,
1635 config->outputType == MH_EXECUTE ? CS_EXECSEG_MAIN_BINARY : 0);
1636 auto *id = reinterpret_cast<char *>(&codeDirectory[1]);
1637 memcpy(id, fileName.begin(), fileName.size());
1638 memset(id + fileName.size(), 0, fileNamePad);
1639 }
1640
CStringSection(const char * name)1641 CStringSection::CStringSection(const char *name)
1642 : SyntheticSection(segment_names::text, name) {
1643 flags = S_CSTRING_LITERALS;
1644 }
1645
addInput(CStringInputSection * isec)1646 void CStringSection::addInput(CStringInputSection *isec) {
1647 isec->parent = this;
1648 inputs.push_back(isec);
1649 if (isec->align > align)
1650 align = isec->align;
1651 }
1652
writeTo(uint8_t * buf) const1653 void CStringSection::writeTo(uint8_t *buf) const {
1654 for (const CStringInputSection *isec : inputs) {
1655 for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) {
1656 if (!piece.live)
1657 continue;
1658 StringRef string = isec->getStringRef(i);
1659 memcpy(buf + piece.outSecOff, string.data(), string.size());
1660 }
1661 }
1662 }
1663
finalizeContents()1664 void CStringSection::finalizeContents() {
1665 uint64_t offset = 0;
1666 for (CStringInputSection *isec : inputs) {
1667 for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) {
1668 if (!piece.live)
1669 continue;
1670 // See comment above DeduplicatedCStringSection for how alignment is
1671 // handled.
1672 uint32_t pieceAlign = 1
1673 << llvm::countr_zero(isec->align | piece.inSecOff);
1674 offset = alignToPowerOf2(offset, pieceAlign);
1675 piece.outSecOff = offset;
1676 isec->isFinal = true;
1677 StringRef string = isec->getStringRef(i);
1678 offset += string.size() + 1; // account for null terminator
1679 }
1680 }
1681 size = offset;
1682 }
1683
1684 // Mergeable cstring literals are found under the __TEXT,__cstring section. In
1685 // contrast to ELF, which puts strings that need different alignments into
1686 // different sections, clang's Mach-O backend puts them all in one section.
1687 // Strings that need to be aligned have the .p2align directive emitted before
1688 // them, which simply translates into zero padding in the object file. In other
1689 // words, we have to infer the desired alignment of these cstrings from their
1690 // addresses.
1691 //
1692 // We differ slightly from ld64 in how we've chosen to align these cstrings.
1693 // Both LLD and ld64 preserve the number of trailing zeros in each cstring's
1694 // address in the input object files. When deduplicating identical cstrings,
1695 // both linkers pick the cstring whose address has more trailing zeros, and
1696 // preserve the alignment of that address in the final binary. However, ld64
1697 // goes a step further and also preserves the offset of the cstring from the
1698 // last section-aligned address. I.e. if a cstring is at offset 18 in the
1699 // input, with a section alignment of 16, then both LLD and ld64 will ensure the
1700 // final address is 2-byte aligned (since 18 == 16 + 2). But ld64 will also
1701 // ensure that the final address is of the form 16 * k + 2 for some k.
1702 //
1703 // Note that ld64's heuristic means that a dedup'ed cstring's final address is
1704 // dependent on the order of the input object files. E.g. if in addition to the
1705 // cstring at offset 18 above, we have a duplicate one in another file with a
1706 // `.cstring` section alignment of 2 and an offset of zero, then ld64 will pick
1707 // the cstring from the object file earlier on the command line (since both have
1708 // the same number of trailing zeros in their address). So the final cstring may
1709 // either be at some address `16 * k + 2` or at some address `2 * k`.
1710 //
1711 // I've opted not to follow this behavior primarily for implementation
1712 // simplicity, and secondarily to save a few more bytes. It's not clear to me
1713 // that preserving the section alignment + offset is ever necessary, and there
1714 // are many cases that are clearly redundant. In particular, if an x86_64 object
1715 // file contains some strings that are accessed via SIMD instructions, then the
1716 // .cstring section in the object file will be 16-byte-aligned (since SIMD
1717 // requires its operand addresses to be 16-byte aligned). However, there will
1718 // typically also be other cstrings in the same file that aren't used via SIMD
1719 // and don't need this alignment. They will be emitted at some arbitrary address
1720 // `A`, but ld64 will treat them as being 16-byte aligned with an offset of `16
1721 // % A`.
finalizeContents()1722 void DeduplicatedCStringSection::finalizeContents() {
1723 // Find the largest alignment required for each string.
1724 for (const CStringInputSection *isec : inputs) {
1725 for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) {
1726 if (!piece.live)
1727 continue;
1728 auto s = isec->getCachedHashStringRef(i);
1729 assert(isec->align != 0);
1730 uint8_t trailingZeros = llvm::countr_zero(isec->align | piece.inSecOff);
1731 auto it = stringOffsetMap.insert(
1732 std::make_pair(s, StringOffset(trailingZeros)));
1733 if (!it.second && it.first->second.trailingZeros < trailingZeros)
1734 it.first->second.trailingZeros = trailingZeros;
1735 }
1736 }
1737
1738 // Assign an offset for each string and save it to the corresponding
1739 // StringPieces for easy access.
1740 for (CStringInputSection *isec : inputs) {
1741 for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) {
1742 if (!piece.live)
1743 continue;
1744 auto s = isec->getCachedHashStringRef(i);
1745 auto it = stringOffsetMap.find(s);
1746 assert(it != stringOffsetMap.end());
1747 StringOffset &offsetInfo = it->second;
1748 if (offsetInfo.outSecOff == UINT64_MAX) {
1749 offsetInfo.outSecOff =
1750 alignToPowerOf2(size, 1ULL << offsetInfo.trailingZeros);
1751 size =
1752 offsetInfo.outSecOff + s.size() + 1; // account for null terminator
1753 }
1754 piece.outSecOff = offsetInfo.outSecOff;
1755 }
1756 isec->isFinal = true;
1757 }
1758 }
1759
writeTo(uint8_t * buf) const1760 void DeduplicatedCStringSection::writeTo(uint8_t *buf) const {
1761 for (const auto &p : stringOffsetMap) {
1762 StringRef data = p.first.val();
1763 uint64_t off = p.second.outSecOff;
1764 if (!data.empty())
1765 memcpy(buf + off, data.data(), data.size());
1766 }
1767 }
1768
1769 DeduplicatedCStringSection::StringOffset
getStringOffset(StringRef str) const1770 DeduplicatedCStringSection::getStringOffset(StringRef str) const {
1771 // StringPiece uses 31 bits to store the hashes, so we replicate that
1772 uint32_t hash = xxh3_64bits(str) & 0x7fffffff;
1773 auto offset = stringOffsetMap.find(CachedHashStringRef(str, hash));
1774 assert(offset != stringOffsetMap.end() &&
1775 "Looked-up strings should always exist in section");
1776 return offset->second;
1777 }
1778
1779 // This section is actually emitted as __TEXT,__const by ld64, but clang may
1780 // emit input sections of that name, and LLD doesn't currently support mixing
1781 // synthetic and concat-type OutputSections. To work around this, I've given
1782 // our merged-literals section a different name.
WordLiteralSection()1783 WordLiteralSection::WordLiteralSection()
1784 : SyntheticSection(segment_names::text, section_names::literals) {
1785 align = 16;
1786 }
1787
addInput(WordLiteralInputSection * isec)1788 void WordLiteralSection::addInput(WordLiteralInputSection *isec) {
1789 isec->parent = this;
1790 inputs.push_back(isec);
1791 }
1792
finalizeContents()1793 void WordLiteralSection::finalizeContents() {
1794 for (WordLiteralInputSection *isec : inputs) {
1795 // We do all processing of the InputSection here, so it will be effectively
1796 // finalized.
1797 isec->isFinal = true;
1798 const uint8_t *buf = isec->data.data();
1799 switch (sectionType(isec->getFlags())) {
1800 case S_4BYTE_LITERALS: {
1801 for (size_t off = 0, e = isec->data.size(); off < e; off += 4) {
1802 if (!isec->isLive(off))
1803 continue;
1804 uint32_t value = *reinterpret_cast<const uint32_t *>(buf + off);
1805 literal4Map.emplace(value, literal4Map.size());
1806 }
1807 break;
1808 }
1809 case S_8BYTE_LITERALS: {
1810 for (size_t off = 0, e = isec->data.size(); off < e; off += 8) {
1811 if (!isec->isLive(off))
1812 continue;
1813 uint64_t value = *reinterpret_cast<const uint64_t *>(buf + off);
1814 literal8Map.emplace(value, literal8Map.size());
1815 }
1816 break;
1817 }
1818 case S_16BYTE_LITERALS: {
1819 for (size_t off = 0, e = isec->data.size(); off < e; off += 16) {
1820 if (!isec->isLive(off))
1821 continue;
1822 UInt128 value = *reinterpret_cast<const UInt128 *>(buf + off);
1823 literal16Map.emplace(value, literal16Map.size());
1824 }
1825 break;
1826 }
1827 default:
1828 llvm_unreachable("invalid literal section type");
1829 }
1830 }
1831 }
1832
writeTo(uint8_t * buf) const1833 void WordLiteralSection::writeTo(uint8_t *buf) const {
1834 // Note that we don't attempt to do any endianness conversion in addInput(),
1835 // so we don't do it here either -- just write out the original value,
1836 // byte-for-byte.
1837 for (const auto &p : literal16Map)
1838 memcpy(buf + p.second * 16, &p.first, 16);
1839 buf += literal16Map.size() * 16;
1840
1841 for (const auto &p : literal8Map)
1842 memcpy(buf + p.second * 8, &p.first, 8);
1843 buf += literal8Map.size() * 8;
1844
1845 for (const auto &p : literal4Map)
1846 memcpy(buf + p.second * 4, &p.first, 4);
1847 }
1848
ObjCImageInfoSection()1849 ObjCImageInfoSection::ObjCImageInfoSection()
1850 : SyntheticSection(segment_names::data, section_names::objCImageInfo) {}
1851
1852 ObjCImageInfoSection::ImageInfo
parseImageInfo(const InputFile * file)1853 ObjCImageInfoSection::parseImageInfo(const InputFile *file) {
1854 ImageInfo info;
1855 ArrayRef<uint8_t> data = file->objCImageInfo;
1856 // The image info struct has the following layout:
1857 // struct {
1858 // uint32_t version;
1859 // uint32_t flags;
1860 // };
1861 if (data.size() < 8) {
1862 warn(toString(file) + ": invalid __objc_imageinfo size");
1863 return info;
1864 }
1865
1866 auto *buf = reinterpret_cast<const uint32_t *>(data.data());
1867 if (read32le(buf) != 0) {
1868 warn(toString(file) + ": invalid __objc_imageinfo version");
1869 return info;
1870 }
1871
1872 uint32_t flags = read32le(buf + 1);
1873 info.swiftVersion = (flags >> 8) & 0xff;
1874 info.hasCategoryClassProperties = flags & 0x40;
1875 return info;
1876 }
1877
swiftVersionString(uint8_t version)1878 static std::string swiftVersionString(uint8_t version) {
1879 switch (version) {
1880 case 1:
1881 return "1.0";
1882 case 2:
1883 return "1.1";
1884 case 3:
1885 return "2.0";
1886 case 4:
1887 return "3.0";
1888 case 5:
1889 return "4.0";
1890 default:
1891 return ("0x" + Twine::utohexstr(version)).str();
1892 }
1893 }
1894
1895 // Validate each object file's __objc_imageinfo and use them to generate the
1896 // image info for the output binary. Only two pieces of info are relevant:
1897 // 1. The Swift version (should be identical across inputs)
1898 // 2. `bool hasCategoryClassProperties` (true only if true for all inputs)
finalizeContents()1899 void ObjCImageInfoSection::finalizeContents() {
1900 assert(files.size() != 0); // should have already been checked via isNeeded()
1901
1902 info.hasCategoryClassProperties = true;
1903 const InputFile *firstFile;
1904 for (const InputFile *file : files) {
1905 ImageInfo inputInfo = parseImageInfo(file);
1906 info.hasCategoryClassProperties &= inputInfo.hasCategoryClassProperties;
1907
1908 // swiftVersion 0 means no Swift is present, so no version checking required
1909 if (inputInfo.swiftVersion == 0)
1910 continue;
1911
1912 if (info.swiftVersion != 0 && info.swiftVersion != inputInfo.swiftVersion) {
1913 error("Swift version mismatch: " + toString(firstFile) + " has version " +
1914 swiftVersionString(info.swiftVersion) + " but " + toString(file) +
1915 " has version " + swiftVersionString(inputInfo.swiftVersion));
1916 } else {
1917 info.swiftVersion = inputInfo.swiftVersion;
1918 firstFile = file;
1919 }
1920 }
1921 }
1922
writeTo(uint8_t * buf) const1923 void ObjCImageInfoSection::writeTo(uint8_t *buf) const {
1924 uint32_t flags = info.hasCategoryClassProperties ? 0x40 : 0x0;
1925 flags |= info.swiftVersion << 8;
1926 write32le(buf + 4, flags);
1927 }
1928
InitOffsetsSection()1929 InitOffsetsSection::InitOffsetsSection()
1930 : SyntheticSection(segment_names::text, section_names::initOffsets) {
1931 flags = S_INIT_FUNC_OFFSETS;
1932 align = 4; // This section contains 32-bit integers.
1933 }
1934
getSize() const1935 uint64_t InitOffsetsSection::getSize() const {
1936 size_t count = 0;
1937 for (const ConcatInputSection *isec : sections)
1938 count += isec->relocs.size();
1939 return count * sizeof(uint32_t);
1940 }
1941
writeTo(uint8_t * buf) const1942 void InitOffsetsSection::writeTo(uint8_t *buf) const {
1943 // FIXME: Add function specified by -init when that argument is implemented.
1944 for (ConcatInputSection *isec : sections) {
1945 for (const Reloc &rel : isec->relocs) {
1946 const Symbol *referent = rel.referent.dyn_cast<Symbol *>();
1947 assert(referent && "section relocation should have been rejected");
1948 uint64_t offset = referent->getVA() - in.header->addr;
1949 // FIXME: Can we handle this gracefully?
1950 if (offset > UINT32_MAX)
1951 fatal(isec->getLocation(rel.offset) + ": offset to initializer " +
1952 referent->getName() + " (" + utohexstr(offset) +
1953 ") does not fit in 32 bits");
1954
1955 // Entries need to be added in the order they appear in the section, but
1956 // relocations aren't guaranteed to be sorted.
1957 size_t index = rel.offset >> target->p2WordSize;
1958 write32le(&buf[index * sizeof(uint32_t)], offset);
1959 }
1960 buf += isec->relocs.size() * sizeof(uint32_t);
1961 }
1962 }
1963
1964 // The inputs are __mod_init_func sections, which contain pointers to
1965 // initializer functions, therefore all relocations should be of the UNSIGNED
1966 // type. InitOffsetsSection stores offsets, so if the initializer's address is
1967 // not known at link time, stub-indirection has to be used.
setUp()1968 void InitOffsetsSection::setUp() {
1969 for (const ConcatInputSection *isec : sections) {
1970 for (const Reloc &rel : isec->relocs) {
1971 RelocAttrs attrs = target->getRelocAttrs(rel.type);
1972 if (!attrs.hasAttr(RelocAttrBits::UNSIGNED))
1973 error(isec->getLocation(rel.offset) +
1974 ": unsupported relocation type: " + attrs.name);
1975 if (rel.addend != 0)
1976 error(isec->getLocation(rel.offset) +
1977 ": relocation addend is not representable in __init_offsets");
1978 if (rel.referent.is<InputSection *>())
1979 error(isec->getLocation(rel.offset) +
1980 ": unexpected section relocation");
1981
1982 Symbol *sym = rel.referent.dyn_cast<Symbol *>();
1983 if (auto *undefined = dyn_cast<Undefined>(sym))
1984 treatUndefinedSymbol(*undefined, isec, rel.offset);
1985 if (needsBinding(sym))
1986 in.stubs->addEntry(sym);
1987 }
1988 }
1989 }
1990
ObjCMethListSection()1991 ObjCMethListSection::ObjCMethListSection()
1992 : SyntheticSection(segment_names::text, section_names::objcMethList) {
1993 flags = S_ATTR_NO_DEAD_STRIP;
1994 align = relativeOffsetSize;
1995 }
1996
1997 // Go through all input method lists and ensure that we have selrefs for all
1998 // their method names. The selrefs will be needed later by ::writeTo. We need to
1999 // create them early on here to ensure they are processed correctly by the lld
2000 // pipeline.
setUp()2001 void ObjCMethListSection::setUp() {
2002 for (const ConcatInputSection *isec : inputs) {
2003 uint32_t structSizeAndFlags = 0, structCount = 0;
2004 readMethodListHeader(isec->data.data(), structSizeAndFlags, structCount);
2005 uint32_t originalStructSize = structSizeAndFlags & structSizeMask;
2006 // Method name is immediately after header
2007 uint32_t methodNameOff = methodListHeaderSize;
2008
2009 // Loop through all methods, and ensure a selref for each of them exists.
2010 while (methodNameOff < isec->data.size()) {
2011 const Reloc *reloc = isec->getRelocAt(methodNameOff);
2012 assert(reloc && "Relocation expected at method list name slot");
2013 auto *def = dyn_cast_or_null<Defined>(reloc->referent.get<Symbol *>());
2014 assert(def && "Expected valid Defined at method list name slot");
2015 auto *cisec = cast<CStringInputSection>(def->isec());
2016 assert(cisec && "Expected method name to be in a CStringInputSection");
2017 auto methname = cisec->getStringRefAtOffset(def->value);
2018 if (!ObjCSelRefsHelper::getSelRef(methname))
2019 ObjCSelRefsHelper::makeSelRef(methname);
2020
2021 // Jump to method name offset in next struct
2022 methodNameOff += originalStructSize;
2023 }
2024 }
2025 }
2026
2027 // Calculate section size and final offsets for where InputSection's need to be
2028 // written.
finalize()2029 void ObjCMethListSection::finalize() {
2030 // sectionSize will be the total size of the __objc_methlist section
2031 sectionSize = 0;
2032 for (ConcatInputSection *isec : inputs) {
2033 // We can also use sectionSize as write offset for isec
2034 assert(sectionSize == alignToPowerOf2(sectionSize, relativeOffsetSize) &&
2035 "expected __objc_methlist to be aligned by default with the "
2036 "required section alignment");
2037 isec->outSecOff = sectionSize;
2038
2039 isec->isFinal = true;
2040 uint32_t relativeListSize =
2041 computeRelativeMethodListSize(isec->data.size());
2042 sectionSize += relativeListSize;
2043
2044 // If encoding the method list in relative offset format shrinks the size,
2045 // then we also need to adjust symbol sizes to match the new size. Note that
2046 // on 32bit platforms the size of the method list will remain the same when
2047 // encoded in relative offset format.
2048 if (relativeListSize != isec->data.size()) {
2049 for (Symbol *sym : isec->symbols) {
2050 assert(isa<Defined>(sym) &&
2051 "Unexpected undefined symbol in ObjC method list");
2052 auto *def = cast<Defined>(sym);
2053 // There can be 0-size symbols, check if this is the case and ignore
2054 // them.
2055 if (def->size) {
2056 assert(
2057 def->size == isec->data.size() &&
2058 "Invalid ObjC method list symbol size: expected symbol size to "
2059 "match isec size");
2060 def->size = relativeListSize;
2061 }
2062 }
2063 }
2064 }
2065 }
2066
writeTo(uint8_t * bufStart) const2067 void ObjCMethListSection::writeTo(uint8_t *bufStart) const {
2068 uint8_t *buf = bufStart;
2069 for (const ConcatInputSection *isec : inputs) {
2070 assert(buf - bufStart == long(isec->outSecOff) &&
2071 "Writing at unexpected offset");
2072 uint32_t writtenSize = writeRelativeMethodList(isec, buf);
2073 buf += writtenSize;
2074 }
2075 assert(buf - bufStart == sectionSize &&
2076 "Written size does not match expected section size");
2077 }
2078
2079 // Check if an InputSection is a method list. To do this we scan the
2080 // InputSection for any symbols who's names match the patterns we expect clang
2081 // to generate for method lists.
isMethodList(const ConcatInputSection * isec)2082 bool ObjCMethListSection::isMethodList(const ConcatInputSection *isec) {
2083 const char *symPrefixes[] = {objc::symbol_names::classMethods,
2084 objc::symbol_names::instanceMethods,
2085 objc::symbol_names::categoryInstanceMethods,
2086 objc::symbol_names::categoryClassMethods};
2087 if (!isec)
2088 return false;
2089 for (const Symbol *sym : isec->symbols) {
2090 auto *def = dyn_cast_or_null<Defined>(sym);
2091 if (!def)
2092 continue;
2093 for (const char *prefix : symPrefixes) {
2094 if (def->getName().starts_with(prefix)) {
2095 assert(def->size == isec->data.size() &&
2096 "Invalid ObjC method list symbol size: expected symbol size to "
2097 "match isec size");
2098 assert(def->value == 0 &&
2099 "Offset of ObjC method list symbol must be 0");
2100 return true;
2101 }
2102 }
2103 }
2104
2105 return false;
2106 }
2107
2108 // Encode a single relative offset value. The input is the data/symbol at
2109 // (&isec->data[inSecOff]). The output is written to (&buf[outSecOff]).
2110 // 'createSelRef' indicates that we should not directly use the specified
2111 // symbol, but instead get the selRef for the symbol and use that instead.
writeRelativeOffsetForIsec(const ConcatInputSection * isec,uint8_t * buf,uint32_t & inSecOff,uint32_t & outSecOff,bool useSelRef) const2112 void ObjCMethListSection::writeRelativeOffsetForIsec(
2113 const ConcatInputSection *isec, uint8_t *buf, uint32_t &inSecOff,
2114 uint32_t &outSecOff, bool useSelRef) const {
2115 const Reloc *reloc = isec->getRelocAt(inSecOff);
2116 assert(reloc && "Relocation expected at __objc_methlist Offset");
2117 auto *def = dyn_cast_or_null<Defined>(reloc->referent.get<Symbol *>());
2118 assert(def && "Expected all syms in __objc_methlist to be defined");
2119 uint32_t symVA = def->getVA();
2120
2121 if (useSelRef) {
2122 auto *cisec = cast<CStringInputSection>(def->isec());
2123 auto methname = cisec->getStringRefAtOffset(def->value);
2124 ConcatInputSection *selRef = ObjCSelRefsHelper::getSelRef(methname);
2125 assert(selRef && "Expected all selector names to already be already be "
2126 "present in __objc_selrefs");
2127 symVA = selRef->getVA();
2128 assert(selRef->data.size() == sizeof(target->wordSize) &&
2129 "Expected one selref per ConcatInputSection");
2130 }
2131
2132 uint32_t currentVA = isec->getVA() + outSecOff;
2133 uint32_t delta = symVA - currentVA;
2134 write32le(buf + outSecOff, delta);
2135
2136 // Move one pointer forward in the absolute method list
2137 inSecOff += target->wordSize;
2138 // Move one relative offset forward in the relative method list (32 bits)
2139 outSecOff += relativeOffsetSize;
2140 }
2141
2142 // Write a relative method list to buf, return the size of the written
2143 // information
2144 uint32_t
writeRelativeMethodList(const ConcatInputSection * isec,uint8_t * buf) const2145 ObjCMethListSection::writeRelativeMethodList(const ConcatInputSection *isec,
2146 uint8_t *buf) const {
2147 // Copy over the header, and add the "this is a relative method list" magic
2148 // value flag
2149 uint32_t structSizeAndFlags = 0, structCount = 0;
2150 readMethodListHeader(isec->data.data(), structSizeAndFlags, structCount);
2151 // Set the struct size for the relative method list
2152 uint32_t relativeStructSizeAndFlags =
2153 (relativeOffsetSize * pointersPerStruct) & structSizeMask;
2154 // Carry over the old flags from the input struct
2155 relativeStructSizeAndFlags |= structSizeAndFlags & structFlagsMask;
2156 // Set the relative method list flag
2157 relativeStructSizeAndFlags |= relMethodHeaderFlag;
2158
2159 writeMethodListHeader(buf, relativeStructSizeAndFlags, structCount);
2160
2161 assert(methodListHeaderSize +
2162 (structCount * pointersPerStruct * target->wordSize) ==
2163 isec->data.size() &&
2164 "Invalid computed ObjC method list size");
2165
2166 uint32_t inSecOff = methodListHeaderSize;
2167 uint32_t outSecOff = methodListHeaderSize;
2168
2169 // Go through the method list and encode input absolute pointers as relative
2170 // offsets. writeRelativeOffsetForIsec will be incrementing inSecOff and
2171 // outSecOff
2172 for (uint32_t i = 0; i < structCount; i++) {
2173 // Write the name of the method
2174 writeRelativeOffsetForIsec(isec, buf, inSecOff, outSecOff, true);
2175 // Write the type of the method
2176 writeRelativeOffsetForIsec(isec, buf, inSecOff, outSecOff, false);
2177 // Write reference to the selector of the method
2178 writeRelativeOffsetForIsec(isec, buf, inSecOff, outSecOff, false);
2179 }
2180
2181 // Expecting to have read all the data in the isec
2182 assert(inSecOff == isec->data.size() &&
2183 "Invalid actual ObjC method list size");
2184 assert(
2185 outSecOff == computeRelativeMethodListSize(inSecOff) &&
2186 "Mismatch between input & output size when writing relative method list");
2187 return outSecOff;
2188 }
2189
2190 // Given the size of an ObjC method list InputSection, return the size of the
2191 // method list when encoded in relative offsets format. We can do this without
2192 // decoding the actual data, as it can be directly inferred from the size of the
2193 // isec.
computeRelativeMethodListSize(uint32_t absoluteMethodListSize) const2194 uint32_t ObjCMethListSection::computeRelativeMethodListSize(
2195 uint32_t absoluteMethodListSize) const {
2196 uint32_t oldPointersSize = absoluteMethodListSize - methodListHeaderSize;
2197 uint32_t pointerCount = oldPointersSize / target->wordSize;
2198 assert(((pointerCount % pointersPerStruct) == 0) &&
2199 "__objc_methlist expects method lists to have multiple-of-3 pointers");
2200
2201 uint32_t newPointersSize = pointerCount * relativeOffsetSize;
2202 uint32_t newTotalSize = methodListHeaderSize + newPointersSize;
2203
2204 assert((newTotalSize <= absoluteMethodListSize) &&
2205 "Expected relative method list size to be smaller or equal than "
2206 "original size");
2207 return newTotalSize;
2208 }
2209
2210 // Read a method list header from buf
readMethodListHeader(const uint8_t * buf,uint32_t & structSizeAndFlags,uint32_t & structCount) const2211 void ObjCMethListSection::readMethodListHeader(const uint8_t *buf,
2212 uint32_t &structSizeAndFlags,
2213 uint32_t &structCount) const {
2214 structSizeAndFlags = read32le(buf);
2215 structCount = read32le(buf + sizeof(uint32_t));
2216 }
2217
2218 // Write a method list header to buf
writeMethodListHeader(uint8_t * buf,uint32_t structSizeAndFlags,uint32_t structCount) const2219 void ObjCMethListSection::writeMethodListHeader(uint8_t *buf,
2220 uint32_t structSizeAndFlags,
2221 uint32_t structCount) const {
2222 write32le(buf, structSizeAndFlags);
2223 write32le(buf + sizeof(structSizeAndFlags), structCount);
2224 }
2225
createSyntheticSymbols()2226 void macho::createSyntheticSymbols() {
2227 auto addHeaderSymbol = [](const char *name) {
2228 symtab->addSynthetic(name, in.header->isec, /*value=*/0,
2229 /*isPrivateExtern=*/true, /*includeInSymtab=*/false,
2230 /*referencedDynamically=*/false);
2231 };
2232
2233 switch (config->outputType) {
2234 // FIXME: Assign the right address value for these symbols
2235 // (rather than 0). But we need to do that after assignAddresses().
2236 case MH_EXECUTE:
2237 // If linking PIE, __mh_execute_header is a defined symbol in
2238 // __TEXT, __text)
2239 // Otherwise, it's an absolute symbol.
2240 if (config->isPic)
2241 symtab->addSynthetic("__mh_execute_header", in.header->isec, /*value=*/0,
2242 /*isPrivateExtern=*/false, /*includeInSymtab=*/true,
2243 /*referencedDynamically=*/true);
2244 else
2245 symtab->addSynthetic("__mh_execute_header", /*isec=*/nullptr, /*value=*/0,
2246 /*isPrivateExtern=*/false, /*includeInSymtab=*/true,
2247 /*referencedDynamically=*/true);
2248 break;
2249
2250 // The following symbols are N_SECT symbols, even though the header is not
2251 // part of any section and that they are private to the bundle/dylib/object
2252 // they are part of.
2253 case MH_BUNDLE:
2254 addHeaderSymbol("__mh_bundle_header");
2255 break;
2256 case MH_DYLIB:
2257 addHeaderSymbol("__mh_dylib_header");
2258 break;
2259 case MH_DYLINKER:
2260 addHeaderSymbol("__mh_dylinker_header");
2261 break;
2262 case MH_OBJECT:
2263 addHeaderSymbol("__mh_object_header");
2264 break;
2265 default:
2266 llvm_unreachable("unexpected outputType");
2267 break;
2268 }
2269
2270 // The Itanium C++ ABI requires dylibs to pass a pointer to __cxa_atexit
2271 // which does e.g. cleanup of static global variables. The ABI document
2272 // says that the pointer can point to any address in one of the dylib's
2273 // segments, but in practice ld64 seems to set it to point to the header,
2274 // so that's what's implemented here.
2275 addHeaderSymbol("___dso_handle");
2276 }
2277
ChainedFixupsSection()2278 ChainedFixupsSection::ChainedFixupsSection()
2279 : LinkEditSection(segment_names::linkEdit, section_names::chainFixups) {}
2280
isNeeded() const2281 bool ChainedFixupsSection::isNeeded() const {
2282 assert(config->emitChainedFixups);
2283 // dyld always expects LC_DYLD_CHAINED_FIXUPS to point to a valid
2284 // dyld_chained_fixups_header, so we create this section even if there aren't
2285 // any fixups.
2286 return true;
2287 }
2288
addBinding(const Symbol * sym,const InputSection * isec,uint64_t offset,int64_t addend)2289 void ChainedFixupsSection::addBinding(const Symbol *sym,
2290 const InputSection *isec, uint64_t offset,
2291 int64_t addend) {
2292 locations.emplace_back(isec, offset);
2293 int64_t outlineAddend = (addend < 0 || addend > 0xFF) ? addend : 0;
2294 auto [it, inserted] = bindings.insert(
2295 {{sym, outlineAddend}, static_cast<uint32_t>(bindings.size())});
2296
2297 if (inserted) {
2298 symtabSize += sym->getName().size() + 1;
2299 hasWeakBind = hasWeakBind || needsWeakBind(*sym);
2300 if (!isInt<23>(outlineAddend))
2301 needsLargeAddend = true;
2302 else if (outlineAddend != 0)
2303 needsAddend = true;
2304 }
2305 }
2306
2307 std::pair<uint32_t, uint8_t>
getBinding(const Symbol * sym,int64_t addend) const2308 ChainedFixupsSection::getBinding(const Symbol *sym, int64_t addend) const {
2309 int64_t outlineAddend = (addend < 0 || addend > 0xFF) ? addend : 0;
2310 auto it = bindings.find({sym, outlineAddend});
2311 assert(it != bindings.end() && "binding not found in the imports table");
2312 if (outlineAddend == 0)
2313 return {it->second, addend};
2314 return {it->second, 0};
2315 }
2316
writeImport(uint8_t * buf,int format,int16_t libOrdinal,bool weakRef,uint32_t nameOffset,int64_t addend)2317 static size_t writeImport(uint8_t *buf, int format, int16_t libOrdinal,
2318 bool weakRef, uint32_t nameOffset, int64_t addend) {
2319 switch (format) {
2320 case DYLD_CHAINED_IMPORT: {
2321 auto *import = reinterpret_cast<dyld_chained_import *>(buf);
2322 import->lib_ordinal = libOrdinal;
2323 import->weak_import = weakRef;
2324 import->name_offset = nameOffset;
2325 return sizeof(dyld_chained_import);
2326 }
2327 case DYLD_CHAINED_IMPORT_ADDEND: {
2328 auto *import = reinterpret_cast<dyld_chained_import_addend *>(buf);
2329 import->lib_ordinal = libOrdinal;
2330 import->weak_import = weakRef;
2331 import->name_offset = nameOffset;
2332 import->addend = addend;
2333 return sizeof(dyld_chained_import_addend);
2334 }
2335 case DYLD_CHAINED_IMPORT_ADDEND64: {
2336 auto *import = reinterpret_cast<dyld_chained_import_addend64 *>(buf);
2337 import->lib_ordinal = libOrdinal;
2338 import->weak_import = weakRef;
2339 import->name_offset = nameOffset;
2340 import->addend = addend;
2341 return sizeof(dyld_chained_import_addend64);
2342 }
2343 default:
2344 llvm_unreachable("Unknown import format");
2345 }
2346 }
2347
getSize() const2348 size_t ChainedFixupsSection::SegmentInfo::getSize() const {
2349 assert(pageStarts.size() > 0 && "SegmentInfo for segment with no fixups?");
2350 return alignTo<8>(sizeof(dyld_chained_starts_in_segment) +
2351 pageStarts.back().first * sizeof(uint16_t));
2352 }
2353
writeTo(uint8_t * buf) const2354 size_t ChainedFixupsSection::SegmentInfo::writeTo(uint8_t *buf) const {
2355 auto *segInfo = reinterpret_cast<dyld_chained_starts_in_segment *>(buf);
2356 segInfo->size = getSize();
2357 segInfo->page_size = target->getPageSize();
2358 // FIXME: Use DYLD_CHAINED_PTR_64_OFFSET on newer OS versions.
2359 segInfo->pointer_format = DYLD_CHAINED_PTR_64;
2360 segInfo->segment_offset = oseg->addr - in.header->addr;
2361 segInfo->max_valid_pointer = 0; // not used on 64-bit
2362 segInfo->page_count = pageStarts.back().first + 1;
2363
2364 uint16_t *starts = segInfo->page_start;
2365 for (size_t i = 0; i < segInfo->page_count; ++i)
2366 starts[i] = DYLD_CHAINED_PTR_START_NONE;
2367
2368 for (auto [pageIdx, startAddr] : pageStarts)
2369 starts[pageIdx] = startAddr;
2370 return segInfo->size;
2371 }
2372
importEntrySize(int format)2373 static size_t importEntrySize(int format) {
2374 switch (format) {
2375 case DYLD_CHAINED_IMPORT:
2376 return sizeof(dyld_chained_import);
2377 case DYLD_CHAINED_IMPORT_ADDEND:
2378 return sizeof(dyld_chained_import_addend);
2379 case DYLD_CHAINED_IMPORT_ADDEND64:
2380 return sizeof(dyld_chained_import_addend64);
2381 default:
2382 llvm_unreachable("Unknown import format");
2383 }
2384 }
2385
2386 // This is step 3 of the algorithm described in the class comment of
2387 // ChainedFixupsSection.
2388 //
2389 // LC_DYLD_CHAINED_FIXUPS data consists of (in this order):
2390 // * A dyld_chained_fixups_header
2391 // * A dyld_chained_starts_in_image
2392 // * One dyld_chained_starts_in_segment per segment
2393 // * List of all imports (dyld_chained_import, dyld_chained_import_addend, or
2394 // dyld_chained_import_addend64)
2395 // * Names of imported symbols
writeTo(uint8_t * buf) const2396 void ChainedFixupsSection::writeTo(uint8_t *buf) const {
2397 auto *header = reinterpret_cast<dyld_chained_fixups_header *>(buf);
2398 header->fixups_version = 0;
2399 header->imports_count = bindings.size();
2400 header->imports_format = importFormat;
2401 header->symbols_format = 0;
2402
2403 buf += alignTo<8>(sizeof(*header));
2404
2405 auto curOffset = [&buf, &header]() -> uint32_t {
2406 return buf - reinterpret_cast<uint8_t *>(header);
2407 };
2408
2409 header->starts_offset = curOffset();
2410
2411 auto *imageInfo = reinterpret_cast<dyld_chained_starts_in_image *>(buf);
2412 imageInfo->seg_count = outputSegments.size();
2413 uint32_t *segStarts = imageInfo->seg_info_offset;
2414
2415 // dyld_chained_starts_in_image ends in a flexible array member containing an
2416 // uint32_t for each segment. Leave room for it, and fill it via segStarts.
2417 buf += alignTo<8>(offsetof(dyld_chained_starts_in_image, seg_info_offset) +
2418 outputSegments.size() * sizeof(uint32_t));
2419
2420 // Initialize all offsets to 0, which indicates that the segment does not have
2421 // fixups. Those that do have them will be filled in below.
2422 for (size_t i = 0; i < outputSegments.size(); ++i)
2423 segStarts[i] = 0;
2424
2425 for (const SegmentInfo &seg : fixupSegments) {
2426 segStarts[seg.oseg->index] = curOffset() - header->starts_offset;
2427 buf += seg.writeTo(buf);
2428 }
2429
2430 // Write imports table.
2431 header->imports_offset = curOffset();
2432 uint64_t nameOffset = 0;
2433 for (auto [import, idx] : bindings) {
2434 const Symbol &sym = *import.first;
2435 buf += writeImport(buf, importFormat, ordinalForSymbol(sym),
2436 sym.isWeakRef(), nameOffset, import.second);
2437 nameOffset += sym.getName().size() + 1;
2438 }
2439
2440 // Write imported symbol names.
2441 header->symbols_offset = curOffset();
2442 for (auto [import, idx] : bindings) {
2443 StringRef name = import.first->getName();
2444 memcpy(buf, name.data(), name.size());
2445 buf += name.size() + 1; // account for null terminator
2446 }
2447
2448 assert(curOffset() == getRawSize());
2449 }
2450
2451 // This is step 2 of the algorithm described in the class comment of
2452 // ChainedFixupsSection.
finalizeContents()2453 void ChainedFixupsSection::finalizeContents() {
2454 assert(target->wordSize == 8 && "Only 64-bit platforms are supported");
2455 assert(config->emitChainedFixups);
2456
2457 if (!isUInt<32>(symtabSize))
2458 error("cannot encode chained fixups: imported symbols table size " +
2459 Twine(symtabSize) + " exceeds 4 GiB");
2460
2461 bool needsLargeOrdinal = any_of(bindings, [](const auto &p) {
2462 // 0xF1 - 0xFF are reserved for special ordinals in the 8-bit encoding.
2463 return ordinalForSymbol(*p.first.first) > 0xF0;
2464 });
2465
2466 if (needsLargeAddend || !isUInt<23>(symtabSize) || needsLargeOrdinal)
2467 importFormat = DYLD_CHAINED_IMPORT_ADDEND64;
2468 else if (needsAddend)
2469 importFormat = DYLD_CHAINED_IMPORT_ADDEND;
2470 else
2471 importFormat = DYLD_CHAINED_IMPORT;
2472
2473 for (Location &loc : locations)
2474 loc.offset =
2475 loc.isec->parent->getSegmentOffset() + loc.isec->getOffset(loc.offset);
2476
2477 llvm::sort(locations, [](const Location &a, const Location &b) {
2478 const OutputSegment *segA = a.isec->parent->parent;
2479 const OutputSegment *segB = b.isec->parent->parent;
2480 if (segA == segB)
2481 return a.offset < b.offset;
2482 return segA->addr < segB->addr;
2483 });
2484
2485 auto sameSegment = [](const Location &a, const Location &b) {
2486 return a.isec->parent->parent == b.isec->parent->parent;
2487 };
2488
2489 const uint64_t pageSize = target->getPageSize();
2490 for (size_t i = 0, count = locations.size(); i < count;) {
2491 const Location &firstLoc = locations[i];
2492 fixupSegments.emplace_back(firstLoc.isec->parent->parent);
2493 while (i < count && sameSegment(locations[i], firstLoc)) {
2494 uint32_t pageIdx = locations[i].offset / pageSize;
2495 fixupSegments.back().pageStarts.emplace_back(
2496 pageIdx, locations[i].offset % pageSize);
2497 ++i;
2498 while (i < count && sameSegment(locations[i], firstLoc) &&
2499 locations[i].offset / pageSize == pageIdx)
2500 ++i;
2501 }
2502 }
2503
2504 // Compute expected encoded size.
2505 size = alignTo<8>(sizeof(dyld_chained_fixups_header));
2506 size += alignTo<8>(offsetof(dyld_chained_starts_in_image, seg_info_offset) +
2507 outputSegments.size() * sizeof(uint32_t));
2508 for (const SegmentInfo &seg : fixupSegments)
2509 size += seg.getSize();
2510 size += importEntrySize(importFormat) * bindings.size();
2511 size += symtabSize;
2512 }
2513
2514 template SymtabSection *macho::makeSymtabSection<LP64>(StringTableSection &);
2515 template SymtabSection *macho::makeSymtabSection<ILP32>(StringTableSection &);
2516