//===- SyntheticSections.cpp ---------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "SyntheticSections.h" #include "ConcatOutputSection.h" #include "Config.h" #include "ExportTrie.h" #include "InputFiles.h" #include "MachOStructs.h" #include "ObjC.h" #include "OutputSegment.h" #include "SymbolTable.h" #include "Symbols.h" #include "lld/Common/CommonLinkerContext.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Config/llvm-config.h" #include "llvm/Support/EndianStream.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/Parallel.h" #include "llvm/Support/Path.h" #include "llvm/Support/xxhash.h" #if defined(__APPLE__) #include #define COMMON_DIGEST_FOR_OPENSSL #include #else #include "llvm/Support/SHA256.h" #endif using namespace llvm; using namespace llvm::MachO; using namespace llvm::support; using namespace llvm::support::endian; using namespace lld; using namespace lld::macho; // Reads `len` bytes at data and writes the 32-byte SHA256 checksum to `output`. static void sha256(const uint8_t *data, size_t len, uint8_t *output) { #if defined(__APPLE__) // FIXME: Make LLVM's SHA256 faster and use it unconditionally. See PR56121 // for some notes on this. CC_SHA256(data, len, output); #else ArrayRef block(data, len); std::array hash = SHA256::hash(block); static_assert(hash.size() == CodeSignatureSection::hashSize); memcpy(output, hash.data(), hash.size()); #endif } InStruct macho::in; std::vector macho::syntheticSections; SyntheticSection::SyntheticSection(const char *segname, const char *name) : OutputSection(SyntheticKind, name) { std::tie(this->segname, this->name) = maybeRenameSection({segname, name}); isec = makeSyntheticInputSection(segname, name); isec->parent = this; syntheticSections.push_back(this); } // dyld3's MachOLoaded::getSlide() assumes that the __TEXT segment starts // from the beginning of the file (i.e. the header). MachHeaderSection::MachHeaderSection() : SyntheticSection(segment_names::text, section_names::header) { // XXX: This is a hack. (See D97007) // Setting the index to 1 to pretend that this section is the text // section. index = 1; isec->isFinal = true; } void MachHeaderSection::addLoadCommand(LoadCommand *lc) { loadCommands.push_back(lc); sizeOfCmds += lc->getSize(); } uint64_t MachHeaderSection::getSize() const { uint64_t size = target->headerSize + sizeOfCmds + config->headerPad; // If we are emitting an encryptable binary, our load commands must have a // separate (non-encrypted) page to themselves. if (config->emitEncryptionInfo) size = alignToPowerOf2(size, target->getPageSize()); return size; } static uint32_t cpuSubtype() { uint32_t subtype = target->cpuSubtype; if (config->outputType == MH_EXECUTE && !config->staticLink && target->cpuSubtype == CPU_SUBTYPE_X86_64_ALL && config->platform() == PLATFORM_MACOS && config->platformInfo.target.MinDeployment >= VersionTuple(10, 5)) subtype |= CPU_SUBTYPE_LIB64; return subtype; } static bool hasWeakBinding() { return config->emitChainedFixups ? in.chainedFixups->hasWeakBinding() : in.weakBinding->hasEntry(); } static bool hasNonWeakDefinition() { return config->emitChainedFixups ? in.chainedFixups->hasNonWeakDefinition() : in.weakBinding->hasNonWeakDefinition(); } void MachHeaderSection::writeTo(uint8_t *buf) const { auto *hdr = reinterpret_cast(buf); hdr->magic = target->magic; hdr->cputype = target->cpuType; hdr->cpusubtype = cpuSubtype(); hdr->filetype = config->outputType; hdr->ncmds = loadCommands.size(); hdr->sizeofcmds = sizeOfCmds; hdr->flags = MH_DYLDLINK; if (config->namespaceKind == NamespaceKind::twolevel) hdr->flags |= MH_NOUNDEFS | MH_TWOLEVEL; if (config->outputType == MH_DYLIB && !config->hasReexports) hdr->flags |= MH_NO_REEXPORTED_DYLIBS; if (config->markDeadStrippableDylib) hdr->flags |= MH_DEAD_STRIPPABLE_DYLIB; if (config->outputType == MH_EXECUTE && config->isPic) hdr->flags |= MH_PIE; if (config->outputType == MH_DYLIB && config->applicationExtension) hdr->flags |= MH_APP_EXTENSION_SAFE; if (in.exports->hasWeakSymbol || hasNonWeakDefinition()) hdr->flags |= MH_WEAK_DEFINES; if (in.exports->hasWeakSymbol || hasWeakBinding()) hdr->flags |= MH_BINDS_TO_WEAK; for (const OutputSegment *seg : outputSegments) { for (const OutputSection *osec : seg->getSections()) { if (isThreadLocalVariables(osec->flags)) { hdr->flags |= MH_HAS_TLV_DESCRIPTORS; break; } } } uint8_t *p = reinterpret_cast(hdr) + target->headerSize; for (const LoadCommand *lc : loadCommands) { lc->writeTo(p); p += lc->getSize(); } } PageZeroSection::PageZeroSection() : SyntheticSection(segment_names::pageZero, section_names::pageZero) {} RebaseSection::RebaseSection() : LinkEditSection(segment_names::linkEdit, section_names::rebase) {} namespace { struct RebaseState { uint64_t sequenceLength; uint64_t skipLength; }; } // namespace static void emitIncrement(uint64_t incr, raw_svector_ostream &os) { assert(incr != 0); if ((incr >> target->p2WordSize) <= REBASE_IMMEDIATE_MASK && (incr % target->wordSize) == 0) { os << static_cast(REBASE_OPCODE_ADD_ADDR_IMM_SCALED | (incr >> target->p2WordSize)); } else { os << static_cast(REBASE_OPCODE_ADD_ADDR_ULEB); encodeULEB128(incr, os); } } static void flushRebase(const RebaseState &state, raw_svector_ostream &os) { assert(state.sequenceLength > 0); if (state.skipLength == target->wordSize) { if (state.sequenceLength <= REBASE_IMMEDIATE_MASK) { os << static_cast(REBASE_OPCODE_DO_REBASE_IMM_TIMES | state.sequenceLength); } else { os << static_cast(REBASE_OPCODE_DO_REBASE_ULEB_TIMES); encodeULEB128(state.sequenceLength, os); } } else if (state.sequenceLength == 1) { os << static_cast(REBASE_OPCODE_DO_REBASE_ADD_ADDR_ULEB); encodeULEB128(state.skipLength - target->wordSize, os); } else { os << static_cast( REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB); encodeULEB128(state.sequenceLength, os); encodeULEB128(state.skipLength - target->wordSize, os); } } // Rebases are communicated to dyld using a bytecode, whose opcodes cause the // memory location at a specific address to be rebased and/or the address to be // incremented. // // Opcode REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB is the most generic // one, encoding a series of evenly spaced addresses. This algorithm works by // splitting up the sorted list of addresses into such chunks. If the locations // are consecutive or the sequence consists of a single location, flushRebase // will use a smaller, more specialized encoding. static void encodeRebases(const OutputSegment *seg, MutableArrayRef locations, raw_svector_ostream &os) { // dyld operates on segments. Translate section offsets into segment offsets. for (Location &loc : locations) loc.offset = loc.isec->parent->getSegmentOffset() + loc.isec->getOffset(loc.offset); // The algorithm assumes that locations are unique. Location *end = llvm::unique(locations, [](const Location &a, const Location &b) { return a.offset == b.offset; }); size_t count = end - locations.begin(); os << static_cast(REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | seg->index); assert(!locations.empty()); uint64_t offset = locations[0].offset; encodeULEB128(offset, os); RebaseState state{1, target->wordSize}; for (size_t i = 1; i < count; ++i) { offset = locations[i].offset; uint64_t skip = offset - locations[i - 1].offset; assert(skip != 0 && "duplicate locations should have been weeded out"); if (skip == state.skipLength) { ++state.sequenceLength; } else if (state.sequenceLength == 1) { ++state.sequenceLength; state.skipLength = skip; } else if (skip < state.skipLength) { // The address is lower than what the rebase pointer would be if the last // location would be part of a sequence. We start a new sequence from the // previous location. --state.sequenceLength; flushRebase(state, os); state.sequenceLength = 2; state.skipLength = skip; } else { // The address is at some positive offset from the rebase pointer. We // start a new sequence which begins with the current location. flushRebase(state, os); emitIncrement(skip - state.skipLength, os); state.sequenceLength = 1; state.skipLength = target->wordSize; } } flushRebase(state, os); } void RebaseSection::finalizeContents() { if (locations.empty()) return; raw_svector_ostream os{contents}; os << static_cast(REBASE_OPCODE_SET_TYPE_IMM | REBASE_TYPE_POINTER); llvm::sort(locations, [](const Location &a, const Location &b) { return a.isec->getVA(a.offset) < b.isec->getVA(b.offset); }); for (size_t i = 0, count = locations.size(); i < count;) { const OutputSegment *seg = locations[i].isec->parent->parent; size_t j = i + 1; while (j < count && locations[j].isec->parent->parent == seg) ++j; encodeRebases(seg, {locations.data() + i, locations.data() + j}, os); i = j; } os << static_cast(REBASE_OPCODE_DONE); } void RebaseSection::writeTo(uint8_t *buf) const { memcpy(buf, contents.data(), contents.size()); } NonLazyPointerSectionBase::NonLazyPointerSectionBase(const char *segname, const char *name) : SyntheticSection(segname, name) { align = target->wordSize; } void macho::addNonLazyBindingEntries(const Symbol *sym, const InputSection *isec, uint64_t offset, int64_t addend) { if (config->emitChainedFixups) { if (needsBinding(sym)) in.chainedFixups->addBinding(sym, isec, offset, addend); else if (isa(sym)) in.chainedFixups->addRebase(isec, offset); else llvm_unreachable("cannot bind to an undefined symbol"); return; } if (const auto *dysym = dyn_cast(sym)) { in.binding->addEntry(dysym, isec, offset, addend); if (dysym->isWeakDef()) in.weakBinding->addEntry(sym, isec, offset, addend); } else if (const auto *defined = dyn_cast(sym)) { in.rebase->addEntry(isec, offset); if (defined->isExternalWeakDef()) in.weakBinding->addEntry(sym, isec, offset, addend); else if (defined->interposable) in.binding->addEntry(sym, isec, offset, addend); } else { // Undefined symbols are filtered out in scanRelocations(); we should never // get here llvm_unreachable("cannot bind to an undefined symbol"); } } void NonLazyPointerSectionBase::addEntry(Symbol *sym) { if (entries.insert(sym)) { assert(!sym->isInGot()); sym->gotIndex = entries.size() - 1; addNonLazyBindingEntries(sym, isec, sym->gotIndex * target->wordSize); } } void macho::writeChainedRebase(uint8_t *buf, uint64_t targetVA) { assert(config->emitChainedFixups); assert(target->wordSize == 8 && "Only 64-bit platforms are supported"); auto *rebase = reinterpret_cast(buf); rebase->target = targetVA & 0xf'ffff'ffff; rebase->high8 = (targetVA >> 56); rebase->reserved = 0; rebase->next = 0; rebase->bind = 0; // The fixup format places a 64 GiB limit on the output's size. // Should we handle this gracefully? uint64_t encodedVA = rebase->target | ((uint64_t)rebase->high8 << 56); if (encodedVA != targetVA) error("rebase target address 0x" + Twine::utohexstr(targetVA) + " does not fit into chained fixup. Re-link with -no_fixup_chains"); } static void writeChainedBind(uint8_t *buf, const Symbol *sym, int64_t addend) { assert(config->emitChainedFixups); assert(target->wordSize == 8 && "Only 64-bit platforms are supported"); auto *bind = reinterpret_cast(buf); auto [ordinal, inlineAddend] = in.chainedFixups->getBinding(sym, addend); bind->ordinal = ordinal; bind->addend = inlineAddend; bind->reserved = 0; bind->next = 0; bind->bind = 1; } void macho::writeChainedFixup(uint8_t *buf, const Symbol *sym, int64_t addend) { if (needsBinding(sym)) writeChainedBind(buf, sym, addend); else writeChainedRebase(buf, sym->getVA() + addend); } void NonLazyPointerSectionBase::writeTo(uint8_t *buf) const { if (config->emitChainedFixups) { for (const auto &[i, entry] : llvm::enumerate(entries)) writeChainedFixup(&buf[i * target->wordSize], entry, 0); } else { for (const auto &[i, entry] : llvm::enumerate(entries)) if (auto *defined = dyn_cast(entry)) write64le(&buf[i * target->wordSize], defined->getVA()); } } GotSection::GotSection() : NonLazyPointerSectionBase(segment_names::data, section_names::got) { flags = S_NON_LAZY_SYMBOL_POINTERS; } TlvPointerSection::TlvPointerSection() : NonLazyPointerSectionBase(segment_names::data, section_names::threadPtrs) { flags = S_THREAD_LOCAL_VARIABLE_POINTERS; } BindingSection::BindingSection() : LinkEditSection(segment_names::linkEdit, section_names::binding) {} namespace { struct Binding { OutputSegment *segment = nullptr; uint64_t offset = 0; int64_t addend = 0; }; struct BindIR { // Default value of 0xF0 is not valid opcode and should make the program // scream instead of accidentally writing "valid" values. uint8_t opcode = 0xF0; uint64_t data = 0; uint64_t consecutiveCount = 0; }; } // namespace // Encode a sequence of opcodes that tell dyld to write the address of symbol + // addend at osec->addr + outSecOff. // // The bind opcode "interpreter" remembers the values of each binding field, so // we only need to encode the differences between bindings. Hence the use of // lastBinding. static void encodeBinding(const OutputSection *osec, uint64_t outSecOff, int64_t addend, Binding &lastBinding, std::vector &opcodes) { OutputSegment *seg = osec->parent; uint64_t offset = osec->getSegmentOffset() + outSecOff; if (lastBinding.segment != seg) { opcodes.push_back( {static_cast(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | seg->index), offset}); lastBinding.segment = seg; lastBinding.offset = offset; } else if (lastBinding.offset != offset) { opcodes.push_back({BIND_OPCODE_ADD_ADDR_ULEB, offset - lastBinding.offset}); lastBinding.offset = offset; } if (lastBinding.addend != addend) { opcodes.push_back( {BIND_OPCODE_SET_ADDEND_SLEB, static_cast(addend)}); lastBinding.addend = addend; } opcodes.push_back({BIND_OPCODE_DO_BIND, 0}); // DO_BIND causes dyld to both perform the binding and increment the offset lastBinding.offset += target->wordSize; } static void optimizeOpcodes(std::vector &opcodes) { // Pass 1: Combine bind/add pairs size_t i; int pWrite = 0; for (i = 1; i < opcodes.size(); ++i, ++pWrite) { if ((opcodes[i].opcode == BIND_OPCODE_ADD_ADDR_ULEB) && (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND)) { opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB; opcodes[pWrite].data = opcodes[i].data; ++i; } else { opcodes[pWrite] = opcodes[i - 1]; } } if (i == opcodes.size()) opcodes[pWrite] = opcodes[i - 1]; opcodes.resize(pWrite + 1); // Pass 2: Compress two or more bind_add opcodes pWrite = 0; for (i = 1; i < opcodes.size(); ++i, ++pWrite) { if ((opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && (opcodes[i].data == opcodes[i - 1].data)) { opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB; opcodes[pWrite].consecutiveCount = 2; opcodes[pWrite].data = opcodes[i].data; ++i; while (i < opcodes.size() && (opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && (opcodes[i].data == opcodes[i - 1].data)) { opcodes[pWrite].consecutiveCount++; ++i; } } else { opcodes[pWrite] = opcodes[i - 1]; } } if (i == opcodes.size()) opcodes[pWrite] = opcodes[i - 1]; opcodes.resize(pWrite + 1); // Pass 3: Use immediate encodings // Every binding is the size of one pointer. If the next binding is a // multiple of wordSize away that is within BIND_IMMEDIATE_MASK, the // opcode can be scaled by wordSize into a single byte and dyld will // expand it to the correct address. for (auto &p : opcodes) { // It's unclear why the check needs to be less than BIND_IMMEDIATE_MASK, // but ld64 currently does this. This could be a potential bug, but // for now, perform the same behavior to prevent mysterious bugs. if ((p.opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && ((p.data / target->wordSize) < BIND_IMMEDIATE_MASK) && ((p.data % target->wordSize) == 0)) { p.opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED; p.data /= target->wordSize; } } } static void flushOpcodes(const BindIR &op, raw_svector_ostream &os) { uint8_t opcode = op.opcode & BIND_OPCODE_MASK; switch (opcode) { case BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB: case BIND_OPCODE_ADD_ADDR_ULEB: case BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB: os << op.opcode; encodeULEB128(op.data, os); break; case BIND_OPCODE_SET_ADDEND_SLEB: os << op.opcode; encodeSLEB128(static_cast(op.data), os); break; case BIND_OPCODE_DO_BIND: os << op.opcode; break; case BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB: os << op.opcode; encodeULEB128(op.consecutiveCount, os); encodeULEB128(op.data, os); break; case BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED: os << static_cast(op.opcode | op.data); break; default: llvm_unreachable("cannot bind to an unrecognized symbol"); } } static bool needsWeakBind(const Symbol &sym) { if (auto *dysym = dyn_cast(&sym)) return dysym->isWeakDef(); if (auto *defined = dyn_cast(&sym)) return defined->isExternalWeakDef(); return false; } // Non-weak bindings need to have their dylib ordinal encoded as well. static int16_t ordinalForDylibSymbol(const DylibSymbol &dysym) { if (config->namespaceKind == NamespaceKind::flat || dysym.isDynamicLookup()) return static_cast(BIND_SPECIAL_DYLIB_FLAT_LOOKUP); assert(dysym.getFile()->isReferenced()); return dysym.getFile()->ordinal; } static int16_t ordinalForSymbol(const Symbol &sym) { if (config->emitChainedFixups && needsWeakBind(sym)) return BIND_SPECIAL_DYLIB_WEAK_LOOKUP; if (const auto *dysym = dyn_cast(&sym)) return ordinalForDylibSymbol(*dysym); assert(cast(&sym)->interposable); return BIND_SPECIAL_DYLIB_FLAT_LOOKUP; } static void encodeDylibOrdinal(int16_t ordinal, raw_svector_ostream &os) { if (ordinal <= 0) { os << static_cast(BIND_OPCODE_SET_DYLIB_SPECIAL_IMM | (ordinal & BIND_IMMEDIATE_MASK)); } else if (ordinal <= BIND_IMMEDIATE_MASK) { os << static_cast(BIND_OPCODE_SET_DYLIB_ORDINAL_IMM | ordinal); } else { os << static_cast(BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB); encodeULEB128(ordinal, os); } } static void encodeWeakOverride(const Defined *defined, raw_svector_ostream &os) { os << static_cast(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM | BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION) << defined->getName() << '\0'; } // Organize the bindings so we can encoded them with fewer opcodes. // // First, all bindings for a given symbol should be grouped together. // BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM is the largest opcode (since it // has an associated symbol string), so we only want to emit it once per symbol. // // Within each group, we sort the bindings by address. Since bindings are // delta-encoded, sorting them allows for a more compact result. Note that // sorting by address alone ensures that bindings for the same segment / section // are located together, minimizing the number of times we have to emit // BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB. // // Finally, we sort the symbols by the address of their first binding, again // to facilitate the delta-encoding process. template std::vector>> sortBindings(const BindingsMap &bindingsMap) { std::vector>> bindingsVec( bindingsMap.begin(), bindingsMap.end()); for (auto &p : bindingsVec) { std::vector &bindings = p.second; llvm::sort(bindings, [](const BindingEntry &a, const BindingEntry &b) { return a.target.getVA() < b.target.getVA(); }); } llvm::sort(bindingsVec, [](const auto &a, const auto &b) { return a.second[0].target.getVA() < b.second[0].target.getVA(); }); return bindingsVec; } // Emit bind opcodes, which are a stream of byte-sized opcodes that dyld // interprets to update a record with the following fields: // * segment index (of the segment to write the symbol addresses to, typically // the __DATA_CONST segment which contains the GOT) // * offset within the segment, indicating the next location to write a binding // * symbol type // * symbol library ordinal (the index of its library's LC_LOAD_DYLIB command) // * symbol name // * addend // When dyld sees BIND_OPCODE_DO_BIND, it uses the current record state to bind // a symbol in the GOT, and increments the segment offset to point to the next // entry. It does *not* clear the record state after doing the bind, so // subsequent opcodes only need to encode the differences between bindings. void BindingSection::finalizeContents() { raw_svector_ostream os{contents}; Binding lastBinding; int16_t lastOrdinal = 0; for (auto &p : sortBindings(bindingsMap)) { const Symbol *sym = p.first; std::vector &bindings = p.second; uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM; if (sym->isWeakRef()) flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT; os << flags << sym->getName() << '\0' << static_cast(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER); int16_t ordinal = ordinalForSymbol(*sym); if (ordinal != lastOrdinal) { encodeDylibOrdinal(ordinal, os); lastOrdinal = ordinal; } std::vector opcodes; for (const BindingEntry &b : bindings) encodeBinding(b.target.isec->parent, b.target.isec->getOffset(b.target.offset), b.addend, lastBinding, opcodes); if (config->optimize > 1) optimizeOpcodes(opcodes); for (const auto &op : opcodes) flushOpcodes(op, os); } if (!bindingsMap.empty()) os << static_cast(BIND_OPCODE_DONE); } void BindingSection::writeTo(uint8_t *buf) const { memcpy(buf, contents.data(), contents.size()); } WeakBindingSection::WeakBindingSection() : LinkEditSection(segment_names::linkEdit, section_names::weakBinding) {} void WeakBindingSection::finalizeContents() { raw_svector_ostream os{contents}; Binding lastBinding; for (const Defined *defined : definitions) encodeWeakOverride(defined, os); for (auto &p : sortBindings(bindingsMap)) { const Symbol *sym = p.first; std::vector &bindings = p.second; os << static_cast(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM) << sym->getName() << '\0' << static_cast(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER); std::vector opcodes; for (const BindingEntry &b : bindings) encodeBinding(b.target.isec->parent, b.target.isec->getOffset(b.target.offset), b.addend, lastBinding, opcodes); if (config->optimize > 1) optimizeOpcodes(opcodes); for (const auto &op : opcodes) flushOpcodes(op, os); } if (!bindingsMap.empty() || !definitions.empty()) os << static_cast(BIND_OPCODE_DONE); } void WeakBindingSection::writeTo(uint8_t *buf) const { memcpy(buf, contents.data(), contents.size()); } StubsSection::StubsSection() : SyntheticSection(segment_names::text, section_names::stubs) { flags = S_SYMBOL_STUBS | S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS; // The stubs section comprises machine instructions, which are aligned to // 4 bytes on the archs we care about. align = 4; reserved2 = target->stubSize; } uint64_t StubsSection::getSize() const { return entries.size() * target->stubSize; } void StubsSection::writeTo(uint8_t *buf) const { size_t off = 0; for (const Symbol *sym : entries) { uint64_t pointerVA = config->emitChainedFixups ? sym->getGotVA() : sym->getLazyPtrVA(); target->writeStub(buf + off, *sym, pointerVA); off += target->stubSize; } } void StubsSection::finalize() { isFinal = true; } static void addBindingsForStub(Symbol *sym) { assert(!config->emitChainedFixups); if (auto *dysym = dyn_cast(sym)) { if (sym->isWeakDef()) { in.binding->addEntry(dysym, in.lazyPointers->isec, sym->stubsIndex * target->wordSize); in.weakBinding->addEntry(sym, in.lazyPointers->isec, sym->stubsIndex * target->wordSize); } else { in.lazyBinding->addEntry(dysym); } } else if (auto *defined = dyn_cast(sym)) { if (defined->isExternalWeakDef()) { in.rebase->addEntry(in.lazyPointers->isec, sym->stubsIndex * target->wordSize); in.weakBinding->addEntry(sym, in.lazyPointers->isec, sym->stubsIndex * target->wordSize); } else if (defined->interposable) { in.lazyBinding->addEntry(sym); } else { llvm_unreachable("invalid stub target"); } } else { llvm_unreachable("invalid stub target symbol type"); } } void StubsSection::addEntry(Symbol *sym) { bool inserted = entries.insert(sym); if (inserted) { sym->stubsIndex = entries.size() - 1; if (config->emitChainedFixups) in.got->addEntry(sym); else addBindingsForStub(sym); } } StubHelperSection::StubHelperSection() : SyntheticSection(segment_names::text, section_names::stubHelper) { flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS; align = 4; // This section comprises machine instructions } uint64_t StubHelperSection::getSize() const { return target->stubHelperHeaderSize + in.lazyBinding->getEntries().size() * target->stubHelperEntrySize; } bool StubHelperSection::isNeeded() const { return in.lazyBinding->isNeeded(); } void StubHelperSection::writeTo(uint8_t *buf) const { target->writeStubHelperHeader(buf); size_t off = target->stubHelperHeaderSize; for (const Symbol *sym : in.lazyBinding->getEntries()) { target->writeStubHelperEntry(buf + off, *sym, addr + off); off += target->stubHelperEntrySize; } } void StubHelperSection::setUp() { Symbol *binder = symtab->addUndefined("dyld_stub_binder", /*file=*/nullptr, /*isWeakRef=*/false); if (auto *undefined = dyn_cast(binder)) treatUndefinedSymbol(*undefined, "lazy binding (normally in libSystem.dylib)"); // treatUndefinedSymbol() can replace binder with a DylibSymbol; re-check. stubBinder = dyn_cast_or_null(binder); if (stubBinder == nullptr) return; in.got->addEntry(stubBinder); in.imageLoaderCache->parent = ConcatOutputSection::getOrCreateForInput(in.imageLoaderCache); addInputSection(in.imageLoaderCache); // Since this isn't in the symbol table or in any input file, the noDeadStrip // argument doesn't matter. dyldPrivate = make("__dyld_private", nullptr, in.imageLoaderCache, 0, 0, /*isWeakDef=*/false, /*isExternal=*/false, /*isPrivateExtern=*/false, /*includeInSymtab=*/true, /*isReferencedDynamically=*/false, /*noDeadStrip=*/false); dyldPrivate->used = true; } llvm::DenseMap ObjCSelRefsHelper::methnameToSelref; void ObjCSelRefsHelper::initialize() { // Do not fold selrefs without ICF. if (config->icfLevel == ICFLevel::none) return; // Search methnames already referenced in __objc_selrefs // Map the name to the corresponding selref entry // which we will reuse when creating objc stubs. for (ConcatInputSection *isec : inputSections) { if (isec->shouldOmitFromOutput()) continue; if (isec->getName() != section_names::objcSelrefs) continue; // We expect a single relocation per selref entry to __objc_methname that // might be aggregated. assert(isec->relocs.size() == 1); auto Reloc = isec->relocs[0]; if (const auto *sym = Reloc.referent.dyn_cast()) { if (const auto *d = dyn_cast(sym)) { auto *cisec = cast(d->isec()); auto methname = cisec->getStringRefAtOffset(d->value); methnameToSelref[CachedHashStringRef(methname)] = isec; } } } } void ObjCSelRefsHelper::cleanup() { methnameToSelref.clear(); } ConcatInputSection *ObjCSelRefsHelper::makeSelRef(StringRef methname) { auto methnameOffset = in.objcMethnameSection->getStringOffset(methname).outSecOff; size_t wordSize = target->wordSize; uint8_t *selrefData = bAlloc().Allocate(wordSize); write64le(selrefData, methnameOffset); ConcatInputSection *objcSelref = makeSyntheticInputSection(segment_names::data, section_names::objcSelrefs, S_LITERAL_POINTERS | S_ATTR_NO_DEAD_STRIP, ArrayRef{selrefData, wordSize}, /*align=*/wordSize); assert(objcSelref->live); objcSelref->relocs.push_back({/*type=*/target->unsignedRelocType, /*pcrel=*/false, /*length=*/3, /*offset=*/0, /*addend=*/static_cast(methnameOffset), /*referent=*/in.objcMethnameSection->isec}); objcSelref->parent = ConcatOutputSection::getOrCreateForInput(objcSelref); addInputSection(objcSelref); objcSelref->isFinal = true; methnameToSelref[CachedHashStringRef(methname)] = objcSelref; return objcSelref; } ConcatInputSection *ObjCSelRefsHelper::getSelRef(StringRef methname) { auto it = methnameToSelref.find(CachedHashStringRef(methname)); if (it == methnameToSelref.end()) return nullptr; return it->second; } ObjCStubsSection::ObjCStubsSection() : SyntheticSection(segment_names::text, section_names::objcStubs) { flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS; align = config->objcStubsMode == ObjCStubsMode::fast ? target->objcStubsFastAlignment : target->objcStubsSmallAlignment; } bool ObjCStubsSection::isObjCStubSymbol(Symbol *sym) { return sym->getName().starts_with(symbolPrefix); } StringRef ObjCStubsSection::getMethname(Symbol *sym) { assert(isObjCStubSymbol(sym) && "not an objc stub"); auto name = sym->getName(); StringRef methname = name.drop_front(symbolPrefix.size()); return methname; } void ObjCStubsSection::addEntry(Symbol *sym) { StringRef methname = getMethname(sym); // We create a selref entry for each unique methname. if (!ObjCSelRefsHelper::getSelRef(methname)) ObjCSelRefsHelper::makeSelRef(methname); auto stubSize = config->objcStubsMode == ObjCStubsMode::fast ? target->objcStubsFastSize : target->objcStubsSmallSize; Defined *newSym = replaceSymbol( sym, sym->getName(), nullptr, isec, /*value=*/symbols.size() * stubSize, /*size=*/stubSize, /*isWeakDef=*/false, /*isExternal=*/true, /*isPrivateExtern=*/true, /*includeInSymtab=*/true, /*isReferencedDynamically=*/false, /*noDeadStrip=*/false); symbols.push_back(newSym); } void ObjCStubsSection::setUp() { objcMsgSend = symtab->addUndefined("_objc_msgSend", /*file=*/nullptr, /*isWeakRef=*/false); if (auto *undefined = dyn_cast(objcMsgSend)) treatUndefinedSymbol(*undefined, "lazy binding (normally in libobjc.dylib)"); objcMsgSend->used = true; if (config->objcStubsMode == ObjCStubsMode::fast) { in.got->addEntry(objcMsgSend); assert(objcMsgSend->isInGot()); } else { assert(config->objcStubsMode == ObjCStubsMode::small); // In line with ld64's behavior, when objc_msgSend is a direct symbol, // we directly reference it. // In other cases, typically when binding in libobjc.dylib, // we generate a stub to invoke objc_msgSend. if (!isa(objcMsgSend)) in.stubs->addEntry(objcMsgSend); } } uint64_t ObjCStubsSection::getSize() const { auto stubSize = config->objcStubsMode == ObjCStubsMode::fast ? target->objcStubsFastSize : target->objcStubsSmallSize; return stubSize * symbols.size(); } void ObjCStubsSection::writeTo(uint8_t *buf) const { uint64_t stubOffset = 0; for (size_t i = 0, n = symbols.size(); i < n; ++i) { Defined *sym = symbols[i]; auto methname = getMethname(sym); InputSection *selRef = ObjCSelRefsHelper::getSelRef(methname); assert(selRef != nullptr && "no selref for methname"); auto selrefAddr = selRef->getVA(0); target->writeObjCMsgSendStub(buf + stubOffset, sym, in.objcStubs->addr, stubOffset, selrefAddr, objcMsgSend); } } LazyPointerSection::LazyPointerSection() : SyntheticSection(segment_names::data, section_names::lazySymbolPtr) { align = target->wordSize; flags = S_LAZY_SYMBOL_POINTERS; } uint64_t LazyPointerSection::getSize() const { return in.stubs->getEntries().size() * target->wordSize; } bool LazyPointerSection::isNeeded() const { return !in.stubs->getEntries().empty(); } void LazyPointerSection::writeTo(uint8_t *buf) const { size_t off = 0; for (const Symbol *sym : in.stubs->getEntries()) { if (const auto *dysym = dyn_cast(sym)) { if (dysym->hasStubsHelper()) { uint64_t stubHelperOffset = target->stubHelperHeaderSize + dysym->stubsHelperIndex * target->stubHelperEntrySize; write64le(buf + off, in.stubHelper->addr + stubHelperOffset); } } else { write64le(buf + off, sym->getVA()); } off += target->wordSize; } } LazyBindingSection::LazyBindingSection() : LinkEditSection(segment_names::linkEdit, section_names::lazyBinding) {} void LazyBindingSection::finalizeContents() { // TODO: Just precompute output size here instead of writing to a temporary // buffer for (Symbol *sym : entries) sym->lazyBindOffset = encode(*sym); } void LazyBindingSection::writeTo(uint8_t *buf) const { memcpy(buf, contents.data(), contents.size()); } void LazyBindingSection::addEntry(Symbol *sym) { assert(!config->emitChainedFixups && "Chained fixups always bind eagerly"); if (entries.insert(sym)) { sym->stubsHelperIndex = entries.size() - 1; in.rebase->addEntry(in.lazyPointers->isec, sym->stubsIndex * target->wordSize); } } // Unlike the non-lazy binding section, the bind opcodes in this section aren't // interpreted all at once. Rather, dyld will start interpreting opcodes at a // given offset, typically only binding a single symbol before it finds a // BIND_OPCODE_DONE terminator. As such, unlike in the non-lazy-binding case, // we cannot encode just the differences between symbols; we have to emit the // complete bind information for each symbol. uint32_t LazyBindingSection::encode(const Symbol &sym) { uint32_t opstreamOffset = contents.size(); OutputSegment *dataSeg = in.lazyPointers->parent; os << static_cast(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | dataSeg->index); uint64_t offset = in.lazyPointers->addr - dataSeg->addr + sym.stubsIndex * target->wordSize; encodeULEB128(offset, os); encodeDylibOrdinal(ordinalForSymbol(sym), os); uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM; if (sym.isWeakRef()) flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT; os << flags << sym.getName() << '\0' << static_cast(BIND_OPCODE_DO_BIND) << static_cast(BIND_OPCODE_DONE); return opstreamOffset; } ExportSection::ExportSection() : LinkEditSection(segment_names::linkEdit, section_names::export_) {} void ExportSection::finalizeContents() { trieBuilder.setImageBase(in.header->addr); for (const Symbol *sym : symtab->getSymbols()) { if (const auto *defined = dyn_cast(sym)) { if (defined->privateExtern || !defined->isLive()) continue; trieBuilder.addSymbol(*defined); hasWeakSymbol = hasWeakSymbol || sym->isWeakDef(); } else if (auto *dysym = dyn_cast(sym)) { if (dysym->shouldReexport) trieBuilder.addSymbol(*dysym); } } size = trieBuilder.build(); } void ExportSection::writeTo(uint8_t *buf) const { trieBuilder.writeTo(buf); } DataInCodeSection::DataInCodeSection() : LinkEditSection(segment_names::linkEdit, section_names::dataInCode) {} template static std::vector collectDataInCodeEntries() { std::vector dataInCodeEntries; for (const InputFile *inputFile : inputFiles) { if (!isa(inputFile)) continue; const ObjFile *objFile = cast(inputFile); ArrayRef entries = objFile->getDataInCode(); if (entries.empty()) continue; std::vector sortedEntries; sortedEntries.assign(entries.begin(), entries.end()); llvm::sort(sortedEntries, [](const data_in_code_entry &lhs, const data_in_code_entry &rhs) { return lhs.offset < rhs.offset; }); // For each code subsection find 'data in code' entries residing in it. // Compute the new offset values as // + - <__TEXT address>. for (const Section *section : objFile->sections) { for (const Subsection &subsec : section->subsections) { const InputSection *isec = subsec.isec; if (!isCodeSection(isec)) continue; if (cast(isec)->shouldOmitFromOutput()) continue; const uint64_t beginAddr = section->addr + subsec.offset; auto it = llvm::lower_bound( sortedEntries, beginAddr, [](const MachO::data_in_code_entry &entry, uint64_t addr) { return entry.offset < addr; }); const uint64_t endAddr = beginAddr + isec->getSize(); for (const auto end = sortedEntries.end(); it != end && it->offset + it->length <= endAddr; ++it) dataInCodeEntries.push_back( {static_cast(isec->getVA(it->offset - beginAddr) - in.header->addr), it->length, it->kind}); } } } // ld64 emits the table in sorted order too. llvm::sort(dataInCodeEntries, [](const data_in_code_entry &lhs, const data_in_code_entry &rhs) { return lhs.offset < rhs.offset; }); return dataInCodeEntries; } void DataInCodeSection::finalizeContents() { entries = target->wordSize == 8 ? collectDataInCodeEntries() : collectDataInCodeEntries(); } void DataInCodeSection::writeTo(uint8_t *buf) const { if (!entries.empty()) memcpy(buf, entries.data(), getRawSize()); } FunctionStartsSection::FunctionStartsSection() : LinkEditSection(segment_names::linkEdit, section_names::functionStarts) {} void FunctionStartsSection::finalizeContents() { raw_svector_ostream os{contents}; std::vector addrs; for (const InputFile *file : inputFiles) { if (auto *objFile = dyn_cast(file)) { for (const Symbol *sym : objFile->symbols) { if (const auto *defined = dyn_cast_or_null(sym)) { if (!defined->isec() || !isCodeSection(defined->isec()) || !defined->isLive()) continue; addrs.push_back(defined->getVA()); } } } } llvm::sort(addrs); uint64_t addr = in.header->addr; for (uint64_t nextAddr : addrs) { uint64_t delta = nextAddr - addr; if (delta == 0) continue; encodeULEB128(delta, os); addr = nextAddr; } os << '\0'; } void FunctionStartsSection::writeTo(uint8_t *buf) const { memcpy(buf, contents.data(), contents.size()); } SymtabSection::SymtabSection(StringTableSection &stringTableSection) : LinkEditSection(segment_names::linkEdit, section_names::symbolTable), stringTableSection(stringTableSection) {} void SymtabSection::emitBeginSourceStab(StringRef sourceFile) { StabsEntry stab(N_SO); stab.strx = stringTableSection.addString(saver().save(sourceFile)); stabs.emplace_back(std::move(stab)); } void SymtabSection::emitEndSourceStab() { StabsEntry stab(N_SO); stab.sect = 1; stabs.emplace_back(std::move(stab)); } void SymtabSection::emitObjectFileStab(ObjFile *file) { StabsEntry stab(N_OSO); stab.sect = target->cpuSubtype; SmallString<261> path(!file->archiveName.empty() ? file->archiveName : file->getName()); std::error_code ec = sys::fs::make_absolute(path); if (ec) fatal("failed to get absolute path for " + path); if (!file->archiveName.empty()) path.append({"(", file->getName(), ")"}); StringRef adjustedPath = saver().save(path.str()); adjustedPath.consume_front(config->osoPrefix); stab.strx = stringTableSection.addString(adjustedPath); stab.desc = 1; stab.value = file->modTime; stabs.emplace_back(std::move(stab)); } void SymtabSection::emitEndFunStab(Defined *defined) { StabsEntry stab(N_FUN); stab.value = defined->size; stabs.emplace_back(std::move(stab)); } void SymtabSection::emitStabs() { if (config->omitDebugInfo) return; for (const std::string &s : config->astPaths) { StabsEntry astStab(N_AST); astStab.strx = stringTableSection.addString(s); stabs.emplace_back(std::move(astStab)); } // Cache the file ID for each symbol in an std::pair for faster sorting. using SortingPair = std::pair; std::vector symbolsNeedingStabs; for (const SymtabEntry &entry : concat(localSymbols, externalSymbols)) { Symbol *sym = entry.sym; assert(sym->isLive() && "dead symbols should not be in localSymbols, externalSymbols"); if (auto *defined = dyn_cast(sym)) { // Excluded symbols should have been filtered out in finalizeContents(). assert(defined->includeInSymtab); if (defined->isAbsolute()) continue; // Constant-folded symbols go in the executable's symbol table, but don't // get a stabs entry unless --keep-icf-stabs flag is specified if (!config->keepICFStabs && defined->wasIdenticalCodeFolded) continue; ObjFile *file = defined->getObjectFile(); if (!file || !file->compileUnit) continue; // We use 'originalIsec' to get the file id of the symbol since 'isec()' // might point to the merged ICF symbol's file symbolsNeedingStabs.emplace_back(defined, defined->originalIsec->getFile()->id); } } llvm::stable_sort(symbolsNeedingStabs, [&](const SortingPair &a, const SortingPair &b) { return a.second < b.second; }); // Emit STABS symbols so that dsymutil and/or the debugger can map address // regions in the final binary to the source and object files from which they // originated. InputFile *lastFile = nullptr; for (SortingPair &pair : symbolsNeedingStabs) { Defined *defined = pair.first; // We use 'originalIsec' of the symbol since we care about the actual origin // of the symbol, not the canonical location returned by `isec()`. InputSection *isec = defined->originalIsec; ObjFile *file = cast(isec->getFile()); if (lastFile == nullptr || lastFile != file) { if (lastFile != nullptr) emitEndSourceStab(); lastFile = file; emitBeginSourceStab(file->sourceFile()); emitObjectFileStab(file); } StabsEntry symStab; symStab.sect = isec->parent->index; symStab.strx = stringTableSection.addString(defined->getName()); symStab.value = defined->getVA(); if (isCodeSection(isec)) { symStab.type = N_FUN; stabs.emplace_back(std::move(symStab)); emitEndFunStab(defined); } else { symStab.type = defined->isExternal() ? N_GSYM : N_STSYM; stabs.emplace_back(std::move(symStab)); } } if (!stabs.empty()) emitEndSourceStab(); } void SymtabSection::finalizeContents() { auto addSymbol = [&](std::vector &symbols, Symbol *sym) { uint32_t strx = stringTableSection.addString(sym->getName()); symbols.push_back({sym, strx}); }; std::function localSymbolsHandler; switch (config->localSymbolsPresence) { case SymtabPresence::All: localSymbolsHandler = [&](Symbol *sym) { addSymbol(localSymbols, sym); }; break; case SymtabPresence::None: localSymbolsHandler = [&](Symbol *) { /* Do nothing*/ }; break; case SymtabPresence::SelectivelyIncluded: localSymbolsHandler = [&](Symbol *sym) { if (config->localSymbolPatterns.match(sym->getName())) addSymbol(localSymbols, sym); }; break; case SymtabPresence::SelectivelyExcluded: localSymbolsHandler = [&](Symbol *sym) { if (!config->localSymbolPatterns.match(sym->getName())) addSymbol(localSymbols, sym); }; break; } // Local symbols aren't in the SymbolTable, so we walk the list of object // files to gather them. // But if `-x` is set, then we don't need to. localSymbolsHandler() will do // the right thing regardless, but this check is a perf optimization because // iterating through all the input files and their symbols is expensive. if (config->localSymbolsPresence != SymtabPresence::None) { for (const InputFile *file : inputFiles) { if (auto *objFile = dyn_cast(file)) { for (Symbol *sym : objFile->symbols) { if (auto *defined = dyn_cast_or_null(sym)) { if (defined->isExternal() || !defined->isLive() || !defined->includeInSymtab) continue; localSymbolsHandler(sym); } } } } } // __dyld_private is a local symbol too. It's linker-created and doesn't // exist in any object file. if (in.stubHelper && in.stubHelper->dyldPrivate) localSymbolsHandler(in.stubHelper->dyldPrivate); for (Symbol *sym : symtab->getSymbols()) { if (!sym->isLive()) continue; if (auto *defined = dyn_cast(sym)) { if (!defined->includeInSymtab) continue; assert(defined->isExternal()); if (defined->privateExtern) localSymbolsHandler(defined); else addSymbol(externalSymbols, defined); } else if (auto *dysym = dyn_cast(sym)) { if (dysym->isReferenced()) addSymbol(undefinedSymbols, sym); } } emitStabs(); uint32_t symtabIndex = stabs.size(); for (const SymtabEntry &entry : concat(localSymbols, externalSymbols, undefinedSymbols)) { entry.sym->symtabIndex = symtabIndex++; } } uint32_t SymtabSection::getNumSymbols() const { return stabs.size() + localSymbols.size() + externalSymbols.size() + undefinedSymbols.size(); } // This serves to hide (type-erase) the template parameter from SymtabSection. template class SymtabSectionImpl final : public SymtabSection { public: SymtabSectionImpl(StringTableSection &stringTableSection) : SymtabSection(stringTableSection) {} uint64_t getRawSize() const override; void writeTo(uint8_t *buf) const override; }; template uint64_t SymtabSectionImpl::getRawSize() const { return getNumSymbols() * sizeof(typename LP::nlist); } template void SymtabSectionImpl::writeTo(uint8_t *buf) const { auto *nList = reinterpret_cast(buf); // Emit the stabs entries before the "real" symbols. We cannot emit them // after as that would render Symbol::symtabIndex inaccurate. for (const StabsEntry &entry : stabs) { nList->n_strx = entry.strx; nList->n_type = entry.type; nList->n_sect = entry.sect; nList->n_desc = entry.desc; nList->n_value = entry.value; ++nList; } for (const SymtabEntry &entry : concat( localSymbols, externalSymbols, undefinedSymbols)) { nList->n_strx = entry.strx; // TODO populate n_desc with more flags if (auto *defined = dyn_cast(entry.sym)) { uint8_t scope = 0; if (defined->privateExtern) { // Private external -- dylib scoped symbol. // Promote to non-external at link time. scope = N_PEXT; } else if (defined->isExternal()) { // Normal global symbol. scope = N_EXT; } else { // TU-local symbol from localSymbols. scope = 0; } if (defined->isAbsolute()) { nList->n_type = scope | N_ABS; nList->n_sect = NO_SECT; nList->n_value = defined->value; } else { nList->n_type = scope | N_SECT; nList->n_sect = defined->isec()->parent->index; // For the N_SECT symbol type, n_value is the address of the symbol nList->n_value = defined->getVA(); } nList->n_desc |= defined->isExternalWeakDef() ? N_WEAK_DEF : 0; nList->n_desc |= defined->referencedDynamically ? REFERENCED_DYNAMICALLY : 0; } else if (auto *dysym = dyn_cast(entry.sym)) { uint16_t n_desc = nList->n_desc; int16_t ordinal = ordinalForDylibSymbol(*dysym); if (ordinal == BIND_SPECIAL_DYLIB_FLAT_LOOKUP) SET_LIBRARY_ORDINAL(n_desc, DYNAMIC_LOOKUP_ORDINAL); else if (ordinal == BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE) SET_LIBRARY_ORDINAL(n_desc, EXECUTABLE_ORDINAL); else { assert(ordinal > 0); SET_LIBRARY_ORDINAL(n_desc, static_cast(ordinal)); } nList->n_type = N_EXT; n_desc |= dysym->isWeakDef() ? N_WEAK_DEF : 0; n_desc |= dysym->isWeakRef() ? N_WEAK_REF : 0; nList->n_desc = n_desc; } ++nList; } } template SymtabSection * macho::makeSymtabSection(StringTableSection &stringTableSection) { return make>(stringTableSection); } IndirectSymtabSection::IndirectSymtabSection() : LinkEditSection(segment_names::linkEdit, section_names::indirectSymbolTable) {} uint32_t IndirectSymtabSection::getNumSymbols() const { uint32_t size = in.got->getEntries().size() + in.tlvPointers->getEntries().size() + in.stubs->getEntries().size(); if (!config->emitChainedFixups) size += in.stubs->getEntries().size(); return size; } bool IndirectSymtabSection::isNeeded() const { return in.got->isNeeded() || in.tlvPointers->isNeeded() || in.stubs->isNeeded(); } void IndirectSymtabSection::finalizeContents() { uint32_t off = 0; in.got->reserved1 = off; off += in.got->getEntries().size(); in.tlvPointers->reserved1 = off; off += in.tlvPointers->getEntries().size(); in.stubs->reserved1 = off; if (in.lazyPointers) { off += in.stubs->getEntries().size(); in.lazyPointers->reserved1 = off; } } static uint32_t indirectValue(const Symbol *sym) { if (sym->symtabIndex == UINT32_MAX || !needsBinding(sym)) return INDIRECT_SYMBOL_LOCAL; return sym->symtabIndex; } void IndirectSymtabSection::writeTo(uint8_t *buf) const { uint32_t off = 0; for (const Symbol *sym : in.got->getEntries()) { write32le(buf + off * sizeof(uint32_t), indirectValue(sym)); ++off; } for (const Symbol *sym : in.tlvPointers->getEntries()) { write32le(buf + off * sizeof(uint32_t), indirectValue(sym)); ++off; } for (const Symbol *sym : in.stubs->getEntries()) { write32le(buf + off * sizeof(uint32_t), indirectValue(sym)); ++off; } if (in.lazyPointers) { // There is a 1:1 correspondence between stubs and LazyPointerSection // entries. But giving __stubs and __la_symbol_ptr the same reserved1 // (the offset into the indirect symbol table) so that they both refer // to the same range of offsets confuses `strip`, so write the stubs // symbol table offsets a second time. for (const Symbol *sym : in.stubs->getEntries()) { write32le(buf + off * sizeof(uint32_t), indirectValue(sym)); ++off; } } } StringTableSection::StringTableSection() : LinkEditSection(segment_names::linkEdit, section_names::stringTable) {} uint32_t StringTableSection::addString(StringRef str) { uint32_t strx = size; strings.push_back(str); // TODO: consider deduplicating strings size += str.size() + 1; // account for null terminator return strx; } void StringTableSection::writeTo(uint8_t *buf) const { uint32_t off = 0; for (StringRef str : strings) { memcpy(buf + off, str.data(), str.size()); off += str.size() + 1; // account for null terminator } } static_assert((CodeSignatureSection::blobHeadersSize % 8) == 0); static_assert((CodeSignatureSection::fixedHeadersSize % 8) == 0); CodeSignatureSection::CodeSignatureSection() : LinkEditSection(segment_names::linkEdit, section_names::codeSignature) { align = 16; // required by libstuff // XXX: This mimics LD64, where it uses the install-name as codesign // identifier, if available. if (!config->installName.empty()) fileName = config->installName; else // FIXME: Consider using finalOutput instead of outputFile. fileName = config->outputFile; size_t slashIndex = fileName.rfind("/"); if (slashIndex != std::string::npos) fileName = fileName.drop_front(slashIndex + 1); // NOTE: Any changes to these calculations should be repeated // in llvm-objcopy's MachOLayoutBuilder::layoutTail. allHeadersSize = alignTo<16>(fixedHeadersSize + fileName.size() + 1); fileNamePad = allHeadersSize - fixedHeadersSize - fileName.size(); } uint32_t CodeSignatureSection::getBlockCount() const { return (fileOff + blockSize - 1) / blockSize; } uint64_t CodeSignatureSection::getRawSize() const { return allHeadersSize + getBlockCount() * hashSize; } void CodeSignatureSection::writeHashes(uint8_t *buf) const { // NOTE: Changes to this functionality should be repeated in llvm-objcopy's // MachOWriter::writeSignatureData. uint8_t *hashes = buf + fileOff + allHeadersSize; parallelFor(0, getBlockCount(), [&](size_t i) { sha256(buf + i * blockSize, std::min(static_cast(fileOff - i * blockSize), blockSize), hashes + i * hashSize); }); #if defined(__APPLE__) // This is macOS-specific work-around and makes no sense for any // other host OS. See https://openradar.appspot.com/FB8914231 // // The macOS kernel maintains a signature-verification cache to // quickly validate applications at time of execve(2). The trouble // is that for the kernel creates the cache entry at the time of the // mmap(2) call, before we have a chance to write either the code to // sign or the signature header+hashes. The fix is to invalidate // all cached data associated with the output file, thus discarding // the bogus prematurely-cached signature. msync(buf, fileOff + getSize(), MS_INVALIDATE); #endif } void CodeSignatureSection::writeTo(uint8_t *buf) const { // NOTE: Changes to this functionality should be repeated in llvm-objcopy's // MachOWriter::writeSignatureData. uint32_t signatureSize = static_cast(getSize()); auto *superBlob = reinterpret_cast(buf); write32be(&superBlob->magic, CSMAGIC_EMBEDDED_SIGNATURE); write32be(&superBlob->length, signatureSize); write32be(&superBlob->count, 1); auto *blobIndex = reinterpret_cast(&superBlob[1]); write32be(&blobIndex->type, CSSLOT_CODEDIRECTORY); write32be(&blobIndex->offset, blobHeadersSize); auto *codeDirectory = reinterpret_cast(buf + blobHeadersSize); write32be(&codeDirectory->magic, CSMAGIC_CODEDIRECTORY); write32be(&codeDirectory->length, signatureSize - blobHeadersSize); write32be(&codeDirectory->version, CS_SUPPORTSEXECSEG); write32be(&codeDirectory->flags, CS_ADHOC | CS_LINKER_SIGNED); write32be(&codeDirectory->hashOffset, sizeof(CS_CodeDirectory) + fileName.size() + fileNamePad); write32be(&codeDirectory->identOffset, sizeof(CS_CodeDirectory)); codeDirectory->nSpecialSlots = 0; write32be(&codeDirectory->nCodeSlots, getBlockCount()); write32be(&codeDirectory->codeLimit, fileOff); codeDirectory->hashSize = static_cast(hashSize); codeDirectory->hashType = kSecCodeSignatureHashSHA256; codeDirectory->platform = 0; codeDirectory->pageSize = blockSizeShift; codeDirectory->spare2 = 0; codeDirectory->scatterOffset = 0; codeDirectory->teamOffset = 0; codeDirectory->spare3 = 0; codeDirectory->codeLimit64 = 0; OutputSegment *textSeg = getOrCreateOutputSegment(segment_names::text); write64be(&codeDirectory->execSegBase, textSeg->fileOff); write64be(&codeDirectory->execSegLimit, textSeg->fileSize); write64be(&codeDirectory->execSegFlags, config->outputType == MH_EXECUTE ? CS_EXECSEG_MAIN_BINARY : 0); auto *id = reinterpret_cast(&codeDirectory[1]); memcpy(id, fileName.begin(), fileName.size()); memset(id + fileName.size(), 0, fileNamePad); } CStringSection::CStringSection(const char *name) : SyntheticSection(segment_names::text, name) { flags = S_CSTRING_LITERALS; } void CStringSection::addInput(CStringInputSection *isec) { isec->parent = this; inputs.push_back(isec); if (isec->align > align) align = isec->align; } void CStringSection::writeTo(uint8_t *buf) const { for (const CStringInputSection *isec : inputs) { for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) { if (!piece.live) continue; StringRef string = isec->getStringRef(i); memcpy(buf + piece.outSecOff, string.data(), string.size()); } } } void CStringSection::finalizeContents() { uint64_t offset = 0; for (CStringInputSection *isec : inputs) { for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) { if (!piece.live) continue; // See comment above DeduplicatedCStringSection for how alignment is // handled. uint32_t pieceAlign = 1 << llvm::countr_zero(isec->align | piece.inSecOff); offset = alignToPowerOf2(offset, pieceAlign); piece.outSecOff = offset; isec->isFinal = true; StringRef string = isec->getStringRef(i); offset += string.size() + 1; // account for null terminator } } size = offset; } // Mergeable cstring literals are found under the __TEXT,__cstring section. In // contrast to ELF, which puts strings that need different alignments into // different sections, clang's Mach-O backend puts them all in one section. // Strings that need to be aligned have the .p2align directive emitted before // them, which simply translates into zero padding in the object file. In other // words, we have to infer the desired alignment of these cstrings from their // addresses. // // We differ slightly from ld64 in how we've chosen to align these cstrings. // Both LLD and ld64 preserve the number of trailing zeros in each cstring's // address in the input object files. When deduplicating identical cstrings, // both linkers pick the cstring whose address has more trailing zeros, and // preserve the alignment of that address in the final binary. However, ld64 // goes a step further and also preserves the offset of the cstring from the // last section-aligned address. I.e. if a cstring is at offset 18 in the // input, with a section alignment of 16, then both LLD and ld64 will ensure the // final address is 2-byte aligned (since 18 == 16 + 2). But ld64 will also // ensure that the final address is of the form 16 * k + 2 for some k. // // Note that ld64's heuristic means that a dedup'ed cstring's final address is // dependent on the order of the input object files. E.g. if in addition to the // cstring at offset 18 above, we have a duplicate one in another file with a // `.cstring` section alignment of 2 and an offset of zero, then ld64 will pick // the cstring from the object file earlier on the command line (since both have // the same number of trailing zeros in their address). So the final cstring may // either be at some address `16 * k + 2` or at some address `2 * k`. // // I've opted not to follow this behavior primarily for implementation // simplicity, and secondarily to save a few more bytes. It's not clear to me // that preserving the section alignment + offset is ever necessary, and there // are many cases that are clearly redundant. In particular, if an x86_64 object // file contains some strings that are accessed via SIMD instructions, then the // .cstring section in the object file will be 16-byte-aligned (since SIMD // requires its operand addresses to be 16-byte aligned). However, there will // typically also be other cstrings in the same file that aren't used via SIMD // and don't need this alignment. They will be emitted at some arbitrary address // `A`, but ld64 will treat them as being 16-byte aligned with an offset of `16 // % A`. void DeduplicatedCStringSection::finalizeContents() { // Find the largest alignment required for each string. for (const CStringInputSection *isec : inputs) { for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) { if (!piece.live) continue; auto s = isec->getCachedHashStringRef(i); assert(isec->align != 0); uint8_t trailingZeros = llvm::countr_zero(isec->align | piece.inSecOff); auto it = stringOffsetMap.insert( std::make_pair(s, StringOffset(trailingZeros))); if (!it.second && it.first->second.trailingZeros < trailingZeros) it.first->second.trailingZeros = trailingZeros; } } // Assign an offset for each string and save it to the corresponding // StringPieces for easy access. for (CStringInputSection *isec : inputs) { for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) { if (!piece.live) continue; auto s = isec->getCachedHashStringRef(i); auto it = stringOffsetMap.find(s); assert(it != stringOffsetMap.end()); StringOffset &offsetInfo = it->second; if (offsetInfo.outSecOff == UINT64_MAX) { offsetInfo.outSecOff = alignToPowerOf2(size, 1ULL << offsetInfo.trailingZeros); size = offsetInfo.outSecOff + s.size() + 1; // account for null terminator } piece.outSecOff = offsetInfo.outSecOff; } isec->isFinal = true; } } void DeduplicatedCStringSection::writeTo(uint8_t *buf) const { for (const auto &p : stringOffsetMap) { StringRef data = p.first.val(); uint64_t off = p.second.outSecOff; if (!data.empty()) memcpy(buf + off, data.data(), data.size()); } } DeduplicatedCStringSection::StringOffset DeduplicatedCStringSection::getStringOffset(StringRef str) const { // StringPiece uses 31 bits to store the hashes, so we replicate that uint32_t hash = xxh3_64bits(str) & 0x7fffffff; auto offset = stringOffsetMap.find(CachedHashStringRef(str, hash)); assert(offset != stringOffsetMap.end() && "Looked-up strings should always exist in section"); return offset->second; } // This section is actually emitted as __TEXT,__const by ld64, but clang may // emit input sections of that name, and LLD doesn't currently support mixing // synthetic and concat-type OutputSections. To work around this, I've given // our merged-literals section a different name. WordLiteralSection::WordLiteralSection() : SyntheticSection(segment_names::text, section_names::literals) { align = 16; } void WordLiteralSection::addInput(WordLiteralInputSection *isec) { isec->parent = this; inputs.push_back(isec); } void WordLiteralSection::finalizeContents() { for (WordLiteralInputSection *isec : inputs) { // We do all processing of the InputSection here, so it will be effectively // finalized. isec->isFinal = true; const uint8_t *buf = isec->data.data(); switch (sectionType(isec->getFlags())) { case S_4BYTE_LITERALS: { for (size_t off = 0, e = isec->data.size(); off < e; off += 4) { if (!isec->isLive(off)) continue; uint32_t value = *reinterpret_cast(buf + off); literal4Map.emplace(value, literal4Map.size()); } break; } case S_8BYTE_LITERALS: { for (size_t off = 0, e = isec->data.size(); off < e; off += 8) { if (!isec->isLive(off)) continue; uint64_t value = *reinterpret_cast(buf + off); literal8Map.emplace(value, literal8Map.size()); } break; } case S_16BYTE_LITERALS: { for (size_t off = 0, e = isec->data.size(); off < e; off += 16) { if (!isec->isLive(off)) continue; UInt128 value = *reinterpret_cast(buf + off); literal16Map.emplace(value, literal16Map.size()); } break; } default: llvm_unreachable("invalid literal section type"); } } } void WordLiteralSection::writeTo(uint8_t *buf) const { // Note that we don't attempt to do any endianness conversion in addInput(), // so we don't do it here either -- just write out the original value, // byte-for-byte. for (const auto &p : literal16Map) memcpy(buf + p.second * 16, &p.first, 16); buf += literal16Map.size() * 16; for (const auto &p : literal8Map) memcpy(buf + p.second * 8, &p.first, 8); buf += literal8Map.size() * 8; for (const auto &p : literal4Map) memcpy(buf + p.second * 4, &p.first, 4); } ObjCImageInfoSection::ObjCImageInfoSection() : SyntheticSection(segment_names::data, section_names::objCImageInfo) {} ObjCImageInfoSection::ImageInfo ObjCImageInfoSection::parseImageInfo(const InputFile *file) { ImageInfo info; ArrayRef data = file->objCImageInfo; // The image info struct has the following layout: // struct { // uint32_t version; // uint32_t flags; // }; if (data.size() < 8) { warn(toString(file) + ": invalid __objc_imageinfo size"); return info; } auto *buf = reinterpret_cast(data.data()); if (read32le(buf) != 0) { warn(toString(file) + ": invalid __objc_imageinfo version"); return info; } uint32_t flags = read32le(buf + 1); info.swiftVersion = (flags >> 8) & 0xff; info.hasCategoryClassProperties = flags & 0x40; return info; } static std::string swiftVersionString(uint8_t version) { switch (version) { case 1: return "1.0"; case 2: return "1.1"; case 3: return "2.0"; case 4: return "3.0"; case 5: return "4.0"; default: return ("0x" + Twine::utohexstr(version)).str(); } } // Validate each object file's __objc_imageinfo and use them to generate the // image info for the output binary. Only two pieces of info are relevant: // 1. The Swift version (should be identical across inputs) // 2. `bool hasCategoryClassProperties` (true only if true for all inputs) void ObjCImageInfoSection::finalizeContents() { assert(files.size() != 0); // should have already been checked via isNeeded() info.hasCategoryClassProperties = true; const InputFile *firstFile; for (const InputFile *file : files) { ImageInfo inputInfo = parseImageInfo(file); info.hasCategoryClassProperties &= inputInfo.hasCategoryClassProperties; // swiftVersion 0 means no Swift is present, so no version checking required if (inputInfo.swiftVersion == 0) continue; if (info.swiftVersion != 0 && info.swiftVersion != inputInfo.swiftVersion) { error("Swift version mismatch: " + toString(firstFile) + " has version " + swiftVersionString(info.swiftVersion) + " but " + toString(file) + " has version " + swiftVersionString(inputInfo.swiftVersion)); } else { info.swiftVersion = inputInfo.swiftVersion; firstFile = file; } } } void ObjCImageInfoSection::writeTo(uint8_t *buf) const { uint32_t flags = info.hasCategoryClassProperties ? 0x40 : 0x0; flags |= info.swiftVersion << 8; write32le(buf + 4, flags); } InitOffsetsSection::InitOffsetsSection() : SyntheticSection(segment_names::text, section_names::initOffsets) { flags = S_INIT_FUNC_OFFSETS; align = 4; // This section contains 32-bit integers. } uint64_t InitOffsetsSection::getSize() const { size_t count = 0; for (const ConcatInputSection *isec : sections) count += isec->relocs.size(); return count * sizeof(uint32_t); } void InitOffsetsSection::writeTo(uint8_t *buf) const { // FIXME: Add function specified by -init when that argument is implemented. for (ConcatInputSection *isec : sections) { for (const Reloc &rel : isec->relocs) { const Symbol *referent = rel.referent.dyn_cast(); assert(referent && "section relocation should have been rejected"); uint64_t offset = referent->getVA() - in.header->addr; // FIXME: Can we handle this gracefully? if (offset > UINT32_MAX) fatal(isec->getLocation(rel.offset) + ": offset to initializer " + referent->getName() + " (" + utohexstr(offset) + ") does not fit in 32 bits"); // Entries need to be added in the order they appear in the section, but // relocations aren't guaranteed to be sorted. size_t index = rel.offset >> target->p2WordSize; write32le(&buf[index * sizeof(uint32_t)], offset); } buf += isec->relocs.size() * sizeof(uint32_t); } } // The inputs are __mod_init_func sections, which contain pointers to // initializer functions, therefore all relocations should be of the UNSIGNED // type. InitOffsetsSection stores offsets, so if the initializer's address is // not known at link time, stub-indirection has to be used. void InitOffsetsSection::setUp() { for (const ConcatInputSection *isec : sections) { for (const Reloc &rel : isec->relocs) { RelocAttrs attrs = target->getRelocAttrs(rel.type); if (!attrs.hasAttr(RelocAttrBits::UNSIGNED)) error(isec->getLocation(rel.offset) + ": unsupported relocation type: " + attrs.name); if (rel.addend != 0) error(isec->getLocation(rel.offset) + ": relocation addend is not representable in __init_offsets"); if (rel.referent.is()) error(isec->getLocation(rel.offset) + ": unexpected section relocation"); Symbol *sym = rel.referent.dyn_cast(); if (auto *undefined = dyn_cast(sym)) treatUndefinedSymbol(*undefined, isec, rel.offset); if (needsBinding(sym)) in.stubs->addEntry(sym); } } } ObjCMethListSection::ObjCMethListSection() : SyntheticSection(segment_names::text, section_names::objcMethList) { flags = S_ATTR_NO_DEAD_STRIP; align = relativeOffsetSize; } // Go through all input method lists and ensure that we have selrefs for all // their method names. The selrefs will be needed later by ::writeTo. We need to // create them early on here to ensure they are processed correctly by the lld // pipeline. void ObjCMethListSection::setUp() { for (const ConcatInputSection *isec : inputs) { uint32_t structSizeAndFlags = 0, structCount = 0; readMethodListHeader(isec->data.data(), structSizeAndFlags, structCount); uint32_t originalStructSize = structSizeAndFlags & structSizeMask; // Method name is immediately after header uint32_t methodNameOff = methodListHeaderSize; // Loop through all methods, and ensure a selref for each of them exists. while (methodNameOff < isec->data.size()) { const Reloc *reloc = isec->getRelocAt(methodNameOff); assert(reloc && "Relocation expected at method list name slot"); auto *def = dyn_cast_or_null(reloc->referent.get()); assert(def && "Expected valid Defined at method list name slot"); auto *cisec = cast(def->isec()); assert(cisec && "Expected method name to be in a CStringInputSection"); auto methname = cisec->getStringRefAtOffset(def->value); if (!ObjCSelRefsHelper::getSelRef(methname)) ObjCSelRefsHelper::makeSelRef(methname); // Jump to method name offset in next struct methodNameOff += originalStructSize; } } } // Calculate section size and final offsets for where InputSection's need to be // written. void ObjCMethListSection::finalize() { // sectionSize will be the total size of the __objc_methlist section sectionSize = 0; for (ConcatInputSection *isec : inputs) { // We can also use sectionSize as write offset for isec assert(sectionSize == alignToPowerOf2(sectionSize, relativeOffsetSize) && "expected __objc_methlist to be aligned by default with the " "required section alignment"); isec->outSecOff = sectionSize; isec->isFinal = true; uint32_t relativeListSize = computeRelativeMethodListSize(isec->data.size()); sectionSize += relativeListSize; // If encoding the method list in relative offset format shrinks the size, // then we also need to adjust symbol sizes to match the new size. Note that // on 32bit platforms the size of the method list will remain the same when // encoded in relative offset format. if (relativeListSize != isec->data.size()) { for (Symbol *sym : isec->symbols) { assert(isa(sym) && "Unexpected undefined symbol in ObjC method list"); auto *def = cast(sym); // There can be 0-size symbols, check if this is the case and ignore // them. if (def->size) { assert( def->size == isec->data.size() && "Invalid ObjC method list symbol size: expected symbol size to " "match isec size"); def->size = relativeListSize; } } } } } void ObjCMethListSection::writeTo(uint8_t *bufStart) const { uint8_t *buf = bufStart; for (const ConcatInputSection *isec : inputs) { assert(buf - bufStart == long(isec->outSecOff) && "Writing at unexpected offset"); uint32_t writtenSize = writeRelativeMethodList(isec, buf); buf += writtenSize; } assert(buf - bufStart == sectionSize && "Written size does not match expected section size"); } // Check if an InputSection is a method list. To do this we scan the // InputSection for any symbols who's names match the patterns we expect clang // to generate for method lists. bool ObjCMethListSection::isMethodList(const ConcatInputSection *isec) { const char *symPrefixes[] = {objc::symbol_names::classMethods, objc::symbol_names::instanceMethods, objc::symbol_names::categoryInstanceMethods, objc::symbol_names::categoryClassMethods}; if (!isec) return false; for (const Symbol *sym : isec->symbols) { auto *def = dyn_cast_or_null(sym); if (!def) continue; for (const char *prefix : symPrefixes) { if (def->getName().starts_with(prefix)) { assert(def->size == isec->data.size() && "Invalid ObjC method list symbol size: expected symbol size to " "match isec size"); assert(def->value == 0 && "Offset of ObjC method list symbol must be 0"); return true; } } } return false; } // Encode a single relative offset value. The input is the data/symbol at // (&isec->data[inSecOff]). The output is written to (&buf[outSecOff]). // 'createSelRef' indicates that we should not directly use the specified // symbol, but instead get the selRef for the symbol and use that instead. void ObjCMethListSection::writeRelativeOffsetForIsec( const ConcatInputSection *isec, uint8_t *buf, uint32_t &inSecOff, uint32_t &outSecOff, bool useSelRef) const { const Reloc *reloc = isec->getRelocAt(inSecOff); assert(reloc && "Relocation expected at __objc_methlist Offset"); auto *def = dyn_cast_or_null(reloc->referent.get()); assert(def && "Expected all syms in __objc_methlist to be defined"); uint32_t symVA = def->getVA(); if (useSelRef) { auto *cisec = cast(def->isec()); auto methname = cisec->getStringRefAtOffset(def->value); ConcatInputSection *selRef = ObjCSelRefsHelper::getSelRef(methname); assert(selRef && "Expected all selector names to already be already be " "present in __objc_selrefs"); symVA = selRef->getVA(); assert(selRef->data.size() == sizeof(target->wordSize) && "Expected one selref per ConcatInputSection"); } uint32_t currentVA = isec->getVA() + outSecOff; uint32_t delta = symVA - currentVA; write32le(buf + outSecOff, delta); // Move one pointer forward in the absolute method list inSecOff += target->wordSize; // Move one relative offset forward in the relative method list (32 bits) outSecOff += relativeOffsetSize; } // Write a relative method list to buf, return the size of the written // information uint32_t ObjCMethListSection::writeRelativeMethodList(const ConcatInputSection *isec, uint8_t *buf) const { // Copy over the header, and add the "this is a relative method list" magic // value flag uint32_t structSizeAndFlags = 0, structCount = 0; readMethodListHeader(isec->data.data(), structSizeAndFlags, structCount); // Set the struct size for the relative method list uint32_t relativeStructSizeAndFlags = (relativeOffsetSize * pointersPerStruct) & structSizeMask; // Carry over the old flags from the input struct relativeStructSizeAndFlags |= structSizeAndFlags & structFlagsMask; // Set the relative method list flag relativeStructSizeAndFlags |= relMethodHeaderFlag; writeMethodListHeader(buf, relativeStructSizeAndFlags, structCount); assert(methodListHeaderSize + (structCount * pointersPerStruct * target->wordSize) == isec->data.size() && "Invalid computed ObjC method list size"); uint32_t inSecOff = methodListHeaderSize; uint32_t outSecOff = methodListHeaderSize; // Go through the method list and encode input absolute pointers as relative // offsets. writeRelativeOffsetForIsec will be incrementing inSecOff and // outSecOff for (uint32_t i = 0; i < structCount; i++) { // Write the name of the method writeRelativeOffsetForIsec(isec, buf, inSecOff, outSecOff, true); // Write the type of the method writeRelativeOffsetForIsec(isec, buf, inSecOff, outSecOff, false); // Write reference to the selector of the method writeRelativeOffsetForIsec(isec, buf, inSecOff, outSecOff, false); } // Expecting to have read all the data in the isec assert(inSecOff == isec->data.size() && "Invalid actual ObjC method list size"); assert( outSecOff == computeRelativeMethodListSize(inSecOff) && "Mismatch between input & output size when writing relative method list"); return outSecOff; } // Given the size of an ObjC method list InputSection, return the size of the // method list when encoded in relative offsets format. We can do this without // decoding the actual data, as it can be directly inferred from the size of the // isec. uint32_t ObjCMethListSection::computeRelativeMethodListSize( uint32_t absoluteMethodListSize) const { uint32_t oldPointersSize = absoluteMethodListSize - methodListHeaderSize; uint32_t pointerCount = oldPointersSize / target->wordSize; assert(((pointerCount % pointersPerStruct) == 0) && "__objc_methlist expects method lists to have multiple-of-3 pointers"); uint32_t newPointersSize = pointerCount * relativeOffsetSize; uint32_t newTotalSize = methodListHeaderSize + newPointersSize; assert((newTotalSize <= absoluteMethodListSize) && "Expected relative method list size to be smaller or equal than " "original size"); return newTotalSize; } // Read a method list header from buf void ObjCMethListSection::readMethodListHeader(const uint8_t *buf, uint32_t &structSizeAndFlags, uint32_t &structCount) const { structSizeAndFlags = read32le(buf); structCount = read32le(buf + sizeof(uint32_t)); } // Write a method list header to buf void ObjCMethListSection::writeMethodListHeader(uint8_t *buf, uint32_t structSizeAndFlags, uint32_t structCount) const { write32le(buf, structSizeAndFlags); write32le(buf + sizeof(structSizeAndFlags), structCount); } void macho::createSyntheticSymbols() { auto addHeaderSymbol = [](const char *name) { symtab->addSynthetic(name, in.header->isec, /*value=*/0, /*isPrivateExtern=*/true, /*includeInSymtab=*/false, /*referencedDynamically=*/false); }; switch (config->outputType) { // FIXME: Assign the right address value for these symbols // (rather than 0). But we need to do that after assignAddresses(). case MH_EXECUTE: // If linking PIE, __mh_execute_header is a defined symbol in // __TEXT, __text) // Otherwise, it's an absolute symbol. if (config->isPic) symtab->addSynthetic("__mh_execute_header", in.header->isec, /*value=*/0, /*isPrivateExtern=*/false, /*includeInSymtab=*/true, /*referencedDynamically=*/true); else symtab->addSynthetic("__mh_execute_header", /*isec=*/nullptr, /*value=*/0, /*isPrivateExtern=*/false, /*includeInSymtab=*/true, /*referencedDynamically=*/true); break; // The following symbols are N_SECT symbols, even though the header is not // part of any section and that they are private to the bundle/dylib/object // they are part of. case MH_BUNDLE: addHeaderSymbol("__mh_bundle_header"); break; case MH_DYLIB: addHeaderSymbol("__mh_dylib_header"); break; case MH_DYLINKER: addHeaderSymbol("__mh_dylinker_header"); break; case MH_OBJECT: addHeaderSymbol("__mh_object_header"); break; default: llvm_unreachable("unexpected outputType"); break; } // The Itanium C++ ABI requires dylibs to pass a pointer to __cxa_atexit // which does e.g. cleanup of static global variables. The ABI document // says that the pointer can point to any address in one of the dylib's // segments, but in practice ld64 seems to set it to point to the header, // so that's what's implemented here. addHeaderSymbol("___dso_handle"); } ChainedFixupsSection::ChainedFixupsSection() : LinkEditSection(segment_names::linkEdit, section_names::chainFixups) {} bool ChainedFixupsSection::isNeeded() const { assert(config->emitChainedFixups); // dyld always expects LC_DYLD_CHAINED_FIXUPS to point to a valid // dyld_chained_fixups_header, so we create this section even if there aren't // any fixups. return true; } void ChainedFixupsSection::addBinding(const Symbol *sym, const InputSection *isec, uint64_t offset, int64_t addend) { locations.emplace_back(isec, offset); int64_t outlineAddend = (addend < 0 || addend > 0xFF) ? addend : 0; auto [it, inserted] = bindings.insert( {{sym, outlineAddend}, static_cast(bindings.size())}); if (inserted) { symtabSize += sym->getName().size() + 1; hasWeakBind = hasWeakBind || needsWeakBind(*sym); if (!isInt<23>(outlineAddend)) needsLargeAddend = true; else if (outlineAddend != 0) needsAddend = true; } } std::pair ChainedFixupsSection::getBinding(const Symbol *sym, int64_t addend) const { int64_t outlineAddend = (addend < 0 || addend > 0xFF) ? addend : 0; auto it = bindings.find({sym, outlineAddend}); assert(it != bindings.end() && "binding not found in the imports table"); if (outlineAddend == 0) return {it->second, addend}; return {it->second, 0}; } static size_t writeImport(uint8_t *buf, int format, int16_t libOrdinal, bool weakRef, uint32_t nameOffset, int64_t addend) { switch (format) { case DYLD_CHAINED_IMPORT: { auto *import = reinterpret_cast(buf); import->lib_ordinal = libOrdinal; import->weak_import = weakRef; import->name_offset = nameOffset; return sizeof(dyld_chained_import); } case DYLD_CHAINED_IMPORT_ADDEND: { auto *import = reinterpret_cast(buf); import->lib_ordinal = libOrdinal; import->weak_import = weakRef; import->name_offset = nameOffset; import->addend = addend; return sizeof(dyld_chained_import_addend); } case DYLD_CHAINED_IMPORT_ADDEND64: { auto *import = reinterpret_cast(buf); import->lib_ordinal = libOrdinal; import->weak_import = weakRef; import->name_offset = nameOffset; import->addend = addend; return sizeof(dyld_chained_import_addend64); } default: llvm_unreachable("Unknown import format"); } } size_t ChainedFixupsSection::SegmentInfo::getSize() const { assert(pageStarts.size() > 0 && "SegmentInfo for segment with no fixups?"); return alignTo<8>(sizeof(dyld_chained_starts_in_segment) + pageStarts.back().first * sizeof(uint16_t)); } size_t ChainedFixupsSection::SegmentInfo::writeTo(uint8_t *buf) const { auto *segInfo = reinterpret_cast(buf); segInfo->size = getSize(); segInfo->page_size = target->getPageSize(); // FIXME: Use DYLD_CHAINED_PTR_64_OFFSET on newer OS versions. segInfo->pointer_format = DYLD_CHAINED_PTR_64; segInfo->segment_offset = oseg->addr - in.header->addr; segInfo->max_valid_pointer = 0; // not used on 64-bit segInfo->page_count = pageStarts.back().first + 1; uint16_t *starts = segInfo->page_start; for (size_t i = 0; i < segInfo->page_count; ++i) starts[i] = DYLD_CHAINED_PTR_START_NONE; for (auto [pageIdx, startAddr] : pageStarts) starts[pageIdx] = startAddr; return segInfo->size; } static size_t importEntrySize(int format) { switch (format) { case DYLD_CHAINED_IMPORT: return sizeof(dyld_chained_import); case DYLD_CHAINED_IMPORT_ADDEND: return sizeof(dyld_chained_import_addend); case DYLD_CHAINED_IMPORT_ADDEND64: return sizeof(dyld_chained_import_addend64); default: llvm_unreachable("Unknown import format"); } } // This is step 3 of the algorithm described in the class comment of // ChainedFixupsSection. // // LC_DYLD_CHAINED_FIXUPS data consists of (in this order): // * A dyld_chained_fixups_header // * A dyld_chained_starts_in_image // * One dyld_chained_starts_in_segment per segment // * List of all imports (dyld_chained_import, dyld_chained_import_addend, or // dyld_chained_import_addend64) // * Names of imported symbols void ChainedFixupsSection::writeTo(uint8_t *buf) const { auto *header = reinterpret_cast(buf); header->fixups_version = 0; header->imports_count = bindings.size(); header->imports_format = importFormat; header->symbols_format = 0; buf += alignTo<8>(sizeof(*header)); auto curOffset = [&buf, &header]() -> uint32_t { return buf - reinterpret_cast(header); }; header->starts_offset = curOffset(); auto *imageInfo = reinterpret_cast(buf); imageInfo->seg_count = outputSegments.size(); uint32_t *segStarts = imageInfo->seg_info_offset; // dyld_chained_starts_in_image ends in a flexible array member containing an // uint32_t for each segment. Leave room for it, and fill it via segStarts. buf += alignTo<8>(offsetof(dyld_chained_starts_in_image, seg_info_offset) + outputSegments.size() * sizeof(uint32_t)); // Initialize all offsets to 0, which indicates that the segment does not have // fixups. Those that do have them will be filled in below. for (size_t i = 0; i < outputSegments.size(); ++i) segStarts[i] = 0; for (const SegmentInfo &seg : fixupSegments) { segStarts[seg.oseg->index] = curOffset() - header->starts_offset; buf += seg.writeTo(buf); } // Write imports table. header->imports_offset = curOffset(); uint64_t nameOffset = 0; for (auto [import, idx] : bindings) { const Symbol &sym = *import.first; buf += writeImport(buf, importFormat, ordinalForSymbol(sym), sym.isWeakRef(), nameOffset, import.second); nameOffset += sym.getName().size() + 1; } // Write imported symbol names. header->symbols_offset = curOffset(); for (auto [import, idx] : bindings) { StringRef name = import.first->getName(); memcpy(buf, name.data(), name.size()); buf += name.size() + 1; // account for null terminator } assert(curOffset() == getRawSize()); } // This is step 2 of the algorithm described in the class comment of // ChainedFixupsSection. void ChainedFixupsSection::finalizeContents() { assert(target->wordSize == 8 && "Only 64-bit platforms are supported"); assert(config->emitChainedFixups); if (!isUInt<32>(symtabSize)) error("cannot encode chained fixups: imported symbols table size " + Twine(symtabSize) + " exceeds 4 GiB"); bool needsLargeOrdinal = any_of(bindings, [](const auto &p) { // 0xF1 - 0xFF are reserved for special ordinals in the 8-bit encoding. return ordinalForSymbol(*p.first.first) > 0xF0; }); if (needsLargeAddend || !isUInt<23>(symtabSize) || needsLargeOrdinal) importFormat = DYLD_CHAINED_IMPORT_ADDEND64; else if (needsAddend) importFormat = DYLD_CHAINED_IMPORT_ADDEND; else importFormat = DYLD_CHAINED_IMPORT; for (Location &loc : locations) loc.offset = loc.isec->parent->getSegmentOffset() + loc.isec->getOffset(loc.offset); llvm::sort(locations, [](const Location &a, const Location &b) { const OutputSegment *segA = a.isec->parent->parent; const OutputSegment *segB = b.isec->parent->parent; if (segA == segB) return a.offset < b.offset; return segA->addr < segB->addr; }); auto sameSegment = [](const Location &a, const Location &b) { return a.isec->parent->parent == b.isec->parent->parent; }; const uint64_t pageSize = target->getPageSize(); for (size_t i = 0, count = locations.size(); i < count;) { const Location &firstLoc = locations[i]; fixupSegments.emplace_back(firstLoc.isec->parent->parent); while (i < count && sameSegment(locations[i], firstLoc)) { uint32_t pageIdx = locations[i].offset / pageSize; fixupSegments.back().pageStarts.emplace_back( pageIdx, locations[i].offset % pageSize); ++i; while (i < count && sameSegment(locations[i], firstLoc) && locations[i].offset / pageSize == pageIdx) ++i; } } // Compute expected encoded size. size = alignTo<8>(sizeof(dyld_chained_fixups_header)); size += alignTo<8>(offsetof(dyld_chained_starts_in_image, seg_info_offset) + outputSegments.size() * sizeof(uint32_t)); for (const SegmentInfo &seg : fixupSegments) size += seg.getSize(); size += importEntrySize(importFormat) * bindings.size(); size += symtabSize; } template SymtabSection *macho::makeSymtabSection(StringTableSection &); template SymtabSection *macho::makeSymtabSection(StringTableSection &);