xref: /linux/drivers/thermal/cpufreq_cooling.c (revision 3f2ca7b8b33db7d094ef729e6b0707b5534159b0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/drivers/thermal/cpufreq_cooling.c
4  *
5  *  Copyright (C) 2012	Samsung Electronics Co., Ltd(http://www.samsung.com)
6  *
7  *  Copyright (C) 2012-2018 Linaro Limited.
8  *
9  *  Authors:	Amit Daniel <amit.kachhap@linaro.org>
10  *		Viresh Kumar <viresh.kumar@linaro.org>
11  *
12  */
13 #include <linux/cpu.h>
14 #include <linux/cpufreq.h>
15 #include <linux/cpu_cooling.h>
16 #include <linux/device.h>
17 #include <linux/energy_model.h>
18 #include <linux/err.h>
19 #include <linux/export.h>
20 #include <linux/pm_opp.h>
21 #include <linux/pm_qos.h>
22 #include <linux/slab.h>
23 #include <linux/thermal.h>
24 #include <linux/units.h>
25 
26 #include "thermal_trace.h"
27 
28 /*
29  * Cooling state <-> CPUFreq frequency
30  *
31  * Cooling states are translated to frequencies throughout this driver and this
32  * is the relation between them.
33  *
34  * Highest cooling state corresponds to lowest possible frequency.
35  *
36  * i.e.
37  *	level 0 --> 1st Max Freq
38  *	level 1 --> 2nd Max Freq
39  *	...
40  */
41 
42 /**
43  * struct time_in_idle - Idle time stats
44  * @time: previous reading of the absolute time that this cpu was idle
45  * @timestamp: wall time of the last invocation of get_cpu_idle_time_us()
46  */
47 struct time_in_idle {
48 	u64 time;
49 	u64 timestamp;
50 };
51 
52 /**
53  * struct cpufreq_cooling_device - data for cooling device with cpufreq
54  * @last_load: load measured by the latest call to cpufreq_get_requested_power()
55  * @cpufreq_state: integer value representing the current state of cpufreq
56  *	cooling	devices.
57  * @max_level: maximum cooling level. One less than total number of valid
58  *	cpufreq frequencies.
59  * @em: Reference on the Energy Model of the device
60  * @policy: cpufreq policy.
61  * @cooling_ops: cpufreq callbacks to thermal cooling device ops
62  * @idle_time: idle time stats
63  * @qos_req: PM QoS contraint to apply
64  *
65  * This structure is required for keeping information of each registered
66  * cpufreq_cooling_device.
67  */
68 struct cpufreq_cooling_device {
69 	u32 last_load;
70 	unsigned int cpufreq_state;
71 	unsigned int max_level;
72 	struct em_perf_domain *em;
73 	struct cpufreq_policy *policy;
74 	struct thermal_cooling_device_ops cooling_ops;
75 #ifndef CONFIG_SMP
76 	struct time_in_idle *idle_time;
77 #endif
78 	struct freq_qos_request qos_req;
79 };
80 
81 #ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
82 /**
83  * get_level: Find the level for a particular frequency
84  * @cpufreq_cdev: cpufreq_cdev for which the property is required
85  * @freq: Frequency
86  *
87  * Return: level corresponding to the frequency.
88  */
get_level(struct cpufreq_cooling_device * cpufreq_cdev,unsigned int freq)89 static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_cdev,
90 			       unsigned int freq)
91 {
92 	struct em_perf_state *table;
93 	int i;
94 
95 	rcu_read_lock();
96 	table = em_perf_state_from_pd(cpufreq_cdev->em);
97 	for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) {
98 		if (freq > table[i].frequency)
99 			break;
100 	}
101 	rcu_read_unlock();
102 
103 	return cpufreq_cdev->max_level - i - 1;
104 }
105 
cpu_freq_to_power(struct cpufreq_cooling_device * cpufreq_cdev,u32 freq)106 static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_cdev,
107 			     u32 freq)
108 {
109 	struct em_perf_state *table;
110 	unsigned long power_mw;
111 	int i;
112 
113 	rcu_read_lock();
114 	table = em_perf_state_from_pd(cpufreq_cdev->em);
115 	for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) {
116 		if (freq > table[i].frequency)
117 			break;
118 	}
119 
120 	power_mw = table[i + 1].power;
121 	power_mw /= MICROWATT_PER_MILLIWATT;
122 	rcu_read_unlock();
123 
124 	return power_mw;
125 }
126 
cpu_power_to_freq(struct cpufreq_cooling_device * cpufreq_cdev,u32 power)127 static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_cdev,
128 			     u32 power)
129 {
130 	struct em_perf_state *table;
131 	unsigned long em_power_mw;
132 	u32 freq;
133 	int i;
134 
135 	rcu_read_lock();
136 	table = em_perf_state_from_pd(cpufreq_cdev->em);
137 	for (i = cpufreq_cdev->max_level; i > 0; i--) {
138 		/* Convert EM power to milli-Watts to make safe comparison */
139 		em_power_mw = table[i].power;
140 		em_power_mw /= MICROWATT_PER_MILLIWATT;
141 		if (power >= em_power_mw)
142 			break;
143 	}
144 	freq = table[i].frequency;
145 	rcu_read_unlock();
146 
147 	return freq;
148 }
149 
150 /**
151  * get_load() - get load for a cpu
152  * @cpufreq_cdev: struct cpufreq_cooling_device for the cpu
153  * @cpu: cpu number
154  * @cpu_idx: index of the cpu in time_in_idle array
155  *
156  * Return: The average load of cpu @cpu in percentage since this
157  * function was last called.
158  */
159 #ifdef CONFIG_SMP
get_load(struct cpufreq_cooling_device * cpufreq_cdev,int cpu,int cpu_idx)160 static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
161 		    int cpu_idx)
162 {
163 	unsigned long util = sched_cpu_util(cpu);
164 
165 	return (util * 100) / arch_scale_cpu_capacity(cpu);
166 }
167 #else /* !CONFIG_SMP */
get_load(struct cpufreq_cooling_device * cpufreq_cdev,int cpu,int cpu_idx)168 static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
169 		    int cpu_idx)
170 {
171 	u32 load;
172 	u64 now, now_idle, delta_time, delta_idle;
173 	struct time_in_idle *idle_time = &cpufreq_cdev->idle_time[cpu_idx];
174 
175 	now_idle = get_cpu_idle_time(cpu, &now, 0);
176 	delta_idle = now_idle - idle_time->time;
177 	delta_time = now - idle_time->timestamp;
178 
179 	if (delta_time <= delta_idle)
180 		load = 0;
181 	else
182 		load = div64_u64(100 * (delta_time - delta_idle), delta_time);
183 
184 	idle_time->time = now_idle;
185 	idle_time->timestamp = now;
186 
187 	return load;
188 }
189 #endif /* CONFIG_SMP */
190 
191 /**
192  * get_dynamic_power() - calculate the dynamic power
193  * @cpufreq_cdev:	&cpufreq_cooling_device for this cdev
194  * @freq:	current frequency
195  *
196  * Return: the dynamic power consumed by the cpus described by
197  * @cpufreq_cdev.
198  */
get_dynamic_power(struct cpufreq_cooling_device * cpufreq_cdev,unsigned long freq)199 static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_cdev,
200 			     unsigned long freq)
201 {
202 	u32 raw_cpu_power;
203 
204 	raw_cpu_power = cpu_freq_to_power(cpufreq_cdev, freq);
205 	return (raw_cpu_power * cpufreq_cdev->last_load) / 100;
206 }
207 
208 /**
209  * cpufreq_get_requested_power() - get the current power
210  * @cdev:	&thermal_cooling_device pointer
211  * @power:	pointer in which to store the resulting power
212  *
213  * Calculate the current power consumption of the cpus in milliwatts
214  * and store it in @power.  This function should actually calculate
215  * the requested power, but it's hard to get the frequency that
216  * cpufreq would have assigned if there were no thermal limits.
217  * Instead, we calculate the current power on the assumption that the
218  * immediate future will look like the immediate past.
219  *
220  * We use the current frequency and the average load since this
221  * function was last called.  In reality, there could have been
222  * multiple opps since this function was last called and that affects
223  * the load calculation.  While it's not perfectly accurate, this
224  * simplification is good enough and works.  REVISIT this, as more
225  * complex code may be needed if experiments show that it's not
226  * accurate enough.
227  *
228  * Return: 0 on success, this function doesn't fail.
229  */
cpufreq_get_requested_power(struct thermal_cooling_device * cdev,u32 * power)230 static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
231 				       u32 *power)
232 {
233 	unsigned long freq;
234 	int i = 0, cpu;
235 	u32 total_load = 0;
236 	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
237 	struct cpufreq_policy *policy = cpufreq_cdev->policy;
238 
239 	freq = cpufreq_quick_get(policy->cpu);
240 
241 	for_each_cpu(cpu, policy->related_cpus) {
242 		u32 load;
243 
244 		if (cpu_online(cpu))
245 			load = get_load(cpufreq_cdev, cpu, i);
246 		else
247 			load = 0;
248 
249 		total_load += load;
250 	}
251 
252 	cpufreq_cdev->last_load = total_load;
253 
254 	*power = get_dynamic_power(cpufreq_cdev, freq);
255 
256 	trace_thermal_power_cpu_get_power_simple(policy->cpu, *power);
257 
258 	return 0;
259 }
260 
261 /**
262  * cpufreq_state2power() - convert a cpu cdev state to power consumed
263  * @cdev:	&thermal_cooling_device pointer
264  * @state:	cooling device state to be converted
265  * @power:	pointer in which to store the resulting power
266  *
267  * Convert cooling device state @state into power consumption in
268  * milliwatts assuming 100% load.  Store the calculated power in
269  * @power.
270  *
271  * Return: 0 on success, -EINVAL if the cooling device state is bigger
272  * than maximum allowed.
273  */
cpufreq_state2power(struct thermal_cooling_device * cdev,unsigned long state,u32 * power)274 static int cpufreq_state2power(struct thermal_cooling_device *cdev,
275 			       unsigned long state, u32 *power)
276 {
277 	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
278 	unsigned int freq, num_cpus, idx;
279 	struct em_perf_state *table;
280 
281 	/* Request state should be less than max_level */
282 	if (state > cpufreq_cdev->max_level)
283 		return -EINVAL;
284 
285 	num_cpus = cpumask_weight(cpufreq_cdev->policy->cpus);
286 
287 	idx = cpufreq_cdev->max_level - state;
288 
289 	rcu_read_lock();
290 	table = em_perf_state_from_pd(cpufreq_cdev->em);
291 	freq = table[idx].frequency;
292 	rcu_read_unlock();
293 
294 	*power = cpu_freq_to_power(cpufreq_cdev, freq) * num_cpus;
295 
296 	return 0;
297 }
298 
299 /**
300  * cpufreq_power2state() - convert power to a cooling device state
301  * @cdev:	&thermal_cooling_device pointer
302  * @power:	power in milliwatts to be converted
303  * @state:	pointer in which to store the resulting state
304  *
305  * Calculate a cooling device state for the cpus described by @cdev
306  * that would allow them to consume at most @power mW and store it in
307  * @state.  Note that this calculation depends on external factors
308  * such as the CPUs load.  Calling this function with the same power
309  * as input can yield different cooling device states depending on those
310  * external factors.
311  *
312  * Return: 0 on success, this function doesn't fail.
313  */
cpufreq_power2state(struct thermal_cooling_device * cdev,u32 power,unsigned long * state)314 static int cpufreq_power2state(struct thermal_cooling_device *cdev,
315 			       u32 power, unsigned long *state)
316 {
317 	unsigned int target_freq;
318 	u32 last_load, normalised_power;
319 	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
320 	struct cpufreq_policy *policy = cpufreq_cdev->policy;
321 
322 	last_load = cpufreq_cdev->last_load ?: 1;
323 	normalised_power = (power * 100) / last_load;
324 	target_freq = cpu_power_to_freq(cpufreq_cdev, normalised_power);
325 
326 	*state = get_level(cpufreq_cdev, target_freq);
327 	trace_thermal_power_cpu_limit(policy->related_cpus, target_freq, *state,
328 				      power);
329 	return 0;
330 }
331 
em_is_sane(struct cpufreq_cooling_device * cpufreq_cdev,struct em_perf_domain * em)332 static inline bool em_is_sane(struct cpufreq_cooling_device *cpufreq_cdev,
333 			      struct em_perf_domain *em) {
334 	struct cpufreq_policy *policy;
335 	unsigned int nr_levels;
336 
337 	if (!em || em_is_artificial(em))
338 		return false;
339 
340 	policy = cpufreq_cdev->policy;
341 	if (!cpumask_equal(policy->related_cpus, em_span_cpus(em))) {
342 		pr_err("The span of pd %*pbl is misaligned with cpufreq policy %*pbl\n",
343 			cpumask_pr_args(em_span_cpus(em)),
344 			cpumask_pr_args(policy->related_cpus));
345 		return false;
346 	}
347 
348 	nr_levels = cpufreq_cdev->max_level + 1;
349 	if (em_pd_nr_perf_states(em) != nr_levels) {
350 		pr_err("The number of performance states in pd %*pbl (%u) doesn't match the number of cooling levels (%u)\n",
351 			cpumask_pr_args(em_span_cpus(em)),
352 			em_pd_nr_perf_states(em), nr_levels);
353 		return false;
354 	}
355 
356 	return true;
357 }
358 #endif /* CONFIG_THERMAL_GOV_POWER_ALLOCATOR */
359 
360 #ifdef CONFIG_SMP
allocate_idle_time(struct cpufreq_cooling_device * cpufreq_cdev)361 static inline int allocate_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
362 {
363 	return 0;
364 }
365 
free_idle_time(struct cpufreq_cooling_device * cpufreq_cdev)366 static inline void free_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
367 {
368 }
369 #else
allocate_idle_time(struct cpufreq_cooling_device * cpufreq_cdev)370 static int allocate_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
371 {
372 	unsigned int num_cpus = cpumask_weight(cpufreq_cdev->policy->related_cpus);
373 
374 	cpufreq_cdev->idle_time = kcalloc(num_cpus,
375 					  sizeof(*cpufreq_cdev->idle_time),
376 					  GFP_KERNEL);
377 	if (!cpufreq_cdev->idle_time)
378 		return -ENOMEM;
379 
380 	return 0;
381 }
382 
free_idle_time(struct cpufreq_cooling_device * cpufreq_cdev)383 static void free_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
384 {
385 	kfree(cpufreq_cdev->idle_time);
386 	cpufreq_cdev->idle_time = NULL;
387 }
388 #endif /* CONFIG_SMP */
389 
get_state_freq(struct cpufreq_cooling_device * cpufreq_cdev,unsigned long state)390 static unsigned int get_state_freq(struct cpufreq_cooling_device *cpufreq_cdev,
391 				   unsigned long state)
392 {
393 	struct cpufreq_policy *policy;
394 	unsigned long idx;
395 
396 #ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
397 	/* Use the Energy Model table if available */
398 	if (cpufreq_cdev->em) {
399 		struct em_perf_state *table;
400 		unsigned int freq;
401 
402 		idx = cpufreq_cdev->max_level - state;
403 
404 		rcu_read_lock();
405 		table = em_perf_state_from_pd(cpufreq_cdev->em);
406 		freq = table[idx].frequency;
407 		rcu_read_unlock();
408 
409 		return freq;
410 	}
411 #endif
412 
413 	/* Otherwise, fallback on the CPUFreq table */
414 	policy = cpufreq_cdev->policy;
415 	if (policy->freq_table_sorted == CPUFREQ_TABLE_SORTED_ASCENDING)
416 		idx = cpufreq_cdev->max_level - state;
417 	else
418 		idx = state;
419 
420 	return policy->freq_table[idx].frequency;
421 }
422 
423 /* cpufreq cooling device callback functions are defined below */
424 
425 /**
426  * cpufreq_get_max_state - callback function to get the max cooling state.
427  * @cdev: thermal cooling device pointer.
428  * @state: fill this variable with the max cooling state.
429  *
430  * Callback for the thermal cooling device to return the cpufreq
431  * max cooling state.
432  *
433  * Return: 0 on success, this function doesn't fail.
434  */
cpufreq_get_max_state(struct thermal_cooling_device * cdev,unsigned long * state)435 static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
436 				 unsigned long *state)
437 {
438 	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
439 
440 	*state = cpufreq_cdev->max_level;
441 	return 0;
442 }
443 
444 /**
445  * cpufreq_get_cur_state - callback function to get the current cooling state.
446  * @cdev: thermal cooling device pointer.
447  * @state: fill this variable with the current cooling state.
448  *
449  * Callback for the thermal cooling device to return the cpufreq
450  * current cooling state.
451  *
452  * Return: 0 on success, this function doesn't fail.
453  */
cpufreq_get_cur_state(struct thermal_cooling_device * cdev,unsigned long * state)454 static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
455 				 unsigned long *state)
456 {
457 	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
458 
459 	*state = cpufreq_cdev->cpufreq_state;
460 
461 	return 0;
462 }
463 
464 /**
465  * cpufreq_set_cur_state - callback function to set the current cooling state.
466  * @cdev: thermal cooling device pointer.
467  * @state: set this variable to the current cooling state.
468  *
469  * Callback for the thermal cooling device to change the cpufreq
470  * current cooling state.
471  *
472  * Return: 0 on success, an error code otherwise.
473  */
cpufreq_set_cur_state(struct thermal_cooling_device * cdev,unsigned long state)474 static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
475 				 unsigned long state)
476 {
477 	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
478 	unsigned int frequency;
479 	int ret;
480 
481 	/* Request state should be less than max_level */
482 	if (state > cpufreq_cdev->max_level)
483 		return -EINVAL;
484 
485 	/* Check if the old cooling action is same as new cooling action */
486 	if (cpufreq_cdev->cpufreq_state == state)
487 		return 0;
488 
489 	frequency = get_state_freq(cpufreq_cdev, state);
490 
491 	ret = freq_qos_update_request(&cpufreq_cdev->qos_req, frequency);
492 	if (ret >= 0) {
493 		cpufreq_cdev->cpufreq_state = state;
494 		ret = 0;
495 	}
496 
497 	return ret;
498 }
499 
500 /**
501  * __cpufreq_cooling_register - helper function to create cpufreq cooling device
502  * @np: a valid struct device_node to the cooling device tree node
503  * @policy: cpufreq policy
504  * Normally this should be same as cpufreq policy->related_cpus.
505  * @em: Energy Model of the cpufreq policy
506  *
507  * This interface function registers the cpufreq cooling device with the name
508  * "cpufreq-%s". This API can support multiple instances of cpufreq
509  * cooling devices. It also gives the opportunity to link the cooling device
510  * with a device tree node, in order to bind it via the thermal DT code.
511  *
512  * Return: a valid struct thermal_cooling_device pointer on success,
513  * on failure, it returns a corresponding ERR_PTR().
514  */
515 static struct thermal_cooling_device *
__cpufreq_cooling_register(struct device_node * np,struct cpufreq_policy * policy,struct em_perf_domain * em)516 __cpufreq_cooling_register(struct device_node *np,
517 			struct cpufreq_policy *policy,
518 			struct em_perf_domain *em)
519 {
520 	struct thermal_cooling_device *cdev;
521 	struct cpufreq_cooling_device *cpufreq_cdev;
522 	unsigned int i;
523 	struct device *dev;
524 	int ret;
525 	struct thermal_cooling_device_ops *cooling_ops;
526 	char *name;
527 
528 	if (IS_ERR_OR_NULL(policy)) {
529 		pr_err("%s: cpufreq policy isn't valid: %p\n", __func__, policy);
530 		return ERR_PTR(-EINVAL);
531 	}
532 
533 	dev = get_cpu_device(policy->cpu);
534 	if (unlikely(!dev)) {
535 		pr_warn("No cpu device for cpu %d\n", policy->cpu);
536 		return ERR_PTR(-ENODEV);
537 	}
538 
539 	i = cpufreq_table_count_valid_entries(policy);
540 	if (!i) {
541 		pr_debug("%s: CPUFreq table not found or has no valid entries\n",
542 			 __func__);
543 		return ERR_PTR(-ENODEV);
544 	}
545 
546 	cpufreq_cdev = kzalloc(sizeof(*cpufreq_cdev), GFP_KERNEL);
547 	if (!cpufreq_cdev)
548 		return ERR_PTR(-ENOMEM);
549 
550 	cpufreq_cdev->policy = policy;
551 
552 	ret = allocate_idle_time(cpufreq_cdev);
553 	if (ret) {
554 		cdev = ERR_PTR(ret);
555 		goto free_cdev;
556 	}
557 
558 	/* max_level is an index, not a counter */
559 	cpufreq_cdev->max_level = i - 1;
560 
561 	cooling_ops = &cpufreq_cdev->cooling_ops;
562 	cooling_ops->get_max_state = cpufreq_get_max_state;
563 	cooling_ops->get_cur_state = cpufreq_get_cur_state;
564 	cooling_ops->set_cur_state = cpufreq_set_cur_state;
565 
566 #ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
567 	if (em_is_sane(cpufreq_cdev, em)) {
568 		cpufreq_cdev->em = em;
569 		cooling_ops->get_requested_power = cpufreq_get_requested_power;
570 		cooling_ops->state2power = cpufreq_state2power;
571 		cooling_ops->power2state = cpufreq_power2state;
572 	} else
573 #endif
574 	if (policy->freq_table_sorted == CPUFREQ_TABLE_UNSORTED) {
575 		pr_err("%s: unsorted frequency tables are not supported\n",
576 		       __func__);
577 		cdev = ERR_PTR(-EINVAL);
578 		goto free_idle_time;
579 	}
580 
581 	ret = freq_qos_add_request(&policy->constraints,
582 				   &cpufreq_cdev->qos_req, FREQ_QOS_MAX,
583 				   get_state_freq(cpufreq_cdev, 0));
584 	if (ret < 0) {
585 		pr_err("%s: Failed to add freq constraint (%d)\n", __func__,
586 		       ret);
587 		cdev = ERR_PTR(ret);
588 		goto free_idle_time;
589 	}
590 
591 	cdev = ERR_PTR(-ENOMEM);
592 	name = kasprintf(GFP_KERNEL, "cpufreq-%s", dev_name(dev));
593 	if (!name)
594 		goto remove_qos_req;
595 
596 	cdev = thermal_of_cooling_device_register(np, name, cpufreq_cdev,
597 						  cooling_ops);
598 	kfree(name);
599 
600 	if (IS_ERR(cdev))
601 		goto remove_qos_req;
602 
603 	return cdev;
604 
605 remove_qos_req:
606 	freq_qos_remove_request(&cpufreq_cdev->qos_req);
607 free_idle_time:
608 	free_idle_time(cpufreq_cdev);
609 free_cdev:
610 	kfree(cpufreq_cdev);
611 	return cdev;
612 }
613 
614 /**
615  * cpufreq_cooling_register - function to create cpufreq cooling device.
616  * @policy: cpufreq policy
617  *
618  * This interface function registers the cpufreq cooling device with the name
619  * "cpufreq-%s". This API can support multiple instances of cpufreq cooling
620  * devices.
621  *
622  * Return: a valid struct thermal_cooling_device pointer on success,
623  * on failure, it returns a corresponding ERR_PTR().
624  */
625 struct thermal_cooling_device *
cpufreq_cooling_register(struct cpufreq_policy * policy)626 cpufreq_cooling_register(struct cpufreq_policy *policy)
627 {
628 	return __cpufreq_cooling_register(NULL, policy, NULL);
629 }
630 EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
631 
632 /**
633  * of_cpufreq_cooling_register - function to create cpufreq cooling device.
634  * @policy: cpufreq policy
635  *
636  * This interface function registers the cpufreq cooling device with the name
637  * "cpufreq-%s". This API can support multiple instances of cpufreq cooling
638  * devices. Using this API, the cpufreq cooling device will be linked to the
639  * device tree node provided.
640  *
641  * Using this function, the cooling device will implement the power
642  * extensions by using the Energy Model (if present).  The cpus must have
643  * registered their OPPs using the OPP library.
644  *
645  * Return: a valid struct thermal_cooling_device pointer on success,
646  * and NULL on failure.
647  */
648 struct thermal_cooling_device *
of_cpufreq_cooling_register(struct cpufreq_policy * policy)649 of_cpufreq_cooling_register(struct cpufreq_policy *policy)
650 {
651 	struct device_node *np = of_get_cpu_node(policy->cpu, NULL);
652 	struct thermal_cooling_device *cdev = NULL;
653 
654 	if (!np) {
655 		pr_err("cpufreq_cooling: OF node not available for cpu%d\n",
656 		       policy->cpu);
657 		return NULL;
658 	}
659 
660 	if (of_property_present(np, "#cooling-cells")) {
661 		struct em_perf_domain *em = em_cpu_get(policy->cpu);
662 
663 		cdev = __cpufreq_cooling_register(np, policy, em);
664 		if (IS_ERR(cdev)) {
665 			pr_err("cpufreq_cooling: cpu%d failed to register as cooling device: %ld\n",
666 			       policy->cpu, PTR_ERR(cdev));
667 			cdev = NULL;
668 		}
669 	}
670 
671 	of_node_put(np);
672 	return cdev;
673 }
674 EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
675 
676 /**
677  * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
678  * @cdev: thermal cooling device pointer.
679  *
680  * This interface function unregisters the "cpufreq-%x" cooling device.
681  */
cpufreq_cooling_unregister(struct thermal_cooling_device * cdev)682 void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
683 {
684 	struct cpufreq_cooling_device *cpufreq_cdev;
685 
686 	if (!cdev)
687 		return;
688 
689 	cpufreq_cdev = cdev->devdata;
690 
691 	thermal_cooling_device_unregister(cdev);
692 	freq_qos_remove_request(&cpufreq_cdev->qos_req);
693 	free_idle_time(cpufreq_cdev);
694 	kfree(cpufreq_cdev);
695 }
696 EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);
697