1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <linux/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "bio.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "dev-replace.h"
33 #include "raid56.h"
34 #include "sysfs.h"
35 #include "qgroup.h"
36 #include "compression.h"
37 #include "tree-checker.h"
38 #include "ref-verify.h"
39 #include "block-group.h"
40 #include "discard.h"
41 #include "space-info.h"
42 #include "zoned.h"
43 #include "subpage.h"
44 #include "fs.h"
45 #include "accessors.h"
46 #include "extent-tree.h"
47 #include "root-tree.h"
48 #include "defrag.h"
49 #include "uuid-tree.h"
50 #include "relocation.h"
51 #include "scrub.h"
52 #include "super.h"
53
54 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
55 BTRFS_HEADER_FLAG_RELOC |\
56 BTRFS_SUPER_FLAG_ERROR |\
57 BTRFS_SUPER_FLAG_SEEDING |\
58 BTRFS_SUPER_FLAG_METADUMP |\
59 BTRFS_SUPER_FLAG_METADUMP_V2)
60
61 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
62 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
63
btrfs_free_csum_hash(struct btrfs_fs_info * fs_info)64 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
65 {
66 if (fs_info->csum_shash)
67 crypto_free_shash(fs_info->csum_shash);
68 }
69
70 /*
71 * Compute the csum of a btree block and store the result to provided buffer.
72 */
csum_tree_block(struct extent_buffer * buf,u8 * result)73 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
74 {
75 struct btrfs_fs_info *fs_info = buf->fs_info;
76 int num_pages;
77 u32 first_page_part;
78 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
79 char *kaddr;
80 int i;
81
82 shash->tfm = fs_info->csum_shash;
83 crypto_shash_init(shash);
84
85 if (buf->addr) {
86 /* Pages are contiguous, handle them as a big one. */
87 kaddr = buf->addr;
88 first_page_part = fs_info->nodesize;
89 num_pages = 1;
90 } else {
91 kaddr = folio_address(buf->folios[0]);
92 first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
93 num_pages = num_extent_pages(buf);
94 }
95
96 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
97 first_page_part - BTRFS_CSUM_SIZE);
98
99 /*
100 * Multiple single-page folios case would reach here.
101 *
102 * nodesize <= PAGE_SIZE and large folio all handled by above
103 * crypto_shash_update() already.
104 */
105 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
106 kaddr = folio_address(buf->folios[i]);
107 crypto_shash_update(shash, kaddr, PAGE_SIZE);
108 }
109 memset(result, 0, BTRFS_CSUM_SIZE);
110 crypto_shash_final(shash, result);
111 }
112
113 /*
114 * we can't consider a given block up to date unless the transid of the
115 * block matches the transid in the parent node's pointer. This is how we
116 * detect blocks that either didn't get written at all or got written
117 * in the wrong place.
118 */
btrfs_buffer_uptodate(struct extent_buffer * eb,u64 parent_transid,int atomic)119 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
120 {
121 if (!extent_buffer_uptodate(eb))
122 return 0;
123
124 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
125 return 1;
126
127 if (atomic)
128 return -EAGAIN;
129
130 if (!extent_buffer_uptodate(eb) ||
131 btrfs_header_generation(eb) != parent_transid) {
132 btrfs_err_rl(eb->fs_info,
133 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
134 eb->start, eb->read_mirror,
135 parent_transid, btrfs_header_generation(eb));
136 clear_extent_buffer_uptodate(eb);
137 return 0;
138 }
139 return 1;
140 }
141
btrfs_supported_super_csum(u16 csum_type)142 static bool btrfs_supported_super_csum(u16 csum_type)
143 {
144 switch (csum_type) {
145 case BTRFS_CSUM_TYPE_CRC32:
146 case BTRFS_CSUM_TYPE_XXHASH:
147 case BTRFS_CSUM_TYPE_SHA256:
148 case BTRFS_CSUM_TYPE_BLAKE2:
149 return true;
150 default:
151 return false;
152 }
153 }
154
155 /*
156 * Return 0 if the superblock checksum type matches the checksum value of that
157 * algorithm. Pass the raw disk superblock data.
158 */
btrfs_check_super_csum(struct btrfs_fs_info * fs_info,const struct btrfs_super_block * disk_sb)159 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
160 const struct btrfs_super_block *disk_sb)
161 {
162 char result[BTRFS_CSUM_SIZE];
163 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
164
165 shash->tfm = fs_info->csum_shash;
166
167 /*
168 * The super_block structure does not span the whole
169 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
170 * filled with zeros and is included in the checksum.
171 */
172 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
173 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
174
175 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
176 return 1;
177
178 return 0;
179 }
180
btrfs_repair_eb_io_failure(const struct extent_buffer * eb,int mirror_num)181 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
182 int mirror_num)
183 {
184 struct btrfs_fs_info *fs_info = eb->fs_info;
185 int num_folios = num_extent_folios(eb);
186 int ret = 0;
187
188 if (sb_rdonly(fs_info->sb))
189 return -EROFS;
190
191 for (int i = 0; i < num_folios; i++) {
192 struct folio *folio = eb->folios[i];
193 u64 start = max_t(u64, eb->start, folio_pos(folio));
194 u64 end = min_t(u64, eb->start + eb->len,
195 folio_pos(folio) + eb->folio_size);
196 u32 len = end - start;
197
198 ret = btrfs_repair_io_failure(fs_info, 0, start, len,
199 start, folio, offset_in_folio(folio, start),
200 mirror_num);
201 if (ret)
202 break;
203 }
204
205 return ret;
206 }
207
208 /*
209 * helper to read a given tree block, doing retries as required when
210 * the checksums don't match and we have alternate mirrors to try.
211 *
212 * @check: expected tree parentness check, see the comments of the
213 * structure for details.
214 */
btrfs_read_extent_buffer(struct extent_buffer * eb,const struct btrfs_tree_parent_check * check)215 int btrfs_read_extent_buffer(struct extent_buffer *eb,
216 const struct btrfs_tree_parent_check *check)
217 {
218 struct btrfs_fs_info *fs_info = eb->fs_info;
219 int failed = 0;
220 int ret;
221 int num_copies = 0;
222 int mirror_num = 0;
223 int failed_mirror = 0;
224
225 ASSERT(check);
226
227 while (1) {
228 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
229 ret = read_extent_buffer_pages(eb, mirror_num, check);
230 if (!ret)
231 break;
232
233 num_copies = btrfs_num_copies(fs_info,
234 eb->start, eb->len);
235 if (num_copies == 1)
236 break;
237
238 if (!failed_mirror) {
239 failed = 1;
240 failed_mirror = eb->read_mirror;
241 }
242
243 mirror_num++;
244 if (mirror_num == failed_mirror)
245 mirror_num++;
246
247 if (mirror_num > num_copies)
248 break;
249 }
250
251 if (failed && !ret && failed_mirror)
252 btrfs_repair_eb_io_failure(eb, failed_mirror);
253
254 return ret;
255 }
256
257 /*
258 * Checksum a dirty tree block before IO.
259 */
btree_csum_one_bio(struct btrfs_bio * bbio)260 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
261 {
262 struct extent_buffer *eb = bbio->private;
263 struct btrfs_fs_info *fs_info = eb->fs_info;
264 u64 found_start = btrfs_header_bytenr(eb);
265 u64 last_trans;
266 u8 result[BTRFS_CSUM_SIZE];
267 int ret;
268
269 /* Btree blocks are always contiguous on disk. */
270 if (WARN_ON_ONCE(bbio->file_offset != eb->start))
271 return BLK_STS_IOERR;
272 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
273 return BLK_STS_IOERR;
274
275 /*
276 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't
277 * checksum it but zero-out its content. This is done to preserve
278 * ordering of I/O without unnecessarily writing out data.
279 */
280 if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) {
281 memzero_extent_buffer(eb, 0, eb->len);
282 return BLK_STS_OK;
283 }
284
285 if (WARN_ON_ONCE(found_start != eb->start))
286 return BLK_STS_IOERR;
287 if (WARN_ON(!btrfs_folio_test_uptodate(fs_info, eb->folios[0],
288 eb->start, eb->len)))
289 return BLK_STS_IOERR;
290
291 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
292 offsetof(struct btrfs_header, fsid),
293 BTRFS_FSID_SIZE) == 0);
294 csum_tree_block(eb, result);
295
296 if (btrfs_header_level(eb))
297 ret = btrfs_check_node(eb);
298 else
299 ret = btrfs_check_leaf(eb);
300
301 if (ret < 0)
302 goto error;
303
304 /*
305 * Also check the generation, the eb reached here must be newer than
306 * last committed. Or something seriously wrong happened.
307 */
308 last_trans = btrfs_get_last_trans_committed(fs_info);
309 if (unlikely(btrfs_header_generation(eb) <= last_trans)) {
310 ret = -EUCLEAN;
311 btrfs_err(fs_info,
312 "block=%llu bad generation, have %llu expect > %llu",
313 eb->start, btrfs_header_generation(eb), last_trans);
314 goto error;
315 }
316 write_extent_buffer(eb, result, 0, fs_info->csum_size);
317 return BLK_STS_OK;
318
319 error:
320 btrfs_print_tree(eb, 0);
321 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
322 eb->start);
323 /*
324 * Be noisy if this is an extent buffer from a log tree. We don't abort
325 * a transaction in case there's a bad log tree extent buffer, we just
326 * fallback to a transaction commit. Still we want to know when there is
327 * a bad log tree extent buffer, as that may signal a bug somewhere.
328 */
329 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
330 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
331 return errno_to_blk_status(ret);
332 }
333
check_tree_block_fsid(struct extent_buffer * eb)334 static bool check_tree_block_fsid(struct extent_buffer *eb)
335 {
336 struct btrfs_fs_info *fs_info = eb->fs_info;
337 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
338 u8 fsid[BTRFS_FSID_SIZE];
339
340 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
341 BTRFS_FSID_SIZE);
342
343 /*
344 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
345 * This is then overwritten by metadata_uuid if it is present in the
346 * device_list_add(). The same true for a seed device as well. So use of
347 * fs_devices::metadata_uuid is appropriate here.
348 */
349 if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
350 return false;
351
352 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
353 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
354 return false;
355
356 return true;
357 }
358
359 /* Do basic extent buffer checks at read time */
btrfs_validate_extent_buffer(struct extent_buffer * eb,const struct btrfs_tree_parent_check * check)360 int btrfs_validate_extent_buffer(struct extent_buffer *eb,
361 const struct btrfs_tree_parent_check *check)
362 {
363 struct btrfs_fs_info *fs_info = eb->fs_info;
364 u64 found_start;
365 const u32 csum_size = fs_info->csum_size;
366 u8 found_level;
367 u8 result[BTRFS_CSUM_SIZE];
368 const u8 *header_csum;
369 int ret = 0;
370 const bool ignore_csum = btrfs_test_opt(fs_info, IGNOREMETACSUMS);
371
372 ASSERT(check);
373
374 found_start = btrfs_header_bytenr(eb);
375 if (found_start != eb->start) {
376 btrfs_err_rl(fs_info,
377 "bad tree block start, mirror %u want %llu have %llu",
378 eb->read_mirror, eb->start, found_start);
379 ret = -EIO;
380 goto out;
381 }
382 if (check_tree_block_fsid(eb)) {
383 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
384 eb->start, eb->read_mirror);
385 ret = -EIO;
386 goto out;
387 }
388 found_level = btrfs_header_level(eb);
389 if (found_level >= BTRFS_MAX_LEVEL) {
390 btrfs_err(fs_info,
391 "bad tree block level, mirror %u level %d on logical %llu",
392 eb->read_mirror, btrfs_header_level(eb), eb->start);
393 ret = -EIO;
394 goto out;
395 }
396
397 csum_tree_block(eb, result);
398 header_csum = folio_address(eb->folios[0]) +
399 get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum));
400
401 if (memcmp(result, header_csum, csum_size) != 0) {
402 btrfs_warn_rl(fs_info,
403 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d%s",
404 eb->start, eb->read_mirror,
405 CSUM_FMT_VALUE(csum_size, header_csum),
406 CSUM_FMT_VALUE(csum_size, result),
407 btrfs_header_level(eb),
408 ignore_csum ? ", ignored" : "");
409 if (!ignore_csum) {
410 ret = -EUCLEAN;
411 goto out;
412 }
413 }
414
415 if (found_level != check->level) {
416 btrfs_err(fs_info,
417 "level verify failed on logical %llu mirror %u wanted %u found %u",
418 eb->start, eb->read_mirror, check->level, found_level);
419 ret = -EIO;
420 goto out;
421 }
422 if (unlikely(check->transid &&
423 btrfs_header_generation(eb) != check->transid)) {
424 btrfs_err_rl(eb->fs_info,
425 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
426 eb->start, eb->read_mirror, check->transid,
427 btrfs_header_generation(eb));
428 ret = -EIO;
429 goto out;
430 }
431 if (check->has_first_key) {
432 const struct btrfs_key *expect_key = &check->first_key;
433 struct btrfs_key found_key;
434
435 if (found_level)
436 btrfs_node_key_to_cpu(eb, &found_key, 0);
437 else
438 btrfs_item_key_to_cpu(eb, &found_key, 0);
439 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
440 btrfs_err(fs_info,
441 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
442 eb->start, check->transid,
443 expect_key->objectid,
444 expect_key->type, expect_key->offset,
445 found_key.objectid, found_key.type,
446 found_key.offset);
447 ret = -EUCLEAN;
448 goto out;
449 }
450 }
451 if (check->owner_root) {
452 ret = btrfs_check_eb_owner(eb, check->owner_root);
453 if (ret < 0)
454 goto out;
455 }
456
457 /*
458 * If this is a leaf block and it is corrupt, set the corrupt bit so
459 * that we don't try and read the other copies of this block, just
460 * return -EIO.
461 */
462 if (found_level == 0 && btrfs_check_leaf(eb)) {
463 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
464 ret = -EIO;
465 }
466
467 if (found_level > 0 && btrfs_check_node(eb))
468 ret = -EIO;
469
470 if (ret)
471 btrfs_err(fs_info,
472 "read time tree block corruption detected on logical %llu mirror %u",
473 eb->start, eb->read_mirror);
474 out:
475 return ret;
476 }
477
478 #ifdef CONFIG_MIGRATION
btree_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)479 static int btree_migrate_folio(struct address_space *mapping,
480 struct folio *dst, struct folio *src, enum migrate_mode mode)
481 {
482 /*
483 * we can't safely write a btree page from here,
484 * we haven't done the locking hook
485 */
486 if (folio_test_dirty(src))
487 return -EAGAIN;
488 /*
489 * Buffers may be managed in a filesystem specific way.
490 * We must have no buffers or drop them.
491 */
492 if (folio_get_private(src) &&
493 !filemap_release_folio(src, GFP_KERNEL))
494 return -EAGAIN;
495 return migrate_folio(mapping, dst, src, mode);
496 }
497 #else
498 #define btree_migrate_folio NULL
499 #endif
500
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)501 static int btree_writepages(struct address_space *mapping,
502 struct writeback_control *wbc)
503 {
504 int ret;
505
506 if (wbc->sync_mode == WB_SYNC_NONE) {
507 struct btrfs_fs_info *fs_info;
508
509 if (wbc->for_kupdate)
510 return 0;
511
512 fs_info = inode_to_fs_info(mapping->host);
513 /* this is a bit racy, but that's ok */
514 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
515 BTRFS_DIRTY_METADATA_THRESH,
516 fs_info->dirty_metadata_batch);
517 if (ret < 0)
518 return 0;
519 }
520 return btree_write_cache_pages(mapping, wbc);
521 }
522
btree_release_folio(struct folio * folio,gfp_t gfp_flags)523 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
524 {
525 if (folio_test_writeback(folio) || folio_test_dirty(folio))
526 return false;
527
528 return try_release_extent_buffer(folio);
529 }
530
btree_invalidate_folio(struct folio * folio,size_t offset,size_t length)531 static void btree_invalidate_folio(struct folio *folio, size_t offset,
532 size_t length)
533 {
534 struct extent_io_tree *tree;
535
536 tree = &folio_to_inode(folio)->io_tree;
537 extent_invalidate_folio(tree, folio, offset);
538 btree_release_folio(folio, GFP_NOFS);
539 if (folio_get_private(folio)) {
540 btrfs_warn(folio_to_fs_info(folio),
541 "folio private not zero on folio %llu",
542 (unsigned long long)folio_pos(folio));
543 folio_detach_private(folio);
544 }
545 }
546
547 #ifdef DEBUG
btree_dirty_folio(struct address_space * mapping,struct folio * folio)548 static bool btree_dirty_folio(struct address_space *mapping,
549 struct folio *folio)
550 {
551 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
552 struct btrfs_subpage_info *spi = fs_info->subpage_info;
553 struct btrfs_subpage *subpage;
554 struct extent_buffer *eb;
555 int cur_bit = 0;
556 u64 page_start = folio_pos(folio);
557
558 if (fs_info->sectorsize == PAGE_SIZE) {
559 eb = folio_get_private(folio);
560 BUG_ON(!eb);
561 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
562 BUG_ON(!atomic_read(&eb->refs));
563 btrfs_assert_tree_write_locked(eb);
564 return filemap_dirty_folio(mapping, folio);
565 }
566
567 ASSERT(spi);
568 subpage = folio_get_private(folio);
569
570 for (cur_bit = spi->dirty_offset;
571 cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
572 cur_bit++) {
573 unsigned long flags;
574 u64 cur;
575
576 spin_lock_irqsave(&subpage->lock, flags);
577 if (!test_bit(cur_bit, subpage->bitmaps)) {
578 spin_unlock_irqrestore(&subpage->lock, flags);
579 continue;
580 }
581 spin_unlock_irqrestore(&subpage->lock, flags);
582 cur = page_start + cur_bit * fs_info->sectorsize;
583
584 eb = find_extent_buffer(fs_info, cur);
585 ASSERT(eb);
586 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
587 ASSERT(atomic_read(&eb->refs));
588 btrfs_assert_tree_write_locked(eb);
589 free_extent_buffer(eb);
590
591 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
592 }
593 return filemap_dirty_folio(mapping, folio);
594 }
595 #else
596 #define btree_dirty_folio filemap_dirty_folio
597 #endif
598
599 static const struct address_space_operations btree_aops = {
600 .writepages = btree_writepages,
601 .release_folio = btree_release_folio,
602 .invalidate_folio = btree_invalidate_folio,
603 .migrate_folio = btree_migrate_folio,
604 .dirty_folio = btree_dirty_folio,
605 };
606
btrfs_find_create_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,int level)607 struct extent_buffer *btrfs_find_create_tree_block(
608 struct btrfs_fs_info *fs_info,
609 u64 bytenr, u64 owner_root,
610 int level)
611 {
612 if (btrfs_is_testing(fs_info))
613 return alloc_test_extent_buffer(fs_info, bytenr);
614 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
615 }
616
617 /*
618 * Read tree block at logical address @bytenr and do variant basic but critical
619 * verification.
620 *
621 * @check: expected tree parentness check, see comments of the
622 * structure for details.
623 */
read_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,struct btrfs_tree_parent_check * check)624 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
625 struct btrfs_tree_parent_check *check)
626 {
627 struct extent_buffer *buf = NULL;
628 int ret;
629
630 ASSERT(check);
631
632 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
633 check->level);
634 if (IS_ERR(buf))
635 return buf;
636
637 ret = btrfs_read_extent_buffer(buf, check);
638 if (ret) {
639 free_extent_buffer_stale(buf);
640 return ERR_PTR(ret);
641 }
642 return buf;
643
644 }
645
__setup_root(struct btrfs_root * root,struct btrfs_fs_info * fs_info,u64 objectid)646 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
647 u64 objectid)
648 {
649 bool dummy = btrfs_is_testing(fs_info);
650
651 memset(&root->root_key, 0, sizeof(root->root_key));
652 memset(&root->root_item, 0, sizeof(root->root_item));
653 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
654 root->fs_info = fs_info;
655 root->root_key.objectid = objectid;
656 root->node = NULL;
657 root->commit_root = NULL;
658 root->state = 0;
659 RB_CLEAR_NODE(&root->rb_node);
660
661 btrfs_set_root_last_trans(root, 0);
662 root->free_objectid = 0;
663 root->nr_delalloc_inodes = 0;
664 root->nr_ordered_extents = 0;
665 xa_init(&root->inodes);
666 xa_init(&root->delayed_nodes);
667
668 btrfs_init_root_block_rsv(root);
669
670 INIT_LIST_HEAD(&root->dirty_list);
671 INIT_LIST_HEAD(&root->root_list);
672 INIT_LIST_HEAD(&root->delalloc_inodes);
673 INIT_LIST_HEAD(&root->delalloc_root);
674 INIT_LIST_HEAD(&root->ordered_extents);
675 INIT_LIST_HEAD(&root->ordered_root);
676 INIT_LIST_HEAD(&root->reloc_dirty_list);
677 spin_lock_init(&root->delalloc_lock);
678 spin_lock_init(&root->ordered_extent_lock);
679 spin_lock_init(&root->accounting_lock);
680 spin_lock_init(&root->qgroup_meta_rsv_lock);
681 mutex_init(&root->objectid_mutex);
682 mutex_init(&root->log_mutex);
683 mutex_init(&root->ordered_extent_mutex);
684 mutex_init(&root->delalloc_mutex);
685 init_waitqueue_head(&root->qgroup_flush_wait);
686 init_waitqueue_head(&root->log_writer_wait);
687 init_waitqueue_head(&root->log_commit_wait[0]);
688 init_waitqueue_head(&root->log_commit_wait[1]);
689 INIT_LIST_HEAD(&root->log_ctxs[0]);
690 INIT_LIST_HEAD(&root->log_ctxs[1]);
691 atomic_set(&root->log_commit[0], 0);
692 atomic_set(&root->log_commit[1], 0);
693 atomic_set(&root->log_writers, 0);
694 atomic_set(&root->log_batch, 0);
695 refcount_set(&root->refs, 1);
696 atomic_set(&root->snapshot_force_cow, 0);
697 atomic_set(&root->nr_swapfiles, 0);
698 btrfs_set_root_log_transid(root, 0);
699 root->log_transid_committed = -1;
700 btrfs_set_root_last_log_commit(root, 0);
701 root->anon_dev = 0;
702 if (!dummy) {
703 extent_io_tree_init(fs_info, &root->dirty_log_pages,
704 IO_TREE_ROOT_DIRTY_LOG_PAGES);
705 extent_io_tree_init(fs_info, &root->log_csum_range,
706 IO_TREE_LOG_CSUM_RANGE);
707 }
708
709 spin_lock_init(&root->root_item_lock);
710 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
711 #ifdef CONFIG_BTRFS_DEBUG
712 INIT_LIST_HEAD(&root->leak_list);
713 spin_lock(&fs_info->fs_roots_radix_lock);
714 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
715 spin_unlock(&fs_info->fs_roots_radix_lock);
716 #endif
717 }
718
btrfs_alloc_root(struct btrfs_fs_info * fs_info,u64 objectid,gfp_t flags)719 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
720 u64 objectid, gfp_t flags)
721 {
722 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
723 if (root)
724 __setup_root(root, fs_info, objectid);
725 return root;
726 }
727
728 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
729 /* Should only be used by the testing infrastructure */
btrfs_alloc_dummy_root(struct btrfs_fs_info * fs_info)730 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
731 {
732 struct btrfs_root *root;
733
734 if (!fs_info)
735 return ERR_PTR(-EINVAL);
736
737 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
738 if (!root)
739 return ERR_PTR(-ENOMEM);
740
741 /* We don't use the stripesize in selftest, set it as sectorsize */
742 root->alloc_bytenr = 0;
743
744 return root;
745 }
746 #endif
747
global_root_cmp(struct rb_node * a_node,const struct rb_node * b_node)748 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
749 {
750 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
751 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
752
753 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
754 }
755
global_root_key_cmp(const void * k,const struct rb_node * node)756 static int global_root_key_cmp(const void *k, const struct rb_node *node)
757 {
758 const struct btrfs_key *key = k;
759 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
760
761 return btrfs_comp_cpu_keys(key, &root->root_key);
762 }
763
btrfs_global_root_insert(struct btrfs_root * root)764 int btrfs_global_root_insert(struct btrfs_root *root)
765 {
766 struct btrfs_fs_info *fs_info = root->fs_info;
767 struct rb_node *tmp;
768 int ret = 0;
769
770 write_lock(&fs_info->global_root_lock);
771 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
772 write_unlock(&fs_info->global_root_lock);
773
774 if (tmp) {
775 ret = -EEXIST;
776 btrfs_warn(fs_info, "global root %llu %llu already exists",
777 btrfs_root_id(root), root->root_key.offset);
778 }
779 return ret;
780 }
781
btrfs_global_root_delete(struct btrfs_root * root)782 void btrfs_global_root_delete(struct btrfs_root *root)
783 {
784 struct btrfs_fs_info *fs_info = root->fs_info;
785
786 write_lock(&fs_info->global_root_lock);
787 rb_erase(&root->rb_node, &fs_info->global_root_tree);
788 write_unlock(&fs_info->global_root_lock);
789 }
790
btrfs_global_root(struct btrfs_fs_info * fs_info,struct btrfs_key * key)791 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
792 struct btrfs_key *key)
793 {
794 struct rb_node *node;
795 struct btrfs_root *root = NULL;
796
797 read_lock(&fs_info->global_root_lock);
798 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
799 if (node)
800 root = container_of(node, struct btrfs_root, rb_node);
801 read_unlock(&fs_info->global_root_lock);
802
803 return root;
804 }
805
btrfs_global_root_id(struct btrfs_fs_info * fs_info,u64 bytenr)806 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
807 {
808 struct btrfs_block_group *block_group;
809 u64 ret;
810
811 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
812 return 0;
813
814 if (bytenr)
815 block_group = btrfs_lookup_block_group(fs_info, bytenr);
816 else
817 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
818 ASSERT(block_group);
819 if (!block_group)
820 return 0;
821 ret = block_group->global_root_id;
822 btrfs_put_block_group(block_group);
823
824 return ret;
825 }
826
btrfs_csum_root(struct btrfs_fs_info * fs_info,u64 bytenr)827 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
828 {
829 struct btrfs_key key = {
830 .objectid = BTRFS_CSUM_TREE_OBJECTID,
831 .type = BTRFS_ROOT_ITEM_KEY,
832 .offset = btrfs_global_root_id(fs_info, bytenr),
833 };
834
835 return btrfs_global_root(fs_info, &key);
836 }
837
btrfs_extent_root(struct btrfs_fs_info * fs_info,u64 bytenr)838 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
839 {
840 struct btrfs_key key = {
841 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
842 .type = BTRFS_ROOT_ITEM_KEY,
843 .offset = btrfs_global_root_id(fs_info, bytenr),
844 };
845
846 return btrfs_global_root(fs_info, &key);
847 }
848
btrfs_create_tree(struct btrfs_trans_handle * trans,u64 objectid)849 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
850 u64 objectid)
851 {
852 struct btrfs_fs_info *fs_info = trans->fs_info;
853 struct extent_buffer *leaf;
854 struct btrfs_root *tree_root = fs_info->tree_root;
855 struct btrfs_root *root;
856 struct btrfs_key key;
857 unsigned int nofs_flag;
858 int ret = 0;
859
860 /*
861 * We're holding a transaction handle, so use a NOFS memory allocation
862 * context to avoid deadlock if reclaim happens.
863 */
864 nofs_flag = memalloc_nofs_save();
865 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
866 memalloc_nofs_restore(nofs_flag);
867 if (!root)
868 return ERR_PTR(-ENOMEM);
869
870 root->root_key.objectid = objectid;
871 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
872 root->root_key.offset = 0;
873
874 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
875 0, BTRFS_NESTING_NORMAL);
876 if (IS_ERR(leaf)) {
877 ret = PTR_ERR(leaf);
878 leaf = NULL;
879 goto fail;
880 }
881
882 root->node = leaf;
883 btrfs_mark_buffer_dirty(trans, leaf);
884
885 root->commit_root = btrfs_root_node(root);
886 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
887
888 btrfs_set_root_flags(&root->root_item, 0);
889 btrfs_set_root_limit(&root->root_item, 0);
890 btrfs_set_root_bytenr(&root->root_item, leaf->start);
891 btrfs_set_root_generation(&root->root_item, trans->transid);
892 btrfs_set_root_level(&root->root_item, 0);
893 btrfs_set_root_refs(&root->root_item, 1);
894 btrfs_set_root_used(&root->root_item, leaf->len);
895 btrfs_set_root_last_snapshot(&root->root_item, 0);
896 btrfs_set_root_dirid(&root->root_item, 0);
897 if (is_fstree(objectid))
898 generate_random_guid(root->root_item.uuid);
899 else
900 export_guid(root->root_item.uuid, &guid_null);
901 btrfs_set_root_drop_level(&root->root_item, 0);
902
903 btrfs_tree_unlock(leaf);
904
905 key.objectid = objectid;
906 key.type = BTRFS_ROOT_ITEM_KEY;
907 key.offset = 0;
908 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
909 if (ret)
910 goto fail;
911
912 return root;
913
914 fail:
915 btrfs_put_root(root);
916
917 return ERR_PTR(ret);
918 }
919
alloc_log_tree(struct btrfs_fs_info * fs_info)920 static struct btrfs_root *alloc_log_tree(struct btrfs_fs_info *fs_info)
921 {
922 struct btrfs_root *root;
923
924 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
925 if (!root)
926 return ERR_PTR(-ENOMEM);
927
928 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
929 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
930 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
931
932 return root;
933 }
934
btrfs_alloc_log_tree_node(struct btrfs_trans_handle * trans,struct btrfs_root * root)935 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
936 struct btrfs_root *root)
937 {
938 struct extent_buffer *leaf;
939
940 /*
941 * DON'T set SHAREABLE bit for log trees.
942 *
943 * Log trees are not exposed to user space thus can't be snapshotted,
944 * and they go away before a real commit is actually done.
945 *
946 * They do store pointers to file data extents, and those reference
947 * counts still get updated (along with back refs to the log tree).
948 */
949
950 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
951 NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL);
952 if (IS_ERR(leaf))
953 return PTR_ERR(leaf);
954
955 root->node = leaf;
956
957 btrfs_mark_buffer_dirty(trans, root->node);
958 btrfs_tree_unlock(root->node);
959
960 return 0;
961 }
962
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)963 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
964 struct btrfs_fs_info *fs_info)
965 {
966 struct btrfs_root *log_root;
967
968 log_root = alloc_log_tree(fs_info);
969 if (IS_ERR(log_root))
970 return PTR_ERR(log_root);
971
972 if (!btrfs_is_zoned(fs_info)) {
973 int ret = btrfs_alloc_log_tree_node(trans, log_root);
974
975 if (ret) {
976 btrfs_put_root(log_root);
977 return ret;
978 }
979 }
980
981 WARN_ON(fs_info->log_root_tree);
982 fs_info->log_root_tree = log_root;
983 return 0;
984 }
985
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)986 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
987 struct btrfs_root *root)
988 {
989 struct btrfs_fs_info *fs_info = root->fs_info;
990 struct btrfs_root *log_root;
991 struct btrfs_inode_item *inode_item;
992 int ret;
993
994 log_root = alloc_log_tree(fs_info);
995 if (IS_ERR(log_root))
996 return PTR_ERR(log_root);
997
998 ret = btrfs_alloc_log_tree_node(trans, log_root);
999 if (ret) {
1000 btrfs_put_root(log_root);
1001 return ret;
1002 }
1003
1004 btrfs_set_root_last_trans(log_root, trans->transid);
1005 log_root->root_key.offset = btrfs_root_id(root);
1006
1007 inode_item = &log_root->root_item.inode;
1008 btrfs_set_stack_inode_generation(inode_item, 1);
1009 btrfs_set_stack_inode_size(inode_item, 3);
1010 btrfs_set_stack_inode_nlink(inode_item, 1);
1011 btrfs_set_stack_inode_nbytes(inode_item,
1012 fs_info->nodesize);
1013 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1014
1015 btrfs_set_root_node(&log_root->root_item, log_root->node);
1016
1017 WARN_ON(root->log_root);
1018 root->log_root = log_root;
1019 btrfs_set_root_log_transid(root, 0);
1020 root->log_transid_committed = -1;
1021 btrfs_set_root_last_log_commit(root, 0);
1022 return 0;
1023 }
1024
read_tree_root_path(struct btrfs_root * tree_root,struct btrfs_path * path,const struct btrfs_key * key)1025 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1026 struct btrfs_path *path,
1027 const struct btrfs_key *key)
1028 {
1029 struct btrfs_root *root;
1030 struct btrfs_tree_parent_check check = { 0 };
1031 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1032 u64 generation;
1033 int ret;
1034 int level;
1035
1036 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1037 if (!root)
1038 return ERR_PTR(-ENOMEM);
1039
1040 ret = btrfs_find_root(tree_root, key, path,
1041 &root->root_item, &root->root_key);
1042 if (ret) {
1043 if (ret > 0)
1044 ret = -ENOENT;
1045 goto fail;
1046 }
1047
1048 generation = btrfs_root_generation(&root->root_item);
1049 level = btrfs_root_level(&root->root_item);
1050 check.level = level;
1051 check.transid = generation;
1052 check.owner_root = key->objectid;
1053 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1054 &check);
1055 if (IS_ERR(root->node)) {
1056 ret = PTR_ERR(root->node);
1057 root->node = NULL;
1058 goto fail;
1059 }
1060 if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1061 ret = -EIO;
1062 goto fail;
1063 }
1064
1065 /*
1066 * For real fs, and not log/reloc trees, root owner must
1067 * match its root node owner
1068 */
1069 if (!btrfs_is_testing(fs_info) &&
1070 btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1071 btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
1072 btrfs_root_id(root) != btrfs_header_owner(root->node)) {
1073 btrfs_crit(fs_info,
1074 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1075 btrfs_root_id(root), root->node->start,
1076 btrfs_header_owner(root->node),
1077 btrfs_root_id(root));
1078 ret = -EUCLEAN;
1079 goto fail;
1080 }
1081 root->commit_root = btrfs_root_node(root);
1082 return root;
1083 fail:
1084 btrfs_put_root(root);
1085 return ERR_PTR(ret);
1086 }
1087
btrfs_read_tree_root(struct btrfs_root * tree_root,const struct btrfs_key * key)1088 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1089 const struct btrfs_key *key)
1090 {
1091 struct btrfs_root *root;
1092 struct btrfs_path *path;
1093
1094 path = btrfs_alloc_path();
1095 if (!path)
1096 return ERR_PTR(-ENOMEM);
1097 root = read_tree_root_path(tree_root, path, key);
1098 btrfs_free_path(path);
1099
1100 return root;
1101 }
1102
1103 /*
1104 * Initialize subvolume root in-memory structure
1105 *
1106 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1107 */
btrfs_init_fs_root(struct btrfs_root * root,dev_t anon_dev)1108 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1109 {
1110 int ret;
1111
1112 btrfs_drew_lock_init(&root->snapshot_lock);
1113
1114 if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1115 !btrfs_is_data_reloc_root(root) &&
1116 is_fstree(btrfs_root_id(root))) {
1117 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1118 btrfs_check_and_init_root_item(&root->root_item);
1119 }
1120
1121 /*
1122 * Don't assign anonymous block device to roots that are not exposed to
1123 * userspace, the id pool is limited to 1M
1124 */
1125 if (is_fstree(btrfs_root_id(root)) &&
1126 btrfs_root_refs(&root->root_item) > 0) {
1127 if (!anon_dev) {
1128 ret = get_anon_bdev(&root->anon_dev);
1129 if (ret)
1130 goto fail;
1131 } else {
1132 root->anon_dev = anon_dev;
1133 }
1134 }
1135
1136 mutex_lock(&root->objectid_mutex);
1137 ret = btrfs_init_root_free_objectid(root);
1138 if (ret) {
1139 mutex_unlock(&root->objectid_mutex);
1140 goto fail;
1141 }
1142
1143 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1144
1145 mutex_unlock(&root->objectid_mutex);
1146
1147 return 0;
1148 fail:
1149 /* The caller is responsible to call btrfs_free_fs_root */
1150 return ret;
1151 }
1152
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_id)1153 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1154 u64 root_id)
1155 {
1156 struct btrfs_root *root;
1157
1158 spin_lock(&fs_info->fs_roots_radix_lock);
1159 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1160 (unsigned long)root_id);
1161 root = btrfs_grab_root(root);
1162 spin_unlock(&fs_info->fs_roots_radix_lock);
1163 return root;
1164 }
1165
btrfs_get_global_root(struct btrfs_fs_info * fs_info,u64 objectid)1166 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1167 u64 objectid)
1168 {
1169 struct btrfs_key key = {
1170 .objectid = objectid,
1171 .type = BTRFS_ROOT_ITEM_KEY,
1172 .offset = 0,
1173 };
1174
1175 switch (objectid) {
1176 case BTRFS_ROOT_TREE_OBJECTID:
1177 return btrfs_grab_root(fs_info->tree_root);
1178 case BTRFS_EXTENT_TREE_OBJECTID:
1179 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1180 case BTRFS_CHUNK_TREE_OBJECTID:
1181 return btrfs_grab_root(fs_info->chunk_root);
1182 case BTRFS_DEV_TREE_OBJECTID:
1183 return btrfs_grab_root(fs_info->dev_root);
1184 case BTRFS_CSUM_TREE_OBJECTID:
1185 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1186 case BTRFS_QUOTA_TREE_OBJECTID:
1187 return btrfs_grab_root(fs_info->quota_root);
1188 case BTRFS_UUID_TREE_OBJECTID:
1189 return btrfs_grab_root(fs_info->uuid_root);
1190 case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1191 return btrfs_grab_root(fs_info->block_group_root);
1192 case BTRFS_FREE_SPACE_TREE_OBJECTID:
1193 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1194 case BTRFS_RAID_STRIPE_TREE_OBJECTID:
1195 return btrfs_grab_root(fs_info->stripe_root);
1196 default:
1197 return NULL;
1198 }
1199 }
1200
btrfs_insert_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)1201 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1202 struct btrfs_root *root)
1203 {
1204 int ret;
1205
1206 ret = radix_tree_preload(GFP_NOFS);
1207 if (ret)
1208 return ret;
1209
1210 spin_lock(&fs_info->fs_roots_radix_lock);
1211 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1212 (unsigned long)btrfs_root_id(root),
1213 root);
1214 if (ret == 0) {
1215 btrfs_grab_root(root);
1216 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1217 }
1218 spin_unlock(&fs_info->fs_roots_radix_lock);
1219 radix_tree_preload_end();
1220
1221 return ret;
1222 }
1223
btrfs_check_leaked_roots(const struct btrfs_fs_info * fs_info)1224 void btrfs_check_leaked_roots(const struct btrfs_fs_info *fs_info)
1225 {
1226 #ifdef CONFIG_BTRFS_DEBUG
1227 struct btrfs_root *root;
1228
1229 while (!list_empty(&fs_info->allocated_roots)) {
1230 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1231
1232 root = list_first_entry(&fs_info->allocated_roots,
1233 struct btrfs_root, leak_list);
1234 btrfs_err(fs_info, "leaked root %s refcount %d",
1235 btrfs_root_name(&root->root_key, buf),
1236 refcount_read(&root->refs));
1237 WARN_ON_ONCE(1);
1238 while (refcount_read(&root->refs) > 1)
1239 btrfs_put_root(root);
1240 btrfs_put_root(root);
1241 }
1242 #endif
1243 }
1244
free_global_roots(struct btrfs_fs_info * fs_info)1245 static void free_global_roots(struct btrfs_fs_info *fs_info)
1246 {
1247 struct btrfs_root *root;
1248 struct rb_node *node;
1249
1250 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1251 root = rb_entry(node, struct btrfs_root, rb_node);
1252 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1253 btrfs_put_root(root);
1254 }
1255 }
1256
btrfs_free_fs_info(struct btrfs_fs_info * fs_info)1257 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1258 {
1259 struct percpu_counter *em_counter = &fs_info->evictable_extent_maps;
1260
1261 percpu_counter_destroy(&fs_info->stats_read_blocks);
1262 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1263 percpu_counter_destroy(&fs_info->delalloc_bytes);
1264 percpu_counter_destroy(&fs_info->ordered_bytes);
1265 if (percpu_counter_initialized(em_counter))
1266 ASSERT(percpu_counter_sum_positive(em_counter) == 0);
1267 percpu_counter_destroy(em_counter);
1268 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1269 btrfs_free_csum_hash(fs_info);
1270 btrfs_free_stripe_hash_table(fs_info);
1271 btrfs_free_ref_cache(fs_info);
1272 kfree(fs_info->balance_ctl);
1273 kfree(fs_info->delayed_root);
1274 free_global_roots(fs_info);
1275 btrfs_put_root(fs_info->tree_root);
1276 btrfs_put_root(fs_info->chunk_root);
1277 btrfs_put_root(fs_info->dev_root);
1278 btrfs_put_root(fs_info->quota_root);
1279 btrfs_put_root(fs_info->uuid_root);
1280 btrfs_put_root(fs_info->fs_root);
1281 btrfs_put_root(fs_info->data_reloc_root);
1282 btrfs_put_root(fs_info->block_group_root);
1283 btrfs_put_root(fs_info->stripe_root);
1284 btrfs_check_leaked_roots(fs_info);
1285 btrfs_extent_buffer_leak_debug_check(fs_info);
1286 kfree(fs_info->super_copy);
1287 kfree(fs_info->super_for_commit);
1288 kvfree(fs_info);
1289 }
1290
1291
1292 /*
1293 * Get an in-memory reference of a root structure.
1294 *
1295 * For essential trees like root/extent tree, we grab it from fs_info directly.
1296 * For subvolume trees, we check the cached filesystem roots first. If not
1297 * found, then read it from disk and add it to cached fs roots.
1298 *
1299 * Caller should release the root by calling btrfs_put_root() after the usage.
1300 *
1301 * NOTE: Reloc and log trees can't be read by this function as they share the
1302 * same root objectid.
1303 *
1304 * @objectid: root id
1305 * @anon_dev: preallocated anonymous block device number for new roots,
1306 * pass NULL for a new allocation.
1307 * @check_ref: whether to check root item references, If true, return -ENOENT
1308 * for orphan roots
1309 */
btrfs_get_root_ref(struct btrfs_fs_info * fs_info,u64 objectid,dev_t * anon_dev,bool check_ref)1310 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1311 u64 objectid, dev_t *anon_dev,
1312 bool check_ref)
1313 {
1314 struct btrfs_root *root;
1315 struct btrfs_path *path;
1316 struct btrfs_key key;
1317 int ret;
1318
1319 root = btrfs_get_global_root(fs_info, objectid);
1320 if (root)
1321 return root;
1322
1323 /*
1324 * If we're called for non-subvolume trees, and above function didn't
1325 * find one, do not try to read it from disk.
1326 *
1327 * This is namely for free-space-tree and quota tree, which can change
1328 * at runtime and should only be grabbed from fs_info.
1329 */
1330 if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1331 return ERR_PTR(-ENOENT);
1332 again:
1333 root = btrfs_lookup_fs_root(fs_info, objectid);
1334 if (root) {
1335 /*
1336 * Some other caller may have read out the newly inserted
1337 * subvolume already (for things like backref walk etc). Not
1338 * that common but still possible. In that case, we just need
1339 * to free the anon_dev.
1340 */
1341 if (unlikely(anon_dev && *anon_dev)) {
1342 free_anon_bdev(*anon_dev);
1343 *anon_dev = 0;
1344 }
1345
1346 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1347 btrfs_put_root(root);
1348 return ERR_PTR(-ENOENT);
1349 }
1350 return root;
1351 }
1352
1353 key.objectid = objectid;
1354 key.type = BTRFS_ROOT_ITEM_KEY;
1355 key.offset = (u64)-1;
1356 root = btrfs_read_tree_root(fs_info->tree_root, &key);
1357 if (IS_ERR(root))
1358 return root;
1359
1360 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1361 ret = -ENOENT;
1362 goto fail;
1363 }
1364
1365 ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0);
1366 if (ret)
1367 goto fail;
1368
1369 path = btrfs_alloc_path();
1370 if (!path) {
1371 ret = -ENOMEM;
1372 goto fail;
1373 }
1374 key.objectid = BTRFS_ORPHAN_OBJECTID;
1375 key.type = BTRFS_ORPHAN_ITEM_KEY;
1376 key.offset = objectid;
1377
1378 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1379 btrfs_free_path(path);
1380 if (ret < 0)
1381 goto fail;
1382 if (ret == 0)
1383 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1384
1385 ret = btrfs_insert_fs_root(fs_info, root);
1386 if (ret) {
1387 if (ret == -EEXIST) {
1388 btrfs_put_root(root);
1389 goto again;
1390 }
1391 goto fail;
1392 }
1393 return root;
1394 fail:
1395 /*
1396 * If our caller provided us an anonymous device, then it's his
1397 * responsibility to free it in case we fail. So we have to set our
1398 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1399 * and once again by our caller.
1400 */
1401 if (anon_dev && *anon_dev)
1402 root->anon_dev = 0;
1403 btrfs_put_root(root);
1404 return ERR_PTR(ret);
1405 }
1406
1407 /*
1408 * Get in-memory reference of a root structure
1409 *
1410 * @objectid: tree objectid
1411 * @check_ref: if set, verify that the tree exists and the item has at least
1412 * one reference
1413 */
btrfs_get_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,bool check_ref)1414 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1415 u64 objectid, bool check_ref)
1416 {
1417 return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref);
1418 }
1419
1420 /*
1421 * Get in-memory reference of a root structure, created as new, optionally pass
1422 * the anonymous block device id
1423 *
1424 * @objectid: tree objectid
1425 * @anon_dev: if NULL, allocate a new anonymous block device or use the
1426 * parameter value if not NULL
1427 */
btrfs_get_new_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,dev_t * anon_dev)1428 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1429 u64 objectid, dev_t *anon_dev)
1430 {
1431 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1432 }
1433
1434 /*
1435 * Return a root for the given objectid.
1436 *
1437 * @fs_info: the fs_info
1438 * @objectid: the objectid we need to lookup
1439 *
1440 * This is exclusively used for backref walking, and exists specifically because
1441 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1442 * creation time, which means we may have to read the tree_root in order to look
1443 * up a fs root that is not in memory. If the root is not in memory we will
1444 * read the tree root commit root and look up the fs root from there. This is a
1445 * temporary root, it will not be inserted into the radix tree as it doesn't
1446 * have the most uptodate information, it'll simply be discarded once the
1447 * backref code is finished using the root.
1448 */
btrfs_get_fs_root_commit_root(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 objectid)1449 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1450 struct btrfs_path *path,
1451 u64 objectid)
1452 {
1453 struct btrfs_root *root;
1454 struct btrfs_key key;
1455
1456 ASSERT(path->search_commit_root && path->skip_locking);
1457
1458 /*
1459 * This can return -ENOENT if we ask for a root that doesn't exist, but
1460 * since this is called via the backref walking code we won't be looking
1461 * up a root that doesn't exist, unless there's corruption. So if root
1462 * != NULL just return it.
1463 */
1464 root = btrfs_get_global_root(fs_info, objectid);
1465 if (root)
1466 return root;
1467
1468 root = btrfs_lookup_fs_root(fs_info, objectid);
1469 if (root)
1470 return root;
1471
1472 key.objectid = objectid;
1473 key.type = BTRFS_ROOT_ITEM_KEY;
1474 key.offset = (u64)-1;
1475 root = read_tree_root_path(fs_info->tree_root, path, &key);
1476 btrfs_release_path(path);
1477
1478 return root;
1479 }
1480
cleaner_kthread(void * arg)1481 static int cleaner_kthread(void *arg)
1482 {
1483 struct btrfs_fs_info *fs_info = arg;
1484 int again;
1485
1486 while (1) {
1487 again = 0;
1488
1489 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1490
1491 /* Make the cleaner go to sleep early. */
1492 if (btrfs_need_cleaner_sleep(fs_info))
1493 goto sleep;
1494
1495 /*
1496 * Do not do anything if we might cause open_ctree() to block
1497 * before we have finished mounting the filesystem.
1498 */
1499 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1500 goto sleep;
1501
1502 if (!mutex_trylock(&fs_info->cleaner_mutex))
1503 goto sleep;
1504
1505 /*
1506 * Avoid the problem that we change the status of the fs
1507 * during the above check and trylock.
1508 */
1509 if (btrfs_need_cleaner_sleep(fs_info)) {
1510 mutex_unlock(&fs_info->cleaner_mutex);
1511 goto sleep;
1512 }
1513
1514 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1515 btrfs_sysfs_feature_update(fs_info);
1516
1517 btrfs_run_delayed_iputs(fs_info);
1518
1519 again = btrfs_clean_one_deleted_snapshot(fs_info);
1520 mutex_unlock(&fs_info->cleaner_mutex);
1521
1522 /*
1523 * The defragger has dealt with the R/O remount and umount,
1524 * needn't do anything special here.
1525 */
1526 btrfs_run_defrag_inodes(fs_info);
1527
1528 /*
1529 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1530 * with relocation (btrfs_relocate_chunk) and relocation
1531 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1532 * after acquiring fs_info->reclaim_bgs_lock. So we
1533 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1534 * unused block groups.
1535 */
1536 btrfs_delete_unused_bgs(fs_info);
1537
1538 /*
1539 * Reclaim block groups in the reclaim_bgs list after we deleted
1540 * all unused block_groups. This possibly gives us some more free
1541 * space.
1542 */
1543 btrfs_reclaim_bgs(fs_info);
1544 sleep:
1545 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1546 if (kthread_should_park())
1547 kthread_parkme();
1548 if (kthread_should_stop())
1549 return 0;
1550 if (!again) {
1551 set_current_state(TASK_INTERRUPTIBLE);
1552 schedule();
1553 __set_current_state(TASK_RUNNING);
1554 }
1555 }
1556 }
1557
transaction_kthread(void * arg)1558 static int transaction_kthread(void *arg)
1559 {
1560 struct btrfs_root *root = arg;
1561 struct btrfs_fs_info *fs_info = root->fs_info;
1562 struct btrfs_trans_handle *trans;
1563 struct btrfs_transaction *cur;
1564 u64 transid;
1565 time64_t delta;
1566 unsigned long delay;
1567 bool cannot_commit;
1568
1569 do {
1570 cannot_commit = false;
1571 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1572 mutex_lock(&fs_info->transaction_kthread_mutex);
1573
1574 spin_lock(&fs_info->trans_lock);
1575 cur = fs_info->running_transaction;
1576 if (!cur) {
1577 spin_unlock(&fs_info->trans_lock);
1578 goto sleep;
1579 }
1580
1581 delta = ktime_get_seconds() - cur->start_time;
1582 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1583 cur->state < TRANS_STATE_COMMIT_PREP &&
1584 delta < fs_info->commit_interval) {
1585 spin_unlock(&fs_info->trans_lock);
1586 delay -= msecs_to_jiffies((delta - 1) * 1000);
1587 delay = min(delay,
1588 msecs_to_jiffies(fs_info->commit_interval * 1000));
1589 goto sleep;
1590 }
1591 transid = cur->transid;
1592 spin_unlock(&fs_info->trans_lock);
1593
1594 /* If the file system is aborted, this will always fail. */
1595 trans = btrfs_attach_transaction(root);
1596 if (IS_ERR(trans)) {
1597 if (PTR_ERR(trans) != -ENOENT)
1598 cannot_commit = true;
1599 goto sleep;
1600 }
1601 if (transid == trans->transid) {
1602 btrfs_commit_transaction(trans);
1603 } else {
1604 btrfs_end_transaction(trans);
1605 }
1606 sleep:
1607 wake_up_process(fs_info->cleaner_kthread);
1608 mutex_unlock(&fs_info->transaction_kthread_mutex);
1609
1610 if (BTRFS_FS_ERROR(fs_info))
1611 btrfs_cleanup_transaction(fs_info);
1612 if (!kthread_should_stop() &&
1613 (!btrfs_transaction_blocked(fs_info) ||
1614 cannot_commit))
1615 schedule_timeout_interruptible(delay);
1616 } while (!kthread_should_stop());
1617 return 0;
1618 }
1619
1620 /*
1621 * This will find the highest generation in the array of root backups. The
1622 * index of the highest array is returned, or -EINVAL if we can't find
1623 * anything.
1624 *
1625 * We check to make sure the array is valid by comparing the
1626 * generation of the latest root in the array with the generation
1627 * in the super block. If they don't match we pitch it.
1628 */
find_newest_super_backup(struct btrfs_fs_info * info)1629 static int find_newest_super_backup(struct btrfs_fs_info *info)
1630 {
1631 const u64 newest_gen = btrfs_super_generation(info->super_copy);
1632 u64 cur;
1633 struct btrfs_root_backup *root_backup;
1634 int i;
1635
1636 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1637 root_backup = info->super_copy->super_roots + i;
1638 cur = btrfs_backup_tree_root_gen(root_backup);
1639 if (cur == newest_gen)
1640 return i;
1641 }
1642
1643 return -EINVAL;
1644 }
1645
1646 /*
1647 * copy all the root pointers into the super backup array.
1648 * this will bump the backup pointer by one when it is
1649 * done
1650 */
backup_super_roots(struct btrfs_fs_info * info)1651 static void backup_super_roots(struct btrfs_fs_info *info)
1652 {
1653 const int next_backup = info->backup_root_index;
1654 struct btrfs_root_backup *root_backup;
1655
1656 root_backup = info->super_for_commit->super_roots + next_backup;
1657
1658 /*
1659 * make sure all of our padding and empty slots get zero filled
1660 * regardless of which ones we use today
1661 */
1662 memset(root_backup, 0, sizeof(*root_backup));
1663
1664 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1665
1666 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1667 btrfs_set_backup_tree_root_gen(root_backup,
1668 btrfs_header_generation(info->tree_root->node));
1669
1670 btrfs_set_backup_tree_root_level(root_backup,
1671 btrfs_header_level(info->tree_root->node));
1672
1673 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1674 btrfs_set_backup_chunk_root_gen(root_backup,
1675 btrfs_header_generation(info->chunk_root->node));
1676 btrfs_set_backup_chunk_root_level(root_backup,
1677 btrfs_header_level(info->chunk_root->node));
1678
1679 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1680 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1681 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1682
1683 btrfs_set_backup_extent_root(root_backup,
1684 extent_root->node->start);
1685 btrfs_set_backup_extent_root_gen(root_backup,
1686 btrfs_header_generation(extent_root->node));
1687 btrfs_set_backup_extent_root_level(root_backup,
1688 btrfs_header_level(extent_root->node));
1689
1690 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1691 btrfs_set_backup_csum_root_gen(root_backup,
1692 btrfs_header_generation(csum_root->node));
1693 btrfs_set_backup_csum_root_level(root_backup,
1694 btrfs_header_level(csum_root->node));
1695 }
1696
1697 /*
1698 * we might commit during log recovery, which happens before we set
1699 * the fs_root. Make sure it is valid before we fill it in.
1700 */
1701 if (info->fs_root && info->fs_root->node) {
1702 btrfs_set_backup_fs_root(root_backup,
1703 info->fs_root->node->start);
1704 btrfs_set_backup_fs_root_gen(root_backup,
1705 btrfs_header_generation(info->fs_root->node));
1706 btrfs_set_backup_fs_root_level(root_backup,
1707 btrfs_header_level(info->fs_root->node));
1708 }
1709
1710 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1711 btrfs_set_backup_dev_root_gen(root_backup,
1712 btrfs_header_generation(info->dev_root->node));
1713 btrfs_set_backup_dev_root_level(root_backup,
1714 btrfs_header_level(info->dev_root->node));
1715
1716 btrfs_set_backup_total_bytes(root_backup,
1717 btrfs_super_total_bytes(info->super_copy));
1718 btrfs_set_backup_bytes_used(root_backup,
1719 btrfs_super_bytes_used(info->super_copy));
1720 btrfs_set_backup_num_devices(root_backup,
1721 btrfs_super_num_devices(info->super_copy));
1722
1723 /*
1724 * if we don't copy this out to the super_copy, it won't get remembered
1725 * for the next commit
1726 */
1727 memcpy(&info->super_copy->super_roots,
1728 &info->super_for_commit->super_roots,
1729 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1730 }
1731
1732 /*
1733 * Reads a backup root based on the passed priority. Prio 0 is the newest, prio
1734 * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1735 *
1736 * @fs_info: filesystem whose backup roots need to be read
1737 * @priority: priority of backup root required
1738 *
1739 * Returns backup root index on success and -EINVAL otherwise.
1740 */
read_backup_root(struct btrfs_fs_info * fs_info,u8 priority)1741 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1742 {
1743 int backup_index = find_newest_super_backup(fs_info);
1744 struct btrfs_super_block *super = fs_info->super_copy;
1745 struct btrfs_root_backup *root_backup;
1746
1747 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1748 if (priority == 0)
1749 return backup_index;
1750
1751 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1752 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1753 } else {
1754 return -EINVAL;
1755 }
1756
1757 root_backup = super->super_roots + backup_index;
1758
1759 btrfs_set_super_generation(super,
1760 btrfs_backup_tree_root_gen(root_backup));
1761 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1762 btrfs_set_super_root_level(super,
1763 btrfs_backup_tree_root_level(root_backup));
1764 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1765
1766 /*
1767 * Fixme: the total bytes and num_devices need to match or we should
1768 * need a fsck
1769 */
1770 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1771 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1772
1773 return backup_index;
1774 }
1775
1776 /* helper to cleanup workers */
btrfs_stop_all_workers(struct btrfs_fs_info * fs_info)1777 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1778 {
1779 btrfs_destroy_workqueue(fs_info->fixup_workers);
1780 btrfs_destroy_workqueue(fs_info->delalloc_workers);
1781 btrfs_destroy_workqueue(fs_info->workers);
1782 if (fs_info->endio_workers)
1783 destroy_workqueue(fs_info->endio_workers);
1784 if (fs_info->rmw_workers)
1785 destroy_workqueue(fs_info->rmw_workers);
1786 if (fs_info->compressed_write_workers)
1787 destroy_workqueue(fs_info->compressed_write_workers);
1788 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1789 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1790 btrfs_destroy_workqueue(fs_info->delayed_workers);
1791 btrfs_destroy_workqueue(fs_info->caching_workers);
1792 btrfs_destroy_workqueue(fs_info->flush_workers);
1793 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1794 if (fs_info->discard_ctl.discard_workers)
1795 destroy_workqueue(fs_info->discard_ctl.discard_workers);
1796 /*
1797 * Now that all other work queues are destroyed, we can safely destroy
1798 * the queues used for metadata I/O, since tasks from those other work
1799 * queues can do metadata I/O operations.
1800 */
1801 if (fs_info->endio_meta_workers)
1802 destroy_workqueue(fs_info->endio_meta_workers);
1803 }
1804
free_root_extent_buffers(struct btrfs_root * root)1805 static void free_root_extent_buffers(struct btrfs_root *root)
1806 {
1807 if (root) {
1808 free_extent_buffer(root->node);
1809 free_extent_buffer(root->commit_root);
1810 root->node = NULL;
1811 root->commit_root = NULL;
1812 }
1813 }
1814
free_global_root_pointers(struct btrfs_fs_info * fs_info)1815 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1816 {
1817 struct btrfs_root *root, *tmp;
1818
1819 rbtree_postorder_for_each_entry_safe(root, tmp,
1820 &fs_info->global_root_tree,
1821 rb_node)
1822 free_root_extent_buffers(root);
1823 }
1824
1825 /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,bool free_chunk_root)1826 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1827 {
1828 free_root_extent_buffers(info->tree_root);
1829
1830 free_global_root_pointers(info);
1831 free_root_extent_buffers(info->dev_root);
1832 free_root_extent_buffers(info->quota_root);
1833 free_root_extent_buffers(info->uuid_root);
1834 free_root_extent_buffers(info->fs_root);
1835 free_root_extent_buffers(info->data_reloc_root);
1836 free_root_extent_buffers(info->block_group_root);
1837 free_root_extent_buffers(info->stripe_root);
1838 if (free_chunk_root)
1839 free_root_extent_buffers(info->chunk_root);
1840 }
1841
btrfs_put_root(struct btrfs_root * root)1842 void btrfs_put_root(struct btrfs_root *root)
1843 {
1844 if (!root)
1845 return;
1846
1847 if (refcount_dec_and_test(&root->refs)) {
1848 if (WARN_ON(!xa_empty(&root->inodes)))
1849 xa_destroy(&root->inodes);
1850 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1851 if (root->anon_dev)
1852 free_anon_bdev(root->anon_dev);
1853 free_root_extent_buffers(root);
1854 #ifdef CONFIG_BTRFS_DEBUG
1855 spin_lock(&root->fs_info->fs_roots_radix_lock);
1856 list_del_init(&root->leak_list);
1857 spin_unlock(&root->fs_info->fs_roots_radix_lock);
1858 #endif
1859 kfree(root);
1860 }
1861 }
1862
btrfs_free_fs_roots(struct btrfs_fs_info * fs_info)1863 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1864 {
1865 int ret;
1866 struct btrfs_root *gang[8];
1867 int i;
1868
1869 while (!list_empty(&fs_info->dead_roots)) {
1870 gang[0] = list_entry(fs_info->dead_roots.next,
1871 struct btrfs_root, root_list);
1872 list_del(&gang[0]->root_list);
1873
1874 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1875 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1876 btrfs_put_root(gang[0]);
1877 }
1878
1879 while (1) {
1880 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1881 (void **)gang, 0,
1882 ARRAY_SIZE(gang));
1883 if (!ret)
1884 break;
1885 for (i = 0; i < ret; i++)
1886 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1887 }
1888 }
1889
btrfs_init_scrub(struct btrfs_fs_info * fs_info)1890 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1891 {
1892 mutex_init(&fs_info->scrub_lock);
1893 atomic_set(&fs_info->scrubs_running, 0);
1894 atomic_set(&fs_info->scrub_pause_req, 0);
1895 atomic_set(&fs_info->scrubs_paused, 0);
1896 atomic_set(&fs_info->scrub_cancel_req, 0);
1897 init_waitqueue_head(&fs_info->scrub_pause_wait);
1898 refcount_set(&fs_info->scrub_workers_refcnt, 0);
1899 }
1900
btrfs_init_balance(struct btrfs_fs_info * fs_info)1901 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1902 {
1903 spin_lock_init(&fs_info->balance_lock);
1904 mutex_init(&fs_info->balance_mutex);
1905 atomic_set(&fs_info->balance_pause_req, 0);
1906 atomic_set(&fs_info->balance_cancel_req, 0);
1907 fs_info->balance_ctl = NULL;
1908 init_waitqueue_head(&fs_info->balance_wait_q);
1909 atomic_set(&fs_info->reloc_cancel_req, 0);
1910 }
1911
btrfs_init_btree_inode(struct super_block * sb)1912 static int btrfs_init_btree_inode(struct super_block *sb)
1913 {
1914 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1915 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1916 fs_info->tree_root);
1917 struct inode *inode;
1918
1919 inode = new_inode(sb);
1920 if (!inode)
1921 return -ENOMEM;
1922
1923 btrfs_set_inode_number(BTRFS_I(inode), BTRFS_BTREE_INODE_OBJECTID);
1924 set_nlink(inode, 1);
1925 /*
1926 * we set the i_size on the btree inode to the max possible int.
1927 * the real end of the address space is determined by all of
1928 * the devices in the system
1929 */
1930 inode->i_size = OFFSET_MAX;
1931 inode->i_mapping->a_ops = &btree_aops;
1932 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1933
1934 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1935 IO_TREE_BTREE_INODE_IO);
1936 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1937
1938 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
1939 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1940 __insert_inode_hash(inode, hash);
1941 fs_info->btree_inode = inode;
1942
1943 return 0;
1944 }
1945
btrfs_init_dev_replace_locks(struct btrfs_fs_info * fs_info)1946 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1947 {
1948 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1949 init_rwsem(&fs_info->dev_replace.rwsem);
1950 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
1951 }
1952
btrfs_init_qgroup(struct btrfs_fs_info * fs_info)1953 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1954 {
1955 spin_lock_init(&fs_info->qgroup_lock);
1956 mutex_init(&fs_info->qgroup_ioctl_lock);
1957 fs_info->qgroup_tree = RB_ROOT;
1958 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1959 fs_info->qgroup_seq = 1;
1960 fs_info->qgroup_ulist = NULL;
1961 fs_info->qgroup_rescan_running = false;
1962 fs_info->qgroup_drop_subtree_thres = BTRFS_QGROUP_DROP_SUBTREE_THRES_DEFAULT;
1963 mutex_init(&fs_info->qgroup_rescan_lock);
1964 }
1965
btrfs_init_workqueues(struct btrfs_fs_info * fs_info)1966 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
1967 {
1968 u32 max_active = fs_info->thread_pool_size;
1969 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1970 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
1971
1972 fs_info->workers =
1973 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
1974
1975 fs_info->delalloc_workers =
1976 btrfs_alloc_workqueue(fs_info, "delalloc",
1977 flags, max_active, 2);
1978
1979 fs_info->flush_workers =
1980 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1981 flags, max_active, 0);
1982
1983 fs_info->caching_workers =
1984 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
1985
1986 fs_info->fixup_workers =
1987 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
1988
1989 fs_info->endio_workers =
1990 alloc_workqueue("btrfs-endio", flags, max_active);
1991 fs_info->endio_meta_workers =
1992 alloc_workqueue("btrfs-endio-meta", flags, max_active);
1993 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
1994 fs_info->endio_write_workers =
1995 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
1996 max_active, 2);
1997 fs_info->compressed_write_workers =
1998 alloc_workqueue("btrfs-compressed-write", flags, max_active);
1999 fs_info->endio_freespace_worker =
2000 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2001 max_active, 0);
2002 fs_info->delayed_workers =
2003 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2004 max_active, 0);
2005 fs_info->qgroup_rescan_workers =
2006 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
2007 ordered_flags);
2008 fs_info->discard_ctl.discard_workers =
2009 alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
2010
2011 if (!(fs_info->workers &&
2012 fs_info->delalloc_workers && fs_info->flush_workers &&
2013 fs_info->endio_workers && fs_info->endio_meta_workers &&
2014 fs_info->compressed_write_workers &&
2015 fs_info->endio_write_workers &&
2016 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2017 fs_info->caching_workers && fs_info->fixup_workers &&
2018 fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2019 fs_info->discard_ctl.discard_workers)) {
2020 return -ENOMEM;
2021 }
2022
2023 return 0;
2024 }
2025
btrfs_init_csum_hash(struct btrfs_fs_info * fs_info,u16 csum_type)2026 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2027 {
2028 struct crypto_shash *csum_shash;
2029 const char *csum_driver = btrfs_super_csum_driver(csum_type);
2030
2031 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2032
2033 if (IS_ERR(csum_shash)) {
2034 btrfs_err(fs_info, "error allocating %s hash for checksum",
2035 csum_driver);
2036 return PTR_ERR(csum_shash);
2037 }
2038
2039 fs_info->csum_shash = csum_shash;
2040
2041 /*
2042 * Check if the checksum implementation is a fast accelerated one.
2043 * As-is this is a bit of a hack and should be replaced once the csum
2044 * implementations provide that information themselves.
2045 */
2046 switch (csum_type) {
2047 case BTRFS_CSUM_TYPE_CRC32:
2048 if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2049 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2050 break;
2051 case BTRFS_CSUM_TYPE_XXHASH:
2052 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2053 break;
2054 default:
2055 break;
2056 }
2057
2058 btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2059 btrfs_super_csum_name(csum_type),
2060 crypto_shash_driver_name(csum_shash));
2061 return 0;
2062 }
2063
btrfs_replay_log(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2064 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2065 struct btrfs_fs_devices *fs_devices)
2066 {
2067 int ret;
2068 struct btrfs_tree_parent_check check = { 0 };
2069 struct btrfs_root *log_tree_root;
2070 struct btrfs_super_block *disk_super = fs_info->super_copy;
2071 u64 bytenr = btrfs_super_log_root(disk_super);
2072 int level = btrfs_super_log_root_level(disk_super);
2073
2074 if (fs_devices->rw_devices == 0) {
2075 btrfs_warn(fs_info, "log replay required on RO media");
2076 return -EIO;
2077 }
2078
2079 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2080 GFP_KERNEL);
2081 if (!log_tree_root)
2082 return -ENOMEM;
2083
2084 check.level = level;
2085 check.transid = fs_info->generation + 1;
2086 check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2087 log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2088 if (IS_ERR(log_tree_root->node)) {
2089 btrfs_warn(fs_info, "failed to read log tree");
2090 ret = PTR_ERR(log_tree_root->node);
2091 log_tree_root->node = NULL;
2092 btrfs_put_root(log_tree_root);
2093 return ret;
2094 }
2095 if (!extent_buffer_uptodate(log_tree_root->node)) {
2096 btrfs_err(fs_info, "failed to read log tree");
2097 btrfs_put_root(log_tree_root);
2098 return -EIO;
2099 }
2100
2101 /* returns with log_tree_root freed on success */
2102 ret = btrfs_recover_log_trees(log_tree_root);
2103 if (ret) {
2104 btrfs_handle_fs_error(fs_info, ret,
2105 "Failed to recover log tree");
2106 btrfs_put_root(log_tree_root);
2107 return ret;
2108 }
2109
2110 if (sb_rdonly(fs_info->sb)) {
2111 ret = btrfs_commit_super(fs_info);
2112 if (ret)
2113 return ret;
2114 }
2115
2116 return 0;
2117 }
2118
load_global_roots_objectid(struct btrfs_root * tree_root,struct btrfs_path * path,u64 objectid,const char * name)2119 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2120 struct btrfs_path *path, u64 objectid,
2121 const char *name)
2122 {
2123 struct btrfs_fs_info *fs_info = tree_root->fs_info;
2124 struct btrfs_root *root;
2125 u64 max_global_id = 0;
2126 int ret;
2127 struct btrfs_key key = {
2128 .objectid = objectid,
2129 .type = BTRFS_ROOT_ITEM_KEY,
2130 .offset = 0,
2131 };
2132 bool found = false;
2133
2134 /* If we have IGNOREDATACSUMS skip loading these roots. */
2135 if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2136 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2137 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state);
2138 return 0;
2139 }
2140
2141 while (1) {
2142 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2143 if (ret < 0)
2144 break;
2145
2146 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2147 ret = btrfs_next_leaf(tree_root, path);
2148 if (ret) {
2149 if (ret > 0)
2150 ret = 0;
2151 break;
2152 }
2153 }
2154 ret = 0;
2155
2156 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2157 if (key.objectid != objectid)
2158 break;
2159 btrfs_release_path(path);
2160
2161 /*
2162 * Just worry about this for extent tree, it'll be the same for
2163 * everybody.
2164 */
2165 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2166 max_global_id = max(max_global_id, key.offset);
2167
2168 found = true;
2169 root = read_tree_root_path(tree_root, path, &key);
2170 if (IS_ERR(root)) {
2171 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2172 ret = PTR_ERR(root);
2173 break;
2174 }
2175 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2176 ret = btrfs_global_root_insert(root);
2177 if (ret) {
2178 btrfs_put_root(root);
2179 break;
2180 }
2181 key.offset++;
2182 }
2183 btrfs_release_path(path);
2184
2185 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2186 fs_info->nr_global_roots = max_global_id + 1;
2187
2188 if (!found || ret) {
2189 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2190 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state);
2191
2192 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2193 ret = ret ? ret : -ENOENT;
2194 else
2195 ret = 0;
2196 btrfs_err(fs_info, "failed to load root %s", name);
2197 }
2198 return ret;
2199 }
2200
load_global_roots(struct btrfs_root * tree_root)2201 static int load_global_roots(struct btrfs_root *tree_root)
2202 {
2203 struct btrfs_path *path;
2204 int ret = 0;
2205
2206 path = btrfs_alloc_path();
2207 if (!path)
2208 return -ENOMEM;
2209
2210 ret = load_global_roots_objectid(tree_root, path,
2211 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2212 if (ret)
2213 goto out;
2214 ret = load_global_roots_objectid(tree_root, path,
2215 BTRFS_CSUM_TREE_OBJECTID, "csum");
2216 if (ret)
2217 goto out;
2218 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2219 goto out;
2220 ret = load_global_roots_objectid(tree_root, path,
2221 BTRFS_FREE_SPACE_TREE_OBJECTID,
2222 "free space");
2223 out:
2224 btrfs_free_path(path);
2225 return ret;
2226 }
2227
btrfs_read_roots(struct btrfs_fs_info * fs_info)2228 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2229 {
2230 struct btrfs_root *tree_root = fs_info->tree_root;
2231 struct btrfs_root *root;
2232 struct btrfs_key location;
2233 int ret;
2234
2235 ASSERT(fs_info->tree_root);
2236
2237 ret = load_global_roots(tree_root);
2238 if (ret)
2239 return ret;
2240
2241 location.type = BTRFS_ROOT_ITEM_KEY;
2242 location.offset = 0;
2243
2244 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2245 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2246 root = btrfs_read_tree_root(tree_root, &location);
2247 if (IS_ERR(root)) {
2248 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2249 ret = PTR_ERR(root);
2250 goto out;
2251 }
2252 } else {
2253 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2254 fs_info->block_group_root = root;
2255 }
2256 }
2257
2258 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2259 root = btrfs_read_tree_root(tree_root, &location);
2260 if (IS_ERR(root)) {
2261 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2262 ret = PTR_ERR(root);
2263 goto out;
2264 }
2265 } else {
2266 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2267 fs_info->dev_root = root;
2268 }
2269 /* Initialize fs_info for all devices in any case */
2270 ret = btrfs_init_devices_late(fs_info);
2271 if (ret)
2272 goto out;
2273
2274 /*
2275 * This tree can share blocks with some other fs tree during relocation
2276 * and we need a proper setup by btrfs_get_fs_root
2277 */
2278 root = btrfs_get_fs_root(tree_root->fs_info,
2279 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2280 if (IS_ERR(root)) {
2281 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2282 ret = PTR_ERR(root);
2283 goto out;
2284 }
2285 } else {
2286 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2287 fs_info->data_reloc_root = root;
2288 }
2289
2290 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2291 root = btrfs_read_tree_root(tree_root, &location);
2292 if (!IS_ERR(root)) {
2293 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2294 fs_info->quota_root = root;
2295 }
2296
2297 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2298 root = btrfs_read_tree_root(tree_root, &location);
2299 if (IS_ERR(root)) {
2300 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2301 ret = PTR_ERR(root);
2302 if (ret != -ENOENT)
2303 goto out;
2304 }
2305 } else {
2306 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2307 fs_info->uuid_root = root;
2308 }
2309
2310 if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
2311 location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID;
2312 root = btrfs_read_tree_root(tree_root, &location);
2313 if (IS_ERR(root)) {
2314 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2315 ret = PTR_ERR(root);
2316 goto out;
2317 }
2318 } else {
2319 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2320 fs_info->stripe_root = root;
2321 }
2322 }
2323
2324 return 0;
2325 out:
2326 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2327 location.objectid, ret);
2328 return ret;
2329 }
2330
validate_sys_chunk_array(const struct btrfs_fs_info * fs_info,const struct btrfs_super_block * sb)2331 static int validate_sys_chunk_array(const struct btrfs_fs_info *fs_info,
2332 const struct btrfs_super_block *sb)
2333 {
2334 unsigned int cur = 0; /* Offset inside the sys chunk array */
2335 /*
2336 * At sb read time, fs_info is not fully initialized. Thus we have
2337 * to use super block sectorsize, which should have been validated.
2338 */
2339 const u32 sectorsize = btrfs_super_sectorsize(sb);
2340 u32 sys_array_size = btrfs_super_sys_array_size(sb);
2341
2342 if (sys_array_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2343 btrfs_err(fs_info, "system chunk array too big %u > %u",
2344 sys_array_size, BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2345 return -EUCLEAN;
2346 }
2347
2348 while (cur < sys_array_size) {
2349 struct btrfs_disk_key *disk_key;
2350 struct btrfs_chunk *chunk;
2351 struct btrfs_key key;
2352 u64 type;
2353 u16 num_stripes;
2354 u32 len;
2355 int ret;
2356
2357 disk_key = (struct btrfs_disk_key *)(sb->sys_chunk_array + cur);
2358 len = sizeof(*disk_key);
2359
2360 if (cur + len > sys_array_size)
2361 goto short_read;
2362 cur += len;
2363
2364 btrfs_disk_key_to_cpu(&key, disk_key);
2365 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
2366 btrfs_err(fs_info,
2367 "unexpected item type %u in sys_array at offset %u",
2368 key.type, cur);
2369 return -EUCLEAN;
2370 }
2371 chunk = (struct btrfs_chunk *)(sb->sys_chunk_array + cur);
2372 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2373 if (cur + btrfs_chunk_item_size(num_stripes) > sys_array_size)
2374 goto short_read;
2375 type = btrfs_stack_chunk_type(chunk);
2376 if (!(type & BTRFS_BLOCK_GROUP_SYSTEM)) {
2377 btrfs_err(fs_info,
2378 "invalid chunk type %llu in sys_array at offset %u",
2379 type, cur);
2380 return -EUCLEAN;
2381 }
2382 ret = btrfs_check_chunk_valid(fs_info, NULL, chunk, key.offset,
2383 sectorsize);
2384 if (ret < 0)
2385 return ret;
2386 cur += btrfs_chunk_item_size(num_stripes);
2387 }
2388 return 0;
2389 short_read:
2390 btrfs_err(fs_info,
2391 "super block sys chunk array short read, cur=%u sys_array_size=%u",
2392 cur, sys_array_size);
2393 return -EUCLEAN;
2394 }
2395
2396 /*
2397 * Real super block validation
2398 * NOTE: super csum type and incompat features will not be checked here.
2399 *
2400 * @sb: super block to check
2401 * @mirror_num: the super block number to check its bytenr:
2402 * 0 the primary (1st) sb
2403 * 1, 2 2nd and 3rd backup copy
2404 * -1 skip bytenr check
2405 */
btrfs_validate_super(const struct btrfs_fs_info * fs_info,const struct btrfs_super_block * sb,int mirror_num)2406 int btrfs_validate_super(const struct btrfs_fs_info *fs_info,
2407 const struct btrfs_super_block *sb, int mirror_num)
2408 {
2409 u64 nodesize = btrfs_super_nodesize(sb);
2410 u64 sectorsize = btrfs_super_sectorsize(sb);
2411 int ret = 0;
2412 const bool ignore_flags = btrfs_test_opt(fs_info, IGNORESUPERFLAGS);
2413
2414 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2415 btrfs_err(fs_info, "no valid FS found");
2416 ret = -EINVAL;
2417 }
2418 if ((btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)) {
2419 if (!ignore_flags) {
2420 btrfs_err(fs_info,
2421 "unrecognized or unsupported super flag 0x%llx",
2422 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2423 ret = -EINVAL;
2424 } else {
2425 btrfs_info(fs_info,
2426 "unrecognized or unsupported super flags: 0x%llx, ignored",
2427 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2428 }
2429 }
2430 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2431 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2432 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2433 ret = -EINVAL;
2434 }
2435 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2436 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2437 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2438 ret = -EINVAL;
2439 }
2440 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2441 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2442 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2443 ret = -EINVAL;
2444 }
2445
2446 /*
2447 * Check sectorsize and nodesize first, other check will need it.
2448 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2449 */
2450 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2451 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2452 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2453 ret = -EINVAL;
2454 }
2455
2456 /*
2457 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2458 *
2459 * We can support 16K sectorsize with 64K page size without problem,
2460 * but such sectorsize/pagesize combination doesn't make much sense.
2461 * 4K will be our future standard, PAGE_SIZE is supported from the very
2462 * beginning.
2463 */
2464 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2465 btrfs_err(fs_info,
2466 "sectorsize %llu not yet supported for page size %lu",
2467 sectorsize, PAGE_SIZE);
2468 ret = -EINVAL;
2469 }
2470
2471 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2472 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2473 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2474 ret = -EINVAL;
2475 }
2476 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2477 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2478 le32_to_cpu(sb->__unused_leafsize), nodesize);
2479 ret = -EINVAL;
2480 }
2481
2482 /* Root alignment check */
2483 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2484 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2485 btrfs_super_root(sb));
2486 ret = -EINVAL;
2487 }
2488 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2489 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2490 btrfs_super_chunk_root(sb));
2491 ret = -EINVAL;
2492 }
2493 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2494 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2495 btrfs_super_log_root(sb));
2496 ret = -EINVAL;
2497 }
2498
2499 if (!fs_info->fs_devices->temp_fsid &&
2500 memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2501 btrfs_err(fs_info,
2502 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2503 sb->fsid, fs_info->fs_devices->fsid);
2504 ret = -EINVAL;
2505 }
2506
2507 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2508 BTRFS_FSID_SIZE) != 0) {
2509 btrfs_err(fs_info,
2510 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2511 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2512 ret = -EINVAL;
2513 }
2514
2515 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2516 BTRFS_FSID_SIZE) != 0) {
2517 btrfs_err(fs_info,
2518 "dev_item UUID does not match metadata fsid: %pU != %pU",
2519 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2520 ret = -EINVAL;
2521 }
2522
2523 /*
2524 * Artificial requirement for block-group-tree to force newer features
2525 * (free-space-tree, no-holes) so the test matrix is smaller.
2526 */
2527 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2528 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2529 !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2530 btrfs_err(fs_info,
2531 "block-group-tree feature requires free-space-tree and no-holes");
2532 ret = -EINVAL;
2533 }
2534
2535 /*
2536 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2537 * done later
2538 */
2539 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2540 btrfs_err(fs_info, "bytes_used is too small %llu",
2541 btrfs_super_bytes_used(sb));
2542 ret = -EINVAL;
2543 }
2544 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2545 btrfs_err(fs_info, "invalid stripesize %u",
2546 btrfs_super_stripesize(sb));
2547 ret = -EINVAL;
2548 }
2549 if (btrfs_super_num_devices(sb) > (1UL << 31))
2550 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2551 btrfs_super_num_devices(sb));
2552 if (btrfs_super_num_devices(sb) == 0) {
2553 btrfs_err(fs_info, "number of devices is 0");
2554 ret = -EINVAL;
2555 }
2556
2557 if (mirror_num >= 0 &&
2558 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2559 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2560 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2561 ret = -EINVAL;
2562 }
2563
2564 ret = validate_sys_chunk_array(fs_info, sb);
2565
2566 /*
2567 * Obvious sys_chunk_array corruptions, it must hold at least one key
2568 * and one chunk
2569 */
2570 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2571 btrfs_err(fs_info, "system chunk array too big %u > %u",
2572 btrfs_super_sys_array_size(sb),
2573 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2574 ret = -EINVAL;
2575 }
2576 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2577 + sizeof(struct btrfs_chunk)) {
2578 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2579 btrfs_super_sys_array_size(sb),
2580 sizeof(struct btrfs_disk_key)
2581 + sizeof(struct btrfs_chunk));
2582 ret = -EINVAL;
2583 }
2584
2585 /*
2586 * The generation is a global counter, we'll trust it more than the others
2587 * but it's still possible that it's the one that's wrong.
2588 */
2589 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2590 btrfs_warn(fs_info,
2591 "suspicious: generation < chunk_root_generation: %llu < %llu",
2592 btrfs_super_generation(sb),
2593 btrfs_super_chunk_root_generation(sb));
2594 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2595 && btrfs_super_cache_generation(sb) != (u64)-1)
2596 btrfs_warn(fs_info,
2597 "suspicious: generation < cache_generation: %llu < %llu",
2598 btrfs_super_generation(sb),
2599 btrfs_super_cache_generation(sb));
2600
2601 return ret;
2602 }
2603
2604 /*
2605 * Validation of super block at mount time.
2606 * Some checks already done early at mount time, like csum type and incompat
2607 * flags will be skipped.
2608 */
btrfs_validate_mount_super(struct btrfs_fs_info * fs_info)2609 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2610 {
2611 return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2612 }
2613
2614 /*
2615 * Validation of super block at write time.
2616 * Some checks like bytenr check will be skipped as their values will be
2617 * overwritten soon.
2618 * Extra checks like csum type and incompat flags will be done here.
2619 */
btrfs_validate_write_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb)2620 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2621 struct btrfs_super_block *sb)
2622 {
2623 int ret;
2624
2625 ret = btrfs_validate_super(fs_info, sb, -1);
2626 if (ret < 0)
2627 goto out;
2628 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2629 ret = -EUCLEAN;
2630 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2631 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2632 goto out;
2633 }
2634 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2635 ret = -EUCLEAN;
2636 btrfs_err(fs_info,
2637 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2638 btrfs_super_incompat_flags(sb),
2639 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2640 goto out;
2641 }
2642 out:
2643 if (ret < 0)
2644 btrfs_err(fs_info,
2645 "super block corruption detected before writing it to disk");
2646 return ret;
2647 }
2648
load_super_root(struct btrfs_root * root,u64 bytenr,u64 gen,int level)2649 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2650 {
2651 struct btrfs_tree_parent_check check = {
2652 .level = level,
2653 .transid = gen,
2654 .owner_root = btrfs_root_id(root)
2655 };
2656 int ret = 0;
2657
2658 root->node = read_tree_block(root->fs_info, bytenr, &check);
2659 if (IS_ERR(root->node)) {
2660 ret = PTR_ERR(root->node);
2661 root->node = NULL;
2662 return ret;
2663 }
2664 if (!extent_buffer_uptodate(root->node)) {
2665 free_extent_buffer(root->node);
2666 root->node = NULL;
2667 return -EIO;
2668 }
2669
2670 btrfs_set_root_node(&root->root_item, root->node);
2671 root->commit_root = btrfs_root_node(root);
2672 btrfs_set_root_refs(&root->root_item, 1);
2673 return ret;
2674 }
2675
load_important_roots(struct btrfs_fs_info * fs_info)2676 static int load_important_roots(struct btrfs_fs_info *fs_info)
2677 {
2678 struct btrfs_super_block *sb = fs_info->super_copy;
2679 u64 gen, bytenr;
2680 int level, ret;
2681
2682 bytenr = btrfs_super_root(sb);
2683 gen = btrfs_super_generation(sb);
2684 level = btrfs_super_root_level(sb);
2685 ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2686 if (ret) {
2687 btrfs_warn(fs_info, "couldn't read tree root");
2688 return ret;
2689 }
2690 return 0;
2691 }
2692
init_tree_roots(struct btrfs_fs_info * fs_info)2693 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2694 {
2695 int backup_index = find_newest_super_backup(fs_info);
2696 struct btrfs_super_block *sb = fs_info->super_copy;
2697 struct btrfs_root *tree_root = fs_info->tree_root;
2698 bool handle_error = false;
2699 int ret = 0;
2700 int i;
2701
2702 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2703 if (handle_error) {
2704 if (!IS_ERR(tree_root->node))
2705 free_extent_buffer(tree_root->node);
2706 tree_root->node = NULL;
2707
2708 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2709 break;
2710
2711 free_root_pointers(fs_info, 0);
2712
2713 /*
2714 * Don't use the log in recovery mode, it won't be
2715 * valid
2716 */
2717 btrfs_set_super_log_root(sb, 0);
2718
2719 btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2720 ret = read_backup_root(fs_info, i);
2721 backup_index = ret;
2722 if (ret < 0)
2723 return ret;
2724 }
2725
2726 ret = load_important_roots(fs_info);
2727 if (ret) {
2728 handle_error = true;
2729 continue;
2730 }
2731
2732 /*
2733 * No need to hold btrfs_root::objectid_mutex since the fs
2734 * hasn't been fully initialised and we are the only user
2735 */
2736 ret = btrfs_init_root_free_objectid(tree_root);
2737 if (ret < 0) {
2738 handle_error = true;
2739 continue;
2740 }
2741
2742 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2743
2744 ret = btrfs_read_roots(fs_info);
2745 if (ret < 0) {
2746 handle_error = true;
2747 continue;
2748 }
2749
2750 /* All successful */
2751 fs_info->generation = btrfs_header_generation(tree_root->node);
2752 btrfs_set_last_trans_committed(fs_info, fs_info->generation);
2753 fs_info->last_reloc_trans = 0;
2754
2755 /* Always begin writing backup roots after the one being used */
2756 if (backup_index < 0) {
2757 fs_info->backup_root_index = 0;
2758 } else {
2759 fs_info->backup_root_index = backup_index + 1;
2760 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2761 }
2762 break;
2763 }
2764
2765 return ret;
2766 }
2767
btrfs_init_fs_info(struct btrfs_fs_info * fs_info)2768 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2769 {
2770 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2771 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2772 INIT_LIST_HEAD(&fs_info->trans_list);
2773 INIT_LIST_HEAD(&fs_info->dead_roots);
2774 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2775 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2776 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2777 spin_lock_init(&fs_info->delalloc_root_lock);
2778 spin_lock_init(&fs_info->trans_lock);
2779 spin_lock_init(&fs_info->fs_roots_radix_lock);
2780 spin_lock_init(&fs_info->delayed_iput_lock);
2781 spin_lock_init(&fs_info->defrag_inodes_lock);
2782 spin_lock_init(&fs_info->super_lock);
2783 spin_lock_init(&fs_info->buffer_lock);
2784 spin_lock_init(&fs_info->unused_bgs_lock);
2785 spin_lock_init(&fs_info->treelog_bg_lock);
2786 spin_lock_init(&fs_info->zone_active_bgs_lock);
2787 spin_lock_init(&fs_info->relocation_bg_lock);
2788 rwlock_init(&fs_info->tree_mod_log_lock);
2789 rwlock_init(&fs_info->global_root_lock);
2790 mutex_init(&fs_info->unused_bg_unpin_mutex);
2791 mutex_init(&fs_info->reclaim_bgs_lock);
2792 mutex_init(&fs_info->reloc_mutex);
2793 mutex_init(&fs_info->delalloc_root_mutex);
2794 mutex_init(&fs_info->zoned_meta_io_lock);
2795 mutex_init(&fs_info->zoned_data_reloc_io_lock);
2796 seqlock_init(&fs_info->profiles_lock);
2797
2798 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2799 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2800 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2801 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2802 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2803 BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2804 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2805 BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2806 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2807 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2808 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2809 BTRFS_LOCKDEP_TRANS_COMPLETED);
2810
2811 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2812 INIT_LIST_HEAD(&fs_info->space_info);
2813 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2814 INIT_LIST_HEAD(&fs_info->unused_bgs);
2815 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2816 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2817 #ifdef CONFIG_BTRFS_DEBUG
2818 INIT_LIST_HEAD(&fs_info->allocated_roots);
2819 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2820 spin_lock_init(&fs_info->eb_leak_lock);
2821 #endif
2822 fs_info->mapping_tree = RB_ROOT_CACHED;
2823 rwlock_init(&fs_info->mapping_tree_lock);
2824 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2825 BTRFS_BLOCK_RSV_GLOBAL);
2826 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2827 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2828 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2829 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2830 BTRFS_BLOCK_RSV_DELOPS);
2831 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2832 BTRFS_BLOCK_RSV_DELREFS);
2833
2834 atomic_set(&fs_info->async_delalloc_pages, 0);
2835 atomic_set(&fs_info->defrag_running, 0);
2836 atomic_set(&fs_info->nr_delayed_iputs, 0);
2837 atomic64_set(&fs_info->tree_mod_seq, 0);
2838 fs_info->global_root_tree = RB_ROOT;
2839 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2840 fs_info->metadata_ratio = 0;
2841 fs_info->defrag_inodes = RB_ROOT;
2842 atomic64_set(&fs_info->free_chunk_space, 0);
2843 fs_info->tree_mod_log = RB_ROOT;
2844 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2845 btrfs_init_ref_verify(fs_info);
2846
2847 fs_info->thread_pool_size = min_t(unsigned long,
2848 num_online_cpus() + 2, 8);
2849
2850 INIT_LIST_HEAD(&fs_info->ordered_roots);
2851 spin_lock_init(&fs_info->ordered_root_lock);
2852
2853 btrfs_init_scrub(fs_info);
2854 btrfs_init_balance(fs_info);
2855 btrfs_init_async_reclaim_work(fs_info);
2856 btrfs_init_extent_map_shrinker_work(fs_info);
2857
2858 rwlock_init(&fs_info->block_group_cache_lock);
2859 fs_info->block_group_cache_tree = RB_ROOT_CACHED;
2860
2861 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2862 IO_TREE_FS_EXCLUDED_EXTENTS);
2863
2864 mutex_init(&fs_info->ordered_operations_mutex);
2865 mutex_init(&fs_info->tree_log_mutex);
2866 mutex_init(&fs_info->chunk_mutex);
2867 mutex_init(&fs_info->transaction_kthread_mutex);
2868 mutex_init(&fs_info->cleaner_mutex);
2869 mutex_init(&fs_info->ro_block_group_mutex);
2870 init_rwsem(&fs_info->commit_root_sem);
2871 init_rwsem(&fs_info->cleanup_work_sem);
2872 init_rwsem(&fs_info->subvol_sem);
2873 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2874
2875 btrfs_init_dev_replace_locks(fs_info);
2876 btrfs_init_qgroup(fs_info);
2877 btrfs_discard_init(fs_info);
2878
2879 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2880 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2881
2882 init_waitqueue_head(&fs_info->transaction_throttle);
2883 init_waitqueue_head(&fs_info->transaction_wait);
2884 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2885 init_waitqueue_head(&fs_info->async_submit_wait);
2886 init_waitqueue_head(&fs_info->delayed_iputs_wait);
2887
2888 /* Usable values until the real ones are cached from the superblock */
2889 fs_info->nodesize = 4096;
2890 fs_info->sectorsize = 4096;
2891 fs_info->sectorsize_bits = ilog2(4096);
2892 fs_info->stripesize = 4096;
2893
2894 /* Default compress algorithm when user does -o compress */
2895 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2896
2897 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2898
2899 spin_lock_init(&fs_info->swapfile_pins_lock);
2900 fs_info->swapfile_pins = RB_ROOT;
2901
2902 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2903 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2904 }
2905
init_mount_fs_info(struct btrfs_fs_info * fs_info,struct super_block * sb)2906 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2907 {
2908 int ret;
2909
2910 fs_info->sb = sb;
2911 /* Temporary fixed values for block size until we read the superblock. */
2912 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2913 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2914
2915 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2916 if (ret)
2917 return ret;
2918
2919 ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL);
2920 if (ret)
2921 return ret;
2922
2923 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2924 if (ret)
2925 return ret;
2926
2927 ret = percpu_counter_init(&fs_info->stats_read_blocks, 0, GFP_KERNEL);
2928 if (ret)
2929 return ret;
2930
2931 fs_info->dirty_metadata_batch = PAGE_SIZE *
2932 (1 + ilog2(nr_cpu_ids));
2933
2934 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2935 if (ret)
2936 return ret;
2937
2938 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2939 GFP_KERNEL);
2940 if (ret)
2941 return ret;
2942
2943 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2944 GFP_KERNEL);
2945 if (!fs_info->delayed_root)
2946 return -ENOMEM;
2947 btrfs_init_delayed_root(fs_info->delayed_root);
2948
2949 if (sb_rdonly(sb))
2950 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2951 if (btrfs_test_opt(fs_info, IGNOREMETACSUMS))
2952 set_bit(BTRFS_FS_STATE_SKIP_META_CSUMS, &fs_info->fs_state);
2953
2954 return btrfs_alloc_stripe_hash_table(fs_info);
2955 }
2956
btrfs_uuid_rescan_kthread(void * data)2957 static int btrfs_uuid_rescan_kthread(void *data)
2958 {
2959 struct btrfs_fs_info *fs_info = data;
2960 int ret;
2961
2962 /*
2963 * 1st step is to iterate through the existing UUID tree and
2964 * to delete all entries that contain outdated data.
2965 * 2nd step is to add all missing entries to the UUID tree.
2966 */
2967 ret = btrfs_uuid_tree_iterate(fs_info);
2968 if (ret < 0) {
2969 if (ret != -EINTR)
2970 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2971 ret);
2972 up(&fs_info->uuid_tree_rescan_sem);
2973 return ret;
2974 }
2975 return btrfs_uuid_scan_kthread(data);
2976 }
2977
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)2978 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2979 {
2980 struct task_struct *task;
2981
2982 down(&fs_info->uuid_tree_rescan_sem);
2983 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2984 if (IS_ERR(task)) {
2985 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2986 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2987 up(&fs_info->uuid_tree_rescan_sem);
2988 return PTR_ERR(task);
2989 }
2990
2991 return 0;
2992 }
2993
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)2994 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2995 {
2996 u64 root_objectid = 0;
2997 struct btrfs_root *gang[8];
2998 int ret = 0;
2999
3000 while (1) {
3001 unsigned int found;
3002
3003 spin_lock(&fs_info->fs_roots_radix_lock);
3004 found = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3005 (void **)gang, root_objectid,
3006 ARRAY_SIZE(gang));
3007 if (!found) {
3008 spin_unlock(&fs_info->fs_roots_radix_lock);
3009 break;
3010 }
3011 root_objectid = btrfs_root_id(gang[found - 1]) + 1;
3012
3013 for (int i = 0; i < found; i++) {
3014 /* Avoid to grab roots in dead_roots. */
3015 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3016 gang[i] = NULL;
3017 continue;
3018 }
3019 /* Grab all the search result for later use. */
3020 gang[i] = btrfs_grab_root(gang[i]);
3021 }
3022 spin_unlock(&fs_info->fs_roots_radix_lock);
3023
3024 for (int i = 0; i < found; i++) {
3025 if (!gang[i])
3026 continue;
3027 root_objectid = btrfs_root_id(gang[i]);
3028 /*
3029 * Continue to release the remaining roots after the first
3030 * error without cleanup and preserve the first error
3031 * for the return.
3032 */
3033 if (!ret)
3034 ret = btrfs_orphan_cleanup(gang[i]);
3035 btrfs_put_root(gang[i]);
3036 }
3037 if (ret)
3038 break;
3039
3040 root_objectid++;
3041 }
3042 return ret;
3043 }
3044
3045 /*
3046 * Mounting logic specific to read-write file systems. Shared by open_ctree
3047 * and btrfs_remount when remounting from read-only to read-write.
3048 */
btrfs_start_pre_rw_mount(struct btrfs_fs_info * fs_info)3049 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3050 {
3051 int ret;
3052 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3053 bool rebuild_free_space_tree = false;
3054
3055 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3056 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3057 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
3058 btrfs_warn(fs_info,
3059 "'clear_cache' option is ignored with extent tree v2");
3060 else
3061 rebuild_free_space_tree = true;
3062 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3063 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3064 btrfs_warn(fs_info, "free space tree is invalid");
3065 rebuild_free_space_tree = true;
3066 }
3067
3068 if (rebuild_free_space_tree) {
3069 btrfs_info(fs_info, "rebuilding free space tree");
3070 ret = btrfs_rebuild_free_space_tree(fs_info);
3071 if (ret) {
3072 btrfs_warn(fs_info,
3073 "failed to rebuild free space tree: %d", ret);
3074 goto out;
3075 }
3076 }
3077
3078 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3079 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
3080 btrfs_info(fs_info, "disabling free space tree");
3081 ret = btrfs_delete_free_space_tree(fs_info);
3082 if (ret) {
3083 btrfs_warn(fs_info,
3084 "failed to disable free space tree: %d", ret);
3085 goto out;
3086 }
3087 }
3088
3089 /*
3090 * btrfs_find_orphan_roots() is responsible for finding all the dead
3091 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3092 * them into the fs_info->fs_roots_radix tree. This must be done before
3093 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3094 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3095 * item before the root's tree is deleted - this means that if we unmount
3096 * or crash before the deletion completes, on the next mount we will not
3097 * delete what remains of the tree because the orphan item does not
3098 * exists anymore, which is what tells us we have a pending deletion.
3099 */
3100 ret = btrfs_find_orphan_roots(fs_info);
3101 if (ret)
3102 goto out;
3103
3104 ret = btrfs_cleanup_fs_roots(fs_info);
3105 if (ret)
3106 goto out;
3107
3108 down_read(&fs_info->cleanup_work_sem);
3109 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3110 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3111 up_read(&fs_info->cleanup_work_sem);
3112 goto out;
3113 }
3114 up_read(&fs_info->cleanup_work_sem);
3115
3116 mutex_lock(&fs_info->cleaner_mutex);
3117 ret = btrfs_recover_relocation(fs_info);
3118 mutex_unlock(&fs_info->cleaner_mutex);
3119 if (ret < 0) {
3120 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3121 goto out;
3122 }
3123
3124 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3125 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3126 btrfs_info(fs_info, "creating free space tree");
3127 ret = btrfs_create_free_space_tree(fs_info);
3128 if (ret) {
3129 btrfs_warn(fs_info,
3130 "failed to create free space tree: %d", ret);
3131 goto out;
3132 }
3133 }
3134
3135 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3136 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3137 if (ret)
3138 goto out;
3139 }
3140
3141 ret = btrfs_resume_balance_async(fs_info);
3142 if (ret)
3143 goto out;
3144
3145 ret = btrfs_resume_dev_replace_async(fs_info);
3146 if (ret) {
3147 btrfs_warn(fs_info, "failed to resume dev_replace");
3148 goto out;
3149 }
3150
3151 btrfs_qgroup_rescan_resume(fs_info);
3152
3153 if (!fs_info->uuid_root) {
3154 btrfs_info(fs_info, "creating UUID tree");
3155 ret = btrfs_create_uuid_tree(fs_info);
3156 if (ret) {
3157 btrfs_warn(fs_info,
3158 "failed to create the UUID tree %d", ret);
3159 goto out;
3160 }
3161 }
3162
3163 out:
3164 return ret;
3165 }
3166
3167 /*
3168 * Do various sanity and dependency checks of different features.
3169 *
3170 * @is_rw_mount: If the mount is read-write.
3171 *
3172 * This is the place for less strict checks (like for subpage or artificial
3173 * feature dependencies).
3174 *
3175 * For strict checks or possible corruption detection, see
3176 * btrfs_validate_super().
3177 *
3178 * This should be called after btrfs_parse_options(), as some mount options
3179 * (space cache related) can modify on-disk format like free space tree and
3180 * screw up certain feature dependencies.
3181 */
btrfs_check_features(struct btrfs_fs_info * fs_info,bool is_rw_mount)3182 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3183 {
3184 struct btrfs_super_block *disk_super = fs_info->super_copy;
3185 u64 incompat = btrfs_super_incompat_flags(disk_super);
3186 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3187 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3188
3189 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3190 btrfs_err(fs_info,
3191 "cannot mount because of unknown incompat features (0x%llx)",
3192 incompat);
3193 return -EINVAL;
3194 }
3195
3196 /* Runtime limitation for mixed block groups. */
3197 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3198 (fs_info->sectorsize != fs_info->nodesize)) {
3199 btrfs_err(fs_info,
3200 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3201 fs_info->nodesize, fs_info->sectorsize);
3202 return -EINVAL;
3203 }
3204
3205 /* Mixed backref is an always-enabled feature. */
3206 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3207
3208 /* Set compression related flags just in case. */
3209 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3210 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3211 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3212 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3213
3214 /*
3215 * An ancient flag, which should really be marked deprecated.
3216 * Such runtime limitation doesn't really need a incompat flag.
3217 */
3218 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3219 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3220
3221 if (compat_ro_unsupp && is_rw_mount) {
3222 btrfs_err(fs_info,
3223 "cannot mount read-write because of unknown compat_ro features (0x%llx)",
3224 compat_ro);
3225 return -EINVAL;
3226 }
3227
3228 /*
3229 * We have unsupported RO compat features, although RO mounted, we
3230 * should not cause any metadata writes, including log replay.
3231 * Or we could screw up whatever the new feature requires.
3232 */
3233 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3234 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3235 btrfs_err(fs_info,
3236 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3237 compat_ro);
3238 return -EINVAL;
3239 }
3240
3241 /*
3242 * Artificial limitations for block group tree, to force
3243 * block-group-tree to rely on no-holes and free-space-tree.
3244 */
3245 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3246 (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3247 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3248 btrfs_err(fs_info,
3249 "block-group-tree feature requires no-holes and free-space-tree features");
3250 return -EINVAL;
3251 }
3252
3253 /*
3254 * Subpage runtime limitation on v1 cache.
3255 *
3256 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3257 * we're already defaulting to v2 cache, no need to bother v1 as it's
3258 * going to be deprecated anyway.
3259 */
3260 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3261 btrfs_warn(fs_info,
3262 "v1 space cache is not supported for page size %lu with sectorsize %u",
3263 PAGE_SIZE, fs_info->sectorsize);
3264 return -EINVAL;
3265 }
3266
3267 /* This can be called by remount, we need to protect the super block. */
3268 spin_lock(&fs_info->super_lock);
3269 btrfs_set_super_incompat_flags(disk_super, incompat);
3270 spin_unlock(&fs_info->super_lock);
3271
3272 return 0;
3273 }
3274
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices)3275 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices)
3276 {
3277 u32 sectorsize;
3278 u32 nodesize;
3279 u32 stripesize;
3280 u64 generation;
3281 u16 csum_type;
3282 struct btrfs_super_block *disk_super;
3283 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3284 struct btrfs_root *tree_root;
3285 struct btrfs_root *chunk_root;
3286 int ret;
3287 int level;
3288
3289 ret = init_mount_fs_info(fs_info, sb);
3290 if (ret)
3291 goto fail;
3292
3293 /* These need to be init'ed before we start creating inodes and such. */
3294 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3295 GFP_KERNEL);
3296 fs_info->tree_root = tree_root;
3297 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3298 GFP_KERNEL);
3299 fs_info->chunk_root = chunk_root;
3300 if (!tree_root || !chunk_root) {
3301 ret = -ENOMEM;
3302 goto fail;
3303 }
3304
3305 ret = btrfs_init_btree_inode(sb);
3306 if (ret)
3307 goto fail;
3308
3309 invalidate_bdev(fs_devices->latest_dev->bdev);
3310
3311 /*
3312 * Read super block and check the signature bytes only
3313 */
3314 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3315 if (IS_ERR(disk_super)) {
3316 ret = PTR_ERR(disk_super);
3317 goto fail_alloc;
3318 }
3319
3320 btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
3321 /*
3322 * Verify the type first, if that or the checksum value are
3323 * corrupted, we'll find out
3324 */
3325 csum_type = btrfs_super_csum_type(disk_super);
3326 if (!btrfs_supported_super_csum(csum_type)) {
3327 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3328 csum_type);
3329 ret = -EINVAL;
3330 btrfs_release_disk_super(disk_super);
3331 goto fail_alloc;
3332 }
3333
3334 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3335
3336 ret = btrfs_init_csum_hash(fs_info, csum_type);
3337 if (ret) {
3338 btrfs_release_disk_super(disk_super);
3339 goto fail_alloc;
3340 }
3341
3342 /*
3343 * We want to check superblock checksum, the type is stored inside.
3344 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3345 */
3346 if (btrfs_check_super_csum(fs_info, disk_super)) {
3347 btrfs_err(fs_info, "superblock checksum mismatch");
3348 ret = -EINVAL;
3349 btrfs_release_disk_super(disk_super);
3350 goto fail_alloc;
3351 }
3352
3353 /*
3354 * super_copy is zeroed at allocation time and we never touch the
3355 * following bytes up to INFO_SIZE, the checksum is calculated from
3356 * the whole block of INFO_SIZE
3357 */
3358 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3359 btrfs_release_disk_super(disk_super);
3360
3361 disk_super = fs_info->super_copy;
3362
3363 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3364 sizeof(*fs_info->super_for_commit));
3365
3366 ret = btrfs_validate_mount_super(fs_info);
3367 if (ret) {
3368 btrfs_err(fs_info, "superblock contains fatal errors");
3369 ret = -EINVAL;
3370 goto fail_alloc;
3371 }
3372
3373 if (!btrfs_super_root(disk_super)) {
3374 btrfs_err(fs_info, "invalid superblock tree root bytenr");
3375 ret = -EINVAL;
3376 goto fail_alloc;
3377 }
3378
3379 /* check FS state, whether FS is broken. */
3380 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3381 WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
3382
3383 /* Set up fs_info before parsing mount options */
3384 nodesize = btrfs_super_nodesize(disk_super);
3385 sectorsize = btrfs_super_sectorsize(disk_super);
3386 stripesize = sectorsize;
3387 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3388 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3389
3390 fs_info->nodesize = nodesize;
3391 fs_info->sectorsize = sectorsize;
3392 fs_info->sectorsize_bits = ilog2(sectorsize);
3393 fs_info->sectors_per_page = (PAGE_SIZE >> fs_info->sectorsize_bits);
3394 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3395 fs_info->stripesize = stripesize;
3396 fs_info->fs_devices->fs_info = fs_info;
3397
3398 /*
3399 * Handle the space caching options appropriately now that we have the
3400 * super block loaded and validated.
3401 */
3402 btrfs_set_free_space_cache_settings(fs_info);
3403
3404 if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) {
3405 ret = -EINVAL;
3406 goto fail_alloc;
3407 }
3408
3409 ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3410 if (ret < 0)
3411 goto fail_alloc;
3412
3413 /*
3414 * At this point our mount options are validated, if we set ->max_inline
3415 * to something non-standard make sure we truncate it to sectorsize.
3416 */
3417 fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize);
3418
3419 if (sectorsize < PAGE_SIZE)
3420 btrfs_warn(fs_info,
3421 "read-write for sector size %u with page size %lu is experimental",
3422 sectorsize, PAGE_SIZE);
3423
3424 ret = btrfs_init_workqueues(fs_info);
3425 if (ret)
3426 goto fail_sb_buffer;
3427
3428 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3429 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3430
3431 /* Update the values for the current filesystem. */
3432 sb->s_blocksize = sectorsize;
3433 sb->s_blocksize_bits = blksize_bits(sectorsize);
3434 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3435
3436 mutex_lock(&fs_info->chunk_mutex);
3437 ret = btrfs_read_sys_array(fs_info);
3438 mutex_unlock(&fs_info->chunk_mutex);
3439 if (ret) {
3440 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3441 goto fail_sb_buffer;
3442 }
3443
3444 generation = btrfs_super_chunk_root_generation(disk_super);
3445 level = btrfs_super_chunk_root_level(disk_super);
3446 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3447 generation, level);
3448 if (ret) {
3449 btrfs_err(fs_info, "failed to read chunk root");
3450 goto fail_tree_roots;
3451 }
3452
3453 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3454 offsetof(struct btrfs_header, chunk_tree_uuid),
3455 BTRFS_UUID_SIZE);
3456
3457 ret = btrfs_read_chunk_tree(fs_info);
3458 if (ret) {
3459 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3460 goto fail_tree_roots;
3461 }
3462
3463 /*
3464 * At this point we know all the devices that make this filesystem,
3465 * including the seed devices but we don't know yet if the replace
3466 * target is required. So free devices that are not part of this
3467 * filesystem but skip the replace target device which is checked
3468 * below in btrfs_init_dev_replace().
3469 */
3470 btrfs_free_extra_devids(fs_devices);
3471 if (!fs_devices->latest_dev->bdev) {
3472 btrfs_err(fs_info, "failed to read devices");
3473 ret = -EIO;
3474 goto fail_tree_roots;
3475 }
3476
3477 ret = init_tree_roots(fs_info);
3478 if (ret)
3479 goto fail_tree_roots;
3480
3481 /*
3482 * Get zone type information of zoned block devices. This will also
3483 * handle emulation of a zoned filesystem if a regular device has the
3484 * zoned incompat feature flag set.
3485 */
3486 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3487 if (ret) {
3488 btrfs_err(fs_info,
3489 "zoned: failed to read device zone info: %d", ret);
3490 goto fail_block_groups;
3491 }
3492
3493 /*
3494 * If we have a uuid root and we're not being told to rescan we need to
3495 * check the generation here so we can set the
3496 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3497 * transaction during a balance or the log replay without updating the
3498 * uuid generation, and then if we crash we would rescan the uuid tree,
3499 * even though it was perfectly fine.
3500 */
3501 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3502 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3503 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3504
3505 ret = btrfs_verify_dev_extents(fs_info);
3506 if (ret) {
3507 btrfs_err(fs_info,
3508 "failed to verify dev extents against chunks: %d",
3509 ret);
3510 goto fail_block_groups;
3511 }
3512 ret = btrfs_recover_balance(fs_info);
3513 if (ret) {
3514 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3515 goto fail_block_groups;
3516 }
3517
3518 ret = btrfs_init_dev_stats(fs_info);
3519 if (ret) {
3520 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3521 goto fail_block_groups;
3522 }
3523
3524 ret = btrfs_init_dev_replace(fs_info);
3525 if (ret) {
3526 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3527 goto fail_block_groups;
3528 }
3529
3530 ret = btrfs_check_zoned_mode(fs_info);
3531 if (ret) {
3532 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3533 ret);
3534 goto fail_block_groups;
3535 }
3536
3537 ret = btrfs_sysfs_add_fsid(fs_devices);
3538 if (ret) {
3539 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3540 ret);
3541 goto fail_block_groups;
3542 }
3543
3544 ret = btrfs_sysfs_add_mounted(fs_info);
3545 if (ret) {
3546 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3547 goto fail_fsdev_sysfs;
3548 }
3549
3550 ret = btrfs_init_space_info(fs_info);
3551 if (ret) {
3552 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3553 goto fail_sysfs;
3554 }
3555
3556 ret = btrfs_read_block_groups(fs_info);
3557 if (ret) {
3558 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3559 goto fail_sysfs;
3560 }
3561
3562 btrfs_free_zone_cache(fs_info);
3563
3564 btrfs_check_active_zone_reservation(fs_info);
3565
3566 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3567 !btrfs_check_rw_degradable(fs_info, NULL)) {
3568 btrfs_warn(fs_info,
3569 "writable mount is not allowed due to too many missing devices");
3570 ret = -EINVAL;
3571 goto fail_sysfs;
3572 }
3573
3574 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3575 "btrfs-cleaner");
3576 if (IS_ERR(fs_info->cleaner_kthread)) {
3577 ret = PTR_ERR(fs_info->cleaner_kthread);
3578 goto fail_sysfs;
3579 }
3580
3581 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3582 tree_root,
3583 "btrfs-transaction");
3584 if (IS_ERR(fs_info->transaction_kthread)) {
3585 ret = PTR_ERR(fs_info->transaction_kthread);
3586 goto fail_cleaner;
3587 }
3588
3589 ret = btrfs_read_qgroup_config(fs_info);
3590 if (ret)
3591 goto fail_trans_kthread;
3592
3593 if (btrfs_build_ref_tree(fs_info))
3594 btrfs_err(fs_info, "couldn't build ref tree");
3595
3596 /* do not make disk changes in broken FS or nologreplay is given */
3597 if (btrfs_super_log_root(disk_super) != 0 &&
3598 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3599 btrfs_info(fs_info, "start tree-log replay");
3600 ret = btrfs_replay_log(fs_info, fs_devices);
3601 if (ret)
3602 goto fail_qgroup;
3603 }
3604
3605 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3606 if (IS_ERR(fs_info->fs_root)) {
3607 ret = PTR_ERR(fs_info->fs_root);
3608 btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3609 fs_info->fs_root = NULL;
3610 goto fail_qgroup;
3611 }
3612
3613 if (sb_rdonly(sb))
3614 return 0;
3615
3616 ret = btrfs_start_pre_rw_mount(fs_info);
3617 if (ret) {
3618 close_ctree(fs_info);
3619 return ret;
3620 }
3621 btrfs_discard_resume(fs_info);
3622
3623 if (fs_info->uuid_root &&
3624 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3625 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3626 btrfs_info(fs_info, "checking UUID tree");
3627 ret = btrfs_check_uuid_tree(fs_info);
3628 if (ret) {
3629 btrfs_warn(fs_info,
3630 "failed to check the UUID tree: %d", ret);
3631 close_ctree(fs_info);
3632 return ret;
3633 }
3634 }
3635
3636 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3637
3638 /* Kick the cleaner thread so it'll start deleting snapshots. */
3639 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3640 wake_up_process(fs_info->cleaner_kthread);
3641
3642 return 0;
3643
3644 fail_qgroup:
3645 btrfs_free_qgroup_config(fs_info);
3646 fail_trans_kthread:
3647 kthread_stop(fs_info->transaction_kthread);
3648 btrfs_cleanup_transaction(fs_info);
3649 btrfs_free_fs_roots(fs_info);
3650 fail_cleaner:
3651 kthread_stop(fs_info->cleaner_kthread);
3652
3653 /*
3654 * make sure we're done with the btree inode before we stop our
3655 * kthreads
3656 */
3657 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3658
3659 fail_sysfs:
3660 btrfs_sysfs_remove_mounted(fs_info);
3661
3662 fail_fsdev_sysfs:
3663 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3664
3665 fail_block_groups:
3666 btrfs_put_block_group_cache(fs_info);
3667
3668 fail_tree_roots:
3669 if (fs_info->data_reloc_root)
3670 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3671 free_root_pointers(fs_info, true);
3672 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3673
3674 fail_sb_buffer:
3675 btrfs_stop_all_workers(fs_info);
3676 btrfs_free_block_groups(fs_info);
3677 fail_alloc:
3678 btrfs_mapping_tree_free(fs_info);
3679
3680 iput(fs_info->btree_inode);
3681 fail:
3682 btrfs_close_devices(fs_info->fs_devices);
3683 ASSERT(ret < 0);
3684 return ret;
3685 }
3686 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3687
btrfs_end_super_write(struct bio * bio)3688 static void btrfs_end_super_write(struct bio *bio)
3689 {
3690 struct btrfs_device *device = bio->bi_private;
3691 struct folio_iter fi;
3692
3693 bio_for_each_folio_all(fi, bio) {
3694 if (bio->bi_status) {
3695 btrfs_warn_rl_in_rcu(device->fs_info,
3696 "lost super block write due to IO error on %s (%d)",
3697 btrfs_dev_name(device),
3698 blk_status_to_errno(bio->bi_status));
3699 btrfs_dev_stat_inc_and_print(device,
3700 BTRFS_DEV_STAT_WRITE_ERRS);
3701 /* Ensure failure if the primary sb fails. */
3702 if (bio->bi_opf & REQ_FUA)
3703 atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR,
3704 &device->sb_write_errors);
3705 else
3706 atomic_inc(&device->sb_write_errors);
3707 }
3708 folio_unlock(fi.folio);
3709 folio_put(fi.folio);
3710 }
3711
3712 bio_put(bio);
3713 }
3714
btrfs_read_dev_one_super(struct block_device * bdev,int copy_num,bool drop_cache)3715 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3716 int copy_num, bool drop_cache)
3717 {
3718 struct btrfs_super_block *super;
3719 struct page *page;
3720 u64 bytenr, bytenr_orig;
3721 struct address_space *mapping = bdev->bd_mapping;
3722 int ret;
3723
3724 bytenr_orig = btrfs_sb_offset(copy_num);
3725 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3726 if (ret == -ENOENT)
3727 return ERR_PTR(-EINVAL);
3728 else if (ret)
3729 return ERR_PTR(ret);
3730
3731 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3732 return ERR_PTR(-EINVAL);
3733
3734 if (drop_cache) {
3735 /* This should only be called with the primary sb. */
3736 ASSERT(copy_num == 0);
3737
3738 /*
3739 * Drop the page of the primary superblock, so later read will
3740 * always read from the device.
3741 */
3742 invalidate_inode_pages2_range(mapping,
3743 bytenr >> PAGE_SHIFT,
3744 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3745 }
3746
3747 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3748 if (IS_ERR(page))
3749 return ERR_CAST(page);
3750
3751 super = page_address(page);
3752 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3753 btrfs_release_disk_super(super);
3754 return ERR_PTR(-ENODATA);
3755 }
3756
3757 if (btrfs_super_bytenr(super) != bytenr_orig) {
3758 btrfs_release_disk_super(super);
3759 return ERR_PTR(-EINVAL);
3760 }
3761
3762 return super;
3763 }
3764
3765
btrfs_read_dev_super(struct block_device * bdev)3766 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3767 {
3768 struct btrfs_super_block *super, *latest = NULL;
3769 int i;
3770 u64 transid = 0;
3771
3772 /* we would like to check all the supers, but that would make
3773 * a btrfs mount succeed after a mkfs from a different FS.
3774 * So, we need to add a special mount option to scan for
3775 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3776 */
3777 for (i = 0; i < 1; i++) {
3778 super = btrfs_read_dev_one_super(bdev, i, false);
3779 if (IS_ERR(super))
3780 continue;
3781
3782 if (!latest || btrfs_super_generation(super) > transid) {
3783 if (latest)
3784 btrfs_release_disk_super(super);
3785
3786 latest = super;
3787 transid = btrfs_super_generation(super);
3788 }
3789 }
3790
3791 return super;
3792 }
3793
3794 /*
3795 * Write superblock @sb to the @device. Do not wait for completion, all the
3796 * folios we use for writing are locked.
3797 *
3798 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3799 * the expected device size at commit time. Note that max_mirrors must be
3800 * same for write and wait phases.
3801 *
3802 * Return number of errors when folio is not found or submission fails.
3803 */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int max_mirrors)3804 static int write_dev_supers(struct btrfs_device *device,
3805 struct btrfs_super_block *sb, int max_mirrors)
3806 {
3807 struct btrfs_fs_info *fs_info = device->fs_info;
3808 struct address_space *mapping = device->bdev->bd_mapping;
3809 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3810 int i;
3811 int ret;
3812 u64 bytenr, bytenr_orig;
3813
3814 atomic_set(&device->sb_write_errors, 0);
3815
3816 if (max_mirrors == 0)
3817 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3818
3819 shash->tfm = fs_info->csum_shash;
3820
3821 for (i = 0; i < max_mirrors; i++) {
3822 struct folio *folio;
3823 struct bio *bio;
3824 struct btrfs_super_block *disk_super;
3825 size_t offset;
3826
3827 bytenr_orig = btrfs_sb_offset(i);
3828 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3829 if (ret == -ENOENT) {
3830 continue;
3831 } else if (ret < 0) {
3832 btrfs_err(device->fs_info,
3833 "couldn't get super block location for mirror %d",
3834 i);
3835 atomic_inc(&device->sb_write_errors);
3836 continue;
3837 }
3838 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3839 device->commit_total_bytes)
3840 break;
3841
3842 btrfs_set_super_bytenr(sb, bytenr_orig);
3843
3844 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3845 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3846 sb->csum);
3847
3848 folio = __filemap_get_folio(mapping, bytenr >> PAGE_SHIFT,
3849 FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3850 GFP_NOFS);
3851 if (IS_ERR(folio)) {
3852 btrfs_err(device->fs_info,
3853 "couldn't get super block page for bytenr %llu",
3854 bytenr);
3855 atomic_inc(&device->sb_write_errors);
3856 continue;
3857 }
3858 ASSERT(folio_order(folio) == 0);
3859
3860 offset = offset_in_folio(folio, bytenr);
3861 disk_super = folio_address(folio) + offset;
3862 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3863
3864 /*
3865 * Directly use bios here instead of relying on the page cache
3866 * to do I/O, so we don't lose the ability to do integrity
3867 * checking.
3868 */
3869 bio = bio_alloc(device->bdev, 1,
3870 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3871 GFP_NOFS);
3872 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3873 bio->bi_private = device;
3874 bio->bi_end_io = btrfs_end_super_write;
3875 bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, offset);
3876
3877 /*
3878 * We FUA only the first super block. The others we allow to
3879 * go down lazy and there's a short window where the on-disk
3880 * copies might still contain the older version.
3881 */
3882 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3883 bio->bi_opf |= REQ_FUA;
3884 submit_bio(bio);
3885
3886 if (btrfs_advance_sb_log(device, i))
3887 atomic_inc(&device->sb_write_errors);
3888 }
3889 return atomic_read(&device->sb_write_errors) < i ? 0 : -1;
3890 }
3891
3892 /*
3893 * Wait for write completion of superblocks done by write_dev_supers,
3894 * @max_mirrors same for write and wait phases.
3895 *
3896 * Return -1 if primary super block write failed or when there were no super block
3897 * copies written. Otherwise 0.
3898 */
wait_dev_supers(struct btrfs_device * device,int max_mirrors)3899 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3900 {
3901 int i;
3902 int errors = 0;
3903 bool primary_failed = false;
3904 int ret;
3905 u64 bytenr;
3906
3907 if (max_mirrors == 0)
3908 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3909
3910 for (i = 0; i < max_mirrors; i++) {
3911 struct folio *folio;
3912
3913 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3914 if (ret == -ENOENT) {
3915 break;
3916 } else if (ret < 0) {
3917 errors++;
3918 if (i == 0)
3919 primary_failed = true;
3920 continue;
3921 }
3922 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3923 device->commit_total_bytes)
3924 break;
3925
3926 folio = filemap_get_folio(device->bdev->bd_mapping,
3927 bytenr >> PAGE_SHIFT);
3928 /* If the folio has been removed, then we know it completed. */
3929 if (IS_ERR(folio))
3930 continue;
3931 ASSERT(folio_order(folio) == 0);
3932
3933 /* Folio will be unlocked once the write completes. */
3934 folio_wait_locked(folio);
3935 folio_put(folio);
3936 }
3937
3938 errors += atomic_read(&device->sb_write_errors);
3939 if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR)
3940 primary_failed = true;
3941 if (primary_failed) {
3942 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3943 device->devid);
3944 return -1;
3945 }
3946
3947 return errors < i ? 0 : -1;
3948 }
3949
3950 /*
3951 * endio for the write_dev_flush, this will wake anyone waiting
3952 * for the barrier when it is done
3953 */
btrfs_end_empty_barrier(struct bio * bio)3954 static void btrfs_end_empty_barrier(struct bio *bio)
3955 {
3956 bio_uninit(bio);
3957 complete(bio->bi_private);
3958 }
3959
3960 /*
3961 * Submit a flush request to the device if it supports it. Error handling is
3962 * done in the waiting counterpart.
3963 */
write_dev_flush(struct btrfs_device * device)3964 static void write_dev_flush(struct btrfs_device *device)
3965 {
3966 struct bio *bio = &device->flush_bio;
3967
3968 device->last_flush_error = BLK_STS_OK;
3969
3970 bio_init(bio, device->bdev, NULL, 0,
3971 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3972 bio->bi_end_io = btrfs_end_empty_barrier;
3973 init_completion(&device->flush_wait);
3974 bio->bi_private = &device->flush_wait;
3975 submit_bio(bio);
3976 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3977 }
3978
3979 /*
3980 * If the flush bio has been submitted by write_dev_flush, wait for it.
3981 * Return true for any error, and false otherwise.
3982 */
wait_dev_flush(struct btrfs_device * device)3983 static bool wait_dev_flush(struct btrfs_device *device)
3984 {
3985 struct bio *bio = &device->flush_bio;
3986
3987 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3988 return false;
3989
3990 wait_for_completion_io(&device->flush_wait);
3991
3992 if (bio->bi_status) {
3993 device->last_flush_error = bio->bi_status;
3994 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3995 return true;
3996 }
3997
3998 return false;
3999 }
4000
4001 /*
4002 * send an empty flush down to each device in parallel,
4003 * then wait for them
4004 */
barrier_all_devices(struct btrfs_fs_info * info)4005 static int barrier_all_devices(struct btrfs_fs_info *info)
4006 {
4007 struct list_head *head;
4008 struct btrfs_device *dev;
4009 int errors_wait = 0;
4010
4011 lockdep_assert_held(&info->fs_devices->device_list_mutex);
4012 /* send down all the barriers */
4013 head = &info->fs_devices->devices;
4014 list_for_each_entry(dev, head, dev_list) {
4015 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4016 continue;
4017 if (!dev->bdev)
4018 continue;
4019 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4020 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4021 continue;
4022
4023 write_dev_flush(dev);
4024 }
4025
4026 /* wait for all the barriers */
4027 list_for_each_entry(dev, head, dev_list) {
4028 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4029 continue;
4030 if (!dev->bdev) {
4031 errors_wait++;
4032 continue;
4033 }
4034 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4035 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4036 continue;
4037
4038 if (wait_dev_flush(dev))
4039 errors_wait++;
4040 }
4041
4042 /*
4043 * Checks last_flush_error of disks in order to determine the device
4044 * state.
4045 */
4046 if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
4047 return -EIO;
4048
4049 return 0;
4050 }
4051
btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)4052 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4053 {
4054 int raid_type;
4055 int min_tolerated = INT_MAX;
4056
4057 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4058 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4059 min_tolerated = min_t(int, min_tolerated,
4060 btrfs_raid_array[BTRFS_RAID_SINGLE].
4061 tolerated_failures);
4062
4063 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4064 if (raid_type == BTRFS_RAID_SINGLE)
4065 continue;
4066 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4067 continue;
4068 min_tolerated = min_t(int, min_tolerated,
4069 btrfs_raid_array[raid_type].
4070 tolerated_failures);
4071 }
4072
4073 if (min_tolerated == INT_MAX) {
4074 pr_warn("BTRFS: unknown raid flag: %llu", flags);
4075 min_tolerated = 0;
4076 }
4077
4078 return min_tolerated;
4079 }
4080
write_all_supers(struct btrfs_fs_info * fs_info,int max_mirrors)4081 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4082 {
4083 struct list_head *head;
4084 struct btrfs_device *dev;
4085 struct btrfs_super_block *sb;
4086 struct btrfs_dev_item *dev_item;
4087 int ret;
4088 int do_barriers;
4089 int max_errors;
4090 int total_errors = 0;
4091 u64 flags;
4092
4093 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4094
4095 /*
4096 * max_mirrors == 0 indicates we're from commit_transaction,
4097 * not from fsync where the tree roots in fs_info have not
4098 * been consistent on disk.
4099 */
4100 if (max_mirrors == 0)
4101 backup_super_roots(fs_info);
4102
4103 sb = fs_info->super_for_commit;
4104 dev_item = &sb->dev_item;
4105
4106 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4107 head = &fs_info->fs_devices->devices;
4108 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4109
4110 if (do_barriers) {
4111 ret = barrier_all_devices(fs_info);
4112 if (ret) {
4113 mutex_unlock(
4114 &fs_info->fs_devices->device_list_mutex);
4115 btrfs_handle_fs_error(fs_info, ret,
4116 "errors while submitting device barriers.");
4117 return ret;
4118 }
4119 }
4120
4121 list_for_each_entry(dev, head, dev_list) {
4122 if (!dev->bdev) {
4123 total_errors++;
4124 continue;
4125 }
4126 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4127 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4128 continue;
4129
4130 btrfs_set_stack_device_generation(dev_item, 0);
4131 btrfs_set_stack_device_type(dev_item, dev->type);
4132 btrfs_set_stack_device_id(dev_item, dev->devid);
4133 btrfs_set_stack_device_total_bytes(dev_item,
4134 dev->commit_total_bytes);
4135 btrfs_set_stack_device_bytes_used(dev_item,
4136 dev->commit_bytes_used);
4137 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4138 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4139 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4140 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4141 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4142 BTRFS_FSID_SIZE);
4143
4144 flags = btrfs_super_flags(sb);
4145 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4146
4147 ret = btrfs_validate_write_super(fs_info, sb);
4148 if (ret < 0) {
4149 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4150 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4151 "unexpected superblock corruption detected");
4152 return -EUCLEAN;
4153 }
4154
4155 ret = write_dev_supers(dev, sb, max_mirrors);
4156 if (ret)
4157 total_errors++;
4158 }
4159 if (total_errors > max_errors) {
4160 btrfs_err(fs_info, "%d errors while writing supers",
4161 total_errors);
4162 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4163
4164 /* FUA is masked off if unsupported and can't be the reason */
4165 btrfs_handle_fs_error(fs_info, -EIO,
4166 "%d errors while writing supers",
4167 total_errors);
4168 return -EIO;
4169 }
4170
4171 total_errors = 0;
4172 list_for_each_entry(dev, head, dev_list) {
4173 if (!dev->bdev)
4174 continue;
4175 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4176 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4177 continue;
4178
4179 ret = wait_dev_supers(dev, max_mirrors);
4180 if (ret)
4181 total_errors++;
4182 }
4183 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4184 if (total_errors > max_errors) {
4185 btrfs_handle_fs_error(fs_info, -EIO,
4186 "%d errors while writing supers",
4187 total_errors);
4188 return -EIO;
4189 }
4190 return 0;
4191 }
4192
4193 /* Drop a fs root from the radix tree and free it. */
btrfs_drop_and_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)4194 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4195 struct btrfs_root *root)
4196 {
4197 bool drop_ref = false;
4198
4199 spin_lock(&fs_info->fs_roots_radix_lock);
4200 radix_tree_delete(&fs_info->fs_roots_radix,
4201 (unsigned long)btrfs_root_id(root));
4202 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4203 drop_ref = true;
4204 spin_unlock(&fs_info->fs_roots_radix_lock);
4205
4206 if (BTRFS_FS_ERROR(fs_info)) {
4207 ASSERT(root->log_root == NULL);
4208 if (root->reloc_root) {
4209 btrfs_put_root(root->reloc_root);
4210 root->reloc_root = NULL;
4211 }
4212 }
4213
4214 if (drop_ref)
4215 btrfs_put_root(root);
4216 }
4217
btrfs_commit_super(struct btrfs_fs_info * fs_info)4218 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4219 {
4220 mutex_lock(&fs_info->cleaner_mutex);
4221 btrfs_run_delayed_iputs(fs_info);
4222 mutex_unlock(&fs_info->cleaner_mutex);
4223 wake_up_process(fs_info->cleaner_kthread);
4224
4225 /* wait until ongoing cleanup work done */
4226 down_write(&fs_info->cleanup_work_sem);
4227 up_write(&fs_info->cleanup_work_sem);
4228
4229 return btrfs_commit_current_transaction(fs_info->tree_root);
4230 }
4231
warn_about_uncommitted_trans(struct btrfs_fs_info * fs_info)4232 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4233 {
4234 struct btrfs_transaction *trans;
4235 struct btrfs_transaction *tmp;
4236 bool found = false;
4237
4238 /*
4239 * This function is only called at the very end of close_ctree(),
4240 * thus no other running transaction, no need to take trans_lock.
4241 */
4242 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4243 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4244 struct extent_state *cached = NULL;
4245 u64 dirty_bytes = 0;
4246 u64 cur = 0;
4247 u64 found_start;
4248 u64 found_end;
4249
4250 found = true;
4251 while (find_first_extent_bit(&trans->dirty_pages, cur,
4252 &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4253 dirty_bytes += found_end + 1 - found_start;
4254 cur = found_end + 1;
4255 }
4256 btrfs_warn(fs_info,
4257 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4258 trans->transid, dirty_bytes);
4259 btrfs_cleanup_one_transaction(trans);
4260
4261 if (trans == fs_info->running_transaction)
4262 fs_info->running_transaction = NULL;
4263 list_del_init(&trans->list);
4264
4265 btrfs_put_transaction(trans);
4266 trace_btrfs_transaction_commit(fs_info);
4267 }
4268 ASSERT(!found);
4269 }
4270
close_ctree(struct btrfs_fs_info * fs_info)4271 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4272 {
4273 int ret;
4274
4275 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4276
4277 /*
4278 * If we had UNFINISHED_DROPS we could still be processing them, so
4279 * clear that bit and wake up relocation so it can stop.
4280 * We must do this before stopping the block group reclaim task, because
4281 * at btrfs_relocate_block_group() we wait for this bit, and after the
4282 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4283 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4284 * return 1.
4285 */
4286 btrfs_wake_unfinished_drop(fs_info);
4287
4288 /*
4289 * We may have the reclaim task running and relocating a data block group,
4290 * in which case it may create delayed iputs. So stop it before we park
4291 * the cleaner kthread otherwise we can get new delayed iputs after
4292 * parking the cleaner, and that can make the async reclaim task to hang
4293 * if it's waiting for delayed iputs to complete, since the cleaner is
4294 * parked and can not run delayed iputs - this will make us hang when
4295 * trying to stop the async reclaim task.
4296 */
4297 cancel_work_sync(&fs_info->reclaim_bgs_work);
4298 /*
4299 * We don't want the cleaner to start new transactions, add more delayed
4300 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4301 * because that frees the task_struct, and the transaction kthread might
4302 * still try to wake up the cleaner.
4303 */
4304 kthread_park(fs_info->cleaner_kthread);
4305
4306 /* wait for the qgroup rescan worker to stop */
4307 btrfs_qgroup_wait_for_completion(fs_info, false);
4308
4309 /* wait for the uuid_scan task to finish */
4310 down(&fs_info->uuid_tree_rescan_sem);
4311 /* avoid complains from lockdep et al., set sem back to initial state */
4312 up(&fs_info->uuid_tree_rescan_sem);
4313
4314 /* pause restriper - we want to resume on mount */
4315 btrfs_pause_balance(fs_info);
4316
4317 btrfs_dev_replace_suspend_for_unmount(fs_info);
4318
4319 btrfs_scrub_cancel(fs_info);
4320
4321 /* wait for any defraggers to finish */
4322 wait_event(fs_info->transaction_wait,
4323 (atomic_read(&fs_info->defrag_running) == 0));
4324
4325 /* clear out the rbtree of defraggable inodes */
4326 btrfs_cleanup_defrag_inodes(fs_info);
4327
4328 /*
4329 * Wait for any fixup workers to complete.
4330 * If we don't wait for them here and they are still running by the time
4331 * we call kthread_stop() against the cleaner kthread further below, we
4332 * get an use-after-free on the cleaner because the fixup worker adds an
4333 * inode to the list of delayed iputs and then attempts to wakeup the
4334 * cleaner kthread, which was already stopped and destroyed. We parked
4335 * already the cleaner, but below we run all pending delayed iputs.
4336 */
4337 btrfs_flush_workqueue(fs_info->fixup_workers);
4338 /*
4339 * Similar case here, we have to wait for delalloc workers before we
4340 * proceed below and stop the cleaner kthread, otherwise we trigger a
4341 * use-after-tree on the cleaner kthread task_struct when a delalloc
4342 * worker running submit_compressed_extents() adds a delayed iput, which
4343 * does a wake up on the cleaner kthread, which was already freed below
4344 * when we call kthread_stop().
4345 */
4346 btrfs_flush_workqueue(fs_info->delalloc_workers);
4347
4348 /*
4349 * After we parked the cleaner kthread, ordered extents may have
4350 * completed and created new delayed iputs. If one of the async reclaim
4351 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4352 * can hang forever trying to stop it, because if a delayed iput is
4353 * added after it ran btrfs_run_delayed_iputs() and before it called
4354 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4355 * no one else to run iputs.
4356 *
4357 * So wait for all ongoing ordered extents to complete and then run
4358 * delayed iputs. This works because once we reach this point no one
4359 * can either create new ordered extents nor create delayed iputs
4360 * through some other means.
4361 *
4362 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4363 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4364 * but the delayed iput for the respective inode is made only when doing
4365 * the final btrfs_put_ordered_extent() (which must happen at
4366 * btrfs_finish_ordered_io() when we are unmounting).
4367 */
4368 btrfs_flush_workqueue(fs_info->endio_write_workers);
4369 /* Ordered extents for free space inodes. */
4370 btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4371 btrfs_run_delayed_iputs(fs_info);
4372
4373 cancel_work_sync(&fs_info->async_reclaim_work);
4374 cancel_work_sync(&fs_info->async_data_reclaim_work);
4375 cancel_work_sync(&fs_info->preempt_reclaim_work);
4376 cancel_work_sync(&fs_info->em_shrinker_work);
4377
4378 /* Cancel or finish ongoing discard work */
4379 btrfs_discard_cleanup(fs_info);
4380
4381 if (!sb_rdonly(fs_info->sb)) {
4382 /*
4383 * The cleaner kthread is stopped, so do one final pass over
4384 * unused block groups.
4385 */
4386 btrfs_delete_unused_bgs(fs_info);
4387
4388 /*
4389 * There might be existing delayed inode workers still running
4390 * and holding an empty delayed inode item. We must wait for
4391 * them to complete first because they can create a transaction.
4392 * This happens when someone calls btrfs_balance_delayed_items()
4393 * and then a transaction commit runs the same delayed nodes
4394 * before any delayed worker has done something with the nodes.
4395 * We must wait for any worker here and not at transaction
4396 * commit time since that could cause a deadlock.
4397 * This is a very rare case.
4398 */
4399 btrfs_flush_workqueue(fs_info->delayed_workers);
4400
4401 ret = btrfs_commit_super(fs_info);
4402 if (ret)
4403 btrfs_err(fs_info, "commit super ret %d", ret);
4404 }
4405
4406 if (BTRFS_FS_ERROR(fs_info))
4407 btrfs_error_commit_super(fs_info);
4408
4409 kthread_stop(fs_info->transaction_kthread);
4410 kthread_stop(fs_info->cleaner_kthread);
4411
4412 ASSERT(list_empty(&fs_info->delayed_iputs));
4413 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4414
4415 if (btrfs_check_quota_leak(fs_info)) {
4416 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4417 btrfs_err(fs_info, "qgroup reserved space leaked");
4418 }
4419
4420 btrfs_free_qgroup_config(fs_info);
4421 ASSERT(list_empty(&fs_info->delalloc_roots));
4422
4423 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4424 btrfs_info(fs_info, "at unmount delalloc count %lld",
4425 percpu_counter_sum(&fs_info->delalloc_bytes));
4426 }
4427
4428 if (percpu_counter_sum(&fs_info->ordered_bytes))
4429 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4430 percpu_counter_sum(&fs_info->ordered_bytes));
4431
4432 btrfs_sysfs_remove_mounted(fs_info);
4433 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4434
4435 btrfs_put_block_group_cache(fs_info);
4436
4437 /*
4438 * we must make sure there is not any read request to
4439 * submit after we stopping all workers.
4440 */
4441 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4442 btrfs_stop_all_workers(fs_info);
4443
4444 /* We shouldn't have any transaction open at this point */
4445 warn_about_uncommitted_trans(fs_info);
4446
4447 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4448 free_root_pointers(fs_info, true);
4449 btrfs_free_fs_roots(fs_info);
4450
4451 /*
4452 * We must free the block groups after dropping the fs_roots as we could
4453 * have had an IO error and have left over tree log blocks that aren't
4454 * cleaned up until the fs roots are freed. This makes the block group
4455 * accounting appear to be wrong because there's pending reserved bytes,
4456 * so make sure we do the block group cleanup afterwards.
4457 */
4458 btrfs_free_block_groups(fs_info);
4459
4460 iput(fs_info->btree_inode);
4461
4462 btrfs_mapping_tree_free(fs_info);
4463 btrfs_close_devices(fs_info->fs_devices);
4464 }
4465
btrfs_mark_buffer_dirty(struct btrfs_trans_handle * trans,struct extent_buffer * buf)4466 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4467 struct extent_buffer *buf)
4468 {
4469 struct btrfs_fs_info *fs_info = buf->fs_info;
4470 u64 transid = btrfs_header_generation(buf);
4471
4472 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4473 /*
4474 * This is a fast path so only do this check if we have sanity tests
4475 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4476 * outside of the sanity tests.
4477 */
4478 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4479 return;
4480 #endif
4481 /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4482 ASSERT(trans->transid == fs_info->generation);
4483 btrfs_assert_tree_write_locked(buf);
4484 if (unlikely(transid != fs_info->generation)) {
4485 btrfs_abort_transaction(trans, -EUCLEAN);
4486 btrfs_crit(fs_info,
4487 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
4488 buf->start, transid, fs_info->generation);
4489 }
4490 set_extent_buffer_dirty(buf);
4491 }
4492
__btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info,int flush_delayed)4493 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4494 int flush_delayed)
4495 {
4496 /*
4497 * looks as though older kernels can get into trouble with
4498 * this code, they end up stuck in balance_dirty_pages forever
4499 */
4500 int ret;
4501
4502 if (current->flags & PF_MEMALLOC)
4503 return;
4504
4505 if (flush_delayed)
4506 btrfs_balance_delayed_items(fs_info);
4507
4508 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4509 BTRFS_DIRTY_METADATA_THRESH,
4510 fs_info->dirty_metadata_batch);
4511 if (ret > 0) {
4512 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4513 }
4514 }
4515
btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info)4516 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4517 {
4518 __btrfs_btree_balance_dirty(fs_info, 1);
4519 }
4520
btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info * fs_info)4521 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4522 {
4523 __btrfs_btree_balance_dirty(fs_info, 0);
4524 }
4525
btrfs_error_commit_super(struct btrfs_fs_info * fs_info)4526 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4527 {
4528 /* cleanup FS via transaction */
4529 btrfs_cleanup_transaction(fs_info);
4530
4531 mutex_lock(&fs_info->cleaner_mutex);
4532 btrfs_run_delayed_iputs(fs_info);
4533 mutex_unlock(&fs_info->cleaner_mutex);
4534
4535 down_write(&fs_info->cleanup_work_sem);
4536 up_write(&fs_info->cleanup_work_sem);
4537 }
4538
btrfs_drop_all_logs(struct btrfs_fs_info * fs_info)4539 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4540 {
4541 struct btrfs_root *gang[8];
4542 u64 root_objectid = 0;
4543 int ret;
4544
4545 spin_lock(&fs_info->fs_roots_radix_lock);
4546 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4547 (void **)gang, root_objectid,
4548 ARRAY_SIZE(gang))) != 0) {
4549 int i;
4550
4551 for (i = 0; i < ret; i++)
4552 gang[i] = btrfs_grab_root(gang[i]);
4553 spin_unlock(&fs_info->fs_roots_radix_lock);
4554
4555 for (i = 0; i < ret; i++) {
4556 if (!gang[i])
4557 continue;
4558 root_objectid = btrfs_root_id(gang[i]);
4559 btrfs_free_log(NULL, gang[i]);
4560 btrfs_put_root(gang[i]);
4561 }
4562 root_objectid++;
4563 spin_lock(&fs_info->fs_roots_radix_lock);
4564 }
4565 spin_unlock(&fs_info->fs_roots_radix_lock);
4566 btrfs_free_log_root_tree(NULL, fs_info);
4567 }
4568
btrfs_destroy_ordered_extents(struct btrfs_root * root)4569 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4570 {
4571 struct btrfs_ordered_extent *ordered;
4572
4573 spin_lock(&root->ordered_extent_lock);
4574 /*
4575 * This will just short circuit the ordered completion stuff which will
4576 * make sure the ordered extent gets properly cleaned up.
4577 */
4578 list_for_each_entry(ordered, &root->ordered_extents,
4579 root_extent_list)
4580 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4581 spin_unlock(&root->ordered_extent_lock);
4582 }
4583
btrfs_destroy_all_ordered_extents(struct btrfs_fs_info * fs_info)4584 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4585 {
4586 struct btrfs_root *root;
4587 LIST_HEAD(splice);
4588
4589 spin_lock(&fs_info->ordered_root_lock);
4590 list_splice_init(&fs_info->ordered_roots, &splice);
4591 while (!list_empty(&splice)) {
4592 root = list_first_entry(&splice, struct btrfs_root,
4593 ordered_root);
4594 list_move_tail(&root->ordered_root,
4595 &fs_info->ordered_roots);
4596
4597 spin_unlock(&fs_info->ordered_root_lock);
4598 btrfs_destroy_ordered_extents(root);
4599
4600 cond_resched();
4601 spin_lock(&fs_info->ordered_root_lock);
4602 }
4603 spin_unlock(&fs_info->ordered_root_lock);
4604
4605 /*
4606 * We need this here because if we've been flipped read-only we won't
4607 * get sync() from the umount, so we need to make sure any ordered
4608 * extents that haven't had their dirty pages IO start writeout yet
4609 * actually get run and error out properly.
4610 */
4611 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
4612 }
4613
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)4614 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4615 {
4616 struct btrfs_inode *btrfs_inode;
4617 LIST_HEAD(splice);
4618
4619 spin_lock(&root->delalloc_lock);
4620 list_splice_init(&root->delalloc_inodes, &splice);
4621
4622 while (!list_empty(&splice)) {
4623 struct inode *inode = NULL;
4624 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4625 delalloc_inodes);
4626 btrfs_del_delalloc_inode(btrfs_inode);
4627 spin_unlock(&root->delalloc_lock);
4628
4629 /*
4630 * Make sure we get a live inode and that it'll not disappear
4631 * meanwhile.
4632 */
4633 inode = igrab(&btrfs_inode->vfs_inode);
4634 if (inode) {
4635 unsigned int nofs_flag;
4636
4637 nofs_flag = memalloc_nofs_save();
4638 invalidate_inode_pages2(inode->i_mapping);
4639 memalloc_nofs_restore(nofs_flag);
4640 iput(inode);
4641 }
4642 spin_lock(&root->delalloc_lock);
4643 }
4644 spin_unlock(&root->delalloc_lock);
4645 }
4646
btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info * fs_info)4647 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4648 {
4649 struct btrfs_root *root;
4650 LIST_HEAD(splice);
4651
4652 spin_lock(&fs_info->delalloc_root_lock);
4653 list_splice_init(&fs_info->delalloc_roots, &splice);
4654 while (!list_empty(&splice)) {
4655 root = list_first_entry(&splice, struct btrfs_root,
4656 delalloc_root);
4657 root = btrfs_grab_root(root);
4658 BUG_ON(!root);
4659 spin_unlock(&fs_info->delalloc_root_lock);
4660
4661 btrfs_destroy_delalloc_inodes(root);
4662 btrfs_put_root(root);
4663
4664 spin_lock(&fs_info->delalloc_root_lock);
4665 }
4666 spin_unlock(&fs_info->delalloc_root_lock);
4667 }
4668
btrfs_destroy_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)4669 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4670 struct extent_io_tree *dirty_pages,
4671 int mark)
4672 {
4673 struct extent_buffer *eb;
4674 u64 start = 0;
4675 u64 end;
4676
4677 while (find_first_extent_bit(dirty_pages, start, &start, &end,
4678 mark, NULL)) {
4679 clear_extent_bits(dirty_pages, start, end, mark);
4680 while (start <= end) {
4681 eb = find_extent_buffer(fs_info, start);
4682 start += fs_info->nodesize;
4683 if (!eb)
4684 continue;
4685
4686 btrfs_tree_lock(eb);
4687 wait_on_extent_buffer_writeback(eb);
4688 btrfs_clear_buffer_dirty(NULL, eb);
4689 btrfs_tree_unlock(eb);
4690
4691 free_extent_buffer_stale(eb);
4692 }
4693 }
4694 }
4695
btrfs_destroy_pinned_extent(struct btrfs_fs_info * fs_info,struct extent_io_tree * unpin)4696 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4697 struct extent_io_tree *unpin)
4698 {
4699 u64 start;
4700 u64 end;
4701
4702 while (1) {
4703 struct extent_state *cached_state = NULL;
4704
4705 /*
4706 * The btrfs_finish_extent_commit() may get the same range as
4707 * ours between find_first_extent_bit and clear_extent_dirty.
4708 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4709 * the same extent range.
4710 */
4711 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4712 if (!find_first_extent_bit(unpin, 0, &start, &end,
4713 EXTENT_DIRTY, &cached_state)) {
4714 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4715 break;
4716 }
4717
4718 clear_extent_dirty(unpin, start, end, &cached_state);
4719 free_extent_state(cached_state);
4720 btrfs_error_unpin_extent_range(fs_info, start, end);
4721 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4722 cond_resched();
4723 }
4724 }
4725
btrfs_cleanup_bg_io(struct btrfs_block_group * cache)4726 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4727 {
4728 struct inode *inode;
4729
4730 inode = cache->io_ctl.inode;
4731 if (inode) {
4732 unsigned int nofs_flag;
4733
4734 nofs_flag = memalloc_nofs_save();
4735 invalidate_inode_pages2(inode->i_mapping);
4736 memalloc_nofs_restore(nofs_flag);
4737
4738 BTRFS_I(inode)->generation = 0;
4739 cache->io_ctl.inode = NULL;
4740 iput(inode);
4741 }
4742 ASSERT(cache->io_ctl.pages == NULL);
4743 btrfs_put_block_group(cache);
4744 }
4745
btrfs_cleanup_dirty_bgs(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4746 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4747 struct btrfs_fs_info *fs_info)
4748 {
4749 struct btrfs_block_group *cache;
4750
4751 spin_lock(&cur_trans->dirty_bgs_lock);
4752 while (!list_empty(&cur_trans->dirty_bgs)) {
4753 cache = list_first_entry(&cur_trans->dirty_bgs,
4754 struct btrfs_block_group,
4755 dirty_list);
4756
4757 if (!list_empty(&cache->io_list)) {
4758 spin_unlock(&cur_trans->dirty_bgs_lock);
4759 list_del_init(&cache->io_list);
4760 btrfs_cleanup_bg_io(cache);
4761 spin_lock(&cur_trans->dirty_bgs_lock);
4762 }
4763
4764 list_del_init(&cache->dirty_list);
4765 spin_lock(&cache->lock);
4766 cache->disk_cache_state = BTRFS_DC_ERROR;
4767 spin_unlock(&cache->lock);
4768
4769 spin_unlock(&cur_trans->dirty_bgs_lock);
4770 btrfs_put_block_group(cache);
4771 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
4772 spin_lock(&cur_trans->dirty_bgs_lock);
4773 }
4774 spin_unlock(&cur_trans->dirty_bgs_lock);
4775
4776 /*
4777 * Refer to the definition of io_bgs member for details why it's safe
4778 * to use it without any locking
4779 */
4780 while (!list_empty(&cur_trans->io_bgs)) {
4781 cache = list_first_entry(&cur_trans->io_bgs,
4782 struct btrfs_block_group,
4783 io_list);
4784
4785 list_del_init(&cache->io_list);
4786 spin_lock(&cache->lock);
4787 cache->disk_cache_state = BTRFS_DC_ERROR;
4788 spin_unlock(&cache->lock);
4789 btrfs_cleanup_bg_io(cache);
4790 }
4791 }
4792
btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info * fs_info)4793 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info)
4794 {
4795 struct btrfs_root *gang[8];
4796 int i;
4797 int ret;
4798
4799 spin_lock(&fs_info->fs_roots_radix_lock);
4800 while (1) {
4801 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
4802 (void **)gang, 0,
4803 ARRAY_SIZE(gang),
4804 BTRFS_ROOT_TRANS_TAG);
4805 if (ret == 0)
4806 break;
4807 for (i = 0; i < ret; i++) {
4808 struct btrfs_root *root = gang[i];
4809
4810 btrfs_qgroup_free_meta_all_pertrans(root);
4811 radix_tree_tag_clear(&fs_info->fs_roots_radix,
4812 (unsigned long)btrfs_root_id(root),
4813 BTRFS_ROOT_TRANS_TAG);
4814 }
4815 }
4816 spin_unlock(&fs_info->fs_roots_radix_lock);
4817 }
4818
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans)4819 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans)
4820 {
4821 struct btrfs_fs_info *fs_info = cur_trans->fs_info;
4822 struct btrfs_device *dev, *tmp;
4823
4824 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4825 ASSERT(list_empty(&cur_trans->dirty_bgs));
4826 ASSERT(list_empty(&cur_trans->io_bgs));
4827
4828 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4829 post_commit_list) {
4830 list_del_init(&dev->post_commit_list);
4831 }
4832
4833 btrfs_destroy_delayed_refs(cur_trans);
4834
4835 cur_trans->state = TRANS_STATE_COMMIT_START;
4836 wake_up(&fs_info->transaction_blocked_wait);
4837
4838 cur_trans->state = TRANS_STATE_UNBLOCKED;
4839 wake_up(&fs_info->transaction_wait);
4840
4841 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4842 EXTENT_DIRTY);
4843 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4844
4845 cur_trans->state =TRANS_STATE_COMPLETED;
4846 wake_up(&cur_trans->commit_wait);
4847 }
4848
btrfs_cleanup_transaction(struct btrfs_fs_info * fs_info)4849 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4850 {
4851 struct btrfs_transaction *t;
4852
4853 mutex_lock(&fs_info->transaction_kthread_mutex);
4854
4855 spin_lock(&fs_info->trans_lock);
4856 while (!list_empty(&fs_info->trans_list)) {
4857 t = list_first_entry(&fs_info->trans_list,
4858 struct btrfs_transaction, list);
4859 if (t->state >= TRANS_STATE_COMMIT_PREP) {
4860 refcount_inc(&t->use_count);
4861 spin_unlock(&fs_info->trans_lock);
4862 btrfs_wait_for_commit(fs_info, t->transid);
4863 btrfs_put_transaction(t);
4864 spin_lock(&fs_info->trans_lock);
4865 continue;
4866 }
4867 if (t == fs_info->running_transaction) {
4868 t->state = TRANS_STATE_COMMIT_DOING;
4869 spin_unlock(&fs_info->trans_lock);
4870 /*
4871 * We wait for 0 num_writers since we don't hold a trans
4872 * handle open currently for this transaction.
4873 */
4874 wait_event(t->writer_wait,
4875 atomic_read(&t->num_writers) == 0);
4876 } else {
4877 spin_unlock(&fs_info->trans_lock);
4878 }
4879 btrfs_cleanup_one_transaction(t);
4880
4881 spin_lock(&fs_info->trans_lock);
4882 if (t == fs_info->running_transaction)
4883 fs_info->running_transaction = NULL;
4884 list_del_init(&t->list);
4885 spin_unlock(&fs_info->trans_lock);
4886
4887 btrfs_put_transaction(t);
4888 trace_btrfs_transaction_commit(fs_info);
4889 spin_lock(&fs_info->trans_lock);
4890 }
4891 spin_unlock(&fs_info->trans_lock);
4892 btrfs_destroy_all_ordered_extents(fs_info);
4893 btrfs_destroy_delayed_inodes(fs_info);
4894 btrfs_assert_delayed_root_empty(fs_info);
4895 btrfs_destroy_all_delalloc_inodes(fs_info);
4896 btrfs_drop_all_logs(fs_info);
4897 btrfs_free_all_qgroup_pertrans(fs_info);
4898 mutex_unlock(&fs_info->transaction_kthread_mutex);
4899
4900 return 0;
4901 }
4902
btrfs_init_root_free_objectid(struct btrfs_root * root)4903 int btrfs_init_root_free_objectid(struct btrfs_root *root)
4904 {
4905 struct btrfs_path *path;
4906 int ret;
4907 struct extent_buffer *l;
4908 struct btrfs_key search_key;
4909 struct btrfs_key found_key;
4910 int slot;
4911
4912 path = btrfs_alloc_path();
4913 if (!path)
4914 return -ENOMEM;
4915
4916 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4917 search_key.type = -1;
4918 search_key.offset = (u64)-1;
4919 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4920 if (ret < 0)
4921 goto error;
4922 if (ret == 0) {
4923 /*
4924 * Key with offset -1 found, there would have to exist a root
4925 * with such id, but this is out of valid range.
4926 */
4927 ret = -EUCLEAN;
4928 goto error;
4929 }
4930 if (path->slots[0] > 0) {
4931 slot = path->slots[0] - 1;
4932 l = path->nodes[0];
4933 btrfs_item_key_to_cpu(l, &found_key, slot);
4934 root->free_objectid = max_t(u64, found_key.objectid + 1,
4935 BTRFS_FIRST_FREE_OBJECTID);
4936 } else {
4937 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4938 }
4939 ret = 0;
4940 error:
4941 btrfs_free_path(path);
4942 return ret;
4943 }
4944
btrfs_get_free_objectid(struct btrfs_root * root,u64 * objectid)4945 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4946 {
4947 int ret;
4948 mutex_lock(&root->objectid_mutex);
4949
4950 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4951 btrfs_warn(root->fs_info,
4952 "the objectid of root %llu reaches its highest value",
4953 btrfs_root_id(root));
4954 ret = -ENOSPC;
4955 goto out;
4956 }
4957
4958 *objectid = root->free_objectid++;
4959 ret = 0;
4960 out:
4961 mutex_unlock(&root->objectid_mutex);
4962 return ret;
4963 }
4964