xref: /linux/arch/x86/kvm/emulate.c (revision 9591fdb0611dccdeeeeacb99d89f0098737d209b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3  * emulate.c
4  *
5  * Generic x86 (32-bit and 64-bit) instruction decoder and emulator.
6  *
7  * Copyright (c) 2005 Keir Fraser
8  *
9  * Linux coding style, mod r/m decoder, segment base fixes, real-mode
10  * privileged instructions:
11  *
12  * Copyright (C) 2006 Qumranet
13  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
14  *
15  *   Avi Kivity <avi@qumranet.com>
16  *   Yaniv Kamay <yaniv@qumranet.com>
17  *
18  * From: xen-unstable 10676:af9809f51f81a3c43f276f00c81a52ef558afda4
19  */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/kvm_host.h>
23 #include "kvm_cache_regs.h"
24 #include "kvm_emulate.h"
25 #include <linux/stringify.h>
26 #include <asm/debugreg.h>
27 #include <asm/nospec-branch.h>
28 #include <asm/ibt.h>
29 #include <asm/text-patching.h>
30 
31 #include "x86.h"
32 #include "tss.h"
33 #include "mmu.h"
34 #include "pmu.h"
35 
36 /*
37  * Operand types
38  */
39 #define OpNone             0ull
40 #define OpImplicit         1ull  /* No generic decode */
41 #define OpReg              2ull  /* Register */
42 #define OpMem              3ull  /* Memory */
43 #define OpAcc              4ull  /* Accumulator: AL/AX/EAX/RAX */
44 #define OpDI               5ull  /* ES:DI/EDI/RDI */
45 #define OpMem64            6ull  /* Memory, 64-bit */
46 #define OpImmUByte         7ull  /* Zero-extended 8-bit immediate */
47 #define OpDX               8ull  /* DX register */
48 #define OpCL               9ull  /* CL register (for shifts) */
49 #define OpImmByte         10ull  /* 8-bit sign extended immediate */
50 #define OpOne             11ull  /* Implied 1 */
51 #define OpImm             12ull  /* Sign extended up to 32-bit immediate */
52 #define OpMem16           13ull  /* Memory operand (16-bit). */
53 #define OpMem32           14ull  /* Memory operand (32-bit). */
54 #define OpImmU            15ull  /* Immediate operand, zero extended */
55 #define OpSI              16ull  /* SI/ESI/RSI */
56 #define OpImmFAddr        17ull  /* Immediate far address */
57 #define OpMemFAddr        18ull  /* Far address in memory */
58 #define OpImmU16          19ull  /* Immediate operand, 16 bits, zero extended */
59 #define OpES              20ull  /* ES */
60 #define OpCS              21ull  /* CS */
61 #define OpSS              22ull  /* SS */
62 #define OpDS              23ull  /* DS */
63 #define OpFS              24ull  /* FS */
64 #define OpGS              25ull  /* GS */
65 #define OpMem8            26ull  /* 8-bit zero extended memory operand */
66 #define OpImm64           27ull  /* Sign extended 16/32/64-bit immediate */
67 #define OpXLat            28ull  /* memory at BX/EBX/RBX + zero-extended AL */
68 #define OpAccLo           29ull  /* Low part of extended acc (AX/AX/EAX/RAX) */
69 #define OpAccHi           30ull  /* High part of extended acc (-/DX/EDX/RDX) */
70 
71 #define OpBits             5  /* Width of operand field */
72 #define OpMask             ((1ull << OpBits) - 1)
73 
74 /*
75  * Opcode effective-address decode tables.
76  * Note that we only emulate instructions that have at least one memory
77  * operand (excluding implicit stack references). We assume that stack
78  * references and instruction fetches will never occur in special memory
79  * areas that require emulation. So, for example, 'mov <imm>,<reg>' need
80  * not be handled.
81  */
82 
83 /* Operand sizes: 8-bit operands or specified/overridden size. */
84 #define ByteOp      (1<<0)	/* 8-bit operands. */
85 /* Destination operand type. */
86 #define DstShift    1
87 #define ImplicitOps (OpImplicit << DstShift)
88 #define DstReg      (OpReg << DstShift)
89 #define DstMem      (OpMem << DstShift)
90 #define DstAcc      (OpAcc << DstShift)
91 #define DstDI       (OpDI << DstShift)
92 #define DstMem64    (OpMem64 << DstShift)
93 #define DstMem16    (OpMem16 << DstShift)
94 #define DstImmUByte (OpImmUByte << DstShift)
95 #define DstDX       (OpDX << DstShift)
96 #define DstAccLo    (OpAccLo << DstShift)
97 #define DstMask     (OpMask << DstShift)
98 /* Source operand type. */
99 #define SrcShift    6
100 #define SrcNone     (OpNone << SrcShift)
101 #define SrcReg      (OpReg << SrcShift)
102 #define SrcMem      (OpMem << SrcShift)
103 #define SrcMem16    (OpMem16 << SrcShift)
104 #define SrcMem32    (OpMem32 << SrcShift)
105 #define SrcImm      (OpImm << SrcShift)
106 #define SrcImmByte  (OpImmByte << SrcShift)
107 #define SrcOne      (OpOne << SrcShift)
108 #define SrcImmUByte (OpImmUByte << SrcShift)
109 #define SrcImmU     (OpImmU << SrcShift)
110 #define SrcSI       (OpSI << SrcShift)
111 #define SrcXLat     (OpXLat << SrcShift)
112 #define SrcImmFAddr (OpImmFAddr << SrcShift)
113 #define SrcMemFAddr (OpMemFAddr << SrcShift)
114 #define SrcAcc      (OpAcc << SrcShift)
115 #define SrcImmU16   (OpImmU16 << SrcShift)
116 #define SrcImm64    (OpImm64 << SrcShift)
117 #define SrcDX       (OpDX << SrcShift)
118 #define SrcMem8     (OpMem8 << SrcShift)
119 #define SrcAccHi    (OpAccHi << SrcShift)
120 #define SrcMask     (OpMask << SrcShift)
121 #define BitOp       (1<<11)
122 #define MemAbs      (1<<12)      /* Memory operand is absolute displacement */
123 #define String      (1<<13)     /* String instruction (rep capable) */
124 #define Stack       (1<<14)     /* Stack instruction (push/pop) */
125 #define GroupMask   (7<<15)     /* Opcode uses one of the group mechanisms */
126 #define Group       (1<<15)     /* Bits 3:5 of modrm byte extend opcode */
127 #define GroupDual   (2<<15)     /* Alternate decoding of mod == 3 */
128 #define Prefix      (3<<15)     /* Instruction varies with 66/f2/f3 prefix */
129 #define RMExt       (4<<15)     /* Opcode extension in ModRM r/m if mod == 3 */
130 #define Escape      (5<<15)     /* Escape to coprocessor instruction */
131 #define InstrDual   (6<<15)     /* Alternate instruction decoding of mod == 3 */
132 #define ModeDual    (7<<15)     /* Different instruction for 32/64 bit */
133 #define Sse         (1<<18)     /* SSE Vector instruction */
134 /* Generic ModRM decode. */
135 #define ModRM       (1<<19)
136 /* Destination is only written; never read. */
137 #define Mov         (1<<20)
138 /* Misc flags */
139 #define Prot        (1<<21) /* instruction generates #UD if not in prot-mode */
140 #define EmulateOnUD (1<<22) /* Emulate if unsupported by the host */
141 #define NoAccess    (1<<23) /* Don't access memory (lea/invlpg/verr etc) */
142 #define Op3264      (1<<24) /* Operand is 64b in long mode, 32b otherwise */
143 #define Undefined   (1<<25) /* No Such Instruction */
144 #define Lock        (1<<26) /* lock prefix is allowed for the instruction */
145 #define Priv        (1<<27) /* instruction generates #GP if current CPL != 0 */
146 #define No64	    (1<<28)
147 #define PageTable   (1 << 29)   /* instruction used to write page table */
148 #define NotImpl     (1 << 30)   /* instruction is not implemented */
149 /* Source 2 operand type */
150 #define Src2Shift   (31)
151 #define Src2None    (OpNone << Src2Shift)
152 #define Src2Mem     (OpMem << Src2Shift)
153 #define Src2CL      (OpCL << Src2Shift)
154 #define Src2ImmByte (OpImmByte << Src2Shift)
155 #define Src2One     (OpOne << Src2Shift)
156 #define Src2Imm     (OpImm << Src2Shift)
157 #define Src2ES      (OpES << Src2Shift)
158 #define Src2CS      (OpCS << Src2Shift)
159 #define Src2SS      (OpSS << Src2Shift)
160 #define Src2DS      (OpDS << Src2Shift)
161 #define Src2FS      (OpFS << Src2Shift)
162 #define Src2GS      (OpGS << Src2Shift)
163 #define Src2Mask    (OpMask << Src2Shift)
164 #define Mmx         ((u64)1 << 40)  /* MMX Vector instruction */
165 #define AlignMask   ((u64)7 << 41)
166 #define Aligned     ((u64)1 << 41)  /* Explicitly aligned (e.g. MOVDQA) */
167 #define Unaligned   ((u64)2 << 41)  /* Explicitly unaligned (e.g. MOVDQU) */
168 #define Avx         ((u64)3 << 41)  /* Advanced Vector Extensions */
169 #define Aligned16   ((u64)4 << 41)  /* Aligned to 16 byte boundary (e.g. FXSAVE) */
170 #define NoWrite     ((u64)1 << 45)  /* No writeback */
171 #define SrcWrite    ((u64)1 << 46)  /* Write back src operand */
172 #define NoMod	    ((u64)1 << 47)  /* Mod field is ignored */
173 #define Intercept   ((u64)1 << 48)  /* Has valid intercept field */
174 #define CheckPerm   ((u64)1 << 49)  /* Has valid check_perm field */
175 #define PrivUD      ((u64)1 << 51)  /* #UD instead of #GP on CPL > 0 */
176 #define NearBranch  ((u64)1 << 52)  /* Near branches */
177 #define No16	    ((u64)1 << 53)  /* No 16 bit operand */
178 #define IncSP       ((u64)1 << 54)  /* SP is incremented before ModRM calc */
179 #define TwoMemOp    ((u64)1 << 55)  /* Instruction has two memory operand */
180 #define IsBranch    ((u64)1 << 56)  /* Instruction is considered a branch. */
181 #define ShadowStack ((u64)1 << 57)  /* Instruction affects Shadow Stacks. */
182 
183 #define DstXacc     (DstAccLo | SrcAccHi | SrcWrite)
184 
185 #define X2(x...) x, x
186 #define X3(x...) X2(x), x
187 #define X4(x...) X2(x), X2(x)
188 #define X5(x...) X4(x), x
189 #define X6(x...) X4(x), X2(x)
190 #define X7(x...) X4(x), X3(x)
191 #define X8(x...) X4(x), X4(x)
192 #define X16(x...) X8(x), X8(x)
193 
194 struct opcode {
195 	u64 flags;
196 	u8 intercept;
197 	u8 pad[7];
198 	union {
199 		int (*execute)(struct x86_emulate_ctxt *ctxt);
200 		const struct opcode *group;
201 		const struct group_dual *gdual;
202 		const struct gprefix *gprefix;
203 		const struct escape *esc;
204 		const struct instr_dual *idual;
205 		const struct mode_dual *mdual;
206 	} u;
207 	int (*check_perm)(struct x86_emulate_ctxt *ctxt);
208 };
209 
210 struct group_dual {
211 	struct opcode mod012[8];
212 	struct opcode mod3[8];
213 };
214 
215 struct gprefix {
216 	struct opcode pfx_no;
217 	struct opcode pfx_66;
218 	struct opcode pfx_f2;
219 	struct opcode pfx_f3;
220 };
221 
222 struct escape {
223 	struct opcode op[8];
224 	struct opcode high[64];
225 };
226 
227 struct instr_dual {
228 	struct opcode mod012;
229 	struct opcode mod3;
230 };
231 
232 struct mode_dual {
233 	struct opcode mode32;
234 	struct opcode mode64;
235 };
236 
237 #define EFLG_RESERVED_ZEROS_MASK 0xffc0802a
238 
239 enum x86_transfer_type {
240 	X86_TRANSFER_NONE,
241 	X86_TRANSFER_CALL_JMP,
242 	X86_TRANSFER_RET,
243 	X86_TRANSFER_TASK_SWITCH,
244 };
245 
writeback_registers(struct x86_emulate_ctxt * ctxt)246 static void writeback_registers(struct x86_emulate_ctxt *ctxt)
247 {
248 	unsigned long dirty = ctxt->regs_dirty;
249 	unsigned reg;
250 
251 	for_each_set_bit(reg, &dirty, NR_EMULATOR_GPRS)
252 		ctxt->ops->write_gpr(ctxt, reg, ctxt->_regs[reg]);
253 }
254 
invalidate_registers(struct x86_emulate_ctxt * ctxt)255 static void invalidate_registers(struct x86_emulate_ctxt *ctxt)
256 {
257 	ctxt->regs_dirty = 0;
258 	ctxt->regs_valid = 0;
259 }
260 
261 /*
262  * These EFLAGS bits are restored from saved value during emulation, and
263  * any changes are written back to the saved value after emulation.
264  */
265 #define EFLAGS_MASK (X86_EFLAGS_OF|X86_EFLAGS_SF|X86_EFLAGS_ZF|X86_EFLAGS_AF|\
266 		     X86_EFLAGS_PF|X86_EFLAGS_CF)
267 
268 #ifdef CONFIG_X86_64
269 #define ON64(x...) x
270 #else
271 #define ON64(x...)
272 #endif
273 
274 #define EM_ASM_START(op) \
275 static int em_##op(struct x86_emulate_ctxt *ctxt) \
276 { \
277 	unsigned long flags = (ctxt->eflags & EFLAGS_MASK) | X86_EFLAGS_IF; \
278 	int bytes = 1, ok = 1; \
279 	if (!(ctxt->d & ByteOp)) \
280 		bytes = ctxt->dst.bytes; \
281 	switch (bytes) {
282 
283 #define __EM_ASM(str) \
284 		asm("push %[flags]; popf \n\t" \
285 		    "10: " str \
286 		    "pushf; pop %[flags] \n\t" \
287 		    "11: \n\t" \
288 		    : "+a" (ctxt->dst.val), \
289 		      "+d" (ctxt->src.val), \
290 		      [flags] "+D" (flags), \
291 		      "+S" (ok) \
292 		    : "c" (ctxt->src2.val))
293 
294 #define __EM_ASM_1(op, dst) \
295 		__EM_ASM(#op " %%" #dst " \n\t")
296 
297 #define __EM_ASM_1_EX(op, dst) \
298 		__EM_ASM(#op " %%" #dst " \n\t" \
299 			 _ASM_EXTABLE_TYPE_REG(10b, 11f, EX_TYPE_ZERO_REG, %%esi))
300 
301 #define __EM_ASM_2(op, dst, src) \
302 		__EM_ASM(#op " %%" #src ", %%" #dst " \n\t")
303 
304 #define __EM_ASM_3(op, dst, src, src2) \
305 		__EM_ASM(#op " %%" #src2 ", %%" #src ", %%" #dst " \n\t")
306 
307 #define EM_ASM_END \
308 	} \
309 	ctxt->eflags = (ctxt->eflags & ~EFLAGS_MASK) | (flags & EFLAGS_MASK); \
310 	return !ok ? emulate_de(ctxt) : X86EMUL_CONTINUE; \
311 }
312 
313 /* 1-operand, using "a" (dst) */
314 #define EM_ASM_1(op) \
315 	EM_ASM_START(op) \
316 	case 1: __EM_ASM_1(op##b, al); break; \
317 	case 2: __EM_ASM_1(op##w, ax); break; \
318 	case 4: __EM_ASM_1(op##l, eax); break; \
319 	ON64(case 8: __EM_ASM_1(op##q, rax); break;) \
320 	EM_ASM_END
321 
322 /* 1-operand, using "c" (src2) */
323 #define EM_ASM_1SRC2(op, name) \
324 	EM_ASM_START(name) \
325 	case 1: __EM_ASM_1(op##b, cl); break; \
326 	case 2: __EM_ASM_1(op##w, cx); break; \
327 	case 4: __EM_ASM_1(op##l, ecx); break; \
328 	ON64(case 8: __EM_ASM_1(op##q, rcx); break;) \
329 	EM_ASM_END
330 
331 /* 1-operand, using "c" (src2) with exception */
332 #define EM_ASM_1SRC2EX(op, name) \
333 	EM_ASM_START(name) \
334 	case 1: __EM_ASM_1_EX(op##b, cl); break; \
335 	case 2: __EM_ASM_1_EX(op##w, cx); break; \
336 	case 4: __EM_ASM_1_EX(op##l, ecx); break; \
337 	ON64(case 8: __EM_ASM_1_EX(op##q, rcx); break;) \
338 	EM_ASM_END
339 
340 /* 2-operand, using "a" (dst), "d" (src) */
341 #define EM_ASM_2(op) \
342 	EM_ASM_START(op) \
343 	case 1: __EM_ASM_2(op##b, al, dl); break; \
344 	case 2: __EM_ASM_2(op##w, ax, dx); break; \
345 	case 4: __EM_ASM_2(op##l, eax, edx); break; \
346 	ON64(case 8: __EM_ASM_2(op##q, rax, rdx); break;) \
347 	EM_ASM_END
348 
349 /* 2-operand, reversed */
350 #define EM_ASM_2R(op, name) \
351 	EM_ASM_START(name) \
352 	case 1: __EM_ASM_2(op##b, dl, al); break; \
353 	case 2: __EM_ASM_2(op##w, dx, ax); break; \
354 	case 4: __EM_ASM_2(op##l, edx, eax); break; \
355 	ON64(case 8: __EM_ASM_2(op##q, rdx, rax); break;) \
356 	EM_ASM_END
357 
358 /* 2-operand, word only (no byte op) */
359 #define EM_ASM_2W(op) \
360 	EM_ASM_START(op) \
361 	case 1: break; \
362 	case 2: __EM_ASM_2(op##w, ax, dx); break; \
363 	case 4: __EM_ASM_2(op##l, eax, edx); break; \
364 	ON64(case 8: __EM_ASM_2(op##q, rax, rdx); break;) \
365 	EM_ASM_END
366 
367 /* 2-operand, using "a" (dst) and CL (src2) */
368 #define EM_ASM_2CL(op) \
369 	EM_ASM_START(op) \
370 	case 1: __EM_ASM_2(op##b, al, cl); break; \
371 	case 2: __EM_ASM_2(op##w, ax, cl); break; \
372 	case 4: __EM_ASM_2(op##l, eax, cl); break; \
373 	ON64(case 8: __EM_ASM_2(op##q, rax, cl); break;) \
374 	EM_ASM_END
375 
376 /* 3-operand, using "a" (dst), "d" (src) and CL (src2) */
377 #define EM_ASM_3WCL(op) \
378 	EM_ASM_START(op) \
379 	case 1: break; \
380 	case 2: __EM_ASM_3(op##w, ax, dx, cl); break; \
381 	case 4: __EM_ASM_3(op##l, eax, edx, cl); break; \
382 	ON64(case 8: __EM_ASM_3(op##q, rax, rdx, cl); break;) \
383 	EM_ASM_END
384 
em_salc(struct x86_emulate_ctxt * ctxt)385 static int em_salc(struct x86_emulate_ctxt *ctxt)
386 {
387 	/*
388 	 * Set AL 0xFF if CF is set, or 0x00 when clear.
389 	 */
390 	ctxt->dst.val = 0xFF * !!(ctxt->eflags & X86_EFLAGS_CF);
391 	return X86EMUL_CONTINUE;
392 }
393 
394 /*
395  * XXX: inoutclob user must know where the argument is being expanded.
396  *      Using asm goto would allow us to remove _fault.
397  */
398 #define asm_safe(insn, inoutclob...) \
399 ({ \
400 	int _fault = 0; \
401  \
402 	asm volatile("1:" insn "\n" \
403 	             "2:\n" \
404 		     _ASM_EXTABLE_TYPE_REG(1b, 2b, EX_TYPE_ONE_REG, %[_fault]) \
405 	             : [_fault] "+r"(_fault) inoutclob ); \
406  \
407 	_fault ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; \
408 })
409 
emulator_check_intercept(struct x86_emulate_ctxt * ctxt,enum x86_intercept intercept,enum x86_intercept_stage stage)410 static int emulator_check_intercept(struct x86_emulate_ctxt *ctxt,
411 				    enum x86_intercept intercept,
412 				    enum x86_intercept_stage stage)
413 {
414 	struct x86_instruction_info info = {
415 		.intercept  = intercept,
416 		.rep_prefix = ctxt->rep_prefix,
417 		.modrm_mod  = ctxt->modrm_mod,
418 		.modrm_reg  = ctxt->modrm_reg,
419 		.modrm_rm   = ctxt->modrm_rm,
420 		.src_val    = ctxt->src.val64,
421 		.dst_val    = ctxt->dst.val64,
422 		.src_bytes  = ctxt->src.bytes,
423 		.dst_bytes  = ctxt->dst.bytes,
424 		.src_type   = ctxt->src.type,
425 		.dst_type   = ctxt->dst.type,
426 		.ad_bytes   = ctxt->ad_bytes,
427 		.rip	    = ctxt->eip,
428 		.next_rip   = ctxt->_eip,
429 	};
430 
431 	return ctxt->ops->intercept(ctxt, &info, stage);
432 }
433 
assign_masked(ulong * dest,ulong src,ulong mask)434 static void assign_masked(ulong *dest, ulong src, ulong mask)
435 {
436 	*dest = (*dest & ~mask) | (src & mask);
437 }
438 
assign_register(unsigned long * reg,u64 val,int bytes)439 static void assign_register(unsigned long *reg, u64 val, int bytes)
440 {
441 	/* The 4-byte case *is* correct: in 64-bit mode we zero-extend. */
442 	switch (bytes) {
443 	case 1:
444 		*(u8 *)reg = (u8)val;
445 		break;
446 	case 2:
447 		*(u16 *)reg = (u16)val;
448 		break;
449 	case 4:
450 		*reg = (u32)val;
451 		break;	/* 64b: zero-extend */
452 	case 8:
453 		*reg = val;
454 		break;
455 	}
456 }
457 
ad_mask(struct x86_emulate_ctxt * ctxt)458 static inline unsigned long ad_mask(struct x86_emulate_ctxt *ctxt)
459 {
460 	return (1UL << (ctxt->ad_bytes << 3)) - 1;
461 }
462 
stack_mask(struct x86_emulate_ctxt * ctxt)463 static ulong stack_mask(struct x86_emulate_ctxt *ctxt)
464 {
465 	u16 sel;
466 	struct desc_struct ss;
467 
468 	if (ctxt->mode == X86EMUL_MODE_PROT64)
469 		return ~0UL;
470 	ctxt->ops->get_segment(ctxt, &sel, &ss, NULL, VCPU_SREG_SS);
471 	return ~0U >> ((ss.d ^ 1) * 16);  /* d=0: 0xffff; d=1: 0xffffffff */
472 }
473 
stack_size(struct x86_emulate_ctxt * ctxt)474 static int stack_size(struct x86_emulate_ctxt *ctxt)
475 {
476 	return (__fls(stack_mask(ctxt)) + 1) >> 3;
477 }
478 
479 /* Access/update address held in a register, based on addressing mode. */
480 static inline unsigned long
address_mask(struct x86_emulate_ctxt * ctxt,unsigned long reg)481 address_mask(struct x86_emulate_ctxt *ctxt, unsigned long reg)
482 {
483 	if (ctxt->ad_bytes == sizeof(unsigned long))
484 		return reg;
485 	else
486 		return reg & ad_mask(ctxt);
487 }
488 
489 static inline unsigned long
register_address(struct x86_emulate_ctxt * ctxt,int reg)490 register_address(struct x86_emulate_ctxt *ctxt, int reg)
491 {
492 	return address_mask(ctxt, reg_read(ctxt, reg));
493 }
494 
masked_increment(ulong * reg,ulong mask,int inc)495 static void masked_increment(ulong *reg, ulong mask, int inc)
496 {
497 	assign_masked(reg, *reg + inc, mask);
498 }
499 
500 static inline void
register_address_increment(struct x86_emulate_ctxt * ctxt,int reg,int inc)501 register_address_increment(struct x86_emulate_ctxt *ctxt, int reg, int inc)
502 {
503 	ulong *preg = reg_rmw(ctxt, reg);
504 
505 	assign_register(preg, *preg + inc, ctxt->ad_bytes);
506 }
507 
rsp_increment(struct x86_emulate_ctxt * ctxt,int inc)508 static void rsp_increment(struct x86_emulate_ctxt *ctxt, int inc)
509 {
510 	masked_increment(reg_rmw(ctxt, VCPU_REGS_RSP), stack_mask(ctxt), inc);
511 }
512 
desc_limit_scaled(struct desc_struct * desc)513 static u32 desc_limit_scaled(struct desc_struct *desc)
514 {
515 	u32 limit = get_desc_limit(desc);
516 
517 	return desc->g ? (limit << 12) | 0xfff : limit;
518 }
519 
seg_base(struct x86_emulate_ctxt * ctxt,int seg)520 static unsigned long seg_base(struct x86_emulate_ctxt *ctxt, int seg)
521 {
522 	if (ctxt->mode == X86EMUL_MODE_PROT64 && seg < VCPU_SREG_FS)
523 		return 0;
524 
525 	return ctxt->ops->get_cached_segment_base(ctxt, seg);
526 }
527 
emulate_exception(struct x86_emulate_ctxt * ctxt,int vec,u32 error,bool valid)528 static int emulate_exception(struct x86_emulate_ctxt *ctxt, int vec,
529 			     u32 error, bool valid)
530 {
531 	if (KVM_EMULATOR_BUG_ON(vec > 0x1f, ctxt))
532 		return X86EMUL_UNHANDLEABLE;
533 
534 	ctxt->exception.vector = vec;
535 	ctxt->exception.error_code = error;
536 	ctxt->exception.error_code_valid = valid;
537 	return X86EMUL_PROPAGATE_FAULT;
538 }
539 
emulate_db(struct x86_emulate_ctxt * ctxt)540 static int emulate_db(struct x86_emulate_ctxt *ctxt)
541 {
542 	return emulate_exception(ctxt, DB_VECTOR, 0, false);
543 }
544 
emulate_gp(struct x86_emulate_ctxt * ctxt,int err)545 static int emulate_gp(struct x86_emulate_ctxt *ctxt, int err)
546 {
547 	return emulate_exception(ctxt, GP_VECTOR, err, true);
548 }
549 
emulate_ss(struct x86_emulate_ctxt * ctxt,int err)550 static int emulate_ss(struct x86_emulate_ctxt *ctxt, int err)
551 {
552 	return emulate_exception(ctxt, SS_VECTOR, err, true);
553 }
554 
emulate_ud(struct x86_emulate_ctxt * ctxt)555 static int emulate_ud(struct x86_emulate_ctxt *ctxt)
556 {
557 	return emulate_exception(ctxt, UD_VECTOR, 0, false);
558 }
559 
emulate_ts(struct x86_emulate_ctxt * ctxt,int err)560 static int emulate_ts(struct x86_emulate_ctxt *ctxt, int err)
561 {
562 	return emulate_exception(ctxt, TS_VECTOR, err, true);
563 }
564 
emulate_de(struct x86_emulate_ctxt * ctxt)565 static int emulate_de(struct x86_emulate_ctxt *ctxt)
566 {
567 	return emulate_exception(ctxt, DE_VECTOR, 0, false);
568 }
569 
emulate_nm(struct x86_emulate_ctxt * ctxt)570 static int emulate_nm(struct x86_emulate_ctxt *ctxt)
571 {
572 	return emulate_exception(ctxt, NM_VECTOR, 0, false);
573 }
574 
get_segment_selector(struct x86_emulate_ctxt * ctxt,unsigned seg)575 static u16 get_segment_selector(struct x86_emulate_ctxt *ctxt, unsigned seg)
576 {
577 	u16 selector;
578 	struct desc_struct desc;
579 
580 	ctxt->ops->get_segment(ctxt, &selector, &desc, NULL, seg);
581 	return selector;
582 }
583 
set_segment_selector(struct x86_emulate_ctxt * ctxt,u16 selector,unsigned seg)584 static void set_segment_selector(struct x86_emulate_ctxt *ctxt, u16 selector,
585 				 unsigned seg)
586 {
587 	u16 dummy;
588 	u32 base3;
589 	struct desc_struct desc;
590 
591 	ctxt->ops->get_segment(ctxt, &dummy, &desc, &base3, seg);
592 	ctxt->ops->set_segment(ctxt, selector, &desc, base3, seg);
593 }
594 
ctxt_virt_addr_bits(struct x86_emulate_ctxt * ctxt)595 static inline u8 ctxt_virt_addr_bits(struct x86_emulate_ctxt *ctxt)
596 {
597 	return (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_LA57) ? 57 : 48;
598 }
599 
emul_is_noncanonical_address(u64 la,struct x86_emulate_ctxt * ctxt,unsigned int flags)600 static inline bool emul_is_noncanonical_address(u64 la,
601 						struct x86_emulate_ctxt *ctxt,
602 						unsigned int flags)
603 {
604 	return !ctxt->ops->is_canonical_addr(ctxt, la, flags);
605 }
606 
607 /*
608  * x86 defines three classes of vector instructions: explicitly
609  * aligned, explicitly unaligned, and the rest, which change behaviour
610  * depending on whether they're AVX encoded or not.
611  *
612  * Also included is CMPXCHG16B which is not a vector instruction, yet it is
613  * subject to the same check.  FXSAVE and FXRSTOR are checked here too as their
614  * 512 bytes of data must be aligned to a 16 byte boundary.
615  */
insn_alignment(struct x86_emulate_ctxt * ctxt,unsigned size)616 static unsigned insn_alignment(struct x86_emulate_ctxt *ctxt, unsigned size)
617 {
618 	u64 alignment = ctxt->d & AlignMask;
619 
620 	if (likely(size < 16))
621 		return 1;
622 
623 	switch (alignment) {
624 	case Unaligned:
625 	case Avx:
626 		return 1;
627 	case Aligned16:
628 		return 16;
629 	case Aligned:
630 	default:
631 		return size;
632 	}
633 }
634 
__linearize(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,unsigned * max_size,unsigned size,enum x86emul_mode mode,ulong * linear,unsigned int flags)635 static __always_inline int __linearize(struct x86_emulate_ctxt *ctxt,
636 				       struct segmented_address addr,
637 				       unsigned *max_size, unsigned size,
638 				       enum x86emul_mode mode, ulong *linear,
639 				       unsigned int flags)
640 {
641 	struct desc_struct desc;
642 	bool usable;
643 	ulong la;
644 	u32 lim;
645 	u16 sel;
646 	u8  va_bits;
647 
648 	la = seg_base(ctxt, addr.seg) + addr.ea;
649 	*max_size = 0;
650 	switch (mode) {
651 	case X86EMUL_MODE_PROT64:
652 		*linear = la = ctxt->ops->get_untagged_addr(ctxt, la, flags);
653 		va_bits = ctxt_virt_addr_bits(ctxt);
654 		if (!__is_canonical_address(la, va_bits))
655 			goto bad;
656 
657 		*max_size = min_t(u64, ~0u, (1ull << va_bits) - la);
658 		if (size > *max_size)
659 			goto bad;
660 		break;
661 	default:
662 		*linear = la = (u32)la;
663 		usable = ctxt->ops->get_segment(ctxt, &sel, &desc, NULL,
664 						addr.seg);
665 		if (!usable)
666 			goto bad;
667 		/* code segment in protected mode or read-only data segment */
668 		if ((((ctxt->mode != X86EMUL_MODE_REAL) && (desc.type & 8)) || !(desc.type & 2)) &&
669 		    (flags & X86EMUL_F_WRITE))
670 			goto bad;
671 		/* unreadable code segment */
672 		if (!(flags & X86EMUL_F_FETCH) && (desc.type & 8) && !(desc.type & 2))
673 			goto bad;
674 		lim = desc_limit_scaled(&desc);
675 		if (!(desc.type & 8) && (desc.type & 4)) {
676 			/* expand-down segment */
677 			if (addr.ea <= lim)
678 				goto bad;
679 			lim = desc.d ? 0xffffffff : 0xffff;
680 		}
681 		if (addr.ea > lim)
682 			goto bad;
683 		if (lim == 0xffffffff)
684 			*max_size = ~0u;
685 		else {
686 			*max_size = (u64)lim + 1 - addr.ea;
687 			if (size > *max_size)
688 				goto bad;
689 		}
690 		break;
691 	}
692 	if (la & (insn_alignment(ctxt, size) - 1))
693 		return emulate_gp(ctxt, 0);
694 	return X86EMUL_CONTINUE;
695 bad:
696 	if (addr.seg == VCPU_SREG_SS)
697 		return emulate_ss(ctxt, 0);
698 	else
699 		return emulate_gp(ctxt, 0);
700 }
701 
linearize(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,unsigned size,bool write,ulong * linear)702 static int linearize(struct x86_emulate_ctxt *ctxt,
703 		     struct segmented_address addr,
704 		     unsigned size, bool write,
705 		     ulong *linear)
706 {
707 	unsigned max_size;
708 	return __linearize(ctxt, addr, &max_size, size, ctxt->mode, linear,
709 			   write ? X86EMUL_F_WRITE : 0);
710 }
711 
assign_eip(struct x86_emulate_ctxt * ctxt,ulong dst)712 static inline int assign_eip(struct x86_emulate_ctxt *ctxt, ulong dst)
713 {
714 	ulong linear;
715 	int rc;
716 	unsigned max_size;
717 	struct segmented_address addr = { .seg = VCPU_SREG_CS,
718 					   .ea = dst };
719 
720 	if (ctxt->op_bytes != sizeof(unsigned long))
721 		addr.ea = dst & ((1UL << (ctxt->op_bytes << 3)) - 1);
722 	rc = __linearize(ctxt, addr, &max_size, 1, ctxt->mode, &linear,
723 			 X86EMUL_F_FETCH);
724 	if (rc == X86EMUL_CONTINUE)
725 		ctxt->_eip = addr.ea;
726 	return rc;
727 }
728 
emulator_recalc_and_set_mode(struct x86_emulate_ctxt * ctxt)729 static inline int emulator_recalc_and_set_mode(struct x86_emulate_ctxt *ctxt)
730 {
731 	u64 efer;
732 	struct desc_struct cs;
733 	u16 selector;
734 	u32 base3;
735 
736 	ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
737 
738 	if (!(ctxt->ops->get_cr(ctxt, 0) & X86_CR0_PE)) {
739 		/* Real mode. cpu must not have long mode active */
740 		if (efer & EFER_LMA)
741 			return X86EMUL_UNHANDLEABLE;
742 		ctxt->mode = X86EMUL_MODE_REAL;
743 		return X86EMUL_CONTINUE;
744 	}
745 
746 	if (ctxt->eflags & X86_EFLAGS_VM) {
747 		/* Protected/VM86 mode. cpu must not have long mode active */
748 		if (efer & EFER_LMA)
749 			return X86EMUL_UNHANDLEABLE;
750 		ctxt->mode = X86EMUL_MODE_VM86;
751 		return X86EMUL_CONTINUE;
752 	}
753 
754 	if (!ctxt->ops->get_segment(ctxt, &selector, &cs, &base3, VCPU_SREG_CS))
755 		return X86EMUL_UNHANDLEABLE;
756 
757 	if (efer & EFER_LMA) {
758 		if (cs.l) {
759 			/* Proper long mode */
760 			ctxt->mode = X86EMUL_MODE_PROT64;
761 		} else if (cs.d) {
762 			/* 32 bit compatibility mode*/
763 			ctxt->mode = X86EMUL_MODE_PROT32;
764 		} else {
765 			ctxt->mode = X86EMUL_MODE_PROT16;
766 		}
767 	} else {
768 		/* Legacy 32 bit / 16 bit mode */
769 		ctxt->mode = cs.d ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
770 	}
771 
772 	return X86EMUL_CONTINUE;
773 }
774 
assign_eip_near(struct x86_emulate_ctxt * ctxt,ulong dst)775 static inline int assign_eip_near(struct x86_emulate_ctxt *ctxt, ulong dst)
776 {
777 	return assign_eip(ctxt, dst);
778 }
779 
assign_eip_far(struct x86_emulate_ctxt * ctxt,ulong dst)780 static int assign_eip_far(struct x86_emulate_ctxt *ctxt, ulong dst)
781 {
782 	int rc = emulator_recalc_and_set_mode(ctxt);
783 
784 	if (rc != X86EMUL_CONTINUE)
785 		return rc;
786 
787 	return assign_eip(ctxt, dst);
788 }
789 
jmp_rel(struct x86_emulate_ctxt * ctxt,int rel)790 static inline int jmp_rel(struct x86_emulate_ctxt *ctxt, int rel)
791 {
792 	return assign_eip_near(ctxt, ctxt->_eip + rel);
793 }
794 
linear_read_system(struct x86_emulate_ctxt * ctxt,ulong linear,void * data,unsigned size)795 static int linear_read_system(struct x86_emulate_ctxt *ctxt, ulong linear,
796 			      void *data, unsigned size)
797 {
798 	return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception, true);
799 }
800 
linear_write_system(struct x86_emulate_ctxt * ctxt,ulong linear,void * data,unsigned int size)801 static int linear_write_system(struct x86_emulate_ctxt *ctxt,
802 			       ulong linear, void *data,
803 			       unsigned int size)
804 {
805 	return ctxt->ops->write_std(ctxt, linear, data, size, &ctxt->exception, true);
806 }
807 
segmented_read_std(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,void * data,unsigned size)808 static int segmented_read_std(struct x86_emulate_ctxt *ctxt,
809 			      struct segmented_address addr,
810 			      void *data,
811 			      unsigned size)
812 {
813 	int rc;
814 	ulong linear;
815 
816 	rc = linearize(ctxt, addr, size, false, &linear);
817 	if (rc != X86EMUL_CONTINUE)
818 		return rc;
819 	return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception, false);
820 }
821 
segmented_write_std(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,void * data,unsigned int size)822 static int segmented_write_std(struct x86_emulate_ctxt *ctxt,
823 			       struct segmented_address addr,
824 			       void *data,
825 			       unsigned int size)
826 {
827 	int rc;
828 	ulong linear;
829 
830 	rc = linearize(ctxt, addr, size, true, &linear);
831 	if (rc != X86EMUL_CONTINUE)
832 		return rc;
833 	return ctxt->ops->write_std(ctxt, linear, data, size, &ctxt->exception, false);
834 }
835 
836 /*
837  * Prefetch the remaining bytes of the instruction without crossing page
838  * boundary if they are not in fetch_cache yet.
839  */
__do_insn_fetch_bytes(struct x86_emulate_ctxt * ctxt,int op_size)840 static int __do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt, int op_size)
841 {
842 	int rc;
843 	unsigned size, max_size;
844 	unsigned long linear;
845 	int cur_size = ctxt->fetch.end - ctxt->fetch.data;
846 	struct segmented_address addr = { .seg = VCPU_SREG_CS,
847 					   .ea = ctxt->eip + cur_size };
848 
849 	/*
850 	 * We do not know exactly how many bytes will be needed, and
851 	 * __linearize is expensive, so fetch as much as possible.  We
852 	 * just have to avoid going beyond the 15 byte limit, the end
853 	 * of the segment, or the end of the page.
854 	 *
855 	 * __linearize is called with size 0 so that it does not do any
856 	 * boundary check itself.  Instead, we use max_size to check
857 	 * against op_size.
858 	 */
859 	rc = __linearize(ctxt, addr, &max_size, 0, ctxt->mode, &linear,
860 			 X86EMUL_F_FETCH);
861 	if (unlikely(rc != X86EMUL_CONTINUE))
862 		return rc;
863 
864 	size = min_t(unsigned, 15UL ^ cur_size, max_size);
865 	size = min_t(unsigned, size, PAGE_SIZE - offset_in_page(linear));
866 
867 	/*
868 	 * One instruction can only straddle two pages,
869 	 * and one has been loaded at the beginning of
870 	 * x86_decode_insn.  So, if not enough bytes
871 	 * still, we must have hit the 15-byte boundary.
872 	 */
873 	if (unlikely(size < op_size))
874 		return emulate_gp(ctxt, 0);
875 
876 	rc = ctxt->ops->fetch(ctxt, linear, ctxt->fetch.end,
877 			      size, &ctxt->exception);
878 	if (unlikely(rc != X86EMUL_CONTINUE))
879 		return rc;
880 	ctxt->fetch.end += size;
881 	return X86EMUL_CONTINUE;
882 }
883 
do_insn_fetch_bytes(struct x86_emulate_ctxt * ctxt,unsigned size)884 static __always_inline int do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt,
885 					       unsigned size)
886 {
887 	unsigned done_size = ctxt->fetch.end - ctxt->fetch.ptr;
888 
889 	if (unlikely(done_size < size))
890 		return __do_insn_fetch_bytes(ctxt, size - done_size);
891 	else
892 		return X86EMUL_CONTINUE;
893 }
894 
895 /* Fetch next part of the instruction being emulated. */
896 #define insn_fetch(_type, _ctxt)					\
897 ({	_type _x;							\
898 									\
899 	rc = do_insn_fetch_bytes(_ctxt, sizeof(_type));			\
900 	if (rc != X86EMUL_CONTINUE)					\
901 		goto done;						\
902 	ctxt->_eip += sizeof(_type);					\
903 	memcpy(&_x, ctxt->fetch.ptr, sizeof(_type));			\
904 	ctxt->fetch.ptr += sizeof(_type);				\
905 	_x;								\
906 })
907 
908 #define insn_fetch_arr(_arr, _size, _ctxt)				\
909 ({									\
910 	rc = do_insn_fetch_bytes(_ctxt, _size);				\
911 	if (rc != X86EMUL_CONTINUE)					\
912 		goto done;						\
913 	ctxt->_eip += (_size);						\
914 	memcpy(_arr, ctxt->fetch.ptr, _size);				\
915 	ctxt->fetch.ptr += (_size);					\
916 })
917 
918 /*
919  * Given the 'reg' portion of a ModRM byte, and a register block, return a
920  * pointer into the block that addresses the relevant register.
921  * @highbyte_regs specifies whether to decode AH,CH,DH,BH.
922  */
decode_register(struct x86_emulate_ctxt * ctxt,u8 modrm_reg,int byteop)923 static void *decode_register(struct x86_emulate_ctxt *ctxt, u8 modrm_reg,
924 			     int byteop)
925 {
926 	void *p;
927 	int highbyte_regs = (ctxt->rex_prefix == 0) && byteop;
928 
929 	if (highbyte_regs && modrm_reg >= 4 && modrm_reg < 8)
930 		p = (unsigned char *)reg_rmw(ctxt, modrm_reg & 3) + 1;
931 	else
932 		p = reg_rmw(ctxt, modrm_reg);
933 	return p;
934 }
935 
read_descriptor(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,u16 * size,unsigned long * address,int op_bytes)936 static int read_descriptor(struct x86_emulate_ctxt *ctxt,
937 			   struct segmented_address addr,
938 			   u16 *size, unsigned long *address, int op_bytes)
939 {
940 	int rc;
941 
942 	if (op_bytes == 2)
943 		op_bytes = 3;
944 	*address = 0;
945 	rc = segmented_read_std(ctxt, addr, size, 2);
946 	if (rc != X86EMUL_CONTINUE)
947 		return rc;
948 	addr.ea += 2;
949 	rc = segmented_read_std(ctxt, addr, address, op_bytes);
950 	return rc;
951 }
952 
953 EM_ASM_2(add);
954 EM_ASM_2(or);
955 EM_ASM_2(adc);
956 EM_ASM_2(sbb);
957 EM_ASM_2(and);
958 EM_ASM_2(sub);
959 EM_ASM_2(xor);
960 EM_ASM_2(cmp);
961 EM_ASM_2(test);
962 EM_ASM_2(xadd);
963 
964 EM_ASM_1SRC2(mul, mul_ex);
965 EM_ASM_1SRC2(imul, imul_ex);
966 EM_ASM_1SRC2EX(div, div_ex);
967 EM_ASM_1SRC2EX(idiv, idiv_ex);
968 
969 EM_ASM_3WCL(shld);
970 EM_ASM_3WCL(shrd);
971 
972 EM_ASM_2W(imul);
973 
974 EM_ASM_1(not);
975 EM_ASM_1(neg);
976 EM_ASM_1(inc);
977 EM_ASM_1(dec);
978 
979 EM_ASM_2CL(rol);
980 EM_ASM_2CL(ror);
981 EM_ASM_2CL(rcl);
982 EM_ASM_2CL(rcr);
983 EM_ASM_2CL(shl);
984 EM_ASM_2CL(shr);
985 EM_ASM_2CL(sar);
986 
987 EM_ASM_2W(bsf);
988 EM_ASM_2W(bsr);
989 EM_ASM_2W(bt);
990 EM_ASM_2W(bts);
991 EM_ASM_2W(btr);
992 EM_ASM_2W(btc);
993 
994 EM_ASM_2R(cmp, cmp_r);
995 
em_bsf_c(struct x86_emulate_ctxt * ctxt)996 static int em_bsf_c(struct x86_emulate_ctxt *ctxt)
997 {
998 	/* If src is zero, do not writeback, but update flags */
999 	if (ctxt->src.val == 0)
1000 		ctxt->dst.type = OP_NONE;
1001 	return em_bsf(ctxt);
1002 }
1003 
em_bsr_c(struct x86_emulate_ctxt * ctxt)1004 static int em_bsr_c(struct x86_emulate_ctxt *ctxt)
1005 {
1006 	/* If src is zero, do not writeback, but update flags */
1007 	if (ctxt->src.val == 0)
1008 		ctxt->dst.type = OP_NONE;
1009 	return em_bsr(ctxt);
1010 }
1011 
test_cc(unsigned int condition,unsigned long flags)1012 static __always_inline u8 test_cc(unsigned int condition, unsigned long flags)
1013 {
1014 	return __emulate_cc(flags, condition & 0xf);
1015 }
1016 
fetch_register_operand(struct operand * op)1017 static void fetch_register_operand(struct operand *op)
1018 {
1019 	switch (op->bytes) {
1020 	case 1:
1021 		op->val = *(u8 *)op->addr.reg;
1022 		break;
1023 	case 2:
1024 		op->val = *(u16 *)op->addr.reg;
1025 		break;
1026 	case 4:
1027 		op->val = *(u32 *)op->addr.reg;
1028 		break;
1029 	case 8:
1030 		op->val = *(u64 *)op->addr.reg;
1031 		break;
1032 	}
1033 }
1034 
em_fninit(struct x86_emulate_ctxt * ctxt)1035 static int em_fninit(struct x86_emulate_ctxt *ctxt)
1036 {
1037 	if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
1038 		return emulate_nm(ctxt);
1039 
1040 	kvm_fpu_get();
1041 	asm volatile("fninit");
1042 	kvm_fpu_put();
1043 	return X86EMUL_CONTINUE;
1044 }
1045 
em_fnstcw(struct x86_emulate_ctxt * ctxt)1046 static int em_fnstcw(struct x86_emulate_ctxt *ctxt)
1047 {
1048 	u16 fcw;
1049 
1050 	if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
1051 		return emulate_nm(ctxt);
1052 
1053 	kvm_fpu_get();
1054 	asm volatile("fnstcw %0": "+m"(fcw));
1055 	kvm_fpu_put();
1056 
1057 	ctxt->dst.val = fcw;
1058 
1059 	return X86EMUL_CONTINUE;
1060 }
1061 
em_fnstsw(struct x86_emulate_ctxt * ctxt)1062 static int em_fnstsw(struct x86_emulate_ctxt *ctxt)
1063 {
1064 	u16 fsw;
1065 
1066 	if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
1067 		return emulate_nm(ctxt);
1068 
1069 	kvm_fpu_get();
1070 	asm volatile("fnstsw %0": "+m"(fsw));
1071 	kvm_fpu_put();
1072 
1073 	ctxt->dst.val = fsw;
1074 
1075 	return X86EMUL_CONTINUE;
1076 }
1077 
decode_register_operand(struct x86_emulate_ctxt * ctxt,struct operand * op)1078 static void decode_register_operand(struct x86_emulate_ctxt *ctxt,
1079 				    struct operand *op)
1080 {
1081 	unsigned int reg;
1082 
1083 	if (ctxt->d & ModRM)
1084 		reg = ctxt->modrm_reg;
1085 	else
1086 		reg = (ctxt->b & 7) | ((ctxt->rex_prefix & 1) << 3);
1087 
1088 	if (ctxt->d & Sse) {
1089 		op->type = OP_XMM;
1090 		op->bytes = 16;
1091 		op->addr.xmm = reg;
1092 		kvm_read_sse_reg(reg, &op->vec_val);
1093 		return;
1094 	}
1095 	if (ctxt->d & Mmx) {
1096 		reg &= 7;
1097 		op->type = OP_MM;
1098 		op->bytes = 8;
1099 		op->addr.mm = reg;
1100 		return;
1101 	}
1102 
1103 	op->type = OP_REG;
1104 	op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
1105 	op->addr.reg = decode_register(ctxt, reg, ctxt->d & ByteOp);
1106 
1107 	fetch_register_operand(op);
1108 	op->orig_val = op->val;
1109 }
1110 
adjust_modrm_seg(struct x86_emulate_ctxt * ctxt,int base_reg)1111 static void adjust_modrm_seg(struct x86_emulate_ctxt *ctxt, int base_reg)
1112 {
1113 	if (base_reg == VCPU_REGS_RSP || base_reg == VCPU_REGS_RBP)
1114 		ctxt->modrm_seg = VCPU_SREG_SS;
1115 }
1116 
decode_modrm(struct x86_emulate_ctxt * ctxt,struct operand * op)1117 static int decode_modrm(struct x86_emulate_ctxt *ctxt,
1118 			struct operand *op)
1119 {
1120 	u8 sib;
1121 	int index_reg, base_reg, scale;
1122 	int rc = X86EMUL_CONTINUE;
1123 	ulong modrm_ea = 0;
1124 
1125 	ctxt->modrm_reg = ((ctxt->rex_prefix << 1) & 8); /* REX.R */
1126 	index_reg = (ctxt->rex_prefix << 2) & 8; /* REX.X */
1127 	base_reg = (ctxt->rex_prefix << 3) & 8; /* REX.B */
1128 
1129 	ctxt->modrm_mod = (ctxt->modrm & 0xc0) >> 6;
1130 	ctxt->modrm_reg |= (ctxt->modrm & 0x38) >> 3;
1131 	ctxt->modrm_rm = base_reg | (ctxt->modrm & 0x07);
1132 	ctxt->modrm_seg = VCPU_SREG_DS;
1133 
1134 	if (ctxt->modrm_mod == 3 || (ctxt->d & NoMod)) {
1135 		op->type = OP_REG;
1136 		op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
1137 		op->addr.reg = decode_register(ctxt, ctxt->modrm_rm,
1138 				ctxt->d & ByteOp);
1139 		if (ctxt->d & Sse) {
1140 			op->type = OP_XMM;
1141 			op->bytes = 16;
1142 			op->addr.xmm = ctxt->modrm_rm;
1143 			kvm_read_sse_reg(ctxt->modrm_rm, &op->vec_val);
1144 			return rc;
1145 		}
1146 		if (ctxt->d & Mmx) {
1147 			op->type = OP_MM;
1148 			op->bytes = 8;
1149 			op->addr.mm = ctxt->modrm_rm & 7;
1150 			return rc;
1151 		}
1152 		fetch_register_operand(op);
1153 		return rc;
1154 	}
1155 
1156 	op->type = OP_MEM;
1157 
1158 	if (ctxt->ad_bytes == 2) {
1159 		unsigned bx = reg_read(ctxt, VCPU_REGS_RBX);
1160 		unsigned bp = reg_read(ctxt, VCPU_REGS_RBP);
1161 		unsigned si = reg_read(ctxt, VCPU_REGS_RSI);
1162 		unsigned di = reg_read(ctxt, VCPU_REGS_RDI);
1163 
1164 		/* 16-bit ModR/M decode. */
1165 		switch (ctxt->modrm_mod) {
1166 		case 0:
1167 			if (ctxt->modrm_rm == 6)
1168 				modrm_ea += insn_fetch(u16, ctxt);
1169 			break;
1170 		case 1:
1171 			modrm_ea += insn_fetch(s8, ctxt);
1172 			break;
1173 		case 2:
1174 			modrm_ea += insn_fetch(u16, ctxt);
1175 			break;
1176 		}
1177 		switch (ctxt->modrm_rm) {
1178 		case 0:
1179 			modrm_ea += bx + si;
1180 			break;
1181 		case 1:
1182 			modrm_ea += bx + di;
1183 			break;
1184 		case 2:
1185 			modrm_ea += bp + si;
1186 			break;
1187 		case 3:
1188 			modrm_ea += bp + di;
1189 			break;
1190 		case 4:
1191 			modrm_ea += si;
1192 			break;
1193 		case 5:
1194 			modrm_ea += di;
1195 			break;
1196 		case 6:
1197 			if (ctxt->modrm_mod != 0)
1198 				modrm_ea += bp;
1199 			break;
1200 		case 7:
1201 			modrm_ea += bx;
1202 			break;
1203 		}
1204 		if (ctxt->modrm_rm == 2 || ctxt->modrm_rm == 3 ||
1205 		    (ctxt->modrm_rm == 6 && ctxt->modrm_mod != 0))
1206 			ctxt->modrm_seg = VCPU_SREG_SS;
1207 		modrm_ea = (u16)modrm_ea;
1208 	} else {
1209 		/* 32/64-bit ModR/M decode. */
1210 		if ((ctxt->modrm_rm & 7) == 4) {
1211 			sib = insn_fetch(u8, ctxt);
1212 			index_reg |= (sib >> 3) & 7;
1213 			base_reg |= sib & 7;
1214 			scale = sib >> 6;
1215 
1216 			if ((base_reg & 7) == 5 && ctxt->modrm_mod == 0)
1217 				modrm_ea += insn_fetch(s32, ctxt);
1218 			else {
1219 				modrm_ea += reg_read(ctxt, base_reg);
1220 				adjust_modrm_seg(ctxt, base_reg);
1221 				/* Increment ESP on POP [ESP] */
1222 				if ((ctxt->d & IncSP) &&
1223 				    base_reg == VCPU_REGS_RSP)
1224 					modrm_ea += ctxt->op_bytes;
1225 			}
1226 			if (index_reg != 4)
1227 				modrm_ea += reg_read(ctxt, index_reg) << scale;
1228 		} else if ((ctxt->modrm_rm & 7) == 5 && ctxt->modrm_mod == 0) {
1229 			modrm_ea += insn_fetch(s32, ctxt);
1230 			if (ctxt->mode == X86EMUL_MODE_PROT64)
1231 				ctxt->rip_relative = 1;
1232 		} else {
1233 			base_reg = ctxt->modrm_rm;
1234 			modrm_ea += reg_read(ctxt, base_reg);
1235 			adjust_modrm_seg(ctxt, base_reg);
1236 		}
1237 		switch (ctxt->modrm_mod) {
1238 		case 1:
1239 			modrm_ea += insn_fetch(s8, ctxt);
1240 			break;
1241 		case 2:
1242 			modrm_ea += insn_fetch(s32, ctxt);
1243 			break;
1244 		}
1245 	}
1246 	op->addr.mem.ea = modrm_ea;
1247 	if (ctxt->ad_bytes != 8)
1248 		ctxt->memop.addr.mem.ea = (u32)ctxt->memop.addr.mem.ea;
1249 
1250 done:
1251 	return rc;
1252 }
1253 
decode_abs(struct x86_emulate_ctxt * ctxt,struct operand * op)1254 static int decode_abs(struct x86_emulate_ctxt *ctxt,
1255 		      struct operand *op)
1256 {
1257 	int rc = X86EMUL_CONTINUE;
1258 
1259 	op->type = OP_MEM;
1260 	switch (ctxt->ad_bytes) {
1261 	case 2:
1262 		op->addr.mem.ea = insn_fetch(u16, ctxt);
1263 		break;
1264 	case 4:
1265 		op->addr.mem.ea = insn_fetch(u32, ctxt);
1266 		break;
1267 	case 8:
1268 		op->addr.mem.ea = insn_fetch(u64, ctxt);
1269 		break;
1270 	}
1271 done:
1272 	return rc;
1273 }
1274 
fetch_bit_operand(struct x86_emulate_ctxt * ctxt)1275 static void fetch_bit_operand(struct x86_emulate_ctxt *ctxt)
1276 {
1277 	long sv = 0, mask;
1278 
1279 	if (ctxt->dst.type == OP_MEM && ctxt->src.type == OP_REG) {
1280 		mask = ~((long)ctxt->dst.bytes * 8 - 1);
1281 
1282 		if (ctxt->src.bytes == 2)
1283 			sv = (s16)ctxt->src.val & (s16)mask;
1284 		else if (ctxt->src.bytes == 4)
1285 			sv = (s32)ctxt->src.val & (s32)mask;
1286 		else
1287 			sv = (s64)ctxt->src.val & (s64)mask;
1288 
1289 		ctxt->dst.addr.mem.ea = address_mask(ctxt,
1290 					   ctxt->dst.addr.mem.ea + (sv >> 3));
1291 	}
1292 
1293 	/* only subword offset */
1294 	ctxt->src.val &= (ctxt->dst.bytes << 3) - 1;
1295 }
1296 
read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * dest,unsigned size)1297 static int read_emulated(struct x86_emulate_ctxt *ctxt,
1298 			 unsigned long addr, void *dest, unsigned size)
1299 {
1300 	int rc;
1301 	struct read_cache *mc = &ctxt->mem_read;
1302 
1303 	if (mc->pos < mc->end)
1304 		goto read_cached;
1305 
1306 	if (KVM_EMULATOR_BUG_ON((mc->end + size) >= sizeof(mc->data), ctxt))
1307 		return X86EMUL_UNHANDLEABLE;
1308 
1309 	rc = ctxt->ops->read_emulated(ctxt, addr, mc->data + mc->end, size,
1310 				      &ctxt->exception);
1311 	if (rc != X86EMUL_CONTINUE)
1312 		return rc;
1313 
1314 	mc->end += size;
1315 
1316 read_cached:
1317 	memcpy(dest, mc->data + mc->pos, size);
1318 	mc->pos += size;
1319 	return X86EMUL_CONTINUE;
1320 }
1321 
segmented_read(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,void * data,unsigned size)1322 static int segmented_read(struct x86_emulate_ctxt *ctxt,
1323 			  struct segmented_address addr,
1324 			  void *data,
1325 			  unsigned size)
1326 {
1327 	int rc;
1328 	ulong linear;
1329 
1330 	rc = linearize(ctxt, addr, size, false, &linear);
1331 	if (rc != X86EMUL_CONTINUE)
1332 		return rc;
1333 	return read_emulated(ctxt, linear, data, size);
1334 }
1335 
segmented_write(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,const void * data,unsigned size)1336 static int segmented_write(struct x86_emulate_ctxt *ctxt,
1337 			   struct segmented_address addr,
1338 			   const void *data,
1339 			   unsigned size)
1340 {
1341 	int rc;
1342 	ulong linear;
1343 
1344 	rc = linearize(ctxt, addr, size, true, &linear);
1345 	if (rc != X86EMUL_CONTINUE)
1346 		return rc;
1347 	return ctxt->ops->write_emulated(ctxt, linear, data, size,
1348 					 &ctxt->exception);
1349 }
1350 
segmented_cmpxchg(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,const void * orig_data,const void * data,unsigned size)1351 static int segmented_cmpxchg(struct x86_emulate_ctxt *ctxt,
1352 			     struct segmented_address addr,
1353 			     const void *orig_data, const void *data,
1354 			     unsigned size)
1355 {
1356 	int rc;
1357 	ulong linear;
1358 
1359 	rc = linearize(ctxt, addr, size, true, &linear);
1360 	if (rc != X86EMUL_CONTINUE)
1361 		return rc;
1362 	return ctxt->ops->cmpxchg_emulated(ctxt, linear, orig_data, data,
1363 					   size, &ctxt->exception);
1364 }
1365 
pio_in_emulated(struct x86_emulate_ctxt * ctxt,unsigned int size,unsigned short port,void * dest)1366 static int pio_in_emulated(struct x86_emulate_ctxt *ctxt,
1367 			   unsigned int size, unsigned short port,
1368 			   void *dest)
1369 {
1370 	struct read_cache *rc = &ctxt->io_read;
1371 
1372 	if (rc->pos == rc->end) { /* refill pio read ahead */
1373 		unsigned int in_page, n;
1374 		unsigned int count = ctxt->rep_prefix ?
1375 			address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) : 1;
1376 		in_page = (ctxt->eflags & X86_EFLAGS_DF) ?
1377 			offset_in_page(reg_read(ctxt, VCPU_REGS_RDI)) :
1378 			PAGE_SIZE - offset_in_page(reg_read(ctxt, VCPU_REGS_RDI));
1379 		n = min3(in_page, (unsigned int)sizeof(rc->data) / size, count);
1380 		if (n == 0)
1381 			n = 1;
1382 		rc->pos = rc->end = 0;
1383 		if (!ctxt->ops->pio_in_emulated(ctxt, size, port, rc->data, n))
1384 			return 0;
1385 		rc->end = n * size;
1386 	}
1387 
1388 	if (ctxt->rep_prefix && (ctxt->d & String) &&
1389 	    !(ctxt->eflags & X86_EFLAGS_DF)) {
1390 		ctxt->dst.data = rc->data + rc->pos;
1391 		ctxt->dst.type = OP_MEM_STR;
1392 		ctxt->dst.count = (rc->end - rc->pos) / size;
1393 		rc->pos = rc->end;
1394 	} else {
1395 		memcpy(dest, rc->data + rc->pos, size);
1396 		rc->pos += size;
1397 	}
1398 	return 1;
1399 }
1400 
read_interrupt_descriptor(struct x86_emulate_ctxt * ctxt,u16 index,struct desc_struct * desc)1401 static int read_interrupt_descriptor(struct x86_emulate_ctxt *ctxt,
1402 				     u16 index, struct desc_struct *desc)
1403 {
1404 	struct desc_ptr dt;
1405 	ulong addr;
1406 
1407 	ctxt->ops->get_idt(ctxt, &dt);
1408 
1409 	if (dt.size < index * 8 + 7)
1410 		return emulate_gp(ctxt, index << 3 | 0x2);
1411 
1412 	addr = dt.address + index * 8;
1413 	return linear_read_system(ctxt, addr, desc, sizeof(*desc));
1414 }
1415 
get_descriptor_table_ptr(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_ptr * dt)1416 static void get_descriptor_table_ptr(struct x86_emulate_ctxt *ctxt,
1417 				     u16 selector, struct desc_ptr *dt)
1418 {
1419 	const struct x86_emulate_ops *ops = ctxt->ops;
1420 	u32 base3 = 0;
1421 
1422 	if (selector & 1 << 2) {
1423 		struct desc_struct desc;
1424 		u16 sel;
1425 
1426 		memset(dt, 0, sizeof(*dt));
1427 		if (!ops->get_segment(ctxt, &sel, &desc, &base3,
1428 				      VCPU_SREG_LDTR))
1429 			return;
1430 
1431 		dt->size = desc_limit_scaled(&desc); /* what if limit > 65535? */
1432 		dt->address = get_desc_base(&desc) | ((u64)base3 << 32);
1433 	} else
1434 		ops->get_gdt(ctxt, dt);
1435 }
1436 
get_descriptor_ptr(struct x86_emulate_ctxt * ctxt,u16 selector,ulong * desc_addr_p)1437 static int get_descriptor_ptr(struct x86_emulate_ctxt *ctxt,
1438 			      u16 selector, ulong *desc_addr_p)
1439 {
1440 	struct desc_ptr dt;
1441 	u16 index = selector >> 3;
1442 	ulong addr;
1443 
1444 	get_descriptor_table_ptr(ctxt, selector, &dt);
1445 
1446 	if (dt.size < index * 8 + 7)
1447 		return emulate_gp(ctxt, selector & 0xfffc);
1448 
1449 	addr = dt.address + index * 8;
1450 
1451 #ifdef CONFIG_X86_64
1452 	if (addr >> 32 != 0) {
1453 		u64 efer = 0;
1454 
1455 		ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
1456 		if (!(efer & EFER_LMA))
1457 			addr &= (u32)-1;
1458 	}
1459 #endif
1460 
1461 	*desc_addr_p = addr;
1462 	return X86EMUL_CONTINUE;
1463 }
1464 
1465 /* allowed just for 8 bytes segments */
read_segment_descriptor(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,ulong * desc_addr_p)1466 static int read_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1467 				   u16 selector, struct desc_struct *desc,
1468 				   ulong *desc_addr_p)
1469 {
1470 	int rc;
1471 
1472 	rc = get_descriptor_ptr(ctxt, selector, desc_addr_p);
1473 	if (rc != X86EMUL_CONTINUE)
1474 		return rc;
1475 
1476 	return linear_read_system(ctxt, *desc_addr_p, desc, sizeof(*desc));
1477 }
1478 
1479 /* allowed just for 8 bytes segments */
write_segment_descriptor(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc)1480 static int write_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1481 				    u16 selector, struct desc_struct *desc)
1482 {
1483 	int rc;
1484 	ulong addr;
1485 
1486 	rc = get_descriptor_ptr(ctxt, selector, &addr);
1487 	if (rc != X86EMUL_CONTINUE)
1488 		return rc;
1489 
1490 	return linear_write_system(ctxt, addr, desc, sizeof(*desc));
1491 }
1492 
emulator_is_ssp_invalid(struct x86_emulate_ctxt * ctxt,u8 cpl)1493 static bool emulator_is_ssp_invalid(struct x86_emulate_ctxt *ctxt, u8 cpl)
1494 {
1495 	const u32 MSR_IA32_X_CET = cpl == 3 ? MSR_IA32_U_CET : MSR_IA32_S_CET;
1496 	u64 efer = 0, cet = 0, ssp = 0;
1497 
1498 	if (!(ctxt->ops->get_cr(ctxt, 4) & X86_CR4_CET))
1499 		return false;
1500 
1501 	if (ctxt->ops->get_msr(ctxt, MSR_EFER, &efer))
1502 		return true;
1503 
1504 	/* SSP is guaranteed to be valid if the vCPU was already in 32-bit mode. */
1505 	if (!(efer & EFER_LMA))
1506 		return false;
1507 
1508 	if (ctxt->ops->get_msr(ctxt, MSR_IA32_X_CET, &cet))
1509 		return true;
1510 
1511 	if (!(cet & CET_SHSTK_EN))
1512 		return false;
1513 
1514 	if (ctxt->ops->get_msr(ctxt, MSR_KVM_INTERNAL_GUEST_SSP, &ssp))
1515 		return true;
1516 
1517 	/*
1518 	 * On transfer from 64-bit mode to compatibility mode, SSP[63:32] must
1519 	 * be 0, i.e. SSP must be a 32-bit value outside of 64-bit mode.
1520 	 */
1521 	return ssp >> 32;
1522 }
1523 
__load_segment_descriptor(struct x86_emulate_ctxt * ctxt,u16 selector,int seg,u8 cpl,enum x86_transfer_type transfer,struct desc_struct * desc)1524 static int __load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1525 				     u16 selector, int seg, u8 cpl,
1526 				     enum x86_transfer_type transfer,
1527 				     struct desc_struct *desc)
1528 {
1529 	struct desc_struct seg_desc, old_desc;
1530 	u8 dpl, rpl;
1531 	unsigned err_vec = GP_VECTOR;
1532 	u32 err_code = 0;
1533 	bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */
1534 	ulong desc_addr;
1535 	int ret;
1536 	u16 dummy;
1537 	u32 base3 = 0;
1538 
1539 	memset(&seg_desc, 0, sizeof(seg_desc));
1540 
1541 	if (ctxt->mode == X86EMUL_MODE_REAL) {
1542 		/* set real mode segment descriptor (keep limit etc. for
1543 		 * unreal mode) */
1544 		ctxt->ops->get_segment(ctxt, &dummy, &seg_desc, NULL, seg);
1545 		set_desc_base(&seg_desc, selector << 4);
1546 		goto load;
1547 	} else if (seg <= VCPU_SREG_GS && ctxt->mode == X86EMUL_MODE_VM86) {
1548 		/* VM86 needs a clean new segment descriptor */
1549 		set_desc_base(&seg_desc, selector << 4);
1550 		set_desc_limit(&seg_desc, 0xffff);
1551 		seg_desc.type = 3;
1552 		seg_desc.p = 1;
1553 		seg_desc.s = 1;
1554 		seg_desc.dpl = 3;
1555 		goto load;
1556 	}
1557 
1558 	rpl = selector & 3;
1559 
1560 	/* TR should be in GDT only */
1561 	if (seg == VCPU_SREG_TR && (selector & (1 << 2)))
1562 		goto exception;
1563 
1564 	/* NULL selector is not valid for TR, CS and (except for long mode) SS */
1565 	if (null_selector) {
1566 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_TR)
1567 			goto exception;
1568 
1569 		if (seg == VCPU_SREG_SS) {
1570 			if (ctxt->mode != X86EMUL_MODE_PROT64 || rpl != cpl)
1571 				goto exception;
1572 
1573 			/*
1574 			 * ctxt->ops->set_segment expects the CPL to be in
1575 			 * SS.DPL, so fake an expand-up 32-bit data segment.
1576 			 */
1577 			seg_desc.type = 3;
1578 			seg_desc.p = 1;
1579 			seg_desc.s = 1;
1580 			seg_desc.dpl = cpl;
1581 			seg_desc.d = 1;
1582 			seg_desc.g = 1;
1583 		}
1584 
1585 		/* Skip all following checks */
1586 		goto load;
1587 	}
1588 
1589 	ret = read_segment_descriptor(ctxt, selector, &seg_desc, &desc_addr);
1590 	if (ret != X86EMUL_CONTINUE)
1591 		return ret;
1592 
1593 	err_code = selector & 0xfffc;
1594 	err_vec = (transfer == X86_TRANSFER_TASK_SWITCH) ? TS_VECTOR :
1595 							   GP_VECTOR;
1596 
1597 	/* can't load system descriptor into segment selector */
1598 	if (seg <= VCPU_SREG_GS && !seg_desc.s) {
1599 		if (transfer == X86_TRANSFER_CALL_JMP)
1600 			return X86EMUL_UNHANDLEABLE;
1601 		goto exception;
1602 	}
1603 
1604 	dpl = seg_desc.dpl;
1605 
1606 	switch (seg) {
1607 	case VCPU_SREG_SS:
1608 		/*
1609 		 * segment is not a writable data segment or segment
1610 		 * selector's RPL != CPL or DPL != CPL
1611 		 */
1612 		if (rpl != cpl || (seg_desc.type & 0xa) != 0x2 || dpl != cpl)
1613 			goto exception;
1614 		break;
1615 	case VCPU_SREG_CS:
1616 		/*
1617 		 * KVM uses "none" when loading CS as part of emulating Real
1618 		 * Mode exceptions and IRET (handled above).  In all other
1619 		 * cases, loading CS without a control transfer is a KVM bug.
1620 		 */
1621 		if (WARN_ON_ONCE(transfer == X86_TRANSFER_NONE))
1622 			goto exception;
1623 
1624 		if (!(seg_desc.type & 8))
1625 			goto exception;
1626 
1627 		if (transfer == X86_TRANSFER_RET) {
1628 			/* RET can never return to an inner privilege level. */
1629 			if (rpl < cpl)
1630 				goto exception;
1631 			/* Outer-privilege level return is not implemented */
1632 			if (rpl > cpl)
1633 				return X86EMUL_UNHANDLEABLE;
1634 		}
1635 		if (transfer == X86_TRANSFER_RET || transfer == X86_TRANSFER_TASK_SWITCH) {
1636 			if (seg_desc.type & 4) {
1637 				/* conforming */
1638 				if (dpl > rpl)
1639 					goto exception;
1640 			} else {
1641 				/* nonconforming */
1642 				if (dpl != rpl)
1643 					goto exception;
1644 			}
1645 		} else { /* X86_TRANSFER_CALL_JMP */
1646 			if (seg_desc.type & 4) {
1647 				/* conforming */
1648 				if (dpl > cpl)
1649 					goto exception;
1650 			} else {
1651 				/* nonconforming */
1652 				if (rpl > cpl || dpl != cpl)
1653 					goto exception;
1654 			}
1655 		}
1656 		/* in long-mode d/b must be clear if l is set */
1657 		if (seg_desc.d && seg_desc.l) {
1658 			u64 efer = 0;
1659 
1660 			ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
1661 			if (efer & EFER_LMA)
1662 				goto exception;
1663 		}
1664 		if (!seg_desc.l && emulator_is_ssp_invalid(ctxt, cpl)) {
1665 			err_code = 0;
1666 			goto exception;
1667 		}
1668 
1669 		/* CS(RPL) <- CPL */
1670 		selector = (selector & 0xfffc) | cpl;
1671 		break;
1672 	case VCPU_SREG_TR:
1673 		if (seg_desc.s || (seg_desc.type != 1 && seg_desc.type != 9))
1674 			goto exception;
1675 		break;
1676 	case VCPU_SREG_LDTR:
1677 		if (seg_desc.s || seg_desc.type != 2)
1678 			goto exception;
1679 		break;
1680 	default: /*  DS, ES, FS, or GS */
1681 		/*
1682 		 * segment is not a data or readable code segment or
1683 		 * ((segment is a data or nonconforming code segment)
1684 		 * and ((RPL > DPL) or (CPL > DPL)))
1685 		 */
1686 		if ((seg_desc.type & 0xa) == 0x8 ||
1687 		    (((seg_desc.type & 0xc) != 0xc) &&
1688 		     (rpl > dpl || cpl > dpl)))
1689 			goto exception;
1690 		break;
1691 	}
1692 
1693 	if (!seg_desc.p) {
1694 		err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR;
1695 		goto exception;
1696 	}
1697 
1698 	if (seg_desc.s) {
1699 		/* mark segment as accessed */
1700 		if (!(seg_desc.type & 1)) {
1701 			seg_desc.type |= 1;
1702 			ret = write_segment_descriptor(ctxt, selector,
1703 						       &seg_desc);
1704 			if (ret != X86EMUL_CONTINUE)
1705 				return ret;
1706 		}
1707 	} else if (ctxt->mode == X86EMUL_MODE_PROT64) {
1708 		ret = linear_read_system(ctxt, desc_addr+8, &base3, sizeof(base3));
1709 		if (ret != X86EMUL_CONTINUE)
1710 			return ret;
1711 		if (emul_is_noncanonical_address(get_desc_base(&seg_desc) |
1712 						 ((u64)base3 << 32), ctxt,
1713 						 X86EMUL_F_DT_LOAD))
1714 			return emulate_gp(ctxt, err_code);
1715 	}
1716 
1717 	if (seg == VCPU_SREG_TR) {
1718 		old_desc = seg_desc;
1719 		seg_desc.type |= 2; /* busy */
1720 		ret = ctxt->ops->cmpxchg_emulated(ctxt, desc_addr, &old_desc, &seg_desc,
1721 						  sizeof(seg_desc), &ctxt->exception);
1722 		if (ret != X86EMUL_CONTINUE)
1723 			return ret;
1724 	}
1725 load:
1726 	ctxt->ops->set_segment(ctxt, selector, &seg_desc, base3, seg);
1727 	if (desc)
1728 		*desc = seg_desc;
1729 	return X86EMUL_CONTINUE;
1730 exception:
1731 	return emulate_exception(ctxt, err_vec, err_code, true);
1732 }
1733 
load_segment_descriptor(struct x86_emulate_ctxt * ctxt,u16 selector,int seg)1734 static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1735 				   u16 selector, int seg)
1736 {
1737 	u8 cpl = ctxt->ops->cpl(ctxt);
1738 
1739 	/*
1740 	 * None of MOV, POP and LSS can load a NULL selector in CPL=3, but
1741 	 * they can load it at CPL<3 (Intel's manual says only LSS can,
1742 	 * but it's wrong).
1743 	 *
1744 	 * However, the Intel manual says that putting IST=1/DPL=3 in
1745 	 * an interrupt gate will result in SS=3 (the AMD manual instead
1746 	 * says it doesn't), so allow SS=3 in __load_segment_descriptor
1747 	 * and only forbid it here.
1748 	 */
1749 	if (seg == VCPU_SREG_SS && selector == 3 &&
1750 	    ctxt->mode == X86EMUL_MODE_PROT64)
1751 		return emulate_exception(ctxt, GP_VECTOR, 0, true);
1752 
1753 	return __load_segment_descriptor(ctxt, selector, seg, cpl,
1754 					 X86_TRANSFER_NONE, NULL);
1755 }
1756 
write_register_operand(struct operand * op)1757 static void write_register_operand(struct operand *op)
1758 {
1759 	return assign_register(op->addr.reg, op->val, op->bytes);
1760 }
1761 
writeback(struct x86_emulate_ctxt * ctxt,struct operand * op)1762 static int writeback(struct x86_emulate_ctxt *ctxt, struct operand *op)
1763 {
1764 	switch (op->type) {
1765 	case OP_REG:
1766 		write_register_operand(op);
1767 		break;
1768 	case OP_MEM:
1769 		if (ctxt->lock_prefix)
1770 			return segmented_cmpxchg(ctxt,
1771 						 op->addr.mem,
1772 						 &op->orig_val,
1773 						 &op->val,
1774 						 op->bytes);
1775 		else
1776 			return segmented_write(ctxt,
1777 					       op->addr.mem,
1778 					       &op->val,
1779 					       op->bytes);
1780 	case OP_MEM_STR:
1781 		return segmented_write(ctxt,
1782 				       op->addr.mem,
1783 				       op->data,
1784 				       op->bytes * op->count);
1785 	case OP_XMM:
1786 		kvm_write_sse_reg(op->addr.xmm, &op->vec_val);
1787 		break;
1788 	case OP_MM:
1789 		kvm_write_mmx_reg(op->addr.mm, &op->mm_val);
1790 		break;
1791 	case OP_NONE:
1792 		/* no writeback */
1793 		break;
1794 	default:
1795 		break;
1796 	}
1797 	return X86EMUL_CONTINUE;
1798 }
1799 
emulate_push(struct x86_emulate_ctxt * ctxt,const void * data,int len)1800 static int emulate_push(struct x86_emulate_ctxt *ctxt, const void *data, int len)
1801 {
1802 	struct segmented_address addr;
1803 
1804 	rsp_increment(ctxt, -len);
1805 	addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt);
1806 	addr.seg = VCPU_SREG_SS;
1807 
1808 	return segmented_write(ctxt, addr, data, len);
1809 }
1810 
em_push(struct x86_emulate_ctxt * ctxt)1811 static int em_push(struct x86_emulate_ctxt *ctxt)
1812 {
1813 	/* Disable writeback. */
1814 	ctxt->dst.type = OP_NONE;
1815 	return emulate_push(ctxt, &ctxt->src.val, ctxt->op_bytes);
1816 }
1817 
emulate_pop(struct x86_emulate_ctxt * ctxt,void * dest,int len)1818 static int emulate_pop(struct x86_emulate_ctxt *ctxt,
1819 		       void *dest, int len)
1820 {
1821 	int rc;
1822 	struct segmented_address addr;
1823 
1824 	addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt);
1825 	addr.seg = VCPU_SREG_SS;
1826 	rc = segmented_read(ctxt, addr, dest, len);
1827 	if (rc != X86EMUL_CONTINUE)
1828 		return rc;
1829 
1830 	rsp_increment(ctxt, len);
1831 	return rc;
1832 }
1833 
em_pop(struct x86_emulate_ctxt * ctxt)1834 static int em_pop(struct x86_emulate_ctxt *ctxt)
1835 {
1836 	return emulate_pop(ctxt, &ctxt->dst.val, ctxt->op_bytes);
1837 }
1838 
emulate_popf(struct x86_emulate_ctxt * ctxt,void * dest,int len)1839 static int emulate_popf(struct x86_emulate_ctxt *ctxt,
1840 			void *dest, int len)
1841 {
1842 	int rc;
1843 	unsigned long val = 0;
1844 	unsigned long change_mask;
1845 	int iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT;
1846 	int cpl = ctxt->ops->cpl(ctxt);
1847 
1848 	rc = emulate_pop(ctxt, &val, len);
1849 	if (rc != X86EMUL_CONTINUE)
1850 		return rc;
1851 
1852 	change_mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
1853 		      X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF |
1854 		      X86_EFLAGS_TF | X86_EFLAGS_DF | X86_EFLAGS_NT |
1855 		      X86_EFLAGS_AC | X86_EFLAGS_ID;
1856 
1857 	switch(ctxt->mode) {
1858 	case X86EMUL_MODE_PROT64:
1859 	case X86EMUL_MODE_PROT32:
1860 	case X86EMUL_MODE_PROT16:
1861 		if (cpl == 0)
1862 			change_mask |= X86_EFLAGS_IOPL;
1863 		if (cpl <= iopl)
1864 			change_mask |= X86_EFLAGS_IF;
1865 		break;
1866 	case X86EMUL_MODE_VM86:
1867 		if (iopl < 3)
1868 			return emulate_gp(ctxt, 0);
1869 		change_mask |= X86_EFLAGS_IF;
1870 		break;
1871 	default: /* real mode */
1872 		change_mask |= (X86_EFLAGS_IOPL | X86_EFLAGS_IF);
1873 		break;
1874 	}
1875 
1876 	*(unsigned long *)dest =
1877 		(ctxt->eflags & ~change_mask) | (val & change_mask);
1878 
1879 	return rc;
1880 }
1881 
em_popf(struct x86_emulate_ctxt * ctxt)1882 static int em_popf(struct x86_emulate_ctxt *ctxt)
1883 {
1884 	ctxt->dst.type = OP_REG;
1885 	ctxt->dst.addr.reg = &ctxt->eflags;
1886 	ctxt->dst.bytes = ctxt->op_bytes;
1887 	return emulate_popf(ctxt, &ctxt->dst.val, ctxt->op_bytes);
1888 }
1889 
em_enter(struct x86_emulate_ctxt * ctxt)1890 static int em_enter(struct x86_emulate_ctxt *ctxt)
1891 {
1892 	int rc;
1893 	unsigned frame_size = ctxt->src.val;
1894 	unsigned nesting_level = ctxt->src2.val & 31;
1895 	ulong rbp;
1896 
1897 	if (nesting_level)
1898 		return X86EMUL_UNHANDLEABLE;
1899 
1900 	rbp = reg_read(ctxt, VCPU_REGS_RBP);
1901 	rc = emulate_push(ctxt, &rbp, stack_size(ctxt));
1902 	if (rc != X86EMUL_CONTINUE)
1903 		return rc;
1904 	assign_masked(reg_rmw(ctxt, VCPU_REGS_RBP), reg_read(ctxt, VCPU_REGS_RSP),
1905 		      stack_mask(ctxt));
1906 	assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP),
1907 		      reg_read(ctxt, VCPU_REGS_RSP) - frame_size,
1908 		      stack_mask(ctxt));
1909 	return X86EMUL_CONTINUE;
1910 }
1911 
em_leave(struct x86_emulate_ctxt * ctxt)1912 static int em_leave(struct x86_emulate_ctxt *ctxt)
1913 {
1914 	assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP), reg_read(ctxt, VCPU_REGS_RBP),
1915 		      stack_mask(ctxt));
1916 	return emulate_pop(ctxt, reg_rmw(ctxt, VCPU_REGS_RBP), ctxt->op_bytes);
1917 }
1918 
em_push_sreg(struct x86_emulate_ctxt * ctxt)1919 static int em_push_sreg(struct x86_emulate_ctxt *ctxt)
1920 {
1921 	int seg = ctxt->src2.val;
1922 
1923 	ctxt->src.val = get_segment_selector(ctxt, seg);
1924 	if (ctxt->op_bytes == 4) {
1925 		rsp_increment(ctxt, -2);
1926 		ctxt->op_bytes = 2;
1927 	}
1928 
1929 	return em_push(ctxt);
1930 }
1931 
em_pop_sreg(struct x86_emulate_ctxt * ctxt)1932 static int em_pop_sreg(struct x86_emulate_ctxt *ctxt)
1933 {
1934 	int seg = ctxt->src2.val;
1935 	unsigned long selector = 0;
1936 	int rc;
1937 
1938 	rc = emulate_pop(ctxt, &selector, 2);
1939 	if (rc != X86EMUL_CONTINUE)
1940 		return rc;
1941 
1942 	if (seg == VCPU_SREG_SS)
1943 		ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
1944 	if (ctxt->op_bytes > 2)
1945 		rsp_increment(ctxt, ctxt->op_bytes - 2);
1946 
1947 	rc = load_segment_descriptor(ctxt, (u16)selector, seg);
1948 	return rc;
1949 }
1950 
em_pusha(struct x86_emulate_ctxt * ctxt)1951 static int em_pusha(struct x86_emulate_ctxt *ctxt)
1952 {
1953 	unsigned long old_esp = reg_read(ctxt, VCPU_REGS_RSP);
1954 	int rc = X86EMUL_CONTINUE;
1955 	int reg = VCPU_REGS_RAX;
1956 
1957 	while (reg <= VCPU_REGS_RDI) {
1958 		(reg == VCPU_REGS_RSP) ?
1959 		(ctxt->src.val = old_esp) : (ctxt->src.val = reg_read(ctxt, reg));
1960 
1961 		rc = em_push(ctxt);
1962 		if (rc != X86EMUL_CONTINUE)
1963 			return rc;
1964 
1965 		++reg;
1966 	}
1967 
1968 	return rc;
1969 }
1970 
em_pushf(struct x86_emulate_ctxt * ctxt)1971 static int em_pushf(struct x86_emulate_ctxt *ctxt)
1972 {
1973 	ctxt->src.val = (unsigned long)ctxt->eflags & ~X86_EFLAGS_VM;
1974 	return em_push(ctxt);
1975 }
1976 
em_popa(struct x86_emulate_ctxt * ctxt)1977 static int em_popa(struct x86_emulate_ctxt *ctxt)
1978 {
1979 	int rc = X86EMUL_CONTINUE;
1980 	int reg = VCPU_REGS_RDI;
1981 	u32 val = 0;
1982 
1983 	while (reg >= VCPU_REGS_RAX) {
1984 		if (reg == VCPU_REGS_RSP) {
1985 			rsp_increment(ctxt, ctxt->op_bytes);
1986 			--reg;
1987 		}
1988 
1989 		rc = emulate_pop(ctxt, &val, ctxt->op_bytes);
1990 		if (rc != X86EMUL_CONTINUE)
1991 			break;
1992 		assign_register(reg_rmw(ctxt, reg), val, ctxt->op_bytes);
1993 		--reg;
1994 	}
1995 	return rc;
1996 }
1997 
__emulate_int_real(struct x86_emulate_ctxt * ctxt,int irq)1998 static int __emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
1999 {
2000 	const struct x86_emulate_ops *ops = ctxt->ops;
2001 	int rc;
2002 	struct desc_ptr dt;
2003 	gva_t cs_addr;
2004 	gva_t eip_addr;
2005 	u16 cs, eip;
2006 
2007 	/* TODO: Add limit checks */
2008 	ctxt->src.val = ctxt->eflags;
2009 	rc = em_push(ctxt);
2010 	if (rc != X86EMUL_CONTINUE)
2011 		return rc;
2012 
2013 	ctxt->eflags &= ~(X86_EFLAGS_IF | X86_EFLAGS_TF | X86_EFLAGS_AC);
2014 
2015 	ctxt->src.val = get_segment_selector(ctxt, VCPU_SREG_CS);
2016 	rc = em_push(ctxt);
2017 	if (rc != X86EMUL_CONTINUE)
2018 		return rc;
2019 
2020 	ctxt->src.val = ctxt->_eip;
2021 	rc = em_push(ctxt);
2022 	if (rc != X86EMUL_CONTINUE)
2023 		return rc;
2024 
2025 	ops->get_idt(ctxt, &dt);
2026 
2027 	eip_addr = dt.address + (irq << 2);
2028 	cs_addr = dt.address + (irq << 2) + 2;
2029 
2030 	rc = linear_read_system(ctxt, cs_addr, &cs, 2);
2031 	if (rc != X86EMUL_CONTINUE)
2032 		return rc;
2033 
2034 	rc = linear_read_system(ctxt, eip_addr, &eip, 2);
2035 	if (rc != X86EMUL_CONTINUE)
2036 		return rc;
2037 
2038 	rc = load_segment_descriptor(ctxt, cs, VCPU_SREG_CS);
2039 	if (rc != X86EMUL_CONTINUE)
2040 		return rc;
2041 
2042 	ctxt->_eip = eip;
2043 
2044 	return rc;
2045 }
2046 
emulate_int_real(struct x86_emulate_ctxt * ctxt,int irq)2047 int emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
2048 {
2049 	int rc;
2050 
2051 	invalidate_registers(ctxt);
2052 	rc = __emulate_int_real(ctxt, irq);
2053 	if (rc == X86EMUL_CONTINUE)
2054 		writeback_registers(ctxt);
2055 	return rc;
2056 }
2057 
emulate_int(struct x86_emulate_ctxt * ctxt,int irq)2058 static int emulate_int(struct x86_emulate_ctxt *ctxt, int irq)
2059 {
2060 	switch(ctxt->mode) {
2061 	case X86EMUL_MODE_REAL:
2062 		return __emulate_int_real(ctxt, irq);
2063 	case X86EMUL_MODE_VM86:
2064 	case X86EMUL_MODE_PROT16:
2065 	case X86EMUL_MODE_PROT32:
2066 	case X86EMUL_MODE_PROT64:
2067 	default:
2068 		/* Protected mode interrupts unimplemented yet */
2069 		return X86EMUL_UNHANDLEABLE;
2070 	}
2071 }
2072 
emulate_iret_real(struct x86_emulate_ctxt * ctxt)2073 static int emulate_iret_real(struct x86_emulate_ctxt *ctxt)
2074 {
2075 	int rc = X86EMUL_CONTINUE;
2076 	unsigned long temp_eip = 0;
2077 	unsigned long temp_eflags = 0;
2078 	unsigned long cs = 0;
2079 	unsigned long mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
2080 			     X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_TF |
2081 			     X86_EFLAGS_IF | X86_EFLAGS_DF | X86_EFLAGS_OF |
2082 			     X86_EFLAGS_IOPL | X86_EFLAGS_NT | X86_EFLAGS_RF |
2083 			     X86_EFLAGS_AC | X86_EFLAGS_ID |
2084 			     X86_EFLAGS_FIXED;
2085 	unsigned long vm86_mask = X86_EFLAGS_VM | X86_EFLAGS_VIF |
2086 				  X86_EFLAGS_VIP;
2087 
2088 	/* TODO: Add stack limit check */
2089 
2090 	rc = emulate_pop(ctxt, &temp_eip, ctxt->op_bytes);
2091 
2092 	if (rc != X86EMUL_CONTINUE)
2093 		return rc;
2094 
2095 	if (temp_eip & ~0xffff)
2096 		return emulate_gp(ctxt, 0);
2097 
2098 	rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
2099 
2100 	if (rc != X86EMUL_CONTINUE)
2101 		return rc;
2102 
2103 	rc = emulate_pop(ctxt, &temp_eflags, ctxt->op_bytes);
2104 
2105 	if (rc != X86EMUL_CONTINUE)
2106 		return rc;
2107 
2108 	rc = load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS);
2109 
2110 	if (rc != X86EMUL_CONTINUE)
2111 		return rc;
2112 
2113 	ctxt->_eip = temp_eip;
2114 
2115 	if (ctxt->op_bytes == 4)
2116 		ctxt->eflags = ((temp_eflags & mask) | (ctxt->eflags & vm86_mask));
2117 	else if (ctxt->op_bytes == 2) {
2118 		ctxt->eflags &= ~0xffff;
2119 		ctxt->eflags |= temp_eflags;
2120 	}
2121 
2122 	ctxt->eflags &= ~EFLG_RESERVED_ZEROS_MASK; /* Clear reserved zeros */
2123 	ctxt->eflags |= X86_EFLAGS_FIXED;
2124 	ctxt->ops->set_nmi_mask(ctxt, false);
2125 
2126 	return rc;
2127 }
2128 
em_iret(struct x86_emulate_ctxt * ctxt)2129 static int em_iret(struct x86_emulate_ctxt *ctxt)
2130 {
2131 	switch(ctxt->mode) {
2132 	case X86EMUL_MODE_REAL:
2133 		return emulate_iret_real(ctxt);
2134 	case X86EMUL_MODE_VM86:
2135 	case X86EMUL_MODE_PROT16:
2136 	case X86EMUL_MODE_PROT32:
2137 	case X86EMUL_MODE_PROT64:
2138 	default:
2139 		/* iret from protected mode unimplemented yet */
2140 		return X86EMUL_UNHANDLEABLE;
2141 	}
2142 }
2143 
em_jmp_far(struct x86_emulate_ctxt * ctxt)2144 static int em_jmp_far(struct x86_emulate_ctxt *ctxt)
2145 {
2146 	int rc;
2147 	unsigned short sel;
2148 	struct desc_struct new_desc;
2149 	u8 cpl = ctxt->ops->cpl(ctxt);
2150 
2151 	memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
2152 
2153 	rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl,
2154 				       X86_TRANSFER_CALL_JMP,
2155 				       &new_desc);
2156 	if (rc != X86EMUL_CONTINUE)
2157 		return rc;
2158 
2159 	rc = assign_eip_far(ctxt, ctxt->src.val);
2160 	/* Error handling is not implemented. */
2161 	if (rc != X86EMUL_CONTINUE)
2162 		return X86EMUL_UNHANDLEABLE;
2163 
2164 	return rc;
2165 }
2166 
em_jmp_abs(struct x86_emulate_ctxt * ctxt)2167 static int em_jmp_abs(struct x86_emulate_ctxt *ctxt)
2168 {
2169 	return assign_eip_near(ctxt, ctxt->src.val);
2170 }
2171 
em_call_near_abs(struct x86_emulate_ctxt * ctxt)2172 static int em_call_near_abs(struct x86_emulate_ctxt *ctxt)
2173 {
2174 	int rc;
2175 	long int old_eip;
2176 
2177 	old_eip = ctxt->_eip;
2178 	rc = assign_eip_near(ctxt, ctxt->src.val);
2179 	if (rc != X86EMUL_CONTINUE)
2180 		return rc;
2181 	ctxt->src.val = old_eip;
2182 	rc = em_push(ctxt);
2183 	return rc;
2184 }
2185 
em_cmpxchg8b(struct x86_emulate_ctxt * ctxt)2186 static int em_cmpxchg8b(struct x86_emulate_ctxt *ctxt)
2187 {
2188 	u64 old = ctxt->dst.orig_val64;
2189 
2190 	if (ctxt->dst.bytes == 16)
2191 		return X86EMUL_UNHANDLEABLE;
2192 
2193 	if (((u32) (old >> 0) != (u32) reg_read(ctxt, VCPU_REGS_RAX)) ||
2194 	    ((u32) (old >> 32) != (u32) reg_read(ctxt, VCPU_REGS_RDX))) {
2195 		*reg_write(ctxt, VCPU_REGS_RAX) = (u32) (old >> 0);
2196 		*reg_write(ctxt, VCPU_REGS_RDX) = (u32) (old >> 32);
2197 		ctxt->eflags &= ~X86_EFLAGS_ZF;
2198 	} else {
2199 		ctxt->dst.val64 = ((u64)reg_read(ctxt, VCPU_REGS_RCX) << 32) |
2200 			(u32) reg_read(ctxt, VCPU_REGS_RBX);
2201 
2202 		ctxt->eflags |= X86_EFLAGS_ZF;
2203 	}
2204 	return X86EMUL_CONTINUE;
2205 }
2206 
em_ret(struct x86_emulate_ctxt * ctxt)2207 static int em_ret(struct x86_emulate_ctxt *ctxt)
2208 {
2209 	int rc;
2210 	unsigned long eip = 0;
2211 
2212 	rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
2213 	if (rc != X86EMUL_CONTINUE)
2214 		return rc;
2215 
2216 	return assign_eip_near(ctxt, eip);
2217 }
2218 
em_ret_far(struct x86_emulate_ctxt * ctxt)2219 static int em_ret_far(struct x86_emulate_ctxt *ctxt)
2220 {
2221 	int rc;
2222 	unsigned long eip = 0;
2223 	unsigned long cs = 0;
2224 	int cpl = ctxt->ops->cpl(ctxt);
2225 	struct desc_struct new_desc;
2226 
2227 	rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
2228 	if (rc != X86EMUL_CONTINUE)
2229 		return rc;
2230 	rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
2231 	if (rc != X86EMUL_CONTINUE)
2232 		return rc;
2233 	rc = __load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS, cpl,
2234 				       X86_TRANSFER_RET,
2235 				       &new_desc);
2236 	if (rc != X86EMUL_CONTINUE)
2237 		return rc;
2238 	rc = assign_eip_far(ctxt, eip);
2239 	/* Error handling is not implemented. */
2240 	if (rc != X86EMUL_CONTINUE)
2241 		return X86EMUL_UNHANDLEABLE;
2242 
2243 	return rc;
2244 }
2245 
em_ret_far_imm(struct x86_emulate_ctxt * ctxt)2246 static int em_ret_far_imm(struct x86_emulate_ctxt *ctxt)
2247 {
2248         int rc;
2249 
2250         rc = em_ret_far(ctxt);
2251         if (rc != X86EMUL_CONTINUE)
2252                 return rc;
2253         rsp_increment(ctxt, ctxt->src.val);
2254         return X86EMUL_CONTINUE;
2255 }
2256 
em_cmpxchg(struct x86_emulate_ctxt * ctxt)2257 static int em_cmpxchg(struct x86_emulate_ctxt *ctxt)
2258 {
2259 	/* Save real source value, then compare EAX against destination. */
2260 	ctxt->dst.orig_val = ctxt->dst.val;
2261 	ctxt->dst.val = reg_read(ctxt, VCPU_REGS_RAX);
2262 	ctxt->src.orig_val = ctxt->src.val;
2263 	ctxt->src.val = ctxt->dst.orig_val;
2264 	em_cmp(ctxt);
2265 
2266 	if (ctxt->eflags & X86_EFLAGS_ZF) {
2267 		/* Success: write back to memory; no update of EAX */
2268 		ctxt->src.type = OP_NONE;
2269 		ctxt->dst.val = ctxt->src.orig_val;
2270 	} else {
2271 		/* Failure: write the value we saw to EAX. */
2272 		ctxt->src.type = OP_REG;
2273 		ctxt->src.addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
2274 		ctxt->src.val = ctxt->dst.orig_val;
2275 		/* Create write-cycle to dest by writing the same value */
2276 		ctxt->dst.val = ctxt->dst.orig_val;
2277 	}
2278 	return X86EMUL_CONTINUE;
2279 }
2280 
em_lseg(struct x86_emulate_ctxt * ctxt)2281 static int em_lseg(struct x86_emulate_ctxt *ctxt)
2282 {
2283 	int seg = ctxt->src2.val;
2284 	unsigned short sel;
2285 	int rc;
2286 
2287 	memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
2288 
2289 	rc = load_segment_descriptor(ctxt, sel, seg);
2290 	if (rc != X86EMUL_CONTINUE)
2291 		return rc;
2292 
2293 	ctxt->dst.val = ctxt->src.val;
2294 	return rc;
2295 }
2296 
em_rsm(struct x86_emulate_ctxt * ctxt)2297 static int em_rsm(struct x86_emulate_ctxt *ctxt)
2298 {
2299 	if (!ctxt->ops->is_smm(ctxt))
2300 		return emulate_ud(ctxt);
2301 
2302 	if (ctxt->ops->leave_smm(ctxt))
2303 		ctxt->ops->triple_fault(ctxt);
2304 
2305 	return emulator_recalc_and_set_mode(ctxt);
2306 }
2307 
2308 static void
setup_syscalls_segments(struct desc_struct * cs,struct desc_struct * ss)2309 setup_syscalls_segments(struct desc_struct *cs, struct desc_struct *ss)
2310 {
2311 	cs->l = 0;		/* will be adjusted later */
2312 	set_desc_base(cs, 0);	/* flat segment */
2313 	cs->g = 1;		/* 4kb granularity */
2314 	set_desc_limit(cs, 0xfffff);	/* 4GB limit */
2315 	cs->type = 0x0b;	/* Read, Execute, Accessed */
2316 	cs->s = 1;
2317 	cs->dpl = 0;		/* will be adjusted later */
2318 	cs->p = 1;
2319 	cs->d = 1;
2320 	cs->avl = 0;
2321 
2322 	set_desc_base(ss, 0);	/* flat segment */
2323 	set_desc_limit(ss, 0xfffff);	/* 4GB limit */
2324 	ss->g = 1;		/* 4kb granularity */
2325 	ss->s = 1;
2326 	ss->type = 0x03;	/* Read/Write, Accessed */
2327 	ss->d = 1;		/* 32bit stack segment */
2328 	ss->dpl = 0;
2329 	ss->p = 1;
2330 	ss->l = 0;
2331 	ss->avl = 0;
2332 }
2333 
em_syscall(struct x86_emulate_ctxt * ctxt)2334 static int em_syscall(struct x86_emulate_ctxt *ctxt)
2335 {
2336 	const struct x86_emulate_ops *ops = ctxt->ops;
2337 	struct desc_struct cs, ss;
2338 	u64 msr_data;
2339 	u16 cs_sel, ss_sel;
2340 	u64 efer = 0;
2341 
2342 	/* syscall is not available in real mode */
2343 	if (ctxt->mode == X86EMUL_MODE_REAL ||
2344 	    ctxt->mode == X86EMUL_MODE_VM86)
2345 		return emulate_ud(ctxt);
2346 
2347 	/*
2348 	 * Intel compatible CPUs only support SYSCALL in 64-bit mode, whereas
2349 	 * AMD allows SYSCALL in any flavor of protected mode.  Note, it's
2350 	 * infeasible to emulate Intel behavior when running on AMD hardware,
2351 	 * as SYSCALL won't fault in the "wrong" mode, i.e. there is no #UD
2352 	 * for KVM to trap-and-emulate, unlike emulating AMD on Intel.
2353 	 */
2354 	if (ctxt->mode != X86EMUL_MODE_PROT64 &&
2355 	    ctxt->ops->guest_cpuid_is_intel_compatible(ctxt))
2356 		return emulate_ud(ctxt);
2357 
2358 	ops->get_msr(ctxt, MSR_EFER, &efer);
2359 	if (!(efer & EFER_SCE))
2360 		return emulate_ud(ctxt);
2361 
2362 	setup_syscalls_segments(&cs, &ss);
2363 	ops->get_msr(ctxt, MSR_STAR, &msr_data);
2364 	msr_data >>= 32;
2365 	cs_sel = (u16)(msr_data & 0xfffc);
2366 	ss_sel = (u16)(msr_data + 8);
2367 
2368 	if (efer & EFER_LMA) {
2369 		cs.d = 0;
2370 		cs.l = 1;
2371 	}
2372 	ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
2373 	ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
2374 
2375 	*reg_write(ctxt, VCPU_REGS_RCX) = ctxt->_eip;
2376 	if (efer & EFER_LMA) {
2377 #ifdef CONFIG_X86_64
2378 		*reg_write(ctxt, VCPU_REGS_R11) = ctxt->eflags;
2379 
2380 		ops->get_msr(ctxt,
2381 			     ctxt->mode == X86EMUL_MODE_PROT64 ?
2382 			     MSR_LSTAR : MSR_CSTAR, &msr_data);
2383 		ctxt->_eip = msr_data;
2384 
2385 		ops->get_msr(ctxt, MSR_SYSCALL_MASK, &msr_data);
2386 		ctxt->eflags &= ~msr_data;
2387 		ctxt->eflags |= X86_EFLAGS_FIXED;
2388 #endif
2389 	} else {
2390 		/* legacy mode */
2391 		ops->get_msr(ctxt, MSR_STAR, &msr_data);
2392 		ctxt->_eip = (u32)msr_data;
2393 
2394 		ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF);
2395 	}
2396 
2397 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
2398 	return X86EMUL_CONTINUE;
2399 }
2400 
em_sysenter(struct x86_emulate_ctxt * ctxt)2401 static int em_sysenter(struct x86_emulate_ctxt *ctxt)
2402 {
2403 	const struct x86_emulate_ops *ops = ctxt->ops;
2404 	struct desc_struct cs, ss;
2405 	u64 msr_data;
2406 	u16 cs_sel, ss_sel;
2407 	u64 efer = 0;
2408 
2409 	ops->get_msr(ctxt, MSR_EFER, &efer);
2410 	/* inject #GP if in real mode */
2411 	if (ctxt->mode == X86EMUL_MODE_REAL)
2412 		return emulate_gp(ctxt, 0);
2413 
2414 	/*
2415 	 * Intel's architecture allows SYSENTER in compatibility mode, but AMD
2416 	 * does not.  Note, AMD does allow SYSENTER in legacy protected mode.
2417 	 */
2418 	if ((ctxt->mode != X86EMUL_MODE_PROT64) && (efer & EFER_LMA) &&
2419 	    !ctxt->ops->guest_cpuid_is_intel_compatible(ctxt))
2420 		return emulate_ud(ctxt);
2421 
2422 	/* sysenter/sysexit have not been tested in 64bit mode. */
2423 	if (ctxt->mode == X86EMUL_MODE_PROT64)
2424 		return X86EMUL_UNHANDLEABLE;
2425 
2426 	ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
2427 	if ((msr_data & 0xfffc) == 0x0)
2428 		return emulate_gp(ctxt, 0);
2429 
2430 	setup_syscalls_segments(&cs, &ss);
2431 	ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF);
2432 	cs_sel = (u16)msr_data & ~SEGMENT_RPL_MASK;
2433 	ss_sel = cs_sel + 8;
2434 	if (efer & EFER_LMA) {
2435 		cs.d = 0;
2436 		cs.l = 1;
2437 	}
2438 
2439 	ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
2440 	ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
2441 
2442 	ops->get_msr(ctxt, MSR_IA32_SYSENTER_EIP, &msr_data);
2443 	ctxt->_eip = (efer & EFER_LMA) ? msr_data : (u32)msr_data;
2444 
2445 	ops->get_msr(ctxt, MSR_IA32_SYSENTER_ESP, &msr_data);
2446 	*reg_write(ctxt, VCPU_REGS_RSP) = (efer & EFER_LMA) ? msr_data :
2447 							      (u32)msr_data;
2448 	if (efer & EFER_LMA)
2449 		ctxt->mode = X86EMUL_MODE_PROT64;
2450 
2451 	return X86EMUL_CONTINUE;
2452 }
2453 
em_sysexit(struct x86_emulate_ctxt * ctxt)2454 static int em_sysexit(struct x86_emulate_ctxt *ctxt)
2455 {
2456 	const struct x86_emulate_ops *ops = ctxt->ops;
2457 	struct desc_struct cs, ss;
2458 	u64 msr_data, rcx, rdx;
2459 	int usermode;
2460 	u16 cs_sel = 0, ss_sel = 0;
2461 
2462 	/* inject #GP if in real mode or Virtual 8086 mode */
2463 	if (ctxt->mode == X86EMUL_MODE_REAL ||
2464 	    ctxt->mode == X86EMUL_MODE_VM86)
2465 		return emulate_gp(ctxt, 0);
2466 
2467 	setup_syscalls_segments(&cs, &ss);
2468 
2469 	if ((ctxt->rex_prefix & 0x8) != 0x0)
2470 		usermode = X86EMUL_MODE_PROT64;
2471 	else
2472 		usermode = X86EMUL_MODE_PROT32;
2473 
2474 	rcx = reg_read(ctxt, VCPU_REGS_RCX);
2475 	rdx = reg_read(ctxt, VCPU_REGS_RDX);
2476 
2477 	cs.dpl = 3;
2478 	ss.dpl = 3;
2479 	ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
2480 	switch (usermode) {
2481 	case X86EMUL_MODE_PROT32:
2482 		cs_sel = (u16)(msr_data + 16);
2483 		if ((msr_data & 0xfffc) == 0x0)
2484 			return emulate_gp(ctxt, 0);
2485 		ss_sel = (u16)(msr_data + 24);
2486 		rcx = (u32)rcx;
2487 		rdx = (u32)rdx;
2488 		break;
2489 	case X86EMUL_MODE_PROT64:
2490 		cs_sel = (u16)(msr_data + 32);
2491 		if (msr_data == 0x0)
2492 			return emulate_gp(ctxt, 0);
2493 		ss_sel = cs_sel + 8;
2494 		cs.d = 0;
2495 		cs.l = 1;
2496 		if (emul_is_noncanonical_address(rcx, ctxt, 0) ||
2497 		    emul_is_noncanonical_address(rdx, ctxt, 0))
2498 			return emulate_gp(ctxt, 0);
2499 		break;
2500 	}
2501 	cs_sel |= SEGMENT_RPL_MASK;
2502 	ss_sel |= SEGMENT_RPL_MASK;
2503 
2504 	ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
2505 	ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
2506 
2507 	ctxt->_eip = rdx;
2508 	ctxt->mode = usermode;
2509 	*reg_write(ctxt, VCPU_REGS_RSP) = rcx;
2510 
2511 	return X86EMUL_CONTINUE;
2512 }
2513 
emulator_bad_iopl(struct x86_emulate_ctxt * ctxt)2514 static bool emulator_bad_iopl(struct x86_emulate_ctxt *ctxt)
2515 {
2516 	int iopl;
2517 	if (ctxt->mode == X86EMUL_MODE_REAL)
2518 		return false;
2519 	if (ctxt->mode == X86EMUL_MODE_VM86)
2520 		return true;
2521 	iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT;
2522 	return ctxt->ops->cpl(ctxt) > iopl;
2523 }
2524 
2525 #define VMWARE_PORT_VMPORT	(0x5658)
2526 #define VMWARE_PORT_VMRPC	(0x5659)
2527 
emulator_io_port_access_allowed(struct x86_emulate_ctxt * ctxt,u16 port,u16 len)2528 static bool emulator_io_port_access_allowed(struct x86_emulate_ctxt *ctxt,
2529 					    u16 port, u16 len)
2530 {
2531 	const struct x86_emulate_ops *ops = ctxt->ops;
2532 	struct desc_struct tr_seg;
2533 	u32 base3;
2534 	int r;
2535 	u16 tr, io_bitmap_ptr, perm, bit_idx = port & 0x7;
2536 	unsigned mask = (1 << len) - 1;
2537 	unsigned long base;
2538 
2539 	/*
2540 	 * VMware allows access to these ports even if denied
2541 	 * by TSS I/O permission bitmap. Mimic behavior.
2542 	 */
2543 	if (enable_vmware_backdoor &&
2544 	    ((port == VMWARE_PORT_VMPORT) || (port == VMWARE_PORT_VMRPC)))
2545 		return true;
2546 
2547 	ops->get_segment(ctxt, &tr, &tr_seg, &base3, VCPU_SREG_TR);
2548 	if (!tr_seg.p)
2549 		return false;
2550 	if (desc_limit_scaled(&tr_seg) < 103)
2551 		return false;
2552 	base = get_desc_base(&tr_seg);
2553 #ifdef CONFIG_X86_64
2554 	base |= ((u64)base3) << 32;
2555 #endif
2556 	r = ops->read_std(ctxt, base + 102, &io_bitmap_ptr, 2, NULL, true);
2557 	if (r != X86EMUL_CONTINUE)
2558 		return false;
2559 	if (io_bitmap_ptr + port/8 > desc_limit_scaled(&tr_seg))
2560 		return false;
2561 	r = ops->read_std(ctxt, base + io_bitmap_ptr + port/8, &perm, 2, NULL, true);
2562 	if (r != X86EMUL_CONTINUE)
2563 		return false;
2564 	if ((perm >> bit_idx) & mask)
2565 		return false;
2566 	return true;
2567 }
2568 
emulator_io_permitted(struct x86_emulate_ctxt * ctxt,u16 port,u16 len)2569 static bool emulator_io_permitted(struct x86_emulate_ctxt *ctxt,
2570 				  u16 port, u16 len)
2571 {
2572 	if (ctxt->perm_ok)
2573 		return true;
2574 
2575 	if (emulator_bad_iopl(ctxt))
2576 		if (!emulator_io_port_access_allowed(ctxt, port, len))
2577 			return false;
2578 
2579 	ctxt->perm_ok = true;
2580 
2581 	return true;
2582 }
2583 
string_registers_quirk(struct x86_emulate_ctxt * ctxt)2584 static void string_registers_quirk(struct x86_emulate_ctxt *ctxt)
2585 {
2586 	/*
2587 	 * Intel CPUs mask the counter and pointers in quite strange
2588 	 * manner when ECX is zero due to REP-string optimizations.
2589 	 */
2590 #ifdef CONFIG_X86_64
2591 	u32 eax, ebx, ecx, edx;
2592 
2593 	if (ctxt->ad_bytes != 4)
2594 		return;
2595 
2596 	eax = ecx = 0;
2597 	ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, true);
2598 	if (!is_guest_vendor_intel(ebx, ecx, edx))
2599 		return;
2600 
2601 	*reg_write(ctxt, VCPU_REGS_RCX) = 0;
2602 
2603 	switch (ctxt->b) {
2604 	case 0xa4:	/* movsb */
2605 	case 0xa5:	/* movsd/w */
2606 		*reg_rmw(ctxt, VCPU_REGS_RSI) &= (u32)-1;
2607 		fallthrough;
2608 	case 0xaa:	/* stosb */
2609 	case 0xab:	/* stosd/w */
2610 		*reg_rmw(ctxt, VCPU_REGS_RDI) &= (u32)-1;
2611 	}
2612 #endif
2613 }
2614 
save_state_to_tss16(struct x86_emulate_ctxt * ctxt,struct tss_segment_16 * tss)2615 static void save_state_to_tss16(struct x86_emulate_ctxt *ctxt,
2616 				struct tss_segment_16 *tss)
2617 {
2618 	tss->ip = ctxt->_eip;
2619 	tss->flag = ctxt->eflags;
2620 	tss->ax = reg_read(ctxt, VCPU_REGS_RAX);
2621 	tss->cx = reg_read(ctxt, VCPU_REGS_RCX);
2622 	tss->dx = reg_read(ctxt, VCPU_REGS_RDX);
2623 	tss->bx = reg_read(ctxt, VCPU_REGS_RBX);
2624 	tss->sp = reg_read(ctxt, VCPU_REGS_RSP);
2625 	tss->bp = reg_read(ctxt, VCPU_REGS_RBP);
2626 	tss->si = reg_read(ctxt, VCPU_REGS_RSI);
2627 	tss->di = reg_read(ctxt, VCPU_REGS_RDI);
2628 
2629 	tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
2630 	tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
2631 	tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
2632 	tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
2633 	tss->ldt = get_segment_selector(ctxt, VCPU_SREG_LDTR);
2634 }
2635 
load_state_from_tss16(struct x86_emulate_ctxt * ctxt,struct tss_segment_16 * tss)2636 static int load_state_from_tss16(struct x86_emulate_ctxt *ctxt,
2637 				 struct tss_segment_16 *tss)
2638 {
2639 	int ret;
2640 	u8 cpl;
2641 
2642 	ctxt->_eip = tss->ip;
2643 	ctxt->eflags = tss->flag | 2;
2644 	*reg_write(ctxt, VCPU_REGS_RAX) = tss->ax;
2645 	*reg_write(ctxt, VCPU_REGS_RCX) = tss->cx;
2646 	*reg_write(ctxt, VCPU_REGS_RDX) = tss->dx;
2647 	*reg_write(ctxt, VCPU_REGS_RBX) = tss->bx;
2648 	*reg_write(ctxt, VCPU_REGS_RSP) = tss->sp;
2649 	*reg_write(ctxt, VCPU_REGS_RBP) = tss->bp;
2650 	*reg_write(ctxt, VCPU_REGS_RSI) = tss->si;
2651 	*reg_write(ctxt, VCPU_REGS_RDI) = tss->di;
2652 
2653 	/*
2654 	 * SDM says that segment selectors are loaded before segment
2655 	 * descriptors
2656 	 */
2657 	set_segment_selector(ctxt, tss->ldt, VCPU_SREG_LDTR);
2658 	set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
2659 	set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
2660 	set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
2661 	set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
2662 
2663 	cpl = tss->cs & 3;
2664 
2665 	/*
2666 	 * Now load segment descriptors. If fault happens at this stage
2667 	 * it is handled in a context of new task
2668 	 */
2669 	ret = __load_segment_descriptor(ctxt, tss->ldt, VCPU_SREG_LDTR, cpl,
2670 					X86_TRANSFER_TASK_SWITCH, NULL);
2671 	if (ret != X86EMUL_CONTINUE)
2672 		return ret;
2673 	ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl,
2674 					X86_TRANSFER_TASK_SWITCH, NULL);
2675 	if (ret != X86EMUL_CONTINUE)
2676 		return ret;
2677 	ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl,
2678 					X86_TRANSFER_TASK_SWITCH, NULL);
2679 	if (ret != X86EMUL_CONTINUE)
2680 		return ret;
2681 	ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl,
2682 					X86_TRANSFER_TASK_SWITCH, NULL);
2683 	if (ret != X86EMUL_CONTINUE)
2684 		return ret;
2685 	ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl,
2686 					X86_TRANSFER_TASK_SWITCH, NULL);
2687 	if (ret != X86EMUL_CONTINUE)
2688 		return ret;
2689 
2690 	return X86EMUL_CONTINUE;
2691 }
2692 
task_switch_16(struct x86_emulate_ctxt * ctxt,u16 old_tss_sel,ulong old_tss_base,struct desc_struct * new_desc)2693 static int task_switch_16(struct x86_emulate_ctxt *ctxt, u16 old_tss_sel,
2694 			  ulong old_tss_base, struct desc_struct *new_desc)
2695 {
2696 	struct tss_segment_16 tss_seg;
2697 	int ret;
2698 	u32 new_tss_base = get_desc_base(new_desc);
2699 
2700 	ret = linear_read_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg));
2701 	if (ret != X86EMUL_CONTINUE)
2702 		return ret;
2703 
2704 	save_state_to_tss16(ctxt, &tss_seg);
2705 
2706 	ret = linear_write_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg));
2707 	if (ret != X86EMUL_CONTINUE)
2708 		return ret;
2709 
2710 	ret = linear_read_system(ctxt, new_tss_base, &tss_seg, sizeof(tss_seg));
2711 	if (ret != X86EMUL_CONTINUE)
2712 		return ret;
2713 
2714 	if (old_tss_sel != 0xffff) {
2715 		tss_seg.prev_task_link = old_tss_sel;
2716 
2717 		ret = linear_write_system(ctxt, new_tss_base,
2718 					  &tss_seg.prev_task_link,
2719 					  sizeof(tss_seg.prev_task_link));
2720 		if (ret != X86EMUL_CONTINUE)
2721 			return ret;
2722 	}
2723 
2724 	return load_state_from_tss16(ctxt, &tss_seg);
2725 }
2726 
save_state_to_tss32(struct x86_emulate_ctxt * ctxt,struct tss_segment_32 * tss)2727 static void save_state_to_tss32(struct x86_emulate_ctxt *ctxt,
2728 				struct tss_segment_32 *tss)
2729 {
2730 	/* CR3 and ldt selector are not saved intentionally */
2731 	tss->eip = ctxt->_eip;
2732 	tss->eflags = ctxt->eflags;
2733 	tss->eax = reg_read(ctxt, VCPU_REGS_RAX);
2734 	tss->ecx = reg_read(ctxt, VCPU_REGS_RCX);
2735 	tss->edx = reg_read(ctxt, VCPU_REGS_RDX);
2736 	tss->ebx = reg_read(ctxt, VCPU_REGS_RBX);
2737 	tss->esp = reg_read(ctxt, VCPU_REGS_RSP);
2738 	tss->ebp = reg_read(ctxt, VCPU_REGS_RBP);
2739 	tss->esi = reg_read(ctxt, VCPU_REGS_RSI);
2740 	tss->edi = reg_read(ctxt, VCPU_REGS_RDI);
2741 
2742 	tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
2743 	tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
2744 	tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
2745 	tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
2746 	tss->fs = get_segment_selector(ctxt, VCPU_SREG_FS);
2747 	tss->gs = get_segment_selector(ctxt, VCPU_SREG_GS);
2748 }
2749 
load_state_from_tss32(struct x86_emulate_ctxt * ctxt,struct tss_segment_32 * tss)2750 static int load_state_from_tss32(struct x86_emulate_ctxt *ctxt,
2751 				 struct tss_segment_32 *tss)
2752 {
2753 	int ret;
2754 	u8 cpl;
2755 
2756 	if (ctxt->ops->set_cr(ctxt, 3, tss->cr3))
2757 		return emulate_gp(ctxt, 0);
2758 	ctxt->_eip = tss->eip;
2759 	ctxt->eflags = tss->eflags | 2;
2760 
2761 	/* General purpose registers */
2762 	*reg_write(ctxt, VCPU_REGS_RAX) = tss->eax;
2763 	*reg_write(ctxt, VCPU_REGS_RCX) = tss->ecx;
2764 	*reg_write(ctxt, VCPU_REGS_RDX) = tss->edx;
2765 	*reg_write(ctxt, VCPU_REGS_RBX) = tss->ebx;
2766 	*reg_write(ctxt, VCPU_REGS_RSP) = tss->esp;
2767 	*reg_write(ctxt, VCPU_REGS_RBP) = tss->ebp;
2768 	*reg_write(ctxt, VCPU_REGS_RSI) = tss->esi;
2769 	*reg_write(ctxt, VCPU_REGS_RDI) = tss->edi;
2770 
2771 	/*
2772 	 * SDM says that segment selectors are loaded before segment
2773 	 * descriptors.  This is important because CPL checks will
2774 	 * use CS.RPL.
2775 	 */
2776 	set_segment_selector(ctxt, tss->ldt_selector, VCPU_SREG_LDTR);
2777 	set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
2778 	set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
2779 	set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
2780 	set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
2781 	set_segment_selector(ctxt, tss->fs, VCPU_SREG_FS);
2782 	set_segment_selector(ctxt, tss->gs, VCPU_SREG_GS);
2783 
2784 	/*
2785 	 * If we're switching between Protected Mode and VM86, we need to make
2786 	 * sure to update the mode before loading the segment descriptors so
2787 	 * that the selectors are interpreted correctly.
2788 	 */
2789 	if (ctxt->eflags & X86_EFLAGS_VM) {
2790 		ctxt->mode = X86EMUL_MODE_VM86;
2791 		cpl = 3;
2792 	} else {
2793 		ctxt->mode = X86EMUL_MODE_PROT32;
2794 		cpl = tss->cs & 3;
2795 	}
2796 
2797 	/*
2798 	 * Now load segment descriptors. If fault happens at this stage
2799 	 * it is handled in a context of new task
2800 	 */
2801 	ret = __load_segment_descriptor(ctxt, tss->ldt_selector, VCPU_SREG_LDTR,
2802 					cpl, X86_TRANSFER_TASK_SWITCH, NULL);
2803 	if (ret != X86EMUL_CONTINUE)
2804 		return ret;
2805 	ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl,
2806 					X86_TRANSFER_TASK_SWITCH, NULL);
2807 	if (ret != X86EMUL_CONTINUE)
2808 		return ret;
2809 	ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl,
2810 					X86_TRANSFER_TASK_SWITCH, NULL);
2811 	if (ret != X86EMUL_CONTINUE)
2812 		return ret;
2813 	ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl,
2814 					X86_TRANSFER_TASK_SWITCH, NULL);
2815 	if (ret != X86EMUL_CONTINUE)
2816 		return ret;
2817 	ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl,
2818 					X86_TRANSFER_TASK_SWITCH, NULL);
2819 	if (ret != X86EMUL_CONTINUE)
2820 		return ret;
2821 	ret = __load_segment_descriptor(ctxt, tss->fs, VCPU_SREG_FS, cpl,
2822 					X86_TRANSFER_TASK_SWITCH, NULL);
2823 	if (ret != X86EMUL_CONTINUE)
2824 		return ret;
2825 	ret = __load_segment_descriptor(ctxt, tss->gs, VCPU_SREG_GS, cpl,
2826 					X86_TRANSFER_TASK_SWITCH, NULL);
2827 
2828 	return ret;
2829 }
2830 
task_switch_32(struct x86_emulate_ctxt * ctxt,u16 old_tss_sel,ulong old_tss_base,struct desc_struct * new_desc)2831 static int task_switch_32(struct x86_emulate_ctxt *ctxt, u16 old_tss_sel,
2832 			  ulong old_tss_base, struct desc_struct *new_desc)
2833 {
2834 	struct tss_segment_32 tss_seg;
2835 	int ret;
2836 	u32 new_tss_base = get_desc_base(new_desc);
2837 	u32 eip_offset = offsetof(struct tss_segment_32, eip);
2838 	u32 ldt_sel_offset = offsetof(struct tss_segment_32, ldt_selector);
2839 
2840 	ret = linear_read_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg));
2841 	if (ret != X86EMUL_CONTINUE)
2842 		return ret;
2843 
2844 	save_state_to_tss32(ctxt, &tss_seg);
2845 
2846 	/* Only GP registers and segment selectors are saved */
2847 	ret = linear_write_system(ctxt, old_tss_base + eip_offset, &tss_seg.eip,
2848 				  ldt_sel_offset - eip_offset);
2849 	if (ret != X86EMUL_CONTINUE)
2850 		return ret;
2851 
2852 	ret = linear_read_system(ctxt, new_tss_base, &tss_seg, sizeof(tss_seg));
2853 	if (ret != X86EMUL_CONTINUE)
2854 		return ret;
2855 
2856 	if (old_tss_sel != 0xffff) {
2857 		tss_seg.prev_task_link = old_tss_sel;
2858 
2859 		ret = linear_write_system(ctxt, new_tss_base,
2860 					  &tss_seg.prev_task_link,
2861 					  sizeof(tss_seg.prev_task_link));
2862 		if (ret != X86EMUL_CONTINUE)
2863 			return ret;
2864 	}
2865 
2866 	return load_state_from_tss32(ctxt, &tss_seg);
2867 }
2868 
emulator_do_task_switch(struct x86_emulate_ctxt * ctxt,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)2869 static int emulator_do_task_switch(struct x86_emulate_ctxt *ctxt,
2870 				   u16 tss_selector, int idt_index, int reason,
2871 				   bool has_error_code, u32 error_code)
2872 {
2873 	const struct x86_emulate_ops *ops = ctxt->ops;
2874 	struct desc_struct curr_tss_desc, next_tss_desc;
2875 	int ret;
2876 	u16 old_tss_sel = get_segment_selector(ctxt, VCPU_SREG_TR);
2877 	ulong old_tss_base =
2878 		ops->get_cached_segment_base(ctxt, VCPU_SREG_TR);
2879 	u32 desc_limit;
2880 	ulong desc_addr, dr7;
2881 
2882 	/* FIXME: old_tss_base == ~0 ? */
2883 
2884 	ret = read_segment_descriptor(ctxt, tss_selector, &next_tss_desc, &desc_addr);
2885 	if (ret != X86EMUL_CONTINUE)
2886 		return ret;
2887 	ret = read_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc, &desc_addr);
2888 	if (ret != X86EMUL_CONTINUE)
2889 		return ret;
2890 
2891 	/* FIXME: check that next_tss_desc is tss */
2892 
2893 	/*
2894 	 * Check privileges. The three cases are task switch caused by...
2895 	 *
2896 	 * 1. jmp/call/int to task gate: Check against DPL of the task gate
2897 	 * 2. Exception/IRQ/iret: No check is performed
2898 	 * 3. jmp/call to TSS/task-gate: No check is performed since the
2899 	 *    hardware checks it before exiting.
2900 	 */
2901 	if (reason == TASK_SWITCH_GATE) {
2902 		if (idt_index != -1) {
2903 			/* Software interrupts */
2904 			struct desc_struct task_gate_desc;
2905 			int dpl;
2906 
2907 			ret = read_interrupt_descriptor(ctxt, idt_index,
2908 							&task_gate_desc);
2909 			if (ret != X86EMUL_CONTINUE)
2910 				return ret;
2911 
2912 			dpl = task_gate_desc.dpl;
2913 			if ((tss_selector & 3) > dpl || ops->cpl(ctxt) > dpl)
2914 				return emulate_gp(ctxt, (idt_index << 3) | 0x2);
2915 		}
2916 	}
2917 
2918 	desc_limit = desc_limit_scaled(&next_tss_desc);
2919 	if (!next_tss_desc.p ||
2920 	    ((desc_limit < 0x67 && (next_tss_desc.type & 8)) ||
2921 	     desc_limit < 0x2b)) {
2922 		return emulate_ts(ctxt, tss_selector & 0xfffc);
2923 	}
2924 
2925 	if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
2926 		curr_tss_desc.type &= ~(1 << 1); /* clear busy flag */
2927 		write_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc);
2928 	}
2929 
2930 	if (reason == TASK_SWITCH_IRET)
2931 		ctxt->eflags = ctxt->eflags & ~X86_EFLAGS_NT;
2932 
2933 	/* set back link to prev task only if NT bit is set in eflags
2934 	   note that old_tss_sel is not used after this point */
2935 	if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
2936 		old_tss_sel = 0xffff;
2937 
2938 	if (next_tss_desc.type & 8)
2939 		ret = task_switch_32(ctxt, old_tss_sel, old_tss_base, &next_tss_desc);
2940 	else
2941 		ret = task_switch_16(ctxt, old_tss_sel,
2942 				     old_tss_base, &next_tss_desc);
2943 	if (ret != X86EMUL_CONTINUE)
2944 		return ret;
2945 
2946 	if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE)
2947 		ctxt->eflags = ctxt->eflags | X86_EFLAGS_NT;
2948 
2949 	if (reason != TASK_SWITCH_IRET) {
2950 		next_tss_desc.type |= (1 << 1); /* set busy flag */
2951 		write_segment_descriptor(ctxt, tss_selector, &next_tss_desc);
2952 	}
2953 
2954 	ops->set_cr(ctxt, 0,  ops->get_cr(ctxt, 0) | X86_CR0_TS);
2955 	ops->set_segment(ctxt, tss_selector, &next_tss_desc, 0, VCPU_SREG_TR);
2956 
2957 	if (has_error_code) {
2958 		ctxt->op_bytes = ctxt->ad_bytes = (next_tss_desc.type & 8) ? 4 : 2;
2959 		ctxt->lock_prefix = 0;
2960 		ctxt->src.val = (unsigned long) error_code;
2961 		ret = em_push(ctxt);
2962 	}
2963 
2964 	dr7 = ops->get_dr(ctxt, 7);
2965 	ops->set_dr(ctxt, 7, dr7 & ~(DR_LOCAL_ENABLE_MASK | DR_LOCAL_SLOWDOWN));
2966 
2967 	return ret;
2968 }
2969 
emulator_task_switch(struct x86_emulate_ctxt * ctxt,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)2970 int emulator_task_switch(struct x86_emulate_ctxt *ctxt,
2971 			 u16 tss_selector, int idt_index, int reason,
2972 			 bool has_error_code, u32 error_code)
2973 {
2974 	int rc;
2975 
2976 	invalidate_registers(ctxt);
2977 	ctxt->_eip = ctxt->eip;
2978 	ctxt->dst.type = OP_NONE;
2979 
2980 	rc = emulator_do_task_switch(ctxt, tss_selector, idt_index, reason,
2981 				     has_error_code, error_code);
2982 
2983 	if (rc == X86EMUL_CONTINUE) {
2984 		ctxt->eip = ctxt->_eip;
2985 		writeback_registers(ctxt);
2986 	}
2987 
2988 	return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
2989 }
2990 
string_addr_inc(struct x86_emulate_ctxt * ctxt,int reg,struct operand * op)2991 static void string_addr_inc(struct x86_emulate_ctxt *ctxt, int reg,
2992 		struct operand *op)
2993 {
2994 	int df = (ctxt->eflags & X86_EFLAGS_DF) ? -op->count : op->count;
2995 
2996 	register_address_increment(ctxt, reg, df * op->bytes);
2997 	op->addr.mem.ea = register_address(ctxt, reg);
2998 }
2999 
em_das(struct x86_emulate_ctxt * ctxt)3000 static int em_das(struct x86_emulate_ctxt *ctxt)
3001 {
3002 	u8 al, old_al;
3003 	bool af, cf, old_cf;
3004 
3005 	cf = ctxt->eflags & X86_EFLAGS_CF;
3006 	al = ctxt->dst.val;
3007 
3008 	old_al = al;
3009 	old_cf = cf;
3010 	cf = false;
3011 	af = ctxt->eflags & X86_EFLAGS_AF;
3012 	if ((al & 0x0f) > 9 || af) {
3013 		al -= 6;
3014 		cf = old_cf | (al >= 250);
3015 		af = true;
3016 	} else {
3017 		af = false;
3018 	}
3019 	if (old_al > 0x99 || old_cf) {
3020 		al -= 0x60;
3021 		cf = true;
3022 	}
3023 
3024 	ctxt->dst.val = al;
3025 	/* Set PF, ZF, SF */
3026 	ctxt->src.type = OP_IMM;
3027 	ctxt->src.val = 0;
3028 	ctxt->src.bytes = 1;
3029 	em_or(ctxt);
3030 	ctxt->eflags &= ~(X86_EFLAGS_AF | X86_EFLAGS_CF);
3031 	if (cf)
3032 		ctxt->eflags |= X86_EFLAGS_CF;
3033 	if (af)
3034 		ctxt->eflags |= X86_EFLAGS_AF;
3035 	return X86EMUL_CONTINUE;
3036 }
3037 
em_aam(struct x86_emulate_ctxt * ctxt)3038 static int em_aam(struct x86_emulate_ctxt *ctxt)
3039 {
3040 	u8 al, ah;
3041 
3042 	if (ctxt->src.val == 0)
3043 		return emulate_de(ctxt);
3044 
3045 	al = ctxt->dst.val & 0xff;
3046 	ah = al / ctxt->src.val;
3047 	al %= ctxt->src.val;
3048 
3049 	ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al | (ah << 8);
3050 
3051 	/* Set PF, ZF, SF */
3052 	ctxt->src.type = OP_IMM;
3053 	ctxt->src.val = 0;
3054 	ctxt->src.bytes = 1;
3055 	em_or(ctxt);
3056 
3057 	return X86EMUL_CONTINUE;
3058 }
3059 
em_aad(struct x86_emulate_ctxt * ctxt)3060 static int em_aad(struct x86_emulate_ctxt *ctxt)
3061 {
3062 	u8 al = ctxt->dst.val & 0xff;
3063 	u8 ah = (ctxt->dst.val >> 8) & 0xff;
3064 
3065 	al = (al + (ah * ctxt->src.val)) & 0xff;
3066 
3067 	ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al;
3068 
3069 	/* Set PF, ZF, SF */
3070 	ctxt->src.type = OP_IMM;
3071 	ctxt->src.val = 0;
3072 	ctxt->src.bytes = 1;
3073 	em_or(ctxt);
3074 
3075 	return X86EMUL_CONTINUE;
3076 }
3077 
em_call(struct x86_emulate_ctxt * ctxt)3078 static int em_call(struct x86_emulate_ctxt *ctxt)
3079 {
3080 	int rc;
3081 	long rel = ctxt->src.val;
3082 
3083 	ctxt->src.val = (unsigned long)ctxt->_eip;
3084 	rc = jmp_rel(ctxt, rel);
3085 	if (rc != X86EMUL_CONTINUE)
3086 		return rc;
3087 	return em_push(ctxt);
3088 }
3089 
em_call_far(struct x86_emulate_ctxt * ctxt)3090 static int em_call_far(struct x86_emulate_ctxt *ctxt)
3091 {
3092 	u16 sel, old_cs;
3093 	ulong old_eip;
3094 	int rc;
3095 	struct desc_struct old_desc, new_desc;
3096 	const struct x86_emulate_ops *ops = ctxt->ops;
3097 	int cpl = ctxt->ops->cpl(ctxt);
3098 	enum x86emul_mode prev_mode = ctxt->mode;
3099 
3100 	old_eip = ctxt->_eip;
3101 	ops->get_segment(ctxt, &old_cs, &old_desc, NULL, VCPU_SREG_CS);
3102 
3103 	memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
3104 	rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl,
3105 				       X86_TRANSFER_CALL_JMP, &new_desc);
3106 	if (rc != X86EMUL_CONTINUE)
3107 		return rc;
3108 
3109 	rc = assign_eip_far(ctxt, ctxt->src.val);
3110 	if (rc != X86EMUL_CONTINUE)
3111 		goto fail;
3112 
3113 	ctxt->src.val = old_cs;
3114 	rc = em_push(ctxt);
3115 	if (rc != X86EMUL_CONTINUE)
3116 		goto fail;
3117 
3118 	ctxt->src.val = old_eip;
3119 	rc = em_push(ctxt);
3120 	/* If we failed, we tainted the memory, but the very least we should
3121 	   restore cs */
3122 	if (rc != X86EMUL_CONTINUE) {
3123 		pr_warn_once("faulting far call emulation tainted memory\n");
3124 		goto fail;
3125 	}
3126 	return rc;
3127 fail:
3128 	ops->set_segment(ctxt, old_cs, &old_desc, 0, VCPU_SREG_CS);
3129 	ctxt->mode = prev_mode;
3130 	return rc;
3131 
3132 }
3133 
em_ret_near_imm(struct x86_emulate_ctxt * ctxt)3134 static int em_ret_near_imm(struct x86_emulate_ctxt *ctxt)
3135 {
3136 	int rc;
3137 	unsigned long eip = 0;
3138 
3139 	rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
3140 	if (rc != X86EMUL_CONTINUE)
3141 		return rc;
3142 	rc = assign_eip_near(ctxt, eip);
3143 	if (rc != X86EMUL_CONTINUE)
3144 		return rc;
3145 	rsp_increment(ctxt, ctxt->src.val);
3146 	return X86EMUL_CONTINUE;
3147 }
3148 
em_xchg(struct x86_emulate_ctxt * ctxt)3149 static int em_xchg(struct x86_emulate_ctxt *ctxt)
3150 {
3151 	/* Write back the register source. */
3152 	ctxt->src.val = ctxt->dst.val;
3153 	write_register_operand(&ctxt->src);
3154 
3155 	/* Write back the memory destination with implicit LOCK prefix. */
3156 	ctxt->dst.val = ctxt->src.orig_val;
3157 	ctxt->lock_prefix = 1;
3158 	return X86EMUL_CONTINUE;
3159 }
3160 
em_imul_3op(struct x86_emulate_ctxt * ctxt)3161 static int em_imul_3op(struct x86_emulate_ctxt *ctxt)
3162 {
3163 	ctxt->dst.val = ctxt->src2.val;
3164 	return em_imul(ctxt);
3165 }
3166 
em_cwd(struct x86_emulate_ctxt * ctxt)3167 static int em_cwd(struct x86_emulate_ctxt *ctxt)
3168 {
3169 	ctxt->dst.type = OP_REG;
3170 	ctxt->dst.bytes = ctxt->src.bytes;
3171 	ctxt->dst.addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
3172 	ctxt->dst.val = ~((ctxt->src.val >> (ctxt->src.bytes * 8 - 1)) - 1);
3173 
3174 	return X86EMUL_CONTINUE;
3175 }
3176 
em_rdpid(struct x86_emulate_ctxt * ctxt)3177 static int em_rdpid(struct x86_emulate_ctxt *ctxt)
3178 {
3179 	u64 tsc_aux = 0;
3180 
3181 	if (!ctxt->ops->guest_has_rdpid(ctxt))
3182 		return emulate_ud(ctxt);
3183 
3184 	ctxt->ops->get_msr(ctxt, MSR_TSC_AUX, &tsc_aux);
3185 	ctxt->dst.val = tsc_aux;
3186 	return X86EMUL_CONTINUE;
3187 }
3188 
em_rdtsc(struct x86_emulate_ctxt * ctxt)3189 static int em_rdtsc(struct x86_emulate_ctxt *ctxt)
3190 {
3191 	u64 tsc = 0;
3192 
3193 	ctxt->ops->get_msr(ctxt, MSR_IA32_TSC, &tsc);
3194 	*reg_write(ctxt, VCPU_REGS_RAX) = (u32)tsc;
3195 	*reg_write(ctxt, VCPU_REGS_RDX) = tsc >> 32;
3196 	return X86EMUL_CONTINUE;
3197 }
3198 
em_rdpmc(struct x86_emulate_ctxt * ctxt)3199 static int em_rdpmc(struct x86_emulate_ctxt *ctxt)
3200 {
3201 	u64 pmc;
3202 
3203 	if (ctxt->ops->read_pmc(ctxt, reg_read(ctxt, VCPU_REGS_RCX), &pmc))
3204 		return emulate_gp(ctxt, 0);
3205 	*reg_write(ctxt, VCPU_REGS_RAX) = (u32)pmc;
3206 	*reg_write(ctxt, VCPU_REGS_RDX) = pmc >> 32;
3207 	return X86EMUL_CONTINUE;
3208 }
3209 
em_mov(struct x86_emulate_ctxt * ctxt)3210 static int em_mov(struct x86_emulate_ctxt *ctxt)
3211 {
3212 	memcpy(ctxt->dst.valptr, ctxt->src.valptr, sizeof(ctxt->src.valptr));
3213 	return X86EMUL_CONTINUE;
3214 }
3215 
em_movbe(struct x86_emulate_ctxt * ctxt)3216 static int em_movbe(struct x86_emulate_ctxt *ctxt)
3217 {
3218 	u16 tmp;
3219 
3220 	if (!ctxt->ops->guest_has_movbe(ctxt))
3221 		return emulate_ud(ctxt);
3222 
3223 	switch (ctxt->op_bytes) {
3224 	case 2:
3225 		/*
3226 		 * From MOVBE definition: "...When the operand size is 16 bits,
3227 		 * the upper word of the destination register remains unchanged
3228 		 * ..."
3229 		 *
3230 		 * Both casting ->valptr and ->val to u16 breaks strict aliasing
3231 		 * rules so we have to do the operation almost per hand.
3232 		 */
3233 		tmp = (u16)ctxt->src.val;
3234 		ctxt->dst.val &= ~0xffffUL;
3235 		ctxt->dst.val |= (unsigned long)swab16(tmp);
3236 		break;
3237 	case 4:
3238 		ctxt->dst.val = swab32((u32)ctxt->src.val);
3239 		break;
3240 	case 8:
3241 		ctxt->dst.val = swab64(ctxt->src.val);
3242 		break;
3243 	default:
3244 		BUG();
3245 	}
3246 	return X86EMUL_CONTINUE;
3247 }
3248 
em_cr_write(struct x86_emulate_ctxt * ctxt)3249 static int em_cr_write(struct x86_emulate_ctxt *ctxt)
3250 {
3251 	int cr_num = ctxt->modrm_reg;
3252 	int r;
3253 
3254 	if (ctxt->ops->set_cr(ctxt, cr_num, ctxt->src.val))
3255 		return emulate_gp(ctxt, 0);
3256 
3257 	/* Disable writeback. */
3258 	ctxt->dst.type = OP_NONE;
3259 
3260 	if (cr_num == 0) {
3261 		/*
3262 		 * CR0 write might have updated CR0.PE and/or CR0.PG
3263 		 * which can affect the cpu's execution mode.
3264 		 */
3265 		r = emulator_recalc_and_set_mode(ctxt);
3266 		if (r != X86EMUL_CONTINUE)
3267 			return r;
3268 	}
3269 
3270 	return X86EMUL_CONTINUE;
3271 }
3272 
em_dr_write(struct x86_emulate_ctxt * ctxt)3273 static int em_dr_write(struct x86_emulate_ctxt *ctxt)
3274 {
3275 	unsigned long val;
3276 
3277 	if (ctxt->mode == X86EMUL_MODE_PROT64)
3278 		val = ctxt->src.val & ~0ULL;
3279 	else
3280 		val = ctxt->src.val & ~0U;
3281 
3282 	/* #UD condition is already handled. */
3283 	if (ctxt->ops->set_dr(ctxt, ctxt->modrm_reg, val) < 0)
3284 		return emulate_gp(ctxt, 0);
3285 
3286 	/* Disable writeback. */
3287 	ctxt->dst.type = OP_NONE;
3288 	return X86EMUL_CONTINUE;
3289 }
3290 
em_wrmsr(struct x86_emulate_ctxt * ctxt)3291 static int em_wrmsr(struct x86_emulate_ctxt *ctxt)
3292 {
3293 	u64 msr_index = reg_read(ctxt, VCPU_REGS_RCX);
3294 	u64 msr_data;
3295 	int r;
3296 
3297 	msr_data = (u32)reg_read(ctxt, VCPU_REGS_RAX)
3298 		| ((u64)reg_read(ctxt, VCPU_REGS_RDX) << 32);
3299 	r = ctxt->ops->set_msr_with_filter(ctxt, msr_index, msr_data);
3300 
3301 	if (r == X86EMUL_PROPAGATE_FAULT)
3302 		return emulate_gp(ctxt, 0);
3303 
3304 	return r;
3305 }
3306 
em_rdmsr(struct x86_emulate_ctxt * ctxt)3307 static int em_rdmsr(struct x86_emulate_ctxt *ctxt)
3308 {
3309 	u64 msr_index = reg_read(ctxt, VCPU_REGS_RCX);
3310 	u64 msr_data;
3311 	int r;
3312 
3313 	r = ctxt->ops->get_msr_with_filter(ctxt, msr_index, &msr_data);
3314 
3315 	if (r == X86EMUL_PROPAGATE_FAULT)
3316 		return emulate_gp(ctxt, 0);
3317 
3318 	if (r == X86EMUL_CONTINUE) {
3319 		*reg_write(ctxt, VCPU_REGS_RAX) = (u32)msr_data;
3320 		*reg_write(ctxt, VCPU_REGS_RDX) = msr_data >> 32;
3321 	}
3322 	return r;
3323 }
3324 
em_store_sreg(struct x86_emulate_ctxt * ctxt,int segment)3325 static int em_store_sreg(struct x86_emulate_ctxt *ctxt, int segment)
3326 {
3327 	if (segment > VCPU_SREG_GS &&
3328 	    (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) &&
3329 	    ctxt->ops->cpl(ctxt) > 0)
3330 		return emulate_gp(ctxt, 0);
3331 
3332 	ctxt->dst.val = get_segment_selector(ctxt, segment);
3333 	if (ctxt->dst.bytes == 4 && ctxt->dst.type == OP_MEM)
3334 		ctxt->dst.bytes = 2;
3335 	return X86EMUL_CONTINUE;
3336 }
3337 
em_mov_rm_sreg(struct x86_emulate_ctxt * ctxt)3338 static int em_mov_rm_sreg(struct x86_emulate_ctxt *ctxt)
3339 {
3340 	if (ctxt->modrm_reg > VCPU_SREG_GS)
3341 		return emulate_ud(ctxt);
3342 
3343 	return em_store_sreg(ctxt, ctxt->modrm_reg);
3344 }
3345 
em_mov_sreg_rm(struct x86_emulate_ctxt * ctxt)3346 static int em_mov_sreg_rm(struct x86_emulate_ctxt *ctxt)
3347 {
3348 	u16 sel = ctxt->src.val;
3349 
3350 	if (ctxt->modrm_reg == VCPU_SREG_CS || ctxt->modrm_reg > VCPU_SREG_GS)
3351 		return emulate_ud(ctxt);
3352 
3353 	if (ctxt->modrm_reg == VCPU_SREG_SS)
3354 		ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
3355 
3356 	/* Disable writeback. */
3357 	ctxt->dst.type = OP_NONE;
3358 	return load_segment_descriptor(ctxt, sel, ctxt->modrm_reg);
3359 }
3360 
em_sldt(struct x86_emulate_ctxt * ctxt)3361 static int em_sldt(struct x86_emulate_ctxt *ctxt)
3362 {
3363 	return em_store_sreg(ctxt, VCPU_SREG_LDTR);
3364 }
3365 
em_lldt(struct x86_emulate_ctxt * ctxt)3366 static int em_lldt(struct x86_emulate_ctxt *ctxt)
3367 {
3368 	u16 sel = ctxt->src.val;
3369 
3370 	/* Disable writeback. */
3371 	ctxt->dst.type = OP_NONE;
3372 	return load_segment_descriptor(ctxt, sel, VCPU_SREG_LDTR);
3373 }
3374 
em_str(struct x86_emulate_ctxt * ctxt)3375 static int em_str(struct x86_emulate_ctxt *ctxt)
3376 {
3377 	return em_store_sreg(ctxt, VCPU_SREG_TR);
3378 }
3379 
em_ltr(struct x86_emulate_ctxt * ctxt)3380 static int em_ltr(struct x86_emulate_ctxt *ctxt)
3381 {
3382 	u16 sel = ctxt->src.val;
3383 
3384 	/* Disable writeback. */
3385 	ctxt->dst.type = OP_NONE;
3386 	return load_segment_descriptor(ctxt, sel, VCPU_SREG_TR);
3387 }
3388 
em_invlpg(struct x86_emulate_ctxt * ctxt)3389 static int em_invlpg(struct x86_emulate_ctxt *ctxt)
3390 {
3391 	int rc;
3392 	ulong linear;
3393 	unsigned int max_size;
3394 
3395 	rc = __linearize(ctxt, ctxt->src.addr.mem, &max_size, 1, ctxt->mode,
3396 			 &linear, X86EMUL_F_INVLPG);
3397 	if (rc == X86EMUL_CONTINUE)
3398 		ctxt->ops->invlpg(ctxt, linear);
3399 	/* Disable writeback. */
3400 	ctxt->dst.type = OP_NONE;
3401 	return X86EMUL_CONTINUE;
3402 }
3403 
em_clts(struct x86_emulate_ctxt * ctxt)3404 static int em_clts(struct x86_emulate_ctxt *ctxt)
3405 {
3406 	ulong cr0;
3407 
3408 	cr0 = ctxt->ops->get_cr(ctxt, 0);
3409 	cr0 &= ~X86_CR0_TS;
3410 	ctxt->ops->set_cr(ctxt, 0, cr0);
3411 	return X86EMUL_CONTINUE;
3412 }
3413 
em_hypercall(struct x86_emulate_ctxt * ctxt)3414 static int em_hypercall(struct x86_emulate_ctxt *ctxt)
3415 {
3416 	int rc = ctxt->ops->fix_hypercall(ctxt);
3417 
3418 	if (rc != X86EMUL_CONTINUE)
3419 		return rc;
3420 
3421 	/* Let the processor re-execute the fixed hypercall */
3422 	ctxt->_eip = ctxt->eip;
3423 	/* Disable writeback. */
3424 	ctxt->dst.type = OP_NONE;
3425 	return X86EMUL_CONTINUE;
3426 }
3427 
emulate_store_desc_ptr(struct x86_emulate_ctxt * ctxt,void (* get)(struct x86_emulate_ctxt * ctxt,struct desc_ptr * ptr))3428 static int emulate_store_desc_ptr(struct x86_emulate_ctxt *ctxt,
3429 				  void (*get)(struct x86_emulate_ctxt *ctxt,
3430 					      struct desc_ptr *ptr))
3431 {
3432 	struct desc_ptr desc_ptr;
3433 
3434 	if ((ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) &&
3435 	    ctxt->ops->cpl(ctxt) > 0)
3436 		return emulate_gp(ctxt, 0);
3437 
3438 	if (ctxt->mode == X86EMUL_MODE_PROT64)
3439 		ctxt->op_bytes = 8;
3440 	get(ctxt, &desc_ptr);
3441 	if (ctxt->op_bytes == 2) {
3442 		ctxt->op_bytes = 4;
3443 		desc_ptr.address &= 0x00ffffff;
3444 	}
3445 	/* Disable writeback. */
3446 	ctxt->dst.type = OP_NONE;
3447 	return segmented_write_std(ctxt, ctxt->dst.addr.mem,
3448 				   &desc_ptr, 2 + ctxt->op_bytes);
3449 }
3450 
em_sgdt(struct x86_emulate_ctxt * ctxt)3451 static int em_sgdt(struct x86_emulate_ctxt *ctxt)
3452 {
3453 	return emulate_store_desc_ptr(ctxt, ctxt->ops->get_gdt);
3454 }
3455 
em_sidt(struct x86_emulate_ctxt * ctxt)3456 static int em_sidt(struct x86_emulate_ctxt *ctxt)
3457 {
3458 	return emulate_store_desc_ptr(ctxt, ctxt->ops->get_idt);
3459 }
3460 
em_lgdt_lidt(struct x86_emulate_ctxt * ctxt,bool lgdt)3461 static int em_lgdt_lidt(struct x86_emulate_ctxt *ctxt, bool lgdt)
3462 {
3463 	struct desc_ptr desc_ptr;
3464 	int rc;
3465 
3466 	if (ctxt->mode == X86EMUL_MODE_PROT64)
3467 		ctxt->op_bytes = 8;
3468 	rc = read_descriptor(ctxt, ctxt->src.addr.mem,
3469 			     &desc_ptr.size, &desc_ptr.address,
3470 			     ctxt->op_bytes);
3471 	if (rc != X86EMUL_CONTINUE)
3472 		return rc;
3473 	if (ctxt->mode == X86EMUL_MODE_PROT64 &&
3474 	    emul_is_noncanonical_address(desc_ptr.address, ctxt,
3475 					 X86EMUL_F_DT_LOAD))
3476 		return emulate_gp(ctxt, 0);
3477 	if (lgdt)
3478 		ctxt->ops->set_gdt(ctxt, &desc_ptr);
3479 	else
3480 		ctxt->ops->set_idt(ctxt, &desc_ptr);
3481 	/* Disable writeback. */
3482 	ctxt->dst.type = OP_NONE;
3483 	return X86EMUL_CONTINUE;
3484 }
3485 
em_lgdt(struct x86_emulate_ctxt * ctxt)3486 static int em_lgdt(struct x86_emulate_ctxt *ctxt)
3487 {
3488 	return em_lgdt_lidt(ctxt, true);
3489 }
3490 
em_lidt(struct x86_emulate_ctxt * ctxt)3491 static int em_lidt(struct x86_emulate_ctxt *ctxt)
3492 {
3493 	return em_lgdt_lidt(ctxt, false);
3494 }
3495 
em_smsw(struct x86_emulate_ctxt * ctxt)3496 static int em_smsw(struct x86_emulate_ctxt *ctxt)
3497 {
3498 	if ((ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) &&
3499 	    ctxt->ops->cpl(ctxt) > 0)
3500 		return emulate_gp(ctxt, 0);
3501 
3502 	if (ctxt->dst.type == OP_MEM)
3503 		ctxt->dst.bytes = 2;
3504 	ctxt->dst.val = ctxt->ops->get_cr(ctxt, 0);
3505 	return X86EMUL_CONTINUE;
3506 }
3507 
em_lmsw(struct x86_emulate_ctxt * ctxt)3508 static int em_lmsw(struct x86_emulate_ctxt *ctxt)
3509 {
3510 	ctxt->ops->set_cr(ctxt, 0, (ctxt->ops->get_cr(ctxt, 0) & ~0x0eul)
3511 			  | (ctxt->src.val & 0x0f));
3512 	ctxt->dst.type = OP_NONE;
3513 	return X86EMUL_CONTINUE;
3514 }
3515 
em_loop(struct x86_emulate_ctxt * ctxt)3516 static int em_loop(struct x86_emulate_ctxt *ctxt)
3517 {
3518 	int rc = X86EMUL_CONTINUE;
3519 
3520 	register_address_increment(ctxt, VCPU_REGS_RCX, -1);
3521 	if ((address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) != 0) &&
3522 	    (ctxt->b == 0xe2 || test_cc(ctxt->b ^ 0x5, ctxt->eflags)))
3523 		rc = jmp_rel(ctxt, ctxt->src.val);
3524 
3525 	return rc;
3526 }
3527 
em_jcxz(struct x86_emulate_ctxt * ctxt)3528 static int em_jcxz(struct x86_emulate_ctxt *ctxt)
3529 {
3530 	int rc = X86EMUL_CONTINUE;
3531 
3532 	if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0)
3533 		rc = jmp_rel(ctxt, ctxt->src.val);
3534 
3535 	return rc;
3536 }
3537 
em_in(struct x86_emulate_ctxt * ctxt)3538 static int em_in(struct x86_emulate_ctxt *ctxt)
3539 {
3540 	if (!pio_in_emulated(ctxt, ctxt->dst.bytes, ctxt->src.val,
3541 			     &ctxt->dst.val))
3542 		return X86EMUL_IO_NEEDED;
3543 
3544 	return X86EMUL_CONTINUE;
3545 }
3546 
em_out(struct x86_emulate_ctxt * ctxt)3547 static int em_out(struct x86_emulate_ctxt *ctxt)
3548 {
3549 	ctxt->ops->pio_out_emulated(ctxt, ctxt->src.bytes, ctxt->dst.val,
3550 				    &ctxt->src.val, 1);
3551 	/* Disable writeback. */
3552 	ctxt->dst.type = OP_NONE;
3553 	return X86EMUL_CONTINUE;
3554 }
3555 
em_cli(struct x86_emulate_ctxt * ctxt)3556 static int em_cli(struct x86_emulate_ctxt *ctxt)
3557 {
3558 	if (emulator_bad_iopl(ctxt))
3559 		return emulate_gp(ctxt, 0);
3560 
3561 	ctxt->eflags &= ~X86_EFLAGS_IF;
3562 	return X86EMUL_CONTINUE;
3563 }
3564 
em_sti(struct x86_emulate_ctxt * ctxt)3565 static int em_sti(struct x86_emulate_ctxt *ctxt)
3566 {
3567 	if (emulator_bad_iopl(ctxt))
3568 		return emulate_gp(ctxt, 0);
3569 
3570 	ctxt->interruptibility = KVM_X86_SHADOW_INT_STI;
3571 	ctxt->eflags |= X86_EFLAGS_IF;
3572 	return X86EMUL_CONTINUE;
3573 }
3574 
em_cpuid(struct x86_emulate_ctxt * ctxt)3575 static int em_cpuid(struct x86_emulate_ctxt *ctxt)
3576 {
3577 	u32 eax, ebx, ecx, edx;
3578 	u64 msr = 0;
3579 
3580 	ctxt->ops->get_msr(ctxt, MSR_MISC_FEATURES_ENABLES, &msr);
3581 	if (msr & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3582 	    ctxt->ops->cpl(ctxt)) {
3583 		return emulate_gp(ctxt, 0);
3584 	}
3585 
3586 	eax = reg_read(ctxt, VCPU_REGS_RAX);
3587 	ecx = reg_read(ctxt, VCPU_REGS_RCX);
3588 	ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, false);
3589 	*reg_write(ctxt, VCPU_REGS_RAX) = eax;
3590 	*reg_write(ctxt, VCPU_REGS_RBX) = ebx;
3591 	*reg_write(ctxt, VCPU_REGS_RCX) = ecx;
3592 	*reg_write(ctxt, VCPU_REGS_RDX) = edx;
3593 	return X86EMUL_CONTINUE;
3594 }
3595 
em_sahf(struct x86_emulate_ctxt * ctxt)3596 static int em_sahf(struct x86_emulate_ctxt *ctxt)
3597 {
3598 	u32 flags;
3599 
3600 	flags = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
3601 		X86_EFLAGS_SF;
3602 	flags &= *reg_rmw(ctxt, VCPU_REGS_RAX) >> 8;
3603 
3604 	ctxt->eflags &= ~0xffUL;
3605 	ctxt->eflags |= flags | X86_EFLAGS_FIXED;
3606 	return X86EMUL_CONTINUE;
3607 }
3608 
em_lahf(struct x86_emulate_ctxt * ctxt)3609 static int em_lahf(struct x86_emulate_ctxt *ctxt)
3610 {
3611 	*reg_rmw(ctxt, VCPU_REGS_RAX) &= ~0xff00UL;
3612 	*reg_rmw(ctxt, VCPU_REGS_RAX) |= (ctxt->eflags & 0xff) << 8;
3613 	return X86EMUL_CONTINUE;
3614 }
3615 
em_bswap(struct x86_emulate_ctxt * ctxt)3616 static int em_bswap(struct x86_emulate_ctxt *ctxt)
3617 {
3618 	switch (ctxt->op_bytes) {
3619 #ifdef CONFIG_X86_64
3620 	case 8:
3621 		asm("bswap %0" : "+r"(ctxt->dst.val));
3622 		break;
3623 #endif
3624 	default:
3625 		asm("bswap %0" : "+r"(*(u32 *)&ctxt->dst.val));
3626 		break;
3627 	}
3628 	return X86EMUL_CONTINUE;
3629 }
3630 
em_clflush(struct x86_emulate_ctxt * ctxt)3631 static int em_clflush(struct x86_emulate_ctxt *ctxt)
3632 {
3633 	/* emulating clflush regardless of cpuid */
3634 	return X86EMUL_CONTINUE;
3635 }
3636 
em_clflushopt(struct x86_emulate_ctxt * ctxt)3637 static int em_clflushopt(struct x86_emulate_ctxt *ctxt)
3638 {
3639 	/* emulating clflushopt regardless of cpuid */
3640 	return X86EMUL_CONTINUE;
3641 }
3642 
em_movsxd(struct x86_emulate_ctxt * ctxt)3643 static int em_movsxd(struct x86_emulate_ctxt *ctxt)
3644 {
3645 	ctxt->dst.val = (s32) ctxt->src.val;
3646 	return X86EMUL_CONTINUE;
3647 }
3648 
check_fxsr(struct x86_emulate_ctxt * ctxt)3649 static int check_fxsr(struct x86_emulate_ctxt *ctxt)
3650 {
3651 	if (!ctxt->ops->guest_has_fxsr(ctxt))
3652 		return emulate_ud(ctxt);
3653 
3654 	if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
3655 		return emulate_nm(ctxt);
3656 
3657 	/*
3658 	 * Don't emulate a case that should never be hit, instead of working
3659 	 * around a lack of fxsave64/fxrstor64 on old compilers.
3660 	 */
3661 	if (ctxt->mode >= X86EMUL_MODE_PROT64)
3662 		return X86EMUL_UNHANDLEABLE;
3663 
3664 	return X86EMUL_CONTINUE;
3665 }
3666 
3667 /*
3668  * Hardware doesn't save and restore XMM 0-7 without CR4.OSFXSR, but does save
3669  * and restore MXCSR.
3670  */
__fxstate_size(int nregs)3671 static size_t __fxstate_size(int nregs)
3672 {
3673 	return offsetof(struct fxregs_state, xmm_space[0]) + nregs * 16;
3674 }
3675 
fxstate_size(struct x86_emulate_ctxt * ctxt)3676 static inline size_t fxstate_size(struct x86_emulate_ctxt *ctxt)
3677 {
3678 	bool cr4_osfxsr;
3679 	if (ctxt->mode == X86EMUL_MODE_PROT64)
3680 		return __fxstate_size(16);
3681 
3682 	cr4_osfxsr = ctxt->ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR;
3683 	return __fxstate_size(cr4_osfxsr ? 8 : 0);
3684 }
3685 
3686 /*
3687  * FXSAVE and FXRSTOR have 4 different formats depending on execution mode,
3688  *  1) 16 bit mode
3689  *  2) 32 bit mode
3690  *     - like (1), but FIP and FDP (foo) are only 16 bit.  At least Intel CPUs
3691  *       preserve whole 32 bit values, though, so (1) and (2) are the same wrt.
3692  *       save and restore
3693  *  3) 64-bit mode with REX.W prefix
3694  *     - like (2), but XMM 8-15 are being saved and restored
3695  *  4) 64-bit mode without REX.W prefix
3696  *     - like (3), but FIP and FDP are 64 bit
3697  *
3698  * Emulation uses (3) for (1) and (2) and preserves XMM 8-15 to reach the
3699  * desired result.  (4) is not emulated.
3700  *
3701  * Note: Guest and host CPUID.(EAX=07H,ECX=0H):EBX[bit 13] (deprecate FPU CS
3702  * and FPU DS) should match.
3703  */
em_fxsave(struct x86_emulate_ctxt * ctxt)3704 static int em_fxsave(struct x86_emulate_ctxt *ctxt)
3705 {
3706 	struct fxregs_state fx_state;
3707 	int rc;
3708 
3709 	rc = check_fxsr(ctxt);
3710 	if (rc != X86EMUL_CONTINUE)
3711 		return rc;
3712 
3713 	kvm_fpu_get();
3714 
3715 	rc = asm_safe("fxsave %[fx]", , [fx] "+m"(fx_state));
3716 
3717 	kvm_fpu_put();
3718 
3719 	if (rc != X86EMUL_CONTINUE)
3720 		return rc;
3721 
3722 	return segmented_write_std(ctxt, ctxt->memop.addr.mem, &fx_state,
3723 		                   fxstate_size(ctxt));
3724 }
3725 
3726 /*
3727  * FXRSTOR might restore XMM registers not provided by the guest. Fill
3728  * in the host registers (via FXSAVE) instead, so they won't be modified.
3729  * (preemption has to stay disabled until FXRSTOR).
3730  *
3731  * Use noinline to keep the stack for other functions called by callers small.
3732  */
fxregs_fixup(struct fxregs_state * fx_state,const size_t used_size)3733 static noinline int fxregs_fixup(struct fxregs_state *fx_state,
3734 				 const size_t used_size)
3735 {
3736 	struct fxregs_state fx_tmp;
3737 	int rc;
3738 
3739 	rc = asm_safe("fxsave %[fx]", , [fx] "+m"(fx_tmp));
3740 	memcpy((void *)fx_state + used_size, (void *)&fx_tmp + used_size,
3741 	       __fxstate_size(16) - used_size);
3742 
3743 	return rc;
3744 }
3745 
em_fxrstor(struct x86_emulate_ctxt * ctxt)3746 static int em_fxrstor(struct x86_emulate_ctxt *ctxt)
3747 {
3748 	struct fxregs_state fx_state;
3749 	int rc;
3750 	size_t size;
3751 
3752 	rc = check_fxsr(ctxt);
3753 	if (rc != X86EMUL_CONTINUE)
3754 		return rc;
3755 
3756 	size = fxstate_size(ctxt);
3757 	rc = segmented_read_std(ctxt, ctxt->memop.addr.mem, &fx_state, size);
3758 	if (rc != X86EMUL_CONTINUE)
3759 		return rc;
3760 
3761 	kvm_fpu_get();
3762 
3763 	if (size < __fxstate_size(16)) {
3764 		rc = fxregs_fixup(&fx_state, size);
3765 		if (rc != X86EMUL_CONTINUE)
3766 			goto out;
3767 	}
3768 
3769 	if (fx_state.mxcsr >> 16) {
3770 		rc = emulate_gp(ctxt, 0);
3771 		goto out;
3772 	}
3773 
3774 	if (rc == X86EMUL_CONTINUE)
3775 		rc = asm_safe("fxrstor %[fx]", : [fx] "m"(fx_state));
3776 
3777 out:
3778 	kvm_fpu_put();
3779 
3780 	return rc;
3781 }
3782 
em_xsetbv(struct x86_emulate_ctxt * ctxt)3783 static int em_xsetbv(struct x86_emulate_ctxt *ctxt)
3784 {
3785 	u32 eax, ecx, edx;
3786 
3787 	if (!(ctxt->ops->get_cr(ctxt, 4) & X86_CR4_OSXSAVE))
3788 		return emulate_ud(ctxt);
3789 
3790 	eax = reg_read(ctxt, VCPU_REGS_RAX);
3791 	edx = reg_read(ctxt, VCPU_REGS_RDX);
3792 	ecx = reg_read(ctxt, VCPU_REGS_RCX);
3793 
3794 	if (ctxt->ops->set_xcr(ctxt, ecx, ((u64)edx << 32) | eax))
3795 		return emulate_gp(ctxt, 0);
3796 
3797 	return X86EMUL_CONTINUE;
3798 }
3799 
valid_cr(int nr)3800 static bool valid_cr(int nr)
3801 {
3802 	switch (nr) {
3803 	case 0:
3804 	case 2 ... 4:
3805 	case 8:
3806 		return true;
3807 	default:
3808 		return false;
3809 	}
3810 }
3811 
check_cr_access(struct x86_emulate_ctxt * ctxt)3812 static int check_cr_access(struct x86_emulate_ctxt *ctxt)
3813 {
3814 	if (!valid_cr(ctxt->modrm_reg))
3815 		return emulate_ud(ctxt);
3816 
3817 	return X86EMUL_CONTINUE;
3818 }
3819 
check_dr_read(struct x86_emulate_ctxt * ctxt)3820 static int check_dr_read(struct x86_emulate_ctxt *ctxt)
3821 {
3822 	int dr = ctxt->modrm_reg;
3823 	u64 cr4;
3824 
3825 	if (dr > 7)
3826 		return emulate_ud(ctxt);
3827 
3828 	cr4 = ctxt->ops->get_cr(ctxt, 4);
3829 	if ((cr4 & X86_CR4_DE) && (dr == 4 || dr == 5))
3830 		return emulate_ud(ctxt);
3831 
3832 	if (ctxt->ops->get_dr(ctxt, 7) & DR7_GD) {
3833 		ulong dr6;
3834 
3835 		dr6 = ctxt->ops->get_dr(ctxt, 6);
3836 		dr6 &= ~DR_TRAP_BITS;
3837 		dr6 |= DR6_BD | DR6_ACTIVE_LOW;
3838 		ctxt->ops->set_dr(ctxt, 6, dr6);
3839 		return emulate_db(ctxt);
3840 	}
3841 
3842 	return X86EMUL_CONTINUE;
3843 }
3844 
check_dr_write(struct x86_emulate_ctxt * ctxt)3845 static int check_dr_write(struct x86_emulate_ctxt *ctxt)
3846 {
3847 	u64 new_val = ctxt->src.val64;
3848 	int dr = ctxt->modrm_reg;
3849 
3850 	if ((dr == 6 || dr == 7) && (new_val & 0xffffffff00000000ULL))
3851 		return emulate_gp(ctxt, 0);
3852 
3853 	return check_dr_read(ctxt);
3854 }
3855 
check_svme(struct x86_emulate_ctxt * ctxt)3856 static int check_svme(struct x86_emulate_ctxt *ctxt)
3857 {
3858 	u64 efer = 0;
3859 
3860 	ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
3861 
3862 	if (!(efer & EFER_SVME))
3863 		return emulate_ud(ctxt);
3864 
3865 	return X86EMUL_CONTINUE;
3866 }
3867 
check_svme_pa(struct x86_emulate_ctxt * ctxt)3868 static int check_svme_pa(struct x86_emulate_ctxt *ctxt)
3869 {
3870 	u64 rax = reg_read(ctxt, VCPU_REGS_RAX);
3871 
3872 	/* Valid physical address? */
3873 	if (rax & 0xffff000000000000ULL)
3874 		return emulate_gp(ctxt, 0);
3875 
3876 	return check_svme(ctxt);
3877 }
3878 
check_rdtsc(struct x86_emulate_ctxt * ctxt)3879 static int check_rdtsc(struct x86_emulate_ctxt *ctxt)
3880 {
3881 	u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
3882 
3883 	if (cr4 & X86_CR4_TSD && ctxt->ops->cpl(ctxt))
3884 		return emulate_gp(ctxt, 0);
3885 
3886 	return X86EMUL_CONTINUE;
3887 }
3888 
check_rdpmc(struct x86_emulate_ctxt * ctxt)3889 static int check_rdpmc(struct x86_emulate_ctxt *ctxt)
3890 {
3891 	u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
3892 	u64 rcx = reg_read(ctxt, VCPU_REGS_RCX);
3893 
3894 	/*
3895 	 * VMware allows access to these Pseduo-PMCs even when read via RDPMC
3896 	 * in Ring3 when CR4.PCE=0.
3897 	 */
3898 	if (enable_vmware_backdoor && is_vmware_backdoor_pmc(rcx))
3899 		return X86EMUL_CONTINUE;
3900 
3901 	/*
3902 	 * If CR4.PCE is set, the SDM requires CPL=0 or CR0.PE=0.  The CR0.PE
3903 	 * check however is unnecessary because CPL is always 0 outside
3904 	 * protected mode.
3905 	 */
3906 	if ((!(cr4 & X86_CR4_PCE) && ctxt->ops->cpl(ctxt)) ||
3907 	    ctxt->ops->check_rdpmc_early(ctxt, rcx))
3908 		return emulate_gp(ctxt, 0);
3909 
3910 	return X86EMUL_CONTINUE;
3911 }
3912 
check_perm_in(struct x86_emulate_ctxt * ctxt)3913 static int check_perm_in(struct x86_emulate_ctxt *ctxt)
3914 {
3915 	ctxt->dst.bytes = min(ctxt->dst.bytes, 4u);
3916 	if (!emulator_io_permitted(ctxt, ctxt->src.val, ctxt->dst.bytes))
3917 		return emulate_gp(ctxt, 0);
3918 
3919 	return X86EMUL_CONTINUE;
3920 }
3921 
check_perm_out(struct x86_emulate_ctxt * ctxt)3922 static int check_perm_out(struct x86_emulate_ctxt *ctxt)
3923 {
3924 	ctxt->src.bytes = min(ctxt->src.bytes, 4u);
3925 	if (!emulator_io_permitted(ctxt, ctxt->dst.val, ctxt->src.bytes))
3926 		return emulate_gp(ctxt, 0);
3927 
3928 	return X86EMUL_CONTINUE;
3929 }
3930 
3931 #define D(_y) { .flags = (_y) }
3932 #define DI(_y, _i) { .flags = (_y)|Intercept, .intercept = x86_intercept_##_i }
3933 #define DIP(_y, _i, _p) { .flags = (_y)|Intercept|CheckPerm, \
3934 		      .intercept = x86_intercept_##_i, .check_perm = (_p) }
3935 #define N    D(NotImpl)
3936 #define EXT(_f, _e) { .flags = ((_f) | RMExt), .u.group = (_e) }
3937 #define G(_f, _g) { .flags = ((_f) | Group | ModRM), .u.group = (_g) }
3938 #define GD(_f, _g) { .flags = ((_f) | GroupDual | ModRM), .u.gdual = (_g) }
3939 #define ID(_f, _i) { .flags = ((_f) | InstrDual | ModRM), .u.idual = (_i) }
3940 #define MD(_f, _m) { .flags = ((_f) | ModeDual), .u.mdual = (_m) }
3941 #define E(_f, _e) { .flags = ((_f) | Escape | ModRM), .u.esc = (_e) }
3942 #define I(_f, _e) { .flags = (_f), .u.execute = (_e) }
3943 #define II(_f, _e, _i) \
3944 	{ .flags = (_f)|Intercept, .u.execute = (_e), .intercept = x86_intercept_##_i }
3945 #define IIP(_f, _e, _i, _p) \
3946 	{ .flags = (_f)|Intercept|CheckPerm, .u.execute = (_e), \
3947 	  .intercept = x86_intercept_##_i, .check_perm = (_p) }
3948 #define GP(_f, _g) { .flags = ((_f) | Prefix), .u.gprefix = (_g) }
3949 
3950 #define D2bv(_f)      D((_f) | ByteOp), D(_f)
3951 #define D2bvIP(_f, _i, _p) DIP((_f) | ByteOp, _i, _p), DIP(_f, _i, _p)
3952 #define I2bv(_f, _e)  I((_f) | ByteOp, _e), I(_f, _e)
3953 #define F2bv(_f, _e)  F((_f) | ByteOp, _e), F(_f, _e)
3954 #define I2bvIP(_f, _e, _i, _p) \
3955 	IIP((_f) | ByteOp, _e, _i, _p), IIP(_f, _e, _i, _p)
3956 
3957 #define I6ALU(_f, _e) I2bv((_f) | DstMem | SrcReg | ModRM, _e),		\
3958 		I2bv(((_f) | DstReg | SrcMem | ModRM) & ~Lock, _e),	\
3959 		I2bv(((_f) & ~Lock) | DstAcc | SrcImm, _e)
3960 
3961 static const struct opcode group7_rm0[] = {
3962 	N,
3963 	I(SrcNone | Priv | EmulateOnUD,	em_hypercall),
3964 	N, N, N, N, N, N,
3965 };
3966 
3967 static const struct opcode group7_rm1[] = {
3968 	DI(SrcNone | Priv, monitor),
3969 	DI(SrcNone | Priv, mwait),
3970 	N, N, N, N, N, N,
3971 };
3972 
3973 static const struct opcode group7_rm2[] = {
3974 	N,
3975 	II(ImplicitOps | Priv,			em_xsetbv,	xsetbv),
3976 	N, N, N, N, N, N,
3977 };
3978 
3979 static const struct opcode group7_rm3[] = {
3980 	DIP(SrcNone | Prot | Priv,		vmrun,		check_svme_pa),
3981 	II(SrcNone  | Prot | EmulateOnUD,	em_hypercall,	vmmcall),
3982 	DIP(SrcNone | Prot | Priv,		vmload,		check_svme_pa),
3983 	DIP(SrcNone | Prot | Priv,		vmsave,		check_svme_pa),
3984 	DIP(SrcNone | Prot | Priv,		stgi,		check_svme),
3985 	DIP(SrcNone | Prot | Priv,		clgi,		check_svme),
3986 	DIP(SrcNone | Prot | Priv,		skinit,		check_svme),
3987 	DIP(SrcNone | Prot | Priv,		invlpga,	check_svme),
3988 };
3989 
3990 static const struct opcode group7_rm7[] = {
3991 	N,
3992 	DIP(SrcNone, rdtscp, check_rdtsc),
3993 	N, N, N, N, N, N,
3994 };
3995 
3996 static const struct opcode group1[] = {
3997 	I(Lock, em_add),
3998 	I(Lock | PageTable, em_or),
3999 	I(Lock, em_adc),
4000 	I(Lock, em_sbb),
4001 	I(Lock | PageTable, em_and),
4002 	I(Lock, em_sub),
4003 	I(Lock, em_xor),
4004 	I(NoWrite, em_cmp),
4005 };
4006 
4007 static const struct opcode group1A[] = {
4008 	I(DstMem | SrcNone | Mov | Stack | IncSP | TwoMemOp, em_pop), N, N, N, N, N, N, N,
4009 };
4010 
4011 static const struct opcode group2[] = {
4012 	I(DstMem | ModRM, em_rol),
4013 	I(DstMem | ModRM, em_ror),
4014 	I(DstMem | ModRM, em_rcl),
4015 	I(DstMem | ModRM, em_rcr),
4016 	I(DstMem | ModRM, em_shl),
4017 	I(DstMem | ModRM, em_shr),
4018 	I(DstMem | ModRM, em_shl),
4019 	I(DstMem | ModRM, em_sar),
4020 };
4021 
4022 static const struct opcode group3[] = {
4023 	I(DstMem | SrcImm | NoWrite, em_test),
4024 	I(DstMem | SrcImm | NoWrite, em_test),
4025 	I(DstMem | SrcNone | Lock, em_not),
4026 	I(DstMem | SrcNone | Lock, em_neg),
4027 	I(DstXacc | Src2Mem, em_mul_ex),
4028 	I(DstXacc | Src2Mem, em_imul_ex),
4029 	I(DstXacc | Src2Mem, em_div_ex),
4030 	I(DstXacc | Src2Mem, em_idiv_ex),
4031 };
4032 
4033 static const struct opcode group4[] = {
4034 	I(ByteOp | DstMem | SrcNone | Lock, em_inc),
4035 	I(ByteOp | DstMem | SrcNone | Lock, em_dec),
4036 	N, N, N, N, N, N,
4037 };
4038 
4039 static const struct opcode group5[] = {
4040 	I(DstMem | SrcNone | Lock,		em_inc),
4041 	I(DstMem | SrcNone | Lock,		em_dec),
4042 	I(SrcMem | NearBranch | IsBranch | ShadowStack, em_call_near_abs),
4043 	I(SrcMemFAddr | ImplicitOps | IsBranch | ShadowStack, em_call_far),
4044 	I(SrcMem | NearBranch | IsBranch,       em_jmp_abs),
4045 	I(SrcMemFAddr | ImplicitOps | IsBranch, em_jmp_far),
4046 	I(SrcMem | Stack | TwoMemOp,		em_push), D(Undefined),
4047 };
4048 
4049 static const struct opcode group6[] = {
4050 	II(Prot | DstMem,	   em_sldt, sldt),
4051 	II(Prot | DstMem,	   em_str, str),
4052 	II(Prot | Priv | SrcMem16, em_lldt, lldt),
4053 	II(Prot | Priv | SrcMem16, em_ltr, ltr),
4054 	N, N, N, N,
4055 };
4056 
4057 static const struct group_dual group7 = { {
4058 	II(Mov | DstMem,			em_sgdt, sgdt),
4059 	II(Mov | DstMem,			em_sidt, sidt),
4060 	II(SrcMem | Priv,			em_lgdt, lgdt),
4061 	II(SrcMem | Priv,			em_lidt, lidt),
4062 	II(SrcNone | DstMem | Mov,		em_smsw, smsw), N,
4063 	II(SrcMem16 | Mov | Priv,		em_lmsw, lmsw),
4064 	II(SrcMem | ByteOp | Priv | NoAccess,	em_invlpg, invlpg),
4065 }, {
4066 	EXT(0, group7_rm0),
4067 	EXT(0, group7_rm1),
4068 	EXT(0, group7_rm2),
4069 	EXT(0, group7_rm3),
4070 	II(SrcNone | DstMem | Mov,		em_smsw, smsw), N,
4071 	II(SrcMem16 | Mov | Priv,		em_lmsw, lmsw),
4072 	EXT(0, group7_rm7),
4073 } };
4074 
4075 static const struct opcode group8[] = {
4076 	N, N, N, N,
4077 	I(DstMem | SrcImmByte | NoWrite,		em_bt),
4078 	I(DstMem | SrcImmByte | Lock | PageTable,	em_bts),
4079 	I(DstMem | SrcImmByte | Lock,			em_btr),
4080 	I(DstMem | SrcImmByte | Lock | PageTable,	em_btc),
4081 };
4082 
4083 /*
4084  * The "memory" destination is actually always a register, since we come
4085  * from the register case of group9.
4086  */
4087 static const struct gprefix pfx_0f_c7_7 = {
4088 	N, N, N, II(DstMem | ModRM | Op3264 | EmulateOnUD, em_rdpid, rdpid),
4089 };
4090 
4091 
4092 static const struct group_dual group9 = { {
4093 	N, I(DstMem64 | Lock | PageTable, em_cmpxchg8b), N, N, N, N, N, N,
4094 }, {
4095 	N, N, N, N, N, N, N,
4096 	GP(0, &pfx_0f_c7_7),
4097 } };
4098 
4099 static const struct opcode group11[] = {
4100 	I(DstMem | SrcImm | Mov | PageTable, em_mov),
4101 	X7(D(Undefined)),
4102 };
4103 
4104 static const struct gprefix pfx_0f_ae_7 = {
4105 	I(SrcMem | ByteOp, em_clflush), I(SrcMem | ByteOp, em_clflushopt), N, N,
4106 };
4107 
4108 static const struct group_dual group15 = { {
4109 	I(ModRM | Aligned16, em_fxsave),
4110 	I(ModRM | Aligned16, em_fxrstor),
4111 	N, N, N, N, N, GP(0, &pfx_0f_ae_7),
4112 }, {
4113 	N, N, N, N, N, N, N, N,
4114 } };
4115 
4116 static const struct gprefix pfx_0f_6f_0f_7f = {
4117 	I(Mmx, em_mov), I(Sse | Aligned, em_mov), N, I(Sse | Unaligned, em_mov),
4118 };
4119 
4120 static const struct instr_dual instr_dual_0f_2b = {
4121 	I(0, em_mov), N
4122 };
4123 
4124 static const struct gprefix pfx_0f_2b = {
4125 	ID(0, &instr_dual_0f_2b), ID(0, &instr_dual_0f_2b), N, N,
4126 };
4127 
4128 static const struct gprefix pfx_0f_10_0f_11 = {
4129 	I(Unaligned, em_mov), I(Unaligned, em_mov), N, N,
4130 };
4131 
4132 static const struct gprefix pfx_0f_28_0f_29 = {
4133 	I(Aligned, em_mov), I(Aligned, em_mov), N, N,
4134 };
4135 
4136 static const struct gprefix pfx_0f_e7 = {
4137 	N, I(Sse, em_mov), N, N,
4138 };
4139 
4140 static const struct escape escape_d9 = { {
4141 	N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstcw),
4142 }, {
4143 	/* 0xC0 - 0xC7 */
4144 	N, N, N, N, N, N, N, N,
4145 	/* 0xC8 - 0xCF */
4146 	N, N, N, N, N, N, N, N,
4147 	/* 0xD0 - 0xC7 */
4148 	N, N, N, N, N, N, N, N,
4149 	/* 0xD8 - 0xDF */
4150 	N, N, N, N, N, N, N, N,
4151 	/* 0xE0 - 0xE7 */
4152 	N, N, N, N, N, N, N, N,
4153 	/* 0xE8 - 0xEF */
4154 	N, N, N, N, N, N, N, N,
4155 	/* 0xF0 - 0xF7 */
4156 	N, N, N, N, N, N, N, N,
4157 	/* 0xF8 - 0xFF */
4158 	N, N, N, N, N, N, N, N,
4159 } };
4160 
4161 static const struct escape escape_db = { {
4162 	N, N, N, N, N, N, N, N,
4163 }, {
4164 	/* 0xC0 - 0xC7 */
4165 	N, N, N, N, N, N, N, N,
4166 	/* 0xC8 - 0xCF */
4167 	N, N, N, N, N, N, N, N,
4168 	/* 0xD0 - 0xC7 */
4169 	N, N, N, N, N, N, N, N,
4170 	/* 0xD8 - 0xDF */
4171 	N, N, N, N, N, N, N, N,
4172 	/* 0xE0 - 0xE7 */
4173 	N, N, N, I(ImplicitOps, em_fninit), N, N, N, N,
4174 	/* 0xE8 - 0xEF */
4175 	N, N, N, N, N, N, N, N,
4176 	/* 0xF0 - 0xF7 */
4177 	N, N, N, N, N, N, N, N,
4178 	/* 0xF8 - 0xFF */
4179 	N, N, N, N, N, N, N, N,
4180 } };
4181 
4182 static const struct escape escape_dd = { {
4183 	N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstsw),
4184 }, {
4185 	/* 0xC0 - 0xC7 */
4186 	N, N, N, N, N, N, N, N,
4187 	/* 0xC8 - 0xCF */
4188 	N, N, N, N, N, N, N, N,
4189 	/* 0xD0 - 0xC7 */
4190 	N, N, N, N, N, N, N, N,
4191 	/* 0xD8 - 0xDF */
4192 	N, N, N, N, N, N, N, N,
4193 	/* 0xE0 - 0xE7 */
4194 	N, N, N, N, N, N, N, N,
4195 	/* 0xE8 - 0xEF */
4196 	N, N, N, N, N, N, N, N,
4197 	/* 0xF0 - 0xF7 */
4198 	N, N, N, N, N, N, N, N,
4199 	/* 0xF8 - 0xFF */
4200 	N, N, N, N, N, N, N, N,
4201 } };
4202 
4203 static const struct instr_dual instr_dual_0f_c3 = {
4204 	I(DstMem | SrcReg | ModRM | No16 | Mov, em_mov), N
4205 };
4206 
4207 static const struct mode_dual mode_dual_63 = {
4208 	N, I(DstReg | SrcMem32 | ModRM | Mov, em_movsxd)
4209 };
4210 
4211 static const struct instr_dual instr_dual_8d = {
4212 	D(DstReg | SrcMem | ModRM | NoAccess), N
4213 };
4214 
4215 static const struct opcode opcode_table[256] = {
4216 	/* 0x00 - 0x07 */
4217 	I6ALU(Lock, em_add),
4218 	I(ImplicitOps | Stack | No64 | Src2ES, em_push_sreg),
4219 	I(ImplicitOps | Stack | No64 | Src2ES, em_pop_sreg),
4220 	/* 0x08 - 0x0F */
4221 	I6ALU(Lock | PageTable, em_or),
4222 	I(ImplicitOps | Stack | No64 | Src2CS, em_push_sreg),
4223 	N,
4224 	/* 0x10 - 0x17 */
4225 	I6ALU(Lock, em_adc),
4226 	I(ImplicitOps | Stack | No64 | Src2SS, em_push_sreg),
4227 	I(ImplicitOps | Stack | No64 | Src2SS, em_pop_sreg),
4228 	/* 0x18 - 0x1F */
4229 	I6ALU(Lock, em_sbb),
4230 	I(ImplicitOps | Stack | No64 | Src2DS, em_push_sreg),
4231 	I(ImplicitOps | Stack | No64 | Src2DS, em_pop_sreg),
4232 	/* 0x20 - 0x27 */
4233 	I6ALU(Lock | PageTable, em_and), N, N,
4234 	/* 0x28 - 0x2F */
4235 	I6ALU(Lock, em_sub), N, I(ByteOp | DstAcc | No64, em_das),
4236 	/* 0x30 - 0x37 */
4237 	I6ALU(Lock, em_xor), N, N,
4238 	/* 0x38 - 0x3F */
4239 	I6ALU(NoWrite, em_cmp), N, N,
4240 	/* 0x40 - 0x4F */
4241 	X8(I(DstReg, em_inc)), X8(I(DstReg, em_dec)),
4242 	/* 0x50 - 0x57 */
4243 	X8(I(SrcReg | Stack, em_push)),
4244 	/* 0x58 - 0x5F */
4245 	X8(I(DstReg | Stack, em_pop)),
4246 	/* 0x60 - 0x67 */
4247 	I(ImplicitOps | Stack | No64, em_pusha),
4248 	I(ImplicitOps | Stack | No64, em_popa),
4249 	N, MD(ModRM, &mode_dual_63),
4250 	N, N, N, N,
4251 	/* 0x68 - 0x6F */
4252 	I(SrcImm | Mov | Stack, em_push),
4253 	I(DstReg | SrcMem | ModRM | Src2Imm, em_imul_3op),
4254 	I(SrcImmByte | Mov | Stack, em_push),
4255 	I(DstReg | SrcMem | ModRM | Src2ImmByte, em_imul_3op),
4256 	I2bvIP(DstDI | SrcDX | Mov | String | Unaligned, em_in, ins, check_perm_in), /* insb, insw/insd */
4257 	I2bvIP(SrcSI | DstDX | String, em_out, outs, check_perm_out), /* outsb, outsw/outsd */
4258 	/* 0x70 - 0x7F */
4259 	X16(D(SrcImmByte | NearBranch | IsBranch)),
4260 	/* 0x80 - 0x87 */
4261 	G(ByteOp | DstMem | SrcImm, group1),
4262 	G(DstMem | SrcImm, group1),
4263 	G(ByteOp | DstMem | SrcImm | No64, group1),
4264 	G(DstMem | SrcImmByte, group1),
4265 	I2bv(DstMem | SrcReg | ModRM | NoWrite, em_test),
4266 	I2bv(DstMem | SrcReg | ModRM | Lock | PageTable, em_xchg),
4267 	/* 0x88 - 0x8F */
4268 	I2bv(DstMem | SrcReg | ModRM | Mov | PageTable, em_mov),
4269 	I2bv(DstReg | SrcMem | ModRM | Mov, em_mov),
4270 	I(DstMem | SrcNone | ModRM | Mov | PageTable, em_mov_rm_sreg),
4271 	ID(0, &instr_dual_8d),
4272 	I(ImplicitOps | SrcMem16 | ModRM, em_mov_sreg_rm),
4273 	G(0, group1A),
4274 	/* 0x90 - 0x97 */
4275 	DI(SrcAcc | DstReg, pause), X7(D(SrcAcc | DstReg)),
4276 	/* 0x98 - 0x9F */
4277 	D(DstAcc | SrcNone), I(ImplicitOps | SrcAcc, em_cwd),
4278 	I(SrcImmFAddr | No64 | IsBranch | ShadowStack, em_call_far), N,
4279 	II(ImplicitOps | Stack, em_pushf, pushf),
4280 	II(ImplicitOps | Stack, em_popf, popf),
4281 	I(ImplicitOps, em_sahf), I(ImplicitOps, em_lahf),
4282 	/* 0xA0 - 0xA7 */
4283 	I2bv(DstAcc | SrcMem | Mov | MemAbs, em_mov),
4284 	I2bv(DstMem | SrcAcc | Mov | MemAbs | PageTable, em_mov),
4285 	I2bv(SrcSI | DstDI | Mov | String | TwoMemOp, em_mov),
4286 	I2bv(SrcSI | DstDI | String | NoWrite | TwoMemOp, em_cmp_r),
4287 	/* 0xA8 - 0xAF */
4288 	I2bv(DstAcc | SrcImm | NoWrite, em_test),
4289 	I2bv(SrcAcc | DstDI | Mov | String, em_mov),
4290 	I2bv(SrcSI | DstAcc | Mov | String, em_mov),
4291 	I2bv(SrcAcc | DstDI | String | NoWrite, em_cmp_r),
4292 	/* 0xB0 - 0xB7 */
4293 	X8(I(ByteOp | DstReg | SrcImm | Mov, em_mov)),
4294 	/* 0xB8 - 0xBF */
4295 	X8(I(DstReg | SrcImm64 | Mov, em_mov)),
4296 	/* 0xC0 - 0xC7 */
4297 	G(ByteOp | Src2ImmByte, group2), G(Src2ImmByte, group2),
4298 	I(ImplicitOps | NearBranch | SrcImmU16 | IsBranch | ShadowStack, em_ret_near_imm),
4299 	I(ImplicitOps | NearBranch | IsBranch | ShadowStack, em_ret),
4300 	I(DstReg | SrcMemFAddr | ModRM | No64 | Src2ES, em_lseg),
4301 	I(DstReg | SrcMemFAddr | ModRM | No64 | Src2DS, em_lseg),
4302 	G(ByteOp, group11), G(0, group11),
4303 	/* 0xC8 - 0xCF */
4304 	I(Stack | SrcImmU16 | Src2ImmByte, em_enter),
4305 	I(Stack, em_leave),
4306 	I(ImplicitOps | SrcImmU16 | IsBranch | ShadowStack, em_ret_far_imm),
4307 	I(ImplicitOps | IsBranch | ShadowStack, em_ret_far),
4308 	D(ImplicitOps | IsBranch), DI(SrcImmByte | IsBranch | ShadowStack, intn),
4309 	D(ImplicitOps | No64 | IsBranch),
4310 	II(ImplicitOps | IsBranch | ShadowStack, em_iret, iret),
4311 	/* 0xD0 - 0xD7 */
4312 	G(Src2One | ByteOp, group2), G(Src2One, group2),
4313 	G(Src2CL | ByteOp, group2), G(Src2CL, group2),
4314 	I(DstAcc | SrcImmUByte | No64, em_aam),
4315 	I(DstAcc | SrcImmUByte | No64, em_aad),
4316 	I(DstAcc | ByteOp | No64, em_salc),
4317 	I(DstAcc | SrcXLat | ByteOp, em_mov),
4318 	/* 0xD8 - 0xDF */
4319 	N, E(0, &escape_d9), N, E(0, &escape_db), N, E(0, &escape_dd), N, N,
4320 	/* 0xE0 - 0xE7 */
4321 	X3(I(SrcImmByte | NearBranch | IsBranch, em_loop)),
4322 	I(SrcImmByte | NearBranch | IsBranch, em_jcxz),
4323 	I2bvIP(SrcImmUByte | DstAcc, em_in,  in,  check_perm_in),
4324 	I2bvIP(SrcAcc | DstImmUByte, em_out, out, check_perm_out),
4325 	/* 0xE8 - 0xEF */
4326 	I(SrcImm | NearBranch | IsBranch | ShadowStack, em_call),
4327 	D(SrcImm | ImplicitOps | NearBranch | IsBranch),
4328 	I(SrcImmFAddr | No64 | IsBranch, em_jmp_far),
4329 	D(SrcImmByte | ImplicitOps | NearBranch | IsBranch),
4330 	I2bvIP(SrcDX | DstAcc, em_in,  in,  check_perm_in),
4331 	I2bvIP(SrcAcc | DstDX, em_out, out, check_perm_out),
4332 	/* 0xF0 - 0xF7 */
4333 	N, DI(ImplicitOps, icebp), N, N,
4334 	DI(ImplicitOps | Priv, hlt), D(ImplicitOps),
4335 	G(ByteOp, group3), G(0, group3),
4336 	/* 0xF8 - 0xFF */
4337 	D(ImplicitOps), D(ImplicitOps),
4338 	I(ImplicitOps, em_cli), I(ImplicitOps, em_sti),
4339 	D(ImplicitOps), D(ImplicitOps), G(0, group4), G(0, group5),
4340 };
4341 
4342 static const struct opcode twobyte_table[256] = {
4343 	/* 0x00 - 0x0F */
4344 	G(0, group6), GD(0, &group7), N, N,
4345 	N, I(ImplicitOps | EmulateOnUD | IsBranch | ShadowStack, em_syscall),
4346 	II(ImplicitOps | Priv, em_clts, clts), N,
4347 	DI(ImplicitOps | Priv, invd), DI(ImplicitOps | Priv, wbinvd), N, N,
4348 	N, D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N,
4349 	/* 0x10 - 0x1F */
4350 	GP(ModRM | DstReg | SrcMem | Mov | Sse, &pfx_0f_10_0f_11),
4351 	GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_10_0f_11),
4352 	N, N, N, N, N, N,
4353 	D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 4 * prefetch + 4 * reserved NOP */
4354 	D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N,
4355 	D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */
4356 	D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */
4357 	D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */
4358 	D(ImplicitOps | ModRM | SrcMem | NoAccess), /* NOP + 7 * reserved NOP */
4359 	/* 0x20 - 0x2F */
4360 	DIP(ModRM | DstMem | Priv | Op3264 | NoMod, cr_read, check_cr_access),
4361 	DIP(ModRM | DstMem | Priv | Op3264 | NoMod, dr_read, check_dr_read),
4362 	IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_cr_write, cr_write,
4363 						check_cr_access),
4364 	IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_dr_write, dr_write,
4365 						check_dr_write),
4366 	N, N, N, N,
4367 	GP(ModRM | DstReg | SrcMem | Mov | Sse, &pfx_0f_28_0f_29),
4368 	GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_28_0f_29),
4369 	N, GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_2b),
4370 	N, N, N, N,
4371 	/* 0x30 - 0x3F */
4372 	II(ImplicitOps | Priv, em_wrmsr, wrmsr),
4373 	IIP(ImplicitOps, em_rdtsc, rdtsc, check_rdtsc),
4374 	II(ImplicitOps | Priv, em_rdmsr, rdmsr),
4375 	IIP(ImplicitOps, em_rdpmc, rdpmc, check_rdpmc),
4376 	I(ImplicitOps | EmulateOnUD | IsBranch | ShadowStack, em_sysenter),
4377 	I(ImplicitOps | Priv | EmulateOnUD | IsBranch | ShadowStack, em_sysexit),
4378 	N, N,
4379 	N, N, N, N, N, N, N, N,
4380 	/* 0x40 - 0x4F */
4381 	X16(D(DstReg | SrcMem | ModRM)),
4382 	/* 0x50 - 0x5F */
4383 	N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
4384 	/* 0x60 - 0x6F */
4385 	N, N, N, N,
4386 	N, N, N, N,
4387 	N, N, N, N,
4388 	N, N, N, GP(SrcMem | DstReg | ModRM | Mov, &pfx_0f_6f_0f_7f),
4389 	/* 0x70 - 0x7F */
4390 	N, N, N, N,
4391 	N, N, N, N,
4392 	N, N, N, N,
4393 	N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_6f_0f_7f),
4394 	/* 0x80 - 0x8F */
4395 	X16(D(SrcImm | NearBranch | IsBranch)),
4396 	/* 0x90 - 0x9F */
4397 	X16(D(ByteOp | DstMem | SrcNone | ModRM| Mov)),
4398 	/* 0xA0 - 0xA7 */
4399 	I(Stack | Src2FS, em_push_sreg), I(Stack | Src2FS, em_pop_sreg),
4400 	II(ImplicitOps, em_cpuid, cpuid),
4401 	I(DstMem | SrcReg | ModRM | BitOp | NoWrite, em_bt),
4402 	I(DstMem | SrcReg | Src2ImmByte | ModRM, em_shld),
4403 	I(DstMem | SrcReg | Src2CL | ModRM, em_shld), N, N,
4404 	/* 0xA8 - 0xAF */
4405 	I(Stack | Src2GS, em_push_sreg), I(Stack | Src2GS, em_pop_sreg),
4406 	II(EmulateOnUD | ImplicitOps, em_rsm, rsm),
4407 	I(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_bts),
4408 	I(DstMem | SrcReg | Src2ImmByte | ModRM, em_shrd),
4409 	I(DstMem | SrcReg | Src2CL | ModRM, em_shrd),
4410 	GD(0, &group15), I(DstReg | SrcMem | ModRM, em_imul),
4411 	/* 0xB0 - 0xB7 */
4412 	I2bv(DstMem | SrcReg | ModRM | Lock | PageTable | SrcWrite, em_cmpxchg),
4413 	I(DstReg | SrcMemFAddr | ModRM | Src2SS, em_lseg),
4414 	I(DstMem | SrcReg | ModRM | BitOp | Lock, em_btr),
4415 	I(DstReg | SrcMemFAddr | ModRM | Src2FS, em_lseg),
4416 	I(DstReg | SrcMemFAddr | ModRM | Src2GS, em_lseg),
4417 	D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
4418 	/* 0xB8 - 0xBF */
4419 	N, N,
4420 	G(BitOp, group8),
4421 	I(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_btc),
4422 	I(DstReg | SrcMem | ModRM, em_bsf_c),
4423 	I(DstReg | SrcMem | ModRM, em_bsr_c),
4424 	D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
4425 	/* 0xC0 - 0xC7 */
4426 	I2bv(DstMem | SrcReg | ModRM | SrcWrite | Lock, em_xadd),
4427 	N, ID(0, &instr_dual_0f_c3),
4428 	N, N, N, GD(0, &group9),
4429 	/* 0xC8 - 0xCF */
4430 	X8(I(DstReg, em_bswap)),
4431 	/* 0xD0 - 0xDF */
4432 	N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
4433 	/* 0xE0 - 0xEF */
4434 	N, N, N, N, N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_e7),
4435 	N, N, N, N, N, N, N, N,
4436 	/* 0xF0 - 0xFF */
4437 	N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N
4438 };
4439 
4440 static const struct instr_dual instr_dual_0f_38_f0 = {
4441 	I(DstReg | SrcMem | Mov, em_movbe), N
4442 };
4443 
4444 static const struct instr_dual instr_dual_0f_38_f1 = {
4445 	I(DstMem | SrcReg | Mov, em_movbe), N
4446 };
4447 
4448 static const struct gprefix three_byte_0f_38_f0 = {
4449 	ID(0, &instr_dual_0f_38_f0), ID(0, &instr_dual_0f_38_f0), N, N
4450 };
4451 
4452 static const struct gprefix three_byte_0f_38_f1 = {
4453 	ID(0, &instr_dual_0f_38_f1), ID(0, &instr_dual_0f_38_f1), N, N
4454 };
4455 
4456 /*
4457  * Insns below are selected by the prefix which indexed by the third opcode
4458  * byte.
4459  */
4460 static const struct opcode opcode_map_0f_38[256] = {
4461 	/* 0x00 - 0x7f */
4462 	X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N),
4463 	/* 0x80 - 0xef */
4464 	X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N),
4465 	/* 0xf0 - 0xf1 */
4466 	GP(EmulateOnUD | ModRM, &three_byte_0f_38_f0),
4467 	GP(EmulateOnUD | ModRM, &three_byte_0f_38_f1),
4468 	/* 0xf2 - 0xff */
4469 	N, N, X4(N), X8(N)
4470 };
4471 
4472 #undef D
4473 #undef N
4474 #undef G
4475 #undef GD
4476 #undef I
4477 #undef GP
4478 #undef EXT
4479 #undef MD
4480 #undef ID
4481 
4482 #undef D2bv
4483 #undef D2bvIP
4484 #undef I2bv
4485 #undef I2bvIP
4486 #undef I6ALU
4487 
is_shstk_instruction(struct x86_emulate_ctxt * ctxt)4488 static bool is_shstk_instruction(struct x86_emulate_ctxt *ctxt)
4489 {
4490 	return ctxt->d & ShadowStack;
4491 }
4492 
is_ibt_instruction(struct x86_emulate_ctxt * ctxt)4493 static bool is_ibt_instruction(struct x86_emulate_ctxt *ctxt)
4494 {
4495 	u64 flags = ctxt->d;
4496 
4497 	if (!(flags & IsBranch))
4498 		return false;
4499 
4500 	/*
4501 	 * All far JMPs and CALLs (including SYSCALL, SYSENTER, and INTn) are
4502 	 * indirect and thus affect IBT state.  All far RETs (including SYSEXIT
4503 	 * and IRET) are protected via Shadow Stacks and thus don't affect IBT
4504 	 * state.  IRET #GPs when returning to virtual-8086 and IBT or SHSTK is
4505 	 * enabled, but that should be handled by IRET emulation (in the very
4506 	 * unlikely scenario that KVM adds support for fully emulating IRET).
4507 	 */
4508 	if (!(flags & NearBranch))
4509 		return ctxt->execute != em_iret &&
4510 		       ctxt->execute != em_ret_far &&
4511 		       ctxt->execute != em_ret_far_imm &&
4512 		       ctxt->execute != em_sysexit;
4513 
4514 	switch (flags & SrcMask) {
4515 	case SrcReg:
4516 	case SrcMem:
4517 	case SrcMem16:
4518 	case SrcMem32:
4519 		return true;
4520 	case SrcMemFAddr:
4521 	case SrcImmFAddr:
4522 		/* Far branches should be handled above. */
4523 		WARN_ON_ONCE(1);
4524 		return true;
4525 	case SrcNone:
4526 	case SrcImm:
4527 	case SrcImmByte:
4528 	/*
4529 	 * Note, ImmU16 is used only for the stack adjustment operand on ENTER
4530 	 * and RET instructions.  ENTER isn't a branch and RET FAR is handled
4531 	 * by the NearBranch check above.  RET itself isn't an indirect branch.
4532 	 */
4533 	case SrcImmU16:
4534 		return false;
4535 	default:
4536 		WARN_ONCE(1, "Unexpected Src operand '%llx' on branch",
4537 			  flags & SrcMask);
4538 		return false;
4539 	}
4540 }
4541 
imm_size(struct x86_emulate_ctxt * ctxt)4542 static unsigned imm_size(struct x86_emulate_ctxt *ctxt)
4543 {
4544 	unsigned size;
4545 
4546 	size = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4547 	if (size == 8)
4548 		size = 4;
4549 	return size;
4550 }
4551 
decode_imm(struct x86_emulate_ctxt * ctxt,struct operand * op,unsigned size,bool sign_extension)4552 static int decode_imm(struct x86_emulate_ctxt *ctxt, struct operand *op,
4553 		      unsigned size, bool sign_extension)
4554 {
4555 	int rc = X86EMUL_CONTINUE;
4556 
4557 	op->type = OP_IMM;
4558 	op->bytes = size;
4559 	op->addr.mem.ea = ctxt->_eip;
4560 	/* NB. Immediates are sign-extended as necessary. */
4561 	switch (op->bytes) {
4562 	case 1:
4563 		op->val = insn_fetch(s8, ctxt);
4564 		break;
4565 	case 2:
4566 		op->val = insn_fetch(s16, ctxt);
4567 		break;
4568 	case 4:
4569 		op->val = insn_fetch(s32, ctxt);
4570 		break;
4571 	case 8:
4572 		op->val = insn_fetch(s64, ctxt);
4573 		break;
4574 	}
4575 	if (!sign_extension) {
4576 		switch (op->bytes) {
4577 		case 1:
4578 			op->val &= 0xff;
4579 			break;
4580 		case 2:
4581 			op->val &= 0xffff;
4582 			break;
4583 		case 4:
4584 			op->val &= 0xffffffff;
4585 			break;
4586 		}
4587 	}
4588 done:
4589 	return rc;
4590 }
4591 
decode_operand(struct x86_emulate_ctxt * ctxt,struct operand * op,unsigned d)4592 static int decode_operand(struct x86_emulate_ctxt *ctxt, struct operand *op,
4593 			  unsigned d)
4594 {
4595 	int rc = X86EMUL_CONTINUE;
4596 
4597 	switch (d) {
4598 	case OpReg:
4599 		decode_register_operand(ctxt, op);
4600 		break;
4601 	case OpImmUByte:
4602 		rc = decode_imm(ctxt, op, 1, false);
4603 		break;
4604 	case OpMem:
4605 		ctxt->memop.bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4606 	mem_common:
4607 		*op = ctxt->memop;
4608 		ctxt->memopp = op;
4609 		if (ctxt->d & BitOp)
4610 			fetch_bit_operand(ctxt);
4611 		op->orig_val = op->val;
4612 		break;
4613 	case OpMem64:
4614 		ctxt->memop.bytes = (ctxt->op_bytes == 8) ? 16 : 8;
4615 		goto mem_common;
4616 	case OpAcc:
4617 		op->type = OP_REG;
4618 		op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4619 		op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
4620 		fetch_register_operand(op);
4621 		op->orig_val = op->val;
4622 		break;
4623 	case OpAccLo:
4624 		op->type = OP_REG;
4625 		op->bytes = (ctxt->d & ByteOp) ? 2 : ctxt->op_bytes;
4626 		op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
4627 		fetch_register_operand(op);
4628 		op->orig_val = op->val;
4629 		break;
4630 	case OpAccHi:
4631 		if (ctxt->d & ByteOp) {
4632 			op->type = OP_NONE;
4633 			break;
4634 		}
4635 		op->type = OP_REG;
4636 		op->bytes = ctxt->op_bytes;
4637 		op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
4638 		fetch_register_operand(op);
4639 		op->orig_val = op->val;
4640 		break;
4641 	case OpDI:
4642 		op->type = OP_MEM;
4643 		op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4644 		op->addr.mem.ea =
4645 			register_address(ctxt, VCPU_REGS_RDI);
4646 		op->addr.mem.seg = VCPU_SREG_ES;
4647 		op->val = 0;
4648 		op->count = 1;
4649 		break;
4650 	case OpDX:
4651 		op->type = OP_REG;
4652 		op->bytes = 2;
4653 		op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
4654 		fetch_register_operand(op);
4655 		break;
4656 	case OpCL:
4657 		op->type = OP_IMM;
4658 		op->bytes = 1;
4659 		op->val = reg_read(ctxt, VCPU_REGS_RCX) & 0xff;
4660 		break;
4661 	case OpImmByte:
4662 		rc = decode_imm(ctxt, op, 1, true);
4663 		break;
4664 	case OpOne:
4665 		op->type = OP_IMM;
4666 		op->bytes = 1;
4667 		op->val = 1;
4668 		break;
4669 	case OpImm:
4670 		rc = decode_imm(ctxt, op, imm_size(ctxt), true);
4671 		break;
4672 	case OpImm64:
4673 		rc = decode_imm(ctxt, op, ctxt->op_bytes, true);
4674 		break;
4675 	case OpMem8:
4676 		ctxt->memop.bytes = 1;
4677 		if (ctxt->memop.type == OP_REG) {
4678 			ctxt->memop.addr.reg = decode_register(ctxt,
4679 					ctxt->modrm_rm, true);
4680 			fetch_register_operand(&ctxt->memop);
4681 		}
4682 		goto mem_common;
4683 	case OpMem16:
4684 		ctxt->memop.bytes = 2;
4685 		goto mem_common;
4686 	case OpMem32:
4687 		ctxt->memop.bytes = 4;
4688 		goto mem_common;
4689 	case OpImmU16:
4690 		rc = decode_imm(ctxt, op, 2, false);
4691 		break;
4692 	case OpImmU:
4693 		rc = decode_imm(ctxt, op, imm_size(ctxt), false);
4694 		break;
4695 	case OpSI:
4696 		op->type = OP_MEM;
4697 		op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4698 		op->addr.mem.ea =
4699 			register_address(ctxt, VCPU_REGS_RSI);
4700 		op->addr.mem.seg = ctxt->seg_override;
4701 		op->val = 0;
4702 		op->count = 1;
4703 		break;
4704 	case OpXLat:
4705 		op->type = OP_MEM;
4706 		op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4707 		op->addr.mem.ea =
4708 			address_mask(ctxt,
4709 				reg_read(ctxt, VCPU_REGS_RBX) +
4710 				(reg_read(ctxt, VCPU_REGS_RAX) & 0xff));
4711 		op->addr.mem.seg = ctxt->seg_override;
4712 		op->val = 0;
4713 		break;
4714 	case OpImmFAddr:
4715 		op->type = OP_IMM;
4716 		op->addr.mem.ea = ctxt->_eip;
4717 		op->bytes = ctxt->op_bytes + 2;
4718 		insn_fetch_arr(op->valptr, op->bytes, ctxt);
4719 		break;
4720 	case OpMemFAddr:
4721 		ctxt->memop.bytes = ctxt->op_bytes + 2;
4722 		goto mem_common;
4723 	case OpES:
4724 		op->type = OP_IMM;
4725 		op->val = VCPU_SREG_ES;
4726 		break;
4727 	case OpCS:
4728 		op->type = OP_IMM;
4729 		op->val = VCPU_SREG_CS;
4730 		break;
4731 	case OpSS:
4732 		op->type = OP_IMM;
4733 		op->val = VCPU_SREG_SS;
4734 		break;
4735 	case OpDS:
4736 		op->type = OP_IMM;
4737 		op->val = VCPU_SREG_DS;
4738 		break;
4739 	case OpFS:
4740 		op->type = OP_IMM;
4741 		op->val = VCPU_SREG_FS;
4742 		break;
4743 	case OpGS:
4744 		op->type = OP_IMM;
4745 		op->val = VCPU_SREG_GS;
4746 		break;
4747 	case OpImplicit:
4748 		/* Special instructions do their own operand decoding. */
4749 	default:
4750 		op->type = OP_NONE; /* Disable writeback. */
4751 		break;
4752 	}
4753 
4754 done:
4755 	return rc;
4756 }
4757 
x86_decode_insn(struct x86_emulate_ctxt * ctxt,void * insn,int insn_len,int emulation_type)4758 int x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len, int emulation_type)
4759 {
4760 	int rc = X86EMUL_CONTINUE;
4761 	int mode = ctxt->mode;
4762 	int def_op_bytes, def_ad_bytes, goffset, simd_prefix;
4763 	bool op_prefix = false;
4764 	bool has_seg_override = false;
4765 	struct opcode opcode;
4766 	u16 dummy;
4767 	struct desc_struct desc;
4768 
4769 	ctxt->memop.type = OP_NONE;
4770 	ctxt->memopp = NULL;
4771 	ctxt->_eip = ctxt->eip;
4772 	ctxt->fetch.ptr = ctxt->fetch.data;
4773 	ctxt->fetch.end = ctxt->fetch.data + insn_len;
4774 	ctxt->opcode_len = 1;
4775 	ctxt->intercept = x86_intercept_none;
4776 	if (insn_len > 0)
4777 		memcpy(ctxt->fetch.data, insn, insn_len);
4778 	else {
4779 		rc = __do_insn_fetch_bytes(ctxt, 1);
4780 		if (rc != X86EMUL_CONTINUE)
4781 			goto done;
4782 	}
4783 
4784 	switch (mode) {
4785 	case X86EMUL_MODE_REAL:
4786 	case X86EMUL_MODE_VM86:
4787 		def_op_bytes = def_ad_bytes = 2;
4788 		ctxt->ops->get_segment(ctxt, &dummy, &desc, NULL, VCPU_SREG_CS);
4789 		if (desc.d)
4790 			def_op_bytes = def_ad_bytes = 4;
4791 		break;
4792 	case X86EMUL_MODE_PROT16:
4793 		def_op_bytes = def_ad_bytes = 2;
4794 		break;
4795 	case X86EMUL_MODE_PROT32:
4796 		def_op_bytes = def_ad_bytes = 4;
4797 		break;
4798 #ifdef CONFIG_X86_64
4799 	case X86EMUL_MODE_PROT64:
4800 		def_op_bytes = 4;
4801 		def_ad_bytes = 8;
4802 		break;
4803 #endif
4804 	default:
4805 		return EMULATION_FAILED;
4806 	}
4807 
4808 	ctxt->op_bytes = def_op_bytes;
4809 	ctxt->ad_bytes = def_ad_bytes;
4810 
4811 	/* Legacy prefixes. */
4812 	for (;;) {
4813 		switch (ctxt->b = insn_fetch(u8, ctxt)) {
4814 		case 0x66:	/* operand-size override */
4815 			op_prefix = true;
4816 			/* switch between 2/4 bytes */
4817 			ctxt->op_bytes = def_op_bytes ^ 6;
4818 			break;
4819 		case 0x67:	/* address-size override */
4820 			if (mode == X86EMUL_MODE_PROT64)
4821 				/* switch between 4/8 bytes */
4822 				ctxt->ad_bytes = def_ad_bytes ^ 12;
4823 			else
4824 				/* switch between 2/4 bytes */
4825 				ctxt->ad_bytes = def_ad_bytes ^ 6;
4826 			break;
4827 		case 0x26:	/* ES override */
4828 			has_seg_override = true;
4829 			ctxt->seg_override = VCPU_SREG_ES;
4830 			break;
4831 		case 0x2e:	/* CS override */
4832 			has_seg_override = true;
4833 			ctxt->seg_override = VCPU_SREG_CS;
4834 			break;
4835 		case 0x36:	/* SS override */
4836 			has_seg_override = true;
4837 			ctxt->seg_override = VCPU_SREG_SS;
4838 			break;
4839 		case 0x3e:	/* DS override */
4840 			has_seg_override = true;
4841 			ctxt->seg_override = VCPU_SREG_DS;
4842 			break;
4843 		case 0x64:	/* FS override */
4844 			has_seg_override = true;
4845 			ctxt->seg_override = VCPU_SREG_FS;
4846 			break;
4847 		case 0x65:	/* GS override */
4848 			has_seg_override = true;
4849 			ctxt->seg_override = VCPU_SREG_GS;
4850 			break;
4851 		case 0x40 ... 0x4f: /* REX */
4852 			if (mode != X86EMUL_MODE_PROT64)
4853 				goto done_prefixes;
4854 			ctxt->rex_prefix = ctxt->b;
4855 			continue;
4856 		case 0xf0:	/* LOCK */
4857 			ctxt->lock_prefix = 1;
4858 			break;
4859 		case 0xf2:	/* REPNE/REPNZ */
4860 		case 0xf3:	/* REP/REPE/REPZ */
4861 			ctxt->rep_prefix = ctxt->b;
4862 			break;
4863 		default:
4864 			goto done_prefixes;
4865 		}
4866 
4867 		/* Any legacy prefix after a REX prefix nullifies its effect. */
4868 
4869 		ctxt->rex_prefix = 0;
4870 	}
4871 
4872 done_prefixes:
4873 
4874 	/* REX prefix. */
4875 	if (ctxt->rex_prefix & 8)
4876 		ctxt->op_bytes = 8;	/* REX.W */
4877 
4878 	/* Opcode byte(s). */
4879 	opcode = opcode_table[ctxt->b];
4880 	/* Two-byte opcode? */
4881 	if (ctxt->b == 0x0f) {
4882 		ctxt->opcode_len = 2;
4883 		ctxt->b = insn_fetch(u8, ctxt);
4884 		opcode = twobyte_table[ctxt->b];
4885 
4886 		/* 0F_38 opcode map */
4887 		if (ctxt->b == 0x38) {
4888 			ctxt->opcode_len = 3;
4889 			ctxt->b = insn_fetch(u8, ctxt);
4890 			opcode = opcode_map_0f_38[ctxt->b];
4891 		}
4892 	}
4893 	ctxt->d = opcode.flags;
4894 
4895 	if (ctxt->d & ModRM)
4896 		ctxt->modrm = insn_fetch(u8, ctxt);
4897 
4898 	/* vex-prefix instructions are not implemented */
4899 	if (ctxt->opcode_len == 1 && (ctxt->b == 0xc5 || ctxt->b == 0xc4) &&
4900 	    (mode == X86EMUL_MODE_PROT64 || (ctxt->modrm & 0xc0) == 0xc0)) {
4901 		ctxt->d = NotImpl;
4902 	}
4903 
4904 	while (ctxt->d & GroupMask) {
4905 		switch (ctxt->d & GroupMask) {
4906 		case Group:
4907 			goffset = (ctxt->modrm >> 3) & 7;
4908 			opcode = opcode.u.group[goffset];
4909 			break;
4910 		case GroupDual:
4911 			goffset = (ctxt->modrm >> 3) & 7;
4912 			if ((ctxt->modrm >> 6) == 3)
4913 				opcode = opcode.u.gdual->mod3[goffset];
4914 			else
4915 				opcode = opcode.u.gdual->mod012[goffset];
4916 			break;
4917 		case RMExt:
4918 			goffset = ctxt->modrm & 7;
4919 			opcode = opcode.u.group[goffset];
4920 			break;
4921 		case Prefix:
4922 			if (ctxt->rep_prefix && op_prefix)
4923 				return EMULATION_FAILED;
4924 			simd_prefix = op_prefix ? 0x66 : ctxt->rep_prefix;
4925 			switch (simd_prefix) {
4926 			case 0x00: opcode = opcode.u.gprefix->pfx_no; break;
4927 			case 0x66: opcode = opcode.u.gprefix->pfx_66; break;
4928 			case 0xf2: opcode = opcode.u.gprefix->pfx_f2; break;
4929 			case 0xf3: opcode = opcode.u.gprefix->pfx_f3; break;
4930 			}
4931 			break;
4932 		case Escape:
4933 			if (ctxt->modrm > 0xbf) {
4934 				size_t size = ARRAY_SIZE(opcode.u.esc->high);
4935 				u32 index = array_index_nospec(
4936 					ctxt->modrm - 0xc0, size);
4937 
4938 				opcode = opcode.u.esc->high[index];
4939 			} else {
4940 				opcode = opcode.u.esc->op[(ctxt->modrm >> 3) & 7];
4941 			}
4942 			break;
4943 		case InstrDual:
4944 			if ((ctxt->modrm >> 6) == 3)
4945 				opcode = opcode.u.idual->mod3;
4946 			else
4947 				opcode = opcode.u.idual->mod012;
4948 			break;
4949 		case ModeDual:
4950 			if (ctxt->mode == X86EMUL_MODE_PROT64)
4951 				opcode = opcode.u.mdual->mode64;
4952 			else
4953 				opcode = opcode.u.mdual->mode32;
4954 			break;
4955 		default:
4956 			return EMULATION_FAILED;
4957 		}
4958 
4959 		ctxt->d &= ~(u64)GroupMask;
4960 		ctxt->d |= opcode.flags;
4961 	}
4962 
4963 	ctxt->is_branch = opcode.flags & IsBranch;
4964 
4965 	/* Unrecognised? */
4966 	if (ctxt->d == 0)
4967 		return EMULATION_FAILED;
4968 
4969 	ctxt->execute = opcode.u.execute;
4970 
4971 	/*
4972 	 * Reject emulation if KVM might need to emulate shadow stack updates
4973 	 * and/or indirect branch tracking enforcement, which the emulator
4974 	 * doesn't support.
4975 	 */
4976 	if ((is_ibt_instruction(ctxt) || is_shstk_instruction(ctxt)) &&
4977 	    ctxt->ops->get_cr(ctxt, 4) & X86_CR4_CET) {
4978 		u64 u_cet = 0, s_cet = 0;
4979 
4980 		/*
4981 		 * Check both User and Supervisor on far transfers as inter-
4982 		 * privilege level transfers are impacted by CET at the target
4983 		 * privilege level, and that is not known at this time.  The
4984 		 * expectation is that the guest will not require emulation of
4985 		 * any CET-affected instructions at any privilege level.
4986 		 */
4987 		if (!(ctxt->d & NearBranch))
4988 			u_cet = s_cet = CET_SHSTK_EN | CET_ENDBR_EN;
4989 		else if (ctxt->ops->cpl(ctxt) == 3)
4990 			u_cet = CET_SHSTK_EN | CET_ENDBR_EN;
4991 		else
4992 			s_cet = CET_SHSTK_EN | CET_ENDBR_EN;
4993 
4994 		if ((u_cet && ctxt->ops->get_msr(ctxt, MSR_IA32_U_CET, &u_cet)) ||
4995 		    (s_cet && ctxt->ops->get_msr(ctxt, MSR_IA32_S_CET, &s_cet)))
4996 			return EMULATION_FAILED;
4997 
4998 		if ((u_cet | s_cet) & CET_SHSTK_EN && is_shstk_instruction(ctxt))
4999 			return EMULATION_FAILED;
5000 
5001 		if ((u_cet | s_cet) & CET_ENDBR_EN && is_ibt_instruction(ctxt))
5002 			return EMULATION_FAILED;
5003 	}
5004 
5005 	if (unlikely(emulation_type & EMULTYPE_TRAP_UD) &&
5006 	    likely(!(ctxt->d & EmulateOnUD)))
5007 		return EMULATION_FAILED;
5008 
5009 	if (unlikely(ctxt->d &
5010 	    (NotImpl|Stack|Op3264|Sse|Mmx|Intercept|CheckPerm|NearBranch|
5011 	     No16))) {
5012 		/*
5013 		 * These are copied unconditionally here, and checked unconditionally
5014 		 * in x86_emulate_insn.
5015 		 */
5016 		ctxt->check_perm = opcode.check_perm;
5017 		ctxt->intercept = opcode.intercept;
5018 
5019 		if (ctxt->d & NotImpl)
5020 			return EMULATION_FAILED;
5021 
5022 		if (mode == X86EMUL_MODE_PROT64) {
5023 			if (ctxt->op_bytes == 4 && (ctxt->d & Stack))
5024 				ctxt->op_bytes = 8;
5025 			else if (ctxt->d & NearBranch)
5026 				ctxt->op_bytes = 8;
5027 		}
5028 
5029 		if (ctxt->d & Op3264) {
5030 			if (mode == X86EMUL_MODE_PROT64)
5031 				ctxt->op_bytes = 8;
5032 			else
5033 				ctxt->op_bytes = 4;
5034 		}
5035 
5036 		if ((ctxt->d & No16) && ctxt->op_bytes == 2)
5037 			ctxt->op_bytes = 4;
5038 
5039 		if (ctxt->d & Sse)
5040 			ctxt->op_bytes = 16;
5041 		else if (ctxt->d & Mmx)
5042 			ctxt->op_bytes = 8;
5043 	}
5044 
5045 	/* ModRM and SIB bytes. */
5046 	if (ctxt->d & ModRM) {
5047 		rc = decode_modrm(ctxt, &ctxt->memop);
5048 		if (!has_seg_override) {
5049 			has_seg_override = true;
5050 			ctxt->seg_override = ctxt->modrm_seg;
5051 		}
5052 	} else if (ctxt->d & MemAbs)
5053 		rc = decode_abs(ctxt, &ctxt->memop);
5054 	if (rc != X86EMUL_CONTINUE)
5055 		goto done;
5056 
5057 	if (!has_seg_override)
5058 		ctxt->seg_override = VCPU_SREG_DS;
5059 
5060 	ctxt->memop.addr.mem.seg = ctxt->seg_override;
5061 
5062 	/*
5063 	 * Decode and fetch the source operand: register, memory
5064 	 * or immediate.
5065 	 */
5066 	rc = decode_operand(ctxt, &ctxt->src, (ctxt->d >> SrcShift) & OpMask);
5067 	if (rc != X86EMUL_CONTINUE)
5068 		goto done;
5069 
5070 	/*
5071 	 * Decode and fetch the second source operand: register, memory
5072 	 * or immediate.
5073 	 */
5074 	rc = decode_operand(ctxt, &ctxt->src2, (ctxt->d >> Src2Shift) & OpMask);
5075 	if (rc != X86EMUL_CONTINUE)
5076 		goto done;
5077 
5078 	/* Decode and fetch the destination operand: register or memory. */
5079 	rc = decode_operand(ctxt, &ctxt->dst, (ctxt->d >> DstShift) & OpMask);
5080 
5081 	if (ctxt->rip_relative && likely(ctxt->memopp))
5082 		ctxt->memopp->addr.mem.ea = address_mask(ctxt,
5083 					ctxt->memopp->addr.mem.ea + ctxt->_eip);
5084 
5085 done:
5086 	if (rc == X86EMUL_PROPAGATE_FAULT)
5087 		ctxt->have_exception = true;
5088 	return (rc != X86EMUL_CONTINUE) ? EMULATION_FAILED : EMULATION_OK;
5089 }
5090 
x86_page_table_writing_insn(struct x86_emulate_ctxt * ctxt)5091 bool x86_page_table_writing_insn(struct x86_emulate_ctxt *ctxt)
5092 {
5093 	return ctxt->d & PageTable;
5094 }
5095 
string_insn_completed(struct x86_emulate_ctxt * ctxt)5096 static bool string_insn_completed(struct x86_emulate_ctxt *ctxt)
5097 {
5098 	/* The second termination condition only applies for REPE
5099 	 * and REPNE. Test if the repeat string operation prefix is
5100 	 * REPE/REPZ or REPNE/REPNZ and if it's the case it tests the
5101 	 * corresponding termination condition according to:
5102 	 * 	- if REPE/REPZ and ZF = 0 then done
5103 	 * 	- if REPNE/REPNZ and ZF = 1 then done
5104 	 */
5105 	if (((ctxt->b == 0xa6) || (ctxt->b == 0xa7) ||
5106 	     (ctxt->b == 0xae) || (ctxt->b == 0xaf))
5107 	    && (((ctxt->rep_prefix == REPE_PREFIX) &&
5108 		 ((ctxt->eflags & X86_EFLAGS_ZF) == 0))
5109 		|| ((ctxt->rep_prefix == REPNE_PREFIX) &&
5110 		    ((ctxt->eflags & X86_EFLAGS_ZF) == X86_EFLAGS_ZF))))
5111 		return true;
5112 
5113 	return false;
5114 }
5115 
flush_pending_x87_faults(struct x86_emulate_ctxt * ctxt)5116 static int flush_pending_x87_faults(struct x86_emulate_ctxt *ctxt)
5117 {
5118 	int rc;
5119 
5120 	kvm_fpu_get();
5121 	rc = asm_safe("fwait");
5122 	kvm_fpu_put();
5123 
5124 	if (unlikely(rc != X86EMUL_CONTINUE))
5125 		return emulate_exception(ctxt, MF_VECTOR, 0, false);
5126 
5127 	return X86EMUL_CONTINUE;
5128 }
5129 
fetch_possible_mmx_operand(struct operand * op)5130 static void fetch_possible_mmx_operand(struct operand *op)
5131 {
5132 	if (op->type == OP_MM)
5133 		kvm_read_mmx_reg(op->addr.mm, &op->mm_val);
5134 }
5135 
init_decode_cache(struct x86_emulate_ctxt * ctxt)5136 void init_decode_cache(struct x86_emulate_ctxt *ctxt)
5137 {
5138 	/* Clear fields that are set conditionally but read without a guard. */
5139 	ctxt->rip_relative = false;
5140 	ctxt->rex_prefix = 0;
5141 	ctxt->lock_prefix = 0;
5142 	ctxt->rep_prefix = 0;
5143 	ctxt->regs_valid = 0;
5144 	ctxt->regs_dirty = 0;
5145 
5146 	ctxt->io_read.pos = 0;
5147 	ctxt->io_read.end = 0;
5148 	ctxt->mem_read.end = 0;
5149 }
5150 
x86_emulate_insn(struct x86_emulate_ctxt * ctxt,bool check_intercepts)5151 int x86_emulate_insn(struct x86_emulate_ctxt *ctxt, bool check_intercepts)
5152 {
5153 	const struct x86_emulate_ops *ops = ctxt->ops;
5154 	int rc = X86EMUL_CONTINUE;
5155 	int saved_dst_type = ctxt->dst.type;
5156 
5157 	ctxt->mem_read.pos = 0;
5158 
5159 	/* LOCK prefix is allowed only with some instructions */
5160 	if (ctxt->lock_prefix && (!(ctxt->d & Lock) || ctxt->dst.type != OP_MEM)) {
5161 		rc = emulate_ud(ctxt);
5162 		goto done;
5163 	}
5164 
5165 	if ((ctxt->d & SrcMask) == SrcMemFAddr && ctxt->src.type != OP_MEM) {
5166 		rc = emulate_ud(ctxt);
5167 		goto done;
5168 	}
5169 
5170 	if (unlikely(ctxt->d &
5171 		     (No64|Undefined|Sse|Mmx|Intercept|CheckPerm|Priv|Prot|String))) {
5172 		if ((ctxt->mode == X86EMUL_MODE_PROT64 && (ctxt->d & No64)) ||
5173 				(ctxt->d & Undefined)) {
5174 			rc = emulate_ud(ctxt);
5175 			goto done;
5176 		}
5177 
5178 		if (((ctxt->d & (Sse|Mmx)) && ((ops->get_cr(ctxt, 0) & X86_CR0_EM)))
5179 		    || ((ctxt->d & Sse) && !(ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR))) {
5180 			rc = emulate_ud(ctxt);
5181 			goto done;
5182 		}
5183 
5184 		if ((ctxt->d & (Sse|Mmx)) && (ops->get_cr(ctxt, 0) & X86_CR0_TS)) {
5185 			rc = emulate_nm(ctxt);
5186 			goto done;
5187 		}
5188 
5189 		if (ctxt->d & Mmx) {
5190 			rc = flush_pending_x87_faults(ctxt);
5191 			if (rc != X86EMUL_CONTINUE)
5192 				goto done;
5193 			/*
5194 			 * Now that we know the fpu is exception safe, we can fetch
5195 			 * operands from it.
5196 			 */
5197 			fetch_possible_mmx_operand(&ctxt->src);
5198 			fetch_possible_mmx_operand(&ctxt->src2);
5199 			if (!(ctxt->d & Mov))
5200 				fetch_possible_mmx_operand(&ctxt->dst);
5201 		}
5202 
5203 		if (unlikely(check_intercepts) && ctxt->intercept) {
5204 			rc = emulator_check_intercept(ctxt, ctxt->intercept,
5205 						      X86_ICPT_PRE_EXCEPT);
5206 			if (rc != X86EMUL_CONTINUE)
5207 				goto done;
5208 		}
5209 
5210 		/* Instruction can only be executed in protected mode */
5211 		if ((ctxt->d & Prot) && ctxt->mode < X86EMUL_MODE_PROT16) {
5212 			rc = emulate_ud(ctxt);
5213 			goto done;
5214 		}
5215 
5216 		/* Privileged instruction can be executed only in CPL=0 */
5217 		if ((ctxt->d & Priv) && ops->cpl(ctxt)) {
5218 			if (ctxt->d & PrivUD)
5219 				rc = emulate_ud(ctxt);
5220 			else
5221 				rc = emulate_gp(ctxt, 0);
5222 			goto done;
5223 		}
5224 
5225 		/* Do instruction specific permission checks */
5226 		if (ctxt->d & CheckPerm) {
5227 			rc = ctxt->check_perm(ctxt);
5228 			if (rc != X86EMUL_CONTINUE)
5229 				goto done;
5230 		}
5231 
5232 		if (unlikely(check_intercepts) && (ctxt->d & Intercept)) {
5233 			rc = emulator_check_intercept(ctxt, ctxt->intercept,
5234 						      X86_ICPT_POST_EXCEPT);
5235 			if (rc != X86EMUL_CONTINUE)
5236 				goto done;
5237 		}
5238 
5239 		if (ctxt->rep_prefix && (ctxt->d & String)) {
5240 			/* All REP prefixes have the same first termination condition */
5241 			if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0) {
5242 				string_registers_quirk(ctxt);
5243 				ctxt->eip = ctxt->_eip;
5244 				ctxt->eflags &= ~X86_EFLAGS_RF;
5245 				goto done;
5246 			}
5247 		}
5248 	}
5249 
5250 	if ((ctxt->src.type == OP_MEM) && !(ctxt->d & NoAccess)) {
5251 		rc = segmented_read(ctxt, ctxt->src.addr.mem,
5252 				    ctxt->src.valptr, ctxt->src.bytes);
5253 		if (rc != X86EMUL_CONTINUE)
5254 			goto done;
5255 		ctxt->src.orig_val64 = ctxt->src.val64;
5256 	}
5257 
5258 	if (ctxt->src2.type == OP_MEM) {
5259 		rc = segmented_read(ctxt, ctxt->src2.addr.mem,
5260 				    &ctxt->src2.val, ctxt->src2.bytes);
5261 		if (rc != X86EMUL_CONTINUE)
5262 			goto done;
5263 	}
5264 
5265 	if ((ctxt->d & DstMask) == ImplicitOps)
5266 		goto special_insn;
5267 
5268 
5269 	if ((ctxt->dst.type == OP_MEM) && !(ctxt->d & Mov)) {
5270 		/* optimisation - avoid slow emulated read if Mov */
5271 		rc = segmented_read(ctxt, ctxt->dst.addr.mem,
5272 				   &ctxt->dst.val, ctxt->dst.bytes);
5273 		if (rc != X86EMUL_CONTINUE) {
5274 			if (!(ctxt->d & NoWrite) &&
5275 			    rc == X86EMUL_PROPAGATE_FAULT &&
5276 			    ctxt->exception.vector == PF_VECTOR)
5277 				ctxt->exception.error_code |= PFERR_WRITE_MASK;
5278 			goto done;
5279 		}
5280 	}
5281 	/* Copy full 64-bit value for CMPXCHG8B.  */
5282 	ctxt->dst.orig_val64 = ctxt->dst.val64;
5283 
5284 special_insn:
5285 
5286 	if (unlikely(check_intercepts) && (ctxt->d & Intercept)) {
5287 		rc = emulator_check_intercept(ctxt, ctxt->intercept,
5288 					      X86_ICPT_POST_MEMACCESS);
5289 		if (rc != X86EMUL_CONTINUE)
5290 			goto done;
5291 	}
5292 
5293 	if (ctxt->rep_prefix && (ctxt->d & String))
5294 		ctxt->eflags |= X86_EFLAGS_RF;
5295 	else
5296 		ctxt->eflags &= ~X86_EFLAGS_RF;
5297 
5298 	if (ctxt->execute) {
5299 		rc = ctxt->execute(ctxt);
5300 		if (rc != X86EMUL_CONTINUE)
5301 			goto done;
5302 		goto writeback;
5303 	}
5304 
5305 	if (ctxt->opcode_len == 2)
5306 		goto twobyte_insn;
5307 	else if (ctxt->opcode_len == 3)
5308 		goto threebyte_insn;
5309 
5310 	switch (ctxt->b) {
5311 	case 0x70 ... 0x7f: /* jcc (short) */
5312 		if (test_cc(ctxt->b, ctxt->eflags))
5313 			rc = jmp_rel(ctxt, ctxt->src.val);
5314 		break;
5315 	case 0x8d: /* lea r16/r32, m */
5316 		ctxt->dst.val = ctxt->src.addr.mem.ea;
5317 		break;
5318 	case 0x90 ... 0x97: /* nop / xchg reg, rax */
5319 		if (ctxt->dst.addr.reg == reg_rmw(ctxt, VCPU_REGS_RAX))
5320 			ctxt->dst.type = OP_NONE;
5321 		else
5322 			rc = em_xchg(ctxt);
5323 		break;
5324 	case 0x98: /* cbw/cwde/cdqe */
5325 		switch (ctxt->op_bytes) {
5326 		case 2: ctxt->dst.val = (s8)ctxt->dst.val; break;
5327 		case 4: ctxt->dst.val = (s16)ctxt->dst.val; break;
5328 		case 8: ctxt->dst.val = (s32)ctxt->dst.val; break;
5329 		}
5330 		break;
5331 	case 0xcc:		/* int3 */
5332 		rc = emulate_int(ctxt, 3);
5333 		break;
5334 	case 0xcd:		/* int n */
5335 		rc = emulate_int(ctxt, ctxt->src.val);
5336 		break;
5337 	case 0xce:		/* into */
5338 		if (ctxt->eflags & X86_EFLAGS_OF)
5339 			rc = emulate_int(ctxt, 4);
5340 		break;
5341 	case 0xe9: /* jmp rel */
5342 	case 0xeb: /* jmp rel short */
5343 		rc = jmp_rel(ctxt, ctxt->src.val);
5344 		ctxt->dst.type = OP_NONE; /* Disable writeback. */
5345 		break;
5346 	case 0xf4:              /* hlt */
5347 		ctxt->ops->halt(ctxt);
5348 		break;
5349 	case 0xf5:	/* cmc */
5350 		/* complement carry flag from eflags reg */
5351 		ctxt->eflags ^= X86_EFLAGS_CF;
5352 		break;
5353 	case 0xf8: /* clc */
5354 		ctxt->eflags &= ~X86_EFLAGS_CF;
5355 		break;
5356 	case 0xf9: /* stc */
5357 		ctxt->eflags |= X86_EFLAGS_CF;
5358 		break;
5359 	case 0xfc: /* cld */
5360 		ctxt->eflags &= ~X86_EFLAGS_DF;
5361 		break;
5362 	case 0xfd: /* std */
5363 		ctxt->eflags |= X86_EFLAGS_DF;
5364 		break;
5365 	default:
5366 		goto cannot_emulate;
5367 	}
5368 
5369 	if (rc != X86EMUL_CONTINUE)
5370 		goto done;
5371 
5372 writeback:
5373 	if (ctxt->d & SrcWrite) {
5374 		BUG_ON(ctxt->src.type == OP_MEM || ctxt->src.type == OP_MEM_STR);
5375 		rc = writeback(ctxt, &ctxt->src);
5376 		if (rc != X86EMUL_CONTINUE)
5377 			goto done;
5378 	}
5379 	if (!(ctxt->d & NoWrite)) {
5380 		rc = writeback(ctxt, &ctxt->dst);
5381 		if (rc != X86EMUL_CONTINUE)
5382 			goto done;
5383 	}
5384 
5385 	/*
5386 	 * restore dst type in case the decoding will be reused
5387 	 * (happens for string instruction )
5388 	 */
5389 	ctxt->dst.type = saved_dst_type;
5390 
5391 	if ((ctxt->d & SrcMask) == SrcSI)
5392 		string_addr_inc(ctxt, VCPU_REGS_RSI, &ctxt->src);
5393 
5394 	if ((ctxt->d & DstMask) == DstDI)
5395 		string_addr_inc(ctxt, VCPU_REGS_RDI, &ctxt->dst);
5396 
5397 	if (ctxt->rep_prefix && (ctxt->d & String)) {
5398 		unsigned int count;
5399 		struct read_cache *r = &ctxt->io_read;
5400 		if ((ctxt->d & SrcMask) == SrcSI)
5401 			count = ctxt->src.count;
5402 		else
5403 			count = ctxt->dst.count;
5404 		register_address_increment(ctxt, VCPU_REGS_RCX, -count);
5405 
5406 		if (!string_insn_completed(ctxt)) {
5407 			/*
5408 			 * Re-enter guest when pio read ahead buffer is empty
5409 			 * or, if it is not used, after each 1024 iteration.
5410 			 */
5411 			if ((r->end != 0 || reg_read(ctxt, VCPU_REGS_RCX) & 0x3ff) &&
5412 			    (r->end == 0 || r->end != r->pos)) {
5413 				/*
5414 				 * Reset read cache. Usually happens before
5415 				 * decode, but since instruction is restarted
5416 				 * we have to do it here.
5417 				 */
5418 				ctxt->mem_read.end = 0;
5419 				writeback_registers(ctxt);
5420 				return EMULATION_RESTART;
5421 			}
5422 			goto done; /* skip rip writeback */
5423 		}
5424 		ctxt->eflags &= ~X86_EFLAGS_RF;
5425 	}
5426 
5427 	ctxt->eip = ctxt->_eip;
5428 	if (ctxt->mode != X86EMUL_MODE_PROT64)
5429 		ctxt->eip = (u32)ctxt->_eip;
5430 
5431 done:
5432 	if (rc == X86EMUL_PROPAGATE_FAULT) {
5433 		if (KVM_EMULATOR_BUG_ON(ctxt->exception.vector > 0x1f, ctxt))
5434 			return EMULATION_FAILED;
5435 		ctxt->have_exception = true;
5436 	}
5437 	if (rc == X86EMUL_INTERCEPTED)
5438 		return EMULATION_INTERCEPTED;
5439 
5440 	if (rc == X86EMUL_CONTINUE)
5441 		writeback_registers(ctxt);
5442 
5443 	return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
5444 
5445 twobyte_insn:
5446 	switch (ctxt->b) {
5447 	case 0x09:		/* wbinvd */
5448 		(ctxt->ops->wbinvd)(ctxt);
5449 		break;
5450 	case 0x08:		/* invd */
5451 	case 0x0d:		/* GrpP (prefetch) */
5452 	case 0x18:		/* Grp16 (prefetch/nop) */
5453 	case 0x1f:		/* nop */
5454 		break;
5455 	case 0x20: /* mov cr, reg */
5456 		ctxt->dst.val = ops->get_cr(ctxt, ctxt->modrm_reg);
5457 		break;
5458 	case 0x21: /* mov from dr to reg */
5459 		ctxt->dst.val = ops->get_dr(ctxt, ctxt->modrm_reg);
5460 		break;
5461 	case 0x40 ... 0x4f:	/* cmov */
5462 		if (test_cc(ctxt->b, ctxt->eflags))
5463 			ctxt->dst.val = ctxt->src.val;
5464 		else if (ctxt->op_bytes != 4)
5465 			ctxt->dst.type = OP_NONE; /* no writeback */
5466 		break;
5467 	case 0x80 ... 0x8f: /* jnz rel, etc*/
5468 		if (test_cc(ctxt->b, ctxt->eflags))
5469 			rc = jmp_rel(ctxt, ctxt->src.val);
5470 		break;
5471 	case 0x90 ... 0x9f:     /* setcc r/m8 */
5472 		ctxt->dst.val = test_cc(ctxt->b, ctxt->eflags);
5473 		break;
5474 	case 0xb6 ... 0xb7:	/* movzx */
5475 		ctxt->dst.bytes = ctxt->op_bytes;
5476 		ctxt->dst.val = (ctxt->src.bytes == 1) ? (u8) ctxt->src.val
5477 						       : (u16) ctxt->src.val;
5478 		break;
5479 	case 0xbe ... 0xbf:	/* movsx */
5480 		ctxt->dst.bytes = ctxt->op_bytes;
5481 		ctxt->dst.val = (ctxt->src.bytes == 1) ? (s8) ctxt->src.val :
5482 							(s16) ctxt->src.val;
5483 		break;
5484 	default:
5485 		goto cannot_emulate;
5486 	}
5487 
5488 threebyte_insn:
5489 
5490 	if (rc != X86EMUL_CONTINUE)
5491 		goto done;
5492 
5493 	goto writeback;
5494 
5495 cannot_emulate:
5496 	return EMULATION_FAILED;
5497 }
5498 
emulator_invalidate_register_cache(struct x86_emulate_ctxt * ctxt)5499 void emulator_invalidate_register_cache(struct x86_emulate_ctxt *ctxt)
5500 {
5501 	invalidate_registers(ctxt);
5502 }
5503 
emulator_writeback_register_cache(struct x86_emulate_ctxt * ctxt)5504 void emulator_writeback_register_cache(struct x86_emulate_ctxt *ctxt)
5505 {
5506 	writeback_registers(ctxt);
5507 }
5508 
emulator_can_use_gpa(struct x86_emulate_ctxt * ctxt)5509 bool emulator_can_use_gpa(struct x86_emulate_ctxt *ctxt)
5510 {
5511 	if (ctxt->rep_prefix && (ctxt->d & String))
5512 		return false;
5513 
5514 	if (ctxt->d & TwoMemOp)
5515 		return false;
5516 
5517 	return true;
5518 }
5519