1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012,2013 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 * 6 * Derived from arch/arm/kvm/handle_exit.c: 7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 8 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 9 */ 10 11 #include <linux/kvm.h> 12 #include <linux/kvm_host.h> 13 14 #include <asm/esr.h> 15 #include <asm/exception.h> 16 #include <asm/kvm_asm.h> 17 #include <asm/kvm_emulate.h> 18 #include <asm/kvm_mmu.h> 19 #include <asm/kvm_nested.h> 20 #include <asm/debug-monitors.h> 21 #include <asm/stacktrace/nvhe.h> 22 #include <asm/traps.h> 23 24 #include <kvm/arm_hypercalls.h> 25 26 #define CREATE_TRACE_POINTS 27 #include "trace_handle_exit.h" 28 29 typedef int (*exit_handle_fn)(struct kvm_vcpu *); 30 31 static void kvm_handle_guest_serror(struct kvm_vcpu *vcpu, u64 esr) 32 { 33 if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(NULL, esr)) 34 kvm_inject_vabt(vcpu); 35 } 36 37 static int handle_hvc(struct kvm_vcpu *vcpu) 38 { 39 trace_kvm_hvc_arm64(*vcpu_pc(vcpu), vcpu_get_reg(vcpu, 0), 40 kvm_vcpu_hvc_get_imm(vcpu)); 41 vcpu->stat.hvc_exit_stat++; 42 43 /* Forward hvc instructions to the virtual EL2 if the guest has EL2. */ 44 if (vcpu_has_nv(vcpu)) { 45 if (vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_HCD) 46 kvm_inject_undefined(vcpu); 47 else 48 kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu)); 49 50 return 1; 51 } 52 53 return kvm_smccc_call_handler(vcpu); 54 } 55 56 static int handle_smc(struct kvm_vcpu *vcpu) 57 { 58 /* 59 * Forward this trapped smc instruction to the virtual EL2 if 60 * the guest has asked for it. 61 */ 62 if (forward_smc_trap(vcpu)) 63 return 1; 64 65 /* 66 * "If an SMC instruction executed at Non-secure EL1 is 67 * trapped to EL2 because HCR_EL2.TSC is 1, the exception is a 68 * Trap exception, not a Secure Monitor Call exception [...]" 69 * 70 * We need to advance the PC after the trap, as it would 71 * otherwise return to the same address. Furthermore, pre-incrementing 72 * the PC before potentially exiting to userspace maintains the same 73 * abstraction for both SMCs and HVCs. 74 */ 75 kvm_incr_pc(vcpu); 76 77 /* 78 * SMCs with a nonzero immediate are reserved according to DEN0028E 2.9 79 * "SMC and HVC immediate value". 80 */ 81 if (kvm_vcpu_hvc_get_imm(vcpu)) { 82 vcpu_set_reg(vcpu, 0, ~0UL); 83 return 1; 84 } 85 86 /* 87 * If imm is zero then it is likely an SMCCC call. 88 * 89 * Note that on ARMv8.3, even if EL3 is not implemented, SMC executed 90 * at Non-secure EL1 is trapped to EL2 if HCR_EL2.TSC==1, rather than 91 * being treated as UNDEFINED. 92 */ 93 return kvm_smccc_call_handler(vcpu); 94 } 95 96 /* 97 * This handles the cases where the system does not support FP/ASIMD or when 98 * we are running nested virtualization and the guest hypervisor is trapping 99 * FP/ASIMD accesses by its guest guest. 100 * 101 * All other handling of guest vs. host FP/ASIMD register state is handled in 102 * fixup_guest_exit(). 103 */ 104 static int kvm_handle_fpasimd(struct kvm_vcpu *vcpu) 105 { 106 if (guest_hyp_fpsimd_traps_enabled(vcpu)) 107 return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu)); 108 109 /* This is the case when the system doesn't support FP/ASIMD. */ 110 kvm_inject_undefined(vcpu); 111 return 1; 112 } 113 114 /** 115 * kvm_handle_wfx - handle a wait-for-interrupts or wait-for-event 116 * instruction executed by a guest 117 * 118 * @vcpu: the vcpu pointer 119 * 120 * WFE[T]: Yield the CPU and come back to this vcpu when the scheduler 121 * decides to. 122 * WFI: Simply call kvm_vcpu_halt(), which will halt execution of 123 * world-switches and schedule other host processes until there is an 124 * incoming IRQ or FIQ to the VM. 125 * WFIT: Same as WFI, with a timed wakeup implemented as a background timer 126 * 127 * WF{I,E}T can immediately return if the deadline has already expired. 128 */ 129 static int kvm_handle_wfx(struct kvm_vcpu *vcpu) 130 { 131 u64 esr = kvm_vcpu_get_esr(vcpu); 132 133 if (esr & ESR_ELx_WFx_ISS_WFE) { 134 trace_kvm_wfx_arm64(*vcpu_pc(vcpu), true); 135 vcpu->stat.wfe_exit_stat++; 136 } else { 137 trace_kvm_wfx_arm64(*vcpu_pc(vcpu), false); 138 vcpu->stat.wfi_exit_stat++; 139 } 140 141 if (esr & ESR_ELx_WFx_ISS_WFxT) { 142 if (esr & ESR_ELx_WFx_ISS_RV) { 143 u64 val, now; 144 145 now = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_TIMER_CNT); 146 val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu)); 147 148 if (now >= val) 149 goto out; 150 } else { 151 /* Treat WFxT as WFx if RN is invalid */ 152 esr &= ~ESR_ELx_WFx_ISS_WFxT; 153 } 154 } 155 156 if (esr & ESR_ELx_WFx_ISS_WFE) { 157 kvm_vcpu_on_spin(vcpu, vcpu_mode_priv(vcpu)); 158 } else { 159 if (esr & ESR_ELx_WFx_ISS_WFxT) 160 vcpu_set_flag(vcpu, IN_WFIT); 161 162 kvm_vcpu_wfi(vcpu); 163 } 164 out: 165 kvm_incr_pc(vcpu); 166 167 return 1; 168 } 169 170 /** 171 * kvm_handle_guest_debug - handle a debug exception instruction 172 * 173 * @vcpu: the vcpu pointer 174 * 175 * We route all debug exceptions through the same handler. If both the 176 * guest and host are using the same debug facilities it will be up to 177 * userspace to re-inject the correct exception for guest delivery. 178 * 179 * @return: 0 (while setting vcpu->run->exit_reason) 180 */ 181 static int kvm_handle_guest_debug(struct kvm_vcpu *vcpu) 182 { 183 struct kvm_run *run = vcpu->run; 184 u64 esr = kvm_vcpu_get_esr(vcpu); 185 186 if (!vcpu->guest_debug && forward_debug_exception(vcpu)) 187 return 1; 188 189 run->exit_reason = KVM_EXIT_DEBUG; 190 run->debug.arch.hsr = lower_32_bits(esr); 191 run->debug.arch.hsr_high = upper_32_bits(esr); 192 run->flags = KVM_DEBUG_ARCH_HSR_HIGH_VALID; 193 194 switch (ESR_ELx_EC(esr)) { 195 case ESR_ELx_EC_WATCHPT_LOW: 196 run->debug.arch.far = vcpu->arch.fault.far_el2; 197 break; 198 case ESR_ELx_EC_SOFTSTP_LOW: 199 *vcpu_cpsr(vcpu) |= DBG_SPSR_SS; 200 break; 201 } 202 203 return 0; 204 } 205 206 static int kvm_handle_unknown_ec(struct kvm_vcpu *vcpu) 207 { 208 u64 esr = kvm_vcpu_get_esr(vcpu); 209 210 kvm_pr_unimpl("Unknown exception class: esr: %#016llx -- %s\n", 211 esr, esr_get_class_string(esr)); 212 213 kvm_inject_undefined(vcpu); 214 return 1; 215 } 216 217 /* 218 * Guest access to SVE registers should be routed to this handler only 219 * when the system doesn't support SVE. 220 */ 221 static int handle_sve(struct kvm_vcpu *vcpu) 222 { 223 if (guest_hyp_sve_traps_enabled(vcpu)) 224 return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu)); 225 226 kvm_inject_undefined(vcpu); 227 return 1; 228 } 229 230 /* 231 * Two possibilities to handle a trapping ptrauth instruction: 232 * 233 * - Guest usage of a ptrauth instruction (which the guest EL1 did not 234 * turn into a NOP). If we get here, it is because we didn't enable 235 * ptrauth for the guest. This results in an UNDEF, as it isn't 236 * supposed to use ptrauth without being told it could. 237 * 238 * - Running an L2 NV guest while L1 has left HCR_EL2.API==0, and for 239 * which we reinject the exception into L1. 240 * 241 * Anything else is an emulation bug (hence the WARN_ON + UNDEF). 242 */ 243 static int kvm_handle_ptrauth(struct kvm_vcpu *vcpu) 244 { 245 if (!vcpu_has_ptrauth(vcpu)) { 246 kvm_inject_undefined(vcpu); 247 return 1; 248 } 249 250 if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) { 251 kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu)); 252 return 1; 253 } 254 255 /* Really shouldn't be here! */ 256 WARN_ON_ONCE(1); 257 kvm_inject_undefined(vcpu); 258 return 1; 259 } 260 261 static int kvm_handle_eret(struct kvm_vcpu *vcpu) 262 { 263 if (esr_iss_is_eretax(kvm_vcpu_get_esr(vcpu)) && 264 !vcpu_has_ptrauth(vcpu)) 265 return kvm_handle_ptrauth(vcpu); 266 267 /* 268 * If we got here, two possibilities: 269 * 270 * - the guest is in EL2, and we need to fully emulate ERET 271 * 272 * - the guest is in EL1, and we need to reinject the 273 * exception into the L1 hypervisor. 274 * 275 * If KVM ever traps ERET for its own use, we'll have to 276 * revisit this. 277 */ 278 if (is_hyp_ctxt(vcpu)) 279 kvm_emulate_nested_eret(vcpu); 280 else 281 kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu)); 282 283 return 1; 284 } 285 286 static int handle_svc(struct kvm_vcpu *vcpu) 287 { 288 /* 289 * So far, SVC traps only for NV via HFGITR_EL2. A SVC from a 290 * 32bit guest would be caught by vpcu_mode_is_bad_32bit(), so 291 * we should only have to deal with a 64 bit exception. 292 */ 293 kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu)); 294 return 1; 295 } 296 297 static exit_handle_fn arm_exit_handlers[] = { 298 [0 ... ESR_ELx_EC_MAX] = kvm_handle_unknown_ec, 299 [ESR_ELx_EC_WFx] = kvm_handle_wfx, 300 [ESR_ELx_EC_CP15_32] = kvm_handle_cp15_32, 301 [ESR_ELx_EC_CP15_64] = kvm_handle_cp15_64, 302 [ESR_ELx_EC_CP14_MR] = kvm_handle_cp14_32, 303 [ESR_ELx_EC_CP14_LS] = kvm_handle_cp14_load_store, 304 [ESR_ELx_EC_CP10_ID] = kvm_handle_cp10_id, 305 [ESR_ELx_EC_CP14_64] = kvm_handle_cp14_64, 306 [ESR_ELx_EC_HVC32] = handle_hvc, 307 [ESR_ELx_EC_SMC32] = handle_smc, 308 [ESR_ELx_EC_HVC64] = handle_hvc, 309 [ESR_ELx_EC_SMC64] = handle_smc, 310 [ESR_ELx_EC_SVC64] = handle_svc, 311 [ESR_ELx_EC_SYS64] = kvm_handle_sys_reg, 312 [ESR_ELx_EC_SVE] = handle_sve, 313 [ESR_ELx_EC_ERET] = kvm_handle_eret, 314 [ESR_ELx_EC_IABT_LOW] = kvm_handle_guest_abort, 315 [ESR_ELx_EC_DABT_LOW] = kvm_handle_guest_abort, 316 [ESR_ELx_EC_SOFTSTP_LOW]= kvm_handle_guest_debug, 317 [ESR_ELx_EC_WATCHPT_LOW]= kvm_handle_guest_debug, 318 [ESR_ELx_EC_BREAKPT_LOW]= kvm_handle_guest_debug, 319 [ESR_ELx_EC_BKPT32] = kvm_handle_guest_debug, 320 [ESR_ELx_EC_BRK64] = kvm_handle_guest_debug, 321 [ESR_ELx_EC_FP_ASIMD] = kvm_handle_fpasimd, 322 [ESR_ELx_EC_PAC] = kvm_handle_ptrauth, 323 }; 324 325 static exit_handle_fn kvm_get_exit_handler(struct kvm_vcpu *vcpu) 326 { 327 u64 esr = kvm_vcpu_get_esr(vcpu); 328 u8 esr_ec = ESR_ELx_EC(esr); 329 330 return arm_exit_handlers[esr_ec]; 331 } 332 333 /* 334 * We may be single-stepping an emulated instruction. If the emulation 335 * has been completed in the kernel, we can return to userspace with a 336 * KVM_EXIT_DEBUG, otherwise userspace needs to complete its 337 * emulation first. 338 */ 339 static int handle_trap_exceptions(struct kvm_vcpu *vcpu) 340 { 341 int handled; 342 343 /* 344 * See ARM ARM B1.14.1: "Hyp traps on instructions 345 * that fail their condition code check" 346 */ 347 if (!kvm_condition_valid(vcpu)) { 348 kvm_incr_pc(vcpu); 349 handled = 1; 350 } else { 351 exit_handle_fn exit_handler; 352 353 exit_handler = kvm_get_exit_handler(vcpu); 354 handled = exit_handler(vcpu); 355 } 356 357 return handled; 358 } 359 360 /* 361 * Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on 362 * proper exit to userspace. 363 */ 364 int handle_exit(struct kvm_vcpu *vcpu, int exception_index) 365 { 366 struct kvm_run *run = vcpu->run; 367 368 if (ARM_SERROR_PENDING(exception_index)) { 369 /* 370 * The SError is handled by handle_exit_early(). If the guest 371 * survives it will re-execute the original instruction. 372 */ 373 return 1; 374 } 375 376 exception_index = ARM_EXCEPTION_CODE(exception_index); 377 378 switch (exception_index) { 379 case ARM_EXCEPTION_IRQ: 380 return 1; 381 case ARM_EXCEPTION_EL1_SERROR: 382 return 1; 383 case ARM_EXCEPTION_TRAP: 384 return handle_trap_exceptions(vcpu); 385 case ARM_EXCEPTION_HYP_GONE: 386 /* 387 * EL2 has been reset to the hyp-stub. This happens when a guest 388 * is pre-emptied by kvm_reboot()'s shutdown call. 389 */ 390 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 391 return 0; 392 case ARM_EXCEPTION_IL: 393 /* 394 * We attempted an illegal exception return. Guest state must 395 * have been corrupted somehow. Give up. 396 */ 397 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 398 return -EINVAL; 399 default: 400 kvm_pr_unimpl("Unsupported exception type: %d", 401 exception_index); 402 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 403 return 0; 404 } 405 } 406 407 /* For exit types that need handling before we can be preempted */ 408 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index) 409 { 410 if (ARM_SERROR_PENDING(exception_index)) { 411 if (this_cpu_has_cap(ARM64_HAS_RAS_EXTN)) { 412 u64 disr = kvm_vcpu_get_disr(vcpu); 413 414 kvm_handle_guest_serror(vcpu, disr_to_esr(disr)); 415 } else { 416 kvm_inject_vabt(vcpu); 417 } 418 419 return; 420 } 421 422 exception_index = ARM_EXCEPTION_CODE(exception_index); 423 424 if (exception_index == ARM_EXCEPTION_EL1_SERROR) 425 kvm_handle_guest_serror(vcpu, kvm_vcpu_get_esr(vcpu)); 426 } 427 428 static void print_nvhe_hyp_panic(const char *name, u64 panic_addr) 429 { 430 kvm_err("nVHE hyp %s at: [<%016llx>] %pB!\n", name, panic_addr, 431 (void *)(panic_addr + kaslr_offset())); 432 } 433 434 static void kvm_nvhe_report_cfi_failure(u64 panic_addr) 435 { 436 print_nvhe_hyp_panic("CFI failure", panic_addr); 437 438 if (IS_ENABLED(CONFIG_CFI_PERMISSIVE)) 439 kvm_err(" (CONFIG_CFI_PERMISSIVE ignored for hyp failures)\n"); 440 } 441 442 void __noreturn __cold nvhe_hyp_panic_handler(u64 esr, u64 spsr, 443 u64 elr_virt, u64 elr_phys, 444 u64 par, uintptr_t vcpu, 445 u64 far, u64 hpfar) { 446 u64 elr_in_kimg = __phys_to_kimg(elr_phys); 447 u64 hyp_offset = elr_in_kimg - kaslr_offset() - elr_virt; 448 u64 mode = spsr & PSR_MODE_MASK; 449 u64 panic_addr = elr_virt + hyp_offset; 450 451 if (mode != PSR_MODE_EL2t && mode != PSR_MODE_EL2h) { 452 kvm_err("Invalid host exception to nVHE hyp!\n"); 453 } else if (ESR_ELx_EC(esr) == ESR_ELx_EC_BRK64 && 454 esr_brk_comment(esr) == BUG_BRK_IMM) { 455 const char *file = NULL; 456 unsigned int line = 0; 457 458 /* All hyp bugs, including warnings, are treated as fatal. */ 459 if (!is_protected_kvm_enabled() || 460 IS_ENABLED(CONFIG_NVHE_EL2_DEBUG)) { 461 struct bug_entry *bug = find_bug(elr_in_kimg); 462 463 if (bug) 464 bug_get_file_line(bug, &file, &line); 465 } 466 467 if (file) 468 kvm_err("nVHE hyp BUG at: %s:%u!\n", file, line); 469 else 470 print_nvhe_hyp_panic("BUG", panic_addr); 471 } else if (IS_ENABLED(CONFIG_CFI_CLANG) && esr_is_cfi_brk(esr)) { 472 kvm_nvhe_report_cfi_failure(panic_addr); 473 } else { 474 print_nvhe_hyp_panic("panic", panic_addr); 475 } 476 477 /* Dump the nVHE hypervisor backtrace */ 478 kvm_nvhe_dump_backtrace(hyp_offset); 479 480 /* 481 * Hyp has panicked and we're going to handle that by panicking the 482 * kernel. The kernel offset will be revealed in the panic so we're 483 * also safe to reveal the hyp offset as a debugging aid for translating 484 * hyp VAs to vmlinux addresses. 485 */ 486 kvm_err("Hyp Offset: 0x%llx\n", hyp_offset); 487 488 panic("HYP panic:\nPS:%08llx PC:%016llx ESR:%016llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%016lx\n", 489 spsr, elr_virt, esr, far, hpfar, par, vcpu); 490 } 491