1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * intel_hdmi_audio.c - Intel HDMI audio driver
4 *
5 * Copyright (C) 2016 Intel Corp
6 * Authors: Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
7 * Ramesh Babu K V <ramesh.babu@intel.com>
8 * Vaibhav Agarwal <vaibhav.agarwal@intel.com>
9 * Jerome Anand <jerome.anand@intel.com>
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 *
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 * ALSA driver for Intel HDMI audio
14 */
15
16 #include <linux/types.h>
17 #include <linux/platform_device.h>
18 #include <linux/io.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/delay.h>
25 #include <sound/core.h>
26 #include <sound/asoundef.h>
27 #include <sound/pcm.h>
28 #include <sound/pcm_params.h>
29 #include <sound/initval.h>
30 #include <sound/control.h>
31 #include <sound/jack.h>
32 #include <drm/drm_edid.h>
33 #include <drm/drm_eld.h>
34 #include <drm/intel/intel_lpe_audio.h>
35 #include "intel_hdmi_audio.h"
36
37 #define INTEL_HDMI_AUDIO_SUSPEND_DELAY_MS 5000
38
39 #define for_each_pipe(card_ctx, pipe) \
40 for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++)
41 #define for_each_port(card_ctx, port) \
42 for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++)
43
44 /*standard module options for ALSA. This module supports only one card*/
45 static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
46 static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
47 static bool single_port;
48
49 module_param_named(index, hdmi_card_index, int, 0444);
50 MODULE_PARM_DESC(index,
51 "Index value for INTEL Intel HDMI Audio controller.");
52 module_param_named(id, hdmi_card_id, charp, 0444);
53 MODULE_PARM_DESC(id,
54 "ID string for INTEL Intel HDMI Audio controller.");
55 module_param(single_port, bool, 0444);
56 MODULE_PARM_DESC(single_port,
57 "Single-port mode (for compatibility)");
58
59 /*
60 * ELD SA bits in the CEA Speaker Allocation data block
61 */
62 static const int eld_speaker_allocation_bits[] = {
63 [0] = FL | FR,
64 [1] = LFE,
65 [2] = FC,
66 [3] = RL | RR,
67 [4] = RC,
68 [5] = FLC | FRC,
69 [6] = RLC | RRC,
70 /* the following are not defined in ELD yet */
71 [7] = 0,
72 };
73
74 /*
75 * This is an ordered list!
76 *
77 * The preceding ones have better chances to be selected by
78 * hdmi_channel_allocation().
79 */
80 static struct cea_channel_speaker_allocation channel_allocations[] = {
81 /* channel: 7 6 5 4 3 2 1 0 */
82 { .ca_index = 0x00, .speakers = { 0, 0, 0, 0, 0, 0, FR, FL } },
83 /* 2.1 */
84 { .ca_index = 0x01, .speakers = { 0, 0, 0, 0, 0, LFE, FR, FL } },
85 /* Dolby Surround */
86 { .ca_index = 0x02, .speakers = { 0, 0, 0, 0, FC, 0, FR, FL } },
87 /* surround40 */
88 { .ca_index = 0x08, .speakers = { 0, 0, RR, RL, 0, 0, FR, FL } },
89 /* surround41 */
90 { .ca_index = 0x09, .speakers = { 0, 0, RR, RL, 0, LFE, FR, FL } },
91 /* surround50 */
92 { .ca_index = 0x0a, .speakers = { 0, 0, RR, RL, FC, 0, FR, FL } },
93 /* surround51 */
94 { .ca_index = 0x0b, .speakers = { 0, 0, RR, RL, FC, LFE, FR, FL } },
95 /* 6.1 */
96 { .ca_index = 0x0f, .speakers = { 0, RC, RR, RL, FC, LFE, FR, FL } },
97 /* surround71 */
98 { .ca_index = 0x13, .speakers = { RRC, RLC, RR, RL, FC, LFE, FR, FL } },
99
100 { .ca_index = 0x03, .speakers = { 0, 0, 0, 0, FC, LFE, FR, FL } },
101 { .ca_index = 0x04, .speakers = { 0, 0, 0, RC, 0, 0, FR, FL } },
102 { .ca_index = 0x05, .speakers = { 0, 0, 0, RC, 0, LFE, FR, FL } },
103 { .ca_index = 0x06, .speakers = { 0, 0, 0, RC, FC, 0, FR, FL } },
104 { .ca_index = 0x07, .speakers = { 0, 0, 0, RC, FC, LFE, FR, FL } },
105 { .ca_index = 0x0c, .speakers = { 0, RC, RR, RL, 0, 0, FR, FL } },
106 { .ca_index = 0x0d, .speakers = { 0, RC, RR, RL, 0, LFE, FR, FL } },
107 { .ca_index = 0x0e, .speakers = { 0, RC, RR, RL, FC, 0, FR, FL } },
108 { .ca_index = 0x10, .speakers = { RRC, RLC, RR, RL, 0, 0, FR, FL } },
109 { .ca_index = 0x11, .speakers = { RRC, RLC, RR, RL, 0, LFE, FR, FL } },
110 { .ca_index = 0x12, .speakers = { RRC, RLC, RR, RL, FC, 0, FR, FL } },
111 { .ca_index = 0x14, .speakers = { FRC, FLC, 0, 0, 0, 0, FR, FL } },
112 { .ca_index = 0x15, .speakers = { FRC, FLC, 0, 0, 0, LFE, FR, FL } },
113 { .ca_index = 0x16, .speakers = { FRC, FLC, 0, 0, FC, 0, FR, FL } },
114 { .ca_index = 0x17, .speakers = { FRC, FLC, 0, 0, FC, LFE, FR, FL } },
115 { .ca_index = 0x18, .speakers = { FRC, FLC, 0, RC, 0, 0, FR, FL } },
116 { .ca_index = 0x19, .speakers = { FRC, FLC, 0, RC, 0, LFE, FR, FL } },
117 { .ca_index = 0x1a, .speakers = { FRC, FLC, 0, RC, FC, 0, FR, FL } },
118 { .ca_index = 0x1b, .speakers = { FRC, FLC, 0, RC, FC, LFE, FR, FL } },
119 { .ca_index = 0x1c, .speakers = { FRC, FLC, RR, RL, 0, 0, FR, FL } },
120 { .ca_index = 0x1d, .speakers = { FRC, FLC, RR, RL, 0, LFE, FR, FL } },
121 { .ca_index = 0x1e, .speakers = { FRC, FLC, RR, RL, FC, 0, FR, FL } },
122 { .ca_index = 0x1f, .speakers = { FRC, FLC, RR, RL, FC, LFE, FR, FL } },
123 };
124
125 static const struct channel_map_table map_tables[] = {
126 { SNDRV_CHMAP_FL, 0x00, FL },
127 { SNDRV_CHMAP_FR, 0x01, FR },
128 { SNDRV_CHMAP_RL, 0x04, RL },
129 { SNDRV_CHMAP_RR, 0x05, RR },
130 { SNDRV_CHMAP_LFE, 0x02, LFE },
131 { SNDRV_CHMAP_FC, 0x03, FC },
132 { SNDRV_CHMAP_RLC, 0x06, RLC },
133 { SNDRV_CHMAP_RRC, 0x07, RRC },
134 {} /* terminator */
135 };
136
137 /* hardware capability structure */
138 static const struct snd_pcm_hardware had_pcm_hardware = {
139 .info = (SNDRV_PCM_INFO_INTERLEAVED |
140 SNDRV_PCM_INFO_MMAP |
141 SNDRV_PCM_INFO_MMAP_VALID |
142 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
143 .formats = (SNDRV_PCM_FMTBIT_S16_LE |
144 SNDRV_PCM_FMTBIT_S24_LE |
145 SNDRV_PCM_FMTBIT_S32_LE),
146 .rates = SNDRV_PCM_RATE_32000 |
147 SNDRV_PCM_RATE_44100 |
148 SNDRV_PCM_RATE_48000 |
149 SNDRV_PCM_RATE_88200 |
150 SNDRV_PCM_RATE_96000 |
151 SNDRV_PCM_RATE_176400 |
152 SNDRV_PCM_RATE_192000,
153 .rate_min = HAD_MIN_RATE,
154 .rate_max = HAD_MAX_RATE,
155 .channels_min = HAD_MIN_CHANNEL,
156 .channels_max = HAD_MAX_CHANNEL,
157 .buffer_bytes_max = HAD_MAX_BUFFER,
158 .period_bytes_min = HAD_MIN_PERIOD_BYTES,
159 .period_bytes_max = HAD_MAX_PERIOD_BYTES,
160 .periods_min = HAD_MIN_PERIODS,
161 .periods_max = HAD_MAX_PERIODS,
162 .fifo_size = HAD_FIFO_SIZE,
163 };
164
165 /* Get the active PCM substream;
166 * Call had_substream_put() for unreferecing.
167 * Don't call this inside had_spinlock, as it takes by itself
168 */
169 static struct snd_pcm_substream *
had_substream_get(struct snd_intelhad * intelhaddata)170 had_substream_get(struct snd_intelhad *intelhaddata)
171 {
172 struct snd_pcm_substream *substream;
173 unsigned long flags;
174
175 spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
176 substream = intelhaddata->stream_info.substream;
177 if (substream)
178 intelhaddata->stream_info.substream_refcount++;
179 spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
180 return substream;
181 }
182
183 /* Unref the active PCM substream;
184 * Don't call this inside had_spinlock, as it takes by itself
185 */
had_substream_put(struct snd_intelhad * intelhaddata)186 static void had_substream_put(struct snd_intelhad *intelhaddata)
187 {
188 unsigned long flags;
189
190 spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
191 intelhaddata->stream_info.substream_refcount--;
192 spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
193 }
194
had_config_offset(int pipe)195 static u32 had_config_offset(int pipe)
196 {
197 switch (pipe) {
198 default:
199 case 0:
200 return AUDIO_HDMI_CONFIG_A;
201 case 1:
202 return AUDIO_HDMI_CONFIG_B;
203 case 2:
204 return AUDIO_HDMI_CONFIG_C;
205 }
206 }
207
208 /* Register access functions */
had_read_register_raw(struct snd_intelhad_card * card_ctx,int pipe,u32 reg)209 static u32 had_read_register_raw(struct snd_intelhad_card *card_ctx,
210 int pipe, u32 reg)
211 {
212 return ioread32(card_ctx->mmio_start + had_config_offset(pipe) + reg);
213 }
214
had_write_register_raw(struct snd_intelhad_card * card_ctx,int pipe,u32 reg,u32 val)215 static void had_write_register_raw(struct snd_intelhad_card *card_ctx,
216 int pipe, u32 reg, u32 val)
217 {
218 iowrite32(val, card_ctx->mmio_start + had_config_offset(pipe) + reg);
219 }
220
had_read_register(struct snd_intelhad * ctx,u32 reg,u32 * val)221 static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val)
222 {
223 if (!ctx->connected)
224 *val = 0;
225 else
226 *val = had_read_register_raw(ctx->card_ctx, ctx->pipe, reg);
227 }
228
had_write_register(struct snd_intelhad * ctx,u32 reg,u32 val)229 static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val)
230 {
231 if (ctx->connected)
232 had_write_register_raw(ctx->card_ctx, ctx->pipe, reg, val);
233 }
234
235 /*
236 * enable / disable audio configuration
237 *
238 * The normal read/modify should not directly be used on VLV2 for
239 * updating AUD_CONFIG register.
240 * This is because:
241 * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
242 * HDMI IP. As a result a read-modify of AUD_CONFIG register will always
243 * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
244 * register. This field should be 1xy binary for configuration with 6 or
245 * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
246 * causes the "channels" field to be updated as 0xy binary resulting in
247 * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
248 * appropriate value when doing read-modify of AUD_CONFIG register.
249 */
had_enable_audio(struct snd_intelhad * intelhaddata,bool enable)250 static void had_enable_audio(struct snd_intelhad *intelhaddata,
251 bool enable)
252 {
253 /* update the cached value */
254 intelhaddata->aud_config.regx.aud_en = enable;
255 had_write_register(intelhaddata, AUD_CONFIG,
256 intelhaddata->aud_config.regval);
257 }
258
259 /* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
had_ack_irqs(struct snd_intelhad * ctx)260 static void had_ack_irqs(struct snd_intelhad *ctx)
261 {
262 u32 status_reg;
263
264 if (!ctx->connected)
265 return;
266 had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
267 status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
268 had_write_register(ctx, AUD_HDMI_STATUS, status_reg);
269 had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
270 }
271
272 /* Reset buffer pointers */
had_reset_audio(struct snd_intelhad * intelhaddata)273 static void had_reset_audio(struct snd_intelhad *intelhaddata)
274 {
275 had_write_register(intelhaddata, AUD_HDMI_STATUS,
276 AUD_HDMI_STATUSG_MASK_FUNCRST);
277 had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
278 }
279
280 /*
281 * initialize audio channel status registers
282 * This function is called in the prepare callback
283 */
had_prog_status_reg(struct snd_pcm_substream * substream,struct snd_intelhad * intelhaddata)284 static int had_prog_status_reg(struct snd_pcm_substream *substream,
285 struct snd_intelhad *intelhaddata)
286 {
287 union aud_ch_status_0 ch_stat0 = {.regval = 0};
288 union aud_ch_status_1 ch_stat1 = {.regval = 0};
289
290 ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
291 IEC958_AES0_NONAUDIO) >> 1;
292 ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
293 IEC958_AES3_CON_CLOCK) >> 4;
294
295 switch (substream->runtime->rate) {
296 case AUD_SAMPLE_RATE_32:
297 ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
298 break;
299
300 case AUD_SAMPLE_RATE_44_1:
301 ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
302 break;
303 case AUD_SAMPLE_RATE_48:
304 ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
305 break;
306 case AUD_SAMPLE_RATE_88_2:
307 ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
308 break;
309 case AUD_SAMPLE_RATE_96:
310 ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
311 break;
312 case AUD_SAMPLE_RATE_176_4:
313 ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
314 break;
315 case AUD_SAMPLE_RATE_192:
316 ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
317 break;
318
319 default:
320 /* control should never come here */
321 return -EINVAL;
322 }
323
324 had_write_register(intelhaddata,
325 AUD_CH_STATUS_0, ch_stat0.regval);
326
327 switch (substream->runtime->format) {
328 case SNDRV_PCM_FORMAT_S16_LE:
329 ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
330 ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
331 break;
332 case SNDRV_PCM_FORMAT_S24_LE:
333 case SNDRV_PCM_FORMAT_S32_LE:
334 ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
335 ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
336 break;
337 default:
338 return -EINVAL;
339 }
340
341 had_write_register(intelhaddata,
342 AUD_CH_STATUS_1, ch_stat1.regval);
343 return 0;
344 }
345
346 /*
347 * function to initialize audio
348 * registers and buffer configuration registers
349 * This function is called in the prepare callback
350 */
had_init_audio_ctrl(struct snd_pcm_substream * substream,struct snd_intelhad * intelhaddata)351 static int had_init_audio_ctrl(struct snd_pcm_substream *substream,
352 struct snd_intelhad *intelhaddata)
353 {
354 union aud_cfg cfg_val = {.regval = 0};
355 union aud_buf_config buf_cfg = {.regval = 0};
356 u8 channels;
357
358 had_prog_status_reg(substream, intelhaddata);
359
360 buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
361 buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
362 buf_cfg.regx.aud_delay = 0;
363 had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
364
365 channels = substream->runtime->channels;
366 cfg_val.regx.num_ch = channels - 2;
367 if (channels <= 2)
368 cfg_val.regx.layout = LAYOUT0;
369 else
370 cfg_val.regx.layout = LAYOUT1;
371
372 if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
373 cfg_val.regx.packet_mode = 1;
374
375 if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE)
376 cfg_val.regx.left_align = 1;
377
378 cfg_val.regx.val_bit = 1;
379
380 /* fix up the DP bits */
381 if (intelhaddata->dp_output) {
382 cfg_val.regx.dp_modei = 1;
383 cfg_val.regx.set = 1;
384 }
385
386 had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
387 intelhaddata->aud_config = cfg_val;
388 return 0;
389 }
390
391 /*
392 * Compute derived values in channel_allocations[].
393 */
init_channel_allocations(void)394 static void init_channel_allocations(void)
395 {
396 int i, j;
397 struct cea_channel_speaker_allocation *p;
398
399 for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
400 p = channel_allocations + i;
401 p->channels = 0;
402 p->spk_mask = 0;
403 for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
404 if (p->speakers[j]) {
405 p->channels++;
406 p->spk_mask |= p->speakers[j];
407 }
408 }
409 }
410
411 /*
412 * The transformation takes two steps:
413 *
414 * eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
415 * spk_mask => (channel_allocations[]) => ai->CA
416 *
417 * TODO: it could select the wrong CA from multiple candidates.
418 */
had_channel_allocation(struct snd_intelhad * intelhaddata,int channels)419 static int had_channel_allocation(struct snd_intelhad *intelhaddata,
420 int channels)
421 {
422 int i;
423 int ca = 0;
424 int spk_mask = 0;
425
426 /*
427 * CA defaults to 0 for basic stereo audio
428 */
429 if (channels <= 2)
430 return 0;
431
432 /*
433 * expand ELD's speaker allocation mask
434 *
435 * ELD tells the speaker mask in a compact(paired) form,
436 * expand ELD's notions to match the ones used by Audio InfoFrame.
437 */
438
439 for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
440 if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
441 spk_mask |= eld_speaker_allocation_bits[i];
442 }
443
444 /* search for the first working match in the CA table */
445 for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
446 if (channels == channel_allocations[i].channels &&
447 (spk_mask & channel_allocations[i].spk_mask) ==
448 channel_allocations[i].spk_mask) {
449 ca = channel_allocations[i].ca_index;
450 break;
451 }
452 }
453
454 dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
455
456 return ca;
457 }
458
459 /* from speaker bit mask to ALSA API channel position */
spk_to_chmap(int spk)460 static int spk_to_chmap(int spk)
461 {
462 const struct channel_map_table *t = map_tables;
463
464 for (; t->map; t++) {
465 if (t->spk_mask == spk)
466 return t->map;
467 }
468 return 0;
469 }
470
had_build_channel_allocation_map(struct snd_intelhad * intelhaddata)471 static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
472 {
473 int i, c;
474 int spk_mask = 0;
475 struct snd_pcm_chmap_elem *chmap;
476 u8 eld_high, eld_high_mask = 0xF0;
477 u8 high_msb;
478
479 kfree(intelhaddata->chmap->chmap);
480 intelhaddata->chmap->chmap = NULL;
481
482 chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
483 if (!chmap)
484 return;
485
486 dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
487 intelhaddata->eld[DRM_ELD_SPEAKER]);
488
489 /* WA: Fix the max channel supported to 8 */
490
491 /*
492 * Sink may support more than 8 channels, if eld_high has more than
493 * one bit set. SOC supports max 8 channels.
494 * Refer eld_speaker_allocation_bits, for sink speaker allocation
495 */
496
497 /* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
498 eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
499 if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
500 /* eld_high & (eld_high-1): if more than 1 bit set */
501 /* 0x1F: 7 channels */
502 for (i = 1; i < 4; i++) {
503 high_msb = eld_high & (0x80 >> i);
504 if (high_msb) {
505 intelhaddata->eld[DRM_ELD_SPEAKER] &=
506 high_msb | 0xF;
507 break;
508 }
509 }
510 }
511
512 for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
513 if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
514 spk_mask |= eld_speaker_allocation_bits[i];
515 }
516
517 for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
518 if (spk_mask == channel_allocations[i].spk_mask) {
519 for (c = 0; c < channel_allocations[i].channels; c++) {
520 chmap->map[c] = spk_to_chmap(
521 channel_allocations[i].speakers[
522 (MAX_SPEAKERS - 1) - c]);
523 }
524 chmap->channels = channel_allocations[i].channels;
525 intelhaddata->chmap->chmap = chmap;
526 break;
527 }
528 }
529 if (i >= ARRAY_SIZE(channel_allocations))
530 kfree(chmap);
531 }
532
533 /*
534 * ALSA API channel-map control callbacks
535 */
had_chmap_ctl_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)536 static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
537 struct snd_ctl_elem_info *uinfo)
538 {
539 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
540 uinfo->count = HAD_MAX_CHANNEL;
541 uinfo->value.integer.min = 0;
542 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
543 return 0;
544 }
545
had_chmap_ctl_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)546 static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
547 struct snd_ctl_elem_value *ucontrol)
548 {
549 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
550 struct snd_intelhad *intelhaddata = info->private_data;
551 int i;
552 const struct snd_pcm_chmap_elem *chmap;
553
554 memset(ucontrol->value.integer.value, 0,
555 sizeof(long) * HAD_MAX_CHANNEL);
556 mutex_lock(&intelhaddata->mutex);
557 if (!intelhaddata->chmap->chmap) {
558 mutex_unlock(&intelhaddata->mutex);
559 return 0;
560 }
561
562 chmap = intelhaddata->chmap->chmap;
563 for (i = 0; i < chmap->channels; i++)
564 ucontrol->value.integer.value[i] = chmap->map[i];
565 mutex_unlock(&intelhaddata->mutex);
566
567 return 0;
568 }
569
had_register_chmap_ctls(struct snd_intelhad * intelhaddata,struct snd_pcm * pcm)570 static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
571 struct snd_pcm *pcm)
572 {
573 int err;
574
575 err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
576 NULL, 0, (unsigned long)intelhaddata,
577 &intelhaddata->chmap);
578 if (err < 0)
579 return err;
580
581 intelhaddata->chmap->private_data = intelhaddata;
582 intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
583 intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
584 intelhaddata->chmap->chmap = NULL;
585 return 0;
586 }
587
588 /*
589 * Initialize Data Island Packets registers
590 * This function is called in the prepare callback
591 */
had_prog_dip(struct snd_pcm_substream * substream,struct snd_intelhad * intelhaddata)592 static void had_prog_dip(struct snd_pcm_substream *substream,
593 struct snd_intelhad *intelhaddata)
594 {
595 int i;
596 union aud_ctrl_st ctrl_state = {.regval = 0};
597 union aud_info_frame2 frame2 = {.regval = 0};
598 union aud_info_frame3 frame3 = {.regval = 0};
599 u8 checksum = 0;
600 u32 info_frame;
601 int channels;
602 int ca;
603
604 channels = substream->runtime->channels;
605
606 had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
607
608 ca = had_channel_allocation(intelhaddata, channels);
609 if (intelhaddata->dp_output) {
610 info_frame = DP_INFO_FRAME_WORD1;
611 frame2.regval = (substream->runtime->channels - 1) | (ca << 24);
612 } else {
613 info_frame = HDMI_INFO_FRAME_WORD1;
614 frame2.regx.chnl_cnt = substream->runtime->channels - 1;
615 frame3.regx.chnl_alloc = ca;
616
617 /* Calculte the byte wide checksum for all valid DIP words */
618 for (i = 0; i < BYTES_PER_WORD; i++)
619 checksum += (info_frame >> (i * 8)) & 0xff;
620 for (i = 0; i < BYTES_PER_WORD; i++)
621 checksum += (frame2.regval >> (i * 8)) & 0xff;
622 for (i = 0; i < BYTES_PER_WORD; i++)
623 checksum += (frame3.regval >> (i * 8)) & 0xff;
624
625 frame2.regx.chksum = -(checksum);
626 }
627
628 had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
629 had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
630 had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
631
632 /* program remaining DIP words with zero */
633 for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
634 had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
635
636 ctrl_state.regx.dip_freq = 1;
637 ctrl_state.regx.dip_en_sta = 1;
638 had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
639 }
640
had_calculate_maud_value(u32 aud_samp_freq,u32 link_rate)641 static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
642 {
643 u32 maud_val;
644
645 /* Select maud according to DP 1.2 spec */
646 if (link_rate == DP_2_7_GHZ) {
647 switch (aud_samp_freq) {
648 case AUD_SAMPLE_RATE_32:
649 maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
650 break;
651
652 case AUD_SAMPLE_RATE_44_1:
653 maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
654 break;
655
656 case AUD_SAMPLE_RATE_48:
657 maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
658 break;
659
660 case AUD_SAMPLE_RATE_88_2:
661 maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
662 break;
663
664 case AUD_SAMPLE_RATE_96:
665 maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
666 break;
667
668 case AUD_SAMPLE_RATE_176_4:
669 maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
670 break;
671
672 case HAD_MAX_RATE:
673 maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
674 break;
675
676 default:
677 maud_val = -EINVAL;
678 break;
679 }
680 } else if (link_rate == DP_1_62_GHZ) {
681 switch (aud_samp_freq) {
682 case AUD_SAMPLE_RATE_32:
683 maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
684 break;
685
686 case AUD_SAMPLE_RATE_44_1:
687 maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
688 break;
689
690 case AUD_SAMPLE_RATE_48:
691 maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
692 break;
693
694 case AUD_SAMPLE_RATE_88_2:
695 maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
696 break;
697
698 case AUD_SAMPLE_RATE_96:
699 maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
700 break;
701
702 case AUD_SAMPLE_RATE_176_4:
703 maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
704 break;
705
706 case HAD_MAX_RATE:
707 maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
708 break;
709
710 default:
711 maud_val = -EINVAL;
712 break;
713 }
714 } else
715 maud_val = -EINVAL;
716
717 return maud_val;
718 }
719
720 /*
721 * Program HDMI audio CTS value
722 *
723 * @aud_samp_freq: sampling frequency of audio data
724 * @tmds: sampling frequency of the display data
725 * @link_rate: DP link rate
726 * @n_param: N value, depends on aud_samp_freq
727 * @intelhaddata: substream private data
728 *
729 * Program CTS register based on the audio and display sampling frequency
730 */
had_prog_cts(u32 aud_samp_freq,u32 tmds,u32 link_rate,u32 n_param,struct snd_intelhad * intelhaddata)731 static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate,
732 u32 n_param, struct snd_intelhad *intelhaddata)
733 {
734 u32 cts_val;
735 u64 dividend, divisor;
736
737 if (intelhaddata->dp_output) {
738 /* Substitute cts_val with Maud according to DP 1.2 spec*/
739 cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
740 } else {
741 /* Calculate CTS according to HDMI 1.3a spec*/
742 dividend = (u64)tmds * n_param*1000;
743 divisor = 128 * aud_samp_freq;
744 cts_val = div64_u64(dividend, divisor);
745 }
746 dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
747 tmds, n_param, cts_val);
748 had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
749 }
750
had_calculate_n_value(u32 aud_samp_freq)751 static int had_calculate_n_value(u32 aud_samp_freq)
752 {
753 int n_val;
754
755 /* Select N according to HDMI 1.3a spec*/
756 switch (aud_samp_freq) {
757 case AUD_SAMPLE_RATE_32:
758 n_val = 4096;
759 break;
760
761 case AUD_SAMPLE_RATE_44_1:
762 n_val = 6272;
763 break;
764
765 case AUD_SAMPLE_RATE_48:
766 n_val = 6144;
767 break;
768
769 case AUD_SAMPLE_RATE_88_2:
770 n_val = 12544;
771 break;
772
773 case AUD_SAMPLE_RATE_96:
774 n_val = 12288;
775 break;
776
777 case AUD_SAMPLE_RATE_176_4:
778 n_val = 25088;
779 break;
780
781 case HAD_MAX_RATE:
782 n_val = 24576;
783 break;
784
785 default:
786 n_val = -EINVAL;
787 break;
788 }
789 return n_val;
790 }
791
792 /*
793 * Program HDMI audio N value
794 *
795 * @aud_samp_freq: sampling frequency of audio data
796 * @n_param: N value, depends on aud_samp_freq
797 * @intelhaddata: substream private data
798 *
799 * This function is called in the prepare callback.
800 * It programs based on the audio and display sampling frequency
801 */
had_prog_n(u32 aud_samp_freq,u32 * n_param,struct snd_intelhad * intelhaddata)802 static int had_prog_n(u32 aud_samp_freq, u32 *n_param,
803 struct snd_intelhad *intelhaddata)
804 {
805 int n_val;
806
807 if (intelhaddata->dp_output) {
808 /*
809 * According to DP specs, Maud and Naud values hold
810 * a relationship, which is stated as:
811 * Maud/Naud = 512 * fs / f_LS_Clk
812 * where, fs is the sampling frequency of the audio stream
813 * and Naud is 32768 for Async clock.
814 */
815
816 n_val = DP_NAUD_VAL;
817 } else
818 n_val = had_calculate_n_value(aud_samp_freq);
819
820 if (n_val < 0)
821 return n_val;
822
823 had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
824 *n_param = n_val;
825 return 0;
826 }
827
828 /*
829 * PCM ring buffer handling
830 *
831 * The hardware provides a ring buffer with the fixed 4 buffer descriptors
832 * (BDs). The driver maps these 4 BDs onto the PCM ring buffer. The mapping
833 * moves at each period elapsed. The below illustrates how it works:
834 *
835 * At time=0
836 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
837 * BD | 0 | 1 | 2 | 3 |
838 *
839 * At time=1 (period elapsed)
840 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
841 * BD | 1 | 2 | 3 | 0 |
842 *
843 * At time=2 (second period elapsed)
844 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
845 * BD | 2 | 3 | 0 | 1 |
846 *
847 * The bd_head field points to the index of the BD to be read. It's also the
848 * position to be filled at next. The pcm_head and the pcm_filled fields
849 * point to the indices of the current position and of the next position to
850 * be filled, respectively. For PCM buffer there are both _head and _filled
851 * because they may be difference when nperiods > 4. For example, in the
852 * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
853 *
854 * pcm_head (=1) --v v-- pcm_filled (=5)
855 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
856 * BD | 1 | 2 | 3 | 0 |
857 * bd_head (=1) --^ ^-- next to fill (= bd_head)
858 *
859 * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
860 * the hardware skips those BDs in the loop.
861 *
862 * An exceptional setup is the case with nperiods=1. Since we have to update
863 * BDs after finishing one BD processing, we'd need at least two BDs, where
864 * both BDs point to the same content, the same address, the same size of the
865 * whole PCM buffer.
866 */
867
868 #define AUD_BUF_ADDR(x) (AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
869 #define AUD_BUF_LEN(x) (AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
870
871 /* Set up a buffer descriptor at the "filled" position */
had_prog_bd(struct snd_pcm_substream * substream,struct snd_intelhad * intelhaddata)872 static void had_prog_bd(struct snd_pcm_substream *substream,
873 struct snd_intelhad *intelhaddata)
874 {
875 int idx = intelhaddata->bd_head;
876 int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes;
877 u32 addr = substream->runtime->dma_addr + ofs;
878
879 addr |= AUD_BUF_VALID;
880 if (!substream->runtime->no_period_wakeup)
881 addr |= AUD_BUF_INTR_EN;
882 had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr);
883 had_write_register(intelhaddata, AUD_BUF_LEN(idx),
884 intelhaddata->period_bytes);
885
886 /* advance the indices to the next */
887 intelhaddata->bd_head++;
888 intelhaddata->bd_head %= intelhaddata->num_bds;
889 intelhaddata->pcmbuf_filled++;
890 intelhaddata->pcmbuf_filled %= substream->runtime->periods;
891 }
892
893 /* invalidate a buffer descriptor with the given index */
had_invalidate_bd(struct snd_intelhad * intelhaddata,int idx)894 static void had_invalidate_bd(struct snd_intelhad *intelhaddata,
895 int idx)
896 {
897 had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0);
898 had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0);
899 }
900
901 /* Initial programming of ring buffer */
had_init_ringbuf(struct snd_pcm_substream * substream,struct snd_intelhad * intelhaddata)902 static void had_init_ringbuf(struct snd_pcm_substream *substream,
903 struct snd_intelhad *intelhaddata)
904 {
905 struct snd_pcm_runtime *runtime = substream->runtime;
906 int i, num_periods;
907
908 num_periods = runtime->periods;
909 intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS);
910 /* set the minimum 2 BDs for num_periods=1 */
911 intelhaddata->num_bds = max(intelhaddata->num_bds, 2U);
912 intelhaddata->period_bytes =
913 frames_to_bytes(runtime, runtime->period_size);
914 WARN_ON(intelhaddata->period_bytes & 0x3f);
915
916 intelhaddata->bd_head = 0;
917 intelhaddata->pcmbuf_head = 0;
918 intelhaddata->pcmbuf_filled = 0;
919
920 for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) {
921 if (i < intelhaddata->num_bds)
922 had_prog_bd(substream, intelhaddata);
923 else /* invalidate the rest */
924 had_invalidate_bd(intelhaddata, i);
925 }
926
927 intelhaddata->bd_head = 0; /* reset at head again before starting */
928 }
929
930 /* process a bd, advance to the next */
had_advance_ringbuf(struct snd_pcm_substream * substream,struct snd_intelhad * intelhaddata)931 static void had_advance_ringbuf(struct snd_pcm_substream *substream,
932 struct snd_intelhad *intelhaddata)
933 {
934 int num_periods = substream->runtime->periods;
935
936 /* reprogram the next buffer */
937 had_prog_bd(substream, intelhaddata);
938
939 /* proceed to next */
940 intelhaddata->pcmbuf_head++;
941 intelhaddata->pcmbuf_head %= num_periods;
942 }
943
944 /* process the current BD(s);
945 * returns the current PCM buffer byte position, or -EPIPE for underrun.
946 */
had_process_ringbuf(struct snd_pcm_substream * substream,struct snd_intelhad * intelhaddata)947 static int had_process_ringbuf(struct snd_pcm_substream *substream,
948 struct snd_intelhad *intelhaddata)
949 {
950 int len, processed;
951 unsigned long flags;
952
953 processed = 0;
954 spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
955 for (;;) {
956 /* get the remaining bytes on the buffer */
957 had_read_register(intelhaddata,
958 AUD_BUF_LEN(intelhaddata->bd_head),
959 &len);
960 if (len < 0 || len > intelhaddata->period_bytes) {
961 dev_dbg(intelhaddata->dev, "Invalid buf length %d\n",
962 len);
963 len = -EPIPE;
964 goto out;
965 }
966
967 if (len > 0) /* OK, this is the current buffer */
968 break;
969
970 /* len=0 => already empty, check the next buffer */
971 if (++processed >= intelhaddata->num_bds) {
972 len = -EPIPE; /* all empty? - report underrun */
973 goto out;
974 }
975 had_advance_ringbuf(substream, intelhaddata);
976 }
977
978 len = intelhaddata->period_bytes - len;
979 len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head;
980 out:
981 spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
982 return len;
983 }
984
985 /* called from irq handler */
had_process_buffer_done(struct snd_intelhad * intelhaddata)986 static void had_process_buffer_done(struct snd_intelhad *intelhaddata)
987 {
988 struct snd_pcm_substream *substream;
989
990 substream = had_substream_get(intelhaddata);
991 if (!substream)
992 return; /* no stream? - bail out */
993
994 if (!intelhaddata->connected) {
995 snd_pcm_stop_xrun(substream);
996 goto out; /* disconnected? - bail out */
997 }
998
999 /* process or stop the stream */
1000 if (had_process_ringbuf(substream, intelhaddata) < 0)
1001 snd_pcm_stop_xrun(substream);
1002 else
1003 snd_pcm_period_elapsed(substream);
1004
1005 out:
1006 had_substream_put(intelhaddata);
1007 }
1008
1009 /*
1010 * The interrupt status 'sticky' bits might not be cleared by
1011 * setting '1' to that bit once...
1012 */
wait_clear_underrun_bit(struct snd_intelhad * intelhaddata)1013 static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata)
1014 {
1015 int i;
1016 u32 val;
1017
1018 for (i = 0; i < 100; i++) {
1019 /* clear bit30, 31 AUD_HDMI_STATUS */
1020 had_read_register(intelhaddata, AUD_HDMI_STATUS, &val);
1021 if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN))
1022 return;
1023 udelay(100);
1024 cond_resched();
1025 had_write_register(intelhaddata, AUD_HDMI_STATUS, val);
1026 }
1027 dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
1028 }
1029
1030 /* Perform some reset procedure after stopping the stream;
1031 * this is called from prepare or hw_free callbacks once after trigger STOP
1032 * or underrun has been processed in order to settle down the h/w state.
1033 */
had_pcm_sync_stop(struct snd_pcm_substream * substream)1034 static int had_pcm_sync_stop(struct snd_pcm_substream *substream)
1035 {
1036 struct snd_intelhad *intelhaddata = snd_pcm_substream_chip(substream);
1037
1038 if (!intelhaddata->connected)
1039 return 0;
1040
1041 /* Reset buffer pointers */
1042 had_reset_audio(intelhaddata);
1043 wait_clear_underrun_bit(intelhaddata);
1044 return 0;
1045 }
1046
1047 /* called from irq handler */
had_process_buffer_underrun(struct snd_intelhad * intelhaddata)1048 static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
1049 {
1050 struct snd_pcm_substream *substream;
1051
1052 /* Report UNDERRUN error to above layers */
1053 substream = had_substream_get(intelhaddata);
1054 if (substream) {
1055 snd_pcm_stop_xrun(substream);
1056 had_substream_put(intelhaddata);
1057 }
1058 }
1059
1060 /*
1061 * ALSA PCM open callback
1062 */
had_pcm_open(struct snd_pcm_substream * substream)1063 static int had_pcm_open(struct snd_pcm_substream *substream)
1064 {
1065 struct snd_intelhad *intelhaddata;
1066 struct snd_pcm_runtime *runtime;
1067 int retval;
1068
1069 intelhaddata = snd_pcm_substream_chip(substream);
1070 runtime = substream->runtime;
1071
1072 retval = pm_runtime_resume_and_get(intelhaddata->dev);
1073 if (retval < 0)
1074 return retval;
1075
1076 /* set the runtime hw parameter with local snd_pcm_hardware struct */
1077 runtime->hw = had_pcm_hardware;
1078
1079 retval = snd_pcm_hw_constraint_integer(runtime,
1080 SNDRV_PCM_HW_PARAM_PERIODS);
1081 if (retval < 0)
1082 goto error;
1083
1084 /* Make sure, that the period size is always aligned
1085 * 64byte boundary
1086 */
1087 retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
1088 SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
1089 if (retval < 0)
1090 goto error;
1091
1092 retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1093 if (retval < 0)
1094 goto error;
1095
1096 /* expose PCM substream */
1097 spin_lock_irq(&intelhaddata->had_spinlock);
1098 intelhaddata->stream_info.substream = substream;
1099 intelhaddata->stream_info.substream_refcount++;
1100 spin_unlock_irq(&intelhaddata->had_spinlock);
1101
1102 return retval;
1103 error:
1104 pm_runtime_mark_last_busy(intelhaddata->dev);
1105 pm_runtime_put_autosuspend(intelhaddata->dev);
1106 return retval;
1107 }
1108
1109 /*
1110 * ALSA PCM close callback
1111 */
had_pcm_close(struct snd_pcm_substream * substream)1112 static int had_pcm_close(struct snd_pcm_substream *substream)
1113 {
1114 struct snd_intelhad *intelhaddata;
1115
1116 intelhaddata = snd_pcm_substream_chip(substream);
1117
1118 /* unreference and sync with the pending PCM accesses */
1119 spin_lock_irq(&intelhaddata->had_spinlock);
1120 intelhaddata->stream_info.substream = NULL;
1121 intelhaddata->stream_info.substream_refcount--;
1122 while (intelhaddata->stream_info.substream_refcount > 0) {
1123 spin_unlock_irq(&intelhaddata->had_spinlock);
1124 cpu_relax();
1125 spin_lock_irq(&intelhaddata->had_spinlock);
1126 }
1127 spin_unlock_irq(&intelhaddata->had_spinlock);
1128
1129 pm_runtime_mark_last_busy(intelhaddata->dev);
1130 pm_runtime_put_autosuspend(intelhaddata->dev);
1131 return 0;
1132 }
1133
1134 /*
1135 * ALSA PCM hw_params callback
1136 */
had_pcm_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * hw_params)1137 static int had_pcm_hw_params(struct snd_pcm_substream *substream,
1138 struct snd_pcm_hw_params *hw_params)
1139 {
1140 struct snd_intelhad *intelhaddata;
1141 int buf_size;
1142
1143 intelhaddata = snd_pcm_substream_chip(substream);
1144 buf_size = params_buffer_bytes(hw_params);
1145 dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
1146 __func__, buf_size);
1147 return 0;
1148 }
1149
1150 /*
1151 * ALSA PCM trigger callback
1152 */
had_pcm_trigger(struct snd_pcm_substream * substream,int cmd)1153 static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1154 {
1155 int retval = 0;
1156 struct snd_intelhad *intelhaddata;
1157
1158 intelhaddata = snd_pcm_substream_chip(substream);
1159
1160 spin_lock(&intelhaddata->had_spinlock);
1161 switch (cmd) {
1162 case SNDRV_PCM_TRIGGER_START:
1163 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1164 case SNDRV_PCM_TRIGGER_RESUME:
1165 /* Enable Audio */
1166 had_ack_irqs(intelhaddata); /* FIXME: do we need this? */
1167 had_enable_audio(intelhaddata, true);
1168 break;
1169
1170 case SNDRV_PCM_TRIGGER_STOP:
1171 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1172 /* Disable Audio */
1173 had_enable_audio(intelhaddata, false);
1174 break;
1175
1176 default:
1177 retval = -EINVAL;
1178 }
1179 spin_unlock(&intelhaddata->had_spinlock);
1180 return retval;
1181 }
1182
1183 /*
1184 * ALSA PCM prepare callback
1185 */
had_pcm_prepare(struct snd_pcm_substream * substream)1186 static int had_pcm_prepare(struct snd_pcm_substream *substream)
1187 {
1188 int retval;
1189 u32 disp_samp_freq, n_param;
1190 u32 link_rate = 0;
1191 struct snd_intelhad *intelhaddata;
1192 struct snd_pcm_runtime *runtime;
1193
1194 intelhaddata = snd_pcm_substream_chip(substream);
1195 runtime = substream->runtime;
1196
1197 dev_dbg(intelhaddata->dev, "period_size=%d\n",
1198 (int)frames_to_bytes(runtime, runtime->period_size));
1199 dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
1200 dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
1201 (int)snd_pcm_lib_buffer_bytes(substream));
1202 dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
1203 dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
1204
1205 /* Get N value in KHz */
1206 disp_samp_freq = intelhaddata->tmds_clock_speed;
1207
1208 retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1209 if (retval) {
1210 dev_err(intelhaddata->dev,
1211 "programming N value failed %#x\n", retval);
1212 goto prep_end;
1213 }
1214
1215 if (intelhaddata->dp_output)
1216 link_rate = intelhaddata->link_rate;
1217
1218 had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1219 n_param, intelhaddata);
1220
1221 had_prog_dip(substream, intelhaddata);
1222
1223 retval = had_init_audio_ctrl(substream, intelhaddata);
1224
1225 /* Prog buffer address */
1226 had_init_ringbuf(substream, intelhaddata);
1227
1228 /*
1229 * Program channel mapping in following order:
1230 * FL, FR, C, LFE, RL, RR
1231 */
1232
1233 had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
1234
1235 prep_end:
1236 return retval;
1237 }
1238
1239 /*
1240 * ALSA PCM pointer callback
1241 */
had_pcm_pointer(struct snd_pcm_substream * substream)1242 static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream)
1243 {
1244 struct snd_intelhad *intelhaddata;
1245 int len;
1246
1247 intelhaddata = snd_pcm_substream_chip(substream);
1248
1249 if (!intelhaddata->connected)
1250 return SNDRV_PCM_POS_XRUN;
1251
1252 len = had_process_ringbuf(substream, intelhaddata);
1253 if (len < 0)
1254 return SNDRV_PCM_POS_XRUN;
1255 len = bytes_to_frames(substream->runtime, len);
1256 /* wrapping may happen when periods=1 */
1257 len %= substream->runtime->buffer_size;
1258 return len;
1259 }
1260
1261 /*
1262 * ALSA PCM ops
1263 */
1264 static const struct snd_pcm_ops had_pcm_ops = {
1265 .open = had_pcm_open,
1266 .close = had_pcm_close,
1267 .hw_params = had_pcm_hw_params,
1268 .prepare = had_pcm_prepare,
1269 .trigger = had_pcm_trigger,
1270 .sync_stop = had_pcm_sync_stop,
1271 .pointer = had_pcm_pointer,
1272 };
1273
1274 /* process mode change of the running stream; called in mutex */
had_process_mode_change(struct snd_intelhad * intelhaddata)1275 static int had_process_mode_change(struct snd_intelhad *intelhaddata)
1276 {
1277 struct snd_pcm_substream *substream;
1278 int retval = 0;
1279 u32 disp_samp_freq, n_param;
1280 u32 link_rate = 0;
1281
1282 substream = had_substream_get(intelhaddata);
1283 if (!substream)
1284 return 0;
1285
1286 /* Disable Audio */
1287 had_enable_audio(intelhaddata, false);
1288
1289 /* Update CTS value */
1290 disp_samp_freq = intelhaddata->tmds_clock_speed;
1291
1292 retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1293 if (retval) {
1294 dev_err(intelhaddata->dev,
1295 "programming N value failed %#x\n", retval);
1296 goto out;
1297 }
1298
1299 if (intelhaddata->dp_output)
1300 link_rate = intelhaddata->link_rate;
1301
1302 had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1303 n_param, intelhaddata);
1304
1305 /* Enable Audio */
1306 had_enable_audio(intelhaddata, true);
1307
1308 out:
1309 had_substream_put(intelhaddata);
1310 return retval;
1311 }
1312
1313 /* process hot plug, called from wq with mutex locked */
had_process_hot_plug(struct snd_intelhad * intelhaddata)1314 static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
1315 {
1316 struct snd_pcm_substream *substream;
1317
1318 spin_lock_irq(&intelhaddata->had_spinlock);
1319 if (intelhaddata->connected) {
1320 dev_dbg(intelhaddata->dev, "Device already connected\n");
1321 spin_unlock_irq(&intelhaddata->had_spinlock);
1322 return;
1323 }
1324
1325 /* Disable Audio */
1326 had_enable_audio(intelhaddata, false);
1327
1328 intelhaddata->connected = true;
1329 dev_dbg(intelhaddata->dev,
1330 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1331 __func__, __LINE__);
1332 spin_unlock_irq(&intelhaddata->had_spinlock);
1333
1334 had_build_channel_allocation_map(intelhaddata);
1335
1336 /* Report to above ALSA layer */
1337 substream = had_substream_get(intelhaddata);
1338 if (substream) {
1339 snd_pcm_stop_xrun(substream);
1340 had_substream_put(intelhaddata);
1341 }
1342
1343 snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT);
1344 }
1345
1346 /* process hot unplug, called from wq with mutex locked */
had_process_hot_unplug(struct snd_intelhad * intelhaddata)1347 static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
1348 {
1349 struct snd_pcm_substream *substream;
1350
1351 spin_lock_irq(&intelhaddata->had_spinlock);
1352 if (!intelhaddata->connected) {
1353 dev_dbg(intelhaddata->dev, "Device already disconnected\n");
1354 spin_unlock_irq(&intelhaddata->had_spinlock);
1355 return;
1356
1357 }
1358
1359 /* Disable Audio */
1360 had_enable_audio(intelhaddata, false);
1361
1362 intelhaddata->connected = false;
1363 dev_dbg(intelhaddata->dev,
1364 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1365 __func__, __LINE__);
1366 spin_unlock_irq(&intelhaddata->had_spinlock);
1367
1368 kfree(intelhaddata->chmap->chmap);
1369 intelhaddata->chmap->chmap = NULL;
1370
1371 /* Report to above ALSA layer */
1372 substream = had_substream_get(intelhaddata);
1373 if (substream) {
1374 snd_pcm_stop_xrun(substream);
1375 had_substream_put(intelhaddata);
1376 }
1377
1378 snd_jack_report(intelhaddata->jack, 0);
1379 }
1380
1381 /*
1382 * ALSA iec958 and ELD controls
1383 */
1384
had_iec958_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)1385 static int had_iec958_info(struct snd_kcontrol *kcontrol,
1386 struct snd_ctl_elem_info *uinfo)
1387 {
1388 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1389 uinfo->count = 1;
1390 return 0;
1391 }
1392
had_iec958_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1393 static int had_iec958_get(struct snd_kcontrol *kcontrol,
1394 struct snd_ctl_elem_value *ucontrol)
1395 {
1396 struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1397
1398 mutex_lock(&intelhaddata->mutex);
1399 ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
1400 ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
1401 ucontrol->value.iec958.status[2] =
1402 (intelhaddata->aes_bits >> 16) & 0xff;
1403 ucontrol->value.iec958.status[3] =
1404 (intelhaddata->aes_bits >> 24) & 0xff;
1405 mutex_unlock(&intelhaddata->mutex);
1406 return 0;
1407 }
1408
had_iec958_mask_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1409 static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
1410 struct snd_ctl_elem_value *ucontrol)
1411 {
1412 ucontrol->value.iec958.status[0] = 0xff;
1413 ucontrol->value.iec958.status[1] = 0xff;
1414 ucontrol->value.iec958.status[2] = 0xff;
1415 ucontrol->value.iec958.status[3] = 0xff;
1416 return 0;
1417 }
1418
had_iec958_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1419 static int had_iec958_put(struct snd_kcontrol *kcontrol,
1420 struct snd_ctl_elem_value *ucontrol)
1421 {
1422 unsigned int val;
1423 struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1424 int changed = 0;
1425
1426 val = (ucontrol->value.iec958.status[0] << 0) |
1427 (ucontrol->value.iec958.status[1] << 8) |
1428 (ucontrol->value.iec958.status[2] << 16) |
1429 (ucontrol->value.iec958.status[3] << 24);
1430 mutex_lock(&intelhaddata->mutex);
1431 if (intelhaddata->aes_bits != val) {
1432 intelhaddata->aes_bits = val;
1433 changed = 1;
1434 }
1435 mutex_unlock(&intelhaddata->mutex);
1436 return changed;
1437 }
1438
had_ctl_eld_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)1439 static int had_ctl_eld_info(struct snd_kcontrol *kcontrol,
1440 struct snd_ctl_elem_info *uinfo)
1441 {
1442 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
1443 uinfo->count = HDMI_MAX_ELD_BYTES;
1444 return 0;
1445 }
1446
had_ctl_eld_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1447 static int had_ctl_eld_get(struct snd_kcontrol *kcontrol,
1448 struct snd_ctl_elem_value *ucontrol)
1449 {
1450 struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1451
1452 mutex_lock(&intelhaddata->mutex);
1453 memcpy(ucontrol->value.bytes.data, intelhaddata->eld,
1454 HDMI_MAX_ELD_BYTES);
1455 mutex_unlock(&intelhaddata->mutex);
1456 return 0;
1457 }
1458
1459 static const struct snd_kcontrol_new had_controls[] = {
1460 {
1461 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1462 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1463 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
1464 .info = had_iec958_info, /* shared */
1465 .get = had_iec958_mask_get,
1466 },
1467 {
1468 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1469 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1470 .info = had_iec958_info,
1471 .get = had_iec958_get,
1472 .put = had_iec958_put,
1473 },
1474 {
1475 .access = (SNDRV_CTL_ELEM_ACCESS_READ |
1476 SNDRV_CTL_ELEM_ACCESS_VOLATILE),
1477 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1478 .name = "ELD",
1479 .info = had_ctl_eld_info,
1480 .get = had_ctl_eld_get,
1481 },
1482 };
1483
1484 /*
1485 * audio interrupt handler
1486 */
display_pipe_interrupt_handler(int irq,void * dev_id)1487 static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
1488 {
1489 struct snd_intelhad_card *card_ctx = dev_id;
1490 u32 audio_stat[3] = {};
1491 int pipe, port;
1492
1493 for_each_pipe(card_ctx, pipe) {
1494 /* use raw register access to ack IRQs even while disconnected */
1495 audio_stat[pipe] = had_read_register_raw(card_ctx, pipe,
1496 AUD_HDMI_STATUS) &
1497 (HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE);
1498
1499 if (audio_stat[pipe])
1500 had_write_register_raw(card_ctx, pipe,
1501 AUD_HDMI_STATUS, audio_stat[pipe]);
1502 }
1503
1504 for_each_port(card_ctx, port) {
1505 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1506 int pipe = ctx->pipe;
1507
1508 if (pipe < 0)
1509 continue;
1510
1511 if (audio_stat[pipe] & HDMI_AUDIO_BUFFER_DONE)
1512 had_process_buffer_done(ctx);
1513 if (audio_stat[pipe] & HDMI_AUDIO_UNDERRUN)
1514 had_process_buffer_underrun(ctx);
1515 }
1516
1517 return IRQ_HANDLED;
1518 }
1519
1520 /*
1521 * monitor plug/unplug notification from i915; just kick off the work
1522 */
notify_audio_lpe(struct platform_device * pdev,int port)1523 static void notify_audio_lpe(struct platform_device *pdev, int port)
1524 {
1525 struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1526 struct snd_intelhad *ctx;
1527
1528 ctx = &card_ctx->pcm_ctx[single_port ? 0 : port];
1529 if (single_port)
1530 ctx->port = port;
1531
1532 schedule_work(&ctx->hdmi_audio_wq);
1533 }
1534
1535 /* the work to handle monitor hot plug/unplug */
had_audio_wq(struct work_struct * work)1536 static void had_audio_wq(struct work_struct *work)
1537 {
1538 struct snd_intelhad *ctx =
1539 container_of(work, struct snd_intelhad, hdmi_audio_wq);
1540 struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
1541 struct intel_hdmi_lpe_audio_port_pdata *ppdata = &pdata->port[ctx->port];
1542 int ret;
1543
1544 ret = pm_runtime_resume_and_get(ctx->dev);
1545 if (ret < 0)
1546 return;
1547
1548 mutex_lock(&ctx->mutex);
1549 if (ppdata->pipe < 0) {
1550 dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n",
1551 __func__, ctx->port);
1552
1553 memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */
1554
1555 ctx->dp_output = false;
1556 ctx->tmds_clock_speed = 0;
1557 ctx->link_rate = 0;
1558
1559 /* Shut down the stream */
1560 had_process_hot_unplug(ctx);
1561
1562 ctx->pipe = -1;
1563 } else {
1564 dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1565 __func__, ctx->port, ppdata->ls_clock);
1566
1567 memcpy(ctx->eld, ppdata->eld, sizeof(ctx->eld));
1568
1569 ctx->dp_output = ppdata->dp_output;
1570 if (ctx->dp_output) {
1571 ctx->tmds_clock_speed = 0;
1572 ctx->link_rate = ppdata->ls_clock;
1573 } else {
1574 ctx->tmds_clock_speed = ppdata->ls_clock;
1575 ctx->link_rate = 0;
1576 }
1577
1578 /*
1579 * Shut down the stream before we change
1580 * the pipe assignment for this pcm device
1581 */
1582 had_process_hot_plug(ctx);
1583
1584 ctx->pipe = ppdata->pipe;
1585
1586 /* Restart the stream if necessary */
1587 had_process_mode_change(ctx);
1588 }
1589
1590 mutex_unlock(&ctx->mutex);
1591 pm_runtime_mark_last_busy(ctx->dev);
1592 pm_runtime_put_autosuspend(ctx->dev);
1593 }
1594
1595 /*
1596 * Jack interface
1597 */
had_create_jack(struct snd_intelhad * ctx,struct snd_pcm * pcm)1598 static int had_create_jack(struct snd_intelhad *ctx,
1599 struct snd_pcm *pcm)
1600 {
1601 char hdmi_str[32];
1602 int err;
1603
1604 snprintf(hdmi_str, sizeof(hdmi_str),
1605 "HDMI/DP,pcm=%d", pcm->device);
1606
1607 err = snd_jack_new(ctx->card_ctx->card, hdmi_str,
1608 SND_JACK_AVOUT, &ctx->jack,
1609 true, false);
1610 if (err < 0)
1611 return err;
1612 ctx->jack->private_data = ctx;
1613 return 0;
1614 }
1615
1616 /*
1617 * PM callbacks
1618 */
1619
hdmi_lpe_audio_suspend(struct device * dev)1620 static int __maybe_unused hdmi_lpe_audio_suspend(struct device *dev)
1621 {
1622 struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1623
1624 snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D3hot);
1625
1626 return 0;
1627 }
1628
hdmi_lpe_audio_resume(struct device * dev)1629 static int __maybe_unused hdmi_lpe_audio_resume(struct device *dev)
1630 {
1631 struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1632
1633 pm_runtime_mark_last_busy(dev);
1634
1635 snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D0);
1636
1637 return 0;
1638 }
1639
1640 /* release resources */
hdmi_lpe_audio_free(struct snd_card * card)1641 static void hdmi_lpe_audio_free(struct snd_card *card)
1642 {
1643 struct snd_intelhad_card *card_ctx = card->private_data;
1644 struct intel_hdmi_lpe_audio_pdata *pdata = card_ctx->dev->platform_data;
1645 int port;
1646
1647 spin_lock_irq(&pdata->lpe_audio_slock);
1648 pdata->notify_audio_lpe = NULL;
1649 spin_unlock_irq(&pdata->lpe_audio_slock);
1650
1651 for_each_port(card_ctx, port) {
1652 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1653
1654 cancel_work_sync(&ctx->hdmi_audio_wq);
1655 }
1656 }
1657
1658 /*
1659 * hdmi_lpe_audio_probe - start bridge with i915
1660 *
1661 * This function is called when the i915 driver creates the
1662 * hdmi-lpe-audio platform device.
1663 */
__hdmi_lpe_audio_probe(struct platform_device * pdev)1664 static int __hdmi_lpe_audio_probe(struct platform_device *pdev)
1665 {
1666 struct snd_card *card;
1667 struct snd_intelhad_card *card_ctx;
1668 struct snd_intelhad *ctx;
1669 struct snd_pcm *pcm;
1670 struct intel_hdmi_lpe_audio_pdata *pdata;
1671 int irq;
1672 struct resource *res_mmio;
1673 int port, ret;
1674
1675 pdata = pdev->dev.platform_data;
1676 if (!pdata) {
1677 dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
1678 return -EINVAL;
1679 }
1680
1681 /* get resources */
1682 irq = platform_get_irq(pdev, 0);
1683 if (irq < 0)
1684 return irq;
1685
1686 res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1687 if (!res_mmio) {
1688 dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
1689 return -ENXIO;
1690 }
1691
1692 /* create a card instance with ALSA framework */
1693 ret = snd_devm_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
1694 THIS_MODULE, sizeof(*card_ctx), &card);
1695 if (ret)
1696 return ret;
1697
1698 card_ctx = card->private_data;
1699 card_ctx->dev = &pdev->dev;
1700 card_ctx->card = card;
1701 strcpy(card->driver, INTEL_HAD);
1702 strcpy(card->shortname, "Intel HDMI/DP LPE Audio");
1703 strcpy(card->longname, "Intel HDMI/DP LPE Audio");
1704
1705 card_ctx->irq = -1;
1706
1707 card->private_free = hdmi_lpe_audio_free;
1708
1709 platform_set_drvdata(pdev, card_ctx);
1710
1711 card_ctx->num_pipes = pdata->num_pipes;
1712 card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1713
1714 for_each_port(card_ctx, port) {
1715 ctx = &card_ctx->pcm_ctx[port];
1716 ctx->card_ctx = card_ctx;
1717 ctx->dev = card_ctx->dev;
1718 ctx->port = single_port ? -1 : port;
1719 ctx->pipe = -1;
1720
1721 spin_lock_init(&ctx->had_spinlock);
1722 mutex_init(&ctx->mutex);
1723 INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
1724 }
1725
1726 dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1727 __func__, (unsigned int)res_mmio->start,
1728 (unsigned int)res_mmio->end);
1729
1730 card_ctx->mmio_start =
1731 devm_ioremap(&pdev->dev, res_mmio->start,
1732 (size_t)(resource_size(res_mmio)));
1733 if (!card_ctx->mmio_start) {
1734 dev_err(&pdev->dev, "Could not get ioremap\n");
1735 return -EACCES;
1736 }
1737
1738 /* setup interrupt handler */
1739 ret = devm_request_irq(&pdev->dev, irq, display_pipe_interrupt_handler,
1740 0, pdev->name, card_ctx);
1741 if (ret < 0) {
1742 dev_err(&pdev->dev, "request_irq failed\n");
1743 return ret;
1744 }
1745
1746 card_ctx->irq = irq;
1747
1748 /* only 32bit addressable */
1749 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1750 if (ret)
1751 return ret;
1752
1753 init_channel_allocations();
1754
1755 card_ctx->num_pipes = pdata->num_pipes;
1756 card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1757
1758 for_each_port(card_ctx, port) {
1759 int i;
1760
1761 ctx = &card_ctx->pcm_ctx[port];
1762 ret = snd_pcm_new(card, INTEL_HAD, port, MAX_PB_STREAMS,
1763 MAX_CAP_STREAMS, &pcm);
1764 if (ret)
1765 return ret;
1766
1767 /* setup private data which can be retrieved when required */
1768 pcm->private_data = ctx;
1769 pcm->info_flags = 0;
1770 strscpy(pcm->name, card->shortname, strlen(card->shortname));
1771 /* setup the ops for playback */
1772 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops);
1773
1774 /* allocate dma pages;
1775 * try to allocate 600k buffer as default which is large enough
1776 */
1777 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV_WC,
1778 card->dev, HAD_DEFAULT_BUFFER,
1779 HAD_MAX_BUFFER);
1780
1781 /* create controls */
1782 for (i = 0; i < ARRAY_SIZE(had_controls); i++) {
1783 struct snd_kcontrol *kctl;
1784
1785 kctl = snd_ctl_new1(&had_controls[i], ctx);
1786 if (!kctl)
1787 return -ENOMEM;
1788
1789 kctl->id.device = pcm->device;
1790
1791 ret = snd_ctl_add(card, kctl);
1792 if (ret < 0)
1793 return ret;
1794 }
1795
1796 /* Register channel map controls */
1797 ret = had_register_chmap_ctls(ctx, pcm);
1798 if (ret < 0)
1799 return ret;
1800
1801 ret = had_create_jack(ctx, pcm);
1802 if (ret < 0)
1803 return ret;
1804 }
1805
1806 ret = snd_card_register(card);
1807 if (ret)
1808 return ret;
1809
1810 spin_lock_irq(&pdata->lpe_audio_slock);
1811 pdata->notify_audio_lpe = notify_audio_lpe;
1812 spin_unlock_irq(&pdata->lpe_audio_slock);
1813
1814 pm_runtime_set_autosuspend_delay(&pdev->dev, INTEL_HDMI_AUDIO_SUSPEND_DELAY_MS);
1815 pm_runtime_use_autosuspend(&pdev->dev);
1816 pm_runtime_enable(&pdev->dev);
1817 pm_runtime_mark_last_busy(&pdev->dev);
1818 pm_runtime_idle(&pdev->dev);
1819
1820 dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
1821 for_each_port(card_ctx, port) {
1822 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1823
1824 schedule_work(&ctx->hdmi_audio_wq);
1825 }
1826
1827 return 0;
1828 }
1829
hdmi_lpe_audio_probe(struct platform_device * pdev)1830 static int hdmi_lpe_audio_probe(struct platform_device *pdev)
1831 {
1832 return snd_card_free_on_error(&pdev->dev, __hdmi_lpe_audio_probe(pdev));
1833 }
1834
1835 static const struct dev_pm_ops hdmi_lpe_audio_pm = {
1836 SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume)
1837 };
1838
1839 static struct platform_driver hdmi_lpe_audio_driver = {
1840 .driver = {
1841 .name = "hdmi-lpe-audio",
1842 .pm = &hdmi_lpe_audio_pm,
1843 },
1844 .probe = hdmi_lpe_audio_probe,
1845 };
1846
1847 module_platform_driver(hdmi_lpe_audio_driver);
1848 MODULE_ALIAS("platform:hdmi_lpe_audio");
1849
1850 MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1851 MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1852 MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1853 MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1854 MODULE_DESCRIPTION("Intel HDMI Audio driver");
1855 MODULE_LICENSE("GPL v2");
1856