1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Exception handling code
4 *
5 * Copyright (C) 2019 ARM Ltd.
6 */
7
8 #include <linux/context_tracking.h>
9 #include <linux/irq-entry-common.h>
10 #include <linux/kasan.h>
11 #include <linux/linkage.h>
12 #include <linux/livepatch.h>
13 #include <linux/lockdep.h>
14 #include <linux/ptrace.h>
15 #include <linux/resume_user_mode.h>
16 #include <linux/sched.h>
17 #include <linux/sched/debug.h>
18 #include <linux/thread_info.h>
19
20 #include <asm/cpufeature.h>
21 #include <asm/daifflags.h>
22 #include <asm/esr.h>
23 #include <asm/exception.h>
24 #include <asm/irq_regs.h>
25 #include <asm/kprobes.h>
26 #include <asm/mmu.h>
27 #include <asm/processor.h>
28 #include <asm/sdei.h>
29 #include <asm/stacktrace.h>
30 #include <asm/sysreg.h>
31 #include <asm/system_misc.h>
32
33 /*
34 * Handle IRQ/context state management when entering from kernel mode.
35 * Before this function is called it is not safe to call regular kernel code,
36 * instrumentable code, or any code which may trigger an exception.
37 */
enter_from_kernel_mode(struct pt_regs * regs)38 static noinstr irqentry_state_t enter_from_kernel_mode(struct pt_regs *regs)
39 {
40 irqentry_state_t state;
41
42 state = irqentry_enter(regs);
43 mte_check_tfsr_entry();
44 mte_disable_tco_entry(current);
45
46 return state;
47 }
48
49 /*
50 * Handle IRQ/context state management when exiting to kernel mode.
51 * After this function returns it is not safe to call regular kernel code,
52 * instrumentable code, or any code which may trigger an exception.
53 */
exit_to_kernel_mode(struct pt_regs * regs,irqentry_state_t state)54 static void noinstr exit_to_kernel_mode(struct pt_regs *regs,
55 irqentry_state_t state)
56 {
57 mte_check_tfsr_exit();
58 irqentry_exit(regs, state);
59 }
60
61 /*
62 * Handle IRQ/context state management when entering from user mode.
63 * Before this function is called it is not safe to call regular kernel code,
64 * instrumentable code, or any code which may trigger an exception.
65 */
arm64_enter_from_user_mode(struct pt_regs * regs)66 static __always_inline void arm64_enter_from_user_mode(struct pt_regs *regs)
67 {
68 enter_from_user_mode(regs);
69 mte_disable_tco_entry(current);
70 }
71
72 /*
73 * Handle IRQ/context state management when exiting to user mode.
74 * After this function returns it is not safe to call regular kernel code,
75 * instrumentable code, or any code which may trigger an exception.
76 */
77
arm64_exit_to_user_mode(struct pt_regs * regs)78 static __always_inline void arm64_exit_to_user_mode(struct pt_regs *regs)
79 {
80 local_irq_disable();
81 exit_to_user_mode_prepare_legacy(regs);
82 local_daif_mask();
83 mte_check_tfsr_exit();
84 exit_to_user_mode();
85 }
86
asm_exit_to_user_mode(struct pt_regs * regs)87 asmlinkage void noinstr asm_exit_to_user_mode(struct pt_regs *regs)
88 {
89 arm64_exit_to_user_mode(regs);
90 }
91
92 /*
93 * Handle IRQ/context state management when entering a debug exception from
94 * kernel mode. Before this function is called it is not safe to call regular
95 * kernel code, instrumentable code, or any code which may trigger an exception.
96 */
arm64_enter_el1_dbg(struct pt_regs * regs)97 static noinstr irqentry_state_t arm64_enter_el1_dbg(struct pt_regs *regs)
98 {
99 irqentry_state_t state;
100
101 state.lockdep = lockdep_hardirqs_enabled();
102
103 lockdep_hardirqs_off(CALLER_ADDR0);
104 ct_nmi_enter();
105
106 trace_hardirqs_off_finish();
107
108 return state;
109 }
110
111 /*
112 * Handle IRQ/context state management when exiting a debug exception from
113 * kernel mode. After this function returns it is not safe to call regular
114 * kernel code, instrumentable code, or any code which may trigger an exception.
115 */
arm64_exit_el1_dbg(struct pt_regs * regs,irqentry_state_t state)116 static void noinstr arm64_exit_el1_dbg(struct pt_regs *regs,
117 irqentry_state_t state)
118 {
119 if (state.lockdep) {
120 trace_hardirqs_on_prepare();
121 lockdep_hardirqs_on_prepare();
122 }
123
124 ct_nmi_exit();
125 if (state.lockdep)
126 lockdep_hardirqs_on(CALLER_ADDR0);
127 }
128
do_interrupt_handler(struct pt_regs * regs,void (* handler)(struct pt_regs *))129 static void do_interrupt_handler(struct pt_regs *regs,
130 void (*handler)(struct pt_regs *))
131 {
132 struct pt_regs *old_regs = set_irq_regs(regs);
133
134 if (on_thread_stack())
135 call_on_irq_stack(regs, handler);
136 else
137 handler(regs);
138
139 set_irq_regs(old_regs);
140 }
141
142 extern void (*handle_arch_irq)(struct pt_regs *);
143 extern void (*handle_arch_fiq)(struct pt_regs *);
144
__panic_unhandled(struct pt_regs * regs,const char * vector,unsigned long esr)145 static void noinstr __panic_unhandled(struct pt_regs *regs, const char *vector,
146 unsigned long esr)
147 {
148 irqentry_nmi_enter(regs);
149
150 console_verbose();
151
152 pr_crit("Unhandled %s exception on CPU%d, ESR 0x%016lx -- %s\n",
153 vector, smp_processor_id(), esr,
154 esr_get_class_string(esr));
155
156 __show_regs(regs);
157 panic("Unhandled exception");
158 }
159
160 #define UNHANDLED(el, regsize, vector) \
161 asmlinkage void noinstr el##_##regsize##_##vector##_handler(struct pt_regs *regs) \
162 { \
163 const char *desc = #regsize "-bit " #el " " #vector; \
164 __panic_unhandled(regs, desc, read_sysreg(esr_el1)); \
165 }
166
167 #ifdef CONFIG_ARM64_ERRATUM_1463225
168 static DEFINE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
169
cortex_a76_erratum_1463225_svc_handler(void)170 static void cortex_a76_erratum_1463225_svc_handler(void)
171 {
172 u64 reg, val;
173
174 if (!unlikely(test_thread_flag(TIF_SINGLESTEP)))
175 return;
176
177 if (!unlikely(this_cpu_has_cap(ARM64_WORKAROUND_1463225)))
178 return;
179
180 __this_cpu_write(__in_cortex_a76_erratum_1463225_wa, 1);
181 reg = read_sysreg(mdscr_el1);
182 val = reg | MDSCR_EL1_SS | MDSCR_EL1_KDE;
183 write_sysreg(val, mdscr_el1);
184 asm volatile("msr daifclr, #8");
185 isb();
186
187 /* We will have taken a single-step exception by this point */
188
189 write_sysreg(reg, mdscr_el1);
190 __this_cpu_write(__in_cortex_a76_erratum_1463225_wa, 0);
191 }
192
193 static __always_inline bool
cortex_a76_erratum_1463225_debug_handler(struct pt_regs * regs)194 cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
195 {
196 if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
197 return false;
198
199 /*
200 * We've taken a dummy step exception from the kernel to ensure
201 * that interrupts are re-enabled on the syscall path. Return back
202 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
203 * masked so that we can safely restore the mdscr and get on with
204 * handling the syscall.
205 */
206 regs->pstate |= PSR_D_BIT;
207 return true;
208 }
209 #else /* CONFIG_ARM64_ERRATUM_1463225 */
cortex_a76_erratum_1463225_svc_handler(void)210 static void cortex_a76_erratum_1463225_svc_handler(void) { }
cortex_a76_erratum_1463225_debug_handler(struct pt_regs * regs)211 static bool cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
212 {
213 return false;
214 }
215 #endif /* CONFIG_ARM64_ERRATUM_1463225 */
216
217 /*
218 * As per the ABI exit SME streaming mode and clear the SVE state not
219 * shared with FPSIMD on syscall entry.
220 */
fpsimd_syscall_enter(void)221 static inline void fpsimd_syscall_enter(void)
222 {
223 /* Ensure PSTATE.SM is clear, but leave PSTATE.ZA as-is. */
224 if (system_supports_sme())
225 sme_smstop_sm();
226
227 /*
228 * The CPU is not in streaming mode. If non-streaming SVE is not
229 * supported, there is no SVE state that needs to be discarded.
230 */
231 if (!system_supports_sve())
232 return;
233
234 if (test_thread_flag(TIF_SVE)) {
235 unsigned int sve_vq_minus_one;
236
237 sve_vq_minus_one = sve_vq_from_vl(task_get_sve_vl(current)) - 1;
238 sve_flush_live(true, sve_vq_minus_one);
239 }
240
241 /*
242 * Any live non-FPSIMD SVE state has been zeroed. Allow
243 * fpsimd_save_user_state() to lazily discard SVE state until either
244 * the live state is unbound or fpsimd_syscall_exit() is called.
245 */
246 __this_cpu_write(fpsimd_last_state.to_save, FP_STATE_FPSIMD);
247 }
248
fpsimd_syscall_exit(void)249 static __always_inline void fpsimd_syscall_exit(void)
250 {
251 if (!system_supports_sve())
252 return;
253
254 /*
255 * The current task's user FPSIMD/SVE/SME state is now bound to this
256 * CPU. The fpsimd_last_state.to_save value is either:
257 *
258 * - FP_STATE_FPSIMD, if the state has not been reloaded on this CPU
259 * since fpsimd_syscall_enter().
260 *
261 * - FP_STATE_CURRENT, if the state has been reloaded on this CPU at
262 * any point.
263 *
264 * Reset this to FP_STATE_CURRENT to stop lazy discarding.
265 */
266 __this_cpu_write(fpsimd_last_state.to_save, FP_STATE_CURRENT);
267 }
268
269 /*
270 * In debug exception context, we explicitly disable preemption despite
271 * having interrupts disabled.
272 * This serves two purposes: it makes it much less likely that we would
273 * accidentally schedule in exception context and it will force a warning
274 * if we somehow manage to schedule by accident.
275 */
debug_exception_enter(struct pt_regs * regs)276 static void debug_exception_enter(struct pt_regs *regs)
277 {
278 preempt_disable();
279
280 /* This code is a bit fragile. Test it. */
281 RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
282 }
283 NOKPROBE_SYMBOL(debug_exception_enter);
284
debug_exception_exit(struct pt_regs * regs)285 static void debug_exception_exit(struct pt_regs *regs)
286 {
287 preempt_enable_no_resched();
288 }
289 NOKPROBE_SYMBOL(debug_exception_exit);
290
291 UNHANDLED(el1t, 64, sync)
292 UNHANDLED(el1t, 64, irq)
293 UNHANDLED(el1t, 64, fiq)
294 UNHANDLED(el1t, 64, error)
295
el1_abort(struct pt_regs * regs,unsigned long esr)296 static void noinstr el1_abort(struct pt_regs *regs, unsigned long esr)
297 {
298 unsigned long far = read_sysreg(far_el1);
299 irqentry_state_t state;
300
301 state = enter_from_kernel_mode(regs);
302 local_daif_inherit(regs);
303 do_mem_abort(far, esr, regs);
304 local_daif_mask();
305 exit_to_kernel_mode(regs, state);
306 }
307
el1_pc(struct pt_regs * regs,unsigned long esr)308 static void noinstr el1_pc(struct pt_regs *regs, unsigned long esr)
309 {
310 unsigned long far = read_sysreg(far_el1);
311 irqentry_state_t state;
312
313 state = enter_from_kernel_mode(regs);
314 local_daif_inherit(regs);
315 do_sp_pc_abort(far, esr, regs);
316 local_daif_mask();
317 exit_to_kernel_mode(regs, state);
318 }
319
el1_undef(struct pt_regs * regs,unsigned long esr)320 static void noinstr el1_undef(struct pt_regs *regs, unsigned long esr)
321 {
322 irqentry_state_t state;
323
324 state = enter_from_kernel_mode(regs);
325 local_daif_inherit(regs);
326 do_el1_undef(regs, esr);
327 local_daif_mask();
328 exit_to_kernel_mode(regs, state);
329 }
330
el1_bti(struct pt_regs * regs,unsigned long esr)331 static void noinstr el1_bti(struct pt_regs *regs, unsigned long esr)
332 {
333 irqentry_state_t state;
334
335 state = enter_from_kernel_mode(regs);
336 local_daif_inherit(regs);
337 do_el1_bti(regs, esr);
338 local_daif_mask();
339 exit_to_kernel_mode(regs, state);
340 }
341
el1_gcs(struct pt_regs * regs,unsigned long esr)342 static void noinstr el1_gcs(struct pt_regs *regs, unsigned long esr)
343 {
344 irqentry_state_t state;
345
346 state = enter_from_kernel_mode(regs);
347 local_daif_inherit(regs);
348 do_el1_gcs(regs, esr);
349 local_daif_mask();
350 exit_to_kernel_mode(regs, state);
351 }
352
el1_mops(struct pt_regs * regs,unsigned long esr)353 static void noinstr el1_mops(struct pt_regs *regs, unsigned long esr)
354 {
355 irqentry_state_t state;
356
357 state = enter_from_kernel_mode(regs);
358 local_daif_inherit(regs);
359 do_el1_mops(regs, esr);
360 local_daif_mask();
361 exit_to_kernel_mode(regs, state);
362 }
363
el1_breakpt(struct pt_regs * regs,unsigned long esr)364 static void noinstr el1_breakpt(struct pt_regs *regs, unsigned long esr)
365 {
366 irqentry_state_t state;
367
368 state = arm64_enter_el1_dbg(regs);
369 debug_exception_enter(regs);
370 do_breakpoint(esr, regs);
371 debug_exception_exit(regs);
372 arm64_exit_el1_dbg(regs, state);
373 }
374
el1_softstp(struct pt_regs * regs,unsigned long esr)375 static void noinstr el1_softstp(struct pt_regs *regs, unsigned long esr)
376 {
377 irqentry_state_t state;
378
379 state = arm64_enter_el1_dbg(regs);
380 if (!cortex_a76_erratum_1463225_debug_handler(regs)) {
381 debug_exception_enter(regs);
382 /*
383 * After handling a breakpoint, we suspend the breakpoint
384 * and use single-step to move to the next instruction.
385 * If we are stepping a suspended breakpoint there's nothing more to do:
386 * the single-step is complete.
387 */
388 if (!try_step_suspended_breakpoints(regs))
389 do_el1_softstep(esr, regs);
390 debug_exception_exit(regs);
391 }
392 arm64_exit_el1_dbg(regs, state);
393 }
394
el1_watchpt(struct pt_regs * regs,unsigned long esr)395 static void noinstr el1_watchpt(struct pt_regs *regs, unsigned long esr)
396 {
397 /* Watchpoints are the only debug exception to write FAR_EL1 */
398 unsigned long far = read_sysreg(far_el1);
399 irqentry_state_t state;
400
401 state = arm64_enter_el1_dbg(regs);
402 debug_exception_enter(regs);
403 do_watchpoint(far, esr, regs);
404 debug_exception_exit(regs);
405 arm64_exit_el1_dbg(regs, state);
406 }
407
el1_brk64(struct pt_regs * regs,unsigned long esr)408 static void noinstr el1_brk64(struct pt_regs *regs, unsigned long esr)
409 {
410 irqentry_state_t state;
411
412 state = arm64_enter_el1_dbg(regs);
413 debug_exception_enter(regs);
414 do_el1_brk64(esr, regs);
415 debug_exception_exit(regs);
416 arm64_exit_el1_dbg(regs, state);
417 }
418
el1_fpac(struct pt_regs * regs,unsigned long esr)419 static void noinstr el1_fpac(struct pt_regs *regs, unsigned long esr)
420 {
421 irqentry_state_t state;
422
423 state = enter_from_kernel_mode(regs);
424 local_daif_inherit(regs);
425 do_el1_fpac(regs, esr);
426 local_daif_mask();
427 exit_to_kernel_mode(regs, state);
428 }
429
el1h_64_sync_handler(struct pt_regs * regs)430 asmlinkage void noinstr el1h_64_sync_handler(struct pt_regs *regs)
431 {
432 unsigned long esr = read_sysreg(esr_el1);
433
434 switch (ESR_ELx_EC(esr)) {
435 case ESR_ELx_EC_DABT_CUR:
436 case ESR_ELx_EC_IABT_CUR:
437 el1_abort(regs, esr);
438 break;
439 /*
440 * We don't handle ESR_ELx_EC_SP_ALIGN, since we will have hit a
441 * recursive exception when trying to push the initial pt_regs.
442 */
443 case ESR_ELx_EC_PC_ALIGN:
444 el1_pc(regs, esr);
445 break;
446 case ESR_ELx_EC_SYS64:
447 case ESR_ELx_EC_UNKNOWN:
448 el1_undef(regs, esr);
449 break;
450 case ESR_ELx_EC_BTI:
451 el1_bti(regs, esr);
452 break;
453 case ESR_ELx_EC_GCS:
454 el1_gcs(regs, esr);
455 break;
456 case ESR_ELx_EC_MOPS:
457 el1_mops(regs, esr);
458 break;
459 case ESR_ELx_EC_BREAKPT_CUR:
460 el1_breakpt(regs, esr);
461 break;
462 case ESR_ELx_EC_SOFTSTP_CUR:
463 el1_softstp(regs, esr);
464 break;
465 case ESR_ELx_EC_WATCHPT_CUR:
466 el1_watchpt(regs, esr);
467 break;
468 case ESR_ELx_EC_BRK64:
469 el1_brk64(regs, esr);
470 break;
471 case ESR_ELx_EC_FPAC:
472 el1_fpac(regs, esr);
473 break;
474 default:
475 __panic_unhandled(regs, "64-bit el1h sync", esr);
476 }
477 }
478
__el1_pnmi(struct pt_regs * regs,void (* handler)(struct pt_regs *))479 static __always_inline void __el1_pnmi(struct pt_regs *regs,
480 void (*handler)(struct pt_regs *))
481 {
482 irqentry_state_t state;
483
484 state = irqentry_nmi_enter(regs);
485 do_interrupt_handler(regs, handler);
486 irqentry_nmi_exit(regs, state);
487 }
488
__el1_irq(struct pt_regs * regs,void (* handler)(struct pt_regs *))489 static __always_inline void __el1_irq(struct pt_regs *regs,
490 void (*handler)(struct pt_regs *))
491 {
492 irqentry_state_t state;
493
494 state = enter_from_kernel_mode(regs);
495
496 irq_enter_rcu();
497 do_interrupt_handler(regs, handler);
498 irq_exit_rcu();
499
500 exit_to_kernel_mode(regs, state);
501 }
el1_interrupt(struct pt_regs * regs,void (* handler)(struct pt_regs *))502 static void noinstr el1_interrupt(struct pt_regs *regs,
503 void (*handler)(struct pt_regs *))
504 {
505 write_sysreg(DAIF_PROCCTX_NOIRQ, daif);
506
507 if (IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) && regs_irqs_disabled(regs))
508 __el1_pnmi(regs, handler);
509 else
510 __el1_irq(regs, handler);
511 }
512
el1h_64_irq_handler(struct pt_regs * regs)513 asmlinkage void noinstr el1h_64_irq_handler(struct pt_regs *regs)
514 {
515 el1_interrupt(regs, handle_arch_irq);
516 }
517
el1h_64_fiq_handler(struct pt_regs * regs)518 asmlinkage void noinstr el1h_64_fiq_handler(struct pt_regs *regs)
519 {
520 el1_interrupt(regs, handle_arch_fiq);
521 }
522
el1h_64_error_handler(struct pt_regs * regs)523 asmlinkage void noinstr el1h_64_error_handler(struct pt_regs *regs)
524 {
525 unsigned long esr = read_sysreg(esr_el1);
526 irqentry_state_t state;
527
528 local_daif_restore(DAIF_ERRCTX);
529 state = irqentry_nmi_enter(regs);
530 do_serror(regs, esr);
531 irqentry_nmi_exit(regs, state);
532 }
533
el0_da(struct pt_regs * regs,unsigned long esr)534 static void noinstr el0_da(struct pt_regs *regs, unsigned long esr)
535 {
536 unsigned long far = read_sysreg(far_el1);
537
538 arm64_enter_from_user_mode(regs);
539 local_daif_restore(DAIF_PROCCTX);
540 do_mem_abort(far, esr, regs);
541 arm64_exit_to_user_mode(regs);
542 }
543
el0_ia(struct pt_regs * regs,unsigned long esr)544 static void noinstr el0_ia(struct pt_regs *regs, unsigned long esr)
545 {
546 unsigned long far = read_sysreg(far_el1);
547
548 /*
549 * We've taken an instruction abort from userspace and not yet
550 * re-enabled IRQs. If the address is a kernel address, apply
551 * BP hardening prior to enabling IRQs and pre-emption.
552 */
553 if (!is_ttbr0_addr(far))
554 arm64_apply_bp_hardening();
555
556 arm64_enter_from_user_mode(regs);
557 local_daif_restore(DAIF_PROCCTX);
558 do_mem_abort(far, esr, regs);
559 arm64_exit_to_user_mode(regs);
560 }
561
el0_fpsimd_acc(struct pt_regs * regs,unsigned long esr)562 static void noinstr el0_fpsimd_acc(struct pt_regs *regs, unsigned long esr)
563 {
564 arm64_enter_from_user_mode(regs);
565 local_daif_restore(DAIF_PROCCTX);
566 do_fpsimd_acc(esr, regs);
567 arm64_exit_to_user_mode(regs);
568 }
569
el0_sve_acc(struct pt_regs * regs,unsigned long esr)570 static void noinstr el0_sve_acc(struct pt_regs *regs, unsigned long esr)
571 {
572 arm64_enter_from_user_mode(regs);
573 local_daif_restore(DAIF_PROCCTX);
574 do_sve_acc(esr, regs);
575 arm64_exit_to_user_mode(regs);
576 }
577
el0_sme_acc(struct pt_regs * regs,unsigned long esr)578 static void noinstr el0_sme_acc(struct pt_regs *regs, unsigned long esr)
579 {
580 arm64_enter_from_user_mode(regs);
581 local_daif_restore(DAIF_PROCCTX);
582 do_sme_acc(esr, regs);
583 arm64_exit_to_user_mode(regs);
584 }
585
el0_fpsimd_exc(struct pt_regs * regs,unsigned long esr)586 static void noinstr el0_fpsimd_exc(struct pt_regs *regs, unsigned long esr)
587 {
588 arm64_enter_from_user_mode(regs);
589 local_daif_restore(DAIF_PROCCTX);
590 do_fpsimd_exc(esr, regs);
591 arm64_exit_to_user_mode(regs);
592 }
593
el0_sys(struct pt_regs * regs,unsigned long esr)594 static void noinstr el0_sys(struct pt_regs *regs, unsigned long esr)
595 {
596 arm64_enter_from_user_mode(regs);
597 local_daif_restore(DAIF_PROCCTX);
598 do_el0_sys(esr, regs);
599 arm64_exit_to_user_mode(regs);
600 }
601
el0_pc(struct pt_regs * regs,unsigned long esr)602 static void noinstr el0_pc(struct pt_regs *regs, unsigned long esr)
603 {
604 unsigned long far = read_sysreg(far_el1);
605
606 if (!is_ttbr0_addr(instruction_pointer(regs)))
607 arm64_apply_bp_hardening();
608
609 arm64_enter_from_user_mode(regs);
610 local_daif_restore(DAIF_PROCCTX);
611 do_sp_pc_abort(far, esr, regs);
612 arm64_exit_to_user_mode(regs);
613 }
614
el0_sp(struct pt_regs * regs,unsigned long esr)615 static void noinstr el0_sp(struct pt_regs *regs, unsigned long esr)
616 {
617 arm64_enter_from_user_mode(regs);
618 local_daif_restore(DAIF_PROCCTX);
619 do_sp_pc_abort(regs->sp, esr, regs);
620 arm64_exit_to_user_mode(regs);
621 }
622
el0_undef(struct pt_regs * regs,unsigned long esr)623 static void noinstr el0_undef(struct pt_regs *regs, unsigned long esr)
624 {
625 arm64_enter_from_user_mode(regs);
626 local_daif_restore(DAIF_PROCCTX);
627 do_el0_undef(regs, esr);
628 arm64_exit_to_user_mode(regs);
629 }
630
el0_bti(struct pt_regs * regs)631 static void noinstr el0_bti(struct pt_regs *regs)
632 {
633 arm64_enter_from_user_mode(regs);
634 local_daif_restore(DAIF_PROCCTX);
635 do_el0_bti(regs);
636 arm64_exit_to_user_mode(regs);
637 }
638
el0_mops(struct pt_regs * regs,unsigned long esr)639 static void noinstr el0_mops(struct pt_regs *regs, unsigned long esr)
640 {
641 arm64_enter_from_user_mode(regs);
642 local_daif_restore(DAIF_PROCCTX);
643 do_el0_mops(regs, esr);
644 arm64_exit_to_user_mode(regs);
645 }
646
el0_gcs(struct pt_regs * regs,unsigned long esr)647 static void noinstr el0_gcs(struct pt_regs *regs, unsigned long esr)
648 {
649 arm64_enter_from_user_mode(regs);
650 local_daif_restore(DAIF_PROCCTX);
651 do_el0_gcs(regs, esr);
652 arm64_exit_to_user_mode(regs);
653 }
654
el0_inv(struct pt_regs * regs,unsigned long esr)655 static void noinstr el0_inv(struct pt_regs *regs, unsigned long esr)
656 {
657 arm64_enter_from_user_mode(regs);
658 local_daif_restore(DAIF_PROCCTX);
659 bad_el0_sync(regs, 0, esr);
660 arm64_exit_to_user_mode(regs);
661 }
662
el0_breakpt(struct pt_regs * regs,unsigned long esr)663 static void noinstr el0_breakpt(struct pt_regs *regs, unsigned long esr)
664 {
665 if (!is_ttbr0_addr(regs->pc))
666 arm64_apply_bp_hardening();
667
668 arm64_enter_from_user_mode(regs);
669 debug_exception_enter(regs);
670 do_breakpoint(esr, regs);
671 debug_exception_exit(regs);
672 local_daif_restore(DAIF_PROCCTX);
673 arm64_exit_to_user_mode(regs);
674 }
675
el0_softstp(struct pt_regs * regs,unsigned long esr)676 static void noinstr el0_softstp(struct pt_regs *regs, unsigned long esr)
677 {
678 bool step_done;
679
680 if (!is_ttbr0_addr(regs->pc))
681 arm64_apply_bp_hardening();
682
683 arm64_enter_from_user_mode(regs);
684 /*
685 * After handling a breakpoint, we suspend the breakpoint
686 * and use single-step to move to the next instruction.
687 * If we are stepping a suspended breakpoint there's nothing more to do:
688 * the single-step is complete.
689 */
690 step_done = try_step_suspended_breakpoints(regs);
691 local_daif_restore(DAIF_PROCCTX);
692 if (!step_done)
693 do_el0_softstep(esr, regs);
694 arm64_exit_to_user_mode(regs);
695 }
696
el0_watchpt(struct pt_regs * regs,unsigned long esr)697 static void noinstr el0_watchpt(struct pt_regs *regs, unsigned long esr)
698 {
699 /* Watchpoints are the only debug exception to write FAR_EL1 */
700 unsigned long far = read_sysreg(far_el1);
701
702 arm64_enter_from_user_mode(regs);
703 debug_exception_enter(regs);
704 do_watchpoint(far, esr, regs);
705 debug_exception_exit(regs);
706 local_daif_restore(DAIF_PROCCTX);
707 arm64_exit_to_user_mode(regs);
708 }
709
el0_brk64(struct pt_regs * regs,unsigned long esr)710 static void noinstr el0_brk64(struct pt_regs *regs, unsigned long esr)
711 {
712 arm64_enter_from_user_mode(regs);
713 local_daif_restore(DAIF_PROCCTX);
714 do_el0_brk64(esr, regs);
715 arm64_exit_to_user_mode(regs);
716 }
717
el0_svc(struct pt_regs * regs)718 static void noinstr el0_svc(struct pt_regs *regs)
719 {
720 arm64_enter_from_user_mode(regs);
721 cortex_a76_erratum_1463225_svc_handler();
722 fpsimd_syscall_enter();
723 local_daif_restore(DAIF_PROCCTX);
724 do_el0_svc(regs);
725 arm64_exit_to_user_mode(regs);
726 fpsimd_syscall_exit();
727 }
728
el0_fpac(struct pt_regs * regs,unsigned long esr)729 static void noinstr el0_fpac(struct pt_regs *regs, unsigned long esr)
730 {
731 arm64_enter_from_user_mode(regs);
732 local_daif_restore(DAIF_PROCCTX);
733 do_el0_fpac(regs, esr);
734 arm64_exit_to_user_mode(regs);
735 }
736
el0t_64_sync_handler(struct pt_regs * regs)737 asmlinkage void noinstr el0t_64_sync_handler(struct pt_regs *regs)
738 {
739 unsigned long esr = read_sysreg(esr_el1);
740
741 switch (ESR_ELx_EC(esr)) {
742 case ESR_ELx_EC_SVC64:
743 el0_svc(regs);
744 break;
745 case ESR_ELx_EC_DABT_LOW:
746 el0_da(regs, esr);
747 break;
748 case ESR_ELx_EC_IABT_LOW:
749 el0_ia(regs, esr);
750 break;
751 case ESR_ELx_EC_FP_ASIMD:
752 el0_fpsimd_acc(regs, esr);
753 break;
754 case ESR_ELx_EC_SVE:
755 el0_sve_acc(regs, esr);
756 break;
757 case ESR_ELx_EC_SME:
758 el0_sme_acc(regs, esr);
759 break;
760 case ESR_ELx_EC_FP_EXC64:
761 el0_fpsimd_exc(regs, esr);
762 break;
763 case ESR_ELx_EC_SYS64:
764 case ESR_ELx_EC_WFx:
765 el0_sys(regs, esr);
766 break;
767 case ESR_ELx_EC_SP_ALIGN:
768 el0_sp(regs, esr);
769 break;
770 case ESR_ELx_EC_PC_ALIGN:
771 el0_pc(regs, esr);
772 break;
773 case ESR_ELx_EC_UNKNOWN:
774 el0_undef(regs, esr);
775 break;
776 case ESR_ELx_EC_BTI:
777 el0_bti(regs);
778 break;
779 case ESR_ELx_EC_MOPS:
780 el0_mops(regs, esr);
781 break;
782 case ESR_ELx_EC_GCS:
783 el0_gcs(regs, esr);
784 break;
785 case ESR_ELx_EC_BREAKPT_LOW:
786 el0_breakpt(regs, esr);
787 break;
788 case ESR_ELx_EC_SOFTSTP_LOW:
789 el0_softstp(regs, esr);
790 break;
791 case ESR_ELx_EC_WATCHPT_LOW:
792 el0_watchpt(regs, esr);
793 break;
794 case ESR_ELx_EC_BRK64:
795 el0_brk64(regs, esr);
796 break;
797 case ESR_ELx_EC_FPAC:
798 el0_fpac(regs, esr);
799 break;
800 default:
801 el0_inv(regs, esr);
802 }
803 }
804
el0_interrupt(struct pt_regs * regs,void (* handler)(struct pt_regs *))805 static void noinstr el0_interrupt(struct pt_regs *regs,
806 void (*handler)(struct pt_regs *))
807 {
808 arm64_enter_from_user_mode(regs);
809
810 write_sysreg(DAIF_PROCCTX_NOIRQ, daif);
811
812 if (regs->pc & BIT(55))
813 arm64_apply_bp_hardening();
814
815 irq_enter_rcu();
816 do_interrupt_handler(regs, handler);
817 irq_exit_rcu();
818
819 arm64_exit_to_user_mode(regs);
820 }
821
__el0_irq_handler_common(struct pt_regs * regs)822 static void noinstr __el0_irq_handler_common(struct pt_regs *regs)
823 {
824 el0_interrupt(regs, handle_arch_irq);
825 }
826
el0t_64_irq_handler(struct pt_regs * regs)827 asmlinkage void noinstr el0t_64_irq_handler(struct pt_regs *regs)
828 {
829 __el0_irq_handler_common(regs);
830 }
831
__el0_fiq_handler_common(struct pt_regs * regs)832 static void noinstr __el0_fiq_handler_common(struct pt_regs *regs)
833 {
834 el0_interrupt(regs, handle_arch_fiq);
835 }
836
el0t_64_fiq_handler(struct pt_regs * regs)837 asmlinkage void noinstr el0t_64_fiq_handler(struct pt_regs *regs)
838 {
839 __el0_fiq_handler_common(regs);
840 }
841
__el0_error_handler_common(struct pt_regs * regs)842 static void noinstr __el0_error_handler_common(struct pt_regs *regs)
843 {
844 unsigned long esr = read_sysreg(esr_el1);
845 irqentry_state_t state;
846
847 arm64_enter_from_user_mode(regs);
848 local_daif_restore(DAIF_ERRCTX);
849 state = irqentry_nmi_enter(regs);
850 do_serror(regs, esr);
851 irqentry_nmi_exit(regs, state);
852 local_daif_restore(DAIF_PROCCTX);
853 arm64_exit_to_user_mode(regs);
854 }
855
el0t_64_error_handler(struct pt_regs * regs)856 asmlinkage void noinstr el0t_64_error_handler(struct pt_regs *regs)
857 {
858 __el0_error_handler_common(regs);
859 }
860
861 #ifdef CONFIG_COMPAT
el0_cp15(struct pt_regs * regs,unsigned long esr)862 static void noinstr el0_cp15(struct pt_regs *regs, unsigned long esr)
863 {
864 arm64_enter_from_user_mode(regs);
865 local_daif_restore(DAIF_PROCCTX);
866 do_el0_cp15(esr, regs);
867 arm64_exit_to_user_mode(regs);
868 }
869
el0_svc_compat(struct pt_regs * regs)870 static void noinstr el0_svc_compat(struct pt_regs *regs)
871 {
872 arm64_enter_from_user_mode(regs);
873 cortex_a76_erratum_1463225_svc_handler();
874 local_daif_restore(DAIF_PROCCTX);
875 do_el0_svc_compat(regs);
876 arm64_exit_to_user_mode(regs);
877 }
878
el0_bkpt32(struct pt_regs * regs,unsigned long esr)879 static void noinstr el0_bkpt32(struct pt_regs *regs, unsigned long esr)
880 {
881 arm64_enter_from_user_mode(regs);
882 local_daif_restore(DAIF_PROCCTX);
883 do_bkpt32(esr, regs);
884 arm64_exit_to_user_mode(regs);
885 }
886
el0t_32_sync_handler(struct pt_regs * regs)887 asmlinkage void noinstr el0t_32_sync_handler(struct pt_regs *regs)
888 {
889 unsigned long esr = read_sysreg(esr_el1);
890
891 switch (ESR_ELx_EC(esr)) {
892 case ESR_ELx_EC_SVC32:
893 el0_svc_compat(regs);
894 break;
895 case ESR_ELx_EC_DABT_LOW:
896 el0_da(regs, esr);
897 break;
898 case ESR_ELx_EC_IABT_LOW:
899 el0_ia(regs, esr);
900 break;
901 case ESR_ELx_EC_FP_ASIMD:
902 el0_fpsimd_acc(regs, esr);
903 break;
904 case ESR_ELx_EC_FP_EXC32:
905 el0_fpsimd_exc(regs, esr);
906 break;
907 case ESR_ELx_EC_PC_ALIGN:
908 el0_pc(regs, esr);
909 break;
910 case ESR_ELx_EC_UNKNOWN:
911 case ESR_ELx_EC_CP14_MR:
912 case ESR_ELx_EC_CP14_LS:
913 case ESR_ELx_EC_CP14_64:
914 el0_undef(regs, esr);
915 break;
916 case ESR_ELx_EC_CP15_32:
917 case ESR_ELx_EC_CP15_64:
918 el0_cp15(regs, esr);
919 break;
920 case ESR_ELx_EC_BREAKPT_LOW:
921 el0_breakpt(regs, esr);
922 break;
923 case ESR_ELx_EC_SOFTSTP_LOW:
924 el0_softstp(regs, esr);
925 break;
926 case ESR_ELx_EC_WATCHPT_LOW:
927 el0_watchpt(regs, esr);
928 break;
929 case ESR_ELx_EC_BKPT32:
930 el0_bkpt32(regs, esr);
931 break;
932 default:
933 el0_inv(regs, esr);
934 }
935 }
936
el0t_32_irq_handler(struct pt_regs * regs)937 asmlinkage void noinstr el0t_32_irq_handler(struct pt_regs *regs)
938 {
939 __el0_irq_handler_common(regs);
940 }
941
el0t_32_fiq_handler(struct pt_regs * regs)942 asmlinkage void noinstr el0t_32_fiq_handler(struct pt_regs *regs)
943 {
944 __el0_fiq_handler_common(regs);
945 }
946
el0t_32_error_handler(struct pt_regs * regs)947 asmlinkage void noinstr el0t_32_error_handler(struct pt_regs *regs)
948 {
949 __el0_error_handler_common(regs);
950 }
951 #else /* CONFIG_COMPAT */
952 UNHANDLED(el0t, 32, sync)
953 UNHANDLED(el0t, 32, irq)
954 UNHANDLED(el0t, 32, fiq)
955 UNHANDLED(el0t, 32, error)
956 #endif /* CONFIG_COMPAT */
957
handle_bad_stack(struct pt_regs * regs)958 asmlinkage void noinstr __noreturn handle_bad_stack(struct pt_regs *regs)
959 {
960 unsigned long esr = read_sysreg(esr_el1);
961 unsigned long far = read_sysreg(far_el1);
962
963 irqentry_nmi_enter(regs);
964 panic_bad_stack(regs, esr, far);
965 }
966
967 #ifdef CONFIG_ARM_SDE_INTERFACE
968 asmlinkage noinstr unsigned long
__sdei_handler(struct pt_regs * regs,struct sdei_registered_event * arg)969 __sdei_handler(struct pt_regs *regs, struct sdei_registered_event *arg)
970 {
971 irqentry_state_t state;
972 unsigned long ret;
973
974 /*
975 * We didn't take an exception to get here, so the HW hasn't
976 * set/cleared bits in PSTATE that we may rely on.
977 *
978 * The original SDEI spec (ARM DEN 0054A) can be read ambiguously as to
979 * whether PSTATE bits are inherited unchanged or generated from
980 * scratch, and the TF-A implementation always clears PAN and always
981 * clears UAO. There are no other known implementations.
982 *
983 * Subsequent revisions (ARM DEN 0054B) follow the usual rules for how
984 * PSTATE is modified upon architectural exceptions, and so PAN is
985 * either inherited or set per SCTLR_ELx.SPAN, and UAO is always
986 * cleared.
987 *
988 * We must explicitly reset PAN to the expected state, including
989 * clearing it when the host isn't using it, in case a VM had it set.
990 */
991 if (system_uses_hw_pan())
992 set_pstate_pan(1);
993 else if (cpu_has_pan())
994 set_pstate_pan(0);
995
996 state = irqentry_nmi_enter(regs);
997 ret = do_sdei_event(regs, arg);
998 irqentry_nmi_exit(regs, state);
999
1000 return ret;
1001 }
1002 #endif /* CONFIG_ARM_SDE_INTERFACE */
1003