xref: /linux/drivers/net/ethernet/sfc/siena/rx_common.c (revision 8be4d31cb8aaeea27bde4b7ddb26e28a89062ebf)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2018 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include "net_driver.h"
12 #include <linux/module.h>
13 #include <linux/iommu.h>
14 #include <net/rps.h>
15 #include "efx.h"
16 #include "nic.h"
17 #include "rx_common.h"
18 
19 /* This is the percentage fill level below which new RX descriptors
20  * will be added to the RX descriptor ring.
21  */
22 static unsigned int rx_refill_threshold;
23 module_param(rx_refill_threshold, uint, 0444);
24 MODULE_PARM_DESC(rx_refill_threshold,
25 		 "RX descriptor ring refill threshold (%)");
26 
27 /* RX maximum head room required.
28  *
29  * This must be at least 1 to prevent overflow, plus one packet-worth
30  * to allow pipelined receives.
31  */
32 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
33 
34 static void efx_unmap_rx_buffer(struct efx_nic *efx,
35 				struct efx_rx_buffer *rx_buf);
36 
37 /* Check the RX page recycle ring for a page that can be reused. */
efx_reuse_page(struct efx_rx_queue * rx_queue)38 static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
39 {
40 	struct efx_nic *efx = rx_queue->efx;
41 	struct efx_rx_page_state *state;
42 	unsigned int index;
43 	struct page *page;
44 
45 	if (unlikely(!rx_queue->page_ring))
46 		return NULL;
47 	index = rx_queue->page_remove & rx_queue->page_ptr_mask;
48 	page = rx_queue->page_ring[index];
49 	if (page == NULL)
50 		return NULL;
51 
52 	rx_queue->page_ring[index] = NULL;
53 	/* page_remove cannot exceed page_add. */
54 	if (rx_queue->page_remove != rx_queue->page_add)
55 		++rx_queue->page_remove;
56 
57 	/* If page_count is 1 then we hold the only reference to this page. */
58 	if (page_count(page) == 1) {
59 		++rx_queue->page_recycle_count;
60 		return page;
61 	} else {
62 		state = page_address(page);
63 		dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
64 			       PAGE_SIZE << efx->rx_buffer_order,
65 			       DMA_FROM_DEVICE);
66 		put_page(page);
67 		++rx_queue->page_recycle_failed;
68 	}
69 
70 	return NULL;
71 }
72 
73 /* Attempt to recycle the page if there is an RX recycle ring; the page can
74  * only be added if this is the final RX buffer, to prevent pages being used in
75  * the descriptor ring and appearing in the recycle ring simultaneously.
76  */
efx_recycle_rx_page(struct efx_channel * channel,struct efx_rx_buffer * rx_buf)77 static void efx_recycle_rx_page(struct efx_channel *channel,
78 				struct efx_rx_buffer *rx_buf)
79 {
80 	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
81 	struct efx_nic *efx = rx_queue->efx;
82 	struct page *page = rx_buf->page;
83 	unsigned int index;
84 
85 	/* Only recycle the page after processing the final buffer. */
86 	if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
87 		return;
88 
89 	index = rx_queue->page_add & rx_queue->page_ptr_mask;
90 	if (rx_queue->page_ring[index] == NULL) {
91 		unsigned int read_index = rx_queue->page_remove &
92 			rx_queue->page_ptr_mask;
93 
94 		/* The next slot in the recycle ring is available, but
95 		 * increment page_remove if the read pointer currently
96 		 * points here.
97 		 */
98 		if (read_index == index)
99 			++rx_queue->page_remove;
100 		rx_queue->page_ring[index] = page;
101 		++rx_queue->page_add;
102 		return;
103 	}
104 	++rx_queue->page_recycle_full;
105 	efx_unmap_rx_buffer(efx, rx_buf);
106 	put_page(rx_buf->page);
107 }
108 
109 /* Recycle the pages that are used by buffers that have just been received. */
efx_siena_recycle_rx_pages(struct efx_channel * channel,struct efx_rx_buffer * rx_buf,unsigned int n_frags)110 void efx_siena_recycle_rx_pages(struct efx_channel *channel,
111 				struct efx_rx_buffer *rx_buf,
112 				unsigned int n_frags)
113 {
114 	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
115 
116 	if (unlikely(!rx_queue->page_ring))
117 		return;
118 
119 	do {
120 		efx_recycle_rx_page(channel, rx_buf);
121 		rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
122 	} while (--n_frags);
123 }
124 
efx_siena_discard_rx_packet(struct efx_channel * channel,struct efx_rx_buffer * rx_buf,unsigned int n_frags)125 void efx_siena_discard_rx_packet(struct efx_channel *channel,
126 				 struct efx_rx_buffer *rx_buf,
127 				 unsigned int n_frags)
128 {
129 	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
130 
131 	efx_siena_recycle_rx_pages(channel, rx_buf, n_frags);
132 
133 	efx_siena_free_rx_buffers(rx_queue, rx_buf, n_frags);
134 }
135 
efx_init_rx_recycle_ring(struct efx_rx_queue * rx_queue)136 static void efx_init_rx_recycle_ring(struct efx_rx_queue *rx_queue)
137 {
138 	unsigned int bufs_in_recycle_ring, page_ring_size;
139 	struct efx_nic *efx = rx_queue->efx;
140 
141 	bufs_in_recycle_ring = efx_rx_recycle_ring_size(efx);
142 	page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
143 					    efx->rx_bufs_per_page);
144 	rx_queue->page_ring = kcalloc(page_ring_size,
145 				      sizeof(*rx_queue->page_ring), GFP_KERNEL);
146 	if (!rx_queue->page_ring)
147 		rx_queue->page_ptr_mask = 0;
148 	else
149 		rx_queue->page_ptr_mask = page_ring_size - 1;
150 }
151 
efx_fini_rx_recycle_ring(struct efx_rx_queue * rx_queue)152 static void efx_fini_rx_recycle_ring(struct efx_rx_queue *rx_queue)
153 {
154 	struct efx_nic *efx = rx_queue->efx;
155 	int i;
156 
157 	if (unlikely(!rx_queue->page_ring))
158 		return;
159 
160 	/* Unmap and release the pages in the recycle ring. Remove the ring. */
161 	for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
162 		struct page *page = rx_queue->page_ring[i];
163 		struct efx_rx_page_state *state;
164 
165 		if (page == NULL)
166 			continue;
167 
168 		state = page_address(page);
169 		dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
170 			       PAGE_SIZE << efx->rx_buffer_order,
171 			       DMA_FROM_DEVICE);
172 		put_page(page);
173 	}
174 	kfree(rx_queue->page_ring);
175 	rx_queue->page_ring = NULL;
176 }
177 
efx_fini_rx_buffer(struct efx_rx_queue * rx_queue,struct efx_rx_buffer * rx_buf)178 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
179 			       struct efx_rx_buffer *rx_buf)
180 {
181 	/* Release the page reference we hold for the buffer. */
182 	if (rx_buf->page)
183 		put_page(rx_buf->page);
184 
185 	/* If this is the last buffer in a page, unmap and free it. */
186 	if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
187 		efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
188 		efx_siena_free_rx_buffers(rx_queue, rx_buf, 1);
189 	}
190 	rx_buf->page = NULL;
191 }
192 
efx_siena_probe_rx_queue(struct efx_rx_queue * rx_queue)193 int efx_siena_probe_rx_queue(struct efx_rx_queue *rx_queue)
194 {
195 	struct efx_nic *efx = rx_queue->efx;
196 	unsigned int entries;
197 	int rc;
198 
199 	/* Create the smallest power-of-two aligned ring */
200 	entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
201 	EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
202 	rx_queue->ptr_mask = entries - 1;
203 
204 	netif_dbg(efx, probe, efx->net_dev,
205 		  "creating RX queue %d size %#x mask %#x\n",
206 		  efx_rx_queue_index(rx_queue), efx->rxq_entries,
207 		  rx_queue->ptr_mask);
208 
209 	/* Allocate RX buffers */
210 	rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
211 				   GFP_KERNEL);
212 	if (!rx_queue->buffer)
213 		return -ENOMEM;
214 
215 	rc = efx_nic_probe_rx(rx_queue);
216 	if (rc) {
217 		kfree(rx_queue->buffer);
218 		rx_queue->buffer = NULL;
219 	}
220 
221 	return rc;
222 }
223 
efx_siena_init_rx_queue(struct efx_rx_queue * rx_queue)224 void efx_siena_init_rx_queue(struct efx_rx_queue *rx_queue)
225 {
226 	unsigned int max_fill, trigger, max_trigger;
227 	struct efx_nic *efx = rx_queue->efx;
228 	int rc = 0;
229 
230 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
231 		  "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
232 
233 	/* Initialise ptr fields */
234 	rx_queue->added_count = 0;
235 	rx_queue->notified_count = 0;
236 	rx_queue->removed_count = 0;
237 	rx_queue->min_fill = -1U;
238 	efx_init_rx_recycle_ring(rx_queue);
239 
240 	rx_queue->page_remove = 0;
241 	rx_queue->page_add = rx_queue->page_ptr_mask + 1;
242 	rx_queue->page_recycle_count = 0;
243 	rx_queue->page_recycle_failed = 0;
244 	rx_queue->page_recycle_full = 0;
245 
246 	/* Initialise limit fields */
247 	max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
248 	max_trigger =
249 		max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
250 	if (rx_refill_threshold != 0) {
251 		trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
252 		if (trigger > max_trigger)
253 			trigger = max_trigger;
254 	} else {
255 		trigger = max_trigger;
256 	}
257 
258 	rx_queue->max_fill = max_fill;
259 	rx_queue->fast_fill_trigger = trigger;
260 	rx_queue->refill_enabled = true;
261 
262 	/* Initialise XDP queue information */
263 	rc = xdp_rxq_info_reg(&rx_queue->xdp_rxq_info, efx->net_dev,
264 			      rx_queue->core_index, 0);
265 
266 	if (rc) {
267 		netif_err(efx, rx_err, efx->net_dev,
268 			  "Failure to initialise XDP queue information rc=%d\n",
269 			  rc);
270 		efx->xdp_rxq_info_failed = true;
271 	}
272 
273 	/* Set up RX descriptor ring */
274 	efx_nic_init_rx(rx_queue);
275 }
276 
efx_siena_fini_rx_queue(struct efx_rx_queue * rx_queue)277 void efx_siena_fini_rx_queue(struct efx_rx_queue *rx_queue)
278 {
279 	struct efx_rx_buffer *rx_buf;
280 	int i;
281 
282 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
283 		  "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
284 
285 	timer_delete_sync(&rx_queue->slow_fill);
286 
287 	/* Release RX buffers from the current read ptr to the write ptr */
288 	if (rx_queue->buffer) {
289 		for (i = rx_queue->removed_count; i < rx_queue->added_count;
290 		     i++) {
291 			unsigned int index = i & rx_queue->ptr_mask;
292 
293 			rx_buf = efx_rx_buffer(rx_queue, index);
294 			efx_fini_rx_buffer(rx_queue, rx_buf);
295 		}
296 	}
297 
298 	efx_fini_rx_recycle_ring(rx_queue);
299 
300 	if (xdp_rxq_info_is_reg(&rx_queue->xdp_rxq_info))
301 		xdp_rxq_info_unreg(&rx_queue->xdp_rxq_info);
302 }
303 
efx_siena_remove_rx_queue(struct efx_rx_queue * rx_queue)304 void efx_siena_remove_rx_queue(struct efx_rx_queue *rx_queue)
305 {
306 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
307 		  "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
308 
309 	efx_nic_remove_rx(rx_queue);
310 
311 	kfree(rx_queue->buffer);
312 	rx_queue->buffer = NULL;
313 }
314 
315 /* Unmap a DMA-mapped page.  This function is only called for the final RX
316  * buffer in a page.
317  */
efx_unmap_rx_buffer(struct efx_nic * efx,struct efx_rx_buffer * rx_buf)318 static void efx_unmap_rx_buffer(struct efx_nic *efx,
319 				struct efx_rx_buffer *rx_buf)
320 {
321 	struct page *page = rx_buf->page;
322 
323 	if (page) {
324 		struct efx_rx_page_state *state = page_address(page);
325 
326 		dma_unmap_page(&efx->pci_dev->dev,
327 			       state->dma_addr,
328 			       PAGE_SIZE << efx->rx_buffer_order,
329 			       DMA_FROM_DEVICE);
330 	}
331 }
332 
efx_siena_free_rx_buffers(struct efx_rx_queue * rx_queue,struct efx_rx_buffer * rx_buf,unsigned int num_bufs)333 void efx_siena_free_rx_buffers(struct efx_rx_queue *rx_queue,
334 			       struct efx_rx_buffer *rx_buf,
335 			       unsigned int num_bufs)
336 {
337 	do {
338 		if (rx_buf->page) {
339 			put_page(rx_buf->page);
340 			rx_buf->page = NULL;
341 		}
342 		rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
343 	} while (--num_bufs);
344 }
345 
efx_siena_rx_slow_fill(struct timer_list * t)346 void efx_siena_rx_slow_fill(struct timer_list *t)
347 {
348 	struct efx_rx_queue *rx_queue = timer_container_of(rx_queue, t,
349 							   slow_fill);
350 
351 	/* Post an event to cause NAPI to run and refill the queue */
352 	efx_nic_generate_fill_event(rx_queue);
353 	++rx_queue->slow_fill_count;
354 }
355 
efx_schedule_slow_fill(struct efx_rx_queue * rx_queue)356 static void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
357 {
358 	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(10));
359 }
360 
361 /* efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
362  *
363  * @rx_queue:		Efx RX queue
364  *
365  * This allocates a batch of pages, maps them for DMA, and populates
366  * struct efx_rx_buffers for each one. Return a negative error code or
367  * 0 on success. If a single page can be used for multiple buffers,
368  * then the page will either be inserted fully, or not at all.
369  */
efx_init_rx_buffers(struct efx_rx_queue * rx_queue,bool atomic)370 static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic)
371 {
372 	unsigned int page_offset, index, count;
373 	struct efx_nic *efx = rx_queue->efx;
374 	struct efx_rx_page_state *state;
375 	struct efx_rx_buffer *rx_buf;
376 	dma_addr_t dma_addr;
377 	struct page *page;
378 
379 	count = 0;
380 	do {
381 		page = efx_reuse_page(rx_queue);
382 		if (page == NULL) {
383 			page = alloc_pages(__GFP_COMP |
384 					   (atomic ? GFP_ATOMIC : GFP_KERNEL),
385 					   efx->rx_buffer_order);
386 			if (unlikely(page == NULL))
387 				return -ENOMEM;
388 			dma_addr =
389 				dma_map_page(&efx->pci_dev->dev, page, 0,
390 					     PAGE_SIZE << efx->rx_buffer_order,
391 					     DMA_FROM_DEVICE);
392 			if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
393 						       dma_addr))) {
394 				__free_pages(page, efx->rx_buffer_order);
395 				return -EIO;
396 			}
397 			state = page_address(page);
398 			state->dma_addr = dma_addr;
399 		} else {
400 			state = page_address(page);
401 			dma_addr = state->dma_addr;
402 		}
403 
404 		dma_addr += sizeof(struct efx_rx_page_state);
405 		page_offset = sizeof(struct efx_rx_page_state);
406 
407 		do {
408 			index = rx_queue->added_count & rx_queue->ptr_mask;
409 			rx_buf = efx_rx_buffer(rx_queue, index);
410 			rx_buf->dma_addr = dma_addr + efx->rx_ip_align +
411 					   EFX_XDP_HEADROOM;
412 			rx_buf->page = page;
413 			rx_buf->page_offset = page_offset + efx->rx_ip_align +
414 					      EFX_XDP_HEADROOM;
415 			rx_buf->len = efx->rx_dma_len;
416 			rx_buf->flags = 0;
417 			++rx_queue->added_count;
418 			get_page(page);
419 			dma_addr += efx->rx_page_buf_step;
420 			page_offset += efx->rx_page_buf_step;
421 		} while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
422 
423 		rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
424 	} while (++count < efx->rx_pages_per_batch);
425 
426 	return 0;
427 }
428 
efx_siena_rx_config_page_split(struct efx_nic * efx)429 void efx_siena_rx_config_page_split(struct efx_nic *efx)
430 {
431 	efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align +
432 				      EFX_XDP_HEADROOM + EFX_XDP_TAILROOM,
433 				      EFX_RX_BUF_ALIGNMENT);
434 	efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
435 		((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
436 		efx->rx_page_buf_step);
437 	efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
438 		efx->rx_bufs_per_page;
439 	efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
440 					       efx->rx_bufs_per_page);
441 }
442 
443 /* efx_siena_fast_push_rx_descriptors - push new RX descriptors quickly
444  * @rx_queue:		RX descriptor queue
445  *
446  * This will aim to fill the RX descriptor queue up to
447  * @rx_queue->@max_fill. If there is insufficient atomic
448  * memory to do so, a slow fill will be scheduled.
449  *
450  * The caller must provide serialisation (none is used here). In practise,
451  * this means this function must run from the NAPI handler, or be called
452  * when NAPI is disabled.
453  */
efx_siena_fast_push_rx_descriptors(struct efx_rx_queue * rx_queue,bool atomic)454 void efx_siena_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue,
455 					bool atomic)
456 {
457 	struct efx_nic *efx = rx_queue->efx;
458 	unsigned int fill_level, batch_size;
459 	int space, rc = 0;
460 
461 	if (!rx_queue->refill_enabled)
462 		return;
463 
464 	/* Calculate current fill level, and exit if we don't need to fill */
465 	fill_level = (rx_queue->added_count - rx_queue->removed_count);
466 	EFX_WARN_ON_ONCE_PARANOID(fill_level > rx_queue->efx->rxq_entries);
467 	if (fill_level >= rx_queue->fast_fill_trigger)
468 		goto out;
469 
470 	/* Record minimum fill level */
471 	if (unlikely(fill_level < rx_queue->min_fill)) {
472 		if (fill_level)
473 			rx_queue->min_fill = fill_level;
474 	}
475 
476 	batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
477 	space = rx_queue->max_fill - fill_level;
478 	EFX_WARN_ON_ONCE_PARANOID(space < batch_size);
479 
480 	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
481 		   "RX queue %d fast-filling descriptor ring from"
482 		   " level %d to level %d\n",
483 		   efx_rx_queue_index(rx_queue), fill_level,
484 		   rx_queue->max_fill);
485 
486 	do {
487 		rc = efx_init_rx_buffers(rx_queue, atomic);
488 		if (unlikely(rc)) {
489 			/* Ensure that we don't leave the rx queue empty */
490 			efx_schedule_slow_fill(rx_queue);
491 			goto out;
492 		}
493 	} while ((space -= batch_size) >= batch_size);
494 
495 	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
496 		   "RX queue %d fast-filled descriptor ring "
497 		   "to level %d\n", efx_rx_queue_index(rx_queue),
498 		   rx_queue->added_count - rx_queue->removed_count);
499 
500  out:
501 	if (rx_queue->notified_count != rx_queue->added_count)
502 		efx_nic_notify_rx_desc(rx_queue);
503 }
504 
505 /* Pass a received packet up through GRO.  GRO can handle pages
506  * regardless of checksum state and skbs with a good checksum.
507  */
508 void
efx_siena_rx_packet_gro(struct efx_channel * channel,struct efx_rx_buffer * rx_buf,unsigned int n_frags,u8 * eh,__wsum csum)509 efx_siena_rx_packet_gro(struct efx_channel *channel,
510 			struct efx_rx_buffer *rx_buf,
511 			unsigned int n_frags, u8 *eh, __wsum csum)
512 {
513 	struct napi_struct *napi = &channel->napi_str;
514 	struct efx_nic *efx = channel->efx;
515 	struct sk_buff *skb;
516 
517 	skb = napi_get_frags(napi);
518 	if (unlikely(!skb)) {
519 		struct efx_rx_queue *rx_queue;
520 
521 		rx_queue = efx_channel_get_rx_queue(channel);
522 		efx_siena_free_rx_buffers(rx_queue, rx_buf, n_frags);
523 		return;
524 	}
525 
526 	if (efx->net_dev->features & NETIF_F_RXHASH)
527 		skb_set_hash(skb, efx_rx_buf_hash(efx, eh),
528 			     PKT_HASH_TYPE_L3);
529 	if (csum) {
530 		skb->csum = csum;
531 		skb->ip_summed = CHECKSUM_COMPLETE;
532 	} else {
533 		skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
534 				  CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
535 	}
536 	skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL);
537 
538 	for (;;) {
539 		skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
540 				   rx_buf->page, rx_buf->page_offset,
541 				   rx_buf->len);
542 		rx_buf->page = NULL;
543 		skb->len += rx_buf->len;
544 		if (skb_shinfo(skb)->nr_frags == n_frags)
545 			break;
546 
547 		rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
548 	}
549 
550 	skb->data_len = skb->len;
551 	skb->truesize += n_frags * efx->rx_buffer_truesize;
552 
553 	skb_record_rx_queue(skb, channel->rx_queue.core_index);
554 
555 	napi_gro_frags(napi);
556 }
557 
efx_siena_set_default_rx_indir_table(struct efx_nic * efx,struct efx_rss_context * ctx)558 void efx_siena_set_default_rx_indir_table(struct efx_nic *efx,
559 					  struct efx_rss_context *ctx)
560 {
561 	size_t i;
562 
563 	for (i = 0; i < ARRAY_SIZE(ctx->rx_indir_table); i++)
564 		ctx->rx_indir_table[i] =
565 			ethtool_rxfh_indir_default(i, efx->rss_spread);
566 }
567 
568 /**
569  * efx_siena_filter_is_mc_recipient - test whether spec is a multicast recipient
570  * @spec: Specification to test
571  *
572  * Return: %true if the specification is a non-drop RX filter that
573  * matches a local MAC address I/G bit value of 1 or matches a local
574  * IPv4 or IPv6 address value in the respective multicast address
575  * range.  Otherwise %false.
576  */
efx_siena_filter_is_mc_recipient(const struct efx_filter_spec * spec)577 bool efx_siena_filter_is_mc_recipient(const struct efx_filter_spec *spec)
578 {
579 	if (!(spec->flags & EFX_FILTER_FLAG_RX) ||
580 	    spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP)
581 		return false;
582 
583 	if (spec->match_flags &
584 	    (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) &&
585 	    is_multicast_ether_addr(spec->loc_mac))
586 		return true;
587 
588 	if ((spec->match_flags &
589 	     (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
590 	    (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
591 		if (spec->ether_type == htons(ETH_P_IP) &&
592 		    ipv4_is_multicast(spec->loc_host[0]))
593 			return true;
594 		if (spec->ether_type == htons(ETH_P_IPV6) &&
595 		    ((const u8 *)spec->loc_host)[0] == 0xff)
596 			return true;
597 	}
598 
599 	return false;
600 }
601 
efx_siena_filter_spec_equal(const struct efx_filter_spec * left,const struct efx_filter_spec * right)602 bool efx_siena_filter_spec_equal(const struct efx_filter_spec *left,
603 				 const struct efx_filter_spec *right)
604 {
605 	if ((left->match_flags ^ right->match_flags) |
606 	    ((left->flags ^ right->flags) &
607 	     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
608 		return false;
609 
610 	return memcmp(&left->outer_vid, &right->outer_vid,
611 		      sizeof(struct efx_filter_spec) -
612 		      offsetof(struct efx_filter_spec, outer_vid)) == 0;
613 }
614 
efx_siena_filter_spec_hash(const struct efx_filter_spec * spec)615 u32 efx_siena_filter_spec_hash(const struct efx_filter_spec *spec)
616 {
617 	BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
618 	return jhash2((const u32 *)&spec->outer_vid,
619 		      (sizeof(struct efx_filter_spec) -
620 		       offsetof(struct efx_filter_spec, outer_vid)) / 4,
621 		      0);
622 }
623 
624 #ifdef CONFIG_RFS_ACCEL
efx_siena_rps_check_rule(struct efx_arfs_rule * rule,unsigned int filter_idx,bool * force)625 bool efx_siena_rps_check_rule(struct efx_arfs_rule *rule,
626 			      unsigned int filter_idx, bool *force)
627 {
628 	if (rule->filter_id == EFX_ARFS_FILTER_ID_PENDING) {
629 		/* ARFS is currently updating this entry, leave it */
630 		return false;
631 	}
632 	if (rule->filter_id == EFX_ARFS_FILTER_ID_ERROR) {
633 		/* ARFS tried and failed to update this, so it's probably out
634 		 * of date.  Remove the filter and the ARFS rule entry.
635 		 */
636 		rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
637 		*force = true;
638 		return true;
639 	} else if (WARN_ON(rule->filter_id != filter_idx)) { /* can't happen */
640 		/* ARFS has moved on, so old filter is not needed.  Since we did
641 		 * not mark the rule with EFX_ARFS_FILTER_ID_REMOVING, it will
642 		 * not be removed by efx_siena_rps_hash_del() subsequently.
643 		 */
644 		*force = true;
645 		return true;
646 	}
647 	/* Remove it iff ARFS wants to. */
648 	return true;
649 }
650 
651 static
efx_rps_hash_bucket(struct efx_nic * efx,const struct efx_filter_spec * spec)652 struct hlist_head *efx_rps_hash_bucket(struct efx_nic *efx,
653 				       const struct efx_filter_spec *spec)
654 {
655 	u32 hash = efx_siena_filter_spec_hash(spec);
656 
657 	lockdep_assert_held(&efx->rps_hash_lock);
658 	if (!efx->rps_hash_table)
659 		return NULL;
660 	return &efx->rps_hash_table[hash % EFX_ARFS_HASH_TABLE_SIZE];
661 }
662 
efx_siena_rps_hash_find(struct efx_nic * efx,const struct efx_filter_spec * spec)663 struct efx_arfs_rule *efx_siena_rps_hash_find(struct efx_nic *efx,
664 					const struct efx_filter_spec *spec)
665 {
666 	struct efx_arfs_rule *rule;
667 	struct hlist_head *head;
668 	struct hlist_node *node;
669 
670 	head = efx_rps_hash_bucket(efx, spec);
671 	if (!head)
672 		return NULL;
673 	hlist_for_each(node, head) {
674 		rule = container_of(node, struct efx_arfs_rule, node);
675 		if (efx_siena_filter_spec_equal(spec, &rule->spec))
676 			return rule;
677 	}
678 	return NULL;
679 }
680 
efx_rps_hash_add(struct efx_nic * efx,const struct efx_filter_spec * spec,bool * new)681 static struct efx_arfs_rule *efx_rps_hash_add(struct efx_nic *efx,
682 					const struct efx_filter_spec *spec,
683 					bool *new)
684 {
685 	struct efx_arfs_rule *rule;
686 	struct hlist_head *head;
687 	struct hlist_node *node;
688 
689 	head = efx_rps_hash_bucket(efx, spec);
690 	if (!head)
691 		return NULL;
692 	hlist_for_each(node, head) {
693 		rule = container_of(node, struct efx_arfs_rule, node);
694 		if (efx_siena_filter_spec_equal(spec, &rule->spec)) {
695 			*new = false;
696 			return rule;
697 		}
698 	}
699 	rule = kmalloc(sizeof(*rule), GFP_ATOMIC);
700 	*new = true;
701 	if (rule) {
702 		memcpy(&rule->spec, spec, sizeof(rule->spec));
703 		hlist_add_head(&rule->node, head);
704 	}
705 	return rule;
706 }
707 
efx_siena_rps_hash_del(struct efx_nic * efx,const struct efx_filter_spec * spec)708 void efx_siena_rps_hash_del(struct efx_nic *efx,
709 			    const struct efx_filter_spec *spec)
710 {
711 	struct efx_arfs_rule *rule;
712 	struct hlist_head *head;
713 	struct hlist_node *node;
714 
715 	head = efx_rps_hash_bucket(efx, spec);
716 	if (WARN_ON(!head))
717 		return;
718 	hlist_for_each(node, head) {
719 		rule = container_of(node, struct efx_arfs_rule, node);
720 		if (efx_siena_filter_spec_equal(spec, &rule->spec)) {
721 			/* Someone already reused the entry.  We know that if
722 			 * this check doesn't fire (i.e. filter_id == REMOVING)
723 			 * then the REMOVING mark was put there by our caller,
724 			 * because caller is holding a lock on filter table and
725 			 * only holders of that lock set REMOVING.
726 			 */
727 			if (rule->filter_id != EFX_ARFS_FILTER_ID_REMOVING)
728 				return;
729 			hlist_del(node);
730 			kfree(rule);
731 			return;
732 		}
733 	}
734 	/* We didn't find it. */
735 	WARN_ON(1);
736 }
737 #endif
738 
efx_siena_probe_filters(struct efx_nic * efx)739 int efx_siena_probe_filters(struct efx_nic *efx)
740 {
741 	int rc;
742 
743 	mutex_lock(&efx->mac_lock);
744 	down_write(&efx->filter_sem);
745 	rc = efx->type->filter_table_probe(efx);
746 	if (rc)
747 		goto out_unlock;
748 
749 #ifdef CONFIG_RFS_ACCEL
750 	if (efx->type->offload_features & NETIF_F_NTUPLE) {
751 		struct efx_channel *channel;
752 		int i, success = 1;
753 
754 		efx_for_each_channel(channel, efx) {
755 			channel->rps_flow_id =
756 				kcalloc(efx->type->max_rx_ip_filters,
757 					sizeof(*channel->rps_flow_id),
758 					GFP_KERNEL);
759 			if (!channel->rps_flow_id)
760 				success = 0;
761 			else
762 				for (i = 0;
763 				     i < efx->type->max_rx_ip_filters;
764 				     ++i)
765 					channel->rps_flow_id[i] =
766 						RPS_FLOW_ID_INVALID;
767 			channel->rfs_expire_index = 0;
768 			channel->rfs_filter_count = 0;
769 		}
770 
771 		if (!success) {
772 			efx_for_each_channel(channel, efx)
773 				kfree(channel->rps_flow_id);
774 			efx->type->filter_table_remove(efx);
775 			rc = -ENOMEM;
776 			goto out_unlock;
777 		}
778 	}
779 #endif
780 out_unlock:
781 	up_write(&efx->filter_sem);
782 	mutex_unlock(&efx->mac_lock);
783 	return rc;
784 }
785 
efx_siena_remove_filters(struct efx_nic * efx)786 void efx_siena_remove_filters(struct efx_nic *efx)
787 {
788 #ifdef CONFIG_RFS_ACCEL
789 	struct efx_channel *channel;
790 
791 	efx_for_each_channel(channel, efx) {
792 		cancel_delayed_work_sync(&channel->filter_work);
793 		kfree(channel->rps_flow_id);
794 		channel->rps_flow_id = NULL;
795 	}
796 #endif
797 	down_write(&efx->filter_sem);
798 	efx->type->filter_table_remove(efx);
799 	up_write(&efx->filter_sem);
800 }
801 
802 #ifdef CONFIG_RFS_ACCEL
803 
efx_filter_rfs_work(struct work_struct * data)804 static void efx_filter_rfs_work(struct work_struct *data)
805 {
806 	struct efx_async_filter_insertion *req = container_of(data, struct efx_async_filter_insertion,
807 							      work);
808 	struct efx_nic *efx = netdev_priv(req->net_dev);
809 	struct efx_channel *channel = efx_get_channel(efx, req->rxq_index);
810 	int slot_idx = req - efx->rps_slot;
811 	struct efx_arfs_rule *rule;
812 	u16 arfs_id = 0;
813 	int rc;
814 
815 	rc = efx->type->filter_insert(efx, &req->spec, true);
816 	if (rc >= 0)
817 		/* Discard 'priority' part of EF10+ filter ID (mcdi_filters) */
818 		rc %= efx->type->max_rx_ip_filters;
819 	if (efx->rps_hash_table) {
820 		spin_lock_bh(&efx->rps_hash_lock);
821 		rule = efx_siena_rps_hash_find(efx, &req->spec);
822 		/* The rule might have already gone, if someone else's request
823 		 * for the same spec was already worked and then expired before
824 		 * we got around to our work.  In that case we have nothing
825 		 * tying us to an arfs_id, meaning that as soon as the filter
826 		 * is considered for expiry it will be removed.
827 		 */
828 		if (rule) {
829 			if (rc < 0)
830 				rule->filter_id = EFX_ARFS_FILTER_ID_ERROR;
831 			else
832 				rule->filter_id = rc;
833 			arfs_id = rule->arfs_id;
834 		}
835 		spin_unlock_bh(&efx->rps_hash_lock);
836 	}
837 	if (rc >= 0) {
838 		/* Remember this so we can check whether to expire the filter
839 		 * later.
840 		 */
841 		mutex_lock(&efx->rps_mutex);
842 		if (channel->rps_flow_id[rc] == RPS_FLOW_ID_INVALID)
843 			channel->rfs_filter_count++;
844 		channel->rps_flow_id[rc] = req->flow_id;
845 		mutex_unlock(&efx->rps_mutex);
846 
847 		if (req->spec.ether_type == htons(ETH_P_IP))
848 			netif_info(efx, rx_status, efx->net_dev,
849 				   "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n",
850 				   (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
851 				   req->spec.rem_host, ntohs(req->spec.rem_port),
852 				   req->spec.loc_host, ntohs(req->spec.loc_port),
853 				   req->rxq_index, req->flow_id, rc, arfs_id);
854 		else
855 			netif_info(efx, rx_status, efx->net_dev,
856 				   "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n",
857 				   (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
858 				   req->spec.rem_host, ntohs(req->spec.rem_port),
859 				   req->spec.loc_host, ntohs(req->spec.loc_port),
860 				   req->rxq_index, req->flow_id, rc, arfs_id);
861 		channel->n_rfs_succeeded++;
862 	} else {
863 		if (req->spec.ether_type == htons(ETH_P_IP))
864 			netif_dbg(efx, rx_status, efx->net_dev,
865 				  "failed to steer %s %pI4:%u:%pI4:%u to queue %u [flow %u rc %d id %u]\n",
866 				  (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
867 				  req->spec.rem_host, ntohs(req->spec.rem_port),
868 				  req->spec.loc_host, ntohs(req->spec.loc_port),
869 				  req->rxq_index, req->flow_id, rc, arfs_id);
870 		else
871 			netif_dbg(efx, rx_status, efx->net_dev,
872 				  "failed to steer %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u rc %d id %u]\n",
873 				  (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
874 				  req->spec.rem_host, ntohs(req->spec.rem_port),
875 				  req->spec.loc_host, ntohs(req->spec.loc_port),
876 				  req->rxq_index, req->flow_id, rc, arfs_id);
877 		channel->n_rfs_failed++;
878 		/* We're overloading the NIC's filter tables, so let's do a
879 		 * chunk of extra expiry work.
880 		 */
881 		__efx_siena_filter_rfs_expire(channel,
882 					      min(channel->rfs_filter_count,
883 						  100u));
884 	}
885 
886 	/* Release references */
887 	clear_bit(slot_idx, &efx->rps_slot_map);
888 	netdev_put(req->net_dev, &req->net_dev_tracker);
889 }
890 
efx_siena_filter_rfs(struct net_device * net_dev,const struct sk_buff * skb,u16 rxq_index,u32 flow_id)891 int efx_siena_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
892 			 u16 rxq_index, u32 flow_id)
893 {
894 	struct efx_nic *efx = netdev_priv(net_dev);
895 	struct efx_async_filter_insertion *req;
896 	struct efx_arfs_rule *rule;
897 	struct flow_keys fk;
898 	int slot_idx;
899 	bool new;
900 	int rc;
901 
902 	/* find a free slot */
903 	for (slot_idx = 0; slot_idx < EFX_RPS_MAX_IN_FLIGHT; slot_idx++)
904 		if (!test_and_set_bit(slot_idx, &efx->rps_slot_map))
905 			break;
906 	if (slot_idx >= EFX_RPS_MAX_IN_FLIGHT)
907 		return -EBUSY;
908 
909 	if (flow_id == RPS_FLOW_ID_INVALID) {
910 		rc = -EINVAL;
911 		goto out_clear;
912 	}
913 
914 	if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) {
915 		rc = -EPROTONOSUPPORT;
916 		goto out_clear;
917 	}
918 
919 	if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) {
920 		rc = -EPROTONOSUPPORT;
921 		goto out_clear;
922 	}
923 	if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) {
924 		rc = -EPROTONOSUPPORT;
925 		goto out_clear;
926 	}
927 
928 	req = efx->rps_slot + slot_idx;
929 	efx_filter_init_rx(&req->spec, EFX_FILTER_PRI_HINT,
930 			   efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0,
931 			   rxq_index);
932 	req->spec.match_flags =
933 		EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
934 		EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
935 		EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT;
936 	req->spec.ether_type = fk.basic.n_proto;
937 	req->spec.ip_proto = fk.basic.ip_proto;
938 
939 	if (fk.basic.n_proto == htons(ETH_P_IP)) {
940 		req->spec.rem_host[0] = fk.addrs.v4addrs.src;
941 		req->spec.loc_host[0] = fk.addrs.v4addrs.dst;
942 	} else {
943 		memcpy(req->spec.rem_host, &fk.addrs.v6addrs.src,
944 		       sizeof(struct in6_addr));
945 		memcpy(req->spec.loc_host, &fk.addrs.v6addrs.dst,
946 		       sizeof(struct in6_addr));
947 	}
948 
949 	req->spec.rem_port = fk.ports.src;
950 	req->spec.loc_port = fk.ports.dst;
951 
952 	if (efx->rps_hash_table) {
953 		/* Add it to ARFS hash table */
954 		spin_lock(&efx->rps_hash_lock);
955 		rule = efx_rps_hash_add(efx, &req->spec, &new);
956 		if (!rule) {
957 			rc = -ENOMEM;
958 			goto out_unlock;
959 		}
960 		if (new)
961 			rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER;
962 		rc = rule->arfs_id;
963 		/* Skip if existing or pending filter already does the right thing */
964 		if (!new && rule->rxq_index == rxq_index &&
965 		    rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING)
966 			goto out_unlock;
967 		rule->rxq_index = rxq_index;
968 		rule->filter_id = EFX_ARFS_FILTER_ID_PENDING;
969 		spin_unlock(&efx->rps_hash_lock);
970 	} else {
971 		/* Without an ARFS hash table, we just use arfs_id 0 for all
972 		 * filters.  This means if multiple flows hash to the same
973 		 * flow_id, all but the most recently touched will be eligible
974 		 * for expiry.
975 		 */
976 		rc = 0;
977 	}
978 
979 	/* Queue the request */
980 	req->net_dev = net_dev;
981 	netdev_hold(req->net_dev, &req->net_dev_tracker, GFP_ATOMIC);
982 	INIT_WORK(&req->work, efx_filter_rfs_work);
983 	req->rxq_index = rxq_index;
984 	req->flow_id = flow_id;
985 	schedule_work(&req->work);
986 	return rc;
987 out_unlock:
988 	spin_unlock(&efx->rps_hash_lock);
989 out_clear:
990 	clear_bit(slot_idx, &efx->rps_slot_map);
991 	return rc;
992 }
993 
__efx_siena_filter_rfs_expire(struct efx_channel * channel,unsigned int quota)994 bool __efx_siena_filter_rfs_expire(struct efx_channel *channel,
995 				   unsigned int quota)
996 {
997 	bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index);
998 	struct efx_nic *efx = channel->efx;
999 	unsigned int index, size, start;
1000 	u32 flow_id;
1001 
1002 	if (!mutex_trylock(&efx->rps_mutex))
1003 		return false;
1004 	expire_one = efx->type->filter_rfs_expire_one;
1005 	index = channel->rfs_expire_index;
1006 	start = index;
1007 	size = efx->type->max_rx_ip_filters;
1008 	while (quota) {
1009 		flow_id = channel->rps_flow_id[index];
1010 
1011 		if (flow_id != RPS_FLOW_ID_INVALID) {
1012 			quota--;
1013 			if (expire_one(efx, flow_id, index)) {
1014 				netif_info(efx, rx_status, efx->net_dev,
1015 					   "expired filter %d [channel %u flow %u]\n",
1016 					   index, channel->channel, flow_id);
1017 				channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID;
1018 				channel->rfs_filter_count--;
1019 			}
1020 		}
1021 		if (++index == size)
1022 			index = 0;
1023 		/* If we were called with a quota that exceeds the total number
1024 		 * of filters in the table (which shouldn't happen, but could
1025 		 * if two callers race), ensure that we don't loop forever -
1026 		 * stop when we've examined every row of the table.
1027 		 */
1028 		if (index == start)
1029 			break;
1030 	}
1031 
1032 	channel->rfs_expire_index = index;
1033 	mutex_unlock(&efx->rps_mutex);
1034 	return true;
1035 }
1036 
1037 #endif /* CONFIG_RFS_ACCEL */
1038