1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2018 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include "net_driver.h"
12 #include <linux/module.h>
13 #include <linux/iommu.h>
14 #include <net/rps.h>
15 #include "efx.h"
16 #include "nic.h"
17 #include "rx_common.h"
18
19 /* This is the percentage fill level below which new RX descriptors
20 * will be added to the RX descriptor ring.
21 */
22 static unsigned int rx_refill_threshold;
23 module_param(rx_refill_threshold, uint, 0444);
24 MODULE_PARM_DESC(rx_refill_threshold,
25 "RX descriptor ring refill threshold (%)");
26
27 /* RX maximum head room required.
28 *
29 * This must be at least 1 to prevent overflow, plus one packet-worth
30 * to allow pipelined receives.
31 */
32 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
33
34 static void efx_unmap_rx_buffer(struct efx_nic *efx,
35 struct efx_rx_buffer *rx_buf);
36
37 /* Check the RX page recycle ring for a page that can be reused. */
efx_reuse_page(struct efx_rx_queue * rx_queue)38 static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
39 {
40 struct efx_nic *efx = rx_queue->efx;
41 struct efx_rx_page_state *state;
42 unsigned int index;
43 struct page *page;
44
45 if (unlikely(!rx_queue->page_ring))
46 return NULL;
47 index = rx_queue->page_remove & rx_queue->page_ptr_mask;
48 page = rx_queue->page_ring[index];
49 if (page == NULL)
50 return NULL;
51
52 rx_queue->page_ring[index] = NULL;
53 /* page_remove cannot exceed page_add. */
54 if (rx_queue->page_remove != rx_queue->page_add)
55 ++rx_queue->page_remove;
56
57 /* If page_count is 1 then we hold the only reference to this page. */
58 if (page_count(page) == 1) {
59 ++rx_queue->page_recycle_count;
60 return page;
61 } else {
62 state = page_address(page);
63 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
64 PAGE_SIZE << efx->rx_buffer_order,
65 DMA_FROM_DEVICE);
66 put_page(page);
67 ++rx_queue->page_recycle_failed;
68 }
69
70 return NULL;
71 }
72
73 /* Attempt to recycle the page if there is an RX recycle ring; the page can
74 * only be added if this is the final RX buffer, to prevent pages being used in
75 * the descriptor ring and appearing in the recycle ring simultaneously.
76 */
efx_recycle_rx_page(struct efx_channel * channel,struct efx_rx_buffer * rx_buf)77 static void efx_recycle_rx_page(struct efx_channel *channel,
78 struct efx_rx_buffer *rx_buf)
79 {
80 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
81 struct efx_nic *efx = rx_queue->efx;
82 struct page *page = rx_buf->page;
83 unsigned int index;
84
85 /* Only recycle the page after processing the final buffer. */
86 if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
87 return;
88
89 index = rx_queue->page_add & rx_queue->page_ptr_mask;
90 if (rx_queue->page_ring[index] == NULL) {
91 unsigned int read_index = rx_queue->page_remove &
92 rx_queue->page_ptr_mask;
93
94 /* The next slot in the recycle ring is available, but
95 * increment page_remove if the read pointer currently
96 * points here.
97 */
98 if (read_index == index)
99 ++rx_queue->page_remove;
100 rx_queue->page_ring[index] = page;
101 ++rx_queue->page_add;
102 return;
103 }
104 ++rx_queue->page_recycle_full;
105 efx_unmap_rx_buffer(efx, rx_buf);
106 put_page(rx_buf->page);
107 }
108
109 /* Recycle the pages that are used by buffers that have just been received. */
efx_siena_recycle_rx_pages(struct efx_channel * channel,struct efx_rx_buffer * rx_buf,unsigned int n_frags)110 void efx_siena_recycle_rx_pages(struct efx_channel *channel,
111 struct efx_rx_buffer *rx_buf,
112 unsigned int n_frags)
113 {
114 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
115
116 if (unlikely(!rx_queue->page_ring))
117 return;
118
119 do {
120 efx_recycle_rx_page(channel, rx_buf);
121 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
122 } while (--n_frags);
123 }
124
efx_siena_discard_rx_packet(struct efx_channel * channel,struct efx_rx_buffer * rx_buf,unsigned int n_frags)125 void efx_siena_discard_rx_packet(struct efx_channel *channel,
126 struct efx_rx_buffer *rx_buf,
127 unsigned int n_frags)
128 {
129 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
130
131 efx_siena_recycle_rx_pages(channel, rx_buf, n_frags);
132
133 efx_siena_free_rx_buffers(rx_queue, rx_buf, n_frags);
134 }
135
efx_init_rx_recycle_ring(struct efx_rx_queue * rx_queue)136 static void efx_init_rx_recycle_ring(struct efx_rx_queue *rx_queue)
137 {
138 unsigned int bufs_in_recycle_ring, page_ring_size;
139 struct efx_nic *efx = rx_queue->efx;
140
141 bufs_in_recycle_ring = efx_rx_recycle_ring_size(efx);
142 page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
143 efx->rx_bufs_per_page);
144 rx_queue->page_ring = kcalloc(page_ring_size,
145 sizeof(*rx_queue->page_ring), GFP_KERNEL);
146 if (!rx_queue->page_ring)
147 rx_queue->page_ptr_mask = 0;
148 else
149 rx_queue->page_ptr_mask = page_ring_size - 1;
150 }
151
efx_fini_rx_recycle_ring(struct efx_rx_queue * rx_queue)152 static void efx_fini_rx_recycle_ring(struct efx_rx_queue *rx_queue)
153 {
154 struct efx_nic *efx = rx_queue->efx;
155 int i;
156
157 if (unlikely(!rx_queue->page_ring))
158 return;
159
160 /* Unmap and release the pages in the recycle ring. Remove the ring. */
161 for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
162 struct page *page = rx_queue->page_ring[i];
163 struct efx_rx_page_state *state;
164
165 if (page == NULL)
166 continue;
167
168 state = page_address(page);
169 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
170 PAGE_SIZE << efx->rx_buffer_order,
171 DMA_FROM_DEVICE);
172 put_page(page);
173 }
174 kfree(rx_queue->page_ring);
175 rx_queue->page_ring = NULL;
176 }
177
efx_fini_rx_buffer(struct efx_rx_queue * rx_queue,struct efx_rx_buffer * rx_buf)178 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
179 struct efx_rx_buffer *rx_buf)
180 {
181 /* Release the page reference we hold for the buffer. */
182 if (rx_buf->page)
183 put_page(rx_buf->page);
184
185 /* If this is the last buffer in a page, unmap and free it. */
186 if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
187 efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
188 efx_siena_free_rx_buffers(rx_queue, rx_buf, 1);
189 }
190 rx_buf->page = NULL;
191 }
192
efx_siena_probe_rx_queue(struct efx_rx_queue * rx_queue)193 int efx_siena_probe_rx_queue(struct efx_rx_queue *rx_queue)
194 {
195 struct efx_nic *efx = rx_queue->efx;
196 unsigned int entries;
197 int rc;
198
199 /* Create the smallest power-of-two aligned ring */
200 entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
201 EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
202 rx_queue->ptr_mask = entries - 1;
203
204 netif_dbg(efx, probe, efx->net_dev,
205 "creating RX queue %d size %#x mask %#x\n",
206 efx_rx_queue_index(rx_queue), efx->rxq_entries,
207 rx_queue->ptr_mask);
208
209 /* Allocate RX buffers */
210 rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
211 GFP_KERNEL);
212 if (!rx_queue->buffer)
213 return -ENOMEM;
214
215 rc = efx_nic_probe_rx(rx_queue);
216 if (rc) {
217 kfree(rx_queue->buffer);
218 rx_queue->buffer = NULL;
219 }
220
221 return rc;
222 }
223
efx_siena_init_rx_queue(struct efx_rx_queue * rx_queue)224 void efx_siena_init_rx_queue(struct efx_rx_queue *rx_queue)
225 {
226 unsigned int max_fill, trigger, max_trigger;
227 struct efx_nic *efx = rx_queue->efx;
228 int rc = 0;
229
230 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
231 "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
232
233 /* Initialise ptr fields */
234 rx_queue->added_count = 0;
235 rx_queue->notified_count = 0;
236 rx_queue->removed_count = 0;
237 rx_queue->min_fill = -1U;
238 efx_init_rx_recycle_ring(rx_queue);
239
240 rx_queue->page_remove = 0;
241 rx_queue->page_add = rx_queue->page_ptr_mask + 1;
242 rx_queue->page_recycle_count = 0;
243 rx_queue->page_recycle_failed = 0;
244 rx_queue->page_recycle_full = 0;
245
246 /* Initialise limit fields */
247 max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
248 max_trigger =
249 max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
250 if (rx_refill_threshold != 0) {
251 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
252 if (trigger > max_trigger)
253 trigger = max_trigger;
254 } else {
255 trigger = max_trigger;
256 }
257
258 rx_queue->max_fill = max_fill;
259 rx_queue->fast_fill_trigger = trigger;
260 rx_queue->refill_enabled = true;
261
262 /* Initialise XDP queue information */
263 rc = xdp_rxq_info_reg(&rx_queue->xdp_rxq_info, efx->net_dev,
264 rx_queue->core_index, 0);
265
266 if (rc) {
267 netif_err(efx, rx_err, efx->net_dev,
268 "Failure to initialise XDP queue information rc=%d\n",
269 rc);
270 efx->xdp_rxq_info_failed = true;
271 }
272
273 /* Set up RX descriptor ring */
274 efx_nic_init_rx(rx_queue);
275 }
276
efx_siena_fini_rx_queue(struct efx_rx_queue * rx_queue)277 void efx_siena_fini_rx_queue(struct efx_rx_queue *rx_queue)
278 {
279 struct efx_rx_buffer *rx_buf;
280 int i;
281
282 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
283 "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
284
285 timer_delete_sync(&rx_queue->slow_fill);
286
287 /* Release RX buffers from the current read ptr to the write ptr */
288 if (rx_queue->buffer) {
289 for (i = rx_queue->removed_count; i < rx_queue->added_count;
290 i++) {
291 unsigned int index = i & rx_queue->ptr_mask;
292
293 rx_buf = efx_rx_buffer(rx_queue, index);
294 efx_fini_rx_buffer(rx_queue, rx_buf);
295 }
296 }
297
298 efx_fini_rx_recycle_ring(rx_queue);
299
300 if (xdp_rxq_info_is_reg(&rx_queue->xdp_rxq_info))
301 xdp_rxq_info_unreg(&rx_queue->xdp_rxq_info);
302 }
303
efx_siena_remove_rx_queue(struct efx_rx_queue * rx_queue)304 void efx_siena_remove_rx_queue(struct efx_rx_queue *rx_queue)
305 {
306 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
307 "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
308
309 efx_nic_remove_rx(rx_queue);
310
311 kfree(rx_queue->buffer);
312 rx_queue->buffer = NULL;
313 }
314
315 /* Unmap a DMA-mapped page. This function is only called for the final RX
316 * buffer in a page.
317 */
efx_unmap_rx_buffer(struct efx_nic * efx,struct efx_rx_buffer * rx_buf)318 static void efx_unmap_rx_buffer(struct efx_nic *efx,
319 struct efx_rx_buffer *rx_buf)
320 {
321 struct page *page = rx_buf->page;
322
323 if (page) {
324 struct efx_rx_page_state *state = page_address(page);
325
326 dma_unmap_page(&efx->pci_dev->dev,
327 state->dma_addr,
328 PAGE_SIZE << efx->rx_buffer_order,
329 DMA_FROM_DEVICE);
330 }
331 }
332
efx_siena_free_rx_buffers(struct efx_rx_queue * rx_queue,struct efx_rx_buffer * rx_buf,unsigned int num_bufs)333 void efx_siena_free_rx_buffers(struct efx_rx_queue *rx_queue,
334 struct efx_rx_buffer *rx_buf,
335 unsigned int num_bufs)
336 {
337 do {
338 if (rx_buf->page) {
339 put_page(rx_buf->page);
340 rx_buf->page = NULL;
341 }
342 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
343 } while (--num_bufs);
344 }
345
efx_siena_rx_slow_fill(struct timer_list * t)346 void efx_siena_rx_slow_fill(struct timer_list *t)
347 {
348 struct efx_rx_queue *rx_queue = timer_container_of(rx_queue, t,
349 slow_fill);
350
351 /* Post an event to cause NAPI to run and refill the queue */
352 efx_nic_generate_fill_event(rx_queue);
353 ++rx_queue->slow_fill_count;
354 }
355
efx_schedule_slow_fill(struct efx_rx_queue * rx_queue)356 static void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
357 {
358 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(10));
359 }
360
361 /* efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
362 *
363 * @rx_queue: Efx RX queue
364 *
365 * This allocates a batch of pages, maps them for DMA, and populates
366 * struct efx_rx_buffers for each one. Return a negative error code or
367 * 0 on success. If a single page can be used for multiple buffers,
368 * then the page will either be inserted fully, or not at all.
369 */
efx_init_rx_buffers(struct efx_rx_queue * rx_queue,bool atomic)370 static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic)
371 {
372 unsigned int page_offset, index, count;
373 struct efx_nic *efx = rx_queue->efx;
374 struct efx_rx_page_state *state;
375 struct efx_rx_buffer *rx_buf;
376 dma_addr_t dma_addr;
377 struct page *page;
378
379 count = 0;
380 do {
381 page = efx_reuse_page(rx_queue);
382 if (page == NULL) {
383 page = alloc_pages(__GFP_COMP |
384 (atomic ? GFP_ATOMIC : GFP_KERNEL),
385 efx->rx_buffer_order);
386 if (unlikely(page == NULL))
387 return -ENOMEM;
388 dma_addr =
389 dma_map_page(&efx->pci_dev->dev, page, 0,
390 PAGE_SIZE << efx->rx_buffer_order,
391 DMA_FROM_DEVICE);
392 if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
393 dma_addr))) {
394 __free_pages(page, efx->rx_buffer_order);
395 return -EIO;
396 }
397 state = page_address(page);
398 state->dma_addr = dma_addr;
399 } else {
400 state = page_address(page);
401 dma_addr = state->dma_addr;
402 }
403
404 dma_addr += sizeof(struct efx_rx_page_state);
405 page_offset = sizeof(struct efx_rx_page_state);
406
407 do {
408 index = rx_queue->added_count & rx_queue->ptr_mask;
409 rx_buf = efx_rx_buffer(rx_queue, index);
410 rx_buf->dma_addr = dma_addr + efx->rx_ip_align +
411 EFX_XDP_HEADROOM;
412 rx_buf->page = page;
413 rx_buf->page_offset = page_offset + efx->rx_ip_align +
414 EFX_XDP_HEADROOM;
415 rx_buf->len = efx->rx_dma_len;
416 rx_buf->flags = 0;
417 ++rx_queue->added_count;
418 get_page(page);
419 dma_addr += efx->rx_page_buf_step;
420 page_offset += efx->rx_page_buf_step;
421 } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
422
423 rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
424 } while (++count < efx->rx_pages_per_batch);
425
426 return 0;
427 }
428
efx_siena_rx_config_page_split(struct efx_nic * efx)429 void efx_siena_rx_config_page_split(struct efx_nic *efx)
430 {
431 efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align +
432 EFX_XDP_HEADROOM + EFX_XDP_TAILROOM,
433 EFX_RX_BUF_ALIGNMENT);
434 efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
435 ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
436 efx->rx_page_buf_step);
437 efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
438 efx->rx_bufs_per_page;
439 efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
440 efx->rx_bufs_per_page);
441 }
442
443 /* efx_siena_fast_push_rx_descriptors - push new RX descriptors quickly
444 * @rx_queue: RX descriptor queue
445 *
446 * This will aim to fill the RX descriptor queue up to
447 * @rx_queue->@max_fill. If there is insufficient atomic
448 * memory to do so, a slow fill will be scheduled.
449 *
450 * The caller must provide serialisation (none is used here). In practise,
451 * this means this function must run from the NAPI handler, or be called
452 * when NAPI is disabled.
453 */
efx_siena_fast_push_rx_descriptors(struct efx_rx_queue * rx_queue,bool atomic)454 void efx_siena_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue,
455 bool atomic)
456 {
457 struct efx_nic *efx = rx_queue->efx;
458 unsigned int fill_level, batch_size;
459 int space, rc = 0;
460
461 if (!rx_queue->refill_enabled)
462 return;
463
464 /* Calculate current fill level, and exit if we don't need to fill */
465 fill_level = (rx_queue->added_count - rx_queue->removed_count);
466 EFX_WARN_ON_ONCE_PARANOID(fill_level > rx_queue->efx->rxq_entries);
467 if (fill_level >= rx_queue->fast_fill_trigger)
468 goto out;
469
470 /* Record minimum fill level */
471 if (unlikely(fill_level < rx_queue->min_fill)) {
472 if (fill_level)
473 rx_queue->min_fill = fill_level;
474 }
475
476 batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
477 space = rx_queue->max_fill - fill_level;
478 EFX_WARN_ON_ONCE_PARANOID(space < batch_size);
479
480 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
481 "RX queue %d fast-filling descriptor ring from"
482 " level %d to level %d\n",
483 efx_rx_queue_index(rx_queue), fill_level,
484 rx_queue->max_fill);
485
486 do {
487 rc = efx_init_rx_buffers(rx_queue, atomic);
488 if (unlikely(rc)) {
489 /* Ensure that we don't leave the rx queue empty */
490 efx_schedule_slow_fill(rx_queue);
491 goto out;
492 }
493 } while ((space -= batch_size) >= batch_size);
494
495 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
496 "RX queue %d fast-filled descriptor ring "
497 "to level %d\n", efx_rx_queue_index(rx_queue),
498 rx_queue->added_count - rx_queue->removed_count);
499
500 out:
501 if (rx_queue->notified_count != rx_queue->added_count)
502 efx_nic_notify_rx_desc(rx_queue);
503 }
504
505 /* Pass a received packet up through GRO. GRO can handle pages
506 * regardless of checksum state and skbs with a good checksum.
507 */
508 void
efx_siena_rx_packet_gro(struct efx_channel * channel,struct efx_rx_buffer * rx_buf,unsigned int n_frags,u8 * eh,__wsum csum)509 efx_siena_rx_packet_gro(struct efx_channel *channel,
510 struct efx_rx_buffer *rx_buf,
511 unsigned int n_frags, u8 *eh, __wsum csum)
512 {
513 struct napi_struct *napi = &channel->napi_str;
514 struct efx_nic *efx = channel->efx;
515 struct sk_buff *skb;
516
517 skb = napi_get_frags(napi);
518 if (unlikely(!skb)) {
519 struct efx_rx_queue *rx_queue;
520
521 rx_queue = efx_channel_get_rx_queue(channel);
522 efx_siena_free_rx_buffers(rx_queue, rx_buf, n_frags);
523 return;
524 }
525
526 if (efx->net_dev->features & NETIF_F_RXHASH)
527 skb_set_hash(skb, efx_rx_buf_hash(efx, eh),
528 PKT_HASH_TYPE_L3);
529 if (csum) {
530 skb->csum = csum;
531 skb->ip_summed = CHECKSUM_COMPLETE;
532 } else {
533 skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
534 CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
535 }
536 skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL);
537
538 for (;;) {
539 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
540 rx_buf->page, rx_buf->page_offset,
541 rx_buf->len);
542 rx_buf->page = NULL;
543 skb->len += rx_buf->len;
544 if (skb_shinfo(skb)->nr_frags == n_frags)
545 break;
546
547 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
548 }
549
550 skb->data_len = skb->len;
551 skb->truesize += n_frags * efx->rx_buffer_truesize;
552
553 skb_record_rx_queue(skb, channel->rx_queue.core_index);
554
555 napi_gro_frags(napi);
556 }
557
efx_siena_set_default_rx_indir_table(struct efx_nic * efx,struct efx_rss_context * ctx)558 void efx_siena_set_default_rx_indir_table(struct efx_nic *efx,
559 struct efx_rss_context *ctx)
560 {
561 size_t i;
562
563 for (i = 0; i < ARRAY_SIZE(ctx->rx_indir_table); i++)
564 ctx->rx_indir_table[i] =
565 ethtool_rxfh_indir_default(i, efx->rss_spread);
566 }
567
568 /**
569 * efx_siena_filter_is_mc_recipient - test whether spec is a multicast recipient
570 * @spec: Specification to test
571 *
572 * Return: %true if the specification is a non-drop RX filter that
573 * matches a local MAC address I/G bit value of 1 or matches a local
574 * IPv4 or IPv6 address value in the respective multicast address
575 * range. Otherwise %false.
576 */
efx_siena_filter_is_mc_recipient(const struct efx_filter_spec * spec)577 bool efx_siena_filter_is_mc_recipient(const struct efx_filter_spec *spec)
578 {
579 if (!(spec->flags & EFX_FILTER_FLAG_RX) ||
580 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP)
581 return false;
582
583 if (spec->match_flags &
584 (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) &&
585 is_multicast_ether_addr(spec->loc_mac))
586 return true;
587
588 if ((spec->match_flags &
589 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
590 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
591 if (spec->ether_type == htons(ETH_P_IP) &&
592 ipv4_is_multicast(spec->loc_host[0]))
593 return true;
594 if (spec->ether_type == htons(ETH_P_IPV6) &&
595 ((const u8 *)spec->loc_host)[0] == 0xff)
596 return true;
597 }
598
599 return false;
600 }
601
efx_siena_filter_spec_equal(const struct efx_filter_spec * left,const struct efx_filter_spec * right)602 bool efx_siena_filter_spec_equal(const struct efx_filter_spec *left,
603 const struct efx_filter_spec *right)
604 {
605 if ((left->match_flags ^ right->match_flags) |
606 ((left->flags ^ right->flags) &
607 (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
608 return false;
609
610 return memcmp(&left->outer_vid, &right->outer_vid,
611 sizeof(struct efx_filter_spec) -
612 offsetof(struct efx_filter_spec, outer_vid)) == 0;
613 }
614
efx_siena_filter_spec_hash(const struct efx_filter_spec * spec)615 u32 efx_siena_filter_spec_hash(const struct efx_filter_spec *spec)
616 {
617 BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
618 return jhash2((const u32 *)&spec->outer_vid,
619 (sizeof(struct efx_filter_spec) -
620 offsetof(struct efx_filter_spec, outer_vid)) / 4,
621 0);
622 }
623
624 #ifdef CONFIG_RFS_ACCEL
efx_siena_rps_check_rule(struct efx_arfs_rule * rule,unsigned int filter_idx,bool * force)625 bool efx_siena_rps_check_rule(struct efx_arfs_rule *rule,
626 unsigned int filter_idx, bool *force)
627 {
628 if (rule->filter_id == EFX_ARFS_FILTER_ID_PENDING) {
629 /* ARFS is currently updating this entry, leave it */
630 return false;
631 }
632 if (rule->filter_id == EFX_ARFS_FILTER_ID_ERROR) {
633 /* ARFS tried and failed to update this, so it's probably out
634 * of date. Remove the filter and the ARFS rule entry.
635 */
636 rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
637 *force = true;
638 return true;
639 } else if (WARN_ON(rule->filter_id != filter_idx)) { /* can't happen */
640 /* ARFS has moved on, so old filter is not needed. Since we did
641 * not mark the rule with EFX_ARFS_FILTER_ID_REMOVING, it will
642 * not be removed by efx_siena_rps_hash_del() subsequently.
643 */
644 *force = true;
645 return true;
646 }
647 /* Remove it iff ARFS wants to. */
648 return true;
649 }
650
651 static
efx_rps_hash_bucket(struct efx_nic * efx,const struct efx_filter_spec * spec)652 struct hlist_head *efx_rps_hash_bucket(struct efx_nic *efx,
653 const struct efx_filter_spec *spec)
654 {
655 u32 hash = efx_siena_filter_spec_hash(spec);
656
657 lockdep_assert_held(&efx->rps_hash_lock);
658 if (!efx->rps_hash_table)
659 return NULL;
660 return &efx->rps_hash_table[hash % EFX_ARFS_HASH_TABLE_SIZE];
661 }
662
efx_siena_rps_hash_find(struct efx_nic * efx,const struct efx_filter_spec * spec)663 struct efx_arfs_rule *efx_siena_rps_hash_find(struct efx_nic *efx,
664 const struct efx_filter_spec *spec)
665 {
666 struct efx_arfs_rule *rule;
667 struct hlist_head *head;
668 struct hlist_node *node;
669
670 head = efx_rps_hash_bucket(efx, spec);
671 if (!head)
672 return NULL;
673 hlist_for_each(node, head) {
674 rule = container_of(node, struct efx_arfs_rule, node);
675 if (efx_siena_filter_spec_equal(spec, &rule->spec))
676 return rule;
677 }
678 return NULL;
679 }
680
efx_rps_hash_add(struct efx_nic * efx,const struct efx_filter_spec * spec,bool * new)681 static struct efx_arfs_rule *efx_rps_hash_add(struct efx_nic *efx,
682 const struct efx_filter_spec *spec,
683 bool *new)
684 {
685 struct efx_arfs_rule *rule;
686 struct hlist_head *head;
687 struct hlist_node *node;
688
689 head = efx_rps_hash_bucket(efx, spec);
690 if (!head)
691 return NULL;
692 hlist_for_each(node, head) {
693 rule = container_of(node, struct efx_arfs_rule, node);
694 if (efx_siena_filter_spec_equal(spec, &rule->spec)) {
695 *new = false;
696 return rule;
697 }
698 }
699 rule = kmalloc(sizeof(*rule), GFP_ATOMIC);
700 *new = true;
701 if (rule) {
702 memcpy(&rule->spec, spec, sizeof(rule->spec));
703 hlist_add_head(&rule->node, head);
704 }
705 return rule;
706 }
707
efx_siena_rps_hash_del(struct efx_nic * efx,const struct efx_filter_spec * spec)708 void efx_siena_rps_hash_del(struct efx_nic *efx,
709 const struct efx_filter_spec *spec)
710 {
711 struct efx_arfs_rule *rule;
712 struct hlist_head *head;
713 struct hlist_node *node;
714
715 head = efx_rps_hash_bucket(efx, spec);
716 if (WARN_ON(!head))
717 return;
718 hlist_for_each(node, head) {
719 rule = container_of(node, struct efx_arfs_rule, node);
720 if (efx_siena_filter_spec_equal(spec, &rule->spec)) {
721 /* Someone already reused the entry. We know that if
722 * this check doesn't fire (i.e. filter_id == REMOVING)
723 * then the REMOVING mark was put there by our caller,
724 * because caller is holding a lock on filter table and
725 * only holders of that lock set REMOVING.
726 */
727 if (rule->filter_id != EFX_ARFS_FILTER_ID_REMOVING)
728 return;
729 hlist_del(node);
730 kfree(rule);
731 return;
732 }
733 }
734 /* We didn't find it. */
735 WARN_ON(1);
736 }
737 #endif
738
efx_siena_probe_filters(struct efx_nic * efx)739 int efx_siena_probe_filters(struct efx_nic *efx)
740 {
741 int rc;
742
743 mutex_lock(&efx->mac_lock);
744 down_write(&efx->filter_sem);
745 rc = efx->type->filter_table_probe(efx);
746 if (rc)
747 goto out_unlock;
748
749 #ifdef CONFIG_RFS_ACCEL
750 if (efx->type->offload_features & NETIF_F_NTUPLE) {
751 struct efx_channel *channel;
752 int i, success = 1;
753
754 efx_for_each_channel(channel, efx) {
755 channel->rps_flow_id =
756 kcalloc(efx->type->max_rx_ip_filters,
757 sizeof(*channel->rps_flow_id),
758 GFP_KERNEL);
759 if (!channel->rps_flow_id)
760 success = 0;
761 else
762 for (i = 0;
763 i < efx->type->max_rx_ip_filters;
764 ++i)
765 channel->rps_flow_id[i] =
766 RPS_FLOW_ID_INVALID;
767 channel->rfs_expire_index = 0;
768 channel->rfs_filter_count = 0;
769 }
770
771 if (!success) {
772 efx_for_each_channel(channel, efx)
773 kfree(channel->rps_flow_id);
774 efx->type->filter_table_remove(efx);
775 rc = -ENOMEM;
776 goto out_unlock;
777 }
778 }
779 #endif
780 out_unlock:
781 up_write(&efx->filter_sem);
782 mutex_unlock(&efx->mac_lock);
783 return rc;
784 }
785
efx_siena_remove_filters(struct efx_nic * efx)786 void efx_siena_remove_filters(struct efx_nic *efx)
787 {
788 #ifdef CONFIG_RFS_ACCEL
789 struct efx_channel *channel;
790
791 efx_for_each_channel(channel, efx) {
792 cancel_delayed_work_sync(&channel->filter_work);
793 kfree(channel->rps_flow_id);
794 channel->rps_flow_id = NULL;
795 }
796 #endif
797 down_write(&efx->filter_sem);
798 efx->type->filter_table_remove(efx);
799 up_write(&efx->filter_sem);
800 }
801
802 #ifdef CONFIG_RFS_ACCEL
803
efx_filter_rfs_work(struct work_struct * data)804 static void efx_filter_rfs_work(struct work_struct *data)
805 {
806 struct efx_async_filter_insertion *req = container_of(data, struct efx_async_filter_insertion,
807 work);
808 struct efx_nic *efx = netdev_priv(req->net_dev);
809 struct efx_channel *channel = efx_get_channel(efx, req->rxq_index);
810 int slot_idx = req - efx->rps_slot;
811 struct efx_arfs_rule *rule;
812 u16 arfs_id = 0;
813 int rc;
814
815 rc = efx->type->filter_insert(efx, &req->spec, true);
816 if (rc >= 0)
817 /* Discard 'priority' part of EF10+ filter ID (mcdi_filters) */
818 rc %= efx->type->max_rx_ip_filters;
819 if (efx->rps_hash_table) {
820 spin_lock_bh(&efx->rps_hash_lock);
821 rule = efx_siena_rps_hash_find(efx, &req->spec);
822 /* The rule might have already gone, if someone else's request
823 * for the same spec was already worked and then expired before
824 * we got around to our work. In that case we have nothing
825 * tying us to an arfs_id, meaning that as soon as the filter
826 * is considered for expiry it will be removed.
827 */
828 if (rule) {
829 if (rc < 0)
830 rule->filter_id = EFX_ARFS_FILTER_ID_ERROR;
831 else
832 rule->filter_id = rc;
833 arfs_id = rule->arfs_id;
834 }
835 spin_unlock_bh(&efx->rps_hash_lock);
836 }
837 if (rc >= 0) {
838 /* Remember this so we can check whether to expire the filter
839 * later.
840 */
841 mutex_lock(&efx->rps_mutex);
842 if (channel->rps_flow_id[rc] == RPS_FLOW_ID_INVALID)
843 channel->rfs_filter_count++;
844 channel->rps_flow_id[rc] = req->flow_id;
845 mutex_unlock(&efx->rps_mutex);
846
847 if (req->spec.ether_type == htons(ETH_P_IP))
848 netif_info(efx, rx_status, efx->net_dev,
849 "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n",
850 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
851 req->spec.rem_host, ntohs(req->spec.rem_port),
852 req->spec.loc_host, ntohs(req->spec.loc_port),
853 req->rxq_index, req->flow_id, rc, arfs_id);
854 else
855 netif_info(efx, rx_status, efx->net_dev,
856 "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n",
857 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
858 req->spec.rem_host, ntohs(req->spec.rem_port),
859 req->spec.loc_host, ntohs(req->spec.loc_port),
860 req->rxq_index, req->flow_id, rc, arfs_id);
861 channel->n_rfs_succeeded++;
862 } else {
863 if (req->spec.ether_type == htons(ETH_P_IP))
864 netif_dbg(efx, rx_status, efx->net_dev,
865 "failed to steer %s %pI4:%u:%pI4:%u to queue %u [flow %u rc %d id %u]\n",
866 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
867 req->spec.rem_host, ntohs(req->spec.rem_port),
868 req->spec.loc_host, ntohs(req->spec.loc_port),
869 req->rxq_index, req->flow_id, rc, arfs_id);
870 else
871 netif_dbg(efx, rx_status, efx->net_dev,
872 "failed to steer %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u rc %d id %u]\n",
873 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
874 req->spec.rem_host, ntohs(req->spec.rem_port),
875 req->spec.loc_host, ntohs(req->spec.loc_port),
876 req->rxq_index, req->flow_id, rc, arfs_id);
877 channel->n_rfs_failed++;
878 /* We're overloading the NIC's filter tables, so let's do a
879 * chunk of extra expiry work.
880 */
881 __efx_siena_filter_rfs_expire(channel,
882 min(channel->rfs_filter_count,
883 100u));
884 }
885
886 /* Release references */
887 clear_bit(slot_idx, &efx->rps_slot_map);
888 netdev_put(req->net_dev, &req->net_dev_tracker);
889 }
890
efx_siena_filter_rfs(struct net_device * net_dev,const struct sk_buff * skb,u16 rxq_index,u32 flow_id)891 int efx_siena_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
892 u16 rxq_index, u32 flow_id)
893 {
894 struct efx_nic *efx = netdev_priv(net_dev);
895 struct efx_async_filter_insertion *req;
896 struct efx_arfs_rule *rule;
897 struct flow_keys fk;
898 int slot_idx;
899 bool new;
900 int rc;
901
902 /* find a free slot */
903 for (slot_idx = 0; slot_idx < EFX_RPS_MAX_IN_FLIGHT; slot_idx++)
904 if (!test_and_set_bit(slot_idx, &efx->rps_slot_map))
905 break;
906 if (slot_idx >= EFX_RPS_MAX_IN_FLIGHT)
907 return -EBUSY;
908
909 if (flow_id == RPS_FLOW_ID_INVALID) {
910 rc = -EINVAL;
911 goto out_clear;
912 }
913
914 if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) {
915 rc = -EPROTONOSUPPORT;
916 goto out_clear;
917 }
918
919 if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) {
920 rc = -EPROTONOSUPPORT;
921 goto out_clear;
922 }
923 if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) {
924 rc = -EPROTONOSUPPORT;
925 goto out_clear;
926 }
927
928 req = efx->rps_slot + slot_idx;
929 efx_filter_init_rx(&req->spec, EFX_FILTER_PRI_HINT,
930 efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0,
931 rxq_index);
932 req->spec.match_flags =
933 EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
934 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
935 EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT;
936 req->spec.ether_type = fk.basic.n_proto;
937 req->spec.ip_proto = fk.basic.ip_proto;
938
939 if (fk.basic.n_proto == htons(ETH_P_IP)) {
940 req->spec.rem_host[0] = fk.addrs.v4addrs.src;
941 req->spec.loc_host[0] = fk.addrs.v4addrs.dst;
942 } else {
943 memcpy(req->spec.rem_host, &fk.addrs.v6addrs.src,
944 sizeof(struct in6_addr));
945 memcpy(req->spec.loc_host, &fk.addrs.v6addrs.dst,
946 sizeof(struct in6_addr));
947 }
948
949 req->spec.rem_port = fk.ports.src;
950 req->spec.loc_port = fk.ports.dst;
951
952 if (efx->rps_hash_table) {
953 /* Add it to ARFS hash table */
954 spin_lock(&efx->rps_hash_lock);
955 rule = efx_rps_hash_add(efx, &req->spec, &new);
956 if (!rule) {
957 rc = -ENOMEM;
958 goto out_unlock;
959 }
960 if (new)
961 rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER;
962 rc = rule->arfs_id;
963 /* Skip if existing or pending filter already does the right thing */
964 if (!new && rule->rxq_index == rxq_index &&
965 rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING)
966 goto out_unlock;
967 rule->rxq_index = rxq_index;
968 rule->filter_id = EFX_ARFS_FILTER_ID_PENDING;
969 spin_unlock(&efx->rps_hash_lock);
970 } else {
971 /* Without an ARFS hash table, we just use arfs_id 0 for all
972 * filters. This means if multiple flows hash to the same
973 * flow_id, all but the most recently touched will be eligible
974 * for expiry.
975 */
976 rc = 0;
977 }
978
979 /* Queue the request */
980 req->net_dev = net_dev;
981 netdev_hold(req->net_dev, &req->net_dev_tracker, GFP_ATOMIC);
982 INIT_WORK(&req->work, efx_filter_rfs_work);
983 req->rxq_index = rxq_index;
984 req->flow_id = flow_id;
985 schedule_work(&req->work);
986 return rc;
987 out_unlock:
988 spin_unlock(&efx->rps_hash_lock);
989 out_clear:
990 clear_bit(slot_idx, &efx->rps_slot_map);
991 return rc;
992 }
993
__efx_siena_filter_rfs_expire(struct efx_channel * channel,unsigned int quota)994 bool __efx_siena_filter_rfs_expire(struct efx_channel *channel,
995 unsigned int quota)
996 {
997 bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index);
998 struct efx_nic *efx = channel->efx;
999 unsigned int index, size, start;
1000 u32 flow_id;
1001
1002 if (!mutex_trylock(&efx->rps_mutex))
1003 return false;
1004 expire_one = efx->type->filter_rfs_expire_one;
1005 index = channel->rfs_expire_index;
1006 start = index;
1007 size = efx->type->max_rx_ip_filters;
1008 while (quota) {
1009 flow_id = channel->rps_flow_id[index];
1010
1011 if (flow_id != RPS_FLOW_ID_INVALID) {
1012 quota--;
1013 if (expire_one(efx, flow_id, index)) {
1014 netif_info(efx, rx_status, efx->net_dev,
1015 "expired filter %d [channel %u flow %u]\n",
1016 index, channel->channel, flow_id);
1017 channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID;
1018 channel->rfs_filter_count--;
1019 }
1020 }
1021 if (++index == size)
1022 index = 0;
1023 /* If we were called with a quota that exceeds the total number
1024 * of filters in the table (which shouldn't happen, but could
1025 * if two callers race), ensure that we don't loop forever -
1026 * stop when we've examined every row of the table.
1027 */
1028 if (index == start)
1029 break;
1030 }
1031
1032 channel->rfs_expire_index = index;
1033 mutex_unlock(&efx->rps_mutex);
1034 return true;
1035 }
1036
1037 #endif /* CONFIG_RFS_ACCEL */
1038