xref: /linux/drivers/net/ethernet/sfc/siena/tx_common.c (revision 79790b6818e96c58fe2bffee1b418c16e64e7b80)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /****************************************************************************
3   * Driver for Solarflare network controllers and boards
4   * Copyright 2018 Solarflare Communications Inc.
5   *
6   * This program is free software; you can redistribute it and/or modify it
7   * under the terms of the GNU General Public License version 2 as published
8   * by the Free Software Foundation, incorporated herein by reference.
9   */
10  
11  #include "net_driver.h"
12  #include "efx.h"
13  #include "nic_common.h"
14  #include "tx_common.h"
15  #include <net/gso.h>
16  
efx_tx_cb_page_count(struct efx_tx_queue * tx_queue)17  static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue)
18  {
19  	return DIV_ROUND_UP(tx_queue->ptr_mask + 1,
20  			    PAGE_SIZE >> EFX_TX_CB_ORDER);
21  }
22  
efx_siena_probe_tx_queue(struct efx_tx_queue * tx_queue)23  int efx_siena_probe_tx_queue(struct efx_tx_queue *tx_queue)
24  {
25  	struct efx_nic *efx = tx_queue->efx;
26  	unsigned int entries;
27  	int rc;
28  
29  	/* Create the smallest power-of-two aligned ring */
30  	entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
31  	EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
32  	tx_queue->ptr_mask = entries - 1;
33  
34  	netif_dbg(efx, probe, efx->net_dev,
35  		  "creating TX queue %d size %#x mask %#x\n",
36  		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
37  
38  	/* Allocate software ring */
39  	tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
40  				   GFP_KERNEL);
41  	if (!tx_queue->buffer)
42  		return -ENOMEM;
43  
44  	tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue),
45  				    sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
46  	if (!tx_queue->cb_page) {
47  		rc = -ENOMEM;
48  		goto fail1;
49  	}
50  
51  	/* Allocate hardware ring, determine TXQ type */
52  	rc = efx_nic_probe_tx(tx_queue);
53  	if (rc)
54  		goto fail2;
55  
56  	tx_queue->channel->tx_queue_by_type[tx_queue->type] = tx_queue;
57  	return 0;
58  
59  fail2:
60  	kfree(tx_queue->cb_page);
61  	tx_queue->cb_page = NULL;
62  fail1:
63  	kfree(tx_queue->buffer);
64  	tx_queue->buffer = NULL;
65  	return rc;
66  }
67  
efx_siena_init_tx_queue(struct efx_tx_queue * tx_queue)68  void efx_siena_init_tx_queue(struct efx_tx_queue *tx_queue)
69  {
70  	struct efx_nic *efx = tx_queue->efx;
71  
72  	netif_dbg(efx, drv, efx->net_dev,
73  		  "initialising TX queue %d\n", tx_queue->queue);
74  
75  	tx_queue->insert_count = 0;
76  	tx_queue->notify_count = 0;
77  	tx_queue->write_count = 0;
78  	tx_queue->packet_write_count = 0;
79  	tx_queue->old_write_count = 0;
80  	tx_queue->read_count = 0;
81  	tx_queue->old_read_count = 0;
82  	tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
83  	tx_queue->xmit_pending = false;
84  	tx_queue->timestamping = (efx_siena_ptp_use_mac_tx_timestamps(efx) &&
85  				  tx_queue->channel == efx_siena_ptp_channel(efx));
86  	tx_queue->completed_timestamp_major = 0;
87  	tx_queue->completed_timestamp_minor = 0;
88  
89  	tx_queue->xdp_tx = efx_channel_is_xdp_tx(tx_queue->channel);
90  	tx_queue->tso_version = 0;
91  
92  	/* Set up TX descriptor ring */
93  	efx_nic_init_tx(tx_queue);
94  
95  	tx_queue->initialised = true;
96  }
97  
efx_siena_remove_tx_queue(struct efx_tx_queue * tx_queue)98  void efx_siena_remove_tx_queue(struct efx_tx_queue *tx_queue)
99  {
100  	int i;
101  
102  	if (!tx_queue->buffer)
103  		return;
104  
105  	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
106  		  "destroying TX queue %d\n", tx_queue->queue);
107  	efx_nic_remove_tx(tx_queue);
108  
109  	if (tx_queue->cb_page) {
110  		for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++)
111  			efx_siena_free_buffer(tx_queue->efx,
112  					      &tx_queue->cb_page[i]);
113  		kfree(tx_queue->cb_page);
114  		tx_queue->cb_page = NULL;
115  	}
116  
117  	kfree(tx_queue->buffer);
118  	tx_queue->buffer = NULL;
119  	tx_queue->channel->tx_queue_by_type[tx_queue->type] = NULL;
120  }
121  
efx_dequeue_buffer(struct efx_tx_queue * tx_queue,struct efx_tx_buffer * buffer,unsigned int * pkts_compl,unsigned int * bytes_compl)122  static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
123  			       struct efx_tx_buffer *buffer,
124  			       unsigned int *pkts_compl,
125  			       unsigned int *bytes_compl)
126  {
127  	if (buffer->unmap_len) {
128  		struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
129  		dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
130  
131  		if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
132  			dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
133  					 DMA_TO_DEVICE);
134  		else
135  			dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
136  				       DMA_TO_DEVICE);
137  		buffer->unmap_len = 0;
138  	}
139  
140  	if (buffer->flags & EFX_TX_BUF_SKB) {
141  		struct sk_buff *skb = (struct sk_buff *)buffer->skb;
142  
143  		EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl);
144  		(*pkts_compl)++;
145  		(*bytes_compl) += skb->len;
146  		if (tx_queue->timestamping &&
147  		    (tx_queue->completed_timestamp_major ||
148  		     tx_queue->completed_timestamp_minor)) {
149  			struct skb_shared_hwtstamps hwtstamp;
150  
151  			hwtstamp.hwtstamp =
152  				efx_siena_ptp_nic_to_kernel_time(tx_queue);
153  			skb_tstamp_tx(skb, &hwtstamp);
154  
155  			tx_queue->completed_timestamp_major = 0;
156  			tx_queue->completed_timestamp_minor = 0;
157  		}
158  		dev_consume_skb_any((struct sk_buff *)buffer->skb);
159  		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
160  			   "TX queue %d transmission id %x complete\n",
161  			   tx_queue->queue, tx_queue->read_count);
162  	} else if (buffer->flags & EFX_TX_BUF_XDP) {
163  		xdp_return_frame_rx_napi(buffer->xdpf);
164  	}
165  
166  	buffer->len = 0;
167  	buffer->flags = 0;
168  }
169  
efx_siena_fini_tx_queue(struct efx_tx_queue * tx_queue)170  void efx_siena_fini_tx_queue(struct efx_tx_queue *tx_queue)
171  {
172  	struct efx_tx_buffer *buffer;
173  
174  	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
175  		  "shutting down TX queue %d\n", tx_queue->queue);
176  
177  	if (!tx_queue->buffer)
178  		return;
179  
180  	/* Free any buffers left in the ring */
181  	while (tx_queue->read_count != tx_queue->write_count) {
182  		unsigned int pkts_compl = 0, bytes_compl = 0;
183  
184  		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
185  		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
186  
187  		++tx_queue->read_count;
188  	}
189  	tx_queue->xmit_pending = false;
190  	netdev_tx_reset_queue(tx_queue->core_txq);
191  }
192  
193  /* Remove packets from the TX queue
194   *
195   * This removes packets from the TX queue, up to and including the
196   * specified index.
197   */
efx_dequeue_buffers(struct efx_tx_queue * tx_queue,unsigned int index,unsigned int * pkts_compl,unsigned int * bytes_compl)198  static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
199  				unsigned int index,
200  				unsigned int *pkts_compl,
201  				unsigned int *bytes_compl)
202  {
203  	struct efx_nic *efx = tx_queue->efx;
204  	unsigned int stop_index, read_ptr;
205  
206  	stop_index = (index + 1) & tx_queue->ptr_mask;
207  	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
208  
209  	while (read_ptr != stop_index) {
210  		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
211  
212  		if (!efx_tx_buffer_in_use(buffer)) {
213  			netif_err(efx, tx_err, efx->net_dev,
214  				  "TX queue %d spurious TX completion id %d\n",
215  				  tx_queue->queue, read_ptr);
216  			efx_siena_schedule_reset(efx, RESET_TYPE_TX_SKIP);
217  			return;
218  		}
219  
220  		efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
221  
222  		++tx_queue->read_count;
223  		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
224  	}
225  }
226  
efx_siena_xmit_done_check_empty(struct efx_tx_queue * tx_queue)227  void efx_siena_xmit_done_check_empty(struct efx_tx_queue *tx_queue)
228  {
229  	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
230  		tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
231  		if (tx_queue->read_count == tx_queue->old_write_count) {
232  			/* Ensure that read_count is flushed. */
233  			smp_mb();
234  			tx_queue->empty_read_count =
235  				tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
236  		}
237  	}
238  }
239  
efx_siena_xmit_done(struct efx_tx_queue * tx_queue,unsigned int index)240  void efx_siena_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
241  {
242  	unsigned int fill_level, pkts_compl = 0, bytes_compl = 0;
243  	struct efx_nic *efx = tx_queue->efx;
244  
245  	EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask);
246  
247  	efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
248  	tx_queue->pkts_compl += pkts_compl;
249  	tx_queue->bytes_compl += bytes_compl;
250  
251  	if (pkts_compl > 1)
252  		++tx_queue->merge_events;
253  
254  	/* See if we need to restart the netif queue.  This memory
255  	 * barrier ensures that we write read_count (inside
256  	 * efx_dequeue_buffers()) before reading the queue status.
257  	 */
258  	smp_mb();
259  	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
260  	    likely(efx->port_enabled) &&
261  	    likely(netif_device_present(efx->net_dev))) {
262  		fill_level = efx_channel_tx_fill_level(tx_queue->channel);
263  		if (fill_level <= efx->txq_wake_thresh)
264  			netif_tx_wake_queue(tx_queue->core_txq);
265  	}
266  
267  	efx_siena_xmit_done_check_empty(tx_queue);
268  }
269  
270  /* Remove buffers put into a tx_queue for the current packet.
271   * None of the buffers must have an skb attached.
272   */
efx_siena_enqueue_unwind(struct efx_tx_queue * tx_queue,unsigned int insert_count)273  void efx_siena_enqueue_unwind(struct efx_tx_queue *tx_queue,
274  			      unsigned int insert_count)
275  {
276  	struct efx_tx_buffer *buffer;
277  	unsigned int bytes_compl = 0;
278  	unsigned int pkts_compl = 0;
279  
280  	/* Work backwards until we hit the original insert pointer value */
281  	while (tx_queue->insert_count != insert_count) {
282  		--tx_queue->insert_count;
283  		buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
284  		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
285  	}
286  }
287  
efx_siena_tx_map_chunk(struct efx_tx_queue * tx_queue,dma_addr_t dma_addr,size_t len)288  struct efx_tx_buffer *efx_siena_tx_map_chunk(struct efx_tx_queue *tx_queue,
289  					     dma_addr_t dma_addr, size_t len)
290  {
291  	const struct efx_nic_type *nic_type = tx_queue->efx->type;
292  	struct efx_tx_buffer *buffer;
293  	unsigned int dma_len;
294  
295  	/* Map the fragment taking account of NIC-dependent DMA limits. */
296  	do {
297  		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
298  
299  		if (nic_type->tx_limit_len)
300  			dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
301  		else
302  			dma_len = len;
303  
304  		buffer->len = dma_len;
305  		buffer->dma_addr = dma_addr;
306  		buffer->flags = EFX_TX_BUF_CONT;
307  		len -= dma_len;
308  		dma_addr += dma_len;
309  		++tx_queue->insert_count;
310  	} while (len);
311  
312  	return buffer;
313  }
314  
efx_tx_tso_header_length(struct sk_buff * skb)315  static int efx_tx_tso_header_length(struct sk_buff *skb)
316  {
317  	size_t header_len;
318  
319  	if (skb->encapsulation)
320  		header_len = skb_inner_transport_offset(skb) +
321  				(inner_tcp_hdr(skb)->doff << 2u);
322  	else
323  		header_len = skb_transport_offset(skb) +
324  				(tcp_hdr(skb)->doff << 2u);
325  	return header_len;
326  }
327  
328  /* Map all data from an SKB for DMA and create descriptors on the queue. */
efx_siena_tx_map_data(struct efx_tx_queue * tx_queue,struct sk_buff * skb,unsigned int segment_count)329  int efx_siena_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
330  			  unsigned int segment_count)
331  {
332  	struct efx_nic *efx = tx_queue->efx;
333  	struct device *dma_dev = &efx->pci_dev->dev;
334  	unsigned int frag_index, nr_frags;
335  	dma_addr_t dma_addr, unmap_addr;
336  	unsigned short dma_flags;
337  	size_t len, unmap_len;
338  
339  	nr_frags = skb_shinfo(skb)->nr_frags;
340  	frag_index = 0;
341  
342  	/* Map header data. */
343  	len = skb_headlen(skb);
344  	dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
345  	dma_flags = EFX_TX_BUF_MAP_SINGLE;
346  	unmap_len = len;
347  	unmap_addr = dma_addr;
348  
349  	if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
350  		return -EIO;
351  
352  	if (segment_count) {
353  		/* For TSO we need to put the header in to a separate
354  		 * descriptor. Map this separately if necessary.
355  		 */
356  		size_t header_len = efx_tx_tso_header_length(skb);
357  
358  		if (header_len != len) {
359  			tx_queue->tso_long_headers++;
360  			efx_siena_tx_map_chunk(tx_queue, dma_addr, header_len);
361  			len -= header_len;
362  			dma_addr += header_len;
363  		}
364  	}
365  
366  	/* Add descriptors for each fragment. */
367  	do {
368  		struct efx_tx_buffer *buffer;
369  		skb_frag_t *fragment;
370  
371  		buffer = efx_siena_tx_map_chunk(tx_queue, dma_addr, len);
372  
373  		/* The final descriptor for a fragment is responsible for
374  		 * unmapping the whole fragment.
375  		 */
376  		buffer->flags = EFX_TX_BUF_CONT | dma_flags;
377  		buffer->unmap_len = unmap_len;
378  		buffer->dma_offset = buffer->dma_addr - unmap_addr;
379  
380  		if (frag_index >= nr_frags) {
381  			/* Store SKB details with the final buffer for
382  			 * the completion.
383  			 */
384  			buffer->skb = skb;
385  			buffer->flags = EFX_TX_BUF_SKB | dma_flags;
386  			return 0;
387  		}
388  
389  		/* Move on to the next fragment. */
390  		fragment = &skb_shinfo(skb)->frags[frag_index++];
391  		len = skb_frag_size(fragment);
392  		dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
393  					    DMA_TO_DEVICE);
394  		dma_flags = 0;
395  		unmap_len = len;
396  		unmap_addr = dma_addr;
397  
398  		if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
399  			return -EIO;
400  	} while (1);
401  }
402  
efx_siena_tx_max_skb_descs(struct efx_nic * efx)403  unsigned int efx_siena_tx_max_skb_descs(struct efx_nic *efx)
404  {
405  	/* Header and payload descriptor for each output segment, plus
406  	 * one for every input fragment boundary within a segment
407  	 */
408  	unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
409  
410  	/* Possibly one more per segment for option descriptors */
411  	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
412  		max_descs += EFX_TSO_MAX_SEGS;
413  
414  	/* Possibly more for PCIe page boundaries within input fragments */
415  	if (PAGE_SIZE > EFX_PAGE_SIZE)
416  		max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
417  				   DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
418  
419  	return max_descs;
420  }
421  
422  /*
423   * Fallback to software TSO.
424   *
425   * This is used if we are unable to send a GSO packet through hardware TSO.
426   * This should only ever happen due to per-queue restrictions - unsupported
427   * packets should first be filtered by the feature flags.
428   *
429   * Returns 0 on success, error code otherwise.
430   */
efx_siena_tx_tso_fallback(struct efx_tx_queue * tx_queue,struct sk_buff * skb)431  int efx_siena_tx_tso_fallback(struct efx_tx_queue *tx_queue,
432  			      struct sk_buff *skb)
433  {
434  	struct sk_buff *segments, *next;
435  
436  	segments = skb_gso_segment(skb, 0);
437  	if (IS_ERR(segments))
438  		return PTR_ERR(segments);
439  
440  	dev_consume_skb_any(skb);
441  
442  	skb_list_walk_safe(segments, skb, next) {
443  		skb_mark_not_on_list(skb);
444  		efx_enqueue_skb(tx_queue, skb);
445  	}
446  
447  	return 0;
448  }
449