1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: Pedro Roque : Retransmit queue handled by TCP. 24 * : Fragmentation on mtu decrease 25 * : Segment collapse on retransmit 26 * : AF independence 27 * 28 * Linus Torvalds : send_delayed_ack 29 * David S. Miller : Charge memory using the right skb 30 * during syn/ack processing. 31 * David S. Miller : Output engine completely rewritten. 32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 33 * Cacophonix Gaul : draft-minshall-nagle-01 34 * J Hadi Salim : ECN support 35 * 36 */ 37 38 #define pr_fmt(fmt) "TCP: " fmt 39 40 #include <net/tcp.h> 41 #include <net/tcp_ecn.h> 42 #include <net/mptcp.h> 43 #include <net/proto_memory.h> 44 #include <net/psp.h> 45 46 #include <linux/compiler.h> 47 #include <linux/gfp.h> 48 #include <linux/module.h> 49 #include <linux/static_key.h> 50 #include <linux/skbuff_ref.h> 51 52 #include <trace/events/tcp.h> 53 54 /* Refresh clocks of a TCP socket, 55 * ensuring monotically increasing values. 56 */ 57 void tcp_mstamp_refresh(struct tcp_sock *tp) 58 { 59 u64 val = tcp_clock_ns(); 60 61 tp->tcp_clock_cache = val; 62 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC); 63 } 64 65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 66 int push_one, gfp_t gfp); 67 68 /* Account for new data that has been sent to the network. */ 69 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 70 { 71 struct inet_connection_sock *icsk = inet_csk(sk); 72 struct tcp_sock *tp = tcp_sk(sk); 73 unsigned int prior_packets = tp->packets_out; 74 75 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq); 76 77 __skb_unlink(skb, &sk->sk_write_queue); 78 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 79 80 if (tp->highest_sack == NULL) 81 tp->highest_sack = skb; 82 83 tp->packets_out += tcp_skb_pcount(skb); 84 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 85 tcp_rearm_rto(sk); 86 87 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 88 tcp_skb_pcount(skb)); 89 tcp_check_space(sk); 90 } 91 92 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 93 * window scaling factor due to loss of precision. 94 * If window has been shrunk, what should we make? It is not clear at all. 95 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 96 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 97 * invalid. OK, let's make this for now: 98 */ 99 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 100 { 101 const struct tcp_sock *tp = tcp_sk(sk); 102 103 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 104 (tp->rx_opt.wscale_ok && 105 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 106 return tp->snd_nxt; 107 else 108 return tcp_wnd_end(tp); 109 } 110 111 /* Calculate mss to advertise in SYN segment. 112 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 113 * 114 * 1. It is independent of path mtu. 115 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 116 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 117 * attached devices, because some buggy hosts are confused by 118 * large MSS. 119 * 4. We do not make 3, we advertise MSS, calculated from first 120 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 121 * This may be overridden via information stored in routing table. 122 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 123 * probably even Jumbo". 124 */ 125 static __u16 tcp_advertise_mss(struct sock *sk) 126 { 127 struct tcp_sock *tp = tcp_sk(sk); 128 const struct dst_entry *dst = __sk_dst_get(sk); 129 int mss = tp->advmss; 130 131 if (dst) { 132 unsigned int metric = dst_metric_advmss(dst); 133 134 if (metric < mss) { 135 mss = metric; 136 tp->advmss = mss; 137 } 138 } 139 140 return (__u16)mss; 141 } 142 143 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 144 * This is the first part of cwnd validation mechanism. 145 */ 146 void tcp_cwnd_restart(struct sock *sk, s32 delta) 147 { 148 struct tcp_sock *tp = tcp_sk(sk); 149 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 150 u32 cwnd = tcp_snd_cwnd(tp); 151 152 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 153 154 tp->snd_ssthresh = tcp_current_ssthresh(sk); 155 restart_cwnd = min(restart_cwnd, cwnd); 156 157 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 158 cwnd >>= 1; 159 tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd)); 160 tp->snd_cwnd_stamp = tcp_jiffies32; 161 tp->snd_cwnd_used = 0; 162 } 163 164 /* Congestion state accounting after a packet has been sent. */ 165 static void tcp_event_data_sent(struct tcp_sock *tp, 166 struct sock *sk) 167 { 168 struct inet_connection_sock *icsk = inet_csk(sk); 169 const u32 now = tcp_jiffies32; 170 171 if (tcp_packets_in_flight(tp) == 0) 172 tcp_ca_event(sk, CA_EVENT_TX_START); 173 174 tp->lsndtime = now; 175 176 /* If it is a reply for ato after last received 177 * packet, increase pingpong count. 178 */ 179 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 180 inet_csk_inc_pingpong_cnt(sk); 181 } 182 183 /* Account for an ACK we sent. */ 184 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt) 185 { 186 struct tcp_sock *tp = tcp_sk(sk); 187 188 if (unlikely(tp->compressed_ack)) { 189 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 190 tp->compressed_ack); 191 tp->compressed_ack = 0; 192 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 193 __sock_put(sk); 194 } 195 196 if (unlikely(rcv_nxt != tp->rcv_nxt)) 197 return; /* Special ACK sent by DCTCP to reflect ECN */ 198 tcp_dec_quickack_mode(sk); 199 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 200 } 201 202 /* Determine a window scaling and initial window to offer. 203 * Based on the assumption that the given amount of space 204 * will be offered. Store the results in the tp structure. 205 * NOTE: for smooth operation initial space offering should 206 * be a multiple of mss if possible. We assume here that mss >= 1. 207 * This MUST be enforced by all callers. 208 */ 209 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 210 __u32 *rcv_wnd, __u32 *__window_clamp, 211 int wscale_ok, __u8 *rcv_wscale, 212 __u32 init_rcv_wnd) 213 { 214 unsigned int space = (__space < 0 ? 0 : __space); 215 u32 window_clamp = READ_ONCE(*__window_clamp); 216 217 /* If no clamp set the clamp to the max possible scaled window */ 218 if (window_clamp == 0) 219 window_clamp = (U16_MAX << TCP_MAX_WSCALE); 220 space = min(window_clamp, space); 221 222 /* Quantize space offering to a multiple of mss if possible. */ 223 if (space > mss) 224 space = rounddown(space, mss); 225 226 /* NOTE: offering an initial window larger than 32767 227 * will break some buggy TCP stacks. If the admin tells us 228 * it is likely we could be speaking with such a buggy stack 229 * we will truncate our initial window offering to 32K-1 230 * unless the remote has sent us a window scaling option, 231 * which we interpret as a sign the remote TCP is not 232 * misinterpreting the window field as a signed quantity. 233 */ 234 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)) 235 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 236 else 237 (*rcv_wnd) = space; 238 239 if (init_rcv_wnd) 240 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 241 242 *rcv_wscale = 0; 243 if (wscale_ok) { 244 /* Set window scaling on max possible window */ 245 space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 246 space = max_t(u32, space, READ_ONCE(sysctl_rmem_max)); 247 space = min_t(u32, space, window_clamp); 248 *rcv_wscale = clamp_t(int, ilog2(space) - 15, 249 0, TCP_MAX_WSCALE); 250 } 251 /* Set the clamp no higher than max representable value */ 252 WRITE_ONCE(*__window_clamp, 253 min_t(__u32, U16_MAX << (*rcv_wscale), window_clamp)); 254 } 255 EXPORT_IPV6_MOD(tcp_select_initial_window); 256 257 /* Chose a new window to advertise, update state in tcp_sock for the 258 * socket, and return result with RFC1323 scaling applied. The return 259 * value can be stuffed directly into th->window for an outgoing 260 * frame. 261 */ 262 static u16 tcp_select_window(struct sock *sk) 263 { 264 struct tcp_sock *tp = tcp_sk(sk); 265 struct net *net = sock_net(sk); 266 u32 old_win = tp->rcv_wnd; 267 u32 cur_win, new_win; 268 269 /* Make the window 0 if we failed to queue the data because we 270 * are out of memory. 271 */ 272 if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM)) { 273 tp->pred_flags = 0; 274 tp->rcv_wnd = 0; 275 tp->rcv_wup = tp->rcv_nxt; 276 return 0; 277 } 278 279 cur_win = tcp_receive_window(tp); 280 new_win = __tcp_select_window(sk); 281 if (new_win < cur_win) { 282 /* Danger Will Robinson! 283 * Don't update rcv_wup/rcv_wnd here or else 284 * we will not be able to advertise a zero 285 * window in time. --DaveM 286 * 287 * Relax Will Robinson. 288 */ 289 if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) { 290 /* Never shrink the offered window */ 291 if (new_win == 0) 292 NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV); 293 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 294 } 295 } 296 297 tp->rcv_wnd = new_win; 298 tp->rcv_wup = tp->rcv_nxt; 299 300 /* Make sure we do not exceed the maximum possible 301 * scaled window. 302 */ 303 if (!tp->rx_opt.rcv_wscale && 304 READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows)) 305 new_win = min(new_win, MAX_TCP_WINDOW); 306 else 307 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 308 309 /* RFC1323 scaling applied */ 310 new_win >>= tp->rx_opt.rcv_wscale; 311 312 /* If we advertise zero window, disable fast path. */ 313 if (new_win == 0) { 314 tp->pred_flags = 0; 315 if (old_win) 316 NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV); 317 } else if (old_win == 0) { 318 NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV); 319 } 320 321 return new_win; 322 } 323 324 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 325 * be sent. 326 */ 327 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 328 struct tcphdr *th, int tcp_header_len) 329 { 330 struct tcp_sock *tp = tcp_sk(sk); 331 332 if (!tcp_ecn_mode_any(tp)) 333 return; 334 335 if (tcp_ecn_mode_accecn(tp)) { 336 if (!tcp_accecn_ace_fail_recv(tp)) 337 INET_ECN_xmit(sk); 338 tcp_accecn_set_ace(tp, skb, th); 339 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ACCECN; 340 } else { 341 /* Not-retransmitted data segment: set ECT and inject CWR. */ 342 if (skb->len != tcp_header_len && 343 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 344 INET_ECN_xmit(sk); 345 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 346 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 347 th->cwr = 1; 348 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 349 } 350 } else if (!tcp_ca_needs_ecn(sk)) { 351 /* ACK or retransmitted segment: clear ECT|CE */ 352 INET_ECN_dontxmit(sk); 353 } 354 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 355 th->ece = 1; 356 } 357 } 358 359 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 360 * auto increment end seqno. 361 */ 362 static void tcp_init_nondata_skb(struct sk_buff *skb, struct sock *sk, 363 u32 seq, u16 flags) 364 { 365 skb->ip_summed = CHECKSUM_PARTIAL; 366 367 TCP_SKB_CB(skb)->tcp_flags = flags; 368 369 tcp_skb_pcount_set(skb, 1); 370 psp_enqueue_set_decrypted(sk, skb); 371 372 TCP_SKB_CB(skb)->seq = seq; 373 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 374 seq++; 375 TCP_SKB_CB(skb)->end_seq = seq; 376 } 377 378 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 379 { 380 return tp->snd_una != tp->snd_up; 381 } 382 383 #define OPTION_SACK_ADVERTISE BIT(0) 384 #define OPTION_TS BIT(1) 385 #define OPTION_MD5 BIT(2) 386 #define OPTION_WSCALE BIT(3) 387 #define OPTION_FAST_OPEN_COOKIE BIT(8) 388 #define OPTION_SMC BIT(9) 389 #define OPTION_MPTCP BIT(10) 390 #define OPTION_AO BIT(11) 391 #define OPTION_ACCECN BIT(12) 392 393 static void smc_options_write(__be32 *ptr, u16 *options) 394 { 395 #if IS_ENABLED(CONFIG_SMC) 396 if (static_branch_unlikely(&tcp_have_smc)) { 397 if (unlikely(OPTION_SMC & *options)) { 398 *ptr++ = htonl((TCPOPT_NOP << 24) | 399 (TCPOPT_NOP << 16) | 400 (TCPOPT_EXP << 8) | 401 (TCPOLEN_EXP_SMC_BASE)); 402 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 403 } 404 } 405 #endif 406 } 407 408 struct tcp_out_options { 409 u16 options; /* bit field of OPTION_* */ 410 u16 mss; /* 0 to disable */ 411 u8 ws; /* window scale, 0 to disable */ 412 u8 num_sack_blocks; /* number of SACK blocks to include */ 413 u8 num_accecn_fields:7, /* number of AccECN fields needed */ 414 use_synack_ecn_bytes:1; /* Use synack_ecn_bytes or not */ 415 u8 hash_size; /* bytes in hash_location */ 416 u8 bpf_opt_len; /* length of BPF hdr option */ 417 __u8 *hash_location; /* temporary pointer, overloaded */ 418 __u32 tsval, tsecr; /* need to include OPTION_TS */ 419 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 420 struct mptcp_out_options mptcp; 421 }; 422 423 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr, 424 struct tcp_sock *tp, 425 struct tcp_out_options *opts) 426 { 427 #if IS_ENABLED(CONFIG_MPTCP) 428 if (unlikely(OPTION_MPTCP & opts->options)) 429 mptcp_write_options(th, ptr, tp, &opts->mptcp); 430 #endif 431 } 432 433 #ifdef CONFIG_CGROUP_BPF 434 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb, 435 enum tcp_synack_type synack_type) 436 { 437 if (unlikely(!skb)) 438 return BPF_WRITE_HDR_TCP_CURRENT_MSS; 439 440 if (unlikely(synack_type == TCP_SYNACK_COOKIE)) 441 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE; 442 443 return 0; 444 } 445 446 /* req, syn_skb and synack_type are used when writing synack */ 447 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 448 struct request_sock *req, 449 struct sk_buff *syn_skb, 450 enum tcp_synack_type synack_type, 451 struct tcp_out_options *opts, 452 unsigned int *remaining) 453 { 454 struct bpf_sock_ops_kern sock_ops; 455 int err; 456 457 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 458 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) || 459 !*remaining) 460 return; 461 462 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */ 463 464 /* init sock_ops */ 465 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 466 467 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB; 468 469 if (req) { 470 /* The listen "sk" cannot be passed here because 471 * it is not locked. It would not make too much 472 * sense to do bpf_setsockopt(listen_sk) based 473 * on individual connection request also. 474 * 475 * Thus, "req" is passed here and the cgroup-bpf-progs 476 * of the listen "sk" will be run. 477 * 478 * "req" is also used here for fastopen even the "sk" here is 479 * a fullsock "child" sk. It is to keep the behavior 480 * consistent between fastopen and non-fastopen on 481 * the bpf programming side. 482 */ 483 sock_ops.sk = (struct sock *)req; 484 sock_ops.syn_skb = syn_skb; 485 } else { 486 sock_owned_by_me(sk); 487 488 sock_ops.is_fullsock = 1; 489 sock_ops.is_locked_tcp_sock = 1; 490 sock_ops.sk = sk; 491 } 492 493 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 494 sock_ops.remaining_opt_len = *remaining; 495 /* tcp_current_mss() does not pass a skb */ 496 if (skb) 497 bpf_skops_init_skb(&sock_ops, skb, 0); 498 499 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 500 501 if (err || sock_ops.remaining_opt_len == *remaining) 502 return; 503 504 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len; 505 /* round up to 4 bytes */ 506 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3; 507 508 *remaining -= opts->bpf_opt_len; 509 } 510 511 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 512 struct request_sock *req, 513 struct sk_buff *syn_skb, 514 enum tcp_synack_type synack_type, 515 struct tcp_out_options *opts) 516 { 517 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len; 518 struct bpf_sock_ops_kern sock_ops; 519 int err; 520 521 if (likely(!max_opt_len)) 522 return; 523 524 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 525 526 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB; 527 528 if (req) { 529 sock_ops.sk = (struct sock *)req; 530 sock_ops.syn_skb = syn_skb; 531 } else { 532 sock_owned_by_me(sk); 533 534 sock_ops.is_fullsock = 1; 535 sock_ops.is_locked_tcp_sock = 1; 536 sock_ops.sk = sk; 537 } 538 539 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 540 sock_ops.remaining_opt_len = max_opt_len; 541 first_opt_off = tcp_hdrlen(skb) - max_opt_len; 542 bpf_skops_init_skb(&sock_ops, skb, first_opt_off); 543 544 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 545 546 if (err) 547 nr_written = 0; 548 else 549 nr_written = max_opt_len - sock_ops.remaining_opt_len; 550 551 if (nr_written < max_opt_len) 552 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP, 553 max_opt_len - nr_written); 554 } 555 #else 556 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 557 struct request_sock *req, 558 struct sk_buff *syn_skb, 559 enum tcp_synack_type synack_type, 560 struct tcp_out_options *opts, 561 unsigned int *remaining) 562 { 563 } 564 565 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 566 struct request_sock *req, 567 struct sk_buff *syn_skb, 568 enum tcp_synack_type synack_type, 569 struct tcp_out_options *opts) 570 { 571 } 572 #endif 573 574 static __be32 *process_tcp_ao_options(struct tcp_sock *tp, 575 const struct tcp_request_sock *tcprsk, 576 struct tcp_out_options *opts, 577 struct tcp_key *key, __be32 *ptr) 578 { 579 #ifdef CONFIG_TCP_AO 580 u8 maclen = tcp_ao_maclen(key->ao_key); 581 582 if (tcprsk) { 583 u8 aolen = maclen + sizeof(struct tcp_ao_hdr); 584 585 *ptr++ = htonl((TCPOPT_AO << 24) | (aolen << 16) | 586 (tcprsk->ao_keyid << 8) | 587 (tcprsk->ao_rcv_next)); 588 } else { 589 struct tcp_ao_key *rnext_key; 590 struct tcp_ao_info *ao_info; 591 592 ao_info = rcu_dereference_check(tp->ao_info, 593 lockdep_sock_is_held(&tp->inet_conn.icsk_inet.sk)); 594 rnext_key = READ_ONCE(ao_info->rnext_key); 595 if (WARN_ON_ONCE(!rnext_key)) 596 return ptr; 597 *ptr++ = htonl((TCPOPT_AO << 24) | 598 (tcp_ao_len(key->ao_key) << 16) | 599 (key->ao_key->sndid << 8) | 600 (rnext_key->rcvid)); 601 } 602 opts->hash_location = (__u8 *)ptr; 603 ptr += maclen / sizeof(*ptr); 604 if (unlikely(maclen % sizeof(*ptr))) { 605 memset(ptr, TCPOPT_NOP, sizeof(*ptr)); 606 ptr++; 607 } 608 #endif 609 return ptr; 610 } 611 612 /* Initial values for AccECN option, ordered is based on ECN field bits 613 * similar to received_ecn_bytes. Used for SYN/ACK AccECN option. 614 */ 615 static const u32 synack_ecn_bytes[3] = { 0, 0, 0 }; 616 617 /* Write previously computed TCP options to the packet. 618 * 619 * Beware: Something in the Internet is very sensitive to the ordering of 620 * TCP options, we learned this through the hard way, so be careful here. 621 * Luckily we can at least blame others for their non-compliance but from 622 * inter-operability perspective it seems that we're somewhat stuck with 623 * the ordering which we have been using if we want to keep working with 624 * those broken things (not that it currently hurts anybody as there isn't 625 * particular reason why the ordering would need to be changed). 626 * 627 * At least SACK_PERM as the first option is known to lead to a disaster 628 * (but it may well be that other scenarios fail similarly). 629 */ 630 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp, 631 const struct tcp_request_sock *tcprsk, 632 struct tcp_out_options *opts, 633 struct tcp_key *key) 634 { 635 u8 leftover_highbyte = TCPOPT_NOP; /* replace 1st NOP if avail */ 636 u8 leftover_lowbyte = TCPOPT_NOP; /* replace 2nd NOP in succession */ 637 __be32 *ptr = (__be32 *)(th + 1); 638 u16 options = opts->options; /* mungable copy */ 639 640 if (tcp_key_is_md5(key)) { 641 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 642 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 643 /* overload cookie hash location */ 644 opts->hash_location = (__u8 *)ptr; 645 ptr += 4; 646 } else if (tcp_key_is_ao(key)) { 647 ptr = process_tcp_ao_options(tp, tcprsk, opts, key, ptr); 648 } 649 if (unlikely(opts->mss)) { 650 *ptr++ = htonl((TCPOPT_MSS << 24) | 651 (TCPOLEN_MSS << 16) | 652 opts->mss); 653 } 654 655 if (likely(OPTION_TS & options)) { 656 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 657 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 658 (TCPOLEN_SACK_PERM << 16) | 659 (TCPOPT_TIMESTAMP << 8) | 660 TCPOLEN_TIMESTAMP); 661 options &= ~OPTION_SACK_ADVERTISE; 662 } else { 663 *ptr++ = htonl((TCPOPT_NOP << 24) | 664 (TCPOPT_NOP << 16) | 665 (TCPOPT_TIMESTAMP << 8) | 666 TCPOLEN_TIMESTAMP); 667 } 668 *ptr++ = htonl(opts->tsval); 669 *ptr++ = htonl(opts->tsecr); 670 } 671 672 if (OPTION_ACCECN & options) { 673 const u32 *ecn_bytes = opts->use_synack_ecn_bytes ? 674 synack_ecn_bytes : 675 tp->received_ecn_bytes; 676 const u8 ect0_idx = INET_ECN_ECT_0 - 1; 677 const u8 ect1_idx = INET_ECN_ECT_1 - 1; 678 const u8 ce_idx = INET_ECN_CE - 1; 679 u32 e0b; 680 u32 e1b; 681 u32 ceb; 682 u8 len; 683 684 e0b = ecn_bytes[ect0_idx] + TCP_ACCECN_E0B_INIT_OFFSET; 685 e1b = ecn_bytes[ect1_idx] + TCP_ACCECN_E1B_INIT_OFFSET; 686 ceb = ecn_bytes[ce_idx] + TCP_ACCECN_CEB_INIT_OFFSET; 687 len = TCPOLEN_ACCECN_BASE + 688 opts->num_accecn_fields * TCPOLEN_ACCECN_PERFIELD; 689 690 if (opts->num_accecn_fields == 2) { 691 *ptr++ = htonl((TCPOPT_ACCECN1 << 24) | (len << 16) | 692 ((e1b >> 8) & 0xffff)); 693 *ptr++ = htonl(((e1b & 0xff) << 24) | 694 (ceb & 0xffffff)); 695 } else if (opts->num_accecn_fields == 1) { 696 *ptr++ = htonl((TCPOPT_ACCECN1 << 24) | (len << 16) | 697 ((e1b >> 8) & 0xffff)); 698 leftover_highbyte = e1b & 0xff; 699 leftover_lowbyte = TCPOPT_NOP; 700 } else if (opts->num_accecn_fields == 0) { 701 leftover_highbyte = TCPOPT_ACCECN1; 702 leftover_lowbyte = len; 703 } else if (opts->num_accecn_fields == 3) { 704 *ptr++ = htonl((TCPOPT_ACCECN1 << 24) | (len << 16) | 705 ((e1b >> 8) & 0xffff)); 706 *ptr++ = htonl(((e1b & 0xff) << 24) | 707 (ceb & 0xffffff)); 708 *ptr++ = htonl(((e0b & 0xffffff) << 8) | 709 TCPOPT_NOP); 710 } 711 if (tp) { 712 tp->accecn_minlen = 0; 713 tp->accecn_opt_tstamp = tp->tcp_mstamp; 714 if (tp->accecn_opt_demand) 715 tp->accecn_opt_demand--; 716 } 717 } 718 719 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 720 *ptr++ = htonl((leftover_highbyte << 24) | 721 (leftover_lowbyte << 16) | 722 (TCPOPT_SACK_PERM << 8) | 723 TCPOLEN_SACK_PERM); 724 leftover_highbyte = TCPOPT_NOP; 725 leftover_lowbyte = TCPOPT_NOP; 726 } 727 728 if (unlikely(OPTION_WSCALE & options)) { 729 u8 highbyte = TCPOPT_NOP; 730 731 /* Do not split the leftover 2-byte to fit into a single 732 * NOP, i.e., replace this NOP only when 1 byte is leftover 733 * within leftover_highbyte. 734 */ 735 if (unlikely(leftover_highbyte != TCPOPT_NOP && 736 leftover_lowbyte == TCPOPT_NOP)) { 737 highbyte = leftover_highbyte; 738 leftover_highbyte = TCPOPT_NOP; 739 } 740 *ptr++ = htonl((highbyte << 24) | 741 (TCPOPT_WINDOW << 16) | 742 (TCPOLEN_WINDOW << 8) | 743 opts->ws); 744 } 745 746 if (unlikely(opts->num_sack_blocks)) { 747 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 748 tp->duplicate_sack : tp->selective_acks; 749 int this_sack; 750 751 *ptr++ = htonl((leftover_highbyte << 24) | 752 (leftover_lowbyte << 16) | 753 (TCPOPT_SACK << 8) | 754 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 755 TCPOLEN_SACK_PERBLOCK))); 756 leftover_highbyte = TCPOPT_NOP; 757 leftover_lowbyte = TCPOPT_NOP; 758 759 for (this_sack = 0; this_sack < opts->num_sack_blocks; 760 ++this_sack) { 761 *ptr++ = htonl(sp[this_sack].start_seq); 762 *ptr++ = htonl(sp[this_sack].end_seq); 763 } 764 765 tp->rx_opt.dsack = 0; 766 } else if (unlikely(leftover_highbyte != TCPOPT_NOP || 767 leftover_lowbyte != TCPOPT_NOP)) { 768 *ptr++ = htonl((leftover_highbyte << 24) | 769 (leftover_lowbyte << 16) | 770 (TCPOPT_NOP << 8) | 771 TCPOPT_NOP); 772 leftover_highbyte = TCPOPT_NOP; 773 leftover_lowbyte = TCPOPT_NOP; 774 } 775 776 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 777 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 778 u8 *p = (u8 *)ptr; 779 u32 len; /* Fast Open option length */ 780 781 if (foc->exp) { 782 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 783 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 784 TCPOPT_FASTOPEN_MAGIC); 785 p += TCPOLEN_EXP_FASTOPEN_BASE; 786 } else { 787 len = TCPOLEN_FASTOPEN_BASE + foc->len; 788 *p++ = TCPOPT_FASTOPEN; 789 *p++ = len; 790 } 791 792 memcpy(p, foc->val, foc->len); 793 if ((len & 3) == 2) { 794 p[foc->len] = TCPOPT_NOP; 795 p[foc->len + 1] = TCPOPT_NOP; 796 } 797 ptr += (len + 3) >> 2; 798 } 799 800 smc_options_write(ptr, &options); 801 802 mptcp_options_write(th, ptr, tp, opts); 803 } 804 805 static void smc_set_option(const struct tcp_sock *tp, 806 struct tcp_out_options *opts, 807 unsigned int *remaining) 808 { 809 #if IS_ENABLED(CONFIG_SMC) 810 if (static_branch_unlikely(&tcp_have_smc)) { 811 if (tp->syn_smc) { 812 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 813 opts->options |= OPTION_SMC; 814 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 815 } 816 } 817 } 818 #endif 819 } 820 821 static void smc_set_option_cond(const struct tcp_sock *tp, 822 const struct inet_request_sock *ireq, 823 struct tcp_out_options *opts, 824 unsigned int *remaining) 825 { 826 #if IS_ENABLED(CONFIG_SMC) 827 if (static_branch_unlikely(&tcp_have_smc)) { 828 if (tp->syn_smc && ireq->smc_ok) { 829 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 830 opts->options |= OPTION_SMC; 831 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 832 } 833 } 834 } 835 #endif 836 } 837 838 static void mptcp_set_option_cond(const struct request_sock *req, 839 struct tcp_out_options *opts, 840 unsigned int *remaining) 841 { 842 if (rsk_is_mptcp(req)) { 843 unsigned int size; 844 845 if (mptcp_synack_options(req, &size, &opts->mptcp)) { 846 if (*remaining >= size) { 847 opts->options |= OPTION_MPTCP; 848 *remaining -= size; 849 } 850 } 851 } 852 } 853 854 static u32 tcp_synack_options_combine_saving(struct tcp_out_options *opts) 855 { 856 /* How much there's room for combining with the alignment padding? */ 857 if ((opts->options & (OPTION_SACK_ADVERTISE | OPTION_TS)) == 858 OPTION_SACK_ADVERTISE) 859 return 2; 860 else if (opts->options & OPTION_WSCALE) 861 return 1; 862 return 0; 863 } 864 865 /* Calculates how long AccECN option will fit to @remaining option space. 866 * 867 * AccECN option can sometimes replace NOPs used for alignment of other 868 * TCP options (up to @max_combine_saving available). 869 * 870 * Only solutions with at least @required AccECN fields are accepted. 871 * 872 * Returns: The size of the AccECN option excluding space repurposed from 873 * the alignment of the other options. 874 */ 875 static int tcp_options_fit_accecn(struct tcp_out_options *opts, int required, 876 int remaining) 877 { 878 int size = TCP_ACCECN_MAXSIZE; 879 int sack_blocks_reduce = 0; 880 int max_combine_saving; 881 int rem = remaining; 882 int align_size; 883 884 if (opts->use_synack_ecn_bytes) 885 max_combine_saving = tcp_synack_options_combine_saving(opts); 886 else 887 max_combine_saving = opts->num_sack_blocks > 0 ? 2 : 0; 888 opts->num_accecn_fields = TCP_ACCECN_NUMFIELDS; 889 while (opts->num_accecn_fields >= required) { 890 /* Pad to dword if cannot combine */ 891 if ((size & 0x3) > max_combine_saving) 892 align_size = ALIGN(size, 4); 893 else 894 align_size = ALIGN_DOWN(size, 4); 895 896 if (rem >= align_size) { 897 size = align_size; 898 break; 899 } else if (opts->num_accecn_fields == required && 900 opts->num_sack_blocks > 2 && 901 required > 0) { 902 /* Try to fit the option by removing one SACK block */ 903 opts->num_sack_blocks--; 904 sack_blocks_reduce++; 905 rem = rem + TCPOLEN_SACK_PERBLOCK; 906 907 opts->num_accecn_fields = TCP_ACCECN_NUMFIELDS; 908 size = TCP_ACCECN_MAXSIZE; 909 continue; 910 } 911 912 opts->num_accecn_fields--; 913 size -= TCPOLEN_ACCECN_PERFIELD; 914 } 915 if (sack_blocks_reduce > 0) { 916 if (opts->num_accecn_fields >= required) 917 size -= sack_blocks_reduce * TCPOLEN_SACK_PERBLOCK; 918 else 919 opts->num_sack_blocks += sack_blocks_reduce; 920 } 921 if (opts->num_accecn_fields < required) 922 return 0; 923 924 opts->options |= OPTION_ACCECN; 925 return size; 926 } 927 928 /* Compute TCP options for SYN packets. This is not the final 929 * network wire format yet. 930 */ 931 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 932 struct tcp_out_options *opts, 933 struct tcp_key *key) 934 { 935 struct tcp_sock *tp = tcp_sk(sk); 936 unsigned int remaining = MAX_TCP_OPTION_SPACE; 937 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 938 bool timestamps; 939 940 /* Better than switch (key.type) as it has static branches */ 941 if (tcp_key_is_md5(key)) { 942 timestamps = false; 943 opts->options |= OPTION_MD5; 944 remaining -= TCPOLEN_MD5SIG_ALIGNED; 945 } else { 946 timestamps = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps); 947 if (tcp_key_is_ao(key)) { 948 opts->options |= OPTION_AO; 949 remaining -= tcp_ao_len_aligned(key->ao_key); 950 } 951 } 952 953 /* We always get an MSS option. The option bytes which will be seen in 954 * normal data packets should timestamps be used, must be in the MSS 955 * advertised. But we subtract them from tp->mss_cache so that 956 * calculations in tcp_sendmsg are simpler etc. So account for this 957 * fact here if necessary. If we don't do this correctly, as a 958 * receiver we won't recognize data packets as being full sized when we 959 * should, and thus we won't abide by the delayed ACK rules correctly. 960 * SACKs don't matter, we never delay an ACK when we have any of those 961 * going out. */ 962 opts->mss = tcp_advertise_mss(sk); 963 remaining -= TCPOLEN_MSS_ALIGNED; 964 965 if (likely(timestamps)) { 966 opts->options |= OPTION_TS; 967 opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset; 968 opts->tsecr = tp->rx_opt.ts_recent; 969 remaining -= TCPOLEN_TSTAMP_ALIGNED; 970 } 971 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) { 972 opts->ws = tp->rx_opt.rcv_wscale; 973 opts->options |= OPTION_WSCALE; 974 remaining -= TCPOLEN_WSCALE_ALIGNED; 975 } 976 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) { 977 opts->options |= OPTION_SACK_ADVERTISE; 978 if (unlikely(!(OPTION_TS & opts->options))) 979 remaining -= TCPOLEN_SACKPERM_ALIGNED; 980 } 981 982 if (fastopen && fastopen->cookie.len >= 0) { 983 u32 need = fastopen->cookie.len; 984 985 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 986 TCPOLEN_FASTOPEN_BASE; 987 need = (need + 3) & ~3U; /* Align to 32 bits */ 988 if (remaining >= need) { 989 opts->options |= OPTION_FAST_OPEN_COOKIE; 990 opts->fastopen_cookie = &fastopen->cookie; 991 remaining -= need; 992 tp->syn_fastopen = 1; 993 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 994 } 995 } 996 997 smc_set_option(tp, opts, &remaining); 998 999 if (sk_is_mptcp(sk)) { 1000 unsigned int size; 1001 1002 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) { 1003 if (remaining >= size) { 1004 opts->options |= OPTION_MPTCP; 1005 remaining -= size; 1006 } 1007 } 1008 } 1009 1010 /* Simultaneous open SYN/ACK needs AccECN option but not SYN. 1011 * It is attempted to negotiate the use of AccECN also on the first 1012 * retransmitted SYN, as mentioned in "3.1.4.1. Retransmitted SYNs" 1013 * of AccECN draft. 1014 */ 1015 if (unlikely((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK) && 1016 tcp_ecn_mode_accecn(tp) && 1017 inet_csk(sk)->icsk_retransmits < 2 && 1018 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_option) && 1019 remaining >= TCPOLEN_ACCECN_BASE)) { 1020 opts->use_synack_ecn_bytes = 1; 1021 remaining -= tcp_options_fit_accecn(opts, 0, remaining); 1022 } 1023 1024 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 1025 1026 return MAX_TCP_OPTION_SPACE - remaining; 1027 } 1028 1029 /* Set up TCP options for SYN-ACKs. */ 1030 static unsigned int tcp_synack_options(const struct sock *sk, 1031 struct request_sock *req, 1032 unsigned int mss, struct sk_buff *skb, 1033 struct tcp_out_options *opts, 1034 const struct tcp_key *key, 1035 struct tcp_fastopen_cookie *foc, 1036 enum tcp_synack_type synack_type, 1037 struct sk_buff *syn_skb) 1038 { 1039 struct inet_request_sock *ireq = inet_rsk(req); 1040 unsigned int remaining = MAX_TCP_OPTION_SPACE; 1041 struct tcp_request_sock *treq = tcp_rsk(req); 1042 1043 if (tcp_key_is_md5(key)) { 1044 opts->options |= OPTION_MD5; 1045 remaining -= TCPOLEN_MD5SIG_ALIGNED; 1046 1047 /* We can't fit any SACK blocks in a packet with MD5 + TS 1048 * options. There was discussion about disabling SACK 1049 * rather than TS in order to fit in better with old, 1050 * buggy kernels, but that was deemed to be unnecessary. 1051 */ 1052 if (synack_type != TCP_SYNACK_COOKIE) 1053 ireq->tstamp_ok &= !ireq->sack_ok; 1054 } else if (tcp_key_is_ao(key)) { 1055 opts->options |= OPTION_AO; 1056 remaining -= tcp_ao_len_aligned(key->ao_key); 1057 ireq->tstamp_ok &= !ireq->sack_ok; 1058 } 1059 1060 /* We always send an MSS option. */ 1061 opts->mss = mss; 1062 remaining -= TCPOLEN_MSS_ALIGNED; 1063 1064 if (likely(ireq->wscale_ok)) { 1065 opts->ws = ireq->rcv_wscale; 1066 opts->options |= OPTION_WSCALE; 1067 remaining -= TCPOLEN_WSCALE_ALIGNED; 1068 } 1069 if (likely(ireq->tstamp_ok)) { 1070 opts->options |= OPTION_TS; 1071 opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) + 1072 tcp_rsk(req)->ts_off; 1073 if (!tcp_rsk(req)->snt_tsval_first) { 1074 if (!opts->tsval) 1075 opts->tsval = ~0U; 1076 tcp_rsk(req)->snt_tsval_first = opts->tsval; 1077 } 1078 WRITE_ONCE(tcp_rsk(req)->snt_tsval_last, opts->tsval); 1079 opts->tsecr = req->ts_recent; 1080 remaining -= TCPOLEN_TSTAMP_ALIGNED; 1081 } 1082 if (likely(ireq->sack_ok)) { 1083 opts->options |= OPTION_SACK_ADVERTISE; 1084 if (unlikely(!ireq->tstamp_ok)) 1085 remaining -= TCPOLEN_SACKPERM_ALIGNED; 1086 } 1087 if (foc != NULL && foc->len >= 0) { 1088 u32 need = foc->len; 1089 1090 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 1091 TCPOLEN_FASTOPEN_BASE; 1092 need = (need + 3) & ~3U; /* Align to 32 bits */ 1093 if (remaining >= need) { 1094 opts->options |= OPTION_FAST_OPEN_COOKIE; 1095 opts->fastopen_cookie = foc; 1096 remaining -= need; 1097 } 1098 } 1099 1100 mptcp_set_option_cond(req, opts, &remaining); 1101 1102 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 1103 1104 if (treq->accecn_ok && 1105 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_option) && 1106 req->num_timeout < 1 && remaining >= TCPOLEN_ACCECN_BASE) { 1107 opts->use_synack_ecn_bytes = 1; 1108 remaining -= tcp_options_fit_accecn(opts, 0, remaining); 1109 } 1110 1111 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb, 1112 synack_type, opts, &remaining); 1113 1114 return MAX_TCP_OPTION_SPACE - remaining; 1115 } 1116 1117 /* Compute TCP options for ESTABLISHED sockets. This is not the 1118 * final wire format yet. 1119 */ 1120 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 1121 struct tcp_out_options *opts, 1122 struct tcp_key *key) 1123 { 1124 struct tcp_sock *tp = tcp_sk(sk); 1125 unsigned int size = 0; 1126 unsigned int eff_sacks; 1127 1128 opts->options = 0; 1129 1130 /* Better than switch (key.type) as it has static branches */ 1131 if (tcp_key_is_md5(key)) { 1132 opts->options |= OPTION_MD5; 1133 size += TCPOLEN_MD5SIG_ALIGNED; 1134 } else if (tcp_key_is_ao(key)) { 1135 opts->options |= OPTION_AO; 1136 size += tcp_ao_len_aligned(key->ao_key); 1137 } 1138 1139 if (likely(tp->rx_opt.tstamp_ok)) { 1140 opts->options |= OPTION_TS; 1141 opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + 1142 tp->tsoffset : 0; 1143 opts->tsecr = tp->rx_opt.ts_recent; 1144 size += TCPOLEN_TSTAMP_ALIGNED; 1145 } 1146 1147 /* MPTCP options have precedence over SACK for the limited TCP 1148 * option space because a MPTCP connection would be forced to 1149 * fall back to regular TCP if a required multipath option is 1150 * missing. SACK still gets a chance to use whatever space is 1151 * left. 1152 */ 1153 if (sk_is_mptcp(sk)) { 1154 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 1155 unsigned int opt_size = 0; 1156 1157 if (mptcp_established_options(sk, skb, &opt_size, remaining, 1158 &opts->mptcp)) { 1159 opts->options |= OPTION_MPTCP; 1160 size += opt_size; 1161 } 1162 } 1163 1164 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 1165 if (unlikely(eff_sacks)) { 1166 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 1167 if (likely(remaining >= TCPOLEN_SACK_BASE_ALIGNED + 1168 TCPOLEN_SACK_PERBLOCK)) { 1169 opts->num_sack_blocks = 1170 min_t(unsigned int, eff_sacks, 1171 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 1172 TCPOLEN_SACK_PERBLOCK); 1173 1174 size += TCPOLEN_SACK_BASE_ALIGNED + 1175 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 1176 } else { 1177 opts->num_sack_blocks = 0; 1178 } 1179 } else { 1180 opts->num_sack_blocks = 0; 1181 } 1182 1183 if (tcp_ecn_mode_accecn(tp)) { 1184 int ecn_opt = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_option); 1185 1186 if (ecn_opt && tp->saw_accecn_opt && !tcp_accecn_opt_fail_send(tp) && 1187 (ecn_opt >= TCP_ACCECN_OPTION_FULL || tp->accecn_opt_demand || 1188 tcp_accecn_option_beacon_check(sk))) { 1189 opts->use_synack_ecn_bytes = 0; 1190 size += tcp_options_fit_accecn(opts, tp->accecn_minlen, 1191 MAX_TCP_OPTION_SPACE - size); 1192 } 1193 } 1194 1195 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp, 1196 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) { 1197 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 1198 1199 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 1200 1201 size = MAX_TCP_OPTION_SPACE - remaining; 1202 } 1203 1204 return size; 1205 } 1206 1207 1208 /* TCP SMALL QUEUES (TSQ) 1209 * 1210 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 1211 * to reduce RTT and bufferbloat. 1212 * We do this using a special skb destructor (tcp_wfree). 1213 * 1214 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 1215 * needs to be reallocated in a driver. 1216 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 1217 * 1218 * Since transmit from skb destructor is forbidden, we use a BH work item 1219 * to process all sockets that eventually need to send more skbs. 1220 * We use one work item per cpu, with its own queue of sockets. 1221 */ 1222 struct tsq_work { 1223 struct work_struct work; 1224 struct list_head head; /* queue of tcp sockets */ 1225 }; 1226 static DEFINE_PER_CPU(struct tsq_work, tsq_work); 1227 1228 static void tcp_tsq_write(struct sock *sk) 1229 { 1230 if ((1 << sk->sk_state) & 1231 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 1232 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 1233 struct tcp_sock *tp = tcp_sk(sk); 1234 1235 if (tp->lost_out > tp->retrans_out && 1236 tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) { 1237 tcp_mstamp_refresh(tp); 1238 tcp_xmit_retransmit_queue(sk); 1239 } 1240 1241 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 1242 0, GFP_ATOMIC); 1243 } 1244 } 1245 1246 static void tcp_tsq_handler(struct sock *sk) 1247 { 1248 bh_lock_sock(sk); 1249 if (!sock_owned_by_user(sk)) 1250 tcp_tsq_write(sk); 1251 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 1252 sock_hold(sk); 1253 bh_unlock_sock(sk); 1254 } 1255 /* 1256 * One work item per cpu tries to send more skbs. 1257 * We run in BH context but need to disable irqs when 1258 * transferring tsq->head because tcp_wfree() might 1259 * interrupt us (non NAPI drivers) 1260 */ 1261 static void tcp_tsq_workfn(struct work_struct *work) 1262 { 1263 struct tsq_work *tsq = container_of(work, struct tsq_work, work); 1264 LIST_HEAD(list); 1265 unsigned long flags; 1266 struct list_head *q, *n; 1267 struct tcp_sock *tp; 1268 struct sock *sk; 1269 1270 local_irq_save(flags); 1271 list_splice_init(&tsq->head, &list); 1272 local_irq_restore(flags); 1273 1274 list_for_each_safe(q, n, &list) { 1275 tp = list_entry(q, struct tcp_sock, tsq_node); 1276 list_del(&tp->tsq_node); 1277 1278 sk = (struct sock *)tp; 1279 smp_mb__before_atomic(); 1280 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 1281 1282 tcp_tsq_handler(sk); 1283 sk_free(sk); 1284 } 1285 } 1286 1287 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 1288 TCPF_WRITE_TIMER_DEFERRED | \ 1289 TCPF_DELACK_TIMER_DEFERRED | \ 1290 TCPF_MTU_REDUCED_DEFERRED | \ 1291 TCPF_ACK_DEFERRED) 1292 /** 1293 * tcp_release_cb - tcp release_sock() callback 1294 * @sk: socket 1295 * 1296 * called from release_sock() to perform protocol dependent 1297 * actions before socket release. 1298 */ 1299 void tcp_release_cb(struct sock *sk) 1300 { 1301 unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags); 1302 unsigned long nflags; 1303 1304 /* perform an atomic operation only if at least one flag is set */ 1305 do { 1306 if (!(flags & TCP_DEFERRED_ALL)) 1307 return; 1308 nflags = flags & ~TCP_DEFERRED_ALL; 1309 } while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags)); 1310 1311 if (flags & TCPF_TSQ_DEFERRED) { 1312 tcp_tsq_write(sk); 1313 __sock_put(sk); 1314 } 1315 1316 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 1317 tcp_write_timer_handler(sk); 1318 __sock_put(sk); 1319 } 1320 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 1321 tcp_delack_timer_handler(sk); 1322 __sock_put(sk); 1323 } 1324 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 1325 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 1326 __sock_put(sk); 1327 } 1328 if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk)) 1329 tcp_send_ack(sk); 1330 } 1331 EXPORT_IPV6_MOD(tcp_release_cb); 1332 1333 void __init tcp_tsq_work_init(void) 1334 { 1335 int i; 1336 1337 for_each_possible_cpu(i) { 1338 struct tsq_work *tsq = &per_cpu(tsq_work, i); 1339 1340 INIT_LIST_HEAD(&tsq->head); 1341 INIT_WORK(&tsq->work, tcp_tsq_workfn); 1342 } 1343 } 1344 1345 /* 1346 * Write buffer destructor automatically called from kfree_skb. 1347 * We can't xmit new skbs from this context, as we might already 1348 * hold qdisc lock. 1349 */ 1350 void tcp_wfree(struct sk_buff *skb) 1351 { 1352 struct sock *sk = skb->sk; 1353 struct tcp_sock *tp = tcp_sk(sk); 1354 unsigned long flags, nval, oval; 1355 struct tsq_work *tsq; 1356 bool empty; 1357 1358 /* Keep one reference on sk_wmem_alloc. 1359 * Will be released by sk_free() from here or tcp_tsq_workfn() 1360 */ 1361 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 1362 1363 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 1364 * Wait until our queues (qdisc + devices) are drained. 1365 * This gives : 1366 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 1367 * - chance for incoming ACK (processed by another cpu maybe) 1368 * to migrate this flow (skb->ooo_okay will be eventually set) 1369 */ 1370 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 1371 goto out; 1372 1373 oval = smp_load_acquire(&sk->sk_tsq_flags); 1374 do { 1375 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 1376 goto out; 1377 1378 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 1379 } while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval)); 1380 1381 /* queue this socket to BH workqueue */ 1382 local_irq_save(flags); 1383 tsq = this_cpu_ptr(&tsq_work); 1384 empty = list_empty(&tsq->head); 1385 list_add(&tp->tsq_node, &tsq->head); 1386 if (empty) 1387 queue_work(system_bh_wq, &tsq->work); 1388 local_irq_restore(flags); 1389 return; 1390 out: 1391 sk_free(sk); 1392 } 1393 1394 /* Note: Called under soft irq. 1395 * We can call TCP stack right away, unless socket is owned by user. 1396 */ 1397 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 1398 { 1399 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 1400 struct sock *sk = (struct sock *)tp; 1401 1402 tcp_tsq_handler(sk); 1403 sock_put(sk); 1404 1405 return HRTIMER_NORESTART; 1406 } 1407 1408 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, 1409 u64 prior_wstamp) 1410 { 1411 struct tcp_sock *tp = tcp_sk(sk); 1412 1413 if (sk->sk_pacing_status != SK_PACING_NONE) { 1414 unsigned long rate = READ_ONCE(sk->sk_pacing_rate); 1415 1416 /* Original sch_fq does not pace first 10 MSS 1417 * Note that tp->data_segs_out overflows after 2^32 packets, 1418 * this is a minor annoyance. 1419 */ 1420 if (rate != ~0UL && rate && tp->data_segs_out >= 10) { 1421 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); 1422 u64 credit = tp->tcp_wstamp_ns - prior_wstamp; 1423 1424 /* take into account OS jitter */ 1425 len_ns -= min_t(u64, len_ns / 2, credit); 1426 tp->tcp_wstamp_ns += len_ns; 1427 } 1428 } 1429 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1430 } 1431 1432 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1433 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1434 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)); 1435 1436 /* This routine actually transmits TCP packets queued in by 1437 * tcp_do_sendmsg(). This is used by both the initial 1438 * transmission and possible later retransmissions. 1439 * All SKB's seen here are completely headerless. It is our 1440 * job to build the TCP header, and pass the packet down to 1441 * IP so it can do the same plus pass the packet off to the 1442 * device. 1443 * 1444 * We are working here with either a clone of the original 1445 * SKB, or a fresh unique copy made by the retransmit engine. 1446 */ 1447 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1448 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1449 { 1450 const struct inet_connection_sock *icsk = inet_csk(sk); 1451 struct inet_sock *inet; 1452 struct tcp_sock *tp; 1453 struct tcp_skb_cb *tcb; 1454 struct tcp_out_options opts; 1455 unsigned int tcp_options_size, tcp_header_size; 1456 struct sk_buff *oskb = NULL; 1457 struct tcp_key key; 1458 struct tcphdr *th; 1459 u64 prior_wstamp; 1460 int err; 1461 1462 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1463 tp = tcp_sk(sk); 1464 prior_wstamp = tp->tcp_wstamp_ns; 1465 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); 1466 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC); 1467 if (clone_it) { 1468 oskb = skb; 1469 1470 tcp_skb_tsorted_save(oskb) { 1471 if (unlikely(skb_cloned(oskb))) 1472 skb = pskb_copy(oskb, gfp_mask); 1473 else 1474 skb = skb_clone(oskb, gfp_mask); 1475 } tcp_skb_tsorted_restore(oskb); 1476 1477 if (unlikely(!skb)) 1478 return -ENOBUFS; 1479 /* retransmit skbs might have a non zero value in skb->dev 1480 * because skb->dev is aliased with skb->rbnode.rb_left 1481 */ 1482 skb->dev = NULL; 1483 } 1484 1485 inet = inet_sk(sk); 1486 tcb = TCP_SKB_CB(skb); 1487 memset(&opts, 0, sizeof(opts)); 1488 1489 tcp_get_current_key(sk, &key); 1490 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 1491 tcp_options_size = tcp_syn_options(sk, skb, &opts, &key); 1492 } else { 1493 tcp_options_size = tcp_established_options(sk, skb, &opts, &key); 1494 /* Force a PSH flag on all (GSO) packets to expedite GRO flush 1495 * at receiver : This slightly improve GRO performance. 1496 * Note that we do not force the PSH flag for non GSO packets, 1497 * because they might be sent under high congestion events, 1498 * and in this case it is better to delay the delivery of 1-MSS 1499 * packets and thus the corresponding ACK packet that would 1500 * release the following packet. 1501 */ 1502 if (tcp_skb_pcount(skb) > 1) 1503 tcb->tcp_flags |= TCPHDR_PSH; 1504 } 1505 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1506 1507 /* We set skb->ooo_okay to one if this packet can select 1508 * a different TX queue than prior packets of this flow, 1509 * to avoid self inflicted reorders. 1510 * The 'other' queue decision is based on current cpu number 1511 * if XPS is enabled, or sk->sk_txhash otherwise. 1512 * We can switch to another (and better) queue if: 1513 * 1) No packet with payload is in qdisc/device queues. 1514 * Delays in TX completion can defeat the test 1515 * even if packets were already sent. 1516 * 2) Or rtx queue is empty. 1517 * This mitigates above case if ACK packets for 1518 * all prior packets were already processed. 1519 */ 1520 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) || 1521 tcp_rtx_queue_empty(sk); 1522 1523 /* If we had to use memory reserve to allocate this skb, 1524 * this might cause drops if packet is looped back : 1525 * Other socket might not have SOCK_MEMALLOC. 1526 * Packets not looped back do not care about pfmemalloc. 1527 */ 1528 skb->pfmemalloc = 0; 1529 1530 skb_push(skb, tcp_header_size); 1531 skb_reset_transport_header(skb); 1532 1533 skb_orphan(skb); 1534 skb->sk = sk; 1535 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1536 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1537 1538 skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm)); 1539 1540 /* Build TCP header and checksum it. */ 1541 th = (struct tcphdr *)skb->data; 1542 th->source = inet->inet_sport; 1543 th->dest = inet->inet_dport; 1544 th->seq = htonl(tcb->seq); 1545 th->ack_seq = htonl(rcv_nxt); 1546 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1547 (tcb->tcp_flags & TCPHDR_FLAGS_MASK)); 1548 1549 th->check = 0; 1550 th->urg_ptr = 0; 1551 1552 /* The urg_mode check is necessary during a below snd_una win probe */ 1553 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1554 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1555 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1556 th->urg = 1; 1557 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1558 th->urg_ptr = htons(0xFFFF); 1559 th->urg = 1; 1560 } 1561 } 1562 1563 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1564 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1565 th->window = htons(tcp_select_window(sk)); 1566 tcp_ecn_send(sk, skb, th, tcp_header_size); 1567 } else { 1568 /* RFC1323: The window in SYN & SYN/ACK segments 1569 * is never scaled. 1570 */ 1571 th->window = htons(min(tp->rcv_wnd, 65535U)); 1572 } 1573 1574 tcp_options_write(th, tp, NULL, &opts, &key); 1575 1576 if (tcp_key_is_md5(&key)) { 1577 #ifdef CONFIG_TCP_MD5SIG 1578 /* Calculate the MD5 hash, as we have all we need now */ 1579 sk_gso_disable(sk); 1580 tp->af_specific->calc_md5_hash(opts.hash_location, 1581 key.md5_key, sk, skb); 1582 #endif 1583 } else if (tcp_key_is_ao(&key)) { 1584 int err; 1585 1586 err = tcp_ao_transmit_skb(sk, skb, key.ao_key, th, 1587 opts.hash_location); 1588 if (err) { 1589 sk_skb_reason_drop(sk, skb, SKB_DROP_REASON_NOT_SPECIFIED); 1590 return -ENOMEM; 1591 } 1592 } 1593 1594 /* BPF prog is the last one writing header option */ 1595 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts); 1596 1597 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check, 1598 tcp_v6_send_check, tcp_v4_send_check, 1599 sk, skb); 1600 1601 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1602 tcp_event_ack_sent(sk, rcv_nxt); 1603 1604 if (skb->len != tcp_header_size) { 1605 tcp_event_data_sent(tp, sk); 1606 tp->data_segs_out += tcp_skb_pcount(skb); 1607 tp->bytes_sent += skb->len - tcp_header_size; 1608 } 1609 1610 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1611 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1612 tcp_skb_pcount(skb)); 1613 1614 tp->segs_out += tcp_skb_pcount(skb); 1615 skb_set_hash_from_sk(skb, sk); 1616 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1617 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1618 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1619 1620 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1621 1622 /* Cleanup our debris for IP stacks */ 1623 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1624 sizeof(struct inet6_skb_parm))); 1625 1626 tcp_add_tx_delay(skb, tp); 1627 1628 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit, 1629 inet6_csk_xmit, ip_queue_xmit, 1630 sk, skb, &inet->cork.fl); 1631 1632 if (unlikely(err > 0)) { 1633 tcp_enter_cwr(sk); 1634 err = net_xmit_eval(err); 1635 } 1636 if (!err && oskb) { 1637 tcp_update_skb_after_send(sk, oskb, prior_wstamp); 1638 tcp_rate_skb_sent(sk, oskb); 1639 } 1640 return err; 1641 } 1642 1643 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1644 gfp_t gfp_mask) 1645 { 1646 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1647 tcp_sk(sk)->rcv_nxt); 1648 } 1649 1650 /* This routine just queues the buffer for sending. 1651 * 1652 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1653 * otherwise socket can stall. 1654 */ 1655 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1656 { 1657 struct tcp_sock *tp = tcp_sk(sk); 1658 1659 /* Advance write_seq and place onto the write_queue. */ 1660 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq); 1661 __skb_header_release(skb); 1662 psp_enqueue_set_decrypted(sk, skb); 1663 tcp_add_write_queue_tail(sk, skb); 1664 sk_wmem_queued_add(sk, skb->truesize); 1665 sk_mem_charge(sk, skb->truesize); 1666 } 1667 1668 /* Initialize TSO segments for a packet. */ 1669 static int tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1670 { 1671 int tso_segs; 1672 1673 if (skb->len <= mss_now) { 1674 /* Avoid the costly divide in the normal 1675 * non-TSO case. 1676 */ 1677 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1678 tcp_skb_pcount_set(skb, 1); 1679 return 1; 1680 } 1681 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1682 tso_segs = DIV_ROUND_UP(skb->len, mss_now); 1683 tcp_skb_pcount_set(skb, tso_segs); 1684 return tso_segs; 1685 } 1686 1687 /* Pcount in the middle of the write queue got changed, we need to do various 1688 * tweaks to fix counters 1689 */ 1690 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1691 { 1692 struct tcp_sock *tp = tcp_sk(sk); 1693 1694 tp->packets_out -= decr; 1695 1696 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1697 tp->sacked_out -= decr; 1698 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1699 tp->retrans_out -= decr; 1700 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1701 tp->lost_out -= decr; 1702 1703 /* Reno case is special. Sigh... */ 1704 if (tcp_is_reno(tp) && decr > 0) 1705 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1706 1707 tcp_verify_left_out(tp); 1708 } 1709 1710 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1711 { 1712 return TCP_SKB_CB(skb)->txstamp_ack || 1713 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1714 } 1715 1716 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1717 { 1718 struct skb_shared_info *shinfo = skb_shinfo(skb); 1719 1720 if (unlikely(tcp_has_tx_tstamp(skb)) && 1721 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1722 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1723 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1724 1725 shinfo->tx_flags &= ~tsflags; 1726 shinfo2->tx_flags |= tsflags; 1727 swap(shinfo->tskey, shinfo2->tskey); 1728 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1729 TCP_SKB_CB(skb)->txstamp_ack = 0; 1730 } 1731 } 1732 1733 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1734 { 1735 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1736 TCP_SKB_CB(skb)->eor = 0; 1737 } 1738 1739 /* Insert buff after skb on the write or rtx queue of sk. */ 1740 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1741 struct sk_buff *buff, 1742 struct sock *sk, 1743 enum tcp_queue tcp_queue) 1744 { 1745 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1746 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1747 else 1748 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1749 } 1750 1751 /* Function to create two new TCP segments. Shrinks the given segment 1752 * to the specified size and appends a new segment with the rest of the 1753 * packet to the list. This won't be called frequently, I hope. 1754 * Remember, these are still headerless SKBs at this point. 1755 */ 1756 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1757 struct sk_buff *skb, u32 len, 1758 unsigned int mss_now, gfp_t gfp) 1759 { 1760 struct tcp_sock *tp = tcp_sk(sk); 1761 struct sk_buff *buff; 1762 int old_factor; 1763 long limit; 1764 u16 flags; 1765 int nlen; 1766 1767 if (WARN_ON(len > skb->len)) 1768 return -EINVAL; 1769 1770 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1771 1772 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb. 1773 * We need some allowance to not penalize applications setting small 1774 * SO_SNDBUF values. 1775 * Also allow first and last skb in retransmit queue to be split. 1776 */ 1777 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE); 1778 if (unlikely((sk->sk_wmem_queued >> 1) > limit && 1779 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE && 1780 skb != tcp_rtx_queue_head(sk) && 1781 skb != tcp_rtx_queue_tail(sk))) { 1782 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG); 1783 return -ENOMEM; 1784 } 1785 1786 if (skb_unclone_keeptruesize(skb, gfp)) 1787 return -ENOMEM; 1788 1789 /* Get a new skb... force flag on. */ 1790 buff = tcp_stream_alloc_skb(sk, gfp, true); 1791 if (!buff) 1792 return -ENOMEM; /* We'll just try again later. */ 1793 skb_copy_decrypted(buff, skb); 1794 mptcp_skb_ext_copy(buff, skb); 1795 1796 sk_wmem_queued_add(sk, buff->truesize); 1797 sk_mem_charge(sk, buff->truesize); 1798 nlen = skb->len - len; 1799 buff->truesize += nlen; 1800 skb->truesize -= nlen; 1801 1802 /* Correct the sequence numbers. */ 1803 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1804 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1805 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1806 1807 /* PSH and FIN should only be set in the second packet. */ 1808 flags = TCP_SKB_CB(skb)->tcp_flags; 1809 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1810 TCP_SKB_CB(buff)->tcp_flags = flags; 1811 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1812 tcp_skb_fragment_eor(skb, buff); 1813 1814 skb_split(skb, buff, len); 1815 1816 skb_set_delivery_time(buff, skb->tstamp, SKB_CLOCK_MONOTONIC); 1817 tcp_fragment_tstamp(skb, buff); 1818 1819 old_factor = tcp_skb_pcount(skb); 1820 1821 /* Fix up tso_factor for both original and new SKB. */ 1822 tcp_set_skb_tso_segs(skb, mss_now); 1823 tcp_set_skb_tso_segs(buff, mss_now); 1824 1825 /* Update delivered info for the new segment */ 1826 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1827 1828 /* If this packet has been sent out already, we must 1829 * adjust the various packet counters. 1830 */ 1831 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1832 int diff = old_factor - tcp_skb_pcount(skb) - 1833 tcp_skb_pcount(buff); 1834 1835 if (diff) 1836 tcp_adjust_pcount(sk, skb, diff); 1837 } 1838 1839 /* Link BUFF into the send queue. */ 1840 __skb_header_release(buff); 1841 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1842 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1843 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1844 1845 return 0; 1846 } 1847 1848 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1849 * data is not copied, but immediately discarded. 1850 */ 1851 static int __pskb_trim_head(struct sk_buff *skb, int len) 1852 { 1853 struct skb_shared_info *shinfo; 1854 int i, k, eat; 1855 1856 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1857 eat = len; 1858 k = 0; 1859 shinfo = skb_shinfo(skb); 1860 for (i = 0; i < shinfo->nr_frags; i++) { 1861 int size = skb_frag_size(&shinfo->frags[i]); 1862 1863 if (size <= eat) { 1864 skb_frag_unref(skb, i); 1865 eat -= size; 1866 } else { 1867 shinfo->frags[k] = shinfo->frags[i]; 1868 if (eat) { 1869 skb_frag_off_add(&shinfo->frags[k], eat); 1870 skb_frag_size_sub(&shinfo->frags[k], eat); 1871 eat = 0; 1872 } 1873 k++; 1874 } 1875 } 1876 shinfo->nr_frags = k; 1877 1878 skb->data_len -= len; 1879 skb->len = skb->data_len; 1880 return len; 1881 } 1882 1883 /* Remove acked data from a packet in the transmit queue. */ 1884 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1885 { 1886 u32 delta_truesize; 1887 1888 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) 1889 return -ENOMEM; 1890 1891 delta_truesize = __pskb_trim_head(skb, len); 1892 1893 TCP_SKB_CB(skb)->seq += len; 1894 1895 skb->truesize -= delta_truesize; 1896 sk_wmem_queued_add(sk, -delta_truesize); 1897 if (!skb_zcopy_pure(skb)) 1898 sk_mem_uncharge(sk, delta_truesize); 1899 1900 /* Any change of skb->len requires recalculation of tso factor. */ 1901 if (tcp_skb_pcount(skb) > 1) 1902 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1903 1904 return 0; 1905 } 1906 1907 /* Calculate MSS not accounting any TCP options. */ 1908 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1909 { 1910 const struct tcp_sock *tp = tcp_sk(sk); 1911 const struct inet_connection_sock *icsk = inet_csk(sk); 1912 int mss_now; 1913 1914 /* Calculate base mss without TCP options: 1915 It is MMS_S - sizeof(tcphdr) of rfc1122 1916 */ 1917 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1918 1919 /* Clamp it (mss_clamp does not include tcp options) */ 1920 if (mss_now > tp->rx_opt.mss_clamp) 1921 mss_now = tp->rx_opt.mss_clamp; 1922 1923 /* Now subtract optional transport overhead */ 1924 mss_now -= icsk->icsk_ext_hdr_len; 1925 1926 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1927 mss_now = max(mss_now, 1928 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss)); 1929 return mss_now; 1930 } 1931 1932 /* Calculate MSS. Not accounting for SACKs here. */ 1933 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1934 { 1935 /* Subtract TCP options size, not including SACKs */ 1936 return __tcp_mtu_to_mss(sk, pmtu) - 1937 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1938 } 1939 EXPORT_IPV6_MOD(tcp_mtu_to_mss); 1940 1941 /* Inverse of above */ 1942 int tcp_mss_to_mtu(struct sock *sk, int mss) 1943 { 1944 const struct tcp_sock *tp = tcp_sk(sk); 1945 const struct inet_connection_sock *icsk = inet_csk(sk); 1946 1947 return mss + 1948 tp->tcp_header_len + 1949 icsk->icsk_ext_hdr_len + 1950 icsk->icsk_af_ops->net_header_len; 1951 } 1952 EXPORT_SYMBOL(tcp_mss_to_mtu); 1953 1954 /* MTU probing init per socket */ 1955 void tcp_mtup_init(struct sock *sk) 1956 { 1957 struct tcp_sock *tp = tcp_sk(sk); 1958 struct inet_connection_sock *icsk = inet_csk(sk); 1959 struct net *net = sock_net(sk); 1960 1961 icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1; 1962 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1963 icsk->icsk_af_ops->net_header_len; 1964 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss)); 1965 icsk->icsk_mtup.probe_size = 0; 1966 if (icsk->icsk_mtup.enabled) 1967 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1968 } 1969 1970 /* This function synchronize snd mss to current pmtu/exthdr set. 1971 1972 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1973 for TCP options, but includes only bare TCP header. 1974 1975 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1976 It is minimum of user_mss and mss received with SYN. 1977 It also does not include TCP options. 1978 1979 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1980 1981 tp->mss_cache is current effective sending mss, including 1982 all tcp options except for SACKs. It is evaluated, 1983 taking into account current pmtu, but never exceeds 1984 tp->rx_opt.mss_clamp. 1985 1986 NOTE1. rfc1122 clearly states that advertised MSS 1987 DOES NOT include either tcp or ip options. 1988 1989 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1990 are READ ONLY outside this function. --ANK (980731) 1991 */ 1992 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1993 { 1994 struct tcp_sock *tp = tcp_sk(sk); 1995 struct inet_connection_sock *icsk = inet_csk(sk); 1996 int mss_now; 1997 1998 if (icsk->icsk_mtup.search_high > pmtu) 1999 icsk->icsk_mtup.search_high = pmtu; 2000 2001 mss_now = tcp_mtu_to_mss(sk, pmtu); 2002 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 2003 2004 /* And store cached results */ 2005 icsk->icsk_pmtu_cookie = pmtu; 2006 if (icsk->icsk_mtup.enabled) 2007 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 2008 tp->mss_cache = mss_now; 2009 2010 return mss_now; 2011 } 2012 EXPORT_IPV6_MOD(tcp_sync_mss); 2013 2014 /* Compute the current effective MSS, taking SACKs and IP options, 2015 * and even PMTU discovery events into account. 2016 */ 2017 unsigned int tcp_current_mss(struct sock *sk) 2018 { 2019 const struct tcp_sock *tp = tcp_sk(sk); 2020 const struct dst_entry *dst = __sk_dst_get(sk); 2021 u32 mss_now; 2022 unsigned int header_len; 2023 struct tcp_out_options opts; 2024 struct tcp_key key; 2025 2026 mss_now = tp->mss_cache; 2027 2028 if (dst) { 2029 u32 mtu = dst_mtu(dst); 2030 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 2031 mss_now = tcp_sync_mss(sk, mtu); 2032 } 2033 tcp_get_current_key(sk, &key); 2034 header_len = tcp_established_options(sk, NULL, &opts, &key) + 2035 sizeof(struct tcphdr); 2036 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 2037 * some common options. If this is an odd packet (because we have SACK 2038 * blocks etc) then our calculated header_len will be different, and 2039 * we have to adjust mss_now correspondingly */ 2040 if (header_len != tp->tcp_header_len) { 2041 int delta = (int) header_len - tp->tcp_header_len; 2042 mss_now -= delta; 2043 } 2044 2045 return mss_now; 2046 } 2047 2048 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 2049 * As additional protections, we do not touch cwnd in retransmission phases, 2050 * and if application hit its sndbuf limit recently. 2051 */ 2052 static void tcp_cwnd_application_limited(struct sock *sk) 2053 { 2054 struct tcp_sock *tp = tcp_sk(sk); 2055 2056 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 2057 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 2058 /* Limited by application or receiver window. */ 2059 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 2060 u32 win_used = max(tp->snd_cwnd_used, init_win); 2061 if (win_used < tcp_snd_cwnd(tp)) { 2062 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2063 tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1); 2064 } 2065 tp->snd_cwnd_used = 0; 2066 } 2067 tp->snd_cwnd_stamp = tcp_jiffies32; 2068 } 2069 2070 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 2071 { 2072 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2073 struct tcp_sock *tp = tcp_sk(sk); 2074 2075 /* Track the strongest available signal of the degree to which the cwnd 2076 * is fully utilized. If cwnd-limited then remember that fact for the 2077 * current window. If not cwnd-limited then track the maximum number of 2078 * outstanding packets in the current window. (If cwnd-limited then we 2079 * chose to not update tp->max_packets_out to avoid an extra else 2080 * clause with no functional impact.) 2081 */ 2082 if (!before(tp->snd_una, tp->cwnd_usage_seq) || 2083 is_cwnd_limited || 2084 (!tp->is_cwnd_limited && 2085 tp->packets_out > tp->max_packets_out)) { 2086 tp->is_cwnd_limited = is_cwnd_limited; 2087 tp->max_packets_out = tp->packets_out; 2088 tp->cwnd_usage_seq = tp->snd_nxt; 2089 } 2090 2091 if (tcp_is_cwnd_limited(sk)) { 2092 /* Network is feed fully. */ 2093 tp->snd_cwnd_used = 0; 2094 tp->snd_cwnd_stamp = tcp_jiffies32; 2095 } else { 2096 /* Network starves. */ 2097 if (tp->packets_out > tp->snd_cwnd_used) 2098 tp->snd_cwnd_used = tp->packets_out; 2099 2100 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) && 2101 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 2102 !ca_ops->cong_control) 2103 tcp_cwnd_application_limited(sk); 2104 2105 /* The following conditions together indicate the starvation 2106 * is caused by insufficient sender buffer: 2107 * 1) just sent some data (see tcp_write_xmit) 2108 * 2) not cwnd limited (this else condition) 2109 * 3) no more data to send (tcp_write_queue_empty()) 2110 * 4) application is hitting buffer limit (SOCK_NOSPACE) 2111 */ 2112 if (tcp_write_queue_empty(sk) && sk->sk_socket && 2113 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 2114 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 2115 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 2116 } 2117 } 2118 2119 /* Minshall's variant of the Nagle send check. */ 2120 static bool tcp_minshall_check(const struct tcp_sock *tp) 2121 { 2122 return after(tp->snd_sml, tp->snd_una) && 2123 !after(tp->snd_sml, tp->snd_nxt); 2124 } 2125 2126 /* Update snd_sml if this skb is under mss 2127 * Note that a TSO packet might end with a sub-mss segment 2128 * The test is really : 2129 * if ((skb->len % mss) != 0) 2130 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 2131 * But we can avoid doing the divide again given we already have 2132 * skb_pcount = skb->len / mss_now 2133 */ 2134 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 2135 const struct sk_buff *skb) 2136 { 2137 if (skb->len < tcp_skb_pcount(skb) * mss_now) 2138 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 2139 } 2140 2141 /* Return false, if packet can be sent now without violation Nagle's rules: 2142 * 1. It is full sized. (provided by caller in %partial bool) 2143 * 2. Or it contains FIN. (already checked by caller) 2144 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 2145 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 2146 * With Minshall's modification: all sent small packets are ACKed. 2147 */ 2148 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 2149 int nonagle) 2150 { 2151 return partial && 2152 ((nonagle & TCP_NAGLE_CORK) || 2153 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 2154 } 2155 2156 /* Return how many segs we'd like on a TSO packet, 2157 * depending on current pacing rate, and how close the peer is. 2158 * 2159 * Rationale is: 2160 * - For close peers, we rather send bigger packets to reduce 2161 * cpu costs, because occasional losses will be repaired fast. 2162 * - For long distance/rtt flows, we would like to get ACK clocking 2163 * with 1 ACK per ms. 2164 * 2165 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting 2166 * in bigger TSO bursts. We we cut the RTT-based allowance in half 2167 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance 2168 * is below 1500 bytes after 6 * ~500 usec = 3ms. 2169 */ 2170 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 2171 int min_tso_segs) 2172 { 2173 unsigned long bytes; 2174 u32 r; 2175 2176 bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift); 2177 2178 r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log); 2179 if (r < BITS_PER_TYPE(sk->sk_gso_max_size)) 2180 bytes += sk->sk_gso_max_size >> r; 2181 2182 bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size); 2183 2184 return max_t(u32, bytes / mss_now, min_tso_segs); 2185 } 2186 2187 /* Return the number of segments we want in the skb we are transmitting. 2188 * See if congestion control module wants to decide; otherwise, autosize. 2189 */ 2190 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 2191 { 2192 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2193 u32 min_tso, tso_segs; 2194 2195 min_tso = ca_ops->min_tso_segs ? 2196 ca_ops->min_tso_segs(sk) : 2197 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs); 2198 2199 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 2200 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 2201 } 2202 2203 /* Returns the portion of skb which can be sent right away */ 2204 static unsigned int tcp_mss_split_point(const struct sock *sk, 2205 const struct sk_buff *skb, 2206 unsigned int mss_now, 2207 unsigned int max_segs, 2208 int nonagle) 2209 { 2210 const struct tcp_sock *tp = tcp_sk(sk); 2211 u32 partial, needed, window, max_len; 2212 2213 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2214 max_len = mss_now * max_segs; 2215 2216 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 2217 return max_len; 2218 2219 needed = min(skb->len, window); 2220 2221 if (max_len <= needed) 2222 return max_len; 2223 2224 partial = needed % mss_now; 2225 /* If last segment is not a full MSS, check if Nagle rules allow us 2226 * to include this last segment in this skb. 2227 * Otherwise, we'll split the skb at last MSS boundary 2228 */ 2229 if (tcp_nagle_check(partial != 0, tp, nonagle)) 2230 return needed - partial; 2231 2232 return needed; 2233 } 2234 2235 /* Can at least one segment of SKB be sent right now, according to the 2236 * congestion window rules? If so, return how many segments are allowed. 2237 */ 2238 static u32 tcp_cwnd_test(const struct tcp_sock *tp) 2239 { 2240 u32 in_flight, cwnd, halfcwnd; 2241 2242 in_flight = tcp_packets_in_flight(tp); 2243 cwnd = tcp_snd_cwnd(tp); 2244 if (in_flight >= cwnd) 2245 return 0; 2246 2247 /* For better scheduling, ensure we have at least 2248 * 2 GSO packets in flight. 2249 */ 2250 halfcwnd = max(cwnd >> 1, 1U); 2251 return min(halfcwnd, cwnd - in_flight); 2252 } 2253 2254 /* Initialize TSO state of a skb. 2255 * This must be invoked the first time we consider transmitting 2256 * SKB onto the wire. 2257 */ 2258 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 2259 { 2260 int tso_segs = tcp_skb_pcount(skb); 2261 2262 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) 2263 return tcp_set_skb_tso_segs(skb, mss_now); 2264 2265 return tso_segs; 2266 } 2267 2268 2269 /* Return true if the Nagle test allows this packet to be 2270 * sent now. 2271 */ 2272 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 2273 unsigned int cur_mss, int nonagle) 2274 { 2275 /* Nagle rule does not apply to frames, which sit in the middle of the 2276 * write_queue (they have no chances to get new data). 2277 * 2278 * This is implemented in the callers, where they modify the 'nonagle' 2279 * argument based upon the location of SKB in the send queue. 2280 */ 2281 if (nonagle & TCP_NAGLE_PUSH) 2282 return true; 2283 2284 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 2285 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 2286 return true; 2287 2288 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 2289 return true; 2290 2291 return false; 2292 } 2293 2294 /* Does at least the first segment of SKB fit into the send window? */ 2295 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 2296 const struct sk_buff *skb, 2297 unsigned int cur_mss) 2298 { 2299 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 2300 2301 if (skb->len > cur_mss) 2302 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 2303 2304 return !after(end_seq, tcp_wnd_end(tp)); 2305 } 2306 2307 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 2308 * which is put after SKB on the list. It is very much like 2309 * tcp_fragment() except that it may make several kinds of assumptions 2310 * in order to speed up the splitting operation. In particular, we 2311 * know that all the data is in scatter-gather pages, and that the 2312 * packet has never been sent out before (and thus is not cloned). 2313 */ 2314 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 2315 unsigned int mss_now, gfp_t gfp) 2316 { 2317 int nlen = skb->len - len; 2318 struct sk_buff *buff; 2319 u16 flags; 2320 2321 /* All of a TSO frame must be composed of paged data. */ 2322 DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len); 2323 2324 buff = tcp_stream_alloc_skb(sk, gfp, true); 2325 if (unlikely(!buff)) 2326 return -ENOMEM; 2327 skb_copy_decrypted(buff, skb); 2328 mptcp_skb_ext_copy(buff, skb); 2329 2330 sk_wmem_queued_add(sk, buff->truesize); 2331 sk_mem_charge(sk, buff->truesize); 2332 buff->truesize += nlen; 2333 skb->truesize -= nlen; 2334 2335 /* Correct the sequence numbers. */ 2336 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 2337 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 2338 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 2339 2340 /* PSH and FIN should only be set in the second packet. */ 2341 flags = TCP_SKB_CB(skb)->tcp_flags; 2342 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 2343 TCP_SKB_CB(buff)->tcp_flags = flags; 2344 2345 tcp_skb_fragment_eor(skb, buff); 2346 2347 skb_split(skb, buff, len); 2348 tcp_fragment_tstamp(skb, buff); 2349 2350 /* Fix up tso_factor for both original and new SKB. */ 2351 tcp_set_skb_tso_segs(skb, mss_now); 2352 tcp_set_skb_tso_segs(buff, mss_now); 2353 2354 /* Link BUFF into the send queue. */ 2355 __skb_header_release(buff); 2356 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE); 2357 2358 return 0; 2359 } 2360 2361 /* Try to defer sending, if possible, in order to minimize the amount 2362 * of TSO splitting we do. View it as a kind of TSO Nagle test. 2363 * 2364 * This algorithm is from John Heffner. 2365 */ 2366 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 2367 bool *is_cwnd_limited, 2368 bool *is_rwnd_limited, 2369 u32 max_segs) 2370 { 2371 const struct inet_connection_sock *icsk = inet_csk(sk); 2372 u32 send_win, cong_win, limit, in_flight; 2373 struct tcp_sock *tp = tcp_sk(sk); 2374 struct sk_buff *head; 2375 int win_divisor; 2376 s64 delta; 2377 2378 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 2379 goto send_now; 2380 2381 /* Avoid bursty behavior by allowing defer 2382 * only if the last write was recent (1 ms). 2383 * Note that tp->tcp_wstamp_ns can be in the future if we have 2384 * packets waiting in a qdisc or device for EDT delivery. 2385 */ 2386 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC; 2387 if (delta > 0) 2388 goto send_now; 2389 2390 in_flight = tcp_packets_in_flight(tp); 2391 2392 BUG_ON(tcp_skb_pcount(skb) <= 1); 2393 BUG_ON(tcp_snd_cwnd(tp) <= in_flight); 2394 2395 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2396 2397 /* From in_flight test above, we know that cwnd > in_flight. */ 2398 cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache; 2399 2400 limit = min(send_win, cong_win); 2401 2402 /* If a full-sized TSO skb can be sent, do it. */ 2403 if (limit >= max_segs * tp->mss_cache) 2404 goto send_now; 2405 2406 /* Middle in queue won't get any more data, full sendable already? */ 2407 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 2408 goto send_now; 2409 2410 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 2411 if (win_divisor) { 2412 u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache); 2413 2414 /* If at least some fraction of a window is available, 2415 * just use it. 2416 */ 2417 chunk /= win_divisor; 2418 if (limit >= chunk) 2419 goto send_now; 2420 } else { 2421 /* Different approach, try not to defer past a single 2422 * ACK. Receiver should ACK every other full sized 2423 * frame, so if we have space for more than 3 frames 2424 * then send now. 2425 */ 2426 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 2427 goto send_now; 2428 } 2429 2430 /* TODO : use tsorted_sent_queue ? */ 2431 head = tcp_rtx_queue_head(sk); 2432 if (!head) 2433 goto send_now; 2434 delta = tp->tcp_clock_cache - head->tstamp; 2435 /* If next ACK is likely to come too late (half srtt), do not defer */ 2436 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0) 2437 goto send_now; 2438 2439 /* Ok, it looks like it is advisable to defer. 2440 * Three cases are tracked : 2441 * 1) We are cwnd-limited 2442 * 2) We are rwnd-limited 2443 * 3) We are application limited. 2444 */ 2445 if (cong_win < send_win) { 2446 if (cong_win <= skb->len) { 2447 *is_cwnd_limited = true; 2448 return true; 2449 } 2450 } else { 2451 if (send_win <= skb->len) { 2452 *is_rwnd_limited = true; 2453 return true; 2454 } 2455 } 2456 2457 /* If this packet won't get more data, do not wait. */ 2458 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) || 2459 TCP_SKB_CB(skb)->eor) 2460 goto send_now; 2461 2462 return true; 2463 2464 send_now: 2465 return false; 2466 } 2467 2468 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2469 { 2470 struct inet_connection_sock *icsk = inet_csk(sk); 2471 struct tcp_sock *tp = tcp_sk(sk); 2472 struct net *net = sock_net(sk); 2473 u32 interval; 2474 s32 delta; 2475 2476 interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval); 2477 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2478 if (unlikely(delta >= interval * HZ)) { 2479 int mss = tcp_current_mss(sk); 2480 2481 /* Update current search range */ 2482 icsk->icsk_mtup.probe_size = 0; 2483 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2484 sizeof(struct tcphdr) + 2485 icsk->icsk_af_ops->net_header_len; 2486 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2487 2488 /* Update probe time stamp */ 2489 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2490 } 2491 } 2492 2493 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2494 { 2495 struct sk_buff *skb, *next; 2496 2497 skb = tcp_send_head(sk); 2498 tcp_for_write_queue_from_safe(skb, next, sk) { 2499 if (len <= skb->len) 2500 break; 2501 2502 if (tcp_has_tx_tstamp(skb) || !tcp_skb_can_collapse(skb, next)) 2503 return false; 2504 2505 len -= skb->len; 2506 } 2507 2508 return true; 2509 } 2510 2511 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to, 2512 int probe_size) 2513 { 2514 skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags; 2515 int i, todo, len = 0, nr_frags = 0; 2516 const struct sk_buff *skb; 2517 2518 if (!sk_wmem_schedule(sk, to->truesize + probe_size)) 2519 return -ENOMEM; 2520 2521 skb_queue_walk(&sk->sk_write_queue, skb) { 2522 const skb_frag_t *fragfrom = skb_shinfo(skb)->frags; 2523 2524 if (skb_headlen(skb)) 2525 return -EINVAL; 2526 2527 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) { 2528 if (len >= probe_size) 2529 goto commit; 2530 todo = min_t(int, skb_frag_size(fragfrom), 2531 probe_size - len); 2532 len += todo; 2533 if (lastfrag && 2534 skb_frag_page(fragfrom) == skb_frag_page(lastfrag) && 2535 skb_frag_off(fragfrom) == skb_frag_off(lastfrag) + 2536 skb_frag_size(lastfrag)) { 2537 skb_frag_size_add(lastfrag, todo); 2538 continue; 2539 } 2540 if (unlikely(nr_frags == MAX_SKB_FRAGS)) 2541 return -E2BIG; 2542 skb_frag_page_copy(fragto, fragfrom); 2543 skb_frag_off_copy(fragto, fragfrom); 2544 skb_frag_size_set(fragto, todo); 2545 nr_frags++; 2546 lastfrag = fragto++; 2547 } 2548 } 2549 commit: 2550 WARN_ON_ONCE(len != probe_size); 2551 for (i = 0; i < nr_frags; i++) 2552 skb_frag_ref(to, i); 2553 2554 skb_shinfo(to)->nr_frags = nr_frags; 2555 to->truesize += probe_size; 2556 to->len += probe_size; 2557 to->data_len += probe_size; 2558 __skb_header_release(to); 2559 return 0; 2560 } 2561 2562 /* tcp_mtu_probe() and tcp_grow_skb() can both eat an skb (src) if 2563 * all its payload was moved to another one (dst). 2564 * Make sure to transfer tcp_flags, eor, and tstamp. 2565 */ 2566 static void tcp_eat_one_skb(struct sock *sk, 2567 struct sk_buff *dst, 2568 struct sk_buff *src) 2569 { 2570 TCP_SKB_CB(dst)->tcp_flags |= TCP_SKB_CB(src)->tcp_flags; 2571 TCP_SKB_CB(dst)->eor = TCP_SKB_CB(src)->eor; 2572 tcp_skb_collapse_tstamp(dst, src); 2573 tcp_unlink_write_queue(src, sk); 2574 tcp_wmem_free_skb(sk, src); 2575 } 2576 2577 /* Create a new MTU probe if we are ready. 2578 * MTU probe is regularly attempting to increase the path MTU by 2579 * deliberately sending larger packets. This discovers routing 2580 * changes resulting in larger path MTUs. 2581 * 2582 * Returns 0 if we should wait to probe (no cwnd available), 2583 * 1 if a probe was sent, 2584 * -1 otherwise 2585 */ 2586 static int tcp_mtu_probe(struct sock *sk) 2587 { 2588 struct inet_connection_sock *icsk = inet_csk(sk); 2589 struct tcp_sock *tp = tcp_sk(sk); 2590 struct sk_buff *skb, *nskb, *next; 2591 struct net *net = sock_net(sk); 2592 int probe_size; 2593 int size_needed; 2594 int copy, len; 2595 int mss_now; 2596 int interval; 2597 2598 /* Not currently probing/verifying, 2599 * not in recovery, 2600 * have enough cwnd, and 2601 * not SACKing (the variable headers throw things off) 2602 */ 2603 if (likely(!icsk->icsk_mtup.enabled || 2604 icsk->icsk_mtup.probe_size || 2605 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2606 tcp_snd_cwnd(tp) < 11 || 2607 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2608 return -1; 2609 2610 /* Use binary search for probe_size between tcp_mss_base, 2611 * and current mss_clamp. if (search_high - search_low) 2612 * smaller than a threshold, backoff from probing. 2613 */ 2614 mss_now = tcp_current_mss(sk); 2615 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2616 icsk->icsk_mtup.search_low) >> 1); 2617 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2618 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2619 /* When misfortune happens, we are reprobing actively, 2620 * and then reprobe timer has expired. We stick with current 2621 * probing process by not resetting search range to its orignal. 2622 */ 2623 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2624 interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) { 2625 /* Check whether enough time has elaplased for 2626 * another round of probing. 2627 */ 2628 tcp_mtu_check_reprobe(sk); 2629 return -1; 2630 } 2631 2632 /* Have enough data in the send queue to probe? */ 2633 if (tp->write_seq - tp->snd_nxt < size_needed) 2634 return -1; 2635 2636 if (tp->snd_wnd < size_needed) 2637 return -1; 2638 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2639 return 0; 2640 2641 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2642 if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) { 2643 if (!tcp_packets_in_flight(tp)) 2644 return -1; 2645 else 2646 return 0; 2647 } 2648 2649 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2650 return -1; 2651 2652 /* We're allowed to probe. Build it now. */ 2653 nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false); 2654 if (!nskb) 2655 return -1; 2656 2657 /* build the payload, and be prepared to abort if this fails. */ 2658 if (tcp_clone_payload(sk, nskb, probe_size)) { 2659 tcp_skb_tsorted_anchor_cleanup(nskb); 2660 consume_skb(nskb); 2661 return -1; 2662 } 2663 sk_wmem_queued_add(sk, nskb->truesize); 2664 sk_mem_charge(sk, nskb->truesize); 2665 2666 skb = tcp_send_head(sk); 2667 skb_copy_decrypted(nskb, skb); 2668 mptcp_skb_ext_copy(nskb, skb); 2669 2670 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2671 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2672 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2673 2674 tcp_insert_write_queue_before(nskb, skb, sk); 2675 tcp_highest_sack_replace(sk, skb, nskb); 2676 2677 len = 0; 2678 tcp_for_write_queue_from_safe(skb, next, sk) { 2679 copy = min_t(int, skb->len, probe_size - len); 2680 2681 if (skb->len <= copy) { 2682 tcp_eat_one_skb(sk, nskb, skb); 2683 } else { 2684 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2685 ~(TCPHDR_FIN|TCPHDR_PSH); 2686 __pskb_trim_head(skb, copy); 2687 tcp_set_skb_tso_segs(skb, mss_now); 2688 TCP_SKB_CB(skb)->seq += copy; 2689 } 2690 2691 len += copy; 2692 2693 if (len >= probe_size) 2694 break; 2695 } 2696 tcp_init_tso_segs(nskb, nskb->len); 2697 2698 /* We're ready to send. If this fails, the probe will 2699 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2700 */ 2701 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2702 /* Decrement cwnd here because we are sending 2703 * effectively two packets. */ 2704 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1); 2705 tcp_event_new_data_sent(sk, nskb); 2706 2707 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2708 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2709 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2710 2711 return 1; 2712 } 2713 2714 return -1; 2715 } 2716 2717 static bool tcp_pacing_check(struct sock *sk) 2718 { 2719 struct tcp_sock *tp = tcp_sk(sk); 2720 2721 if (!tcp_needs_internal_pacing(sk)) 2722 return false; 2723 2724 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) 2725 return false; 2726 2727 if (!hrtimer_is_queued(&tp->pacing_timer)) { 2728 hrtimer_start(&tp->pacing_timer, 2729 ns_to_ktime(tp->tcp_wstamp_ns), 2730 HRTIMER_MODE_ABS_PINNED_SOFT); 2731 sock_hold(sk); 2732 } 2733 return true; 2734 } 2735 2736 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk) 2737 { 2738 const struct rb_node *node = sk->tcp_rtx_queue.rb_node; 2739 2740 /* No skb in the rtx queue. */ 2741 if (!node) 2742 return true; 2743 2744 /* Only one skb in rtx queue. */ 2745 return !node->rb_left && !node->rb_right; 2746 } 2747 2748 /* TCP Small Queues : 2749 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2750 * (These limits are doubled for retransmits) 2751 * This allows for : 2752 * - better RTT estimation and ACK scheduling 2753 * - faster recovery 2754 * - high rates 2755 * Alas, some drivers / subsystems require a fair amount 2756 * of queued bytes to ensure line rate. 2757 * One example is wifi aggregation (802.11 AMPDU) 2758 */ 2759 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2760 unsigned int factor) 2761 { 2762 unsigned long limit; 2763 2764 limit = max_t(unsigned long, 2765 2 * skb->truesize, 2766 READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift)); 2767 limit = min_t(unsigned long, limit, 2768 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes)); 2769 limit <<= factor; 2770 2771 if (static_branch_unlikely(&tcp_tx_delay_enabled) && 2772 tcp_sk(sk)->tcp_tx_delay) { 2773 u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) * 2774 tcp_sk(sk)->tcp_tx_delay; 2775 2776 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we 2777 * approximate our needs assuming an ~100% skb->truesize overhead. 2778 * USEC_PER_SEC is approximated by 2^20. 2779 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift. 2780 */ 2781 extra_bytes >>= (20 - 1); 2782 limit += extra_bytes; 2783 } 2784 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2785 /* Always send skb if rtx queue is empty or has one skb. 2786 * No need to wait for TX completion to call us back, 2787 * after softirq schedule. 2788 * This helps when TX completions are delayed too much. 2789 */ 2790 if (tcp_rtx_queue_empty_or_single_skb(sk)) 2791 return false; 2792 2793 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2794 /* It is possible TX completion already happened 2795 * before we set TSQ_THROTTLED, so we must 2796 * test again the condition. 2797 */ 2798 smp_mb__after_atomic(); 2799 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2800 return true; 2801 } 2802 return false; 2803 } 2804 2805 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2806 { 2807 const u32 now = tcp_jiffies32; 2808 enum tcp_chrono old = tp->chrono_type; 2809 2810 if (old > TCP_CHRONO_UNSPEC) 2811 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2812 tp->chrono_start = now; 2813 tp->chrono_type = new; 2814 } 2815 2816 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2817 { 2818 struct tcp_sock *tp = tcp_sk(sk); 2819 2820 /* If there are multiple conditions worthy of tracking in a 2821 * chronograph then the highest priority enum takes precedence 2822 * over the other conditions. So that if something "more interesting" 2823 * starts happening, stop the previous chrono and start a new one. 2824 */ 2825 if (type > tp->chrono_type) 2826 tcp_chrono_set(tp, type); 2827 } 2828 2829 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2830 { 2831 struct tcp_sock *tp = tcp_sk(sk); 2832 2833 2834 /* There are multiple conditions worthy of tracking in a 2835 * chronograph, so that the highest priority enum takes 2836 * precedence over the other conditions (see tcp_chrono_start). 2837 * If a condition stops, we only stop chrono tracking if 2838 * it's the "most interesting" or current chrono we are 2839 * tracking and starts busy chrono if we have pending data. 2840 */ 2841 if (tcp_rtx_and_write_queues_empty(sk)) 2842 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2843 else if (type == tp->chrono_type) 2844 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2845 } 2846 2847 /* First skb in the write queue is smaller than ideal packet size. 2848 * Check if we can move payload from the second skb in the queue. 2849 */ 2850 static void tcp_grow_skb(struct sock *sk, struct sk_buff *skb, int amount) 2851 { 2852 struct sk_buff *next_skb = skb->next; 2853 unsigned int nlen; 2854 2855 if (tcp_skb_is_last(sk, skb)) 2856 return; 2857 2858 if (!tcp_skb_can_collapse(skb, next_skb)) 2859 return; 2860 2861 nlen = min_t(u32, amount, next_skb->len); 2862 if (!nlen || !skb_shift(skb, next_skb, nlen)) 2863 return; 2864 2865 TCP_SKB_CB(skb)->end_seq += nlen; 2866 TCP_SKB_CB(next_skb)->seq += nlen; 2867 2868 if (!next_skb->len) { 2869 /* In case FIN is set, we need to update end_seq */ 2870 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2871 2872 tcp_eat_one_skb(sk, skb, next_skb); 2873 } 2874 } 2875 2876 /* This routine writes packets to the network. It advances the 2877 * send_head. This happens as incoming acks open up the remote 2878 * window for us. 2879 * 2880 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2881 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2882 * account rare use of URG, this is not a big flaw. 2883 * 2884 * Send at most one packet when push_one > 0. Temporarily ignore 2885 * cwnd limit to force at most one packet out when push_one == 2. 2886 2887 * Returns true, if no segments are in flight and we have queued segments, 2888 * but cannot send anything now because of SWS or another problem. 2889 */ 2890 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2891 int push_one, gfp_t gfp) 2892 { 2893 struct tcp_sock *tp = tcp_sk(sk); 2894 struct sk_buff *skb; 2895 unsigned int tso_segs, sent_pkts; 2896 u32 cwnd_quota, max_segs; 2897 int result; 2898 bool is_cwnd_limited = false, is_rwnd_limited = false; 2899 2900 sent_pkts = 0; 2901 2902 tcp_mstamp_refresh(tp); 2903 2904 /* AccECN option beacon depends on mstamp, it may change mss */ 2905 if (tcp_ecn_mode_accecn(tp) && tcp_accecn_option_beacon_check(sk)) 2906 mss_now = tcp_current_mss(sk); 2907 2908 if (!push_one) { 2909 /* Do MTU probing. */ 2910 result = tcp_mtu_probe(sk); 2911 if (!result) { 2912 return false; 2913 } else if (result > 0) { 2914 sent_pkts = 1; 2915 } 2916 } 2917 2918 max_segs = tcp_tso_segs(sk, mss_now); 2919 while ((skb = tcp_send_head(sk))) { 2920 unsigned int limit; 2921 int missing_bytes; 2922 2923 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2924 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ 2925 tp->tcp_wstamp_ns = tp->tcp_clock_cache; 2926 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC); 2927 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 2928 tcp_init_tso_segs(skb, mss_now); 2929 goto repair; /* Skip network transmission */ 2930 } 2931 2932 if (tcp_pacing_check(sk)) 2933 break; 2934 2935 cwnd_quota = tcp_cwnd_test(tp); 2936 if (!cwnd_quota) { 2937 if (push_one == 2) 2938 /* Force out a loss probe pkt. */ 2939 cwnd_quota = 1; 2940 else 2941 break; 2942 } 2943 cwnd_quota = min(cwnd_quota, max_segs); 2944 missing_bytes = cwnd_quota * mss_now - skb->len; 2945 if (missing_bytes > 0) 2946 tcp_grow_skb(sk, skb, missing_bytes); 2947 2948 tso_segs = tcp_set_skb_tso_segs(skb, mss_now); 2949 2950 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2951 is_rwnd_limited = true; 2952 break; 2953 } 2954 2955 if (tso_segs == 1) { 2956 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2957 (tcp_skb_is_last(sk, skb) ? 2958 nonagle : TCP_NAGLE_PUSH)))) 2959 break; 2960 } else { 2961 if (!push_one && 2962 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2963 &is_rwnd_limited, max_segs)) 2964 break; 2965 } 2966 2967 limit = mss_now; 2968 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2969 limit = tcp_mss_split_point(sk, skb, mss_now, 2970 cwnd_quota, 2971 nonagle); 2972 2973 if (skb->len > limit && 2974 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2975 break; 2976 2977 if (tcp_small_queue_check(sk, skb, 0)) 2978 break; 2979 2980 /* Argh, we hit an empty skb(), presumably a thread 2981 * is sleeping in sendmsg()/sk_stream_wait_memory(). 2982 * We do not want to send a pure-ack packet and have 2983 * a strange looking rtx queue with empty packet(s). 2984 */ 2985 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) 2986 break; 2987 2988 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2989 break; 2990 2991 repair: 2992 /* Advance the send_head. This one is sent out. 2993 * This call will increment packets_out. 2994 */ 2995 tcp_event_new_data_sent(sk, skb); 2996 2997 tcp_minshall_update(tp, mss_now, skb); 2998 sent_pkts += tcp_skb_pcount(skb); 2999 3000 if (push_one) 3001 break; 3002 } 3003 3004 if (is_rwnd_limited) 3005 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 3006 else 3007 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 3008 3009 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)); 3010 if (likely(sent_pkts || is_cwnd_limited)) 3011 tcp_cwnd_validate(sk, is_cwnd_limited); 3012 3013 if (likely(sent_pkts)) { 3014 if (tcp_in_cwnd_reduction(sk)) 3015 tp->prr_out += sent_pkts; 3016 3017 /* Send one loss probe per tail loss episode. */ 3018 if (push_one != 2) 3019 tcp_schedule_loss_probe(sk, false); 3020 return false; 3021 } 3022 return !tp->packets_out && !tcp_write_queue_empty(sk); 3023 } 3024 3025 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 3026 { 3027 struct inet_connection_sock *icsk = inet_csk(sk); 3028 struct tcp_sock *tp = tcp_sk(sk); 3029 u32 timeout, timeout_us, rto_delta_us; 3030 int early_retrans; 3031 3032 /* Don't do any loss probe on a Fast Open connection before 3WHS 3033 * finishes. 3034 */ 3035 if (rcu_access_pointer(tp->fastopen_rsk)) 3036 return false; 3037 3038 early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans); 3039 /* Schedule a loss probe in 2*RTT for SACK capable connections 3040 * not in loss recovery, that are either limited by cwnd or application. 3041 */ 3042 if ((early_retrans != 3 && early_retrans != 4) || 3043 !tp->packets_out || !tcp_is_sack(tp) || 3044 (icsk->icsk_ca_state != TCP_CA_Open && 3045 icsk->icsk_ca_state != TCP_CA_CWR)) 3046 return false; 3047 3048 /* Probe timeout is 2*rtt. Add minimum RTO to account 3049 * for delayed ack when there's one outstanding packet. If no RTT 3050 * sample is available then probe after TCP_TIMEOUT_INIT. 3051 */ 3052 if (tp->srtt_us) { 3053 timeout_us = tp->srtt_us >> 2; 3054 if (tp->packets_out == 1) 3055 timeout_us += tcp_rto_min_us(sk); 3056 else 3057 timeout_us += TCP_TIMEOUT_MIN_US; 3058 timeout = usecs_to_jiffies(timeout_us); 3059 } else { 3060 timeout = TCP_TIMEOUT_INIT; 3061 } 3062 3063 /* If the RTO formula yields an earlier time, then use that time. */ 3064 rto_delta_us = advancing_rto ? 3065 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 3066 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 3067 if (rto_delta_us > 0) 3068 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 3069 3070 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, true); 3071 return true; 3072 } 3073 3074 /* Thanks to skb fast clones, we can detect if a prior transmit of 3075 * a packet is still in a qdisc or driver queue. 3076 * In this case, there is very little point doing a retransmit ! 3077 */ 3078 static bool skb_still_in_host_queue(struct sock *sk, 3079 const struct sk_buff *skb) 3080 { 3081 if (unlikely(skb_fclone_busy(sk, skb))) { 3082 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 3083 smp_mb__after_atomic(); 3084 if (skb_fclone_busy(sk, skb)) { 3085 NET_INC_STATS(sock_net(sk), 3086 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 3087 return true; 3088 } 3089 } 3090 return false; 3091 } 3092 3093 /* When probe timeout (PTO) fires, try send a new segment if possible, else 3094 * retransmit the last segment. 3095 */ 3096 void tcp_send_loss_probe(struct sock *sk) 3097 { 3098 struct tcp_sock *tp = tcp_sk(sk); 3099 struct sk_buff *skb; 3100 int pcount; 3101 int mss = tcp_current_mss(sk); 3102 3103 /* At most one outstanding TLP */ 3104 if (tp->tlp_high_seq) 3105 goto rearm_timer; 3106 3107 tp->tlp_retrans = 0; 3108 skb = tcp_send_head(sk); 3109 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 3110 pcount = tp->packets_out; 3111 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 3112 if (tp->packets_out > pcount) 3113 goto probe_sent; 3114 goto rearm_timer; 3115 } 3116 skb = skb_rb_last(&sk->tcp_rtx_queue); 3117 if (unlikely(!skb)) { 3118 tcp_warn_once(sk, tp->packets_out, "invalid inflight: "); 3119 smp_store_release(&inet_csk(sk)->icsk_pending, 0); 3120 return; 3121 } 3122 3123 if (skb_still_in_host_queue(sk, skb)) 3124 goto rearm_timer; 3125 3126 pcount = tcp_skb_pcount(skb); 3127 if (WARN_ON(!pcount)) 3128 goto rearm_timer; 3129 3130 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 3131 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 3132 (pcount - 1) * mss, mss, 3133 GFP_ATOMIC))) 3134 goto rearm_timer; 3135 skb = skb_rb_next(skb); 3136 } 3137 3138 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 3139 goto rearm_timer; 3140 3141 if (__tcp_retransmit_skb(sk, skb, 1)) 3142 goto rearm_timer; 3143 3144 tp->tlp_retrans = 1; 3145 3146 probe_sent: 3147 /* Record snd_nxt for loss detection. */ 3148 tp->tlp_high_seq = tp->snd_nxt; 3149 3150 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 3151 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 3152 smp_store_release(&inet_csk(sk)->icsk_pending, 0); 3153 rearm_timer: 3154 tcp_rearm_rto(sk); 3155 } 3156 3157 /* Push out any pending frames which were held back due to 3158 * TCP_CORK or attempt at coalescing tiny packets. 3159 * The socket must be locked by the caller. 3160 */ 3161 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 3162 int nonagle) 3163 { 3164 /* If we are closed, the bytes will have to remain here. 3165 * In time closedown will finish, we empty the write queue and 3166 * all will be happy. 3167 */ 3168 if (unlikely(sk->sk_state == TCP_CLOSE)) 3169 return; 3170 3171 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 3172 sk_gfp_mask(sk, GFP_ATOMIC))) 3173 tcp_check_probe_timer(sk); 3174 } 3175 3176 /* Send _single_ skb sitting at the send head. This function requires 3177 * true push pending frames to setup probe timer etc. 3178 */ 3179 void tcp_push_one(struct sock *sk, unsigned int mss_now) 3180 { 3181 struct sk_buff *skb = tcp_send_head(sk); 3182 3183 BUG_ON(!skb || skb->len < mss_now); 3184 3185 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 3186 } 3187 3188 /* This function returns the amount that we can raise the 3189 * usable window based on the following constraints 3190 * 3191 * 1. The window can never be shrunk once it is offered (RFC 793) 3192 * 2. We limit memory per socket 3193 * 3194 * RFC 1122: 3195 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 3196 * RECV.NEXT + RCV.WIN fixed until: 3197 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 3198 * 3199 * i.e. don't raise the right edge of the window until you can raise 3200 * it at least MSS bytes. 3201 * 3202 * Unfortunately, the recommended algorithm breaks header prediction, 3203 * since header prediction assumes th->window stays fixed. 3204 * 3205 * Strictly speaking, keeping th->window fixed violates the receiver 3206 * side SWS prevention criteria. The problem is that under this rule 3207 * a stream of single byte packets will cause the right side of the 3208 * window to always advance by a single byte. 3209 * 3210 * Of course, if the sender implements sender side SWS prevention 3211 * then this will not be a problem. 3212 * 3213 * BSD seems to make the following compromise: 3214 * 3215 * If the free space is less than the 1/4 of the maximum 3216 * space available and the free space is less than 1/2 mss, 3217 * then set the window to 0. 3218 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 3219 * Otherwise, just prevent the window from shrinking 3220 * and from being larger than the largest representable value. 3221 * 3222 * This prevents incremental opening of the window in the regime 3223 * where TCP is limited by the speed of the reader side taking 3224 * data out of the TCP receive queue. It does nothing about 3225 * those cases where the window is constrained on the sender side 3226 * because the pipeline is full. 3227 * 3228 * BSD also seems to "accidentally" limit itself to windows that are a 3229 * multiple of MSS, at least until the free space gets quite small. 3230 * This would appear to be a side effect of the mbuf implementation. 3231 * Combining these two algorithms results in the observed behavior 3232 * of having a fixed window size at almost all times. 3233 * 3234 * Below we obtain similar behavior by forcing the offered window to 3235 * a multiple of the mss when it is feasible to do so. 3236 * 3237 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 3238 * Regular options like TIMESTAMP are taken into account. 3239 */ 3240 u32 __tcp_select_window(struct sock *sk) 3241 { 3242 struct inet_connection_sock *icsk = inet_csk(sk); 3243 struct tcp_sock *tp = tcp_sk(sk); 3244 struct net *net = sock_net(sk); 3245 /* MSS for the peer's data. Previous versions used mss_clamp 3246 * here. I don't know if the value based on our guesses 3247 * of peer's MSS is better for the performance. It's more correct 3248 * but may be worse for the performance because of rcv_mss 3249 * fluctuations. --SAW 1998/11/1 3250 */ 3251 int mss = icsk->icsk_ack.rcv_mss; 3252 int free_space = tcp_space(sk); 3253 int allowed_space = tcp_full_space(sk); 3254 int full_space, window; 3255 3256 if (sk_is_mptcp(sk)) 3257 mptcp_space(sk, &free_space, &allowed_space); 3258 3259 full_space = min_t(int, tp->window_clamp, allowed_space); 3260 3261 if (unlikely(mss > full_space)) { 3262 mss = full_space; 3263 if (mss <= 0) 3264 return 0; 3265 } 3266 3267 /* Only allow window shrink if the sysctl is enabled and we have 3268 * a non-zero scaling factor in effect. 3269 */ 3270 if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale) 3271 goto shrink_window_allowed; 3272 3273 /* do not allow window to shrink */ 3274 3275 if (free_space < (full_space >> 1)) { 3276 icsk->icsk_ack.quick = 0; 3277 3278 if (tcp_under_memory_pressure(sk)) 3279 tcp_adjust_rcv_ssthresh(sk); 3280 3281 /* free_space might become our new window, make sure we don't 3282 * increase it due to wscale. 3283 */ 3284 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3285 3286 /* if free space is less than mss estimate, or is below 1/16th 3287 * of the maximum allowed, try to move to zero-window, else 3288 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 3289 * new incoming data is dropped due to memory limits. 3290 * With large window, mss test triggers way too late in order 3291 * to announce zero window in time before rmem limit kicks in. 3292 */ 3293 if (free_space < (allowed_space >> 4) || free_space < mss) 3294 return 0; 3295 } 3296 3297 if (free_space > tp->rcv_ssthresh) 3298 free_space = tp->rcv_ssthresh; 3299 3300 /* Don't do rounding if we are using window scaling, since the 3301 * scaled window will not line up with the MSS boundary anyway. 3302 */ 3303 if (tp->rx_opt.rcv_wscale) { 3304 window = free_space; 3305 3306 /* Advertise enough space so that it won't get scaled away. 3307 * Import case: prevent zero window announcement if 3308 * 1<<rcv_wscale > mss. 3309 */ 3310 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 3311 } else { 3312 window = tp->rcv_wnd; 3313 /* Get the largest window that is a nice multiple of mss. 3314 * Window clamp already applied above. 3315 * If our current window offering is within 1 mss of the 3316 * free space we just keep it. This prevents the divide 3317 * and multiply from happening most of the time. 3318 * We also don't do any window rounding when the free space 3319 * is too small. 3320 */ 3321 if (window <= free_space - mss || window > free_space) 3322 window = rounddown(free_space, mss); 3323 else if (mss == full_space && 3324 free_space > window + (full_space >> 1)) 3325 window = free_space; 3326 } 3327 3328 return window; 3329 3330 shrink_window_allowed: 3331 /* new window should always be an exact multiple of scaling factor */ 3332 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3333 3334 if (free_space < (full_space >> 1)) { 3335 icsk->icsk_ack.quick = 0; 3336 3337 if (tcp_under_memory_pressure(sk)) 3338 tcp_adjust_rcv_ssthresh(sk); 3339 3340 /* if free space is too low, return a zero window */ 3341 if (free_space < (allowed_space >> 4) || free_space < mss || 3342 free_space < (1 << tp->rx_opt.rcv_wscale)) 3343 return 0; 3344 } 3345 3346 if (free_space > tp->rcv_ssthresh) { 3347 free_space = tp->rcv_ssthresh; 3348 /* new window should always be an exact multiple of scaling factor 3349 * 3350 * For this case, we ALIGN "up" (increase free_space) because 3351 * we know free_space is not zero here, it has been reduced from 3352 * the memory-based limit, and rcv_ssthresh is not a hard limit 3353 * (unlike sk_rcvbuf). 3354 */ 3355 free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale)); 3356 } 3357 3358 return free_space; 3359 } 3360 3361 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 3362 const struct sk_buff *next_skb) 3363 { 3364 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 3365 const struct skb_shared_info *next_shinfo = 3366 skb_shinfo(next_skb); 3367 struct skb_shared_info *shinfo = skb_shinfo(skb); 3368 3369 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 3370 shinfo->tskey = next_shinfo->tskey; 3371 TCP_SKB_CB(skb)->txstamp_ack |= 3372 TCP_SKB_CB(next_skb)->txstamp_ack; 3373 } 3374 } 3375 3376 /* Collapses two adjacent SKB's during retransmission. */ 3377 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 3378 { 3379 struct tcp_sock *tp = tcp_sk(sk); 3380 struct sk_buff *next_skb = skb_rb_next(skb); 3381 int next_skb_size; 3382 3383 next_skb_size = next_skb->len; 3384 3385 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 3386 3387 if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size)) 3388 return false; 3389 3390 tcp_highest_sack_replace(sk, next_skb, skb); 3391 3392 /* Update sequence range on original skb. */ 3393 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 3394 3395 /* Merge over control information. This moves PSH/FIN etc. over */ 3396 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 3397 3398 /* All done, get rid of second SKB and account for it so 3399 * packet counting does not break. 3400 */ 3401 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 3402 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 3403 3404 /* changed transmit queue under us so clear hints */ 3405 if (next_skb == tp->retransmit_skb_hint) 3406 tp->retransmit_skb_hint = skb; 3407 3408 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 3409 3410 tcp_skb_collapse_tstamp(skb, next_skb); 3411 3412 tcp_rtx_queue_unlink_and_free(next_skb, sk); 3413 return true; 3414 } 3415 3416 /* Check if coalescing SKBs is legal. */ 3417 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 3418 { 3419 if (tcp_skb_pcount(skb) > 1) 3420 return false; 3421 if (skb_cloned(skb)) 3422 return false; 3423 if (!skb_frags_readable(skb)) 3424 return false; 3425 /* Some heuristics for collapsing over SACK'd could be invented */ 3426 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3427 return false; 3428 3429 return true; 3430 } 3431 3432 /* Collapse packets in the retransmit queue to make to create 3433 * less packets on the wire. This is only done on retransmission. 3434 */ 3435 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 3436 int space) 3437 { 3438 struct tcp_sock *tp = tcp_sk(sk); 3439 struct sk_buff *skb = to, *tmp; 3440 bool first = true; 3441 3442 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)) 3443 return; 3444 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3445 return; 3446 3447 skb_rbtree_walk_from_safe(skb, tmp) { 3448 if (!tcp_can_collapse(sk, skb)) 3449 break; 3450 3451 if (!tcp_skb_can_collapse(to, skb)) 3452 break; 3453 3454 space -= skb->len; 3455 3456 if (first) { 3457 first = false; 3458 continue; 3459 } 3460 3461 if (space < 0) 3462 break; 3463 3464 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 3465 break; 3466 3467 if (!tcp_collapse_retrans(sk, to)) 3468 break; 3469 } 3470 } 3471 3472 /* This retransmits one SKB. Policy decisions and retransmit queue 3473 * state updates are done by the caller. Returns non-zero if an 3474 * error occurred which prevented the send. 3475 */ 3476 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3477 { 3478 struct inet_connection_sock *icsk = inet_csk(sk); 3479 struct tcp_sock *tp = tcp_sk(sk); 3480 unsigned int cur_mss; 3481 int diff, len, err; 3482 int avail_wnd; 3483 3484 /* Inconclusive MTU probe */ 3485 if (icsk->icsk_mtup.probe_size) 3486 icsk->icsk_mtup.probe_size = 0; 3487 3488 if (skb_still_in_host_queue(sk, skb)) { 3489 err = -EBUSY; 3490 goto out; 3491 } 3492 3493 start: 3494 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 3495 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3496 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN; 3497 TCP_SKB_CB(skb)->seq++; 3498 goto start; 3499 } 3500 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 3501 WARN_ON_ONCE(1); 3502 err = -EINVAL; 3503 goto out; 3504 } 3505 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) { 3506 err = -ENOMEM; 3507 goto out; 3508 } 3509 } 3510 3511 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) { 3512 err = -EHOSTUNREACH; /* Routing failure or similar. */ 3513 goto out; 3514 } 3515 3516 cur_mss = tcp_current_mss(sk); 3517 avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3518 3519 /* If receiver has shrunk his window, and skb is out of 3520 * new window, do not retransmit it. The exception is the 3521 * case, when window is shrunk to zero. In this case 3522 * our retransmit of one segment serves as a zero window probe. 3523 */ 3524 if (avail_wnd <= 0) { 3525 if (TCP_SKB_CB(skb)->seq != tp->snd_una) { 3526 err = -EAGAIN; 3527 goto out; 3528 } 3529 avail_wnd = cur_mss; 3530 } 3531 3532 len = cur_mss * segs; 3533 if (len > avail_wnd) { 3534 len = rounddown(avail_wnd, cur_mss); 3535 if (!len) 3536 len = avail_wnd; 3537 } 3538 if (skb->len > len) { 3539 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 3540 cur_mss, GFP_ATOMIC)) { 3541 err = -ENOMEM; /* We'll try again later. */ 3542 goto out; 3543 } 3544 } else { 3545 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) { 3546 err = -ENOMEM; 3547 goto out; 3548 } 3549 3550 diff = tcp_skb_pcount(skb); 3551 tcp_set_skb_tso_segs(skb, cur_mss); 3552 diff -= tcp_skb_pcount(skb); 3553 if (diff) 3554 tcp_adjust_pcount(sk, skb, diff); 3555 avail_wnd = min_t(int, avail_wnd, cur_mss); 3556 if (skb->len < avail_wnd) 3557 tcp_retrans_try_collapse(sk, skb, avail_wnd); 3558 } 3559 3560 /* RFC3168, section 6.1.1.1. ECN fallback 3561 * As AccECN uses the same SYN flags (+ AE), this check covers both 3562 * cases. 3563 */ 3564 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 3565 tcp_ecn_clear_syn(sk, skb); 3566 3567 /* Update global and local TCP statistics. */ 3568 segs = tcp_skb_pcount(skb); 3569 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 3570 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3571 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3572 tp->total_retrans += segs; 3573 tp->bytes_retrans += skb->len; 3574 3575 /* make sure skb->data is aligned on arches that require it 3576 * and check if ack-trimming & collapsing extended the headroom 3577 * beyond what csum_start can cover. 3578 */ 3579 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 3580 skb_headroom(skb) >= 0xFFFF)) { 3581 struct sk_buff *nskb; 3582 3583 tcp_skb_tsorted_save(skb) { 3584 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 3585 if (nskb) { 3586 nskb->dev = NULL; 3587 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC); 3588 } else { 3589 err = -ENOBUFS; 3590 } 3591 } tcp_skb_tsorted_restore(skb); 3592 3593 if (!err) { 3594 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); 3595 tcp_rate_skb_sent(sk, skb); 3596 } 3597 } else { 3598 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3599 } 3600 3601 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 3602 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 3603 TCP_SKB_CB(skb)->seq, segs, err); 3604 3605 if (unlikely(err) && err != -EBUSY) 3606 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); 3607 3608 /* To avoid taking spuriously low RTT samples based on a timestamp 3609 * for a transmit that never happened, always mark EVER_RETRANS 3610 */ 3611 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 3612 3613 out: 3614 trace_tcp_retransmit_skb(sk, skb, err); 3615 return err; 3616 } 3617 3618 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3619 { 3620 struct tcp_sock *tp = tcp_sk(sk); 3621 int err = __tcp_retransmit_skb(sk, skb, segs); 3622 3623 if (err == 0) { 3624 #if FASTRETRANS_DEBUG > 0 3625 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 3626 net_dbg_ratelimited("retrans_out leaked\n"); 3627 } 3628 #endif 3629 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 3630 tp->retrans_out += tcp_skb_pcount(skb); 3631 } 3632 3633 /* Save stamp of the first (attempted) retransmit. */ 3634 if (!tp->retrans_stamp) 3635 tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb); 3636 3637 if (tp->undo_retrans < 0) 3638 tp->undo_retrans = 0; 3639 tp->undo_retrans += tcp_skb_pcount(skb); 3640 return err; 3641 } 3642 3643 /* This gets called after a retransmit timeout, and the initially 3644 * retransmitted data is acknowledged. It tries to continue 3645 * resending the rest of the retransmit queue, until either 3646 * we've sent it all or the congestion window limit is reached. 3647 */ 3648 void tcp_xmit_retransmit_queue(struct sock *sk) 3649 { 3650 const struct inet_connection_sock *icsk = inet_csk(sk); 3651 struct sk_buff *skb, *rtx_head, *hole = NULL; 3652 struct tcp_sock *tp = tcp_sk(sk); 3653 bool rearm_timer = false; 3654 u32 max_segs; 3655 int mib_idx; 3656 3657 if (!tp->packets_out) 3658 return; 3659 3660 rtx_head = tcp_rtx_queue_head(sk); 3661 skb = tp->retransmit_skb_hint ?: rtx_head; 3662 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 3663 skb_rbtree_walk_from(skb) { 3664 __u8 sacked; 3665 int segs; 3666 3667 if (tcp_pacing_check(sk)) 3668 break; 3669 3670 /* we could do better than to assign each time */ 3671 if (!hole) 3672 tp->retransmit_skb_hint = skb; 3673 3674 segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp); 3675 if (segs <= 0) 3676 break; 3677 sacked = TCP_SKB_CB(skb)->sacked; 3678 /* In case tcp_shift_skb_data() have aggregated large skbs, 3679 * we need to make sure not sending too bigs TSO packets 3680 */ 3681 segs = min_t(int, segs, max_segs); 3682 3683 if (tp->retrans_out >= tp->lost_out) { 3684 break; 3685 } else if (!(sacked & TCPCB_LOST)) { 3686 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3687 hole = skb; 3688 continue; 3689 3690 } else { 3691 if (icsk->icsk_ca_state != TCP_CA_Loss) 3692 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3693 else 3694 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3695 } 3696 3697 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3698 continue; 3699 3700 if (tcp_small_queue_check(sk, skb, 1)) 3701 break; 3702 3703 if (tcp_retransmit_skb(sk, skb, segs)) 3704 break; 3705 3706 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3707 3708 if (tcp_in_cwnd_reduction(sk)) 3709 tp->prr_out += tcp_skb_pcount(skb); 3710 3711 if (skb == rtx_head && 3712 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3713 rearm_timer = true; 3714 3715 } 3716 if (rearm_timer) 3717 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3718 inet_csk(sk)->icsk_rto, true); 3719 } 3720 3721 /* We allow to exceed memory limits for FIN packets to expedite 3722 * connection tear down and (memory) recovery. 3723 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3724 * or even be forced to close flow without any FIN. 3725 * In general, we want to allow one skb per socket to avoid hangs 3726 * with edge trigger epoll() 3727 */ 3728 void sk_forced_mem_schedule(struct sock *sk, int size) 3729 { 3730 int delta, amt; 3731 3732 delta = size - sk->sk_forward_alloc; 3733 if (delta <= 0) 3734 return; 3735 amt = sk_mem_pages(delta); 3736 sk_forward_alloc_add(sk, amt << PAGE_SHIFT); 3737 sk_memory_allocated_add(sk, amt); 3738 3739 if (mem_cgroup_sk_enabled(sk)) 3740 mem_cgroup_sk_charge(sk, amt, gfp_memcg_charge() | __GFP_NOFAIL); 3741 } 3742 3743 /* Send a FIN. The caller locks the socket for us. 3744 * We should try to send a FIN packet really hard, but eventually give up. 3745 */ 3746 void tcp_send_fin(struct sock *sk) 3747 { 3748 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk); 3749 struct tcp_sock *tp = tcp_sk(sk); 3750 3751 /* Optimization, tack on the FIN if we have one skb in write queue and 3752 * this skb was not yet sent, or we are under memory pressure. 3753 * Note: in the latter case, FIN packet will be sent after a timeout, 3754 * as TCP stack thinks it has already been transmitted. 3755 */ 3756 tskb = tail; 3757 if (!tskb && tcp_under_memory_pressure(sk)) 3758 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3759 3760 if (tskb) { 3761 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3762 TCP_SKB_CB(tskb)->end_seq++; 3763 tp->write_seq++; 3764 if (!tail) { 3765 /* This means tskb was already sent. 3766 * Pretend we included the FIN on previous transmit. 3767 * We need to set tp->snd_nxt to the value it would have 3768 * if FIN had been sent. This is because retransmit path 3769 * does not change tp->snd_nxt. 3770 */ 3771 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1); 3772 return; 3773 } 3774 } else { 3775 skb = alloc_skb_fclone(MAX_TCP_HEADER, 3776 sk_gfp_mask(sk, GFP_ATOMIC | 3777 __GFP_NOWARN)); 3778 if (unlikely(!skb)) 3779 return; 3780 3781 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3782 skb_reserve(skb, MAX_TCP_HEADER); 3783 sk_forced_mem_schedule(sk, skb->truesize); 3784 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3785 tcp_init_nondata_skb(skb, sk, tp->write_seq, 3786 TCPHDR_ACK | TCPHDR_FIN); 3787 tcp_queue_skb(sk, skb); 3788 } 3789 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3790 } 3791 3792 /* We get here when a process closes a file descriptor (either due to 3793 * an explicit close() or as a byproduct of exit()'ing) and there 3794 * was unread data in the receive queue. This behavior is recommended 3795 * by RFC 2525, section 2.17. -DaveM 3796 */ 3797 void tcp_send_active_reset(struct sock *sk, gfp_t priority, 3798 enum sk_rst_reason reason) 3799 { 3800 struct sk_buff *skb; 3801 3802 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3803 3804 /* NOTE: No TCP options attached and we never retransmit this. */ 3805 skb = alloc_skb(MAX_TCP_HEADER, priority); 3806 if (!skb) { 3807 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3808 return; 3809 } 3810 3811 /* Reserve space for headers and prepare control bits. */ 3812 skb_reserve(skb, MAX_TCP_HEADER); 3813 tcp_init_nondata_skb(skb, sk, tcp_acceptable_seq(sk), 3814 TCPHDR_ACK | TCPHDR_RST); 3815 tcp_mstamp_refresh(tcp_sk(sk)); 3816 /* Send it off. */ 3817 if (tcp_transmit_skb(sk, skb, 0, priority)) 3818 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3819 3820 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3821 * skb here is different to the troublesome skb, so use NULL 3822 */ 3823 trace_tcp_send_reset(sk, NULL, reason); 3824 } 3825 3826 /* Send a crossed SYN-ACK during socket establishment. 3827 * WARNING: This routine must only be called when we have already sent 3828 * a SYN packet that crossed the incoming SYN that caused this routine 3829 * to get called. If this assumption fails then the initial rcv_wnd 3830 * and rcv_wscale values will not be correct. 3831 */ 3832 int tcp_send_synack(struct sock *sk) 3833 { 3834 struct sk_buff *skb; 3835 3836 skb = tcp_rtx_queue_head(sk); 3837 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3838 pr_err("%s: wrong queue state\n", __func__); 3839 return -EFAULT; 3840 } 3841 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3842 if (skb_cloned(skb)) { 3843 struct sk_buff *nskb; 3844 3845 tcp_skb_tsorted_save(skb) { 3846 nskb = skb_copy(skb, GFP_ATOMIC); 3847 } tcp_skb_tsorted_restore(skb); 3848 if (!nskb) 3849 return -ENOMEM; 3850 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3851 tcp_highest_sack_replace(sk, skb, nskb); 3852 tcp_rtx_queue_unlink_and_free(skb, sk); 3853 __skb_header_release(nskb); 3854 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3855 sk_wmem_queued_add(sk, nskb->truesize); 3856 sk_mem_charge(sk, nskb->truesize); 3857 skb = nskb; 3858 } 3859 3860 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3861 tcp_ecn_send_synack(sk, skb); 3862 } 3863 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3864 } 3865 3866 /** 3867 * tcp_make_synack - Allocate one skb and build a SYNACK packet. 3868 * @sk: listener socket 3869 * @dst: dst entry attached to the SYNACK. It is consumed and caller 3870 * should not use it again. 3871 * @req: request_sock pointer 3872 * @foc: cookie for tcp fast open 3873 * @synack_type: Type of synack to prepare 3874 * @syn_skb: SYN packet just received. It could be NULL for rtx case. 3875 */ 3876 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3877 struct request_sock *req, 3878 struct tcp_fastopen_cookie *foc, 3879 enum tcp_synack_type synack_type, 3880 struct sk_buff *syn_skb) 3881 { 3882 struct inet_request_sock *ireq = inet_rsk(req); 3883 const struct tcp_sock *tp = tcp_sk(sk); 3884 struct tcp_out_options opts; 3885 struct tcp_key key = {}; 3886 struct sk_buff *skb; 3887 int tcp_header_size; 3888 struct tcphdr *th; 3889 int mss; 3890 u64 now; 3891 3892 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3893 if (unlikely(!skb)) { 3894 dst_release(dst); 3895 return NULL; 3896 } 3897 /* Reserve space for headers. */ 3898 skb_reserve(skb, MAX_TCP_HEADER); 3899 3900 switch (synack_type) { 3901 case TCP_SYNACK_NORMAL: 3902 skb_set_owner_edemux(skb, req_to_sk(req)); 3903 break; 3904 case TCP_SYNACK_COOKIE: 3905 /* Under synflood, we do not attach skb to a socket, 3906 * to avoid false sharing. 3907 */ 3908 break; 3909 case TCP_SYNACK_FASTOPEN: 3910 /* sk is a const pointer, because we want to express multiple 3911 * cpu might call us concurrently. 3912 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3913 */ 3914 skb_set_owner_w(skb, (struct sock *)sk); 3915 break; 3916 } 3917 skb_dst_set(skb, dst); 3918 3919 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3920 3921 memset(&opts, 0, sizeof(opts)); 3922 now = tcp_clock_ns(); 3923 #ifdef CONFIG_SYN_COOKIES 3924 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok)) 3925 skb_set_delivery_time(skb, cookie_init_timestamp(req, now), 3926 SKB_CLOCK_MONOTONIC); 3927 else 3928 #endif 3929 { 3930 skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC); 3931 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */ 3932 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb); 3933 } 3934 3935 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 3936 rcu_read_lock(); 3937 #endif 3938 if (tcp_rsk_used_ao(req)) { 3939 #ifdef CONFIG_TCP_AO 3940 struct tcp_ao_key *ao_key = NULL; 3941 u8 keyid = tcp_rsk(req)->ao_keyid; 3942 u8 rnext = tcp_rsk(req)->ao_rcv_next; 3943 3944 ao_key = tcp_sk(sk)->af_specific->ao_lookup(sk, req_to_sk(req), 3945 keyid, -1); 3946 /* If there is no matching key - avoid sending anything, 3947 * especially usigned segments. It could try harder and lookup 3948 * for another peer-matching key, but the peer has requested 3949 * ao_keyid (RFC5925 RNextKeyID), so let's keep it simple here. 3950 */ 3951 if (unlikely(!ao_key)) { 3952 trace_tcp_ao_synack_no_key(sk, keyid, rnext); 3953 rcu_read_unlock(); 3954 kfree_skb(skb); 3955 net_warn_ratelimited("TCP-AO: the keyid %u from SYN packet is not present - not sending SYNACK\n", 3956 keyid); 3957 return NULL; 3958 } 3959 key.ao_key = ao_key; 3960 key.type = TCP_KEY_AO; 3961 #endif 3962 } else { 3963 #ifdef CONFIG_TCP_MD5SIG 3964 key.md5_key = tcp_rsk(req)->af_specific->req_md5_lookup(sk, 3965 req_to_sk(req)); 3966 if (key.md5_key) 3967 key.type = TCP_KEY_MD5; 3968 #endif 3969 } 3970 skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4); 3971 /* bpf program will be interested in the tcp_flags */ 3972 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK; 3973 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, 3974 &key, foc, synack_type, syn_skb) 3975 + sizeof(*th); 3976 3977 skb_push(skb, tcp_header_size); 3978 skb_reset_transport_header(skb); 3979 3980 th = (struct tcphdr *)skb->data; 3981 memset(th, 0, sizeof(struct tcphdr)); 3982 th->syn = 1; 3983 th->ack = 1; 3984 tcp_ecn_make_synack(req, th); 3985 th->source = htons(ireq->ir_num); 3986 th->dest = ireq->ir_rmt_port; 3987 skb->mark = ireq->ir_mark; 3988 skb->ip_summed = CHECKSUM_PARTIAL; 3989 th->seq = htonl(tcp_rsk(req)->snt_isn); 3990 /* XXX data is queued and acked as is. No buffer/window check */ 3991 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3992 3993 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3994 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3995 tcp_options_write(th, NULL, tcp_rsk(req), &opts, &key); 3996 th->doff = (tcp_header_size >> 2); 3997 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3998 3999 /* Okay, we have all we need - do the md5 hash if needed */ 4000 if (tcp_key_is_md5(&key)) { 4001 #ifdef CONFIG_TCP_MD5SIG 4002 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 4003 key.md5_key, req_to_sk(req), skb); 4004 #endif 4005 } else if (tcp_key_is_ao(&key)) { 4006 #ifdef CONFIG_TCP_AO 4007 tcp_rsk(req)->af_specific->ao_synack_hash(opts.hash_location, 4008 key.ao_key, req, skb, 4009 opts.hash_location - (u8 *)th, 0); 4010 #endif 4011 } 4012 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 4013 rcu_read_unlock(); 4014 #endif 4015 4016 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb, 4017 synack_type, &opts); 4018 4019 skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC); 4020 tcp_add_tx_delay(skb, tp); 4021 4022 return skb; 4023 } 4024 EXPORT_IPV6_MOD(tcp_make_synack); 4025 4026 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 4027 { 4028 struct inet_connection_sock *icsk = inet_csk(sk); 4029 const struct tcp_congestion_ops *ca; 4030 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 4031 4032 if (ca_key == TCP_CA_UNSPEC) 4033 return; 4034 4035 rcu_read_lock(); 4036 ca = tcp_ca_find_key(ca_key); 4037 if (likely(ca && bpf_try_module_get(ca, ca->owner))) { 4038 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner); 4039 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 4040 icsk->icsk_ca_ops = ca; 4041 } 4042 rcu_read_unlock(); 4043 } 4044 4045 /* Do all connect socket setups that can be done AF independent. */ 4046 static void tcp_connect_init(struct sock *sk) 4047 { 4048 const struct dst_entry *dst = __sk_dst_get(sk); 4049 struct tcp_sock *tp = tcp_sk(sk); 4050 __u8 rcv_wscale; 4051 u16 user_mss; 4052 u32 rcv_wnd; 4053 4054 /* We'll fix this up when we get a response from the other end. 4055 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 4056 */ 4057 tp->tcp_header_len = sizeof(struct tcphdr); 4058 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps)) 4059 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 4060 4061 tcp_ao_connect_init(sk); 4062 4063 /* If user gave his TCP_MAXSEG, record it to clamp */ 4064 user_mss = READ_ONCE(tp->rx_opt.user_mss); 4065 if (user_mss) 4066 tp->rx_opt.mss_clamp = user_mss; 4067 tp->max_window = 0; 4068 tcp_mtup_init(sk); 4069 tcp_sync_mss(sk, dst_mtu(dst)); 4070 4071 tcp_ca_dst_init(sk, dst); 4072 4073 if (!tp->window_clamp) 4074 WRITE_ONCE(tp->window_clamp, dst_metric(dst, RTAX_WINDOW)); 4075 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 4076 4077 tcp_initialize_rcv_mss(sk); 4078 4079 /* limit the window selection if the user enforce a smaller rx buffer */ 4080 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 4081 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 4082 WRITE_ONCE(tp->window_clamp, tcp_full_space(sk)); 4083 4084 rcv_wnd = tcp_rwnd_init_bpf(sk); 4085 if (rcv_wnd == 0) 4086 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 4087 4088 tcp_select_initial_window(sk, tcp_full_space(sk), 4089 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 4090 &tp->rcv_wnd, 4091 &tp->window_clamp, 4092 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling), 4093 &rcv_wscale, 4094 rcv_wnd); 4095 4096 tp->rx_opt.rcv_wscale = rcv_wscale; 4097 tp->rcv_ssthresh = tp->rcv_wnd; 4098 4099 WRITE_ONCE(sk->sk_err, 0); 4100 sock_reset_flag(sk, SOCK_DONE); 4101 tp->snd_wnd = 0; 4102 tcp_init_wl(tp, 0); 4103 tcp_write_queue_purge(sk); 4104 tp->snd_una = tp->write_seq; 4105 tp->snd_sml = tp->write_seq; 4106 tp->snd_up = tp->write_seq; 4107 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 4108 4109 if (likely(!tp->repair)) 4110 tp->rcv_nxt = 0; 4111 else 4112 tp->rcv_tstamp = tcp_jiffies32; 4113 tp->rcv_wup = tp->rcv_nxt; 4114 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 4115 4116 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 4117 WRITE_ONCE(inet_csk(sk)->icsk_retransmits, 0); 4118 tcp_clear_retrans(tp); 4119 } 4120 4121 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 4122 { 4123 struct tcp_sock *tp = tcp_sk(sk); 4124 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 4125 4126 tcb->end_seq += skb->len; 4127 __skb_header_release(skb); 4128 sk_wmem_queued_add(sk, skb->truesize); 4129 sk_mem_charge(sk, skb->truesize); 4130 WRITE_ONCE(tp->write_seq, tcb->end_seq); 4131 tp->packets_out += tcp_skb_pcount(skb); 4132 } 4133 4134 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 4135 * queue a data-only packet after the regular SYN, such that regular SYNs 4136 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 4137 * only the SYN sequence, the data are retransmitted in the first ACK. 4138 * If cookie is not cached or other error occurs, falls back to send a 4139 * regular SYN with Fast Open cookie request option. 4140 */ 4141 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 4142 { 4143 struct inet_connection_sock *icsk = inet_csk(sk); 4144 struct tcp_sock *tp = tcp_sk(sk); 4145 struct tcp_fastopen_request *fo = tp->fastopen_req; 4146 struct page_frag *pfrag = sk_page_frag(sk); 4147 struct sk_buff *syn_data; 4148 int space, err = 0; 4149 4150 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 4151 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 4152 goto fallback; 4153 4154 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 4155 * user-MSS. Reserve maximum option space for middleboxes that add 4156 * private TCP options. The cost is reduced data space in SYN :( 4157 */ 4158 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 4159 /* Sync mss_cache after updating the mss_clamp */ 4160 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 4161 4162 space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) - 4163 MAX_TCP_OPTION_SPACE; 4164 4165 space = min_t(size_t, space, fo->size); 4166 4167 if (space && 4168 !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE), 4169 pfrag, sk->sk_allocation)) 4170 goto fallback; 4171 syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false); 4172 if (!syn_data) 4173 goto fallback; 4174 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 4175 if (space) { 4176 space = min_t(size_t, space, pfrag->size - pfrag->offset); 4177 space = tcp_wmem_schedule(sk, space); 4178 } 4179 if (space) { 4180 space = copy_page_from_iter(pfrag->page, pfrag->offset, 4181 space, &fo->data->msg_iter); 4182 if (unlikely(!space)) { 4183 tcp_skb_tsorted_anchor_cleanup(syn_data); 4184 kfree_skb(syn_data); 4185 goto fallback; 4186 } 4187 skb_fill_page_desc(syn_data, 0, pfrag->page, 4188 pfrag->offset, space); 4189 page_ref_inc(pfrag->page); 4190 pfrag->offset += space; 4191 skb_len_add(syn_data, space); 4192 skb_zcopy_set(syn_data, fo->uarg, NULL); 4193 } 4194 /* No more data pending in inet_wait_for_connect() */ 4195 if (space == fo->size) 4196 fo->data = NULL; 4197 fo->copied = space; 4198 4199 tcp_connect_queue_skb(sk, syn_data); 4200 if (syn_data->len) 4201 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 4202 4203 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 4204 4205 skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, SKB_CLOCK_MONOTONIC); 4206 4207 /* Now full SYN+DATA was cloned and sent (or not), 4208 * remove the SYN from the original skb (syn_data) 4209 * we keep in write queue in case of a retransmit, as we 4210 * also have the SYN packet (with no data) in the same queue. 4211 */ 4212 TCP_SKB_CB(syn_data)->seq++; 4213 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 4214 if (!err) { 4215 tp->syn_data = (fo->copied > 0); 4216 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 4217 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 4218 goto done; 4219 } 4220 4221 /* data was not sent, put it in write_queue */ 4222 __skb_queue_tail(&sk->sk_write_queue, syn_data); 4223 tp->packets_out -= tcp_skb_pcount(syn_data); 4224 4225 fallback: 4226 /* Send a regular SYN with Fast Open cookie request option */ 4227 if (fo->cookie.len > 0) 4228 fo->cookie.len = 0; 4229 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 4230 if (err) 4231 tp->syn_fastopen = 0; 4232 done: 4233 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 4234 return err; 4235 } 4236 4237 /* Build a SYN and send it off. */ 4238 int tcp_connect(struct sock *sk) 4239 { 4240 struct tcp_sock *tp = tcp_sk(sk); 4241 struct sk_buff *buff; 4242 int err; 4243 4244 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 4245 4246 #if defined(CONFIG_TCP_MD5SIG) && defined(CONFIG_TCP_AO) 4247 /* Has to be checked late, after setting daddr/saddr/ops. 4248 * Return error if the peer has both a md5 and a tcp-ao key 4249 * configured as this is ambiguous. 4250 */ 4251 if (unlikely(rcu_dereference_protected(tp->md5sig_info, 4252 lockdep_sock_is_held(sk)))) { 4253 bool needs_ao = !!tp->af_specific->ao_lookup(sk, sk, -1, -1); 4254 bool needs_md5 = !!tp->af_specific->md5_lookup(sk, sk); 4255 struct tcp_ao_info *ao_info; 4256 4257 ao_info = rcu_dereference_check(tp->ao_info, 4258 lockdep_sock_is_held(sk)); 4259 if (ao_info) { 4260 /* This is an extra check: tcp_ao_required() in 4261 * tcp_v{4,6}_parse_md5_keys() should prevent adding 4262 * md5 keys on ao_required socket. 4263 */ 4264 needs_ao |= ao_info->ao_required; 4265 WARN_ON_ONCE(ao_info->ao_required && needs_md5); 4266 } 4267 if (needs_md5 && needs_ao) 4268 return -EKEYREJECTED; 4269 4270 /* If we have a matching md5 key and no matching tcp-ao key 4271 * then free up ao_info if allocated. 4272 */ 4273 if (needs_md5) { 4274 tcp_ao_destroy_sock(sk, false); 4275 } else if (needs_ao) { 4276 tcp_clear_md5_list(sk); 4277 kfree(rcu_replace_pointer(tp->md5sig_info, NULL, 4278 lockdep_sock_is_held(sk))); 4279 } 4280 } 4281 #endif 4282 #ifdef CONFIG_TCP_AO 4283 if (unlikely(rcu_dereference_protected(tp->ao_info, 4284 lockdep_sock_is_held(sk)))) { 4285 /* Don't allow connecting if ao is configured but no 4286 * matching key is found. 4287 */ 4288 if (!tp->af_specific->ao_lookup(sk, sk, -1, -1)) 4289 return -EKEYREJECTED; 4290 } 4291 #endif 4292 4293 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 4294 return -EHOSTUNREACH; /* Routing failure or similar. */ 4295 4296 tcp_connect_init(sk); 4297 4298 if (unlikely(tp->repair)) { 4299 tcp_finish_connect(sk, NULL); 4300 return 0; 4301 } 4302 4303 buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true); 4304 if (unlikely(!buff)) 4305 return -ENOBUFS; 4306 4307 /* SYN eats a sequence byte, write_seq updated by 4308 * tcp_connect_queue_skb(). 4309 */ 4310 tcp_init_nondata_skb(buff, sk, tp->write_seq, TCPHDR_SYN); 4311 tcp_mstamp_refresh(tp); 4312 tp->retrans_stamp = tcp_time_stamp_ts(tp); 4313 tcp_connect_queue_skb(sk, buff); 4314 tcp_ecn_send_syn(sk, buff); 4315 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 4316 4317 /* Send off SYN; include data in Fast Open. */ 4318 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 4319 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 4320 if (err == -ECONNREFUSED) 4321 return err; 4322 4323 /* We change tp->snd_nxt after the tcp_transmit_skb() call 4324 * in order to make this packet get counted in tcpOutSegs. 4325 */ 4326 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 4327 tp->pushed_seq = tp->write_seq; 4328 buff = tcp_send_head(sk); 4329 if (unlikely(buff)) { 4330 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq); 4331 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 4332 } 4333 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 4334 4335 /* Timer for repeating the SYN until an answer. */ 4336 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 4337 inet_csk(sk)->icsk_rto, false); 4338 return 0; 4339 } 4340 EXPORT_SYMBOL(tcp_connect); 4341 4342 u32 tcp_delack_max(const struct sock *sk) 4343 { 4344 u32 delack_from_rto_min = max(tcp_rto_min(sk), 2) - 1; 4345 4346 return min(READ_ONCE(inet_csk(sk)->icsk_delack_max), delack_from_rto_min); 4347 } 4348 4349 /* Send out a delayed ack, the caller does the policy checking 4350 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 4351 * for details. 4352 */ 4353 void tcp_send_delayed_ack(struct sock *sk) 4354 { 4355 struct inet_connection_sock *icsk = inet_csk(sk); 4356 int ato = icsk->icsk_ack.ato; 4357 unsigned long timeout; 4358 4359 if (ato > TCP_DELACK_MIN) { 4360 const struct tcp_sock *tp = tcp_sk(sk); 4361 int max_ato = HZ / 2; 4362 4363 if (inet_csk_in_pingpong_mode(sk) || 4364 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 4365 max_ato = TCP_DELACK_MAX; 4366 4367 /* Slow path, intersegment interval is "high". */ 4368 4369 /* If some rtt estimate is known, use it to bound delayed ack. 4370 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 4371 * directly. 4372 */ 4373 if (tp->srtt_us) { 4374 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 4375 TCP_DELACK_MIN); 4376 4377 if (rtt < max_ato) 4378 max_ato = rtt; 4379 } 4380 4381 ato = min(ato, max_ato); 4382 } 4383 4384 ato = min_t(u32, ato, tcp_delack_max(sk)); 4385 4386 /* Stay within the limit we were given */ 4387 timeout = jiffies + ato; 4388 4389 /* Use new timeout only if there wasn't a older one earlier. */ 4390 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 4391 /* If delack timer is about to expire, send ACK now. */ 4392 if (time_before_eq(icsk_delack_timeout(icsk), jiffies + (ato >> 2))) { 4393 tcp_send_ack(sk); 4394 return; 4395 } 4396 4397 if (!time_before(timeout, icsk_delack_timeout(icsk))) 4398 timeout = icsk_delack_timeout(icsk); 4399 } 4400 smp_store_release(&icsk->icsk_ack.pending, 4401 icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER); 4402 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 4403 } 4404 4405 /* This routine sends an ack and also updates the window. */ 4406 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt, u16 flags) 4407 { 4408 struct sk_buff *buff; 4409 4410 /* If we have been reset, we may not send again. */ 4411 if (sk->sk_state == TCP_CLOSE) 4412 return; 4413 4414 /* We are not putting this on the write queue, so 4415 * tcp_transmit_skb() will set the ownership to this 4416 * sock. 4417 */ 4418 buff = alloc_skb(MAX_TCP_HEADER, 4419 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4420 if (unlikely(!buff)) { 4421 struct inet_connection_sock *icsk = inet_csk(sk); 4422 unsigned long delay; 4423 4424 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry; 4425 if (delay < tcp_rto_max(sk)) 4426 icsk->icsk_ack.retry++; 4427 inet_csk_schedule_ack(sk); 4428 icsk->icsk_ack.ato = TCP_ATO_MIN; 4429 tcp_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, false); 4430 return; 4431 } 4432 4433 /* Reserve space for headers and prepare control bits. */ 4434 skb_reserve(buff, MAX_TCP_HEADER); 4435 tcp_init_nondata_skb(buff, sk, 4436 tcp_acceptable_seq(sk), TCPHDR_ACK | flags); 4437 4438 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 4439 * too much. 4440 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 4441 */ 4442 skb_set_tcp_pure_ack(buff); 4443 4444 /* Send it off, this clears delayed acks for us. */ 4445 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 4446 } 4447 EXPORT_SYMBOL_GPL(__tcp_send_ack); 4448 4449 void tcp_send_ack(struct sock *sk) 4450 { 4451 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt, 0); 4452 } 4453 4454 /* This routine sends a packet with an out of date sequence 4455 * number. It assumes the other end will try to ack it. 4456 * 4457 * Question: what should we make while urgent mode? 4458 * 4.4BSD forces sending single byte of data. We cannot send 4459 * out of window data, because we have SND.NXT==SND.MAX... 4460 * 4461 * Current solution: to send TWO zero-length segments in urgent mode: 4462 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 4463 * out-of-date with SND.UNA-1 to probe window. 4464 */ 4465 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 4466 { 4467 struct tcp_sock *tp = tcp_sk(sk); 4468 struct sk_buff *skb; 4469 4470 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 4471 skb = alloc_skb(MAX_TCP_HEADER, 4472 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4473 if (!skb) 4474 return -1; 4475 4476 /* Reserve space for headers and set control bits. */ 4477 skb_reserve(skb, MAX_TCP_HEADER); 4478 /* Use a previous sequence. This should cause the other 4479 * end to send an ack. Don't queue or clone SKB, just 4480 * send it. 4481 */ 4482 tcp_init_nondata_skb(skb, sk, tp->snd_una - !urgent, TCPHDR_ACK); 4483 NET_INC_STATS(sock_net(sk), mib); 4484 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 4485 } 4486 4487 /* Called from setsockopt( ... TCP_REPAIR ) */ 4488 void tcp_send_window_probe(struct sock *sk) 4489 { 4490 if (sk->sk_state == TCP_ESTABLISHED) { 4491 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 4492 tcp_mstamp_refresh(tcp_sk(sk)); 4493 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 4494 } 4495 } 4496 4497 /* Initiate keepalive or window probe from timer. */ 4498 int tcp_write_wakeup(struct sock *sk, int mib) 4499 { 4500 struct tcp_sock *tp = tcp_sk(sk); 4501 struct sk_buff *skb; 4502 4503 if (sk->sk_state == TCP_CLOSE) 4504 return -1; 4505 4506 skb = tcp_send_head(sk); 4507 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 4508 int err; 4509 unsigned int mss = tcp_current_mss(sk); 4510 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 4511 4512 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 4513 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 4514 4515 /* We are probing the opening of a window 4516 * but the window size is != 0 4517 * must have been a result SWS avoidance ( sender ) 4518 */ 4519 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 4520 skb->len > mss) { 4521 seg_size = min(seg_size, mss); 4522 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4523 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 4524 skb, seg_size, mss, GFP_ATOMIC)) 4525 return -1; 4526 } else if (!tcp_skb_pcount(skb)) 4527 tcp_set_skb_tso_segs(skb, mss); 4528 4529 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4530 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 4531 if (!err) 4532 tcp_event_new_data_sent(sk, skb); 4533 return err; 4534 } else { 4535 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 4536 tcp_xmit_probe_skb(sk, 1, mib); 4537 return tcp_xmit_probe_skb(sk, 0, mib); 4538 } 4539 } 4540 4541 /* A window probe timeout has occurred. If window is not closed send 4542 * a partial packet else a zero probe. 4543 */ 4544 void tcp_send_probe0(struct sock *sk) 4545 { 4546 struct inet_connection_sock *icsk = inet_csk(sk); 4547 struct tcp_sock *tp = tcp_sk(sk); 4548 struct net *net = sock_net(sk); 4549 unsigned long timeout; 4550 int err; 4551 4552 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 4553 4554 if (tp->packets_out || tcp_write_queue_empty(sk)) { 4555 /* Cancel probe timer, if it is not required. */ 4556 WRITE_ONCE(icsk->icsk_probes_out, 0); 4557 icsk->icsk_backoff = 0; 4558 icsk->icsk_probes_tstamp = 0; 4559 return; 4560 } 4561 4562 WRITE_ONCE(icsk->icsk_probes_out, icsk->icsk_probes_out + 1); 4563 if (err <= 0) { 4564 if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2)) 4565 icsk->icsk_backoff++; 4566 timeout = tcp_probe0_when(sk, tcp_rto_max(sk)); 4567 } else { 4568 /* If packet was not sent due to local congestion, 4569 * Let senders fight for local resources conservatively. 4570 */ 4571 timeout = TCP_RESOURCE_PROBE_INTERVAL; 4572 } 4573 4574 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout); 4575 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, true); 4576 } 4577 4578 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 4579 { 4580 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 4581 struct flowi fl; 4582 int res; 4583 4584 /* Paired with WRITE_ONCE() in sock_setsockopt() */ 4585 if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED) 4586 WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash()); 4587 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL, 4588 NULL); 4589 if (!res) { 4590 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 4591 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 4592 if (unlikely(tcp_passive_fastopen(sk))) { 4593 /* sk has const attribute because listeners are lockless. 4594 * However in this case, we are dealing with a passive fastopen 4595 * socket thus we can change total_retrans value. 4596 */ 4597 tcp_sk_rw(sk)->total_retrans++; 4598 } 4599 trace_tcp_retransmit_synack(sk, req); 4600 WRITE_ONCE(req->num_retrans, req->num_retrans + 1); 4601 } 4602 return res; 4603 } 4604 EXPORT_IPV6_MOD(tcp_rtx_synack); 4605