xref: /linux/drivers/net/ethernet/sfc/falcon/efx.c (revision 2f2c7254931f41b5736e3ba12aaa9ac1bbeeeb92)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2005-2013 Solarflare Communications Inc.
6  */
7 
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/netdevice.h>
11 #include <linux/etherdevice.h>
12 #include <linux/delay.h>
13 #include <linux/notifier.h>
14 #include <linux/ip.h>
15 #include <linux/tcp.h>
16 #include <linux/in.h>
17 #include <linux/ethtool.h>
18 #include <linux/topology.h>
19 #include <linux/gfp.h>
20 #include <linux/interrupt.h>
21 #include "net_driver.h"
22 #include "efx.h"
23 #include "nic.h"
24 #include "selftest.h"
25 
26 #include "workarounds.h"
27 
28 /**************************************************************************
29  *
30  * Type name strings
31  *
32  **************************************************************************
33  */
34 
35 /* Loopback mode names (see LOOPBACK_MODE()) */
36 const unsigned int ef4_loopback_mode_max = LOOPBACK_MAX;
37 const char *const ef4_loopback_mode_names[] = {
38 	[LOOPBACK_NONE]		= "NONE",
39 	[LOOPBACK_DATA]		= "DATAPATH",
40 	[LOOPBACK_GMAC]		= "GMAC",
41 	[LOOPBACK_XGMII]	= "XGMII",
42 	[LOOPBACK_XGXS]		= "XGXS",
43 	[LOOPBACK_XAUI]		= "XAUI",
44 	[LOOPBACK_GMII]		= "GMII",
45 	[LOOPBACK_SGMII]	= "SGMII",
46 	[LOOPBACK_XGBR]		= "XGBR",
47 	[LOOPBACK_XFI]		= "XFI",
48 	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
49 	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
50 	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
51 	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
52 	[LOOPBACK_GPHY]		= "GPHY",
53 	[LOOPBACK_PHYXS]	= "PHYXS",
54 	[LOOPBACK_PCS]		= "PCS",
55 	[LOOPBACK_PMAPMD]	= "PMA/PMD",
56 	[LOOPBACK_XPORT]	= "XPORT",
57 	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
58 	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
59 	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
60 	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
61 	[LOOPBACK_GMII_WS]	= "GMII_WS",
62 	[LOOPBACK_XFI_WS]	= "XFI_WS",
63 	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
64 	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
65 };
66 
67 const unsigned int ef4_reset_type_max = RESET_TYPE_MAX;
68 const char *const ef4_reset_type_names[] = {
69 	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
70 	[RESET_TYPE_ALL]                = "ALL",
71 	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
72 	[RESET_TYPE_WORLD]              = "WORLD",
73 	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
74 	[RESET_TYPE_DATAPATH]           = "DATAPATH",
75 	[RESET_TYPE_DISABLE]            = "DISABLE",
76 	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
77 	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
78 	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
79 	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
80 	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
81 };
82 
83 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
84  * queued onto this work queue. This is not a per-nic work queue, because
85  * ef4_reset_work() acquires the rtnl lock, so resets are naturally serialised.
86  */
87 static struct workqueue_struct *reset_workqueue;
88 
89 /* How often and how many times to poll for a reset while waiting for a
90  * BIST that another function started to complete.
91  */
92 #define BIST_WAIT_DELAY_MS	100
93 #define BIST_WAIT_DELAY_COUNT	100
94 
95 /**************************************************************************
96  *
97  * Configurable values
98  *
99  *************************************************************************/
100 
101 /*
102  * Use separate channels for TX and RX events
103  *
104  * Set this to 1 to use separate channels for TX and RX. It allows us
105  * to control interrupt affinity separately for TX and RX.
106  *
107  * This is only used in MSI-X interrupt mode
108  */
109 bool ef4_separate_tx_channels;
110 module_param(ef4_separate_tx_channels, bool, 0444);
111 MODULE_PARM_DESC(ef4_separate_tx_channels,
112 		 "Use separate channels for TX and RX");
113 
114 /* This is the time (in jiffies) between invocations of the hardware
115  * monitor.
116  * On Falcon-based NICs, this will:
117  * - Check the on-board hardware monitor;
118  * - Poll the link state and reconfigure the hardware as necessary.
119  * On Siena-based NICs for power systems with EEH support, this will give EEH a
120  * chance to start.
121  */
122 static unsigned int ef4_monitor_interval = 1 * HZ;
123 
124 /* Initial interrupt moderation settings.  They can be modified after
125  * module load with ethtool.
126  *
127  * The default for RX should strike a balance between increasing the
128  * round-trip latency and reducing overhead.
129  */
130 static unsigned int rx_irq_mod_usec = 60;
131 
132 /* Initial interrupt moderation settings.  They can be modified after
133  * module load with ethtool.
134  *
135  * This default is chosen to ensure that a 10G link does not go idle
136  * while a TX queue is stopped after it has become full.  A queue is
137  * restarted when it drops below half full.  The time this takes (assuming
138  * worst case 3 descriptors per packet and 1024 descriptors) is
139  *   512 / 3 * 1.2 = 205 usec.
140  */
141 static unsigned int tx_irq_mod_usec = 150;
142 
143 /* This is the first interrupt mode to try out of:
144  * 0 => MSI-X
145  * 1 => MSI
146  * 2 => legacy
147  */
148 static unsigned int interrupt_mode;
149 
150 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
151  * i.e. the number of CPUs among which we may distribute simultaneous
152  * interrupt handling.
153  *
154  * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
155  * The default (0) means to assign an interrupt to each core.
156  */
157 static unsigned int rss_cpus;
158 module_param(rss_cpus, uint, 0444);
159 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
160 
161 static bool phy_flash_cfg;
162 module_param(phy_flash_cfg, bool, 0644);
163 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
164 
165 static unsigned irq_adapt_low_thresh = 8000;
166 module_param(irq_adapt_low_thresh, uint, 0644);
167 MODULE_PARM_DESC(irq_adapt_low_thresh,
168 		 "Threshold score for reducing IRQ moderation");
169 
170 static unsigned irq_adapt_high_thresh = 16000;
171 module_param(irq_adapt_high_thresh, uint, 0644);
172 MODULE_PARM_DESC(irq_adapt_high_thresh,
173 		 "Threshold score for increasing IRQ moderation");
174 
175 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
176 			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
177 			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
178 			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
179 module_param(debug, uint, 0);
180 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
181 
182 /**************************************************************************
183  *
184  * Utility functions and prototypes
185  *
186  *************************************************************************/
187 
188 static int ef4_soft_enable_interrupts(struct ef4_nic *efx);
189 static void ef4_soft_disable_interrupts(struct ef4_nic *efx);
190 static void ef4_remove_channel(struct ef4_channel *channel);
191 static void ef4_remove_channels(struct ef4_nic *efx);
192 static const struct ef4_channel_type ef4_default_channel_type;
193 static void ef4_remove_port(struct ef4_nic *efx);
194 static void ef4_init_napi_channel(struct ef4_channel *channel);
195 static void ef4_fini_napi(struct ef4_nic *efx);
196 static void ef4_fini_napi_channel(struct ef4_channel *channel);
197 static void ef4_fini_struct(struct ef4_nic *efx);
198 static void ef4_start_all(struct ef4_nic *efx);
199 static void ef4_stop_all(struct ef4_nic *efx);
200 
201 #define EF4_ASSERT_RESET_SERIALISED(efx)		\
202 	do {						\
203 		if ((efx->state == STATE_READY) ||	\
204 		    (efx->state == STATE_RECOVERY) ||	\
205 		    (efx->state == STATE_DISABLED))	\
206 			ASSERT_RTNL();			\
207 	} while (0)
208 
ef4_check_disabled(struct ef4_nic * efx)209 static int ef4_check_disabled(struct ef4_nic *efx)
210 {
211 	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
212 		netif_err(efx, drv, efx->net_dev,
213 			  "device is disabled due to earlier errors\n");
214 		return -EIO;
215 	}
216 	return 0;
217 }
218 
219 /**************************************************************************
220  *
221  * Event queue processing
222  *
223  *************************************************************************/
224 
225 /* Process channel's event queue
226  *
227  * This function is responsible for processing the event queue of a
228  * single channel.  The caller must guarantee that this function will
229  * never be concurrently called more than once on the same channel,
230  * though different channels may be being processed concurrently.
231  */
ef4_process_channel(struct ef4_channel * channel,int budget)232 static int ef4_process_channel(struct ef4_channel *channel, int budget)
233 {
234 	struct ef4_tx_queue *tx_queue;
235 	int spent;
236 
237 	if (unlikely(!channel->enabled))
238 		return 0;
239 
240 	ef4_for_each_channel_tx_queue(tx_queue, channel) {
241 		tx_queue->pkts_compl = 0;
242 		tx_queue->bytes_compl = 0;
243 	}
244 
245 	spent = ef4_nic_process_eventq(channel, budget);
246 	if (spent && ef4_channel_has_rx_queue(channel)) {
247 		struct ef4_rx_queue *rx_queue =
248 			ef4_channel_get_rx_queue(channel);
249 
250 		ef4_rx_flush_packet(channel);
251 		ef4_fast_push_rx_descriptors(rx_queue, true);
252 	}
253 
254 	/* Update BQL */
255 	ef4_for_each_channel_tx_queue(tx_queue, channel) {
256 		if (tx_queue->bytes_compl) {
257 			netdev_tx_completed_queue(tx_queue->core_txq,
258 				tx_queue->pkts_compl, tx_queue->bytes_compl);
259 		}
260 	}
261 
262 	return spent;
263 }
264 
265 /* NAPI poll handler
266  *
267  * NAPI guarantees serialisation of polls of the same device, which
268  * provides the guarantee required by ef4_process_channel().
269  */
ef4_update_irq_mod(struct ef4_nic * efx,struct ef4_channel * channel)270 static void ef4_update_irq_mod(struct ef4_nic *efx, struct ef4_channel *channel)
271 {
272 	int step = efx->irq_mod_step_us;
273 
274 	if (channel->irq_mod_score < irq_adapt_low_thresh) {
275 		if (channel->irq_moderation_us > step) {
276 			channel->irq_moderation_us -= step;
277 			efx->type->push_irq_moderation(channel);
278 		}
279 	} else if (channel->irq_mod_score > irq_adapt_high_thresh) {
280 		if (channel->irq_moderation_us <
281 		    efx->irq_rx_moderation_us) {
282 			channel->irq_moderation_us += step;
283 			efx->type->push_irq_moderation(channel);
284 		}
285 	}
286 
287 	channel->irq_count = 0;
288 	channel->irq_mod_score = 0;
289 }
290 
ef4_poll(struct napi_struct * napi,int budget)291 static int ef4_poll(struct napi_struct *napi, int budget)
292 {
293 	struct ef4_channel *channel =
294 		container_of(napi, struct ef4_channel, napi_str);
295 	struct ef4_nic *efx = channel->efx;
296 	int spent;
297 
298 	netif_vdbg(efx, intr, efx->net_dev,
299 		   "channel %d NAPI poll executing on CPU %d\n",
300 		   channel->channel, raw_smp_processor_id());
301 
302 	spent = ef4_process_channel(channel, budget);
303 
304 	if (spent < budget) {
305 		if (ef4_channel_has_rx_queue(channel) &&
306 		    efx->irq_rx_adaptive &&
307 		    unlikely(++channel->irq_count == 1000)) {
308 			ef4_update_irq_mod(efx, channel);
309 		}
310 
311 		ef4_filter_rfs_expire(channel);
312 
313 		/* There is no race here; although napi_disable() will
314 		 * only wait for napi_complete(), this isn't a problem
315 		 * since ef4_nic_eventq_read_ack() will have no effect if
316 		 * interrupts have already been disabled.
317 		 */
318 		napi_complete_done(napi, spent);
319 		ef4_nic_eventq_read_ack(channel);
320 	}
321 
322 	return spent;
323 }
324 
325 /* Create event queue
326  * Event queue memory allocations are done only once.  If the channel
327  * is reset, the memory buffer will be reused; this guards against
328  * errors during channel reset and also simplifies interrupt handling.
329  */
ef4_probe_eventq(struct ef4_channel * channel)330 static int ef4_probe_eventq(struct ef4_channel *channel)
331 {
332 	struct ef4_nic *efx = channel->efx;
333 	unsigned long entries;
334 
335 	netif_dbg(efx, probe, efx->net_dev,
336 		  "chan %d create event queue\n", channel->channel);
337 
338 	/* Build an event queue with room for one event per tx and rx buffer,
339 	 * plus some extra for link state events and MCDI completions. */
340 	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
341 	EF4_BUG_ON_PARANOID(entries > EF4_MAX_EVQ_SIZE);
342 	channel->eventq_mask = max(entries, EF4_MIN_EVQ_SIZE) - 1;
343 
344 	return ef4_nic_probe_eventq(channel);
345 }
346 
347 /* Prepare channel's event queue */
ef4_init_eventq(struct ef4_channel * channel)348 static int ef4_init_eventq(struct ef4_channel *channel)
349 {
350 	struct ef4_nic *efx = channel->efx;
351 	int rc;
352 
353 	EF4_WARN_ON_PARANOID(channel->eventq_init);
354 
355 	netif_dbg(efx, drv, efx->net_dev,
356 		  "chan %d init event queue\n", channel->channel);
357 
358 	rc = ef4_nic_init_eventq(channel);
359 	if (rc == 0) {
360 		efx->type->push_irq_moderation(channel);
361 		channel->eventq_read_ptr = 0;
362 		channel->eventq_init = true;
363 	}
364 	return rc;
365 }
366 
367 /* Enable event queue processing and NAPI */
ef4_start_eventq(struct ef4_channel * channel)368 void ef4_start_eventq(struct ef4_channel *channel)
369 {
370 	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
371 		  "chan %d start event queue\n", channel->channel);
372 
373 	/* Make sure the NAPI handler sees the enabled flag set */
374 	channel->enabled = true;
375 	smp_wmb();
376 
377 	napi_enable(&channel->napi_str);
378 	ef4_nic_eventq_read_ack(channel);
379 }
380 
381 /* Disable event queue processing and NAPI */
ef4_stop_eventq(struct ef4_channel * channel)382 void ef4_stop_eventq(struct ef4_channel *channel)
383 {
384 	if (!channel->enabled)
385 		return;
386 
387 	napi_disable(&channel->napi_str);
388 	channel->enabled = false;
389 }
390 
ef4_fini_eventq(struct ef4_channel * channel)391 static void ef4_fini_eventq(struct ef4_channel *channel)
392 {
393 	if (!channel->eventq_init)
394 		return;
395 
396 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
397 		  "chan %d fini event queue\n", channel->channel);
398 
399 	ef4_nic_fini_eventq(channel);
400 	channel->eventq_init = false;
401 }
402 
ef4_remove_eventq(struct ef4_channel * channel)403 static void ef4_remove_eventq(struct ef4_channel *channel)
404 {
405 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
406 		  "chan %d remove event queue\n", channel->channel);
407 
408 	ef4_nic_remove_eventq(channel);
409 }
410 
411 /**************************************************************************
412  *
413  * Channel handling
414  *
415  *************************************************************************/
416 
417 /* Allocate and initialise a channel structure. */
418 static struct ef4_channel *
ef4_alloc_channel(struct ef4_nic * efx,int i,struct ef4_channel * old_channel)419 ef4_alloc_channel(struct ef4_nic *efx, int i, struct ef4_channel *old_channel)
420 {
421 	struct ef4_channel *channel;
422 	struct ef4_rx_queue *rx_queue;
423 	struct ef4_tx_queue *tx_queue;
424 	int j;
425 
426 	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
427 	if (!channel)
428 		return NULL;
429 
430 	channel->efx = efx;
431 	channel->channel = i;
432 	channel->type = &ef4_default_channel_type;
433 
434 	for (j = 0; j < EF4_TXQ_TYPES; j++) {
435 		tx_queue = &channel->tx_queue[j];
436 		tx_queue->efx = efx;
437 		tx_queue->queue = i * EF4_TXQ_TYPES + j;
438 		tx_queue->channel = channel;
439 	}
440 
441 	rx_queue = &channel->rx_queue;
442 	rx_queue->efx = efx;
443 	timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0);
444 
445 	return channel;
446 }
447 
448 /* Allocate and initialise a channel structure, copying parameters
449  * (but not resources) from an old channel structure.
450  */
451 static struct ef4_channel *
ef4_copy_channel(const struct ef4_channel * old_channel)452 ef4_copy_channel(const struct ef4_channel *old_channel)
453 {
454 	struct ef4_channel *channel;
455 	struct ef4_rx_queue *rx_queue;
456 	struct ef4_tx_queue *tx_queue;
457 	int j;
458 
459 	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
460 	if (!channel)
461 		return NULL;
462 
463 	*channel = *old_channel;
464 
465 	channel->napi_dev = NULL;
466 	INIT_HLIST_NODE(&channel->napi_str.napi_hash_node);
467 	channel->napi_str.napi_id = 0;
468 	channel->napi_str.state = 0;
469 	memset(&channel->eventq, 0, sizeof(channel->eventq));
470 
471 	for (j = 0; j < EF4_TXQ_TYPES; j++) {
472 		tx_queue = &channel->tx_queue[j];
473 		if (tx_queue->channel)
474 			tx_queue->channel = channel;
475 		tx_queue->buffer = NULL;
476 		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
477 	}
478 
479 	rx_queue = &channel->rx_queue;
480 	rx_queue->buffer = NULL;
481 	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
482 	timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0);
483 
484 	return channel;
485 }
486 
ef4_probe_channel(struct ef4_channel * channel)487 static int ef4_probe_channel(struct ef4_channel *channel)
488 {
489 	struct ef4_tx_queue *tx_queue;
490 	struct ef4_rx_queue *rx_queue;
491 	int rc;
492 
493 	netif_dbg(channel->efx, probe, channel->efx->net_dev,
494 		  "creating channel %d\n", channel->channel);
495 
496 	rc = channel->type->pre_probe(channel);
497 	if (rc)
498 		goto fail;
499 
500 	rc = ef4_probe_eventq(channel);
501 	if (rc)
502 		goto fail;
503 
504 	ef4_for_each_channel_tx_queue(tx_queue, channel) {
505 		rc = ef4_probe_tx_queue(tx_queue);
506 		if (rc)
507 			goto fail;
508 	}
509 
510 	ef4_for_each_channel_rx_queue(rx_queue, channel) {
511 		rc = ef4_probe_rx_queue(rx_queue);
512 		if (rc)
513 			goto fail;
514 	}
515 
516 	return 0;
517 
518 fail:
519 	ef4_remove_channel(channel);
520 	return rc;
521 }
522 
523 static void
ef4_get_channel_name(struct ef4_channel * channel,char * buf,size_t len)524 ef4_get_channel_name(struct ef4_channel *channel, char *buf, size_t len)
525 {
526 	struct ef4_nic *efx = channel->efx;
527 	const char *type;
528 	int number;
529 
530 	number = channel->channel;
531 	if (efx->tx_channel_offset == 0) {
532 		type = "";
533 	} else if (channel->channel < efx->tx_channel_offset) {
534 		type = "-rx";
535 	} else {
536 		type = "-tx";
537 		number -= efx->tx_channel_offset;
538 	}
539 	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
540 }
541 
ef4_set_channel_names(struct ef4_nic * efx)542 static void ef4_set_channel_names(struct ef4_nic *efx)
543 {
544 	struct ef4_channel *channel;
545 
546 	ef4_for_each_channel(channel, efx)
547 		channel->type->get_name(channel,
548 					efx->msi_context[channel->channel].name,
549 					sizeof(efx->msi_context[0].name));
550 }
551 
ef4_probe_channels(struct ef4_nic * efx)552 static int ef4_probe_channels(struct ef4_nic *efx)
553 {
554 	struct ef4_channel *channel;
555 	int rc;
556 
557 	/* Restart special buffer allocation */
558 	efx->next_buffer_table = 0;
559 
560 	/* Probe channels in reverse, so that any 'extra' channels
561 	 * use the start of the buffer table. This allows the traffic
562 	 * channels to be resized without moving them or wasting the
563 	 * entries before them.
564 	 */
565 	ef4_for_each_channel_rev(channel, efx) {
566 		rc = ef4_probe_channel(channel);
567 		if (rc) {
568 			netif_err(efx, probe, efx->net_dev,
569 				  "failed to create channel %d\n",
570 				  channel->channel);
571 			goto fail;
572 		}
573 	}
574 	ef4_set_channel_names(efx);
575 
576 	return 0;
577 
578 fail:
579 	ef4_remove_channels(efx);
580 	return rc;
581 }
582 
583 /* Channels are shutdown and reinitialised whilst the NIC is running
584  * to propagate configuration changes (mtu, checksum offload), or
585  * to clear hardware error conditions
586  */
ef4_start_datapath(struct ef4_nic * efx)587 static void ef4_start_datapath(struct ef4_nic *efx)
588 {
589 	netdev_features_t old_features = efx->net_dev->features;
590 	bool old_rx_scatter = efx->rx_scatter;
591 	struct ef4_tx_queue *tx_queue;
592 	struct ef4_rx_queue *rx_queue;
593 	struct ef4_channel *channel;
594 	size_t rx_buf_len;
595 
596 	/* Calculate the rx buffer allocation parameters required to
597 	 * support the current MTU, including padding for header
598 	 * alignment and overruns.
599 	 */
600 	efx->rx_dma_len = (efx->rx_prefix_size +
601 			   EF4_MAX_FRAME_LEN(efx->net_dev->mtu) +
602 			   efx->type->rx_buffer_padding);
603 	rx_buf_len = (sizeof(struct ef4_rx_page_state) +
604 		      efx->rx_ip_align + efx->rx_dma_len);
605 	if (rx_buf_len <= PAGE_SIZE) {
606 		efx->rx_scatter = efx->type->always_rx_scatter;
607 		efx->rx_buffer_order = 0;
608 	} else if (efx->type->can_rx_scatter) {
609 		BUILD_BUG_ON(EF4_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
610 		BUILD_BUG_ON(sizeof(struct ef4_rx_page_state) +
611 			     2 * ALIGN(NET_IP_ALIGN + EF4_RX_USR_BUF_SIZE,
612 				       EF4_RX_BUF_ALIGNMENT) >
613 			     PAGE_SIZE);
614 		efx->rx_scatter = true;
615 		efx->rx_dma_len = EF4_RX_USR_BUF_SIZE;
616 		efx->rx_buffer_order = 0;
617 	} else {
618 		efx->rx_scatter = false;
619 		efx->rx_buffer_order = get_order(rx_buf_len);
620 	}
621 
622 	ef4_rx_config_page_split(efx);
623 	if (efx->rx_buffer_order)
624 		netif_dbg(efx, drv, efx->net_dev,
625 			  "RX buf len=%u; page order=%u batch=%u\n",
626 			  efx->rx_dma_len, efx->rx_buffer_order,
627 			  efx->rx_pages_per_batch);
628 	else
629 		netif_dbg(efx, drv, efx->net_dev,
630 			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
631 			  efx->rx_dma_len, efx->rx_page_buf_step,
632 			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
633 
634 	/* Restore previously fixed features in hw_features and remove
635 	 * features which are fixed now
636 	 */
637 	efx->net_dev->hw_features |= efx->net_dev->features;
638 	efx->net_dev->hw_features &= ~efx->fixed_features;
639 	efx->net_dev->features |= efx->fixed_features;
640 	if (efx->net_dev->features != old_features)
641 		netdev_features_change(efx->net_dev);
642 
643 	/* RX filters may also have scatter-enabled flags */
644 	if (efx->rx_scatter != old_rx_scatter)
645 		efx->type->filter_update_rx_scatter(efx);
646 
647 	/* We must keep at least one descriptor in a TX ring empty.
648 	 * We could avoid this when the queue size does not exactly
649 	 * match the hardware ring size, but it's not that important.
650 	 * Therefore we stop the queue when one more skb might fill
651 	 * the ring completely.  We wake it when half way back to
652 	 * empty.
653 	 */
654 	efx->txq_stop_thresh = efx->txq_entries - ef4_tx_max_skb_descs(efx);
655 	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
656 
657 	/* Initialise the channels */
658 	ef4_for_each_channel(channel, efx) {
659 		ef4_for_each_channel_tx_queue(tx_queue, channel) {
660 			ef4_init_tx_queue(tx_queue);
661 			atomic_inc(&efx->active_queues);
662 		}
663 
664 		ef4_for_each_channel_rx_queue(rx_queue, channel) {
665 			ef4_init_rx_queue(rx_queue);
666 			atomic_inc(&efx->active_queues);
667 			ef4_stop_eventq(channel);
668 			ef4_fast_push_rx_descriptors(rx_queue, false);
669 			ef4_start_eventq(channel);
670 		}
671 
672 		WARN_ON(channel->rx_pkt_n_frags);
673 	}
674 
675 	if (netif_device_present(efx->net_dev))
676 		netif_tx_wake_all_queues(efx->net_dev);
677 }
678 
ef4_stop_datapath(struct ef4_nic * efx)679 static void ef4_stop_datapath(struct ef4_nic *efx)
680 {
681 	struct ef4_channel *channel;
682 	struct ef4_tx_queue *tx_queue;
683 	struct ef4_rx_queue *rx_queue;
684 	int rc;
685 
686 	EF4_ASSERT_RESET_SERIALISED(efx);
687 	BUG_ON(efx->port_enabled);
688 
689 	/* Stop RX refill */
690 	ef4_for_each_channel(channel, efx) {
691 		ef4_for_each_channel_rx_queue(rx_queue, channel)
692 			rx_queue->refill_enabled = false;
693 	}
694 
695 	ef4_for_each_channel(channel, efx) {
696 		/* RX packet processing is pipelined, so wait for the
697 		 * NAPI handler to complete.  At least event queue 0
698 		 * might be kept active by non-data events, so don't
699 		 * use napi_synchronize() but actually disable NAPI
700 		 * temporarily.
701 		 */
702 		if (ef4_channel_has_rx_queue(channel)) {
703 			ef4_stop_eventq(channel);
704 			ef4_start_eventq(channel);
705 		}
706 	}
707 
708 	rc = efx->type->fini_dmaq(efx);
709 	if (rc && EF4_WORKAROUND_7803(efx)) {
710 		/* Schedule a reset to recover from the flush failure. The
711 		 * descriptor caches reference memory we're about to free,
712 		 * but falcon_reconfigure_mac_wrapper() won't reconnect
713 		 * the MACs because of the pending reset.
714 		 */
715 		netif_err(efx, drv, efx->net_dev,
716 			  "Resetting to recover from flush failure\n");
717 		ef4_schedule_reset(efx, RESET_TYPE_ALL);
718 	} else if (rc) {
719 		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
720 	} else {
721 		netif_dbg(efx, drv, efx->net_dev,
722 			  "successfully flushed all queues\n");
723 	}
724 
725 	ef4_for_each_channel(channel, efx) {
726 		ef4_for_each_channel_rx_queue(rx_queue, channel)
727 			ef4_fini_rx_queue(rx_queue);
728 		ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
729 			ef4_fini_tx_queue(tx_queue);
730 	}
731 }
732 
ef4_remove_channel(struct ef4_channel * channel)733 static void ef4_remove_channel(struct ef4_channel *channel)
734 {
735 	struct ef4_tx_queue *tx_queue;
736 	struct ef4_rx_queue *rx_queue;
737 
738 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
739 		  "destroy chan %d\n", channel->channel);
740 
741 	ef4_for_each_channel_rx_queue(rx_queue, channel)
742 		ef4_remove_rx_queue(rx_queue);
743 	ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
744 		ef4_remove_tx_queue(tx_queue);
745 	ef4_remove_eventq(channel);
746 	channel->type->post_remove(channel);
747 }
748 
ef4_remove_channels(struct ef4_nic * efx)749 static void ef4_remove_channels(struct ef4_nic *efx)
750 {
751 	struct ef4_channel *channel;
752 
753 	ef4_for_each_channel(channel, efx)
754 		ef4_remove_channel(channel);
755 }
756 
757 int
ef4_realloc_channels(struct ef4_nic * efx,u32 rxq_entries,u32 txq_entries)758 ef4_realloc_channels(struct ef4_nic *efx, u32 rxq_entries, u32 txq_entries)
759 {
760 	struct ef4_channel *other_channel[EF4_MAX_CHANNELS], *channel;
761 	u32 old_rxq_entries, old_txq_entries;
762 	unsigned i, next_buffer_table = 0;
763 	int rc, rc2;
764 
765 	rc = ef4_check_disabled(efx);
766 	if (rc)
767 		return rc;
768 
769 	/* Not all channels should be reallocated. We must avoid
770 	 * reallocating their buffer table entries.
771 	 */
772 	ef4_for_each_channel(channel, efx) {
773 		struct ef4_rx_queue *rx_queue;
774 		struct ef4_tx_queue *tx_queue;
775 
776 		if (channel->type->copy)
777 			continue;
778 		next_buffer_table = max(next_buffer_table,
779 					channel->eventq.index +
780 					channel->eventq.entries);
781 		ef4_for_each_channel_rx_queue(rx_queue, channel)
782 			next_buffer_table = max(next_buffer_table,
783 						rx_queue->rxd.index +
784 						rx_queue->rxd.entries);
785 		ef4_for_each_channel_tx_queue(tx_queue, channel)
786 			next_buffer_table = max(next_buffer_table,
787 						tx_queue->txd.index +
788 						tx_queue->txd.entries);
789 	}
790 
791 	ef4_device_detach_sync(efx);
792 	ef4_stop_all(efx);
793 	ef4_soft_disable_interrupts(efx);
794 
795 	/* Clone channels (where possible) */
796 	memset(other_channel, 0, sizeof(other_channel));
797 	for (i = 0; i < efx->n_channels; i++) {
798 		channel = efx->channel[i];
799 		if (channel->type->copy)
800 			channel = channel->type->copy(channel);
801 		if (!channel) {
802 			rc = -ENOMEM;
803 			goto out;
804 		}
805 		other_channel[i] = channel;
806 	}
807 
808 	/* Swap entry counts and channel pointers */
809 	old_rxq_entries = efx->rxq_entries;
810 	old_txq_entries = efx->txq_entries;
811 	efx->rxq_entries = rxq_entries;
812 	efx->txq_entries = txq_entries;
813 	for (i = 0; i < efx->n_channels; i++) {
814 		swap(efx->channel[i], other_channel[i]);
815 	}
816 
817 	/* Restart buffer table allocation */
818 	efx->next_buffer_table = next_buffer_table;
819 
820 	for (i = 0; i < efx->n_channels; i++) {
821 		channel = efx->channel[i];
822 		if (!channel->type->copy)
823 			continue;
824 		rc = ef4_probe_channel(channel);
825 		if (rc)
826 			goto rollback;
827 		ef4_init_napi_channel(efx->channel[i]);
828 	}
829 
830 out:
831 	/* Destroy unused channel structures */
832 	for (i = 0; i < efx->n_channels; i++) {
833 		channel = other_channel[i];
834 		if (channel && channel->type->copy) {
835 			ef4_fini_napi_channel(channel);
836 			ef4_remove_channel(channel);
837 			kfree(channel);
838 		}
839 	}
840 
841 	rc2 = ef4_soft_enable_interrupts(efx);
842 	if (rc2) {
843 		rc = rc ? rc : rc2;
844 		netif_err(efx, drv, efx->net_dev,
845 			  "unable to restart interrupts on channel reallocation\n");
846 		ef4_schedule_reset(efx, RESET_TYPE_DISABLE);
847 	} else {
848 		ef4_start_all(efx);
849 		netif_device_attach(efx->net_dev);
850 	}
851 	return rc;
852 
853 rollback:
854 	/* Swap back */
855 	efx->rxq_entries = old_rxq_entries;
856 	efx->txq_entries = old_txq_entries;
857 	for (i = 0; i < efx->n_channels; i++) {
858 		swap(efx->channel[i], other_channel[i]);
859 	}
860 	goto out;
861 }
862 
ef4_schedule_slow_fill(struct ef4_rx_queue * rx_queue)863 void ef4_schedule_slow_fill(struct ef4_rx_queue *rx_queue)
864 {
865 	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
866 }
867 
868 static const struct ef4_channel_type ef4_default_channel_type = {
869 	.pre_probe		= ef4_channel_dummy_op_int,
870 	.post_remove		= ef4_channel_dummy_op_void,
871 	.get_name		= ef4_get_channel_name,
872 	.copy			= ef4_copy_channel,
873 	.keep_eventq		= false,
874 };
875 
ef4_channel_dummy_op_int(struct ef4_channel * channel)876 int ef4_channel_dummy_op_int(struct ef4_channel *channel)
877 {
878 	return 0;
879 }
880 
ef4_channel_dummy_op_void(struct ef4_channel * channel)881 void ef4_channel_dummy_op_void(struct ef4_channel *channel)
882 {
883 }
884 
885 /**************************************************************************
886  *
887  * Port handling
888  *
889  **************************************************************************/
890 
891 /* This ensures that the kernel is kept informed (via
892  * netif_carrier_on/off) of the link status, and also maintains the
893  * link status's stop on the port's TX queue.
894  */
ef4_link_status_changed(struct ef4_nic * efx)895 void ef4_link_status_changed(struct ef4_nic *efx)
896 {
897 	struct ef4_link_state *link_state = &efx->link_state;
898 
899 	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
900 	 * that no events are triggered between unregister_netdev() and the
901 	 * driver unloading. A more general condition is that NETDEV_CHANGE
902 	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
903 	if (!netif_running(efx->net_dev))
904 		return;
905 
906 	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
907 		efx->n_link_state_changes++;
908 
909 		if (link_state->up)
910 			netif_carrier_on(efx->net_dev);
911 		else
912 			netif_carrier_off(efx->net_dev);
913 	}
914 
915 	/* Status message for kernel log */
916 	if (link_state->up)
917 		netif_info(efx, link, efx->net_dev,
918 			   "link up at %uMbps %s-duplex (MTU %d)\n",
919 			   link_state->speed, link_state->fd ? "full" : "half",
920 			   efx->net_dev->mtu);
921 	else
922 		netif_info(efx, link, efx->net_dev, "link down\n");
923 }
924 
ef4_link_set_advertising(struct ef4_nic * efx,u32 advertising)925 void ef4_link_set_advertising(struct ef4_nic *efx, u32 advertising)
926 {
927 	efx->link_advertising = advertising;
928 	if (advertising) {
929 		if (advertising & ADVERTISED_Pause)
930 			efx->wanted_fc |= (EF4_FC_TX | EF4_FC_RX);
931 		else
932 			efx->wanted_fc &= ~(EF4_FC_TX | EF4_FC_RX);
933 		if (advertising & ADVERTISED_Asym_Pause)
934 			efx->wanted_fc ^= EF4_FC_TX;
935 	}
936 }
937 
ef4_link_set_wanted_fc(struct ef4_nic * efx,u8 wanted_fc)938 void ef4_link_set_wanted_fc(struct ef4_nic *efx, u8 wanted_fc)
939 {
940 	efx->wanted_fc = wanted_fc;
941 	if (efx->link_advertising) {
942 		if (wanted_fc & EF4_FC_RX)
943 			efx->link_advertising |= (ADVERTISED_Pause |
944 						  ADVERTISED_Asym_Pause);
945 		else
946 			efx->link_advertising &= ~(ADVERTISED_Pause |
947 						   ADVERTISED_Asym_Pause);
948 		if (wanted_fc & EF4_FC_TX)
949 			efx->link_advertising ^= ADVERTISED_Asym_Pause;
950 	}
951 }
952 
953 static void ef4_fini_port(struct ef4_nic *efx);
954 
955 /* We assume that efx->type->reconfigure_mac will always try to sync RX
956  * filters and therefore needs to read-lock the filter table against freeing
957  */
ef4_mac_reconfigure(struct ef4_nic * efx)958 void ef4_mac_reconfigure(struct ef4_nic *efx)
959 {
960 	down_read(&efx->filter_sem);
961 	efx->type->reconfigure_mac(efx);
962 	up_read(&efx->filter_sem);
963 }
964 
965 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
966  * the MAC appropriately. All other PHY configuration changes are pushed
967  * through phy_op->set_link_ksettings(), and pushed asynchronously to the MAC
968  * through ef4_monitor().
969  *
970  * Callers must hold the mac_lock
971  */
__ef4_reconfigure_port(struct ef4_nic * efx)972 int __ef4_reconfigure_port(struct ef4_nic *efx)
973 {
974 	enum ef4_phy_mode phy_mode;
975 	int rc;
976 
977 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
978 
979 	/* Disable PHY transmit in mac level loopbacks */
980 	phy_mode = efx->phy_mode;
981 	if (LOOPBACK_INTERNAL(efx))
982 		efx->phy_mode |= PHY_MODE_TX_DISABLED;
983 	else
984 		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
985 
986 	rc = efx->type->reconfigure_port(efx);
987 
988 	if (rc)
989 		efx->phy_mode = phy_mode;
990 
991 	return rc;
992 }
993 
994 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
995  * disabled. */
ef4_reconfigure_port(struct ef4_nic * efx)996 int ef4_reconfigure_port(struct ef4_nic *efx)
997 {
998 	int rc;
999 
1000 	EF4_ASSERT_RESET_SERIALISED(efx);
1001 
1002 	mutex_lock(&efx->mac_lock);
1003 	rc = __ef4_reconfigure_port(efx);
1004 	mutex_unlock(&efx->mac_lock);
1005 
1006 	return rc;
1007 }
1008 
1009 /* Asynchronous work item for changing MAC promiscuity and multicast
1010  * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
1011  * MAC directly. */
ef4_mac_work(struct work_struct * data)1012 static void ef4_mac_work(struct work_struct *data)
1013 {
1014 	struct ef4_nic *efx = container_of(data, struct ef4_nic, mac_work);
1015 
1016 	mutex_lock(&efx->mac_lock);
1017 	if (efx->port_enabled)
1018 		ef4_mac_reconfigure(efx);
1019 	mutex_unlock(&efx->mac_lock);
1020 }
1021 
ef4_probe_port(struct ef4_nic * efx)1022 static int ef4_probe_port(struct ef4_nic *efx)
1023 {
1024 	int rc;
1025 
1026 	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1027 
1028 	if (phy_flash_cfg)
1029 		efx->phy_mode = PHY_MODE_SPECIAL;
1030 
1031 	/* Connect up MAC/PHY operations table */
1032 	rc = efx->type->probe_port(efx);
1033 	if (rc)
1034 		return rc;
1035 
1036 	/* Initialise MAC address to permanent address */
1037 	eth_hw_addr_set(efx->net_dev, efx->net_dev->perm_addr);
1038 
1039 	return 0;
1040 }
1041 
ef4_init_port(struct ef4_nic * efx)1042 static int ef4_init_port(struct ef4_nic *efx)
1043 {
1044 	int rc;
1045 
1046 	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1047 
1048 	mutex_lock(&efx->mac_lock);
1049 
1050 	rc = efx->phy_op->init(efx);
1051 	if (rc)
1052 		goto fail1;
1053 
1054 	efx->port_initialized = true;
1055 
1056 	/* Reconfigure the MAC before creating dma queues (required for
1057 	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1058 	ef4_mac_reconfigure(efx);
1059 
1060 	/* Ensure the PHY advertises the correct flow control settings */
1061 	rc = efx->phy_op->reconfigure(efx);
1062 	if (rc && rc != -EPERM)
1063 		goto fail2;
1064 
1065 	mutex_unlock(&efx->mac_lock);
1066 	return 0;
1067 
1068 fail2:
1069 	efx->phy_op->fini(efx);
1070 fail1:
1071 	mutex_unlock(&efx->mac_lock);
1072 	return rc;
1073 }
1074 
ef4_start_port(struct ef4_nic * efx)1075 static void ef4_start_port(struct ef4_nic *efx)
1076 {
1077 	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1078 	BUG_ON(efx->port_enabled);
1079 
1080 	mutex_lock(&efx->mac_lock);
1081 	efx->port_enabled = true;
1082 
1083 	/* Ensure MAC ingress/egress is enabled */
1084 	ef4_mac_reconfigure(efx);
1085 
1086 	mutex_unlock(&efx->mac_lock);
1087 }
1088 
1089 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
1090  * and the async self-test, wait for them to finish and prevent them
1091  * being scheduled again.  This doesn't cover online resets, which
1092  * should only be cancelled when removing the device.
1093  */
ef4_stop_port(struct ef4_nic * efx)1094 static void ef4_stop_port(struct ef4_nic *efx)
1095 {
1096 	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1097 
1098 	EF4_ASSERT_RESET_SERIALISED(efx);
1099 
1100 	mutex_lock(&efx->mac_lock);
1101 	efx->port_enabled = false;
1102 	mutex_unlock(&efx->mac_lock);
1103 
1104 	/* Serialise against ef4_set_multicast_list() */
1105 	netif_addr_lock_bh(efx->net_dev);
1106 	netif_addr_unlock_bh(efx->net_dev);
1107 
1108 	cancel_delayed_work_sync(&efx->monitor_work);
1109 	ef4_selftest_async_cancel(efx);
1110 	cancel_work_sync(&efx->mac_work);
1111 }
1112 
ef4_fini_port(struct ef4_nic * efx)1113 static void ef4_fini_port(struct ef4_nic *efx)
1114 {
1115 	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1116 
1117 	if (!efx->port_initialized)
1118 		return;
1119 
1120 	efx->phy_op->fini(efx);
1121 	efx->port_initialized = false;
1122 
1123 	efx->link_state.up = false;
1124 	ef4_link_status_changed(efx);
1125 }
1126 
ef4_remove_port(struct ef4_nic * efx)1127 static void ef4_remove_port(struct ef4_nic *efx)
1128 {
1129 	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1130 
1131 	efx->type->remove_port(efx);
1132 }
1133 
1134 /**************************************************************************
1135  *
1136  * NIC handling
1137  *
1138  **************************************************************************/
1139 
1140 static LIST_HEAD(ef4_primary_list);
1141 static LIST_HEAD(ef4_unassociated_list);
1142 
ef4_same_controller(struct ef4_nic * left,struct ef4_nic * right)1143 static bool ef4_same_controller(struct ef4_nic *left, struct ef4_nic *right)
1144 {
1145 	return left->type == right->type &&
1146 		left->vpd_sn && right->vpd_sn &&
1147 		!strcmp(left->vpd_sn, right->vpd_sn);
1148 }
1149 
ef4_associate(struct ef4_nic * efx)1150 static void ef4_associate(struct ef4_nic *efx)
1151 {
1152 	struct ef4_nic *other, *next;
1153 
1154 	if (efx->primary == efx) {
1155 		/* Adding primary function; look for secondaries */
1156 
1157 		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1158 		list_add_tail(&efx->node, &ef4_primary_list);
1159 
1160 		list_for_each_entry_safe(other, next, &ef4_unassociated_list,
1161 					 node) {
1162 			if (ef4_same_controller(efx, other)) {
1163 				list_del(&other->node);
1164 				netif_dbg(other, probe, other->net_dev,
1165 					  "moving to secondary list of %s %s\n",
1166 					  pci_name(efx->pci_dev),
1167 					  efx->net_dev->name);
1168 				list_add_tail(&other->node,
1169 					      &efx->secondary_list);
1170 				other->primary = efx;
1171 			}
1172 		}
1173 	} else {
1174 		/* Adding secondary function; look for primary */
1175 
1176 		list_for_each_entry(other, &ef4_primary_list, node) {
1177 			if (ef4_same_controller(efx, other)) {
1178 				netif_dbg(efx, probe, efx->net_dev,
1179 					  "adding to secondary list of %s %s\n",
1180 					  pci_name(other->pci_dev),
1181 					  other->net_dev->name);
1182 				list_add_tail(&efx->node,
1183 					      &other->secondary_list);
1184 				efx->primary = other;
1185 				return;
1186 			}
1187 		}
1188 
1189 		netif_dbg(efx, probe, efx->net_dev,
1190 			  "adding to unassociated list\n");
1191 		list_add_tail(&efx->node, &ef4_unassociated_list);
1192 	}
1193 }
1194 
ef4_dissociate(struct ef4_nic * efx)1195 static void ef4_dissociate(struct ef4_nic *efx)
1196 {
1197 	struct ef4_nic *other, *next;
1198 
1199 	list_del(&efx->node);
1200 	efx->primary = NULL;
1201 
1202 	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1203 		list_del(&other->node);
1204 		netif_dbg(other, probe, other->net_dev,
1205 			  "moving to unassociated list\n");
1206 		list_add_tail(&other->node, &ef4_unassociated_list);
1207 		other->primary = NULL;
1208 	}
1209 }
1210 
1211 /* This configures the PCI device to enable I/O and DMA. */
ef4_init_io(struct ef4_nic * efx)1212 static int ef4_init_io(struct ef4_nic *efx)
1213 {
1214 	struct pci_dev *pci_dev = efx->pci_dev;
1215 	dma_addr_t dma_mask = efx->type->max_dma_mask;
1216 	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1217 	int rc, bar;
1218 
1219 	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1220 
1221 	bar = efx->type->mem_bar;
1222 
1223 	rc = pci_enable_device(pci_dev);
1224 	if (rc) {
1225 		netif_err(efx, probe, efx->net_dev,
1226 			  "failed to enable PCI device\n");
1227 		goto fail1;
1228 	}
1229 
1230 	pci_set_master(pci_dev);
1231 
1232 	/* Set the PCI DMA mask.  Try all possibilities from our genuine mask
1233 	 * down to 32 bits, because some architectures will allow 40 bit
1234 	 * masks event though they reject 46 bit masks.
1235 	 */
1236 	while (dma_mask > 0x7fffffffUL) {
1237 		rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1238 		if (rc == 0)
1239 			break;
1240 		dma_mask >>= 1;
1241 	}
1242 	if (rc) {
1243 		netif_err(efx, probe, efx->net_dev,
1244 			  "could not find a suitable DMA mask\n");
1245 		goto fail2;
1246 	}
1247 	netif_dbg(efx, probe, efx->net_dev,
1248 		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1249 
1250 	efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1251 	rc = pci_request_region(pci_dev, bar, "sfc");
1252 	if (rc) {
1253 		netif_err(efx, probe, efx->net_dev,
1254 			  "request for memory BAR failed\n");
1255 		rc = -EIO;
1256 		goto fail3;
1257 	}
1258 	efx->membase = ioremap(efx->membase_phys, mem_map_size);
1259 	if (!efx->membase) {
1260 		netif_err(efx, probe, efx->net_dev,
1261 			  "could not map memory BAR at %llx+%x\n",
1262 			  (unsigned long long)efx->membase_phys, mem_map_size);
1263 		rc = -ENOMEM;
1264 		goto fail4;
1265 	}
1266 	netif_dbg(efx, probe, efx->net_dev,
1267 		  "memory BAR at %llx+%x (virtual %p)\n",
1268 		  (unsigned long long)efx->membase_phys, mem_map_size,
1269 		  efx->membase);
1270 
1271 	return 0;
1272 
1273  fail4:
1274 	pci_release_region(efx->pci_dev, bar);
1275  fail3:
1276 	efx->membase_phys = 0;
1277  fail2:
1278 	pci_disable_device(efx->pci_dev);
1279  fail1:
1280 	return rc;
1281 }
1282 
ef4_fini_io(struct ef4_nic * efx)1283 static void ef4_fini_io(struct ef4_nic *efx)
1284 {
1285 	int bar;
1286 
1287 	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1288 
1289 	if (efx->membase) {
1290 		iounmap(efx->membase);
1291 		efx->membase = NULL;
1292 	}
1293 
1294 	if (efx->membase_phys) {
1295 		bar = efx->type->mem_bar;
1296 		pci_release_region(efx->pci_dev, bar);
1297 		efx->membase_phys = 0;
1298 	}
1299 
1300 	/* Don't disable bus-mastering if VFs are assigned */
1301 	if (!pci_vfs_assigned(efx->pci_dev))
1302 		pci_disable_device(efx->pci_dev);
1303 }
1304 
ef4_set_default_rx_indir_table(struct ef4_nic * efx)1305 void ef4_set_default_rx_indir_table(struct ef4_nic *efx)
1306 {
1307 	size_t i;
1308 
1309 	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1310 		efx->rx_indir_table[i] =
1311 			ethtool_rxfh_indir_default(i, efx->rss_spread);
1312 }
1313 
ef4_wanted_parallelism(struct ef4_nic * efx)1314 static unsigned int ef4_wanted_parallelism(struct ef4_nic *efx)
1315 {
1316 	cpumask_var_t thread_mask;
1317 	unsigned int count;
1318 	int cpu;
1319 
1320 	if (rss_cpus) {
1321 		count = rss_cpus;
1322 	} else {
1323 		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1324 			netif_warn(efx, probe, efx->net_dev,
1325 				   "RSS disabled due to allocation failure\n");
1326 			return 1;
1327 		}
1328 
1329 		count = 0;
1330 		for_each_online_cpu(cpu) {
1331 			if (!cpumask_test_cpu(cpu, thread_mask)) {
1332 				++count;
1333 				cpumask_or(thread_mask, thread_mask,
1334 					   topology_sibling_cpumask(cpu));
1335 			}
1336 		}
1337 
1338 		free_cpumask_var(thread_mask);
1339 	}
1340 
1341 	if (count > EF4_MAX_RX_QUEUES) {
1342 		netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn,
1343 			       "Reducing number of rx queues from %u to %u.\n",
1344 			       count, EF4_MAX_RX_QUEUES);
1345 		count = EF4_MAX_RX_QUEUES;
1346 	}
1347 
1348 	return count;
1349 }
1350 
1351 /* Probe the number and type of interrupts we are able to obtain, and
1352  * the resulting numbers of channels and RX queues.
1353  */
ef4_probe_interrupts(struct ef4_nic * efx)1354 static int ef4_probe_interrupts(struct ef4_nic *efx)
1355 {
1356 	unsigned int extra_channels = 0;
1357 	unsigned int i, j;
1358 	int rc;
1359 
1360 	for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++)
1361 		if (efx->extra_channel_type[i])
1362 			++extra_channels;
1363 
1364 	if (efx->interrupt_mode == EF4_INT_MODE_MSIX) {
1365 		struct msix_entry xentries[EF4_MAX_CHANNELS];
1366 		unsigned int n_channels;
1367 
1368 		n_channels = ef4_wanted_parallelism(efx);
1369 		if (ef4_separate_tx_channels)
1370 			n_channels *= 2;
1371 		n_channels += extra_channels;
1372 		n_channels = min(n_channels, efx->max_channels);
1373 
1374 		for (i = 0; i < n_channels; i++)
1375 			xentries[i].entry = i;
1376 		rc = pci_enable_msix_range(efx->pci_dev,
1377 					   xentries, 1, n_channels);
1378 		if (rc < 0) {
1379 			/* Fall back to single channel MSI */
1380 			efx->interrupt_mode = EF4_INT_MODE_MSI;
1381 			netif_err(efx, drv, efx->net_dev,
1382 				  "could not enable MSI-X\n");
1383 		} else if (rc < n_channels) {
1384 			netif_err(efx, drv, efx->net_dev,
1385 				  "WARNING: Insufficient MSI-X vectors"
1386 				  " available (%d < %u).\n", rc, n_channels);
1387 			netif_err(efx, drv, efx->net_dev,
1388 				  "WARNING: Performance may be reduced.\n");
1389 			n_channels = rc;
1390 		}
1391 
1392 		if (rc > 0) {
1393 			efx->n_channels = n_channels;
1394 			if (n_channels > extra_channels)
1395 				n_channels -= extra_channels;
1396 			if (ef4_separate_tx_channels) {
1397 				efx->n_tx_channels = clamp(n_channels / 2, 1U,
1398 							   efx->max_tx_channels);
1399 				efx->n_rx_channels = max(n_channels -
1400 							 efx->n_tx_channels,
1401 							 1U);
1402 			} else {
1403 				efx->n_tx_channels = min(n_channels,
1404 							 efx->max_tx_channels);
1405 				efx->n_rx_channels = n_channels;
1406 			}
1407 			for (i = 0; i < efx->n_channels; i++)
1408 				ef4_get_channel(efx, i)->irq =
1409 					xentries[i].vector;
1410 		}
1411 	}
1412 
1413 	/* Try single interrupt MSI */
1414 	if (efx->interrupt_mode == EF4_INT_MODE_MSI) {
1415 		efx->n_channels = 1;
1416 		efx->n_rx_channels = 1;
1417 		efx->n_tx_channels = 1;
1418 		rc = pci_enable_msi(efx->pci_dev);
1419 		if (rc == 0) {
1420 			ef4_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1421 		} else {
1422 			netif_err(efx, drv, efx->net_dev,
1423 				  "could not enable MSI\n");
1424 			efx->interrupt_mode = EF4_INT_MODE_LEGACY;
1425 		}
1426 	}
1427 
1428 	/* Assume legacy interrupts */
1429 	if (efx->interrupt_mode == EF4_INT_MODE_LEGACY) {
1430 		efx->n_channels = 1 + (ef4_separate_tx_channels ? 1 : 0);
1431 		efx->n_rx_channels = 1;
1432 		efx->n_tx_channels = 1;
1433 		efx->legacy_irq = efx->pci_dev->irq;
1434 	}
1435 
1436 	/* Assign extra channels if possible */
1437 	j = efx->n_channels;
1438 	for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++) {
1439 		if (!efx->extra_channel_type[i])
1440 			continue;
1441 		if (efx->interrupt_mode != EF4_INT_MODE_MSIX ||
1442 		    efx->n_channels <= extra_channels) {
1443 			efx->extra_channel_type[i]->handle_no_channel(efx);
1444 		} else {
1445 			--j;
1446 			ef4_get_channel(efx, j)->type =
1447 				efx->extra_channel_type[i];
1448 		}
1449 	}
1450 
1451 	efx->rss_spread = efx->n_rx_channels;
1452 
1453 	return 0;
1454 }
1455 
ef4_soft_enable_interrupts(struct ef4_nic * efx)1456 static int ef4_soft_enable_interrupts(struct ef4_nic *efx)
1457 {
1458 	struct ef4_channel *channel, *end_channel;
1459 	int rc;
1460 
1461 	BUG_ON(efx->state == STATE_DISABLED);
1462 
1463 	efx->irq_soft_enabled = true;
1464 	smp_wmb();
1465 
1466 	ef4_for_each_channel(channel, efx) {
1467 		if (!channel->type->keep_eventq) {
1468 			rc = ef4_init_eventq(channel);
1469 			if (rc)
1470 				goto fail;
1471 		}
1472 		ef4_start_eventq(channel);
1473 	}
1474 
1475 	return 0;
1476 fail:
1477 	end_channel = channel;
1478 	ef4_for_each_channel(channel, efx) {
1479 		if (channel == end_channel)
1480 			break;
1481 		ef4_stop_eventq(channel);
1482 		if (!channel->type->keep_eventq)
1483 			ef4_fini_eventq(channel);
1484 	}
1485 
1486 	return rc;
1487 }
1488 
ef4_soft_disable_interrupts(struct ef4_nic * efx)1489 static void ef4_soft_disable_interrupts(struct ef4_nic *efx)
1490 {
1491 	struct ef4_channel *channel;
1492 
1493 	if (efx->state == STATE_DISABLED)
1494 		return;
1495 
1496 	efx->irq_soft_enabled = false;
1497 	smp_wmb();
1498 
1499 	if (efx->legacy_irq)
1500 		synchronize_irq(efx->legacy_irq);
1501 
1502 	ef4_for_each_channel(channel, efx) {
1503 		if (channel->irq)
1504 			synchronize_irq(channel->irq);
1505 
1506 		ef4_stop_eventq(channel);
1507 		if (!channel->type->keep_eventq)
1508 			ef4_fini_eventq(channel);
1509 	}
1510 }
1511 
ef4_enable_interrupts(struct ef4_nic * efx)1512 static int ef4_enable_interrupts(struct ef4_nic *efx)
1513 {
1514 	struct ef4_channel *channel, *end_channel;
1515 	int rc;
1516 
1517 	BUG_ON(efx->state == STATE_DISABLED);
1518 
1519 	if (efx->eeh_disabled_legacy_irq) {
1520 		enable_irq(efx->legacy_irq);
1521 		efx->eeh_disabled_legacy_irq = false;
1522 	}
1523 
1524 	efx->type->irq_enable_master(efx);
1525 
1526 	ef4_for_each_channel(channel, efx) {
1527 		if (channel->type->keep_eventq) {
1528 			rc = ef4_init_eventq(channel);
1529 			if (rc)
1530 				goto fail;
1531 		}
1532 	}
1533 
1534 	rc = ef4_soft_enable_interrupts(efx);
1535 	if (rc)
1536 		goto fail;
1537 
1538 	return 0;
1539 
1540 fail:
1541 	end_channel = channel;
1542 	ef4_for_each_channel(channel, efx) {
1543 		if (channel == end_channel)
1544 			break;
1545 		if (channel->type->keep_eventq)
1546 			ef4_fini_eventq(channel);
1547 	}
1548 
1549 	efx->type->irq_disable_non_ev(efx);
1550 
1551 	return rc;
1552 }
1553 
ef4_disable_interrupts(struct ef4_nic * efx)1554 static void ef4_disable_interrupts(struct ef4_nic *efx)
1555 {
1556 	struct ef4_channel *channel;
1557 
1558 	ef4_soft_disable_interrupts(efx);
1559 
1560 	ef4_for_each_channel(channel, efx) {
1561 		if (channel->type->keep_eventq)
1562 			ef4_fini_eventq(channel);
1563 	}
1564 
1565 	efx->type->irq_disable_non_ev(efx);
1566 }
1567 
ef4_remove_interrupts(struct ef4_nic * efx)1568 static void ef4_remove_interrupts(struct ef4_nic *efx)
1569 {
1570 	struct ef4_channel *channel;
1571 
1572 	/* Remove MSI/MSI-X interrupts */
1573 	ef4_for_each_channel(channel, efx)
1574 		channel->irq = 0;
1575 	pci_disable_msi(efx->pci_dev);
1576 	pci_disable_msix(efx->pci_dev);
1577 
1578 	/* Remove legacy interrupt */
1579 	efx->legacy_irq = 0;
1580 }
1581 
ef4_set_channels(struct ef4_nic * efx)1582 static void ef4_set_channels(struct ef4_nic *efx)
1583 {
1584 	struct ef4_channel *channel;
1585 	struct ef4_tx_queue *tx_queue;
1586 
1587 	efx->tx_channel_offset =
1588 		ef4_separate_tx_channels ?
1589 		efx->n_channels - efx->n_tx_channels : 0;
1590 
1591 	/* We need to mark which channels really have RX and TX
1592 	 * queues, and adjust the TX queue numbers if we have separate
1593 	 * RX-only and TX-only channels.
1594 	 */
1595 	ef4_for_each_channel(channel, efx) {
1596 		if (channel->channel < efx->n_rx_channels)
1597 			channel->rx_queue.core_index = channel->channel;
1598 		else
1599 			channel->rx_queue.core_index = -1;
1600 
1601 		ef4_for_each_channel_tx_queue(tx_queue, channel)
1602 			tx_queue->queue -= (efx->tx_channel_offset *
1603 					    EF4_TXQ_TYPES);
1604 	}
1605 }
1606 
ef4_probe_nic(struct ef4_nic * efx)1607 static int ef4_probe_nic(struct ef4_nic *efx)
1608 {
1609 	int rc;
1610 
1611 	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1612 
1613 	/* Carry out hardware-type specific initialisation */
1614 	rc = efx->type->probe(efx);
1615 	if (rc)
1616 		return rc;
1617 
1618 	do {
1619 		if (!efx->max_channels || !efx->max_tx_channels) {
1620 			netif_err(efx, drv, efx->net_dev,
1621 				  "Insufficient resources to allocate"
1622 				  " any channels\n");
1623 			rc = -ENOSPC;
1624 			goto fail1;
1625 		}
1626 
1627 		/* Determine the number of channels and queues by trying
1628 		 * to hook in MSI-X interrupts.
1629 		 */
1630 		rc = ef4_probe_interrupts(efx);
1631 		if (rc)
1632 			goto fail1;
1633 
1634 		ef4_set_channels(efx);
1635 
1636 		/* dimension_resources can fail with EAGAIN */
1637 		rc = efx->type->dimension_resources(efx);
1638 		if (rc != 0 && rc != -EAGAIN)
1639 			goto fail2;
1640 
1641 		if (rc == -EAGAIN)
1642 			/* try again with new max_channels */
1643 			ef4_remove_interrupts(efx);
1644 
1645 	} while (rc == -EAGAIN);
1646 
1647 	if (efx->n_channels > 1)
1648 		netdev_rss_key_fill(&efx->rx_hash_key,
1649 				    sizeof(efx->rx_hash_key));
1650 	ef4_set_default_rx_indir_table(efx);
1651 
1652 	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1653 	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1654 
1655 	/* Initialise the interrupt moderation settings */
1656 	efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
1657 	ef4_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1658 				true);
1659 
1660 	return 0;
1661 
1662 fail2:
1663 	ef4_remove_interrupts(efx);
1664 fail1:
1665 	efx->type->remove(efx);
1666 	return rc;
1667 }
1668 
ef4_remove_nic(struct ef4_nic * efx)1669 static void ef4_remove_nic(struct ef4_nic *efx)
1670 {
1671 	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1672 
1673 	ef4_remove_interrupts(efx);
1674 	efx->type->remove(efx);
1675 }
1676 
ef4_probe_filters(struct ef4_nic * efx)1677 static int ef4_probe_filters(struct ef4_nic *efx)
1678 {
1679 	int rc;
1680 
1681 	spin_lock_init(&efx->filter_lock);
1682 	init_rwsem(&efx->filter_sem);
1683 	mutex_lock(&efx->mac_lock);
1684 	down_write(&efx->filter_sem);
1685 	rc = efx->type->filter_table_probe(efx);
1686 	if (rc)
1687 		goto out_unlock;
1688 
1689 #ifdef CONFIG_RFS_ACCEL
1690 	if (efx->type->offload_features & NETIF_F_NTUPLE) {
1691 		struct ef4_channel *channel;
1692 		int i, success = 1;
1693 
1694 		ef4_for_each_channel(channel, efx) {
1695 			channel->rps_flow_id =
1696 				kcalloc(efx->type->max_rx_ip_filters,
1697 					sizeof(*channel->rps_flow_id),
1698 					GFP_KERNEL);
1699 			if (!channel->rps_flow_id)
1700 				success = 0;
1701 			else
1702 				for (i = 0;
1703 				     i < efx->type->max_rx_ip_filters;
1704 				     ++i)
1705 					channel->rps_flow_id[i] =
1706 						RPS_FLOW_ID_INVALID;
1707 		}
1708 
1709 		if (!success) {
1710 			ef4_for_each_channel(channel, efx)
1711 				kfree(channel->rps_flow_id);
1712 			efx->type->filter_table_remove(efx);
1713 			rc = -ENOMEM;
1714 			goto out_unlock;
1715 		}
1716 
1717 		efx->rps_expire_index = efx->rps_expire_channel = 0;
1718 	}
1719 #endif
1720 out_unlock:
1721 	up_write(&efx->filter_sem);
1722 	mutex_unlock(&efx->mac_lock);
1723 	return rc;
1724 }
1725 
ef4_remove_filters(struct ef4_nic * efx)1726 static void ef4_remove_filters(struct ef4_nic *efx)
1727 {
1728 #ifdef CONFIG_RFS_ACCEL
1729 	struct ef4_channel *channel;
1730 
1731 	ef4_for_each_channel(channel, efx)
1732 		kfree(channel->rps_flow_id);
1733 #endif
1734 	down_write(&efx->filter_sem);
1735 	efx->type->filter_table_remove(efx);
1736 	up_write(&efx->filter_sem);
1737 }
1738 
ef4_restore_filters(struct ef4_nic * efx)1739 static void ef4_restore_filters(struct ef4_nic *efx)
1740 {
1741 	down_read(&efx->filter_sem);
1742 	efx->type->filter_table_restore(efx);
1743 	up_read(&efx->filter_sem);
1744 }
1745 
1746 /**************************************************************************
1747  *
1748  * NIC startup/shutdown
1749  *
1750  *************************************************************************/
1751 
ef4_probe_all(struct ef4_nic * efx)1752 static int ef4_probe_all(struct ef4_nic *efx)
1753 {
1754 	int rc;
1755 
1756 	rc = ef4_probe_nic(efx);
1757 	if (rc) {
1758 		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1759 		goto fail1;
1760 	}
1761 
1762 	rc = ef4_probe_port(efx);
1763 	if (rc) {
1764 		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1765 		goto fail2;
1766 	}
1767 
1768 	BUILD_BUG_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_RXQ_MIN_ENT);
1769 	if (WARN_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_TXQ_MIN_ENT(efx))) {
1770 		rc = -EINVAL;
1771 		goto fail3;
1772 	}
1773 	efx->rxq_entries = efx->txq_entries = EF4_DEFAULT_DMAQ_SIZE;
1774 
1775 	rc = ef4_probe_filters(efx);
1776 	if (rc) {
1777 		netif_err(efx, probe, efx->net_dev,
1778 			  "failed to create filter tables\n");
1779 		goto fail4;
1780 	}
1781 
1782 	rc = ef4_probe_channels(efx);
1783 	if (rc)
1784 		goto fail5;
1785 
1786 	return 0;
1787 
1788  fail5:
1789 	ef4_remove_filters(efx);
1790  fail4:
1791  fail3:
1792 	ef4_remove_port(efx);
1793  fail2:
1794 	ef4_remove_nic(efx);
1795  fail1:
1796 	return rc;
1797 }
1798 
1799 /* If the interface is supposed to be running but is not, start
1800  * the hardware and software data path, regular activity for the port
1801  * (MAC statistics, link polling, etc.) and schedule the port to be
1802  * reconfigured.  Interrupts must already be enabled.  This function
1803  * is safe to call multiple times, so long as the NIC is not disabled.
1804  * Requires the RTNL lock.
1805  */
ef4_start_all(struct ef4_nic * efx)1806 static void ef4_start_all(struct ef4_nic *efx)
1807 {
1808 	EF4_ASSERT_RESET_SERIALISED(efx);
1809 	BUG_ON(efx->state == STATE_DISABLED);
1810 
1811 	/* Check that it is appropriate to restart the interface. All
1812 	 * of these flags are safe to read under just the rtnl lock */
1813 	if (efx->port_enabled || !netif_running(efx->net_dev) ||
1814 	    efx->reset_pending)
1815 		return;
1816 
1817 	ef4_start_port(efx);
1818 	ef4_start_datapath(efx);
1819 
1820 	/* Start the hardware monitor if there is one */
1821 	if (efx->type->monitor != NULL)
1822 		queue_delayed_work(efx->workqueue, &efx->monitor_work,
1823 				   ef4_monitor_interval);
1824 
1825 	efx->type->start_stats(efx);
1826 	efx->type->pull_stats(efx);
1827 	spin_lock_bh(&efx->stats_lock);
1828 	efx->type->update_stats(efx, NULL, NULL);
1829 	spin_unlock_bh(&efx->stats_lock);
1830 }
1831 
1832 /* Quiesce the hardware and software data path, and regular activity
1833  * for the port without bringing the link down.  Safe to call multiple
1834  * times with the NIC in almost any state, but interrupts should be
1835  * enabled.  Requires the RTNL lock.
1836  */
ef4_stop_all(struct ef4_nic * efx)1837 static void ef4_stop_all(struct ef4_nic *efx)
1838 {
1839 	EF4_ASSERT_RESET_SERIALISED(efx);
1840 
1841 	/* port_enabled can be read safely under the rtnl lock */
1842 	if (!efx->port_enabled)
1843 		return;
1844 
1845 	/* update stats before we go down so we can accurately count
1846 	 * rx_nodesc_drops
1847 	 */
1848 	efx->type->pull_stats(efx);
1849 	spin_lock_bh(&efx->stats_lock);
1850 	efx->type->update_stats(efx, NULL, NULL);
1851 	spin_unlock_bh(&efx->stats_lock);
1852 	efx->type->stop_stats(efx);
1853 	ef4_stop_port(efx);
1854 
1855 	/* Stop the kernel transmit interface.  This is only valid if
1856 	 * the device is stopped or detached; otherwise the watchdog
1857 	 * may fire immediately.
1858 	 */
1859 	WARN_ON(netif_running(efx->net_dev) &&
1860 		netif_device_present(efx->net_dev));
1861 	netif_tx_disable(efx->net_dev);
1862 
1863 	ef4_stop_datapath(efx);
1864 }
1865 
ef4_remove_all(struct ef4_nic * efx)1866 static void ef4_remove_all(struct ef4_nic *efx)
1867 {
1868 	ef4_remove_channels(efx);
1869 	ef4_remove_filters(efx);
1870 	ef4_remove_port(efx);
1871 	ef4_remove_nic(efx);
1872 }
1873 
1874 /**************************************************************************
1875  *
1876  * Interrupt moderation
1877  *
1878  **************************************************************************/
ef4_usecs_to_ticks(struct ef4_nic * efx,unsigned int usecs)1879 unsigned int ef4_usecs_to_ticks(struct ef4_nic *efx, unsigned int usecs)
1880 {
1881 	if (usecs == 0)
1882 		return 0;
1883 	if (usecs * 1000 < efx->timer_quantum_ns)
1884 		return 1; /* never round down to 0 */
1885 	return usecs * 1000 / efx->timer_quantum_ns;
1886 }
1887 
1888 /* Set interrupt moderation parameters */
ef4_init_irq_moderation(struct ef4_nic * efx,unsigned int tx_usecs,unsigned int rx_usecs,bool rx_adaptive,bool rx_may_override_tx)1889 int ef4_init_irq_moderation(struct ef4_nic *efx, unsigned int tx_usecs,
1890 			    unsigned int rx_usecs, bool rx_adaptive,
1891 			    bool rx_may_override_tx)
1892 {
1893 	struct ef4_channel *channel;
1894 	unsigned int timer_max_us;
1895 
1896 	EF4_ASSERT_RESET_SERIALISED(efx);
1897 
1898 	timer_max_us = efx->timer_max_ns / 1000;
1899 
1900 	if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
1901 		return -EINVAL;
1902 
1903 	if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
1904 	    !rx_may_override_tx) {
1905 		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1906 			  "RX and TX IRQ moderation must be equal\n");
1907 		return -EINVAL;
1908 	}
1909 
1910 	efx->irq_rx_adaptive = rx_adaptive;
1911 	efx->irq_rx_moderation_us = rx_usecs;
1912 	ef4_for_each_channel(channel, efx) {
1913 		if (ef4_channel_has_rx_queue(channel))
1914 			channel->irq_moderation_us = rx_usecs;
1915 		else if (ef4_channel_has_tx_queues(channel))
1916 			channel->irq_moderation_us = tx_usecs;
1917 	}
1918 
1919 	return 0;
1920 }
1921 
ef4_get_irq_moderation(struct ef4_nic * efx,unsigned int * tx_usecs,unsigned int * rx_usecs,bool * rx_adaptive)1922 void ef4_get_irq_moderation(struct ef4_nic *efx, unsigned int *tx_usecs,
1923 			    unsigned int *rx_usecs, bool *rx_adaptive)
1924 {
1925 	*rx_adaptive = efx->irq_rx_adaptive;
1926 	*rx_usecs = efx->irq_rx_moderation_us;
1927 
1928 	/* If channels are shared between RX and TX, so is IRQ
1929 	 * moderation.  Otherwise, IRQ moderation is the same for all
1930 	 * TX channels and is not adaptive.
1931 	 */
1932 	if (efx->tx_channel_offset == 0) {
1933 		*tx_usecs = *rx_usecs;
1934 	} else {
1935 		struct ef4_channel *tx_channel;
1936 
1937 		tx_channel = efx->channel[efx->tx_channel_offset];
1938 		*tx_usecs = tx_channel->irq_moderation_us;
1939 	}
1940 }
1941 
1942 /**************************************************************************
1943  *
1944  * Hardware monitor
1945  *
1946  **************************************************************************/
1947 
1948 /* Run periodically off the general workqueue */
ef4_monitor(struct work_struct * data)1949 static void ef4_monitor(struct work_struct *data)
1950 {
1951 	struct ef4_nic *efx = container_of(data, struct ef4_nic,
1952 					   monitor_work.work);
1953 
1954 	netif_vdbg(efx, timer, efx->net_dev,
1955 		   "hardware monitor executing on CPU %d\n",
1956 		   raw_smp_processor_id());
1957 	BUG_ON(efx->type->monitor == NULL);
1958 
1959 	/* If the mac_lock is already held then it is likely a port
1960 	 * reconfiguration is already in place, which will likely do
1961 	 * most of the work of monitor() anyway. */
1962 	if (mutex_trylock(&efx->mac_lock)) {
1963 		if (efx->port_enabled)
1964 			efx->type->monitor(efx);
1965 		mutex_unlock(&efx->mac_lock);
1966 	}
1967 
1968 	queue_delayed_work(efx->workqueue, &efx->monitor_work,
1969 			   ef4_monitor_interval);
1970 }
1971 
1972 /**************************************************************************
1973  *
1974  * ioctls
1975  *
1976  *************************************************************************/
1977 
1978 /* Net device ioctl
1979  * Context: process, rtnl_lock() held.
1980  */
ef4_ioctl(struct net_device * net_dev,struct ifreq * ifr,int cmd)1981 static int ef4_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1982 {
1983 	struct ef4_nic *efx = netdev_priv(net_dev);
1984 	struct mii_ioctl_data *data = if_mii(ifr);
1985 
1986 	/* Convert phy_id from older PRTAD/DEVAD format */
1987 	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1988 	    (data->phy_id & 0xfc00) == 0x0400)
1989 		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1990 
1991 	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1992 }
1993 
1994 /**************************************************************************
1995  *
1996  * NAPI interface
1997  *
1998  **************************************************************************/
1999 
ef4_init_napi_channel(struct ef4_channel * channel)2000 static void ef4_init_napi_channel(struct ef4_channel *channel)
2001 {
2002 	struct ef4_nic *efx = channel->efx;
2003 
2004 	channel->napi_dev = efx->net_dev;
2005 	netif_napi_add(channel->napi_dev, &channel->napi_str, ef4_poll);
2006 }
2007 
ef4_init_napi(struct ef4_nic * efx)2008 static void ef4_init_napi(struct ef4_nic *efx)
2009 {
2010 	struct ef4_channel *channel;
2011 
2012 	ef4_for_each_channel(channel, efx)
2013 		ef4_init_napi_channel(channel);
2014 }
2015 
ef4_fini_napi_channel(struct ef4_channel * channel)2016 static void ef4_fini_napi_channel(struct ef4_channel *channel)
2017 {
2018 	if (channel->napi_dev)
2019 		netif_napi_del(&channel->napi_str);
2020 
2021 	channel->napi_dev = NULL;
2022 }
2023 
ef4_fini_napi(struct ef4_nic * efx)2024 static void ef4_fini_napi(struct ef4_nic *efx)
2025 {
2026 	struct ef4_channel *channel;
2027 
2028 	ef4_for_each_channel(channel, efx)
2029 		ef4_fini_napi_channel(channel);
2030 }
2031 
2032 /**************************************************************************
2033  *
2034  * Kernel net device interface
2035  *
2036  *************************************************************************/
2037 
2038 /* Context: process, rtnl_lock() held. */
ef4_net_open(struct net_device * net_dev)2039 int ef4_net_open(struct net_device *net_dev)
2040 {
2041 	struct ef4_nic *efx = netdev_priv(net_dev);
2042 	int rc;
2043 
2044 	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2045 		  raw_smp_processor_id());
2046 
2047 	rc = ef4_check_disabled(efx);
2048 	if (rc)
2049 		return rc;
2050 	if (efx->phy_mode & PHY_MODE_SPECIAL)
2051 		return -EBUSY;
2052 
2053 	/* Notify the kernel of the link state polled during driver load,
2054 	 * before the monitor starts running */
2055 	ef4_link_status_changed(efx);
2056 
2057 	ef4_start_all(efx);
2058 	ef4_selftest_async_start(efx);
2059 	return 0;
2060 }
2061 
2062 /* Context: process, rtnl_lock() held.
2063  * Note that the kernel will ignore our return code; this method
2064  * should really be a void.
2065  */
ef4_net_stop(struct net_device * net_dev)2066 int ef4_net_stop(struct net_device *net_dev)
2067 {
2068 	struct ef4_nic *efx = netdev_priv(net_dev);
2069 
2070 	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2071 		  raw_smp_processor_id());
2072 
2073 	/* Stop the device and flush all the channels */
2074 	ef4_stop_all(efx);
2075 
2076 	return 0;
2077 }
2078 
2079 /* Context: process, rcu_read_lock or RTNL held, non-blocking. */
ef4_net_stats(struct net_device * net_dev,struct rtnl_link_stats64 * stats)2080 static void ef4_net_stats(struct net_device *net_dev,
2081 			  struct rtnl_link_stats64 *stats)
2082 {
2083 	struct ef4_nic *efx = netdev_priv(net_dev);
2084 
2085 	spin_lock_bh(&efx->stats_lock);
2086 	efx->type->update_stats(efx, NULL, stats);
2087 	spin_unlock_bh(&efx->stats_lock);
2088 }
2089 
2090 /* Context: netif_tx_lock held, BHs disabled. */
ef4_watchdog(struct net_device * net_dev,unsigned int txqueue)2091 static void ef4_watchdog(struct net_device *net_dev, unsigned int txqueue)
2092 {
2093 	struct ef4_nic *efx = netdev_priv(net_dev);
2094 
2095 	netif_err(efx, tx_err, efx->net_dev,
2096 		  "TX stuck with port_enabled=%d: resetting channels\n",
2097 		  efx->port_enabled);
2098 
2099 	ef4_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2100 }
2101 
2102 
2103 /* Context: process, rtnl_lock() held. */
ef4_change_mtu(struct net_device * net_dev,int new_mtu)2104 static int ef4_change_mtu(struct net_device *net_dev, int new_mtu)
2105 {
2106 	struct ef4_nic *efx = netdev_priv(net_dev);
2107 	int rc;
2108 
2109 	rc = ef4_check_disabled(efx);
2110 	if (rc)
2111 		return rc;
2112 
2113 	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2114 
2115 	ef4_device_detach_sync(efx);
2116 	ef4_stop_all(efx);
2117 
2118 	mutex_lock(&efx->mac_lock);
2119 	WRITE_ONCE(net_dev->mtu, new_mtu);
2120 	ef4_mac_reconfigure(efx);
2121 	mutex_unlock(&efx->mac_lock);
2122 
2123 	ef4_start_all(efx);
2124 	netif_device_attach(efx->net_dev);
2125 	return 0;
2126 }
2127 
ef4_set_mac_address(struct net_device * net_dev,void * data)2128 static int ef4_set_mac_address(struct net_device *net_dev, void *data)
2129 {
2130 	struct ef4_nic *efx = netdev_priv(net_dev);
2131 	struct sockaddr *addr = data;
2132 	u8 *new_addr = addr->sa_data;
2133 	u8 old_addr[6];
2134 	int rc;
2135 
2136 	if (!is_valid_ether_addr(new_addr)) {
2137 		netif_err(efx, drv, efx->net_dev,
2138 			  "invalid ethernet MAC address requested: %pM\n",
2139 			  new_addr);
2140 		return -EADDRNOTAVAIL;
2141 	}
2142 
2143 	/* save old address */
2144 	ether_addr_copy(old_addr, net_dev->dev_addr);
2145 	eth_hw_addr_set(net_dev, new_addr);
2146 	if (efx->type->set_mac_address) {
2147 		rc = efx->type->set_mac_address(efx);
2148 		if (rc) {
2149 			eth_hw_addr_set(net_dev, old_addr);
2150 			return rc;
2151 		}
2152 	}
2153 
2154 	/* Reconfigure the MAC */
2155 	mutex_lock(&efx->mac_lock);
2156 	ef4_mac_reconfigure(efx);
2157 	mutex_unlock(&efx->mac_lock);
2158 
2159 	return 0;
2160 }
2161 
2162 /* Context: netif_addr_lock held, BHs disabled. */
ef4_set_rx_mode(struct net_device * net_dev)2163 static void ef4_set_rx_mode(struct net_device *net_dev)
2164 {
2165 	struct ef4_nic *efx = netdev_priv(net_dev);
2166 
2167 	if (efx->port_enabled)
2168 		queue_work(efx->workqueue, &efx->mac_work);
2169 	/* Otherwise ef4_start_port() will do this */
2170 }
2171 
ef4_set_features(struct net_device * net_dev,netdev_features_t data)2172 static int ef4_set_features(struct net_device *net_dev, netdev_features_t data)
2173 {
2174 	struct ef4_nic *efx = netdev_priv(net_dev);
2175 	int rc;
2176 
2177 	/* If disabling RX n-tuple filtering, clear existing filters */
2178 	if (net_dev->features & ~data & NETIF_F_NTUPLE) {
2179 		rc = efx->type->filter_clear_rx(efx, EF4_FILTER_PRI_MANUAL);
2180 		if (rc)
2181 			return rc;
2182 	}
2183 
2184 	/* If Rx VLAN filter is changed, update filters via mac_reconfigure */
2185 	if ((net_dev->features ^ data) & NETIF_F_HW_VLAN_CTAG_FILTER) {
2186 		/* ef4_set_rx_mode() will schedule MAC work to update filters
2187 		 * when a new features are finally set in net_dev.
2188 		 */
2189 		ef4_set_rx_mode(net_dev);
2190 	}
2191 
2192 	return 0;
2193 }
2194 
2195 static const struct net_device_ops ef4_netdev_ops = {
2196 	.ndo_open		= ef4_net_open,
2197 	.ndo_stop		= ef4_net_stop,
2198 	.ndo_get_stats64	= ef4_net_stats,
2199 	.ndo_tx_timeout		= ef4_watchdog,
2200 	.ndo_start_xmit		= ef4_hard_start_xmit,
2201 	.ndo_validate_addr	= eth_validate_addr,
2202 	.ndo_eth_ioctl		= ef4_ioctl,
2203 	.ndo_change_mtu		= ef4_change_mtu,
2204 	.ndo_set_mac_address	= ef4_set_mac_address,
2205 	.ndo_set_rx_mode	= ef4_set_rx_mode,
2206 	.ndo_set_features	= ef4_set_features,
2207 	.ndo_setup_tc		= ef4_setup_tc,
2208 #ifdef CONFIG_RFS_ACCEL
2209 	.ndo_rx_flow_steer	= ef4_filter_rfs,
2210 #endif
2211 };
2212 
ef4_update_name(struct ef4_nic * efx)2213 static void ef4_update_name(struct ef4_nic *efx)
2214 {
2215 	strcpy(efx->name, efx->net_dev->name);
2216 	ef4_mtd_rename(efx);
2217 	ef4_set_channel_names(efx);
2218 }
2219 
ef4_netdev_event(struct notifier_block * this,unsigned long event,void * ptr)2220 static int ef4_netdev_event(struct notifier_block *this,
2221 			    unsigned long event, void *ptr)
2222 {
2223 	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2224 
2225 	if ((net_dev->netdev_ops == &ef4_netdev_ops) &&
2226 	    event == NETDEV_CHANGENAME)
2227 		ef4_update_name(netdev_priv(net_dev));
2228 
2229 	return NOTIFY_DONE;
2230 }
2231 
2232 static struct notifier_block ef4_netdev_notifier = {
2233 	.notifier_call = ef4_netdev_event,
2234 };
2235 
2236 static ssize_t
phy_type_show(struct device * dev,struct device_attribute * attr,char * buf)2237 phy_type_show(struct device *dev, struct device_attribute *attr, char *buf)
2238 {
2239 	struct ef4_nic *efx = dev_get_drvdata(dev);
2240 	return sprintf(buf, "%d\n", efx->phy_type);
2241 }
2242 static DEVICE_ATTR_RO(phy_type);
2243 
ef4_register_netdev(struct ef4_nic * efx)2244 static int ef4_register_netdev(struct ef4_nic *efx)
2245 {
2246 	struct net_device *net_dev = efx->net_dev;
2247 	struct ef4_channel *channel;
2248 	int rc;
2249 
2250 	net_dev->watchdog_timeo = 5 * HZ;
2251 	net_dev->irq = efx->pci_dev->irq;
2252 	net_dev->netdev_ops = &ef4_netdev_ops;
2253 	net_dev->ethtool_ops = &ef4_ethtool_ops;
2254 	netif_set_tso_max_segs(net_dev, EF4_TSO_MAX_SEGS);
2255 	net_dev->min_mtu = EF4_MIN_MTU;
2256 	net_dev->max_mtu = EF4_MAX_MTU;
2257 
2258 	rtnl_lock();
2259 
2260 	/* Enable resets to be scheduled and check whether any were
2261 	 * already requested.  If so, the NIC is probably hosed so we
2262 	 * abort.
2263 	 */
2264 	efx->state = STATE_READY;
2265 	smp_mb(); /* ensure we change state before checking reset_pending */
2266 	if (efx->reset_pending) {
2267 		netif_err(efx, probe, efx->net_dev,
2268 			  "aborting probe due to scheduled reset\n");
2269 		rc = -EIO;
2270 		goto fail_locked;
2271 	}
2272 
2273 	rc = dev_alloc_name(net_dev, net_dev->name);
2274 	if (rc < 0)
2275 		goto fail_locked;
2276 	ef4_update_name(efx);
2277 
2278 	/* Always start with carrier off; PHY events will detect the link */
2279 	netif_carrier_off(net_dev);
2280 
2281 	rc = register_netdevice(net_dev);
2282 	if (rc)
2283 		goto fail_locked;
2284 
2285 	ef4_for_each_channel(channel, efx) {
2286 		struct ef4_tx_queue *tx_queue;
2287 		ef4_for_each_channel_tx_queue(tx_queue, channel)
2288 			ef4_init_tx_queue_core_txq(tx_queue);
2289 	}
2290 
2291 	ef4_associate(efx);
2292 
2293 	rtnl_unlock();
2294 
2295 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2296 	if (rc) {
2297 		netif_err(efx, drv, efx->net_dev,
2298 			  "failed to init net dev attributes\n");
2299 		goto fail_registered;
2300 	}
2301 	return 0;
2302 
2303 fail_registered:
2304 	rtnl_lock();
2305 	ef4_dissociate(efx);
2306 	unregister_netdevice(net_dev);
2307 fail_locked:
2308 	efx->state = STATE_UNINIT;
2309 	rtnl_unlock();
2310 	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2311 	return rc;
2312 }
2313 
ef4_unregister_netdev(struct ef4_nic * efx)2314 static void ef4_unregister_netdev(struct ef4_nic *efx)
2315 {
2316 	if (!efx->net_dev)
2317 		return;
2318 
2319 	BUG_ON(netdev_priv(efx->net_dev) != efx);
2320 
2321 	if (ef4_dev_registered(efx)) {
2322 		strscpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2323 		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2324 		unregister_netdev(efx->net_dev);
2325 	}
2326 }
2327 
2328 /**************************************************************************
2329  *
2330  * Device reset and suspend
2331  *
2332  **************************************************************************/
2333 
2334 /* Tears down the entire software state and most of the hardware state
2335  * before reset.  */
ef4_reset_down(struct ef4_nic * efx,enum reset_type method)2336 void ef4_reset_down(struct ef4_nic *efx, enum reset_type method)
2337 {
2338 	EF4_ASSERT_RESET_SERIALISED(efx);
2339 
2340 	ef4_stop_all(efx);
2341 	ef4_disable_interrupts(efx);
2342 
2343 	mutex_lock(&efx->mac_lock);
2344 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2345 	    method != RESET_TYPE_DATAPATH)
2346 		efx->phy_op->fini(efx);
2347 	efx->type->fini(efx);
2348 }
2349 
2350 /* This function will always ensure that the locks acquired in
2351  * ef4_reset_down() are released. A failure return code indicates
2352  * that we were unable to reinitialise the hardware, and the
2353  * driver should be disabled. If ok is false, then the rx and tx
2354  * engines are not restarted, pending a RESET_DISABLE. */
ef4_reset_up(struct ef4_nic * efx,enum reset_type method,bool ok)2355 int ef4_reset_up(struct ef4_nic *efx, enum reset_type method, bool ok)
2356 {
2357 	int rc;
2358 
2359 	EF4_ASSERT_RESET_SERIALISED(efx);
2360 
2361 	/* Ensure that SRAM is initialised even if we're disabling the device */
2362 	rc = efx->type->init(efx);
2363 	if (rc) {
2364 		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2365 		goto fail;
2366 	}
2367 
2368 	if (!ok)
2369 		goto fail;
2370 
2371 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2372 	    method != RESET_TYPE_DATAPATH) {
2373 		rc = efx->phy_op->init(efx);
2374 		if (rc)
2375 			goto fail;
2376 		rc = efx->phy_op->reconfigure(efx);
2377 		if (rc && rc != -EPERM)
2378 			netif_err(efx, drv, efx->net_dev,
2379 				  "could not restore PHY settings\n");
2380 	}
2381 
2382 	rc = ef4_enable_interrupts(efx);
2383 	if (rc)
2384 		goto fail;
2385 
2386 	down_read(&efx->filter_sem);
2387 	ef4_restore_filters(efx);
2388 	up_read(&efx->filter_sem);
2389 
2390 	mutex_unlock(&efx->mac_lock);
2391 
2392 	ef4_start_all(efx);
2393 
2394 	return 0;
2395 
2396 fail:
2397 	efx->port_initialized = false;
2398 
2399 	mutex_unlock(&efx->mac_lock);
2400 
2401 	return rc;
2402 }
2403 
2404 /* Reset the NIC using the specified method.  Note that the reset may
2405  * fail, in which case the card will be left in an unusable state.
2406  *
2407  * Caller must hold the rtnl_lock.
2408  */
ef4_reset(struct ef4_nic * efx,enum reset_type method)2409 int ef4_reset(struct ef4_nic *efx, enum reset_type method)
2410 {
2411 	int rc, rc2;
2412 	bool disabled;
2413 
2414 	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2415 		   RESET_TYPE(method));
2416 
2417 	ef4_device_detach_sync(efx);
2418 	ef4_reset_down(efx, method);
2419 
2420 	rc = efx->type->reset(efx, method);
2421 	if (rc) {
2422 		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2423 		goto out;
2424 	}
2425 
2426 	/* Clear flags for the scopes we covered.  We assume the NIC and
2427 	 * driver are now quiescent so that there is no race here.
2428 	 */
2429 	if (method < RESET_TYPE_MAX_METHOD)
2430 		efx->reset_pending &= -(1 << (method + 1));
2431 	else /* it doesn't fit into the well-ordered scope hierarchy */
2432 		__clear_bit(method, &efx->reset_pending);
2433 
2434 	/* Reinitialise bus-mastering, which may have been turned off before
2435 	 * the reset was scheduled. This is still appropriate, even in the
2436 	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2437 	 * can respond to requests. */
2438 	pci_set_master(efx->pci_dev);
2439 
2440 out:
2441 	/* Leave device stopped if necessary */
2442 	disabled = rc ||
2443 		method == RESET_TYPE_DISABLE ||
2444 		method == RESET_TYPE_RECOVER_OR_DISABLE;
2445 	rc2 = ef4_reset_up(efx, method, !disabled);
2446 	if (rc2) {
2447 		disabled = true;
2448 		if (!rc)
2449 			rc = rc2;
2450 	}
2451 
2452 	if (disabled) {
2453 		dev_close(efx->net_dev);
2454 		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2455 		efx->state = STATE_DISABLED;
2456 	} else {
2457 		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2458 		netif_device_attach(efx->net_dev);
2459 	}
2460 	return rc;
2461 }
2462 
2463 /* Try recovery mechanisms.
2464  * For now only EEH is supported.
2465  * Returns 0 if the recovery mechanisms are unsuccessful.
2466  * Returns a non-zero value otherwise.
2467  */
ef4_try_recovery(struct ef4_nic * efx)2468 int ef4_try_recovery(struct ef4_nic *efx)
2469 {
2470 #ifdef CONFIG_EEH
2471 	/* A PCI error can occur and not be seen by EEH because nothing
2472 	 * happens on the PCI bus. In this case the driver may fail and
2473 	 * schedule a 'recover or reset', leading to this recovery handler.
2474 	 * Manually call the eeh failure check function.
2475 	 */
2476 	struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2477 	if (eeh_dev_check_failure(eehdev)) {
2478 		/* The EEH mechanisms will handle the error and reset the
2479 		 * device if necessary.
2480 		 */
2481 		return 1;
2482 	}
2483 #endif
2484 	return 0;
2485 }
2486 
2487 /* The worker thread exists so that code that cannot sleep can
2488  * schedule a reset for later.
2489  */
ef4_reset_work(struct work_struct * data)2490 static void ef4_reset_work(struct work_struct *data)
2491 {
2492 	struct ef4_nic *efx = container_of(data, struct ef4_nic, reset_work);
2493 	unsigned long pending;
2494 	enum reset_type method;
2495 
2496 	pending = READ_ONCE(efx->reset_pending);
2497 	method = fls(pending) - 1;
2498 
2499 	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2500 	     method == RESET_TYPE_RECOVER_OR_ALL) &&
2501 	    ef4_try_recovery(efx))
2502 		return;
2503 
2504 	if (!pending)
2505 		return;
2506 
2507 	rtnl_lock();
2508 
2509 	/* We checked the state in ef4_schedule_reset() but it may
2510 	 * have changed by now.  Now that we have the RTNL lock,
2511 	 * it cannot change again.
2512 	 */
2513 	if (efx->state == STATE_READY)
2514 		(void)ef4_reset(efx, method);
2515 
2516 	rtnl_unlock();
2517 }
2518 
ef4_schedule_reset(struct ef4_nic * efx,enum reset_type type)2519 void ef4_schedule_reset(struct ef4_nic *efx, enum reset_type type)
2520 {
2521 	enum reset_type method;
2522 
2523 	if (efx->state == STATE_RECOVERY) {
2524 		netif_dbg(efx, drv, efx->net_dev,
2525 			  "recovering: skip scheduling %s reset\n",
2526 			  RESET_TYPE(type));
2527 		return;
2528 	}
2529 
2530 	switch (type) {
2531 	case RESET_TYPE_INVISIBLE:
2532 	case RESET_TYPE_ALL:
2533 	case RESET_TYPE_RECOVER_OR_ALL:
2534 	case RESET_TYPE_WORLD:
2535 	case RESET_TYPE_DISABLE:
2536 	case RESET_TYPE_RECOVER_OR_DISABLE:
2537 	case RESET_TYPE_DATAPATH:
2538 		method = type;
2539 		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2540 			  RESET_TYPE(method));
2541 		break;
2542 	default:
2543 		method = efx->type->map_reset_reason(type);
2544 		netif_dbg(efx, drv, efx->net_dev,
2545 			  "scheduling %s reset for %s\n",
2546 			  RESET_TYPE(method), RESET_TYPE(type));
2547 		break;
2548 	}
2549 
2550 	set_bit(method, &efx->reset_pending);
2551 	smp_mb(); /* ensure we change reset_pending before checking state */
2552 
2553 	/* If we're not READY then just leave the flags set as the cue
2554 	 * to abort probing or reschedule the reset later.
2555 	 */
2556 	if (READ_ONCE(efx->state) != STATE_READY)
2557 		return;
2558 
2559 	queue_work(reset_workqueue, &efx->reset_work);
2560 }
2561 
2562 /**************************************************************************
2563  *
2564  * List of NICs we support
2565  *
2566  **************************************************************************/
2567 
2568 /* PCI device ID table */
2569 static const struct pci_device_id ef4_pci_table[] = {
2570 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2571 		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2572 	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2573 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2574 		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2575 	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2576 	{0}			/* end of list */
2577 };
2578 
2579 /**************************************************************************
2580  *
2581  * Dummy PHY/MAC operations
2582  *
2583  * Can be used for some unimplemented operations
2584  * Needed so all function pointers are valid and do not have to be tested
2585  * before use
2586  *
2587  **************************************************************************/
ef4_port_dummy_op_int(struct ef4_nic * efx)2588 int ef4_port_dummy_op_int(struct ef4_nic *efx)
2589 {
2590 	return 0;
2591 }
ef4_port_dummy_op_void(struct ef4_nic * efx)2592 void ef4_port_dummy_op_void(struct ef4_nic *efx) {}
2593 
ef4_port_dummy_op_poll(struct ef4_nic * efx)2594 static bool ef4_port_dummy_op_poll(struct ef4_nic *efx)
2595 {
2596 	return false;
2597 }
2598 
2599 static const struct ef4_phy_operations ef4_dummy_phy_operations = {
2600 	.init		 = ef4_port_dummy_op_int,
2601 	.reconfigure	 = ef4_port_dummy_op_int,
2602 	.poll		 = ef4_port_dummy_op_poll,
2603 	.fini		 = ef4_port_dummy_op_void,
2604 };
2605 
2606 /**************************************************************************
2607  *
2608  * Data housekeeping
2609  *
2610  **************************************************************************/
2611 
2612 /* This zeroes out and then fills in the invariants in a struct
2613  * ef4_nic (including all sub-structures).
2614  */
ef4_init_struct(struct ef4_nic * efx,struct pci_dev * pci_dev,struct net_device * net_dev)2615 static int ef4_init_struct(struct ef4_nic *efx,
2616 			   struct pci_dev *pci_dev, struct net_device *net_dev)
2617 {
2618 	int i;
2619 
2620 	/* Initialise common structures */
2621 	INIT_LIST_HEAD(&efx->node);
2622 	INIT_LIST_HEAD(&efx->secondary_list);
2623 	spin_lock_init(&efx->biu_lock);
2624 #ifdef CONFIG_SFC_FALCON_MTD
2625 	INIT_LIST_HEAD(&efx->mtd_list);
2626 #endif
2627 	INIT_WORK(&efx->reset_work, ef4_reset_work);
2628 	INIT_DELAYED_WORK(&efx->monitor_work, ef4_monitor);
2629 	INIT_DELAYED_WORK(&efx->selftest_work, ef4_selftest_async_work);
2630 	efx->pci_dev = pci_dev;
2631 	efx->msg_enable = debug;
2632 	efx->state = STATE_UNINIT;
2633 	strscpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2634 
2635 	efx->net_dev = net_dev;
2636 	efx->rx_prefix_size = efx->type->rx_prefix_size;
2637 	efx->rx_ip_align =
2638 		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2639 	efx->rx_packet_hash_offset =
2640 		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2641 	efx->rx_packet_ts_offset =
2642 		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2643 	spin_lock_init(&efx->stats_lock);
2644 	mutex_init(&efx->mac_lock);
2645 	efx->phy_op = &ef4_dummy_phy_operations;
2646 	efx->mdio.dev = net_dev;
2647 	INIT_WORK(&efx->mac_work, ef4_mac_work);
2648 	init_waitqueue_head(&efx->flush_wq);
2649 
2650 	for (i = 0; i < EF4_MAX_CHANNELS; i++) {
2651 		efx->channel[i] = ef4_alloc_channel(efx, i, NULL);
2652 		if (!efx->channel[i])
2653 			goto fail;
2654 		efx->msi_context[i].efx = efx;
2655 		efx->msi_context[i].index = i;
2656 	}
2657 
2658 	/* Higher numbered interrupt modes are less capable! */
2659 	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2660 				  interrupt_mode);
2661 
2662 	/* Would be good to use the net_dev name, but we're too early */
2663 	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2664 		 pci_name(pci_dev));
2665 	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2666 	if (!efx->workqueue)
2667 		goto fail;
2668 
2669 	return 0;
2670 
2671 fail:
2672 	ef4_fini_struct(efx);
2673 	return -ENOMEM;
2674 }
2675 
ef4_fini_struct(struct ef4_nic * efx)2676 static void ef4_fini_struct(struct ef4_nic *efx)
2677 {
2678 	int i;
2679 
2680 	for (i = 0; i < EF4_MAX_CHANNELS; i++)
2681 		kfree(efx->channel[i]);
2682 
2683 	kfree(efx->vpd_sn);
2684 
2685 	if (efx->workqueue) {
2686 		destroy_workqueue(efx->workqueue);
2687 		efx->workqueue = NULL;
2688 	}
2689 }
2690 
ef4_update_sw_stats(struct ef4_nic * efx,u64 * stats)2691 void ef4_update_sw_stats(struct ef4_nic *efx, u64 *stats)
2692 {
2693 	u64 n_rx_nodesc_trunc = 0;
2694 	struct ef4_channel *channel;
2695 
2696 	ef4_for_each_channel(channel, efx)
2697 		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
2698 	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
2699 	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
2700 }
2701 
2702 /**************************************************************************
2703  *
2704  * PCI interface
2705  *
2706  **************************************************************************/
2707 
2708 /* Main body of final NIC shutdown code
2709  * This is called only at module unload (or hotplug removal).
2710  */
ef4_pci_remove_main(struct ef4_nic * efx)2711 static void ef4_pci_remove_main(struct ef4_nic *efx)
2712 {
2713 	/* Flush reset_work. It can no longer be scheduled since we
2714 	 * are not READY.
2715 	 */
2716 	BUG_ON(efx->state == STATE_READY);
2717 	cancel_work_sync(&efx->reset_work);
2718 
2719 	ef4_disable_interrupts(efx);
2720 	ef4_nic_fini_interrupt(efx);
2721 	ef4_fini_port(efx);
2722 	efx->type->fini(efx);
2723 	ef4_fini_napi(efx);
2724 	ef4_remove_all(efx);
2725 }
2726 
2727 /* Final NIC shutdown
2728  * This is called only at module unload (or hotplug removal).  A PF can call
2729  * this on its VFs to ensure they are unbound first.
2730  */
ef4_pci_remove(struct pci_dev * pci_dev)2731 static void ef4_pci_remove(struct pci_dev *pci_dev)
2732 {
2733 	struct ef4_nic *efx;
2734 
2735 	efx = pci_get_drvdata(pci_dev);
2736 	if (!efx)
2737 		return;
2738 
2739 	/* Mark the NIC as fini, then stop the interface */
2740 	rtnl_lock();
2741 	ef4_dissociate(efx);
2742 	dev_close(efx->net_dev);
2743 	ef4_disable_interrupts(efx);
2744 	efx->state = STATE_UNINIT;
2745 	rtnl_unlock();
2746 
2747 	ef4_unregister_netdev(efx);
2748 
2749 	ef4_mtd_remove(efx);
2750 
2751 	ef4_pci_remove_main(efx);
2752 
2753 	ef4_fini_io(efx);
2754 	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2755 
2756 	ef4_fini_struct(efx);
2757 	free_netdev(efx->net_dev);
2758 };
2759 
2760 /* NIC VPD information
2761  * Called during probe to display the part number of the installed NIC.
2762  */
ef4_probe_vpd_strings(struct ef4_nic * efx)2763 static void ef4_probe_vpd_strings(struct ef4_nic *efx)
2764 {
2765 	struct pci_dev *dev = efx->pci_dev;
2766 	unsigned int vpd_size, kw_len;
2767 	u8 *vpd_data;
2768 	int start;
2769 
2770 	vpd_data = pci_vpd_alloc(dev, &vpd_size);
2771 	if (IS_ERR(vpd_data)) {
2772 		pci_warn(dev, "Unable to read VPD\n");
2773 		return;
2774 	}
2775 
2776 	start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
2777 					     PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
2778 	if (start < 0)
2779 		pci_warn(dev, "Part number not found or incomplete\n");
2780 	else
2781 		pci_info(dev, "Part Number : %.*s\n", kw_len, vpd_data + start);
2782 
2783 	start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
2784 					     PCI_VPD_RO_KEYWORD_SERIALNO, &kw_len);
2785 	if (start < 0)
2786 		pci_warn(dev, "Serial number not found or incomplete\n");
2787 	else
2788 		efx->vpd_sn = kmemdup_nul(vpd_data + start, kw_len, GFP_KERNEL);
2789 
2790 	kfree(vpd_data);
2791 }
2792 
2793 
2794 /* Main body of NIC initialisation
2795  * This is called at module load (or hotplug insertion, theoretically).
2796  */
ef4_pci_probe_main(struct ef4_nic * efx)2797 static int ef4_pci_probe_main(struct ef4_nic *efx)
2798 {
2799 	int rc;
2800 
2801 	/* Do start-of-day initialisation */
2802 	rc = ef4_probe_all(efx);
2803 	if (rc)
2804 		goto fail1;
2805 
2806 	ef4_init_napi(efx);
2807 
2808 	rc = efx->type->init(efx);
2809 	if (rc) {
2810 		netif_err(efx, probe, efx->net_dev,
2811 			  "failed to initialise NIC\n");
2812 		goto fail3;
2813 	}
2814 
2815 	rc = ef4_init_port(efx);
2816 	if (rc) {
2817 		netif_err(efx, probe, efx->net_dev,
2818 			  "failed to initialise port\n");
2819 		goto fail4;
2820 	}
2821 
2822 	rc = ef4_nic_init_interrupt(efx);
2823 	if (rc)
2824 		goto fail5;
2825 	rc = ef4_enable_interrupts(efx);
2826 	if (rc)
2827 		goto fail6;
2828 
2829 	return 0;
2830 
2831  fail6:
2832 	ef4_nic_fini_interrupt(efx);
2833  fail5:
2834 	ef4_fini_port(efx);
2835  fail4:
2836 	efx->type->fini(efx);
2837  fail3:
2838 	ef4_fini_napi(efx);
2839 	ef4_remove_all(efx);
2840  fail1:
2841 	return rc;
2842 }
2843 
2844 /* NIC initialisation
2845  *
2846  * This is called at module load (or hotplug insertion,
2847  * theoretically).  It sets up PCI mappings, resets the NIC,
2848  * sets up and registers the network devices with the kernel and hooks
2849  * the interrupt service routine.  It does not prepare the device for
2850  * transmission; this is left to the first time one of the network
2851  * interfaces is brought up (i.e. ef4_net_open).
2852  */
ef4_pci_probe(struct pci_dev * pci_dev,const struct pci_device_id * entry)2853 static int ef4_pci_probe(struct pci_dev *pci_dev,
2854 			 const struct pci_device_id *entry)
2855 {
2856 	struct net_device *net_dev;
2857 	struct ef4_nic *efx;
2858 	int rc;
2859 
2860 	/* Allocate and initialise a struct net_device and struct ef4_nic */
2861 	net_dev = alloc_etherdev_mqs(sizeof(*efx), EF4_MAX_CORE_TX_QUEUES,
2862 				     EF4_MAX_RX_QUEUES);
2863 	if (!net_dev)
2864 		return -ENOMEM;
2865 	efx = netdev_priv(net_dev);
2866 	efx->type = (const struct ef4_nic_type *) entry->driver_data;
2867 	efx->fixed_features |= NETIF_F_HIGHDMA;
2868 
2869 	pci_set_drvdata(pci_dev, efx);
2870 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2871 	rc = ef4_init_struct(efx, pci_dev, net_dev);
2872 	if (rc)
2873 		goto fail1;
2874 
2875 	netif_info(efx, probe, efx->net_dev,
2876 		   "Solarflare NIC detected\n");
2877 
2878 	ef4_probe_vpd_strings(efx);
2879 
2880 	/* Set up basic I/O (BAR mappings etc) */
2881 	rc = ef4_init_io(efx);
2882 	if (rc)
2883 		goto fail2;
2884 
2885 	rc = ef4_pci_probe_main(efx);
2886 	if (rc)
2887 		goto fail3;
2888 
2889 	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
2890 			      NETIF_F_RXCSUM);
2891 	/* Mask for features that also apply to VLAN devices */
2892 	net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
2893 				   NETIF_F_HIGHDMA | NETIF_F_RXCSUM);
2894 
2895 	net_dev->hw_features = net_dev->features & ~efx->fixed_features;
2896 
2897 	/* Disable VLAN filtering by default.  It may be enforced if
2898 	 * the feature is fixed (i.e. VLAN filters are required to
2899 	 * receive VLAN tagged packets due to vPort restrictions).
2900 	 */
2901 	net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
2902 	net_dev->features |= efx->fixed_features;
2903 
2904 	rc = ef4_register_netdev(efx);
2905 	if (rc)
2906 		goto fail4;
2907 
2908 	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2909 
2910 	/* Try to create MTDs, but allow this to fail */
2911 	rtnl_lock();
2912 	rc = ef4_mtd_probe(efx);
2913 	rtnl_unlock();
2914 	if (rc && rc != -EPERM)
2915 		netif_warn(efx, probe, efx->net_dev,
2916 			   "failed to create MTDs (%d)\n", rc);
2917 
2918 	return 0;
2919 
2920  fail4:
2921 	ef4_pci_remove_main(efx);
2922  fail3:
2923 	ef4_fini_io(efx);
2924  fail2:
2925 	ef4_fini_struct(efx);
2926  fail1:
2927 	WARN_ON(rc > 0);
2928 	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2929 	free_netdev(net_dev);
2930 	return rc;
2931 }
2932 
ef4_pm_freeze(struct device * dev)2933 static int ef4_pm_freeze(struct device *dev)
2934 {
2935 	struct ef4_nic *efx = dev_get_drvdata(dev);
2936 
2937 	rtnl_lock();
2938 
2939 	if (efx->state != STATE_DISABLED) {
2940 		efx->state = STATE_UNINIT;
2941 
2942 		ef4_device_detach_sync(efx);
2943 
2944 		ef4_stop_all(efx);
2945 		ef4_disable_interrupts(efx);
2946 	}
2947 
2948 	rtnl_unlock();
2949 
2950 	return 0;
2951 }
2952 
ef4_pm_thaw(struct device * dev)2953 static int ef4_pm_thaw(struct device *dev)
2954 {
2955 	int rc;
2956 	struct ef4_nic *efx = dev_get_drvdata(dev);
2957 
2958 	rtnl_lock();
2959 
2960 	if (efx->state != STATE_DISABLED) {
2961 		rc = ef4_enable_interrupts(efx);
2962 		if (rc)
2963 			goto fail;
2964 
2965 		mutex_lock(&efx->mac_lock);
2966 		efx->phy_op->reconfigure(efx);
2967 		mutex_unlock(&efx->mac_lock);
2968 
2969 		ef4_start_all(efx);
2970 
2971 		netif_device_attach(efx->net_dev);
2972 
2973 		efx->state = STATE_READY;
2974 
2975 		efx->type->resume_wol(efx);
2976 	}
2977 
2978 	rtnl_unlock();
2979 
2980 	/* Reschedule any quenched resets scheduled during ef4_pm_freeze() */
2981 	queue_work(reset_workqueue, &efx->reset_work);
2982 
2983 	return 0;
2984 
2985 fail:
2986 	rtnl_unlock();
2987 
2988 	return rc;
2989 }
2990 
ef4_pm_poweroff(struct device * dev)2991 static int ef4_pm_poweroff(struct device *dev)
2992 {
2993 	struct pci_dev *pci_dev = to_pci_dev(dev);
2994 	struct ef4_nic *efx = pci_get_drvdata(pci_dev);
2995 
2996 	efx->type->fini(efx);
2997 
2998 	efx->reset_pending = 0;
2999 
3000 	pci_save_state(pci_dev);
3001 	return pci_set_power_state(pci_dev, PCI_D3hot);
3002 }
3003 
3004 /* Used for both resume and restore */
ef4_pm_resume(struct device * dev)3005 static int ef4_pm_resume(struct device *dev)
3006 {
3007 	struct pci_dev *pci_dev = to_pci_dev(dev);
3008 	struct ef4_nic *efx = pci_get_drvdata(pci_dev);
3009 	int rc;
3010 
3011 	rc = pci_set_power_state(pci_dev, PCI_D0);
3012 	if (rc)
3013 		return rc;
3014 	pci_restore_state(pci_dev);
3015 	rc = pci_enable_device(pci_dev);
3016 	if (rc)
3017 		return rc;
3018 	pci_set_master(efx->pci_dev);
3019 	rc = efx->type->reset(efx, RESET_TYPE_ALL);
3020 	if (rc)
3021 		return rc;
3022 	rc = efx->type->init(efx);
3023 	if (rc)
3024 		return rc;
3025 	rc = ef4_pm_thaw(dev);
3026 	return rc;
3027 }
3028 
ef4_pm_suspend(struct device * dev)3029 static int ef4_pm_suspend(struct device *dev)
3030 {
3031 	int rc;
3032 
3033 	ef4_pm_freeze(dev);
3034 	rc = ef4_pm_poweroff(dev);
3035 	if (rc)
3036 		ef4_pm_resume(dev);
3037 	return rc;
3038 }
3039 
3040 static const struct dev_pm_ops ef4_pm_ops = {
3041 	.suspend	= ef4_pm_suspend,
3042 	.resume		= ef4_pm_resume,
3043 	.freeze		= ef4_pm_freeze,
3044 	.thaw		= ef4_pm_thaw,
3045 	.poweroff	= ef4_pm_poweroff,
3046 	.restore	= ef4_pm_resume,
3047 };
3048 
3049 /* A PCI error affecting this device was detected.
3050  * At this point MMIO and DMA may be disabled.
3051  * Stop the software path and request a slot reset.
3052  */
ef4_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3053 static pci_ers_result_t ef4_io_error_detected(struct pci_dev *pdev,
3054 					      pci_channel_state_t state)
3055 {
3056 	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3057 	struct ef4_nic *efx = pci_get_drvdata(pdev);
3058 
3059 	if (state == pci_channel_io_perm_failure)
3060 		return PCI_ERS_RESULT_DISCONNECT;
3061 
3062 	rtnl_lock();
3063 
3064 	if (efx->state != STATE_DISABLED) {
3065 		efx->state = STATE_RECOVERY;
3066 		efx->reset_pending = 0;
3067 
3068 		ef4_device_detach_sync(efx);
3069 
3070 		ef4_stop_all(efx);
3071 		ef4_disable_interrupts(efx);
3072 
3073 		status = PCI_ERS_RESULT_NEED_RESET;
3074 	} else {
3075 		/* If the interface is disabled we don't want to do anything
3076 		 * with it.
3077 		 */
3078 		status = PCI_ERS_RESULT_RECOVERED;
3079 	}
3080 
3081 	rtnl_unlock();
3082 
3083 	pci_disable_device(pdev);
3084 
3085 	return status;
3086 }
3087 
3088 /* Fake a successful reset, which will be performed later in ef4_io_resume. */
ef4_io_slot_reset(struct pci_dev * pdev)3089 static pci_ers_result_t ef4_io_slot_reset(struct pci_dev *pdev)
3090 {
3091 	struct ef4_nic *efx = pci_get_drvdata(pdev);
3092 	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3093 
3094 	if (pci_enable_device(pdev)) {
3095 		netif_err(efx, hw, efx->net_dev,
3096 			  "Cannot re-enable PCI device after reset.\n");
3097 		status =  PCI_ERS_RESULT_DISCONNECT;
3098 	}
3099 
3100 	return status;
3101 }
3102 
3103 /* Perform the actual reset and resume I/O operations. */
ef4_io_resume(struct pci_dev * pdev)3104 static void ef4_io_resume(struct pci_dev *pdev)
3105 {
3106 	struct ef4_nic *efx = pci_get_drvdata(pdev);
3107 	int rc;
3108 
3109 	rtnl_lock();
3110 
3111 	if (efx->state == STATE_DISABLED)
3112 		goto out;
3113 
3114 	rc = ef4_reset(efx, RESET_TYPE_ALL);
3115 	if (rc) {
3116 		netif_err(efx, hw, efx->net_dev,
3117 			  "ef4_reset failed after PCI error (%d)\n", rc);
3118 	} else {
3119 		efx->state = STATE_READY;
3120 		netif_dbg(efx, hw, efx->net_dev,
3121 			  "Done resetting and resuming IO after PCI error.\n");
3122 	}
3123 
3124 out:
3125 	rtnl_unlock();
3126 }
3127 
3128 /* For simplicity and reliability, we always require a slot reset and try to
3129  * reset the hardware when a pci error affecting the device is detected.
3130  */
3131 static const struct pci_error_handlers ef4_err_handlers = {
3132 	.error_detected = ef4_io_error_detected,
3133 	.slot_reset	= ef4_io_slot_reset,
3134 	.resume		= ef4_io_resume,
3135 };
3136 
3137 static struct pci_driver ef4_pci_driver = {
3138 	.name		= KBUILD_MODNAME,
3139 	.id_table	= ef4_pci_table,
3140 	.probe		= ef4_pci_probe,
3141 	.remove		= ef4_pci_remove,
3142 	.driver.pm	= &ef4_pm_ops,
3143 	.err_handler	= &ef4_err_handlers,
3144 };
3145 
3146 /**************************************************************************
3147  *
3148  * Kernel module interface
3149  *
3150  *************************************************************************/
3151 
3152 module_param(interrupt_mode, uint, 0444);
3153 MODULE_PARM_DESC(interrupt_mode,
3154 		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3155 
ef4_init_module(void)3156 static int __init ef4_init_module(void)
3157 {
3158 	int rc;
3159 
3160 	printk(KERN_INFO "Solarflare Falcon driver v" EF4_DRIVER_VERSION "\n");
3161 
3162 	rc = register_netdevice_notifier(&ef4_netdev_notifier);
3163 	if (rc)
3164 		goto err_notifier;
3165 
3166 	reset_workqueue = create_singlethread_workqueue("sfc_reset");
3167 	if (!reset_workqueue) {
3168 		rc = -ENOMEM;
3169 		goto err_reset;
3170 	}
3171 
3172 	rc = pci_register_driver(&ef4_pci_driver);
3173 	if (rc < 0)
3174 		goto err_pci;
3175 
3176 	return 0;
3177 
3178  err_pci:
3179 	destroy_workqueue(reset_workqueue);
3180  err_reset:
3181 	unregister_netdevice_notifier(&ef4_netdev_notifier);
3182  err_notifier:
3183 	return rc;
3184 }
3185 
ef4_exit_module(void)3186 static void __exit ef4_exit_module(void)
3187 {
3188 	printk(KERN_INFO "Solarflare Falcon driver unloading\n");
3189 
3190 	pci_unregister_driver(&ef4_pci_driver);
3191 	destroy_workqueue(reset_workqueue);
3192 	unregister_netdevice_notifier(&ef4_netdev_notifier);
3193 
3194 }
3195 
3196 module_init(ef4_init_module);
3197 module_exit(ef4_exit_module);
3198 
3199 MODULE_AUTHOR("Solarflare Communications and "
3200 	      "Michael Brown <mbrown@fensystems.co.uk>");
3201 MODULE_DESCRIPTION("Solarflare Falcon network driver");
3202 MODULE_LICENSE("GPL");
3203 MODULE_DEVICE_TABLE(pci, ef4_pci_table);
3204 MODULE_VERSION(EF4_DRIVER_VERSION);
3205