xref: /linux/drivers/net/ethernet/sfc/falcon/rx.c (revision be54f8c558027a218423134dd9b8c7c46d92204a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2005-2013 Solarflare Communications Inc.
6  */
7 
8 #include <linux/socket.h>
9 #include <linux/in.h>
10 #include <linux/slab.h>
11 #include <linux/ip.h>
12 #include <linux/ipv6.h>
13 #include <linux/tcp.h>
14 #include <linux/udp.h>
15 #include <linux/prefetch.h>
16 #include <linux/moduleparam.h>
17 #include <linux/iommu.h>
18 #include <net/ip.h>
19 #include <net/checksum.h>
20 #include "net_driver.h"
21 #include "efx.h"
22 #include "filter.h"
23 #include "nic.h"
24 #include "selftest.h"
25 #include "workarounds.h"
26 
27 /* Preferred number of descriptors to fill at once */
28 #define EF4_RX_PREFERRED_BATCH 8U
29 
30 /* Number of RX buffers to recycle pages for.  When creating the RX page recycle
31  * ring, this number is divided by the number of buffers per page to calculate
32  * the number of pages to store in the RX page recycle ring.
33  */
34 #define EF4_RECYCLE_RING_SIZE_IOMMU 4096
35 #define EF4_RECYCLE_RING_SIZE_NOIOMMU (2 * EF4_RX_PREFERRED_BATCH)
36 
37 /* Size of buffer allocated for skb header area. */
38 #define EF4_SKB_HEADERS  128u
39 
40 /* This is the percentage fill level below which new RX descriptors
41  * will be added to the RX descriptor ring.
42  */
43 static unsigned int rx_refill_threshold;
44 
45 /* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */
46 #define EF4_RX_MAX_FRAGS DIV_ROUND_UP(EF4_MAX_FRAME_LEN(EF4_MAX_MTU), \
47 				      EF4_RX_USR_BUF_SIZE)
48 
49 /*
50  * RX maximum head room required.
51  *
52  * This must be at least 1 to prevent overflow, plus one packet-worth
53  * to allow pipelined receives.
54  */
55 #define EF4_RXD_HEAD_ROOM (1 + EF4_RX_MAX_FRAGS)
56 
ef4_rx_buf_va(struct ef4_rx_buffer * buf)57 static inline u8 *ef4_rx_buf_va(struct ef4_rx_buffer *buf)
58 {
59 	return page_address(buf->page) + buf->page_offset;
60 }
61 
ef4_rx_buf_hash(struct ef4_nic * efx,const u8 * eh)62 static inline u32 ef4_rx_buf_hash(struct ef4_nic *efx, const u8 *eh)
63 {
64 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
65 	return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_hash_offset));
66 #else
67 	const u8 *data = eh + efx->rx_packet_hash_offset;
68 	return (u32)data[0]	  |
69 	       (u32)data[1] << 8  |
70 	       (u32)data[2] << 16 |
71 	       (u32)data[3] << 24;
72 #endif
73 }
74 
75 static inline struct ef4_rx_buffer *
ef4_rx_buf_next(struct ef4_rx_queue * rx_queue,struct ef4_rx_buffer * rx_buf)76 ef4_rx_buf_next(struct ef4_rx_queue *rx_queue, struct ef4_rx_buffer *rx_buf)
77 {
78 	if (unlikely(rx_buf == ef4_rx_buffer(rx_queue, rx_queue->ptr_mask)))
79 		return ef4_rx_buffer(rx_queue, 0);
80 	else
81 		return rx_buf + 1;
82 }
83 
ef4_sync_rx_buffer(struct ef4_nic * efx,struct ef4_rx_buffer * rx_buf,unsigned int len)84 static inline void ef4_sync_rx_buffer(struct ef4_nic *efx,
85 				      struct ef4_rx_buffer *rx_buf,
86 				      unsigned int len)
87 {
88 	dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len,
89 				DMA_FROM_DEVICE);
90 }
91 
ef4_rx_config_page_split(struct ef4_nic * efx)92 void ef4_rx_config_page_split(struct ef4_nic *efx)
93 {
94 	efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align,
95 				      EF4_RX_BUF_ALIGNMENT);
96 	efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
97 		((PAGE_SIZE - sizeof(struct ef4_rx_page_state)) /
98 		 efx->rx_page_buf_step);
99 	efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
100 		efx->rx_bufs_per_page;
101 	efx->rx_pages_per_batch = DIV_ROUND_UP(EF4_RX_PREFERRED_BATCH,
102 					       efx->rx_bufs_per_page);
103 }
104 
105 /* Check the RX page recycle ring for a page that can be reused. */
ef4_reuse_page(struct ef4_rx_queue * rx_queue)106 static struct page *ef4_reuse_page(struct ef4_rx_queue *rx_queue)
107 {
108 	struct ef4_nic *efx = rx_queue->efx;
109 	struct page *page;
110 	struct ef4_rx_page_state *state;
111 	unsigned index;
112 
113 	if (unlikely(!rx_queue->page_ring))
114 		return NULL;
115 	index = rx_queue->page_remove & rx_queue->page_ptr_mask;
116 	page = rx_queue->page_ring[index];
117 	if (page == NULL)
118 		return NULL;
119 
120 	rx_queue->page_ring[index] = NULL;
121 	/* page_remove cannot exceed page_add. */
122 	if (rx_queue->page_remove != rx_queue->page_add)
123 		++rx_queue->page_remove;
124 
125 	/* If page_count is 1 then we hold the only reference to this page. */
126 	if (page_count(page) == 1) {
127 		++rx_queue->page_recycle_count;
128 		return page;
129 	} else {
130 		state = page_address(page);
131 		dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
132 			       PAGE_SIZE << efx->rx_buffer_order,
133 			       DMA_FROM_DEVICE);
134 		put_page(page);
135 		++rx_queue->page_recycle_failed;
136 	}
137 
138 	return NULL;
139 }
140 
141 /**
142  * ef4_init_rx_buffers - create EF4_RX_BATCH page-based RX buffers
143  *
144  * @rx_queue:		Efx RX queue
145  * @atomic:		control memory allocation flags
146  *
147  * This allocates a batch of pages, maps them for DMA, and populates
148  * struct ef4_rx_buffers for each one. Return a negative error code or
149  * 0 on success. If a single page can be used for multiple buffers,
150  * then the page will either be inserted fully, or not at all.
151  */
ef4_init_rx_buffers(struct ef4_rx_queue * rx_queue,bool atomic)152 static int ef4_init_rx_buffers(struct ef4_rx_queue *rx_queue, bool atomic)
153 {
154 	struct ef4_nic *efx = rx_queue->efx;
155 	struct ef4_rx_buffer *rx_buf;
156 	struct page *page;
157 	unsigned int page_offset;
158 	struct ef4_rx_page_state *state;
159 	dma_addr_t dma_addr;
160 	unsigned index, count;
161 
162 	count = 0;
163 	do {
164 		page = ef4_reuse_page(rx_queue);
165 		if (page == NULL) {
166 			page = alloc_pages(__GFP_COMP |
167 					   (atomic ? GFP_ATOMIC : GFP_KERNEL),
168 					   efx->rx_buffer_order);
169 			if (unlikely(page == NULL))
170 				return -ENOMEM;
171 			dma_addr =
172 				dma_map_page(&efx->pci_dev->dev, page, 0,
173 					     PAGE_SIZE << efx->rx_buffer_order,
174 					     DMA_FROM_DEVICE);
175 			if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
176 						       dma_addr))) {
177 				__free_pages(page, efx->rx_buffer_order);
178 				return -EIO;
179 			}
180 			state = page_address(page);
181 			state->dma_addr = dma_addr;
182 		} else {
183 			state = page_address(page);
184 			dma_addr = state->dma_addr;
185 		}
186 
187 		dma_addr += sizeof(struct ef4_rx_page_state);
188 		page_offset = sizeof(struct ef4_rx_page_state);
189 
190 		do {
191 			index = rx_queue->added_count & rx_queue->ptr_mask;
192 			rx_buf = ef4_rx_buffer(rx_queue, index);
193 			rx_buf->dma_addr = dma_addr + efx->rx_ip_align;
194 			rx_buf->page = page;
195 			rx_buf->page_offset = page_offset + efx->rx_ip_align;
196 			rx_buf->len = efx->rx_dma_len;
197 			rx_buf->flags = 0;
198 			++rx_queue->added_count;
199 			get_page(page);
200 			dma_addr += efx->rx_page_buf_step;
201 			page_offset += efx->rx_page_buf_step;
202 		} while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
203 
204 		rx_buf->flags = EF4_RX_BUF_LAST_IN_PAGE;
205 	} while (++count < efx->rx_pages_per_batch);
206 
207 	return 0;
208 }
209 
210 /* Unmap a DMA-mapped page.  This function is only called for the final RX
211  * buffer in a page.
212  */
ef4_unmap_rx_buffer(struct ef4_nic * efx,struct ef4_rx_buffer * rx_buf)213 static void ef4_unmap_rx_buffer(struct ef4_nic *efx,
214 				struct ef4_rx_buffer *rx_buf)
215 {
216 	struct page *page = rx_buf->page;
217 
218 	if (page) {
219 		struct ef4_rx_page_state *state = page_address(page);
220 		dma_unmap_page(&efx->pci_dev->dev,
221 			       state->dma_addr,
222 			       PAGE_SIZE << efx->rx_buffer_order,
223 			       DMA_FROM_DEVICE);
224 	}
225 }
226 
ef4_free_rx_buffers(struct ef4_rx_queue * rx_queue,struct ef4_rx_buffer * rx_buf,unsigned int num_bufs)227 static void ef4_free_rx_buffers(struct ef4_rx_queue *rx_queue,
228 				struct ef4_rx_buffer *rx_buf,
229 				unsigned int num_bufs)
230 {
231 	do {
232 		if (rx_buf->page) {
233 			put_page(rx_buf->page);
234 			rx_buf->page = NULL;
235 		}
236 		rx_buf = ef4_rx_buf_next(rx_queue, rx_buf);
237 	} while (--num_bufs);
238 }
239 
240 /* Attempt to recycle the page if there is an RX recycle ring; the page can
241  * only be added if this is the final RX buffer, to prevent pages being used in
242  * the descriptor ring and appearing in the recycle ring simultaneously.
243  */
ef4_recycle_rx_page(struct ef4_channel * channel,struct ef4_rx_buffer * rx_buf)244 static void ef4_recycle_rx_page(struct ef4_channel *channel,
245 				struct ef4_rx_buffer *rx_buf)
246 {
247 	struct page *page = rx_buf->page;
248 	struct ef4_rx_queue *rx_queue = ef4_channel_get_rx_queue(channel);
249 	struct ef4_nic *efx = rx_queue->efx;
250 	unsigned index;
251 
252 	/* Only recycle the page after processing the final buffer. */
253 	if (!(rx_buf->flags & EF4_RX_BUF_LAST_IN_PAGE))
254 		return;
255 
256 	index = rx_queue->page_add & rx_queue->page_ptr_mask;
257 	if (rx_queue->page_ring[index] == NULL) {
258 		unsigned read_index = rx_queue->page_remove &
259 			rx_queue->page_ptr_mask;
260 
261 		/* The next slot in the recycle ring is available, but
262 		 * increment page_remove if the read pointer currently
263 		 * points here.
264 		 */
265 		if (read_index == index)
266 			++rx_queue->page_remove;
267 		rx_queue->page_ring[index] = page;
268 		++rx_queue->page_add;
269 		return;
270 	}
271 	++rx_queue->page_recycle_full;
272 	ef4_unmap_rx_buffer(efx, rx_buf);
273 	put_page(rx_buf->page);
274 }
275 
ef4_fini_rx_buffer(struct ef4_rx_queue * rx_queue,struct ef4_rx_buffer * rx_buf)276 static void ef4_fini_rx_buffer(struct ef4_rx_queue *rx_queue,
277 			       struct ef4_rx_buffer *rx_buf)
278 {
279 	/* Release the page reference we hold for the buffer. */
280 	if (rx_buf->page)
281 		put_page(rx_buf->page);
282 
283 	/* If this is the last buffer in a page, unmap and free it. */
284 	if (rx_buf->flags & EF4_RX_BUF_LAST_IN_PAGE) {
285 		ef4_unmap_rx_buffer(rx_queue->efx, rx_buf);
286 		ef4_free_rx_buffers(rx_queue, rx_buf, 1);
287 	}
288 	rx_buf->page = NULL;
289 }
290 
291 /* Recycle the pages that are used by buffers that have just been received. */
ef4_recycle_rx_pages(struct ef4_channel * channel,struct ef4_rx_buffer * rx_buf,unsigned int n_frags)292 static void ef4_recycle_rx_pages(struct ef4_channel *channel,
293 				 struct ef4_rx_buffer *rx_buf,
294 				 unsigned int n_frags)
295 {
296 	struct ef4_rx_queue *rx_queue = ef4_channel_get_rx_queue(channel);
297 
298 	if (unlikely(!rx_queue->page_ring))
299 		return;
300 
301 	do {
302 		ef4_recycle_rx_page(channel, rx_buf);
303 		rx_buf = ef4_rx_buf_next(rx_queue, rx_buf);
304 	} while (--n_frags);
305 }
306 
ef4_discard_rx_packet(struct ef4_channel * channel,struct ef4_rx_buffer * rx_buf,unsigned int n_frags)307 static void ef4_discard_rx_packet(struct ef4_channel *channel,
308 				  struct ef4_rx_buffer *rx_buf,
309 				  unsigned int n_frags)
310 {
311 	struct ef4_rx_queue *rx_queue = ef4_channel_get_rx_queue(channel);
312 
313 	ef4_recycle_rx_pages(channel, rx_buf, n_frags);
314 
315 	ef4_free_rx_buffers(rx_queue, rx_buf, n_frags);
316 }
317 
318 /**
319  * ef4_fast_push_rx_descriptors - push new RX descriptors quickly
320  * @rx_queue:		RX descriptor queue
321  *
322  * This will aim to fill the RX descriptor queue up to
323  * @rx_queue->@max_fill. If there is insufficient atomic
324  * memory to do so, a slow fill will be scheduled.
325  * @atomic: control memory allocation flags
326  *
327  * The caller must provide serialisation (none is used here). In practise,
328  * this means this function must run from the NAPI handler, or be called
329  * when NAPI is disabled.
330  */
ef4_fast_push_rx_descriptors(struct ef4_rx_queue * rx_queue,bool atomic)331 void ef4_fast_push_rx_descriptors(struct ef4_rx_queue *rx_queue, bool atomic)
332 {
333 	struct ef4_nic *efx = rx_queue->efx;
334 	unsigned int fill_level, batch_size;
335 	int space, rc = 0;
336 
337 	if (!rx_queue->refill_enabled)
338 		return;
339 
340 	/* Calculate current fill level, and exit if we don't need to fill */
341 	fill_level = (rx_queue->added_count - rx_queue->removed_count);
342 	EF4_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
343 	if (fill_level >= rx_queue->fast_fill_trigger)
344 		goto out;
345 
346 	/* Record minimum fill level */
347 	if (unlikely(fill_level < rx_queue->min_fill)) {
348 		if (fill_level)
349 			rx_queue->min_fill = fill_level;
350 	}
351 
352 	batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
353 	space = rx_queue->max_fill - fill_level;
354 	EF4_BUG_ON_PARANOID(space < batch_size);
355 
356 	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
357 		   "RX queue %d fast-filling descriptor ring from"
358 		   " level %d to level %d\n",
359 		   ef4_rx_queue_index(rx_queue), fill_level,
360 		   rx_queue->max_fill);
361 
362 
363 	do {
364 		rc = ef4_init_rx_buffers(rx_queue, atomic);
365 		if (unlikely(rc)) {
366 			/* Ensure that we don't leave the rx queue empty */
367 			if (rx_queue->added_count == rx_queue->removed_count)
368 				ef4_schedule_slow_fill(rx_queue);
369 			goto out;
370 		}
371 	} while ((space -= batch_size) >= batch_size);
372 
373 	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
374 		   "RX queue %d fast-filled descriptor ring "
375 		   "to level %d\n", ef4_rx_queue_index(rx_queue),
376 		   rx_queue->added_count - rx_queue->removed_count);
377 
378  out:
379 	if (rx_queue->notified_count != rx_queue->added_count)
380 		ef4_nic_notify_rx_desc(rx_queue);
381 }
382 
ef4_rx_slow_fill(struct timer_list * t)383 void ef4_rx_slow_fill(struct timer_list *t)
384 {
385 	struct ef4_rx_queue *rx_queue = timer_container_of(rx_queue, t,
386 							   slow_fill);
387 
388 	/* Post an event to cause NAPI to run and refill the queue */
389 	ef4_nic_generate_fill_event(rx_queue);
390 	++rx_queue->slow_fill_count;
391 }
392 
ef4_rx_packet__check_len(struct ef4_rx_queue * rx_queue,struct ef4_rx_buffer * rx_buf,int len)393 static void ef4_rx_packet__check_len(struct ef4_rx_queue *rx_queue,
394 				     struct ef4_rx_buffer *rx_buf,
395 				     int len)
396 {
397 	struct ef4_nic *efx = rx_queue->efx;
398 	unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
399 
400 	if (likely(len <= max_len))
401 		return;
402 
403 	/* The packet must be discarded, but this is only a fatal error
404 	 * if the caller indicated it was
405 	 */
406 	rx_buf->flags |= EF4_RX_PKT_DISCARD;
407 
408 	if ((len > rx_buf->len) && EF4_WORKAROUND_8071(efx)) {
409 		if (net_ratelimit())
410 			netif_err(efx, rx_err, efx->net_dev,
411 				  " RX queue %d seriously overlength "
412 				  "RX event (0x%x > 0x%x+0x%x). Leaking\n",
413 				  ef4_rx_queue_index(rx_queue), len, max_len,
414 				  efx->type->rx_buffer_padding);
415 		ef4_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
416 	} else {
417 		if (net_ratelimit())
418 			netif_err(efx, rx_err, efx->net_dev,
419 				  " RX queue %d overlength RX event "
420 				  "(0x%x > 0x%x)\n",
421 				  ef4_rx_queue_index(rx_queue), len, max_len);
422 	}
423 
424 	ef4_rx_queue_channel(rx_queue)->n_rx_overlength++;
425 }
426 
427 /* Pass a received packet up through GRO.  GRO can handle pages
428  * regardless of checksum state and skbs with a good checksum.
429  */
430 static void
ef4_rx_packet_gro(struct ef4_channel * channel,struct ef4_rx_buffer * rx_buf,unsigned int n_frags,u8 * eh)431 ef4_rx_packet_gro(struct ef4_channel *channel, struct ef4_rx_buffer *rx_buf,
432 		  unsigned int n_frags, u8 *eh)
433 {
434 	struct napi_struct *napi = &channel->napi_str;
435 	struct ef4_nic *efx = channel->efx;
436 	struct sk_buff *skb;
437 
438 	skb = napi_get_frags(napi);
439 	if (unlikely(!skb)) {
440 		struct ef4_rx_queue *rx_queue;
441 
442 		rx_queue = ef4_channel_get_rx_queue(channel);
443 		ef4_free_rx_buffers(rx_queue, rx_buf, n_frags);
444 		return;
445 	}
446 
447 	if (efx->net_dev->features & NETIF_F_RXHASH)
448 		skb_set_hash(skb, ef4_rx_buf_hash(efx, eh),
449 			     PKT_HASH_TYPE_L3);
450 	skb->ip_summed = ((rx_buf->flags & EF4_RX_PKT_CSUMMED) ?
451 			  CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
452 
453 	for (;;) {
454 		skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
455 				   rx_buf->page, rx_buf->page_offset,
456 				   rx_buf->len);
457 		rx_buf->page = NULL;
458 		skb->len += rx_buf->len;
459 		if (skb_shinfo(skb)->nr_frags == n_frags)
460 			break;
461 
462 		rx_buf = ef4_rx_buf_next(&channel->rx_queue, rx_buf);
463 	}
464 
465 	skb->data_len = skb->len;
466 	skb->truesize += n_frags * efx->rx_buffer_truesize;
467 
468 	skb_record_rx_queue(skb, channel->rx_queue.core_index);
469 
470 	napi_gro_frags(napi);
471 }
472 
473 /* Allocate and construct an SKB around page fragments */
ef4_rx_mk_skb(struct ef4_channel * channel,struct ef4_rx_buffer * rx_buf,unsigned int n_frags,u8 * eh,int hdr_len)474 static struct sk_buff *ef4_rx_mk_skb(struct ef4_channel *channel,
475 				     struct ef4_rx_buffer *rx_buf,
476 				     unsigned int n_frags,
477 				     u8 *eh, int hdr_len)
478 {
479 	struct ef4_nic *efx = channel->efx;
480 	struct sk_buff *skb;
481 
482 	/* Allocate an SKB to store the headers */
483 	skb = netdev_alloc_skb(efx->net_dev,
484 			       efx->rx_ip_align + efx->rx_prefix_size +
485 			       hdr_len);
486 	if (unlikely(skb == NULL)) {
487 		atomic_inc(&efx->n_rx_noskb_drops);
488 		return NULL;
489 	}
490 
491 	EF4_BUG_ON_PARANOID(rx_buf->len < hdr_len);
492 
493 	memcpy(skb->data + efx->rx_ip_align, eh - efx->rx_prefix_size,
494 	       efx->rx_prefix_size + hdr_len);
495 	skb_reserve(skb, efx->rx_ip_align + efx->rx_prefix_size);
496 	__skb_put(skb, hdr_len);
497 
498 	/* Append the remaining page(s) onto the frag list */
499 	if (rx_buf->len > hdr_len) {
500 		rx_buf->page_offset += hdr_len;
501 		rx_buf->len -= hdr_len;
502 
503 		for (;;) {
504 			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
505 					   rx_buf->page, rx_buf->page_offset,
506 					   rx_buf->len);
507 			rx_buf->page = NULL;
508 			skb->len += rx_buf->len;
509 			skb->data_len += rx_buf->len;
510 			if (skb_shinfo(skb)->nr_frags == n_frags)
511 				break;
512 
513 			rx_buf = ef4_rx_buf_next(&channel->rx_queue, rx_buf);
514 		}
515 	} else {
516 		__free_pages(rx_buf->page, efx->rx_buffer_order);
517 		rx_buf->page = NULL;
518 		n_frags = 0;
519 	}
520 
521 	skb->truesize += n_frags * efx->rx_buffer_truesize;
522 
523 	/* Move past the ethernet header */
524 	skb->protocol = eth_type_trans(skb, efx->net_dev);
525 
526 	skb_mark_napi_id(skb, &channel->napi_str);
527 
528 	return skb;
529 }
530 
ef4_rx_packet(struct ef4_rx_queue * rx_queue,unsigned int index,unsigned int n_frags,unsigned int len,u16 flags)531 void ef4_rx_packet(struct ef4_rx_queue *rx_queue, unsigned int index,
532 		   unsigned int n_frags, unsigned int len, u16 flags)
533 {
534 	struct ef4_nic *efx = rx_queue->efx;
535 	struct ef4_channel *channel = ef4_rx_queue_channel(rx_queue);
536 	struct ef4_rx_buffer *rx_buf;
537 
538 	rx_queue->rx_packets++;
539 
540 	rx_buf = ef4_rx_buffer(rx_queue, index);
541 	rx_buf->flags |= flags;
542 
543 	/* Validate the number of fragments and completed length */
544 	if (n_frags == 1) {
545 		if (!(flags & EF4_RX_PKT_PREFIX_LEN))
546 			ef4_rx_packet__check_len(rx_queue, rx_buf, len);
547 	} else if (unlikely(n_frags > EF4_RX_MAX_FRAGS) ||
548 		   unlikely(len <= (n_frags - 1) * efx->rx_dma_len) ||
549 		   unlikely(len > n_frags * efx->rx_dma_len) ||
550 		   unlikely(!efx->rx_scatter)) {
551 		/* If this isn't an explicit discard request, either
552 		 * the hardware or the driver is broken.
553 		 */
554 		WARN_ON(!(len == 0 && rx_buf->flags & EF4_RX_PKT_DISCARD));
555 		rx_buf->flags |= EF4_RX_PKT_DISCARD;
556 	}
557 
558 	netif_vdbg(efx, rx_status, efx->net_dev,
559 		   "RX queue %d received ids %x-%x len %d %s%s\n",
560 		   ef4_rx_queue_index(rx_queue), index,
561 		   (index + n_frags - 1) & rx_queue->ptr_mask, len,
562 		   (rx_buf->flags & EF4_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
563 		   (rx_buf->flags & EF4_RX_PKT_DISCARD) ? " [DISCARD]" : "");
564 
565 	/* Discard packet, if instructed to do so.  Process the
566 	 * previous receive first.
567 	 */
568 	if (unlikely(rx_buf->flags & EF4_RX_PKT_DISCARD)) {
569 		ef4_rx_flush_packet(channel);
570 		ef4_discard_rx_packet(channel, rx_buf, n_frags);
571 		return;
572 	}
573 
574 	if (n_frags == 1 && !(flags & EF4_RX_PKT_PREFIX_LEN))
575 		rx_buf->len = len;
576 
577 	/* Release and/or sync the DMA mapping - assumes all RX buffers
578 	 * consumed in-order per RX queue.
579 	 */
580 	ef4_sync_rx_buffer(efx, rx_buf, rx_buf->len);
581 
582 	/* Prefetch nice and early so data will (hopefully) be in cache by
583 	 * the time we look at it.
584 	 */
585 	prefetch(ef4_rx_buf_va(rx_buf));
586 
587 	rx_buf->page_offset += efx->rx_prefix_size;
588 	rx_buf->len -= efx->rx_prefix_size;
589 
590 	if (n_frags > 1) {
591 		/* Release/sync DMA mapping for additional fragments.
592 		 * Fix length for last fragment.
593 		 */
594 		unsigned int tail_frags = n_frags - 1;
595 
596 		for (;;) {
597 			rx_buf = ef4_rx_buf_next(rx_queue, rx_buf);
598 			if (--tail_frags == 0)
599 				break;
600 			ef4_sync_rx_buffer(efx, rx_buf, efx->rx_dma_len);
601 		}
602 		rx_buf->len = len - (n_frags - 1) * efx->rx_dma_len;
603 		ef4_sync_rx_buffer(efx, rx_buf, rx_buf->len);
604 	}
605 
606 	/* All fragments have been DMA-synced, so recycle pages. */
607 	rx_buf = ef4_rx_buffer(rx_queue, index);
608 	ef4_recycle_rx_pages(channel, rx_buf, n_frags);
609 
610 	/* Pipeline receives so that we give time for packet headers to be
611 	 * prefetched into cache.
612 	 */
613 	ef4_rx_flush_packet(channel);
614 	channel->rx_pkt_n_frags = n_frags;
615 	channel->rx_pkt_index = index;
616 }
617 
ef4_rx_deliver(struct ef4_channel * channel,u8 * eh,struct ef4_rx_buffer * rx_buf,unsigned int n_frags)618 static void ef4_rx_deliver(struct ef4_channel *channel, u8 *eh,
619 			   struct ef4_rx_buffer *rx_buf,
620 			   unsigned int n_frags)
621 {
622 	struct sk_buff *skb;
623 	u16 hdr_len = min_t(u16, rx_buf->len, EF4_SKB_HEADERS);
624 
625 	skb = ef4_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len);
626 	if (unlikely(skb == NULL)) {
627 		struct ef4_rx_queue *rx_queue;
628 
629 		rx_queue = ef4_channel_get_rx_queue(channel);
630 		ef4_free_rx_buffers(rx_queue, rx_buf, n_frags);
631 		return;
632 	}
633 	skb_record_rx_queue(skb, channel->rx_queue.core_index);
634 
635 	/* Set the SKB flags */
636 	skb_checksum_none_assert(skb);
637 	if (likely(rx_buf->flags & EF4_RX_PKT_CSUMMED))
638 		skb->ip_summed = CHECKSUM_UNNECESSARY;
639 
640 	if (channel->type->receive_skb)
641 		if (channel->type->receive_skb(channel, skb))
642 			return;
643 
644 	/* Pass the packet up */
645 	netif_receive_skb(skb);
646 }
647 
648 /* Handle a received packet.  Second half: Touches packet payload. */
__ef4_rx_packet(struct ef4_channel * channel)649 void __ef4_rx_packet(struct ef4_channel *channel)
650 {
651 	struct ef4_nic *efx = channel->efx;
652 	struct ef4_rx_buffer *rx_buf =
653 		ef4_rx_buffer(&channel->rx_queue, channel->rx_pkt_index);
654 	u8 *eh = ef4_rx_buf_va(rx_buf);
655 
656 	/* Read length from the prefix if necessary.  This already
657 	 * excludes the length of the prefix itself.
658 	 */
659 	if (rx_buf->flags & EF4_RX_PKT_PREFIX_LEN)
660 		rx_buf->len = le16_to_cpup((__le16 *)
661 					   (eh + efx->rx_packet_len_offset));
662 
663 	/* If we're in loopback test, then pass the packet directly to the
664 	 * loopback layer, and free the rx_buf here
665 	 */
666 	if (unlikely(efx->loopback_selftest)) {
667 		struct ef4_rx_queue *rx_queue;
668 
669 		ef4_loopback_rx_packet(efx, eh, rx_buf->len);
670 		rx_queue = ef4_channel_get_rx_queue(channel);
671 		ef4_free_rx_buffers(rx_queue, rx_buf,
672 				    channel->rx_pkt_n_frags);
673 		goto out;
674 	}
675 
676 	if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
677 		rx_buf->flags &= ~EF4_RX_PKT_CSUMMED;
678 
679 	if ((rx_buf->flags & EF4_RX_PKT_TCP) && !channel->type->receive_skb)
680 		ef4_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh);
681 	else
682 		ef4_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags);
683 out:
684 	channel->rx_pkt_n_frags = 0;
685 }
686 
ef4_probe_rx_queue(struct ef4_rx_queue * rx_queue)687 int ef4_probe_rx_queue(struct ef4_rx_queue *rx_queue)
688 {
689 	struct ef4_nic *efx = rx_queue->efx;
690 	unsigned int entries;
691 	int rc;
692 
693 	/* Create the smallest power-of-two aligned ring */
694 	entries = max(roundup_pow_of_two(efx->rxq_entries), EF4_MIN_DMAQ_SIZE);
695 	EF4_BUG_ON_PARANOID(entries > EF4_MAX_DMAQ_SIZE);
696 	rx_queue->ptr_mask = entries - 1;
697 
698 	netif_dbg(efx, probe, efx->net_dev,
699 		  "creating RX queue %d size %#x mask %#x\n",
700 		  ef4_rx_queue_index(rx_queue), efx->rxq_entries,
701 		  rx_queue->ptr_mask);
702 
703 	/* Allocate RX buffers */
704 	rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
705 				   GFP_KERNEL);
706 	if (!rx_queue->buffer)
707 		return -ENOMEM;
708 
709 	rc = ef4_nic_probe_rx(rx_queue);
710 	if (rc) {
711 		kfree(rx_queue->buffer);
712 		rx_queue->buffer = NULL;
713 	}
714 
715 	return rc;
716 }
717 
ef4_init_rx_recycle_ring(struct ef4_nic * efx,struct ef4_rx_queue * rx_queue)718 static void ef4_init_rx_recycle_ring(struct ef4_nic *efx,
719 				     struct ef4_rx_queue *rx_queue)
720 {
721 	unsigned int bufs_in_recycle_ring, page_ring_size;
722 	struct iommu_domain __maybe_unused *domain;
723 
724 	/* Set the RX recycle ring size */
725 #ifdef CONFIG_PPC64
726 	bufs_in_recycle_ring = EF4_RECYCLE_RING_SIZE_IOMMU;
727 #else
728 	domain = iommu_get_domain_for_dev(&efx->pci_dev->dev);
729 	if (domain && domain->type != IOMMU_DOMAIN_IDENTITY)
730 		bufs_in_recycle_ring = EF4_RECYCLE_RING_SIZE_IOMMU;
731 	else
732 		bufs_in_recycle_ring = EF4_RECYCLE_RING_SIZE_NOIOMMU;
733 #endif /* CONFIG_PPC64 */
734 
735 	page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
736 					    efx->rx_bufs_per_page);
737 	rx_queue->page_ring = kcalloc(page_ring_size,
738 				      sizeof(*rx_queue->page_ring), GFP_KERNEL);
739 	if (!rx_queue->page_ring)
740 		rx_queue->page_ptr_mask = 0;
741 	else
742 		rx_queue->page_ptr_mask = page_ring_size - 1;
743 }
744 
ef4_init_rx_queue(struct ef4_rx_queue * rx_queue)745 void ef4_init_rx_queue(struct ef4_rx_queue *rx_queue)
746 {
747 	struct ef4_nic *efx = rx_queue->efx;
748 	unsigned int max_fill, trigger, max_trigger;
749 
750 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
751 		  "initialising RX queue %d\n", ef4_rx_queue_index(rx_queue));
752 
753 	/* Initialise ptr fields */
754 	rx_queue->added_count = 0;
755 	rx_queue->notified_count = 0;
756 	rx_queue->removed_count = 0;
757 	rx_queue->min_fill = -1U;
758 	ef4_init_rx_recycle_ring(efx, rx_queue);
759 
760 	rx_queue->page_remove = 0;
761 	rx_queue->page_add = rx_queue->page_ptr_mask + 1;
762 	rx_queue->page_recycle_count = 0;
763 	rx_queue->page_recycle_failed = 0;
764 	rx_queue->page_recycle_full = 0;
765 
766 	/* Initialise limit fields */
767 	max_fill = efx->rxq_entries - EF4_RXD_HEAD_ROOM;
768 	max_trigger =
769 		max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
770 	if (rx_refill_threshold != 0) {
771 		trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
772 		if (trigger > max_trigger)
773 			trigger = max_trigger;
774 	} else {
775 		trigger = max_trigger;
776 	}
777 
778 	rx_queue->max_fill = max_fill;
779 	rx_queue->fast_fill_trigger = trigger;
780 	rx_queue->refill_enabled = true;
781 
782 	/* Set up RX descriptor ring */
783 	ef4_nic_init_rx(rx_queue);
784 }
785 
ef4_fini_rx_queue(struct ef4_rx_queue * rx_queue)786 void ef4_fini_rx_queue(struct ef4_rx_queue *rx_queue)
787 {
788 	int i;
789 	struct ef4_nic *efx = rx_queue->efx;
790 	struct ef4_rx_buffer *rx_buf;
791 
792 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
793 		  "shutting down RX queue %d\n", ef4_rx_queue_index(rx_queue));
794 
795 	timer_delete_sync(&rx_queue->slow_fill);
796 
797 	/* Release RX buffers from the current read ptr to the write ptr */
798 	if (rx_queue->buffer) {
799 		for (i = rx_queue->removed_count; i < rx_queue->added_count;
800 		     i++) {
801 			unsigned index = i & rx_queue->ptr_mask;
802 			rx_buf = ef4_rx_buffer(rx_queue, index);
803 			ef4_fini_rx_buffer(rx_queue, rx_buf);
804 		}
805 	}
806 
807 	/* Unmap and release the pages in the recycle ring. Remove the ring. */
808 	for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
809 		struct page *page = rx_queue->page_ring[i];
810 		struct ef4_rx_page_state *state;
811 
812 		if (page == NULL)
813 			continue;
814 
815 		state = page_address(page);
816 		dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
817 			       PAGE_SIZE << efx->rx_buffer_order,
818 			       DMA_FROM_DEVICE);
819 		put_page(page);
820 	}
821 	kfree(rx_queue->page_ring);
822 	rx_queue->page_ring = NULL;
823 }
824 
ef4_remove_rx_queue(struct ef4_rx_queue * rx_queue)825 void ef4_remove_rx_queue(struct ef4_rx_queue *rx_queue)
826 {
827 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
828 		  "destroying RX queue %d\n", ef4_rx_queue_index(rx_queue));
829 
830 	ef4_nic_remove_rx(rx_queue);
831 
832 	kfree(rx_queue->buffer);
833 	rx_queue->buffer = NULL;
834 }
835 
836 
837 module_param(rx_refill_threshold, uint, 0444);
838 MODULE_PARM_DESC(rx_refill_threshold,
839 		 "RX descriptor ring refill threshold (%)");
840 
841 #ifdef CONFIG_RFS_ACCEL
842 
ef4_filter_rfs(struct net_device * net_dev,const struct sk_buff * skb,u16 rxq_index,u32 flow_id)843 int ef4_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
844 		   u16 rxq_index, u32 flow_id)
845 {
846 	struct ef4_nic *efx = netdev_priv(net_dev);
847 	struct ef4_channel *channel;
848 	struct ef4_filter_spec spec;
849 	struct flow_keys fk;
850 	int rc;
851 
852 	if (flow_id == RPS_FLOW_ID_INVALID)
853 		return -EINVAL;
854 
855 	if (!skb_flow_dissect_flow_keys(skb, &fk, 0))
856 		return -EPROTONOSUPPORT;
857 
858 	if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6))
859 		return -EPROTONOSUPPORT;
860 	if (fk.control.flags & FLOW_DIS_IS_FRAGMENT)
861 		return -EPROTONOSUPPORT;
862 
863 	ef4_filter_init_rx(&spec, EF4_FILTER_PRI_HINT,
864 			   efx->rx_scatter ? EF4_FILTER_FLAG_RX_SCATTER : 0,
865 			   rxq_index);
866 	spec.match_flags =
867 		EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_IP_PROTO |
868 		EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT |
869 		EF4_FILTER_MATCH_REM_HOST | EF4_FILTER_MATCH_REM_PORT;
870 	spec.ether_type = fk.basic.n_proto;
871 	spec.ip_proto = fk.basic.ip_proto;
872 
873 	if (fk.basic.n_proto == htons(ETH_P_IP)) {
874 		spec.rem_host[0] = fk.addrs.v4addrs.src;
875 		spec.loc_host[0] = fk.addrs.v4addrs.dst;
876 	} else {
877 		memcpy(spec.rem_host, &fk.addrs.v6addrs.src, sizeof(struct in6_addr));
878 		memcpy(spec.loc_host, &fk.addrs.v6addrs.dst, sizeof(struct in6_addr));
879 	}
880 
881 	spec.rem_port = fk.ports.src;
882 	spec.loc_port = fk.ports.dst;
883 
884 	rc = efx->type->filter_rfs_insert(efx, &spec);
885 	if (rc < 0)
886 		return rc;
887 
888 	/* Remember this so we can check whether to expire the filter later */
889 	channel = ef4_get_channel(efx, rxq_index);
890 	channel->rps_flow_id[rc] = flow_id;
891 	++channel->rfs_filters_added;
892 
893 	if (spec.ether_type == htons(ETH_P_IP))
894 		netif_info(efx, rx_status, efx->net_dev,
895 			   "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d]\n",
896 			   (spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
897 			   spec.rem_host, ntohs(spec.rem_port), spec.loc_host,
898 			   ntohs(spec.loc_port), rxq_index, flow_id, rc);
899 	else
900 		netif_info(efx, rx_status, efx->net_dev,
901 			   "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d]\n",
902 			   (spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
903 			   spec.rem_host, ntohs(spec.rem_port), spec.loc_host,
904 			   ntohs(spec.loc_port), rxq_index, flow_id, rc);
905 
906 	return rc;
907 }
908 
__ef4_filter_rfs_expire(struct ef4_nic * efx,unsigned int quota)909 bool __ef4_filter_rfs_expire(struct ef4_nic *efx, unsigned int quota)
910 {
911 	bool (*expire_one)(struct ef4_nic *efx, u32 flow_id, unsigned int index);
912 	unsigned int channel_idx, index, size;
913 	u32 flow_id;
914 
915 	if (!spin_trylock_bh(&efx->filter_lock))
916 		return false;
917 
918 	expire_one = efx->type->filter_rfs_expire_one;
919 	channel_idx = efx->rps_expire_channel;
920 	index = efx->rps_expire_index;
921 	size = efx->type->max_rx_ip_filters;
922 	while (quota--) {
923 		struct ef4_channel *channel = ef4_get_channel(efx, channel_idx);
924 		flow_id = channel->rps_flow_id[index];
925 
926 		if (flow_id != RPS_FLOW_ID_INVALID &&
927 		    expire_one(efx, flow_id, index)) {
928 			netif_info(efx, rx_status, efx->net_dev,
929 				   "expired filter %d [queue %u flow %u]\n",
930 				   index, channel_idx, flow_id);
931 			channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID;
932 		}
933 		if (++index == size) {
934 			if (++channel_idx == efx->n_channels)
935 				channel_idx = 0;
936 			index = 0;
937 		}
938 	}
939 	efx->rps_expire_channel = channel_idx;
940 	efx->rps_expire_index = index;
941 
942 	spin_unlock_bh(&efx->filter_lock);
943 	return true;
944 }
945 
946 #endif /* CONFIG_RFS_ACCEL */
947 
948 /**
949  * ef4_filter_is_mc_recipient - test whether spec is a multicast recipient
950  * @spec: Specification to test
951  *
952  * Return: %true if the specification is a non-drop RX filter that
953  * matches a local MAC address I/G bit value of 1 or matches a local
954  * IPv4 or IPv6 address value in the respective multicast address
955  * range.  Otherwise %false.
956  */
ef4_filter_is_mc_recipient(const struct ef4_filter_spec * spec)957 bool ef4_filter_is_mc_recipient(const struct ef4_filter_spec *spec)
958 {
959 	if (!(spec->flags & EF4_FILTER_FLAG_RX) ||
960 	    spec->dmaq_id == EF4_FILTER_RX_DMAQ_ID_DROP)
961 		return false;
962 
963 	if (spec->match_flags &
964 	    (EF4_FILTER_MATCH_LOC_MAC | EF4_FILTER_MATCH_LOC_MAC_IG) &&
965 	    is_multicast_ether_addr(spec->loc_mac))
966 		return true;
967 
968 	if ((spec->match_flags &
969 	     (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_LOC_HOST)) ==
970 	    (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_LOC_HOST)) {
971 		if (spec->ether_type == htons(ETH_P_IP) &&
972 		    ipv4_is_multicast(spec->loc_host[0]))
973 			return true;
974 		if (spec->ether_type == htons(ETH_P_IPV6) &&
975 		    ((const u8 *)spec->loc_host)[0] == 0xff)
976 			return true;
977 	}
978 
979 	return false;
980 }
981