xref: /linux/kernel/sched/fair.c (revision 587eb08a5fef911856c16c8bb444b2ab7f4f207f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/prio.h>
41 
42 #include <linux/cpuidle.h>
43 #include <linux/interrupt.h>
44 #include <linux/memory-tiers.h>
45 #include <linux/mempolicy.h>
46 #include <linux/mutex_api.h>
47 #include <linux/profile.h>
48 #include <linux/psi.h>
49 #include <linux/ratelimit.h>
50 #include <linux/task_work.h>
51 #include <linux/rbtree_augmented.h>
52 
53 #include <asm/switch_to.h>
54 
55 #include <uapi/linux/sched/types.h>
56 
57 #include "sched.h"
58 #include "stats.h"
59 #include "autogroup.h"
60 
61 /*
62  * The initial- and re-scaling of tunables is configurable
63  *
64  * Options are:
65  *
66  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
67  *   SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus)
68  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
69  *
70  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
71  */
72 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
73 
74 /*
75  * Minimal preemption granularity for CPU-bound tasks:
76  *
77  * (default: 0.70 msec * (1 + ilog(ncpus)), units: nanoseconds)
78  */
79 unsigned int sysctl_sched_base_slice			= 700000ULL;
80 static unsigned int normalized_sysctl_sched_base_slice	= 700000ULL;
81 
82 __read_mostly unsigned int sysctl_sched_migration_cost	= 500000UL;
83 
setup_sched_thermal_decay_shift(char * str)84 static int __init setup_sched_thermal_decay_shift(char *str)
85 {
86 	pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n");
87 	return 1;
88 }
89 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
90 
91 /*
92  * For asym packing, by default the lower numbered CPU has higher priority.
93  */
arch_asym_cpu_priority(int cpu)94 int __weak arch_asym_cpu_priority(int cpu)
95 {
96 	return -cpu;
97 }
98 
99 /*
100  * The margin used when comparing utilization with CPU capacity.
101  *
102  * (default: ~20%)
103  */
104 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
105 
106 /*
107  * The margin used when comparing CPU capacities.
108  * is 'cap1' noticeably greater than 'cap2'
109  *
110  * (default: ~5%)
111  */
112 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
113 
114 #ifdef CONFIG_CFS_BANDWIDTH
115 /*
116  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
117  * each time a cfs_rq requests quota.
118  *
119  * Note: in the case that the slice exceeds the runtime remaining (either due
120  * to consumption or the quota being specified to be smaller than the slice)
121  * we will always only issue the remaining available time.
122  *
123  * (default: 5 msec, units: microseconds)
124  */
125 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
126 #endif
127 
128 #ifdef CONFIG_NUMA_BALANCING
129 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
130 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
131 #endif
132 
133 #ifdef CONFIG_SYSCTL
134 static const struct ctl_table sched_fair_sysctls[] = {
135 #ifdef CONFIG_CFS_BANDWIDTH
136 	{
137 		.procname       = "sched_cfs_bandwidth_slice_us",
138 		.data           = &sysctl_sched_cfs_bandwidth_slice,
139 		.maxlen         = sizeof(unsigned int),
140 		.mode           = 0644,
141 		.proc_handler   = proc_dointvec_minmax,
142 		.extra1         = SYSCTL_ONE,
143 	},
144 #endif
145 #ifdef CONFIG_NUMA_BALANCING
146 	{
147 		.procname	= "numa_balancing_promote_rate_limit_MBps",
148 		.data		= &sysctl_numa_balancing_promote_rate_limit,
149 		.maxlen		= sizeof(unsigned int),
150 		.mode		= 0644,
151 		.proc_handler	= proc_dointvec_minmax,
152 		.extra1		= SYSCTL_ZERO,
153 	},
154 #endif /* CONFIG_NUMA_BALANCING */
155 };
156 
sched_fair_sysctl_init(void)157 static int __init sched_fair_sysctl_init(void)
158 {
159 	register_sysctl_init("kernel", sched_fair_sysctls);
160 	return 0;
161 }
162 late_initcall(sched_fair_sysctl_init);
163 #endif /* CONFIG_SYSCTL */
164 
update_load_add(struct load_weight * lw,unsigned long inc)165 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
166 {
167 	lw->weight += inc;
168 	lw->inv_weight = 0;
169 }
170 
update_load_sub(struct load_weight * lw,unsigned long dec)171 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
172 {
173 	lw->weight -= dec;
174 	lw->inv_weight = 0;
175 }
176 
update_load_set(struct load_weight * lw,unsigned long w)177 static inline void update_load_set(struct load_weight *lw, unsigned long w)
178 {
179 	lw->weight = w;
180 	lw->inv_weight = 0;
181 }
182 
183 /*
184  * Increase the granularity value when there are more CPUs,
185  * because with more CPUs the 'effective latency' as visible
186  * to users decreases. But the relationship is not linear,
187  * so pick a second-best guess by going with the log2 of the
188  * number of CPUs.
189  *
190  * This idea comes from the SD scheduler of Con Kolivas:
191  */
get_update_sysctl_factor(void)192 static unsigned int get_update_sysctl_factor(void)
193 {
194 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
195 	unsigned int factor;
196 
197 	switch (sysctl_sched_tunable_scaling) {
198 	case SCHED_TUNABLESCALING_NONE:
199 		factor = 1;
200 		break;
201 	case SCHED_TUNABLESCALING_LINEAR:
202 		factor = cpus;
203 		break;
204 	case SCHED_TUNABLESCALING_LOG:
205 	default:
206 		factor = 1 + ilog2(cpus);
207 		break;
208 	}
209 
210 	return factor;
211 }
212 
update_sysctl(void)213 static void update_sysctl(void)
214 {
215 	unsigned int factor = get_update_sysctl_factor();
216 
217 #define SET_SYSCTL(name) \
218 	(sysctl_##name = (factor) * normalized_sysctl_##name)
219 	SET_SYSCTL(sched_base_slice);
220 #undef SET_SYSCTL
221 }
222 
sched_init_granularity(void)223 void __init sched_init_granularity(void)
224 {
225 	update_sysctl();
226 }
227 
228 #define WMULT_CONST	(~0U)
229 #define WMULT_SHIFT	32
230 
__update_inv_weight(struct load_weight * lw)231 static void __update_inv_weight(struct load_weight *lw)
232 {
233 	unsigned long w;
234 
235 	if (likely(lw->inv_weight))
236 		return;
237 
238 	w = scale_load_down(lw->weight);
239 
240 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
241 		lw->inv_weight = 1;
242 	else if (unlikely(!w))
243 		lw->inv_weight = WMULT_CONST;
244 	else
245 		lw->inv_weight = WMULT_CONST / w;
246 }
247 
248 /*
249  * delta_exec * weight / lw.weight
250  *   OR
251  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
252  *
253  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
254  * we're guaranteed shift stays positive because inv_weight is guaranteed to
255  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
256  *
257  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
258  * weight/lw.weight <= 1, and therefore our shift will also be positive.
259  */
__calc_delta(u64 delta_exec,unsigned long weight,struct load_weight * lw)260 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
261 {
262 	u64 fact = scale_load_down(weight);
263 	u32 fact_hi = (u32)(fact >> 32);
264 	int shift = WMULT_SHIFT;
265 	int fs;
266 
267 	__update_inv_weight(lw);
268 
269 	if (unlikely(fact_hi)) {
270 		fs = fls(fact_hi);
271 		shift -= fs;
272 		fact >>= fs;
273 	}
274 
275 	fact = mul_u32_u32(fact, lw->inv_weight);
276 
277 	fact_hi = (u32)(fact >> 32);
278 	if (fact_hi) {
279 		fs = fls(fact_hi);
280 		shift -= fs;
281 		fact >>= fs;
282 	}
283 
284 	return mul_u64_u32_shr(delta_exec, fact, shift);
285 }
286 
287 /*
288  * delta /= w
289  */
calc_delta_fair(u64 delta,struct sched_entity * se)290 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
291 {
292 	if (unlikely(se->load.weight != NICE_0_LOAD))
293 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
294 
295 	return delta;
296 }
297 
298 const struct sched_class fair_sched_class;
299 
300 /**************************************************************
301  * CFS operations on generic schedulable entities:
302  */
303 
304 #ifdef CONFIG_FAIR_GROUP_SCHED
305 
306 /* Walk up scheduling entities hierarchy */
307 #define for_each_sched_entity(se) \
308 		for (; se; se = se->parent)
309 
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)310 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311 {
312 	struct rq *rq = rq_of(cfs_rq);
313 	int cpu = cpu_of(rq);
314 
315 	if (cfs_rq->on_list)
316 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
317 
318 	cfs_rq->on_list = 1;
319 
320 	/*
321 	 * Ensure we either appear before our parent (if already
322 	 * enqueued) or force our parent to appear after us when it is
323 	 * enqueued. The fact that we always enqueue bottom-up
324 	 * reduces this to two cases and a special case for the root
325 	 * cfs_rq. Furthermore, it also means that we will always reset
326 	 * tmp_alone_branch either when the branch is connected
327 	 * to a tree or when we reach the top of the tree
328 	 */
329 	if (cfs_rq->tg->parent &&
330 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
331 		/*
332 		 * If parent is already on the list, we add the child
333 		 * just before. Thanks to circular linked property of
334 		 * the list, this means to put the child at the tail
335 		 * of the list that starts by parent.
336 		 */
337 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
338 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
339 		/*
340 		 * The branch is now connected to its tree so we can
341 		 * reset tmp_alone_branch to the beginning of the
342 		 * list.
343 		 */
344 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
345 		return true;
346 	}
347 
348 	if (!cfs_rq->tg->parent) {
349 		/*
350 		 * cfs rq without parent should be put
351 		 * at the tail of the list.
352 		 */
353 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
354 			&rq->leaf_cfs_rq_list);
355 		/*
356 		 * We have reach the top of a tree so we can reset
357 		 * tmp_alone_branch to the beginning of the list.
358 		 */
359 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
360 		return true;
361 	}
362 
363 	/*
364 	 * The parent has not already been added so we want to
365 	 * make sure that it will be put after us.
366 	 * tmp_alone_branch points to the begin of the branch
367 	 * where we will add parent.
368 	 */
369 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
370 	/*
371 	 * update tmp_alone_branch to points to the new begin
372 	 * of the branch
373 	 */
374 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
375 	return false;
376 }
377 
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)378 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
379 {
380 	if (cfs_rq->on_list) {
381 		struct rq *rq = rq_of(cfs_rq);
382 
383 		/*
384 		 * With cfs_rq being unthrottled/throttled during an enqueue,
385 		 * it can happen the tmp_alone_branch points to the leaf that
386 		 * we finally want to delete. In this case, tmp_alone_branch moves
387 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
388 		 * at the end of the enqueue.
389 		 */
390 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
391 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
392 
393 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
394 		cfs_rq->on_list = 0;
395 	}
396 }
397 
assert_list_leaf_cfs_rq(struct rq * rq)398 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
399 {
400 	WARN_ON_ONCE(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
401 }
402 
403 /* Iterate through all leaf cfs_rq's on a runqueue */
404 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
405 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
406 				 leaf_cfs_rq_list)
407 
408 /* Do the two (enqueued) entities belong to the same group ? */
409 static inline struct cfs_rq *
is_same_group(struct sched_entity * se,struct sched_entity * pse)410 is_same_group(struct sched_entity *se, struct sched_entity *pse)
411 {
412 	if (se->cfs_rq == pse->cfs_rq)
413 		return se->cfs_rq;
414 
415 	return NULL;
416 }
417 
parent_entity(const struct sched_entity * se)418 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
419 {
420 	return se->parent;
421 }
422 
423 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)424 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425 {
426 	int se_depth, pse_depth;
427 
428 	/*
429 	 * preemption test can be made between sibling entities who are in the
430 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
431 	 * both tasks until we find their ancestors who are siblings of common
432 	 * parent.
433 	 */
434 
435 	/* First walk up until both entities are at same depth */
436 	se_depth = (*se)->depth;
437 	pse_depth = (*pse)->depth;
438 
439 	while (se_depth > pse_depth) {
440 		se_depth--;
441 		*se = parent_entity(*se);
442 	}
443 
444 	while (pse_depth > se_depth) {
445 		pse_depth--;
446 		*pse = parent_entity(*pse);
447 	}
448 
449 	while (!is_same_group(*se, *pse)) {
450 		*se = parent_entity(*se);
451 		*pse = parent_entity(*pse);
452 	}
453 }
454 
tg_is_idle(struct task_group * tg)455 static int tg_is_idle(struct task_group *tg)
456 {
457 	return tg->idle > 0;
458 }
459 
cfs_rq_is_idle(struct cfs_rq * cfs_rq)460 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
461 {
462 	return cfs_rq->idle > 0;
463 }
464 
se_is_idle(struct sched_entity * se)465 static int se_is_idle(struct sched_entity *se)
466 {
467 	if (entity_is_task(se))
468 		return task_has_idle_policy(task_of(se));
469 	return cfs_rq_is_idle(group_cfs_rq(se));
470 }
471 
472 #else /* !CONFIG_FAIR_GROUP_SCHED: */
473 
474 #define for_each_sched_entity(se) \
475 		for (; se; se = NULL)
476 
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)477 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
478 {
479 	return true;
480 }
481 
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)482 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
483 {
484 }
485 
assert_list_leaf_cfs_rq(struct rq * rq)486 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
487 {
488 }
489 
490 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
491 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
492 
parent_entity(struct sched_entity * se)493 static inline struct sched_entity *parent_entity(struct sched_entity *se)
494 {
495 	return NULL;
496 }
497 
498 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)499 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
500 {
501 }
502 
tg_is_idle(struct task_group * tg)503 static inline int tg_is_idle(struct task_group *tg)
504 {
505 	return 0;
506 }
507 
cfs_rq_is_idle(struct cfs_rq * cfs_rq)508 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
509 {
510 	return 0;
511 }
512 
se_is_idle(struct sched_entity * se)513 static int se_is_idle(struct sched_entity *se)
514 {
515 	return task_has_idle_policy(task_of(se));
516 }
517 
518 #endif /* !CONFIG_FAIR_GROUP_SCHED */
519 
520 static __always_inline
521 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
522 
523 /**************************************************************
524  * Scheduling class tree data structure manipulation methods:
525  */
526 
max_vruntime(u64 max_vruntime,u64 vruntime)527 static inline __maybe_unused u64 max_vruntime(u64 max_vruntime, u64 vruntime)
528 {
529 	s64 delta = (s64)(vruntime - max_vruntime);
530 	if (delta > 0)
531 		max_vruntime = vruntime;
532 
533 	return max_vruntime;
534 }
535 
min_vruntime(u64 min_vruntime,u64 vruntime)536 static inline __maybe_unused u64 min_vruntime(u64 min_vruntime, u64 vruntime)
537 {
538 	s64 delta = (s64)(vruntime - min_vruntime);
539 	if (delta < 0)
540 		min_vruntime = vruntime;
541 
542 	return min_vruntime;
543 }
544 
entity_before(const struct sched_entity * a,const struct sched_entity * b)545 static inline bool entity_before(const struct sched_entity *a,
546 				 const struct sched_entity *b)
547 {
548 	/*
549 	 * Tiebreak on vruntime seems unnecessary since it can
550 	 * hardly happen.
551 	 */
552 	return (s64)(a->deadline - b->deadline) < 0;
553 }
554 
entity_key(struct cfs_rq * cfs_rq,struct sched_entity * se)555 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
556 {
557 	return (s64)(se->vruntime - cfs_rq->zero_vruntime);
558 }
559 
560 #define __node_2_se(node) \
561 	rb_entry((node), struct sched_entity, run_node)
562 
563 /*
564  * Compute virtual time from the per-task service numbers:
565  *
566  * Fair schedulers conserve lag:
567  *
568  *   \Sum lag_i = 0
569  *
570  * Where lag_i is given by:
571  *
572  *   lag_i = S - s_i = w_i * (V - v_i)
573  *
574  * Where S is the ideal service time and V is it's virtual time counterpart.
575  * Therefore:
576  *
577  *   \Sum lag_i = 0
578  *   \Sum w_i * (V - v_i) = 0
579  *   \Sum w_i * V - w_i * v_i = 0
580  *
581  * From which we can solve an expression for V in v_i (which we have in
582  * se->vruntime):
583  *
584  *       \Sum v_i * w_i   \Sum v_i * w_i
585  *   V = -------------- = --------------
586  *          \Sum w_i            W
587  *
588  * Specifically, this is the weighted average of all entity virtual runtimes.
589  *
590  * [[ NOTE: this is only equal to the ideal scheduler under the condition
591  *          that join/leave operations happen at lag_i = 0, otherwise the
592  *          virtual time has non-contiguous motion equivalent to:
593  *
594  *	      V +-= lag_i / W
595  *
596  *	    Also see the comment in place_entity() that deals with this. ]]
597  *
598  * However, since v_i is u64, and the multiplication could easily overflow
599  * transform it into a relative form that uses smaller quantities:
600  *
601  * Substitute: v_i == (v_i - v0) + v0
602  *
603  *     \Sum ((v_i - v0) + v0) * w_i   \Sum (v_i - v0) * w_i
604  * V = ---------------------------- = --------------------- + v0
605  *                  W                            W
606  *
607  * Which we track using:
608  *
609  *                    v0 := cfs_rq->zero_vruntime
610  * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
611  *              \Sum w_i := cfs_rq->avg_load
612  *
613  * Since zero_vruntime closely tracks the per-task service, these
614  * deltas: (v_i - v), will be in the order of the maximal (virtual) lag
615  * induced in the system due to quantisation.
616  *
617  * Also, we use scale_load_down() to reduce the size.
618  *
619  * As measured, the max (key * weight) value was ~44 bits for a kernel build.
620  */
621 static void
avg_vruntime_add(struct cfs_rq * cfs_rq,struct sched_entity * se)622 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
623 {
624 	unsigned long weight = scale_load_down(se->load.weight);
625 	s64 key = entity_key(cfs_rq, se);
626 
627 	cfs_rq->avg_vruntime += key * weight;
628 	cfs_rq->avg_load += weight;
629 }
630 
631 static void
avg_vruntime_sub(struct cfs_rq * cfs_rq,struct sched_entity * se)632 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
633 {
634 	unsigned long weight = scale_load_down(se->load.weight);
635 	s64 key = entity_key(cfs_rq, se);
636 
637 	cfs_rq->avg_vruntime -= key * weight;
638 	cfs_rq->avg_load -= weight;
639 }
640 
641 static inline
avg_vruntime_update(struct cfs_rq * cfs_rq,s64 delta)642 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
643 {
644 	/*
645 	 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
646 	 */
647 	cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
648 }
649 
650 /*
651  * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
652  * For this to be so, the result of this function must have a left bias.
653  */
avg_vruntime(struct cfs_rq * cfs_rq)654 u64 avg_vruntime(struct cfs_rq *cfs_rq)
655 {
656 	struct sched_entity *curr = cfs_rq->curr;
657 	s64 avg = cfs_rq->avg_vruntime;
658 	long load = cfs_rq->avg_load;
659 
660 	if (curr && curr->on_rq) {
661 		unsigned long weight = scale_load_down(curr->load.weight);
662 
663 		avg += entity_key(cfs_rq, curr) * weight;
664 		load += weight;
665 	}
666 
667 	if (load) {
668 		/* sign flips effective floor / ceiling */
669 		if (avg < 0)
670 			avg -= (load - 1);
671 		avg = div_s64(avg, load);
672 	}
673 
674 	return cfs_rq->zero_vruntime + avg;
675 }
676 
677 /*
678  * lag_i = S - s_i = w_i * (V - v_i)
679  *
680  * However, since V is approximated by the weighted average of all entities it
681  * is possible -- by addition/removal/reweight to the tree -- to move V around
682  * and end up with a larger lag than we started with.
683  *
684  * Limit this to either double the slice length with a minimum of TICK_NSEC
685  * since that is the timing granularity.
686  *
687  * EEVDF gives the following limit for a steady state system:
688  *
689  *   -r_max < lag < max(r_max, q)
690  *
691  * XXX could add max_slice to the augmented data to track this.
692  */
update_entity_lag(struct cfs_rq * cfs_rq,struct sched_entity * se)693 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
694 {
695 	s64 vlag, limit;
696 
697 	WARN_ON_ONCE(!se->on_rq);
698 
699 	vlag = avg_vruntime(cfs_rq) - se->vruntime;
700 	limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
701 
702 	se->vlag = clamp(vlag, -limit, limit);
703 }
704 
705 /*
706  * Entity is eligible once it received less service than it ought to have,
707  * eg. lag >= 0.
708  *
709  * lag_i = S - s_i = w_i*(V - v_i)
710  *
711  * lag_i >= 0 -> V >= v_i
712  *
713  *     \Sum (v_i - v)*w_i
714  * V = ------------------ + v
715  *          \Sum w_i
716  *
717  * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
718  *
719  * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due
720  *       to the loss in precision caused by the division.
721  */
vruntime_eligible(struct cfs_rq * cfs_rq,u64 vruntime)722 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
723 {
724 	struct sched_entity *curr = cfs_rq->curr;
725 	s64 avg = cfs_rq->avg_vruntime;
726 	long load = cfs_rq->avg_load;
727 
728 	if (curr && curr->on_rq) {
729 		unsigned long weight = scale_load_down(curr->load.weight);
730 
731 		avg += entity_key(cfs_rq, curr) * weight;
732 		load += weight;
733 	}
734 
735 	return avg >= (s64)(vruntime - cfs_rq->zero_vruntime) * load;
736 }
737 
entity_eligible(struct cfs_rq * cfs_rq,struct sched_entity * se)738 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
739 {
740 	return vruntime_eligible(cfs_rq, se->vruntime);
741 }
742 
update_zero_vruntime(struct cfs_rq * cfs_rq)743 static void update_zero_vruntime(struct cfs_rq *cfs_rq)
744 {
745 	u64 vruntime = avg_vruntime(cfs_rq);
746 	s64 delta = (s64)(vruntime - cfs_rq->zero_vruntime);
747 
748 	avg_vruntime_update(cfs_rq, delta);
749 
750 	cfs_rq->zero_vruntime = vruntime;
751 }
752 
cfs_rq_min_slice(struct cfs_rq * cfs_rq)753 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq)
754 {
755 	struct sched_entity *root = __pick_root_entity(cfs_rq);
756 	struct sched_entity *curr = cfs_rq->curr;
757 	u64 min_slice = ~0ULL;
758 
759 	if (curr && curr->on_rq)
760 		min_slice = curr->slice;
761 
762 	if (root)
763 		min_slice = min(min_slice, root->min_slice);
764 
765 	return min_slice;
766 }
767 
__entity_less(struct rb_node * a,const struct rb_node * b)768 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
769 {
770 	return entity_before(__node_2_se(a), __node_2_se(b));
771 }
772 
773 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
774 
__min_vruntime_update(struct sched_entity * se,struct rb_node * node)775 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node)
776 {
777 	if (node) {
778 		struct sched_entity *rse = __node_2_se(node);
779 		if (vruntime_gt(min_vruntime, se, rse))
780 			se->min_vruntime = rse->min_vruntime;
781 	}
782 }
783 
__min_slice_update(struct sched_entity * se,struct rb_node * node)784 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node)
785 {
786 	if (node) {
787 		struct sched_entity *rse = __node_2_se(node);
788 		if (rse->min_slice < se->min_slice)
789 			se->min_slice = rse->min_slice;
790 	}
791 }
792 
793 /*
794  * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
795  */
min_vruntime_update(struct sched_entity * se,bool exit)796 static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
797 {
798 	u64 old_min_vruntime = se->min_vruntime;
799 	u64 old_min_slice = se->min_slice;
800 	struct rb_node *node = &se->run_node;
801 
802 	se->min_vruntime = se->vruntime;
803 	__min_vruntime_update(se, node->rb_right);
804 	__min_vruntime_update(se, node->rb_left);
805 
806 	se->min_slice = se->slice;
807 	__min_slice_update(se, node->rb_right);
808 	__min_slice_update(se, node->rb_left);
809 
810 	return se->min_vruntime == old_min_vruntime &&
811 	       se->min_slice == old_min_slice;
812 }
813 
814 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
815 		     run_node, min_vruntime, min_vruntime_update);
816 
817 /*
818  * Enqueue an entity into the rb-tree:
819  */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)820 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
821 {
822 	avg_vruntime_add(cfs_rq, se);
823 	update_zero_vruntime(cfs_rq);
824 	se->min_vruntime = se->vruntime;
825 	se->min_slice = se->slice;
826 	rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
827 				__entity_less, &min_vruntime_cb);
828 }
829 
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)830 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
831 {
832 	rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
833 				  &min_vruntime_cb);
834 	avg_vruntime_sub(cfs_rq, se);
835 	update_zero_vruntime(cfs_rq);
836 }
837 
__pick_root_entity(struct cfs_rq * cfs_rq)838 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq)
839 {
840 	struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node;
841 
842 	if (!root)
843 		return NULL;
844 
845 	return __node_2_se(root);
846 }
847 
__pick_first_entity(struct cfs_rq * cfs_rq)848 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
849 {
850 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
851 
852 	if (!left)
853 		return NULL;
854 
855 	return __node_2_se(left);
856 }
857 
858 /*
859  * Set the vruntime up to which an entity can run before looking
860  * for another entity to pick.
861  * In case of run to parity, we use the shortest slice of the enqueued
862  * entities to set the protected period.
863  * When run to parity is disabled, we give a minimum quantum to the running
864  * entity to ensure progress.
865  */
set_protect_slice(struct cfs_rq * cfs_rq,struct sched_entity * se)866 static inline void set_protect_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
867 {
868 	u64 slice = normalized_sysctl_sched_base_slice;
869 	u64 vprot = se->deadline;
870 
871 	if (sched_feat(RUN_TO_PARITY))
872 		slice = cfs_rq_min_slice(cfs_rq);
873 
874 	slice = min(slice, se->slice);
875 	if (slice != se->slice)
876 		vprot = min_vruntime(vprot, se->vruntime + calc_delta_fair(slice, se));
877 
878 	se->vprot = vprot;
879 }
880 
update_protect_slice(struct cfs_rq * cfs_rq,struct sched_entity * se)881 static inline void update_protect_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
882 {
883 	u64 slice = cfs_rq_min_slice(cfs_rq);
884 
885 	se->vprot = min_vruntime(se->vprot, se->vruntime + calc_delta_fair(slice, se));
886 }
887 
protect_slice(struct sched_entity * se)888 static inline bool protect_slice(struct sched_entity *se)
889 {
890 	return ((s64)(se->vprot - se->vruntime) > 0);
891 }
892 
cancel_protect_slice(struct sched_entity * se)893 static inline void cancel_protect_slice(struct sched_entity *se)
894 {
895 	if (protect_slice(se))
896 		se->vprot = se->vruntime;
897 }
898 
899 /*
900  * Earliest Eligible Virtual Deadline First
901  *
902  * In order to provide latency guarantees for different request sizes
903  * EEVDF selects the best runnable task from two criteria:
904  *
905  *  1) the task must be eligible (must be owed service)
906  *
907  *  2) from those tasks that meet 1), we select the one
908  *     with the earliest virtual deadline.
909  *
910  * We can do this in O(log n) time due to an augmented RB-tree. The
911  * tree keeps the entries sorted on deadline, but also functions as a
912  * heap based on the vruntime by keeping:
913  *
914  *  se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
915  *
916  * Which allows tree pruning through eligibility.
917  */
__pick_eevdf(struct cfs_rq * cfs_rq,bool protect)918 static struct sched_entity *__pick_eevdf(struct cfs_rq *cfs_rq, bool protect)
919 {
920 	struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
921 	struct sched_entity *se = __pick_first_entity(cfs_rq);
922 	struct sched_entity *curr = cfs_rq->curr;
923 	struct sched_entity *best = NULL;
924 
925 	/*
926 	 * We can safely skip eligibility check if there is only one entity
927 	 * in this cfs_rq, saving some cycles.
928 	 */
929 	if (cfs_rq->nr_queued == 1)
930 		return curr && curr->on_rq ? curr : se;
931 
932 	/*
933 	 * Picking the ->next buddy will affect latency but not fairness.
934 	 */
935 	if (sched_feat(PICK_BUDDY) &&
936 	    cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) {
937 		/* ->next will never be delayed */
938 		WARN_ON_ONCE(cfs_rq->next->sched_delayed);
939 		return cfs_rq->next;
940 	}
941 
942 	if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
943 		curr = NULL;
944 
945 	if (curr && protect && protect_slice(curr))
946 		return curr;
947 
948 	/* Pick the leftmost entity if it's eligible */
949 	if (se && entity_eligible(cfs_rq, se)) {
950 		best = se;
951 		goto found;
952 	}
953 
954 	/* Heap search for the EEVD entity */
955 	while (node) {
956 		struct rb_node *left = node->rb_left;
957 
958 		/*
959 		 * Eligible entities in left subtree are always better
960 		 * choices, since they have earlier deadlines.
961 		 */
962 		if (left && vruntime_eligible(cfs_rq,
963 					__node_2_se(left)->min_vruntime)) {
964 			node = left;
965 			continue;
966 		}
967 
968 		se = __node_2_se(node);
969 
970 		/*
971 		 * The left subtree either is empty or has no eligible
972 		 * entity, so check the current node since it is the one
973 		 * with earliest deadline that might be eligible.
974 		 */
975 		if (entity_eligible(cfs_rq, se)) {
976 			best = se;
977 			break;
978 		}
979 
980 		node = node->rb_right;
981 	}
982 found:
983 	if (!best || (curr && entity_before(curr, best)))
984 		best = curr;
985 
986 	return best;
987 }
988 
pick_eevdf(struct cfs_rq * cfs_rq)989 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
990 {
991 	return __pick_eevdf(cfs_rq, true);
992 }
993 
__pick_last_entity(struct cfs_rq * cfs_rq)994 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
995 {
996 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
997 
998 	if (!last)
999 		return NULL;
1000 
1001 	return __node_2_se(last);
1002 }
1003 
1004 /**************************************************************
1005  * Scheduling class statistics methods:
1006  */
sched_update_scaling(void)1007 int sched_update_scaling(void)
1008 {
1009 	unsigned int factor = get_update_sysctl_factor();
1010 
1011 #define WRT_SYSCTL(name) \
1012 	(normalized_sysctl_##name = sysctl_##name / (factor))
1013 	WRT_SYSCTL(sched_base_slice);
1014 #undef WRT_SYSCTL
1015 
1016 	return 0;
1017 }
1018 
1019 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
1020 
1021 /*
1022  * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1023  * this is probably good enough.
1024  */
update_deadline(struct cfs_rq * cfs_rq,struct sched_entity * se)1025 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1026 {
1027 	if ((s64)(se->vruntime - se->deadline) < 0)
1028 		return false;
1029 
1030 	/*
1031 	 * For EEVDF the virtual time slope is determined by w_i (iow.
1032 	 * nice) while the request time r_i is determined by
1033 	 * sysctl_sched_base_slice.
1034 	 */
1035 	if (!se->custom_slice)
1036 		se->slice = sysctl_sched_base_slice;
1037 
1038 	/*
1039 	 * EEVDF: vd_i = ve_i + r_i / w_i
1040 	 */
1041 	se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1042 
1043 	/*
1044 	 * The task has consumed its request, reschedule.
1045 	 */
1046 	return true;
1047 }
1048 
1049 #include "pelt.h"
1050 
1051 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1052 static unsigned long task_h_load(struct task_struct *p);
1053 static unsigned long capacity_of(int cpu);
1054 
1055 /* Give new sched_entity start runnable values to heavy its load in infant time */
init_entity_runnable_average(struct sched_entity * se)1056 void init_entity_runnable_average(struct sched_entity *se)
1057 {
1058 	struct sched_avg *sa = &se->avg;
1059 
1060 	memset(sa, 0, sizeof(*sa));
1061 
1062 	/*
1063 	 * Tasks are initialized with full load to be seen as heavy tasks until
1064 	 * they get a chance to stabilize to their real load level.
1065 	 * Group entities are initialized with zero load to reflect the fact that
1066 	 * nothing has been attached to the task group yet.
1067 	 */
1068 	if (entity_is_task(se))
1069 		sa->load_avg = scale_load_down(se->load.weight);
1070 
1071 	/* when this task is enqueued, it will contribute to its cfs_rq's load_avg */
1072 }
1073 
1074 /*
1075  * With new tasks being created, their initial util_avgs are extrapolated
1076  * based on the cfs_rq's current util_avg:
1077  *
1078  *   util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1)
1079  *		* se_weight(se)
1080  *
1081  * However, in many cases, the above util_avg does not give a desired
1082  * value. Moreover, the sum of the util_avgs may be divergent, such
1083  * as when the series is a harmonic series.
1084  *
1085  * To solve this problem, we also cap the util_avg of successive tasks to
1086  * only 1/2 of the left utilization budget:
1087  *
1088  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1089  *
1090  * where n denotes the nth task and cpu_scale the CPU capacity.
1091  *
1092  * For example, for a CPU with 1024 of capacity, a simplest series from
1093  * the beginning would be like:
1094  *
1095  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
1096  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1097  *
1098  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1099  * if util_avg > util_avg_cap.
1100  */
post_init_entity_util_avg(struct task_struct * p)1101 void post_init_entity_util_avg(struct task_struct *p)
1102 {
1103 	struct sched_entity *se = &p->se;
1104 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1105 	struct sched_avg *sa = &se->avg;
1106 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1107 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1108 
1109 	if (p->sched_class != &fair_sched_class) {
1110 		/*
1111 		 * For !fair tasks do:
1112 		 *
1113 		update_cfs_rq_load_avg(now, cfs_rq);
1114 		attach_entity_load_avg(cfs_rq, se);
1115 		switched_from_fair(rq, p);
1116 		 *
1117 		 * such that the next switched_to_fair() has the
1118 		 * expected state.
1119 		 */
1120 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1121 		return;
1122 	}
1123 
1124 	if (cap > 0) {
1125 		if (cfs_rq->avg.util_avg != 0) {
1126 			sa->util_avg  = cfs_rq->avg.util_avg * se_weight(se);
1127 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1128 
1129 			if (sa->util_avg > cap)
1130 				sa->util_avg = cap;
1131 		} else {
1132 			sa->util_avg = cap;
1133 		}
1134 	}
1135 
1136 	sa->runnable_avg = sa->util_avg;
1137 }
1138 
update_se(struct rq * rq,struct sched_entity * se)1139 static s64 update_se(struct rq *rq, struct sched_entity *se)
1140 {
1141 	u64 now = rq_clock_task(rq);
1142 	s64 delta_exec;
1143 
1144 	delta_exec = now - se->exec_start;
1145 	if (unlikely(delta_exec <= 0))
1146 		return delta_exec;
1147 
1148 	se->exec_start = now;
1149 	if (entity_is_task(se)) {
1150 		struct task_struct *donor = task_of(se);
1151 		struct task_struct *running = rq->curr;
1152 		/*
1153 		 * If se is a task, we account the time against the running
1154 		 * task, as w/ proxy-exec they may not be the same.
1155 		 */
1156 		running->se.exec_start = now;
1157 		running->se.sum_exec_runtime += delta_exec;
1158 
1159 		trace_sched_stat_runtime(running, delta_exec);
1160 		account_group_exec_runtime(running, delta_exec);
1161 
1162 		/* cgroup time is always accounted against the donor */
1163 		cgroup_account_cputime(donor, delta_exec);
1164 	} else {
1165 		/* If not task, account the time against donor se  */
1166 		se->sum_exec_runtime += delta_exec;
1167 	}
1168 
1169 	if (schedstat_enabled()) {
1170 		struct sched_statistics *stats;
1171 
1172 		stats = __schedstats_from_se(se);
1173 		__schedstat_set(stats->exec_max,
1174 				max(delta_exec, stats->exec_max));
1175 	}
1176 
1177 	return delta_exec;
1178 }
1179 
1180 static void set_next_buddy(struct sched_entity *se);
1181 
1182 /*
1183  * Used by other classes to account runtime.
1184  */
update_curr_common(struct rq * rq)1185 s64 update_curr_common(struct rq *rq)
1186 {
1187 	return update_se(rq, &rq->donor->se);
1188 }
1189 
1190 /*
1191  * Update the current task's runtime statistics.
1192  */
update_curr(struct cfs_rq * cfs_rq)1193 static void update_curr(struct cfs_rq *cfs_rq)
1194 {
1195 	/*
1196 	 * Note: cfs_rq->curr corresponds to the task picked to
1197 	 * run (ie: rq->donor.se) which due to proxy-exec may
1198 	 * not necessarily be the actual task running
1199 	 * (rq->curr.se). This is easy to confuse!
1200 	 */
1201 	struct sched_entity *curr = cfs_rq->curr;
1202 	struct rq *rq = rq_of(cfs_rq);
1203 	s64 delta_exec;
1204 	bool resched;
1205 
1206 	if (unlikely(!curr))
1207 		return;
1208 
1209 	delta_exec = update_se(rq, curr);
1210 	if (unlikely(delta_exec <= 0))
1211 		return;
1212 
1213 	curr->vruntime += calc_delta_fair(delta_exec, curr);
1214 	resched = update_deadline(cfs_rq, curr);
1215 
1216 	if (entity_is_task(curr)) {
1217 		/*
1218 		 * If the fair_server is active, we need to account for the
1219 		 * fair_server time whether or not the task is running on
1220 		 * behalf of fair_server or not:
1221 		 *  - If the task is running on behalf of fair_server, we need
1222 		 *    to limit its time based on the assigned runtime.
1223 		 *  - Fair task that runs outside of fair_server should account
1224 		 *    against fair_server such that it can account for this time
1225 		 *    and possibly avoid running this period.
1226 		 */
1227 		dl_server_update(&rq->fair_server, delta_exec);
1228 	}
1229 
1230 	account_cfs_rq_runtime(cfs_rq, delta_exec);
1231 
1232 	if (cfs_rq->nr_queued == 1)
1233 		return;
1234 
1235 	if (resched || !protect_slice(curr)) {
1236 		resched_curr_lazy(rq);
1237 		clear_buddies(cfs_rq, curr);
1238 	}
1239 }
1240 
update_curr_fair(struct rq * rq)1241 static void update_curr_fair(struct rq *rq)
1242 {
1243 	update_curr(cfs_rq_of(&rq->donor->se));
1244 }
1245 
1246 static inline void
update_stats_wait_start_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1247 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1248 {
1249 	struct sched_statistics *stats;
1250 	struct task_struct *p = NULL;
1251 
1252 	if (!schedstat_enabled())
1253 		return;
1254 
1255 	stats = __schedstats_from_se(se);
1256 
1257 	if (entity_is_task(se))
1258 		p = task_of(se);
1259 
1260 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
1261 }
1262 
1263 static inline void
update_stats_wait_end_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1264 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1265 {
1266 	struct sched_statistics *stats;
1267 	struct task_struct *p = NULL;
1268 
1269 	if (!schedstat_enabled())
1270 		return;
1271 
1272 	stats = __schedstats_from_se(se);
1273 
1274 	/*
1275 	 * When the sched_schedstat changes from 0 to 1, some sched se
1276 	 * maybe already in the runqueue, the se->statistics.wait_start
1277 	 * will be 0.So it will let the delta wrong. We need to avoid this
1278 	 * scenario.
1279 	 */
1280 	if (unlikely(!schedstat_val(stats->wait_start)))
1281 		return;
1282 
1283 	if (entity_is_task(se))
1284 		p = task_of(se);
1285 
1286 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
1287 }
1288 
1289 static inline void
update_stats_enqueue_sleeper_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1290 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1291 {
1292 	struct sched_statistics *stats;
1293 	struct task_struct *tsk = NULL;
1294 
1295 	if (!schedstat_enabled())
1296 		return;
1297 
1298 	stats = __schedstats_from_se(se);
1299 
1300 	if (entity_is_task(se))
1301 		tsk = task_of(se);
1302 
1303 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1304 }
1305 
1306 /*
1307  * Task is being enqueued - update stats:
1308  */
1309 static inline void
update_stats_enqueue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1310 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1311 {
1312 	if (!schedstat_enabled())
1313 		return;
1314 
1315 	/*
1316 	 * Are we enqueueing a waiting task? (for current tasks
1317 	 * a dequeue/enqueue event is a NOP)
1318 	 */
1319 	if (se != cfs_rq->curr)
1320 		update_stats_wait_start_fair(cfs_rq, se);
1321 
1322 	if (flags & ENQUEUE_WAKEUP)
1323 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1324 }
1325 
1326 static inline void
update_stats_dequeue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1327 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1328 {
1329 
1330 	if (!schedstat_enabled())
1331 		return;
1332 
1333 	/*
1334 	 * Mark the end of the wait period if dequeueing a
1335 	 * waiting task:
1336 	 */
1337 	if (se != cfs_rq->curr)
1338 		update_stats_wait_end_fair(cfs_rq, se);
1339 
1340 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1341 		struct task_struct *tsk = task_of(se);
1342 		unsigned int state;
1343 
1344 		/* XXX racy against TTWU */
1345 		state = READ_ONCE(tsk->__state);
1346 		if (state & TASK_INTERRUPTIBLE)
1347 			__schedstat_set(tsk->stats.sleep_start,
1348 				      rq_clock(rq_of(cfs_rq)));
1349 		if (state & TASK_UNINTERRUPTIBLE)
1350 			__schedstat_set(tsk->stats.block_start,
1351 				      rq_clock(rq_of(cfs_rq)));
1352 	}
1353 }
1354 
1355 /*
1356  * We are picking a new current task - update its stats:
1357  */
1358 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)1359 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1360 {
1361 	/*
1362 	 * We are starting a new run period:
1363 	 */
1364 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1365 }
1366 
1367 /**************************************************
1368  * Scheduling class queueing methods:
1369  */
1370 
is_core_idle(int cpu)1371 static inline bool is_core_idle(int cpu)
1372 {
1373 #ifdef CONFIG_SCHED_SMT
1374 	int sibling;
1375 
1376 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1377 		if (cpu == sibling)
1378 			continue;
1379 
1380 		if (!idle_cpu(sibling))
1381 			return false;
1382 	}
1383 #endif
1384 
1385 	return true;
1386 }
1387 
1388 #ifdef CONFIG_NUMA
1389 #define NUMA_IMBALANCE_MIN 2
1390 
1391 static inline long
adjust_numa_imbalance(int imbalance,int dst_running,int imb_numa_nr)1392 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1393 {
1394 	/*
1395 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1396 	 * threshold. Above this threshold, individual tasks may be contending
1397 	 * for both memory bandwidth and any shared HT resources.  This is an
1398 	 * approximation as the number of running tasks may not be related to
1399 	 * the number of busy CPUs due to sched_setaffinity.
1400 	 */
1401 	if (dst_running > imb_numa_nr)
1402 		return imbalance;
1403 
1404 	/*
1405 	 * Allow a small imbalance based on a simple pair of communicating
1406 	 * tasks that remain local when the destination is lightly loaded.
1407 	 */
1408 	if (imbalance <= NUMA_IMBALANCE_MIN)
1409 		return 0;
1410 
1411 	return imbalance;
1412 }
1413 #endif /* CONFIG_NUMA */
1414 
1415 #ifdef CONFIG_NUMA_BALANCING
1416 /*
1417  * Approximate time to scan a full NUMA task in ms. The task scan period is
1418  * calculated based on the tasks virtual memory size and
1419  * numa_balancing_scan_size.
1420  */
1421 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1422 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1423 
1424 /* Portion of address space to scan in MB */
1425 unsigned int sysctl_numa_balancing_scan_size = 256;
1426 
1427 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1428 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1429 
1430 /* The page with hint page fault latency < threshold in ms is considered hot */
1431 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1432 
1433 struct numa_group {
1434 	refcount_t refcount;
1435 
1436 	spinlock_t lock; /* nr_tasks, tasks */
1437 	int nr_tasks;
1438 	pid_t gid;
1439 	int active_nodes;
1440 
1441 	struct rcu_head rcu;
1442 	unsigned long total_faults;
1443 	unsigned long max_faults_cpu;
1444 	/*
1445 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1446 	 *
1447 	 * Faults_cpu is used to decide whether memory should move
1448 	 * towards the CPU. As a consequence, these stats are weighted
1449 	 * more by CPU use than by memory faults.
1450 	 */
1451 	unsigned long faults[];
1452 };
1453 
1454 /*
1455  * For functions that can be called in multiple contexts that permit reading
1456  * ->numa_group (see struct task_struct for locking rules).
1457  */
deref_task_numa_group(struct task_struct * p)1458 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1459 {
1460 	return rcu_dereference_check(p->numa_group, p == current ||
1461 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1462 }
1463 
deref_curr_numa_group(struct task_struct * p)1464 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1465 {
1466 	return rcu_dereference_protected(p->numa_group, p == current);
1467 }
1468 
1469 static inline unsigned long group_faults_priv(struct numa_group *ng);
1470 static inline unsigned long group_faults_shared(struct numa_group *ng);
1471 
task_nr_scan_windows(struct task_struct * p)1472 static unsigned int task_nr_scan_windows(struct task_struct *p)
1473 {
1474 	unsigned long rss = 0;
1475 	unsigned long nr_scan_pages;
1476 
1477 	/*
1478 	 * Calculations based on RSS as non-present and empty pages are skipped
1479 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1480 	 * on resident pages
1481 	 */
1482 	nr_scan_pages = MB_TO_PAGES(sysctl_numa_balancing_scan_size);
1483 	rss = get_mm_rss(p->mm);
1484 	if (!rss)
1485 		rss = nr_scan_pages;
1486 
1487 	rss = round_up(rss, nr_scan_pages);
1488 	return rss / nr_scan_pages;
1489 }
1490 
1491 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1492 #define MAX_SCAN_WINDOW 2560
1493 
task_scan_min(struct task_struct * p)1494 static unsigned int task_scan_min(struct task_struct *p)
1495 {
1496 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1497 	unsigned int scan, floor;
1498 	unsigned int windows = 1;
1499 
1500 	if (scan_size < MAX_SCAN_WINDOW)
1501 		windows = MAX_SCAN_WINDOW / scan_size;
1502 	floor = 1000 / windows;
1503 
1504 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1505 	return max_t(unsigned int, floor, scan);
1506 }
1507 
task_scan_start(struct task_struct * p)1508 static unsigned int task_scan_start(struct task_struct *p)
1509 {
1510 	unsigned long smin = task_scan_min(p);
1511 	unsigned long period = smin;
1512 	struct numa_group *ng;
1513 
1514 	/* Scale the maximum scan period with the amount of shared memory. */
1515 	rcu_read_lock();
1516 	ng = rcu_dereference(p->numa_group);
1517 	if (ng) {
1518 		unsigned long shared = group_faults_shared(ng);
1519 		unsigned long private = group_faults_priv(ng);
1520 
1521 		period *= refcount_read(&ng->refcount);
1522 		period *= shared + 1;
1523 		period /= private + shared + 1;
1524 	}
1525 	rcu_read_unlock();
1526 
1527 	return max(smin, period);
1528 }
1529 
task_scan_max(struct task_struct * p)1530 static unsigned int task_scan_max(struct task_struct *p)
1531 {
1532 	unsigned long smin = task_scan_min(p);
1533 	unsigned long smax;
1534 	struct numa_group *ng;
1535 
1536 	/* Watch for min being lower than max due to floor calculations */
1537 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1538 
1539 	/* Scale the maximum scan period with the amount of shared memory. */
1540 	ng = deref_curr_numa_group(p);
1541 	if (ng) {
1542 		unsigned long shared = group_faults_shared(ng);
1543 		unsigned long private = group_faults_priv(ng);
1544 		unsigned long period = smax;
1545 
1546 		period *= refcount_read(&ng->refcount);
1547 		period *= shared + 1;
1548 		period /= private + shared + 1;
1549 
1550 		smax = max(smax, period);
1551 	}
1552 
1553 	return max(smin, smax);
1554 }
1555 
account_numa_enqueue(struct rq * rq,struct task_struct * p)1556 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1557 {
1558 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1559 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1560 }
1561 
account_numa_dequeue(struct rq * rq,struct task_struct * p)1562 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1563 {
1564 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1565 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1566 }
1567 
1568 /* Shared or private faults. */
1569 #define NR_NUMA_HINT_FAULT_TYPES 2
1570 
1571 /* Memory and CPU locality */
1572 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1573 
1574 /* Averaged statistics, and temporary buffers. */
1575 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1576 
task_numa_group_id(struct task_struct * p)1577 pid_t task_numa_group_id(struct task_struct *p)
1578 {
1579 	struct numa_group *ng;
1580 	pid_t gid = 0;
1581 
1582 	rcu_read_lock();
1583 	ng = rcu_dereference(p->numa_group);
1584 	if (ng)
1585 		gid = ng->gid;
1586 	rcu_read_unlock();
1587 
1588 	return gid;
1589 }
1590 
1591 /*
1592  * The averaged statistics, shared & private, memory & CPU,
1593  * occupy the first half of the array. The second half of the
1594  * array is for current counters, which are averaged into the
1595  * first set by task_numa_placement.
1596  */
task_faults_idx(enum numa_faults_stats s,int nid,int priv)1597 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1598 {
1599 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1600 }
1601 
task_faults(struct task_struct * p,int nid)1602 static inline unsigned long task_faults(struct task_struct *p, int nid)
1603 {
1604 	if (!p->numa_faults)
1605 		return 0;
1606 
1607 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1608 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1609 }
1610 
group_faults(struct task_struct * p,int nid)1611 static inline unsigned long group_faults(struct task_struct *p, int nid)
1612 {
1613 	struct numa_group *ng = deref_task_numa_group(p);
1614 
1615 	if (!ng)
1616 		return 0;
1617 
1618 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1619 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1620 }
1621 
group_faults_cpu(struct numa_group * group,int nid)1622 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1623 {
1624 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1625 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1626 }
1627 
group_faults_priv(struct numa_group * ng)1628 static inline unsigned long group_faults_priv(struct numa_group *ng)
1629 {
1630 	unsigned long faults = 0;
1631 	int node;
1632 
1633 	for_each_online_node(node) {
1634 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1635 	}
1636 
1637 	return faults;
1638 }
1639 
group_faults_shared(struct numa_group * ng)1640 static inline unsigned long group_faults_shared(struct numa_group *ng)
1641 {
1642 	unsigned long faults = 0;
1643 	int node;
1644 
1645 	for_each_online_node(node) {
1646 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1647 	}
1648 
1649 	return faults;
1650 }
1651 
1652 /*
1653  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1654  * considered part of a numa group's pseudo-interleaving set. Migrations
1655  * between these nodes are slowed down, to allow things to settle down.
1656  */
1657 #define ACTIVE_NODE_FRACTION 3
1658 
numa_is_active_node(int nid,struct numa_group * ng)1659 static bool numa_is_active_node(int nid, struct numa_group *ng)
1660 {
1661 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1662 }
1663 
1664 /* Handle placement on systems where not all nodes are directly connected. */
score_nearby_nodes(struct task_struct * p,int nid,int lim_dist,bool task)1665 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1666 					int lim_dist, bool task)
1667 {
1668 	unsigned long score = 0;
1669 	int node, max_dist;
1670 
1671 	/*
1672 	 * All nodes are directly connected, and the same distance
1673 	 * from each other. No need for fancy placement algorithms.
1674 	 */
1675 	if (sched_numa_topology_type == NUMA_DIRECT)
1676 		return 0;
1677 
1678 	/* sched_max_numa_distance may be changed in parallel. */
1679 	max_dist = READ_ONCE(sched_max_numa_distance);
1680 	/*
1681 	 * This code is called for each node, introducing N^2 complexity,
1682 	 * which should be OK given the number of nodes rarely exceeds 8.
1683 	 */
1684 	for_each_online_node(node) {
1685 		unsigned long faults;
1686 		int dist = node_distance(nid, node);
1687 
1688 		/*
1689 		 * The furthest away nodes in the system are not interesting
1690 		 * for placement; nid was already counted.
1691 		 */
1692 		if (dist >= max_dist || node == nid)
1693 			continue;
1694 
1695 		/*
1696 		 * On systems with a backplane NUMA topology, compare groups
1697 		 * of nodes, and move tasks towards the group with the most
1698 		 * memory accesses. When comparing two nodes at distance
1699 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1700 		 * of each group. Skip other nodes.
1701 		 */
1702 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1703 			continue;
1704 
1705 		/* Add up the faults from nearby nodes. */
1706 		if (task)
1707 			faults = task_faults(p, node);
1708 		else
1709 			faults = group_faults(p, node);
1710 
1711 		/*
1712 		 * On systems with a glueless mesh NUMA topology, there are
1713 		 * no fixed "groups of nodes". Instead, nodes that are not
1714 		 * directly connected bounce traffic through intermediate
1715 		 * nodes; a numa_group can occupy any set of nodes.
1716 		 * The further away a node is, the less the faults count.
1717 		 * This seems to result in good task placement.
1718 		 */
1719 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1720 			faults *= (max_dist - dist);
1721 			faults /= (max_dist - LOCAL_DISTANCE);
1722 		}
1723 
1724 		score += faults;
1725 	}
1726 
1727 	return score;
1728 }
1729 
1730 /*
1731  * These return the fraction of accesses done by a particular task, or
1732  * task group, on a particular numa node.  The group weight is given a
1733  * larger multiplier, in order to group tasks together that are almost
1734  * evenly spread out between numa nodes.
1735  */
task_weight(struct task_struct * p,int nid,int dist)1736 static inline unsigned long task_weight(struct task_struct *p, int nid,
1737 					int dist)
1738 {
1739 	unsigned long faults, total_faults;
1740 
1741 	if (!p->numa_faults)
1742 		return 0;
1743 
1744 	total_faults = p->total_numa_faults;
1745 
1746 	if (!total_faults)
1747 		return 0;
1748 
1749 	faults = task_faults(p, nid);
1750 	faults += score_nearby_nodes(p, nid, dist, true);
1751 
1752 	return 1000 * faults / total_faults;
1753 }
1754 
group_weight(struct task_struct * p,int nid,int dist)1755 static inline unsigned long group_weight(struct task_struct *p, int nid,
1756 					 int dist)
1757 {
1758 	struct numa_group *ng = deref_task_numa_group(p);
1759 	unsigned long faults, total_faults;
1760 
1761 	if (!ng)
1762 		return 0;
1763 
1764 	total_faults = ng->total_faults;
1765 
1766 	if (!total_faults)
1767 		return 0;
1768 
1769 	faults = group_faults(p, nid);
1770 	faults += score_nearby_nodes(p, nid, dist, false);
1771 
1772 	return 1000 * faults / total_faults;
1773 }
1774 
1775 /*
1776  * If memory tiering mode is enabled, cpupid of slow memory page is
1777  * used to record scan time instead of CPU and PID.  When tiering mode
1778  * is disabled at run time, the scan time (in cpupid) will be
1779  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1780  * access out of array bound.
1781  */
cpupid_valid(int cpupid)1782 static inline bool cpupid_valid(int cpupid)
1783 {
1784 	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1785 }
1786 
1787 /*
1788  * For memory tiering mode, if there are enough free pages (more than
1789  * enough watermark defined here) in fast memory node, to take full
1790  * advantage of fast memory capacity, all recently accessed slow
1791  * memory pages will be migrated to fast memory node without
1792  * considering hot threshold.
1793  */
pgdat_free_space_enough(struct pglist_data * pgdat)1794 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1795 {
1796 	int z;
1797 	unsigned long enough_wmark;
1798 
1799 	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1800 			   pgdat->node_present_pages >> 4);
1801 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1802 		struct zone *zone = pgdat->node_zones + z;
1803 
1804 		if (!populated_zone(zone))
1805 			continue;
1806 
1807 		if (zone_watermark_ok(zone, 0,
1808 				      promo_wmark_pages(zone) + enough_wmark,
1809 				      ZONE_MOVABLE, 0))
1810 			return true;
1811 	}
1812 	return false;
1813 }
1814 
1815 /*
1816  * For memory tiering mode, when page tables are scanned, the scan
1817  * time will be recorded in struct page in addition to make page
1818  * PROT_NONE for slow memory page.  So when the page is accessed, in
1819  * hint page fault handler, the hint page fault latency is calculated
1820  * via,
1821  *
1822  *	hint page fault latency = hint page fault time - scan time
1823  *
1824  * The smaller the hint page fault latency, the higher the possibility
1825  * for the page to be hot.
1826  */
numa_hint_fault_latency(struct folio * folio)1827 static int numa_hint_fault_latency(struct folio *folio)
1828 {
1829 	int last_time, time;
1830 
1831 	time = jiffies_to_msecs(jiffies);
1832 	last_time = folio_xchg_access_time(folio, time);
1833 
1834 	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1835 }
1836 
1837 /*
1838  * For memory tiering mode, too high promotion/demotion throughput may
1839  * hurt application latency.  So we provide a mechanism to rate limit
1840  * the number of pages that are tried to be promoted.
1841  */
numa_promotion_rate_limit(struct pglist_data * pgdat,unsigned long rate_limit,int nr)1842 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1843 				      unsigned long rate_limit, int nr)
1844 {
1845 	unsigned long nr_cand;
1846 	unsigned int now, start;
1847 
1848 	now = jiffies_to_msecs(jiffies);
1849 	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1850 	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1851 	start = pgdat->nbp_rl_start;
1852 	if (now - start > MSEC_PER_SEC &&
1853 	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1854 		pgdat->nbp_rl_nr_cand = nr_cand;
1855 	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1856 		return true;
1857 	return false;
1858 }
1859 
1860 #define NUMA_MIGRATION_ADJUST_STEPS	16
1861 
numa_promotion_adjust_threshold(struct pglist_data * pgdat,unsigned long rate_limit,unsigned int ref_th)1862 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1863 					    unsigned long rate_limit,
1864 					    unsigned int ref_th)
1865 {
1866 	unsigned int now, start, th_period, unit_th, th;
1867 	unsigned long nr_cand, ref_cand, diff_cand;
1868 
1869 	now = jiffies_to_msecs(jiffies);
1870 	th_period = sysctl_numa_balancing_scan_period_max;
1871 	start = pgdat->nbp_th_start;
1872 	if (now - start > th_period &&
1873 	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1874 		ref_cand = rate_limit *
1875 			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1876 		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1877 		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1878 		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1879 		th = pgdat->nbp_threshold ? : ref_th;
1880 		if (diff_cand > ref_cand * 11 / 10)
1881 			th = max(th - unit_th, unit_th);
1882 		else if (diff_cand < ref_cand * 9 / 10)
1883 			th = min(th + unit_th, ref_th * 2);
1884 		pgdat->nbp_th_nr_cand = nr_cand;
1885 		pgdat->nbp_threshold = th;
1886 	}
1887 }
1888 
should_numa_migrate_memory(struct task_struct * p,struct folio * folio,int src_nid,int dst_cpu)1889 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
1890 				int src_nid, int dst_cpu)
1891 {
1892 	struct numa_group *ng = deref_curr_numa_group(p);
1893 	int dst_nid = cpu_to_node(dst_cpu);
1894 	int last_cpupid, this_cpupid;
1895 
1896 	/*
1897 	 * Cannot migrate to memoryless nodes.
1898 	 */
1899 	if (!node_state(dst_nid, N_MEMORY))
1900 		return false;
1901 
1902 	/*
1903 	 * The pages in slow memory node should be migrated according
1904 	 * to hot/cold instead of private/shared.
1905 	 */
1906 	if (folio_use_access_time(folio)) {
1907 		struct pglist_data *pgdat;
1908 		unsigned long rate_limit;
1909 		unsigned int latency, th, def_th;
1910 		long nr = folio_nr_pages(folio);
1911 
1912 		pgdat = NODE_DATA(dst_nid);
1913 		if (pgdat_free_space_enough(pgdat)) {
1914 			/* workload changed, reset hot threshold */
1915 			pgdat->nbp_threshold = 0;
1916 			mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE_NRL, nr);
1917 			return true;
1918 		}
1919 
1920 		def_th = sysctl_numa_balancing_hot_threshold;
1921 		rate_limit = MB_TO_PAGES(sysctl_numa_balancing_promote_rate_limit);
1922 		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1923 
1924 		th = pgdat->nbp_threshold ? : def_th;
1925 		latency = numa_hint_fault_latency(folio);
1926 		if (latency >= th)
1927 			return false;
1928 
1929 		return !numa_promotion_rate_limit(pgdat, rate_limit, nr);
1930 	}
1931 
1932 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1933 	last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
1934 
1935 	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1936 	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1937 		return false;
1938 
1939 	/*
1940 	 * Allow first faults or private faults to migrate immediately early in
1941 	 * the lifetime of a task. The magic number 4 is based on waiting for
1942 	 * two full passes of the "multi-stage node selection" test that is
1943 	 * executed below.
1944 	 */
1945 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1946 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1947 		return true;
1948 
1949 	/*
1950 	 * Multi-stage node selection is used in conjunction with a periodic
1951 	 * migration fault to build a temporal task<->page relation. By using
1952 	 * a two-stage filter we remove short/unlikely relations.
1953 	 *
1954 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1955 	 * a task's usage of a particular page (n_p) per total usage of this
1956 	 * page (n_t) (in a given time-span) to a probability.
1957 	 *
1958 	 * Our periodic faults will sample this probability and getting the
1959 	 * same result twice in a row, given these samples are fully
1960 	 * independent, is then given by P(n)^2, provided our sample period
1961 	 * is sufficiently short compared to the usage pattern.
1962 	 *
1963 	 * This quadric squishes small probabilities, making it less likely we
1964 	 * act on an unlikely task<->page relation.
1965 	 */
1966 	if (!cpupid_pid_unset(last_cpupid) &&
1967 				cpupid_to_nid(last_cpupid) != dst_nid)
1968 		return false;
1969 
1970 	/* Always allow migrate on private faults */
1971 	if (cpupid_match_pid(p, last_cpupid))
1972 		return true;
1973 
1974 	/* A shared fault, but p->numa_group has not been set up yet. */
1975 	if (!ng)
1976 		return true;
1977 
1978 	/*
1979 	 * Destination node is much more heavily used than the source
1980 	 * node? Allow migration.
1981 	 */
1982 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1983 					ACTIVE_NODE_FRACTION)
1984 		return true;
1985 
1986 	/*
1987 	 * Distribute memory according to CPU & memory use on each node,
1988 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1989 	 *
1990 	 * faults_cpu(dst)   3   faults_cpu(src)
1991 	 * --------------- * - > ---------------
1992 	 * faults_mem(dst)   4   faults_mem(src)
1993 	 */
1994 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1995 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1996 }
1997 
1998 /*
1999  * 'numa_type' describes the node at the moment of load balancing.
2000  */
2001 enum numa_type {
2002 	/* The node has spare capacity that can be used to run more tasks.  */
2003 	node_has_spare = 0,
2004 	/*
2005 	 * The node is fully used and the tasks don't compete for more CPU
2006 	 * cycles. Nevertheless, some tasks might wait before running.
2007 	 */
2008 	node_fully_busy,
2009 	/*
2010 	 * The node is overloaded and can't provide expected CPU cycles to all
2011 	 * tasks.
2012 	 */
2013 	node_overloaded
2014 };
2015 
2016 /* Cached statistics for all CPUs within a node */
2017 struct numa_stats {
2018 	unsigned long load;
2019 	unsigned long runnable;
2020 	unsigned long util;
2021 	/* Total compute capacity of CPUs on a node */
2022 	unsigned long compute_capacity;
2023 	unsigned int nr_running;
2024 	unsigned int weight;
2025 	enum numa_type node_type;
2026 	int idle_cpu;
2027 };
2028 
2029 struct task_numa_env {
2030 	struct task_struct *p;
2031 
2032 	int src_cpu, src_nid;
2033 	int dst_cpu, dst_nid;
2034 	int imb_numa_nr;
2035 
2036 	struct numa_stats src_stats, dst_stats;
2037 
2038 	int imbalance_pct;
2039 	int dist;
2040 
2041 	struct task_struct *best_task;
2042 	long best_imp;
2043 	int best_cpu;
2044 };
2045 
2046 static unsigned long cpu_load(struct rq *rq);
2047 static unsigned long cpu_runnable(struct rq *rq);
2048 
2049 static inline enum
numa_classify(unsigned int imbalance_pct,struct numa_stats * ns)2050 numa_type numa_classify(unsigned int imbalance_pct,
2051 			 struct numa_stats *ns)
2052 {
2053 	if ((ns->nr_running > ns->weight) &&
2054 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
2055 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2056 		return node_overloaded;
2057 
2058 	if ((ns->nr_running < ns->weight) ||
2059 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2060 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2061 		return node_has_spare;
2062 
2063 	return node_fully_busy;
2064 }
2065 
2066 #ifdef CONFIG_SCHED_SMT
2067 /* Forward declarations of select_idle_sibling helpers */
2068 static inline bool test_idle_cores(int cpu);
numa_idle_core(int idle_core,int cpu)2069 static inline int numa_idle_core(int idle_core, int cpu)
2070 {
2071 	if (!static_branch_likely(&sched_smt_present) ||
2072 	    idle_core >= 0 || !test_idle_cores(cpu))
2073 		return idle_core;
2074 
2075 	/*
2076 	 * Prefer cores instead of packing HT siblings
2077 	 * and triggering future load balancing.
2078 	 */
2079 	if (is_core_idle(cpu))
2080 		idle_core = cpu;
2081 
2082 	return idle_core;
2083 }
2084 #else /* !CONFIG_SCHED_SMT: */
numa_idle_core(int idle_core,int cpu)2085 static inline int numa_idle_core(int idle_core, int cpu)
2086 {
2087 	return idle_core;
2088 }
2089 #endif /* !CONFIG_SCHED_SMT */
2090 
2091 /*
2092  * Gather all necessary information to make NUMA balancing placement
2093  * decisions that are compatible with standard load balancer. This
2094  * borrows code and logic from update_sg_lb_stats but sharing a
2095  * common implementation is impractical.
2096  */
update_numa_stats(struct task_numa_env * env,struct numa_stats * ns,int nid,bool find_idle)2097 static void update_numa_stats(struct task_numa_env *env,
2098 			      struct numa_stats *ns, int nid,
2099 			      bool find_idle)
2100 {
2101 	int cpu, idle_core = -1;
2102 
2103 	memset(ns, 0, sizeof(*ns));
2104 	ns->idle_cpu = -1;
2105 
2106 	rcu_read_lock();
2107 	for_each_cpu(cpu, cpumask_of_node(nid)) {
2108 		struct rq *rq = cpu_rq(cpu);
2109 
2110 		ns->load += cpu_load(rq);
2111 		ns->runnable += cpu_runnable(rq);
2112 		ns->util += cpu_util_cfs(cpu);
2113 		ns->nr_running += rq->cfs.h_nr_runnable;
2114 		ns->compute_capacity += capacity_of(cpu);
2115 
2116 		if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2117 			if (READ_ONCE(rq->numa_migrate_on) ||
2118 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2119 				continue;
2120 
2121 			if (ns->idle_cpu == -1)
2122 				ns->idle_cpu = cpu;
2123 
2124 			idle_core = numa_idle_core(idle_core, cpu);
2125 		}
2126 	}
2127 	rcu_read_unlock();
2128 
2129 	ns->weight = cpumask_weight(cpumask_of_node(nid));
2130 
2131 	ns->node_type = numa_classify(env->imbalance_pct, ns);
2132 
2133 	if (idle_core >= 0)
2134 		ns->idle_cpu = idle_core;
2135 }
2136 
task_numa_assign(struct task_numa_env * env,struct task_struct * p,long imp)2137 static void task_numa_assign(struct task_numa_env *env,
2138 			     struct task_struct *p, long imp)
2139 {
2140 	struct rq *rq = cpu_rq(env->dst_cpu);
2141 
2142 	/* Check if run-queue part of active NUMA balance. */
2143 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2144 		int cpu;
2145 		int start = env->dst_cpu;
2146 
2147 		/* Find alternative idle CPU. */
2148 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2149 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2150 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2151 				continue;
2152 			}
2153 
2154 			env->dst_cpu = cpu;
2155 			rq = cpu_rq(env->dst_cpu);
2156 			if (!xchg(&rq->numa_migrate_on, 1))
2157 				goto assign;
2158 		}
2159 
2160 		/* Failed to find an alternative idle CPU */
2161 		return;
2162 	}
2163 
2164 assign:
2165 	/*
2166 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
2167 	 * found a better CPU to move/swap.
2168 	 */
2169 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2170 		rq = cpu_rq(env->best_cpu);
2171 		WRITE_ONCE(rq->numa_migrate_on, 0);
2172 	}
2173 
2174 	if (env->best_task)
2175 		put_task_struct(env->best_task);
2176 	if (p)
2177 		get_task_struct(p);
2178 
2179 	env->best_task = p;
2180 	env->best_imp = imp;
2181 	env->best_cpu = env->dst_cpu;
2182 }
2183 
load_too_imbalanced(long src_load,long dst_load,struct task_numa_env * env)2184 static bool load_too_imbalanced(long src_load, long dst_load,
2185 				struct task_numa_env *env)
2186 {
2187 	long imb, old_imb;
2188 	long orig_src_load, orig_dst_load;
2189 	long src_capacity, dst_capacity;
2190 
2191 	/*
2192 	 * The load is corrected for the CPU capacity available on each node.
2193 	 *
2194 	 * src_load        dst_load
2195 	 * ------------ vs ---------
2196 	 * src_capacity    dst_capacity
2197 	 */
2198 	src_capacity = env->src_stats.compute_capacity;
2199 	dst_capacity = env->dst_stats.compute_capacity;
2200 
2201 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2202 
2203 	orig_src_load = env->src_stats.load;
2204 	orig_dst_load = env->dst_stats.load;
2205 
2206 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2207 
2208 	/* Would this change make things worse? */
2209 	return (imb > old_imb);
2210 }
2211 
2212 /*
2213  * Maximum NUMA importance can be 1998 (2*999);
2214  * SMALLIMP @ 30 would be close to 1998/64.
2215  * Used to deter task migration.
2216  */
2217 #define SMALLIMP	30
2218 
2219 /*
2220  * This checks if the overall compute and NUMA accesses of the system would
2221  * be improved if the source tasks was migrated to the target dst_cpu taking
2222  * into account that it might be best if task running on the dst_cpu should
2223  * be exchanged with the source task
2224  */
task_numa_compare(struct task_numa_env * env,long taskimp,long groupimp,bool maymove)2225 static bool task_numa_compare(struct task_numa_env *env,
2226 			      long taskimp, long groupimp, bool maymove)
2227 {
2228 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2229 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
2230 	long imp = p_ng ? groupimp : taskimp;
2231 	struct task_struct *cur;
2232 	long src_load, dst_load;
2233 	int dist = env->dist;
2234 	long moveimp = imp;
2235 	long load;
2236 	bool stopsearch = false;
2237 
2238 	if (READ_ONCE(dst_rq->numa_migrate_on))
2239 		return false;
2240 
2241 	rcu_read_lock();
2242 	cur = rcu_dereference(dst_rq->curr);
2243 	if (cur && ((cur->flags & (PF_EXITING | PF_KTHREAD)) ||
2244 		    !cur->mm))
2245 		cur = NULL;
2246 
2247 	/*
2248 	 * Because we have preemption enabled we can get migrated around and
2249 	 * end try selecting ourselves (current == env->p) as a swap candidate.
2250 	 */
2251 	if (cur == env->p) {
2252 		stopsearch = true;
2253 		goto unlock;
2254 	}
2255 
2256 	if (!cur) {
2257 		if (maymove && moveimp >= env->best_imp)
2258 			goto assign;
2259 		else
2260 			goto unlock;
2261 	}
2262 
2263 	/* Skip this swap candidate if cannot move to the source cpu. */
2264 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2265 		goto unlock;
2266 
2267 	/*
2268 	 * Skip this swap candidate if it is not moving to its preferred
2269 	 * node and the best task is.
2270 	 */
2271 	if (env->best_task &&
2272 	    env->best_task->numa_preferred_nid == env->src_nid &&
2273 	    cur->numa_preferred_nid != env->src_nid) {
2274 		goto unlock;
2275 	}
2276 
2277 	/*
2278 	 * "imp" is the fault differential for the source task between the
2279 	 * source and destination node. Calculate the total differential for
2280 	 * the source task and potential destination task. The more negative
2281 	 * the value is, the more remote accesses that would be expected to
2282 	 * be incurred if the tasks were swapped.
2283 	 *
2284 	 * If dst and source tasks are in the same NUMA group, or not
2285 	 * in any group then look only at task weights.
2286 	 */
2287 	cur_ng = rcu_dereference(cur->numa_group);
2288 	if (cur_ng == p_ng) {
2289 		/*
2290 		 * Do not swap within a group or between tasks that have
2291 		 * no group if there is spare capacity. Swapping does
2292 		 * not address the load imbalance and helps one task at
2293 		 * the cost of punishing another.
2294 		 */
2295 		if (env->dst_stats.node_type == node_has_spare)
2296 			goto unlock;
2297 
2298 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
2299 		      task_weight(cur, env->dst_nid, dist);
2300 		/*
2301 		 * Add some hysteresis to prevent swapping the
2302 		 * tasks within a group over tiny differences.
2303 		 */
2304 		if (cur_ng)
2305 			imp -= imp / 16;
2306 	} else {
2307 		/*
2308 		 * Compare the group weights. If a task is all by itself
2309 		 * (not part of a group), use the task weight instead.
2310 		 */
2311 		if (cur_ng && p_ng)
2312 			imp += group_weight(cur, env->src_nid, dist) -
2313 			       group_weight(cur, env->dst_nid, dist);
2314 		else
2315 			imp += task_weight(cur, env->src_nid, dist) -
2316 			       task_weight(cur, env->dst_nid, dist);
2317 	}
2318 
2319 	/* Discourage picking a task already on its preferred node */
2320 	if (cur->numa_preferred_nid == env->dst_nid)
2321 		imp -= imp / 16;
2322 
2323 	/*
2324 	 * Encourage picking a task that moves to its preferred node.
2325 	 * This potentially makes imp larger than it's maximum of
2326 	 * 1998 (see SMALLIMP and task_weight for why) but in this
2327 	 * case, it does not matter.
2328 	 */
2329 	if (cur->numa_preferred_nid == env->src_nid)
2330 		imp += imp / 8;
2331 
2332 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2333 		imp = moveimp;
2334 		cur = NULL;
2335 		goto assign;
2336 	}
2337 
2338 	/*
2339 	 * Prefer swapping with a task moving to its preferred node over a
2340 	 * task that is not.
2341 	 */
2342 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2343 	    env->best_task->numa_preferred_nid != env->src_nid) {
2344 		goto assign;
2345 	}
2346 
2347 	/*
2348 	 * If the NUMA importance is less than SMALLIMP,
2349 	 * task migration might only result in ping pong
2350 	 * of tasks and also hurt performance due to cache
2351 	 * misses.
2352 	 */
2353 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2354 		goto unlock;
2355 
2356 	/*
2357 	 * In the overloaded case, try and keep the load balanced.
2358 	 */
2359 	load = task_h_load(env->p) - task_h_load(cur);
2360 	if (!load)
2361 		goto assign;
2362 
2363 	dst_load = env->dst_stats.load + load;
2364 	src_load = env->src_stats.load - load;
2365 
2366 	if (load_too_imbalanced(src_load, dst_load, env))
2367 		goto unlock;
2368 
2369 assign:
2370 	/* Evaluate an idle CPU for a task numa move. */
2371 	if (!cur) {
2372 		int cpu = env->dst_stats.idle_cpu;
2373 
2374 		/* Nothing cached so current CPU went idle since the search. */
2375 		if (cpu < 0)
2376 			cpu = env->dst_cpu;
2377 
2378 		/*
2379 		 * If the CPU is no longer truly idle and the previous best CPU
2380 		 * is, keep using it.
2381 		 */
2382 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2383 		    idle_cpu(env->best_cpu)) {
2384 			cpu = env->best_cpu;
2385 		}
2386 
2387 		env->dst_cpu = cpu;
2388 	}
2389 
2390 	task_numa_assign(env, cur, imp);
2391 
2392 	/*
2393 	 * If a move to idle is allowed because there is capacity or load
2394 	 * balance improves then stop the search. While a better swap
2395 	 * candidate may exist, a search is not free.
2396 	 */
2397 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2398 		stopsearch = true;
2399 
2400 	/*
2401 	 * If a swap candidate must be identified and the current best task
2402 	 * moves its preferred node then stop the search.
2403 	 */
2404 	if (!maymove && env->best_task &&
2405 	    env->best_task->numa_preferred_nid == env->src_nid) {
2406 		stopsearch = true;
2407 	}
2408 unlock:
2409 	rcu_read_unlock();
2410 
2411 	return stopsearch;
2412 }
2413 
task_numa_find_cpu(struct task_numa_env * env,long taskimp,long groupimp)2414 static void task_numa_find_cpu(struct task_numa_env *env,
2415 				long taskimp, long groupimp)
2416 {
2417 	bool maymove = false;
2418 	int cpu;
2419 
2420 	/*
2421 	 * If dst node has spare capacity, then check if there is an
2422 	 * imbalance that would be overruled by the load balancer.
2423 	 */
2424 	if (env->dst_stats.node_type == node_has_spare) {
2425 		unsigned int imbalance;
2426 		int src_running, dst_running;
2427 
2428 		/*
2429 		 * Would movement cause an imbalance? Note that if src has
2430 		 * more running tasks that the imbalance is ignored as the
2431 		 * move improves the imbalance from the perspective of the
2432 		 * CPU load balancer.
2433 		 * */
2434 		src_running = env->src_stats.nr_running - 1;
2435 		dst_running = env->dst_stats.nr_running + 1;
2436 		imbalance = max(0, dst_running - src_running);
2437 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2438 						  env->imb_numa_nr);
2439 
2440 		/* Use idle CPU if there is no imbalance */
2441 		if (!imbalance) {
2442 			maymove = true;
2443 			if (env->dst_stats.idle_cpu >= 0) {
2444 				env->dst_cpu = env->dst_stats.idle_cpu;
2445 				task_numa_assign(env, NULL, 0);
2446 				return;
2447 			}
2448 		}
2449 	} else {
2450 		long src_load, dst_load, load;
2451 		/*
2452 		 * If the improvement from just moving env->p direction is better
2453 		 * than swapping tasks around, check if a move is possible.
2454 		 */
2455 		load = task_h_load(env->p);
2456 		dst_load = env->dst_stats.load + load;
2457 		src_load = env->src_stats.load - load;
2458 		maymove = !load_too_imbalanced(src_load, dst_load, env);
2459 	}
2460 
2461 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2462 		/* Skip this CPU if the source task cannot migrate */
2463 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2464 			continue;
2465 
2466 		env->dst_cpu = cpu;
2467 		if (task_numa_compare(env, taskimp, groupimp, maymove))
2468 			break;
2469 	}
2470 }
2471 
task_numa_migrate(struct task_struct * p)2472 static int task_numa_migrate(struct task_struct *p)
2473 {
2474 	struct task_numa_env env = {
2475 		.p = p,
2476 
2477 		.src_cpu = task_cpu(p),
2478 		.src_nid = task_node(p),
2479 
2480 		.imbalance_pct = 112,
2481 
2482 		.best_task = NULL,
2483 		.best_imp = 0,
2484 		.best_cpu = -1,
2485 	};
2486 	unsigned long taskweight, groupweight;
2487 	struct sched_domain *sd;
2488 	long taskimp, groupimp;
2489 	struct numa_group *ng;
2490 	struct rq *best_rq;
2491 	int nid, ret, dist;
2492 
2493 	/*
2494 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2495 	 * imbalance and would be the first to start moving tasks about.
2496 	 *
2497 	 * And we want to avoid any moving of tasks about, as that would create
2498 	 * random movement of tasks -- counter the numa conditions we're trying
2499 	 * to satisfy here.
2500 	 */
2501 	rcu_read_lock();
2502 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2503 	if (sd) {
2504 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2505 		env.imb_numa_nr = sd->imb_numa_nr;
2506 	}
2507 	rcu_read_unlock();
2508 
2509 	/*
2510 	 * Cpusets can break the scheduler domain tree into smaller
2511 	 * balance domains, some of which do not cross NUMA boundaries.
2512 	 * Tasks that are "trapped" in such domains cannot be migrated
2513 	 * elsewhere, so there is no point in (re)trying.
2514 	 */
2515 	if (unlikely(!sd)) {
2516 		sched_setnuma(p, task_node(p));
2517 		return -EINVAL;
2518 	}
2519 
2520 	env.dst_nid = p->numa_preferred_nid;
2521 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2522 	taskweight = task_weight(p, env.src_nid, dist);
2523 	groupweight = group_weight(p, env.src_nid, dist);
2524 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2525 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2526 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2527 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2528 
2529 	/* Try to find a spot on the preferred nid. */
2530 	task_numa_find_cpu(&env, taskimp, groupimp);
2531 
2532 	/*
2533 	 * Look at other nodes in these cases:
2534 	 * - there is no space available on the preferred_nid
2535 	 * - the task is part of a numa_group that is interleaved across
2536 	 *   multiple NUMA nodes; in order to better consolidate the group,
2537 	 *   we need to check other locations.
2538 	 */
2539 	ng = deref_curr_numa_group(p);
2540 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2541 		for_each_node_state(nid, N_CPU) {
2542 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2543 				continue;
2544 
2545 			dist = node_distance(env.src_nid, env.dst_nid);
2546 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2547 						dist != env.dist) {
2548 				taskweight = task_weight(p, env.src_nid, dist);
2549 				groupweight = group_weight(p, env.src_nid, dist);
2550 			}
2551 
2552 			/* Only consider nodes where both task and groups benefit */
2553 			taskimp = task_weight(p, nid, dist) - taskweight;
2554 			groupimp = group_weight(p, nid, dist) - groupweight;
2555 			if (taskimp < 0 && groupimp < 0)
2556 				continue;
2557 
2558 			env.dist = dist;
2559 			env.dst_nid = nid;
2560 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2561 			task_numa_find_cpu(&env, taskimp, groupimp);
2562 		}
2563 	}
2564 
2565 	/*
2566 	 * If the task is part of a workload that spans multiple NUMA nodes,
2567 	 * and is migrating into one of the workload's active nodes, remember
2568 	 * this node as the task's preferred numa node, so the workload can
2569 	 * settle down.
2570 	 * A task that migrated to a second choice node will be better off
2571 	 * trying for a better one later. Do not set the preferred node here.
2572 	 */
2573 	if (ng) {
2574 		if (env.best_cpu == -1)
2575 			nid = env.src_nid;
2576 		else
2577 			nid = cpu_to_node(env.best_cpu);
2578 
2579 		if (nid != p->numa_preferred_nid)
2580 			sched_setnuma(p, nid);
2581 	}
2582 
2583 	/* No better CPU than the current one was found. */
2584 	if (env.best_cpu == -1) {
2585 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2586 		return -EAGAIN;
2587 	}
2588 
2589 	best_rq = cpu_rq(env.best_cpu);
2590 	if (env.best_task == NULL) {
2591 		ret = migrate_task_to(p, env.best_cpu);
2592 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2593 		if (ret != 0)
2594 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2595 		return ret;
2596 	}
2597 
2598 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2599 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2600 
2601 	if (ret != 0)
2602 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2603 	put_task_struct(env.best_task);
2604 	return ret;
2605 }
2606 
2607 /* Attempt to migrate a task to a CPU on the preferred node. */
numa_migrate_preferred(struct task_struct * p)2608 static void numa_migrate_preferred(struct task_struct *p)
2609 {
2610 	unsigned long interval = HZ;
2611 
2612 	/* This task has no NUMA fault statistics yet */
2613 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2614 		return;
2615 
2616 	/* Periodically retry migrating the task to the preferred node */
2617 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2618 	p->numa_migrate_retry = jiffies + interval;
2619 
2620 	/* Success if task is already running on preferred CPU */
2621 	if (task_node(p) == p->numa_preferred_nid)
2622 		return;
2623 
2624 	/* Otherwise, try migrate to a CPU on the preferred node */
2625 	task_numa_migrate(p);
2626 }
2627 
2628 /*
2629  * Find out how many nodes the workload is actively running on. Do this by
2630  * tracking the nodes from which NUMA hinting faults are triggered. This can
2631  * be different from the set of nodes where the workload's memory is currently
2632  * located.
2633  */
numa_group_count_active_nodes(struct numa_group * numa_group)2634 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2635 {
2636 	unsigned long faults, max_faults = 0;
2637 	int nid, active_nodes = 0;
2638 
2639 	for_each_node_state(nid, N_CPU) {
2640 		faults = group_faults_cpu(numa_group, nid);
2641 		if (faults > max_faults)
2642 			max_faults = faults;
2643 	}
2644 
2645 	for_each_node_state(nid, N_CPU) {
2646 		faults = group_faults_cpu(numa_group, nid);
2647 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2648 			active_nodes++;
2649 	}
2650 
2651 	numa_group->max_faults_cpu = max_faults;
2652 	numa_group->active_nodes = active_nodes;
2653 }
2654 
2655 /*
2656  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2657  * increments. The more local the fault statistics are, the higher the scan
2658  * period will be for the next scan window. If local/(local+remote) ratio is
2659  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2660  * the scan period will decrease. Aim for 70% local accesses.
2661  */
2662 #define NUMA_PERIOD_SLOTS 10
2663 #define NUMA_PERIOD_THRESHOLD 7
2664 
2665 /*
2666  * Increase the scan period (slow down scanning) if the majority of
2667  * our memory is already on our local node, or if the majority of
2668  * the page accesses are shared with other processes.
2669  * Otherwise, decrease the scan period.
2670  */
update_task_scan_period(struct task_struct * p,unsigned long shared,unsigned long private)2671 static void update_task_scan_period(struct task_struct *p,
2672 			unsigned long shared, unsigned long private)
2673 {
2674 	unsigned int period_slot;
2675 	int lr_ratio, ps_ratio;
2676 	int diff;
2677 
2678 	unsigned long remote = p->numa_faults_locality[0];
2679 	unsigned long local = p->numa_faults_locality[1];
2680 
2681 	/*
2682 	 * If there were no record hinting faults then either the task is
2683 	 * completely idle or all activity is in areas that are not of interest
2684 	 * to automatic numa balancing. Related to that, if there were failed
2685 	 * migration then it implies we are migrating too quickly or the local
2686 	 * node is overloaded. In either case, scan slower
2687 	 */
2688 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2689 		p->numa_scan_period = min(p->numa_scan_period_max,
2690 			p->numa_scan_period << 1);
2691 
2692 		p->mm->numa_next_scan = jiffies +
2693 			msecs_to_jiffies(p->numa_scan_period);
2694 
2695 		return;
2696 	}
2697 
2698 	/*
2699 	 * Prepare to scale scan period relative to the current period.
2700 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2701 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2702 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2703 	 */
2704 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2705 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2706 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2707 
2708 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2709 		/*
2710 		 * Most memory accesses are local. There is no need to
2711 		 * do fast NUMA scanning, since memory is already local.
2712 		 */
2713 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2714 		if (!slot)
2715 			slot = 1;
2716 		diff = slot * period_slot;
2717 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2718 		/*
2719 		 * Most memory accesses are shared with other tasks.
2720 		 * There is no point in continuing fast NUMA scanning,
2721 		 * since other tasks may just move the memory elsewhere.
2722 		 */
2723 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2724 		if (!slot)
2725 			slot = 1;
2726 		diff = slot * period_slot;
2727 	} else {
2728 		/*
2729 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2730 		 * yet they are not on the local NUMA node. Speed up
2731 		 * NUMA scanning to get the memory moved over.
2732 		 */
2733 		int ratio = max(lr_ratio, ps_ratio);
2734 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2735 	}
2736 
2737 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2738 			task_scan_min(p), task_scan_max(p));
2739 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2740 }
2741 
2742 /*
2743  * Get the fraction of time the task has been running since the last
2744  * NUMA placement cycle. The scheduler keeps similar statistics, but
2745  * decays those on a 32ms period, which is orders of magnitude off
2746  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2747  * stats only if the task is so new there are no NUMA statistics yet.
2748  */
numa_get_avg_runtime(struct task_struct * p,u64 * period)2749 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2750 {
2751 	u64 runtime, delta, now;
2752 	/* Use the start of this time slice to avoid calculations. */
2753 	now = p->se.exec_start;
2754 	runtime = p->se.sum_exec_runtime;
2755 
2756 	if (p->last_task_numa_placement) {
2757 		delta = runtime - p->last_sum_exec_runtime;
2758 		*period = now - p->last_task_numa_placement;
2759 
2760 		/* Avoid time going backwards, prevent potential divide error: */
2761 		if (unlikely((s64)*period < 0))
2762 			*period = 0;
2763 	} else {
2764 		delta = p->se.avg.load_sum;
2765 		*period = LOAD_AVG_MAX;
2766 	}
2767 
2768 	p->last_sum_exec_runtime = runtime;
2769 	p->last_task_numa_placement = now;
2770 
2771 	return delta;
2772 }
2773 
2774 /*
2775  * Determine the preferred nid for a task in a numa_group. This needs to
2776  * be done in a way that produces consistent results with group_weight,
2777  * otherwise workloads might not converge.
2778  */
preferred_group_nid(struct task_struct * p,int nid)2779 static int preferred_group_nid(struct task_struct *p, int nid)
2780 {
2781 	nodemask_t nodes;
2782 	int dist;
2783 
2784 	/* Direct connections between all NUMA nodes. */
2785 	if (sched_numa_topology_type == NUMA_DIRECT)
2786 		return nid;
2787 
2788 	/*
2789 	 * On a system with glueless mesh NUMA topology, group_weight
2790 	 * scores nodes according to the number of NUMA hinting faults on
2791 	 * both the node itself, and on nearby nodes.
2792 	 */
2793 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2794 		unsigned long score, max_score = 0;
2795 		int node, max_node = nid;
2796 
2797 		dist = sched_max_numa_distance;
2798 
2799 		for_each_node_state(node, N_CPU) {
2800 			score = group_weight(p, node, dist);
2801 			if (score > max_score) {
2802 				max_score = score;
2803 				max_node = node;
2804 			}
2805 		}
2806 		return max_node;
2807 	}
2808 
2809 	/*
2810 	 * Finding the preferred nid in a system with NUMA backplane
2811 	 * interconnect topology is more involved. The goal is to locate
2812 	 * tasks from numa_groups near each other in the system, and
2813 	 * untangle workloads from different sides of the system. This requires
2814 	 * searching down the hierarchy of node groups, recursively searching
2815 	 * inside the highest scoring group of nodes. The nodemask tricks
2816 	 * keep the complexity of the search down.
2817 	 */
2818 	nodes = node_states[N_CPU];
2819 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2820 		unsigned long max_faults = 0;
2821 		nodemask_t max_group = NODE_MASK_NONE;
2822 		int a, b;
2823 
2824 		/* Are there nodes at this distance from each other? */
2825 		if (!find_numa_distance(dist))
2826 			continue;
2827 
2828 		for_each_node_mask(a, nodes) {
2829 			unsigned long faults = 0;
2830 			nodemask_t this_group;
2831 			nodes_clear(this_group);
2832 
2833 			/* Sum group's NUMA faults; includes a==b case. */
2834 			for_each_node_mask(b, nodes) {
2835 				if (node_distance(a, b) < dist) {
2836 					faults += group_faults(p, b);
2837 					node_set(b, this_group);
2838 					node_clear(b, nodes);
2839 				}
2840 			}
2841 
2842 			/* Remember the top group. */
2843 			if (faults > max_faults) {
2844 				max_faults = faults;
2845 				max_group = this_group;
2846 				/*
2847 				 * subtle: at the smallest distance there is
2848 				 * just one node left in each "group", the
2849 				 * winner is the preferred nid.
2850 				 */
2851 				nid = a;
2852 			}
2853 		}
2854 		/* Next round, evaluate the nodes within max_group. */
2855 		if (!max_faults)
2856 			break;
2857 		nodes = max_group;
2858 	}
2859 	return nid;
2860 }
2861 
task_numa_placement(struct task_struct * p)2862 static void task_numa_placement(struct task_struct *p)
2863 {
2864 	int seq, nid, max_nid = NUMA_NO_NODE;
2865 	unsigned long max_faults = 0;
2866 	unsigned long fault_types[2] = { 0, 0 };
2867 	unsigned long total_faults;
2868 	u64 runtime, period;
2869 	spinlock_t *group_lock = NULL;
2870 	struct numa_group *ng;
2871 
2872 	/*
2873 	 * The p->mm->numa_scan_seq field gets updated without
2874 	 * exclusive access. Use READ_ONCE() here to ensure
2875 	 * that the field is read in a single access:
2876 	 */
2877 	seq = READ_ONCE(p->mm->numa_scan_seq);
2878 	if (p->numa_scan_seq == seq)
2879 		return;
2880 	p->numa_scan_seq = seq;
2881 	p->numa_scan_period_max = task_scan_max(p);
2882 
2883 	total_faults = p->numa_faults_locality[0] +
2884 		       p->numa_faults_locality[1];
2885 	runtime = numa_get_avg_runtime(p, &period);
2886 
2887 	/* If the task is part of a group prevent parallel updates to group stats */
2888 	ng = deref_curr_numa_group(p);
2889 	if (ng) {
2890 		group_lock = &ng->lock;
2891 		spin_lock_irq(group_lock);
2892 	}
2893 
2894 	/* Find the node with the highest number of faults */
2895 	for_each_online_node(nid) {
2896 		/* Keep track of the offsets in numa_faults array */
2897 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2898 		unsigned long faults = 0, group_faults = 0;
2899 		int priv;
2900 
2901 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2902 			long diff, f_diff, f_weight;
2903 
2904 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2905 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2906 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2907 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2908 
2909 			/* Decay existing window, copy faults since last scan */
2910 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2911 			fault_types[priv] += p->numa_faults[membuf_idx];
2912 			p->numa_faults[membuf_idx] = 0;
2913 
2914 			/*
2915 			 * Normalize the faults_from, so all tasks in a group
2916 			 * count according to CPU use, instead of by the raw
2917 			 * number of faults. Tasks with little runtime have
2918 			 * little over-all impact on throughput, and thus their
2919 			 * faults are less important.
2920 			 */
2921 			f_weight = div64_u64(runtime << 16, period + 1);
2922 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2923 				   (total_faults + 1);
2924 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2925 			p->numa_faults[cpubuf_idx] = 0;
2926 
2927 			p->numa_faults[mem_idx] += diff;
2928 			p->numa_faults[cpu_idx] += f_diff;
2929 			faults += p->numa_faults[mem_idx];
2930 			p->total_numa_faults += diff;
2931 			if (ng) {
2932 				/*
2933 				 * safe because we can only change our own group
2934 				 *
2935 				 * mem_idx represents the offset for a given
2936 				 * nid and priv in a specific region because it
2937 				 * is at the beginning of the numa_faults array.
2938 				 */
2939 				ng->faults[mem_idx] += diff;
2940 				ng->faults[cpu_idx] += f_diff;
2941 				ng->total_faults += diff;
2942 				group_faults += ng->faults[mem_idx];
2943 			}
2944 		}
2945 
2946 		if (!ng) {
2947 			if (faults > max_faults) {
2948 				max_faults = faults;
2949 				max_nid = nid;
2950 			}
2951 		} else if (group_faults > max_faults) {
2952 			max_faults = group_faults;
2953 			max_nid = nid;
2954 		}
2955 	}
2956 
2957 	/* Cannot migrate task to CPU-less node */
2958 	max_nid = numa_nearest_node(max_nid, N_CPU);
2959 
2960 	if (ng) {
2961 		numa_group_count_active_nodes(ng);
2962 		spin_unlock_irq(group_lock);
2963 		max_nid = preferred_group_nid(p, max_nid);
2964 	}
2965 
2966 	if (max_faults) {
2967 		/* Set the new preferred node */
2968 		if (max_nid != p->numa_preferred_nid)
2969 			sched_setnuma(p, max_nid);
2970 	}
2971 
2972 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2973 }
2974 
get_numa_group(struct numa_group * grp)2975 static inline int get_numa_group(struct numa_group *grp)
2976 {
2977 	return refcount_inc_not_zero(&grp->refcount);
2978 }
2979 
put_numa_group(struct numa_group * grp)2980 static inline void put_numa_group(struct numa_group *grp)
2981 {
2982 	if (refcount_dec_and_test(&grp->refcount))
2983 		kfree_rcu(grp, rcu);
2984 }
2985 
task_numa_group(struct task_struct * p,int cpupid,int flags,int * priv)2986 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2987 			int *priv)
2988 {
2989 	struct numa_group *grp, *my_grp;
2990 	struct task_struct *tsk;
2991 	bool join = false;
2992 	int cpu = cpupid_to_cpu(cpupid);
2993 	int i;
2994 
2995 	if (unlikely(!deref_curr_numa_group(p))) {
2996 		unsigned int size = sizeof(struct numa_group) +
2997 				    NR_NUMA_HINT_FAULT_STATS *
2998 				    nr_node_ids * sizeof(unsigned long);
2999 
3000 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
3001 		if (!grp)
3002 			return;
3003 
3004 		refcount_set(&grp->refcount, 1);
3005 		grp->active_nodes = 1;
3006 		grp->max_faults_cpu = 0;
3007 		spin_lock_init(&grp->lock);
3008 		grp->gid = p->pid;
3009 
3010 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3011 			grp->faults[i] = p->numa_faults[i];
3012 
3013 		grp->total_faults = p->total_numa_faults;
3014 
3015 		grp->nr_tasks++;
3016 		rcu_assign_pointer(p->numa_group, grp);
3017 	}
3018 
3019 	rcu_read_lock();
3020 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
3021 
3022 	if (!cpupid_match_pid(tsk, cpupid))
3023 		goto no_join;
3024 
3025 	grp = rcu_dereference(tsk->numa_group);
3026 	if (!grp)
3027 		goto no_join;
3028 
3029 	my_grp = deref_curr_numa_group(p);
3030 	if (grp == my_grp)
3031 		goto no_join;
3032 
3033 	/*
3034 	 * Only join the other group if its bigger; if we're the bigger group,
3035 	 * the other task will join us.
3036 	 */
3037 	if (my_grp->nr_tasks > grp->nr_tasks)
3038 		goto no_join;
3039 
3040 	/*
3041 	 * Tie-break on the grp address.
3042 	 */
3043 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3044 		goto no_join;
3045 
3046 	/* Always join threads in the same process. */
3047 	if (tsk->mm == current->mm)
3048 		join = true;
3049 
3050 	/* Simple filter to avoid false positives due to PID collisions */
3051 	if (flags & TNF_SHARED)
3052 		join = true;
3053 
3054 	/* Update priv based on whether false sharing was detected */
3055 	*priv = !join;
3056 
3057 	if (join && !get_numa_group(grp))
3058 		goto no_join;
3059 
3060 	rcu_read_unlock();
3061 
3062 	if (!join)
3063 		return;
3064 
3065 	WARN_ON_ONCE(irqs_disabled());
3066 	double_lock_irq(&my_grp->lock, &grp->lock);
3067 
3068 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3069 		my_grp->faults[i] -= p->numa_faults[i];
3070 		grp->faults[i] += p->numa_faults[i];
3071 	}
3072 	my_grp->total_faults -= p->total_numa_faults;
3073 	grp->total_faults += p->total_numa_faults;
3074 
3075 	my_grp->nr_tasks--;
3076 	grp->nr_tasks++;
3077 
3078 	spin_unlock(&my_grp->lock);
3079 	spin_unlock_irq(&grp->lock);
3080 
3081 	rcu_assign_pointer(p->numa_group, grp);
3082 
3083 	put_numa_group(my_grp);
3084 	return;
3085 
3086 no_join:
3087 	rcu_read_unlock();
3088 	return;
3089 }
3090 
3091 /*
3092  * Get rid of NUMA statistics associated with a task (either current or dead).
3093  * If @final is set, the task is dead and has reached refcount zero, so we can
3094  * safely free all relevant data structures. Otherwise, there might be
3095  * concurrent reads from places like load balancing and procfs, and we should
3096  * reset the data back to default state without freeing ->numa_faults.
3097  */
task_numa_free(struct task_struct * p,bool final)3098 void task_numa_free(struct task_struct *p, bool final)
3099 {
3100 	/* safe: p either is current or is being freed by current */
3101 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3102 	unsigned long *numa_faults = p->numa_faults;
3103 	unsigned long flags;
3104 	int i;
3105 
3106 	if (!numa_faults)
3107 		return;
3108 
3109 	if (grp) {
3110 		spin_lock_irqsave(&grp->lock, flags);
3111 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3112 			grp->faults[i] -= p->numa_faults[i];
3113 		grp->total_faults -= p->total_numa_faults;
3114 
3115 		grp->nr_tasks--;
3116 		spin_unlock_irqrestore(&grp->lock, flags);
3117 		RCU_INIT_POINTER(p->numa_group, NULL);
3118 		put_numa_group(grp);
3119 	}
3120 
3121 	if (final) {
3122 		p->numa_faults = NULL;
3123 		kfree(numa_faults);
3124 	} else {
3125 		p->total_numa_faults = 0;
3126 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3127 			numa_faults[i] = 0;
3128 	}
3129 }
3130 
3131 /*
3132  * Got a PROT_NONE fault for a page on @node.
3133  */
task_numa_fault(int last_cpupid,int mem_node,int pages,int flags)3134 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3135 {
3136 	struct task_struct *p = current;
3137 	bool migrated = flags & TNF_MIGRATED;
3138 	int cpu_node = task_node(current);
3139 	int local = !!(flags & TNF_FAULT_LOCAL);
3140 	struct numa_group *ng;
3141 	int priv;
3142 
3143 	if (!static_branch_likely(&sched_numa_balancing))
3144 		return;
3145 
3146 	/* for example, ksmd faulting in a user's mm */
3147 	if (!p->mm)
3148 		return;
3149 
3150 	/*
3151 	 * NUMA faults statistics are unnecessary for the slow memory
3152 	 * node for memory tiering mode.
3153 	 */
3154 	if (!node_is_toptier(mem_node) &&
3155 	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3156 	     !cpupid_valid(last_cpupid)))
3157 		return;
3158 
3159 	/* Allocate buffer to track faults on a per-node basis */
3160 	if (unlikely(!p->numa_faults)) {
3161 		int size = sizeof(*p->numa_faults) *
3162 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3163 
3164 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3165 		if (!p->numa_faults)
3166 			return;
3167 
3168 		p->total_numa_faults = 0;
3169 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3170 	}
3171 
3172 	/*
3173 	 * First accesses are treated as private, otherwise consider accesses
3174 	 * to be private if the accessing pid has not changed
3175 	 */
3176 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3177 		priv = 1;
3178 	} else {
3179 		priv = cpupid_match_pid(p, last_cpupid);
3180 		if (!priv && !(flags & TNF_NO_GROUP))
3181 			task_numa_group(p, last_cpupid, flags, &priv);
3182 	}
3183 
3184 	/*
3185 	 * If a workload spans multiple NUMA nodes, a shared fault that
3186 	 * occurs wholly within the set of nodes that the workload is
3187 	 * actively using should be counted as local. This allows the
3188 	 * scan rate to slow down when a workload has settled down.
3189 	 */
3190 	ng = deref_curr_numa_group(p);
3191 	if (!priv && !local && ng && ng->active_nodes > 1 &&
3192 				numa_is_active_node(cpu_node, ng) &&
3193 				numa_is_active_node(mem_node, ng))
3194 		local = 1;
3195 
3196 	/*
3197 	 * Retry to migrate task to preferred node periodically, in case it
3198 	 * previously failed, or the scheduler moved us.
3199 	 */
3200 	if (time_after(jiffies, p->numa_migrate_retry)) {
3201 		task_numa_placement(p);
3202 		numa_migrate_preferred(p);
3203 	}
3204 
3205 	if (migrated)
3206 		p->numa_pages_migrated += pages;
3207 	if (flags & TNF_MIGRATE_FAIL)
3208 		p->numa_faults_locality[2] += pages;
3209 
3210 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3211 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3212 	p->numa_faults_locality[local] += pages;
3213 }
3214 
reset_ptenuma_scan(struct task_struct * p)3215 static void reset_ptenuma_scan(struct task_struct *p)
3216 {
3217 	/*
3218 	 * We only did a read acquisition of the mmap sem, so
3219 	 * p->mm->numa_scan_seq is written to without exclusive access
3220 	 * and the update is not guaranteed to be atomic. That's not
3221 	 * much of an issue though, since this is just used for
3222 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3223 	 * expensive, to avoid any form of compiler optimizations:
3224 	 */
3225 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3226 	p->mm->numa_scan_offset = 0;
3227 }
3228 
vma_is_accessed(struct mm_struct * mm,struct vm_area_struct * vma)3229 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3230 {
3231 	unsigned long pids;
3232 	/*
3233 	 * Allow unconditional access first two times, so that all the (pages)
3234 	 * of VMAs get prot_none fault introduced irrespective of accesses.
3235 	 * This is also done to avoid any side effect of task scanning
3236 	 * amplifying the unfairness of disjoint set of VMAs' access.
3237 	 */
3238 	if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3239 		return true;
3240 
3241 	pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3242 	if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3243 		return true;
3244 
3245 	/*
3246 	 * Complete a scan that has already started regardless of PID access, or
3247 	 * some VMAs may never be scanned in multi-threaded applications:
3248 	 */
3249 	if (mm->numa_scan_offset > vma->vm_start) {
3250 		trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3251 		return true;
3252 	}
3253 
3254 	/*
3255 	 * This vma has not been accessed for a while, and if the number
3256 	 * the threads in the same process is low, which means no other
3257 	 * threads can help scan this vma, force a vma scan.
3258 	 */
3259 	if (READ_ONCE(mm->numa_scan_seq) >
3260 	   (vma->numab_state->prev_scan_seq + get_nr_threads(current)))
3261 		return true;
3262 
3263 	return false;
3264 }
3265 
3266 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3267 
3268 /*
3269  * The expensive part of numa migration is done from task_work context.
3270  * Triggered from task_tick_numa().
3271  */
task_numa_work(struct callback_head * work)3272 static void task_numa_work(struct callback_head *work)
3273 {
3274 	unsigned long migrate, next_scan, now = jiffies;
3275 	struct task_struct *p = current;
3276 	struct mm_struct *mm = p->mm;
3277 	u64 runtime = p->se.sum_exec_runtime;
3278 	struct vm_area_struct *vma;
3279 	unsigned long start, end;
3280 	unsigned long nr_pte_updates = 0;
3281 	long pages, virtpages;
3282 	struct vma_iterator vmi;
3283 	bool vma_pids_skipped;
3284 	bool vma_pids_forced = false;
3285 
3286 	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
3287 
3288 	work->next = work;
3289 	/*
3290 	 * Who cares about NUMA placement when they're dying.
3291 	 *
3292 	 * NOTE: make sure not to dereference p->mm before this check,
3293 	 * exit_task_work() happens _after_ exit_mm() so we could be called
3294 	 * without p->mm even though we still had it when we enqueued this
3295 	 * work.
3296 	 */
3297 	if (p->flags & PF_EXITING)
3298 		return;
3299 
3300 	/*
3301 	 * Memory is pinned to only one NUMA node via cpuset.mems, naturally
3302 	 * no page can be migrated.
3303 	 */
3304 	if (cpusets_enabled() && nodes_weight(cpuset_current_mems_allowed) == 1) {
3305 		trace_sched_skip_cpuset_numa(current, &cpuset_current_mems_allowed);
3306 		return;
3307 	}
3308 
3309 	if (!mm->numa_next_scan) {
3310 		mm->numa_next_scan = now +
3311 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3312 	}
3313 
3314 	/*
3315 	 * Enforce maximal scan/migration frequency..
3316 	 */
3317 	migrate = mm->numa_next_scan;
3318 	if (time_before(now, migrate))
3319 		return;
3320 
3321 	if (p->numa_scan_period == 0) {
3322 		p->numa_scan_period_max = task_scan_max(p);
3323 		p->numa_scan_period = task_scan_start(p);
3324 	}
3325 
3326 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3327 	if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3328 		return;
3329 
3330 	/*
3331 	 * Delay this task enough that another task of this mm will likely win
3332 	 * the next time around.
3333 	 */
3334 	p->node_stamp += 2 * TICK_NSEC;
3335 
3336 	pages = sysctl_numa_balancing_scan_size;
3337 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3338 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
3339 	if (!pages)
3340 		return;
3341 
3342 
3343 	if (!mmap_read_trylock(mm))
3344 		return;
3345 
3346 	/*
3347 	 * VMAs are skipped if the current PID has not trapped a fault within
3348 	 * the VMA recently. Allow scanning to be forced if there is no
3349 	 * suitable VMA remaining.
3350 	 */
3351 	vma_pids_skipped = false;
3352 
3353 retry_pids:
3354 	start = mm->numa_scan_offset;
3355 	vma_iter_init(&vmi, mm, start);
3356 	vma = vma_next(&vmi);
3357 	if (!vma) {
3358 		reset_ptenuma_scan(p);
3359 		start = 0;
3360 		vma_iter_set(&vmi, start);
3361 		vma = vma_next(&vmi);
3362 	}
3363 
3364 	for (; vma; vma = vma_next(&vmi)) {
3365 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3366 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3367 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3368 			continue;
3369 		}
3370 
3371 		/*
3372 		 * Shared library pages mapped by multiple processes are not
3373 		 * migrated as it is expected they are cache replicated. Avoid
3374 		 * hinting faults in read-only file-backed mappings or the vDSO
3375 		 * as migrating the pages will be of marginal benefit.
3376 		 */
3377 		if (!vma->vm_mm ||
3378 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3379 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3380 			continue;
3381 		}
3382 
3383 		/*
3384 		 * Skip inaccessible VMAs to avoid any confusion between
3385 		 * PROT_NONE and NUMA hinting PTEs
3386 		 */
3387 		if (!vma_is_accessible(vma)) {
3388 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3389 			continue;
3390 		}
3391 
3392 		/* Initialise new per-VMA NUMAB state. */
3393 		if (!vma->numab_state) {
3394 			struct vma_numab_state *ptr;
3395 
3396 			ptr = kzalloc(sizeof(*ptr), GFP_KERNEL);
3397 			if (!ptr)
3398 				continue;
3399 
3400 			if (cmpxchg(&vma->numab_state, NULL, ptr)) {
3401 				kfree(ptr);
3402 				continue;
3403 			}
3404 
3405 			vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3406 
3407 			vma->numab_state->next_scan = now +
3408 				msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3409 
3410 			/* Reset happens after 4 times scan delay of scan start */
3411 			vma->numab_state->pids_active_reset =  vma->numab_state->next_scan +
3412 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3413 
3414 			/*
3415 			 * Ensure prev_scan_seq does not match numa_scan_seq,
3416 			 * to prevent VMAs being skipped prematurely on the
3417 			 * first scan:
3418 			 */
3419 			 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3420 		}
3421 
3422 		/*
3423 		 * Scanning the VMAs of short lived tasks add more overhead. So
3424 		 * delay the scan for new VMAs.
3425 		 */
3426 		if (mm->numa_scan_seq && time_before(jiffies,
3427 						vma->numab_state->next_scan)) {
3428 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3429 			continue;
3430 		}
3431 
3432 		/* RESET access PIDs regularly for old VMAs. */
3433 		if (mm->numa_scan_seq &&
3434 				time_after(jiffies, vma->numab_state->pids_active_reset)) {
3435 			vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3436 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3437 			vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3438 			vma->numab_state->pids_active[1] = 0;
3439 		}
3440 
3441 		/* Do not rescan VMAs twice within the same sequence. */
3442 		if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3443 			mm->numa_scan_offset = vma->vm_end;
3444 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3445 			continue;
3446 		}
3447 
3448 		/*
3449 		 * Do not scan the VMA if task has not accessed it, unless no other
3450 		 * VMA candidate exists.
3451 		 */
3452 		if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3453 			vma_pids_skipped = true;
3454 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3455 			continue;
3456 		}
3457 
3458 		do {
3459 			start = max(start, vma->vm_start);
3460 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3461 			end = min(end, vma->vm_end);
3462 			nr_pte_updates = change_prot_numa(vma, start, end);
3463 
3464 			/*
3465 			 * Try to scan sysctl_numa_balancing_size worth of
3466 			 * hpages that have at least one present PTE that
3467 			 * is not already PTE-numa. If the VMA contains
3468 			 * areas that are unused or already full of prot_numa
3469 			 * PTEs, scan up to virtpages, to skip through those
3470 			 * areas faster.
3471 			 */
3472 			if (nr_pte_updates)
3473 				pages -= (end - start) >> PAGE_SHIFT;
3474 			virtpages -= (end - start) >> PAGE_SHIFT;
3475 
3476 			start = end;
3477 			if (pages <= 0 || virtpages <= 0)
3478 				goto out;
3479 
3480 			cond_resched();
3481 		} while (end != vma->vm_end);
3482 
3483 		/* VMA scan is complete, do not scan until next sequence. */
3484 		vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3485 
3486 		/*
3487 		 * Only force scan within one VMA at a time, to limit the
3488 		 * cost of scanning a potentially uninteresting VMA.
3489 		 */
3490 		if (vma_pids_forced)
3491 			break;
3492 	}
3493 
3494 	/*
3495 	 * If no VMAs are remaining and VMAs were skipped due to the PID
3496 	 * not accessing the VMA previously, then force a scan to ensure
3497 	 * forward progress:
3498 	 */
3499 	if (!vma && !vma_pids_forced && vma_pids_skipped) {
3500 		vma_pids_forced = true;
3501 		goto retry_pids;
3502 	}
3503 
3504 out:
3505 	/*
3506 	 * It is possible to reach the end of the VMA list but the last few
3507 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3508 	 * would find the !migratable VMA on the next scan but not reset the
3509 	 * scanner to the start so check it now.
3510 	 */
3511 	if (vma)
3512 		mm->numa_scan_offset = start;
3513 	else
3514 		reset_ptenuma_scan(p);
3515 	mmap_read_unlock(mm);
3516 
3517 	/*
3518 	 * Make sure tasks use at least 32x as much time to run other code
3519 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3520 	 * Usually update_task_scan_period slows down scanning enough; on an
3521 	 * overloaded system we need to limit overhead on a per task basis.
3522 	 */
3523 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3524 		u64 diff = p->se.sum_exec_runtime - runtime;
3525 		p->node_stamp += 32 * diff;
3526 	}
3527 }
3528 
init_numa_balancing(u64 clone_flags,struct task_struct * p)3529 void init_numa_balancing(u64 clone_flags, struct task_struct *p)
3530 {
3531 	int mm_users = 0;
3532 	struct mm_struct *mm = p->mm;
3533 
3534 	if (mm) {
3535 		mm_users = atomic_read(&mm->mm_users);
3536 		if (mm_users == 1) {
3537 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3538 			mm->numa_scan_seq = 0;
3539 		}
3540 	}
3541 	p->node_stamp			= 0;
3542 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3543 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3544 	p->numa_migrate_retry		= 0;
3545 	/* Protect against double add, see task_tick_numa and task_numa_work */
3546 	p->numa_work.next		= &p->numa_work;
3547 	p->numa_faults			= NULL;
3548 	p->numa_pages_migrated		= 0;
3549 	p->total_numa_faults		= 0;
3550 	RCU_INIT_POINTER(p->numa_group, NULL);
3551 	p->last_task_numa_placement	= 0;
3552 	p->last_sum_exec_runtime	= 0;
3553 
3554 	init_task_work(&p->numa_work, task_numa_work);
3555 
3556 	/* New address space, reset the preferred nid */
3557 	if (!(clone_flags & CLONE_VM)) {
3558 		p->numa_preferred_nid = NUMA_NO_NODE;
3559 		return;
3560 	}
3561 
3562 	/*
3563 	 * New thread, keep existing numa_preferred_nid which should be copied
3564 	 * already by arch_dup_task_struct but stagger when scans start.
3565 	 */
3566 	if (mm) {
3567 		unsigned int delay;
3568 
3569 		delay = min_t(unsigned int, task_scan_max(current),
3570 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3571 		delay += 2 * TICK_NSEC;
3572 		p->node_stamp = delay;
3573 	}
3574 }
3575 
3576 /*
3577  * Drive the periodic memory faults..
3578  */
task_tick_numa(struct rq * rq,struct task_struct * curr)3579 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3580 {
3581 	struct callback_head *work = &curr->numa_work;
3582 	u64 period, now;
3583 
3584 	/*
3585 	 * We don't care about NUMA placement if we don't have memory.
3586 	 */
3587 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3588 		return;
3589 
3590 	/*
3591 	 * Using runtime rather than walltime has the dual advantage that
3592 	 * we (mostly) drive the selection from busy threads and that the
3593 	 * task needs to have done some actual work before we bother with
3594 	 * NUMA placement.
3595 	 */
3596 	now = curr->se.sum_exec_runtime;
3597 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3598 
3599 	if (now > curr->node_stamp + period) {
3600 		if (!curr->node_stamp)
3601 			curr->numa_scan_period = task_scan_start(curr);
3602 		curr->node_stamp += period;
3603 
3604 		if (!time_before(jiffies, curr->mm->numa_next_scan))
3605 			task_work_add(curr, work, TWA_RESUME);
3606 	}
3607 }
3608 
update_scan_period(struct task_struct * p,int new_cpu)3609 static void update_scan_period(struct task_struct *p, int new_cpu)
3610 {
3611 	int src_nid = cpu_to_node(task_cpu(p));
3612 	int dst_nid = cpu_to_node(new_cpu);
3613 
3614 	if (!static_branch_likely(&sched_numa_balancing))
3615 		return;
3616 
3617 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3618 		return;
3619 
3620 	if (src_nid == dst_nid)
3621 		return;
3622 
3623 	/*
3624 	 * Allow resets if faults have been trapped before one scan
3625 	 * has completed. This is most likely due to a new task that
3626 	 * is pulled cross-node due to wakeups or load balancing.
3627 	 */
3628 	if (p->numa_scan_seq) {
3629 		/*
3630 		 * Avoid scan adjustments if moving to the preferred
3631 		 * node or if the task was not previously running on
3632 		 * the preferred node.
3633 		 */
3634 		if (dst_nid == p->numa_preferred_nid ||
3635 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3636 			src_nid != p->numa_preferred_nid))
3637 			return;
3638 	}
3639 
3640 	p->numa_scan_period = task_scan_start(p);
3641 }
3642 
3643 #else /* !CONFIG_NUMA_BALANCING: */
3644 
task_tick_numa(struct rq * rq,struct task_struct * curr)3645 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3646 {
3647 }
3648 
account_numa_enqueue(struct rq * rq,struct task_struct * p)3649 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3650 {
3651 }
3652 
account_numa_dequeue(struct rq * rq,struct task_struct * p)3653 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3654 {
3655 }
3656 
update_scan_period(struct task_struct * p,int new_cpu)3657 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3658 {
3659 }
3660 
3661 #endif /* !CONFIG_NUMA_BALANCING */
3662 
3663 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)3664 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3665 {
3666 	update_load_add(&cfs_rq->load, se->load.weight);
3667 	if (entity_is_task(se)) {
3668 		struct rq *rq = rq_of(cfs_rq);
3669 
3670 		account_numa_enqueue(rq, task_of(se));
3671 		list_add(&se->group_node, &rq->cfs_tasks);
3672 	}
3673 	cfs_rq->nr_queued++;
3674 }
3675 
3676 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)3677 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3678 {
3679 	update_load_sub(&cfs_rq->load, se->load.weight);
3680 	if (entity_is_task(se)) {
3681 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3682 		list_del_init(&se->group_node);
3683 	}
3684 	cfs_rq->nr_queued--;
3685 }
3686 
3687 /*
3688  * Signed add and clamp on underflow.
3689  *
3690  * Explicitly do a load-store to ensure the intermediate value never hits
3691  * memory. This allows lockless observations without ever seeing the negative
3692  * values.
3693  */
3694 #define add_positive(_ptr, _val) do {                           \
3695 	typeof(_ptr) ptr = (_ptr);                              \
3696 	typeof(_val) val = (_val);                              \
3697 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3698 								\
3699 	res = var + val;                                        \
3700 								\
3701 	if (val < 0 && res > var)                               \
3702 		res = 0;                                        \
3703 								\
3704 	WRITE_ONCE(*ptr, res);                                  \
3705 } while (0)
3706 
3707 /*
3708  * Unsigned subtract and clamp on underflow.
3709  *
3710  * Explicitly do a load-store to ensure the intermediate value never hits
3711  * memory. This allows lockless observations without ever seeing the negative
3712  * values.
3713  */
3714 #define sub_positive(_ptr, _val) do {				\
3715 	typeof(_ptr) ptr = (_ptr);				\
3716 	typeof(*ptr) val = (_val);				\
3717 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3718 	res = var - val;					\
3719 	if (res > var)						\
3720 		res = 0;					\
3721 	WRITE_ONCE(*ptr, res);					\
3722 } while (0)
3723 
3724 /*
3725  * Remove and clamp on negative, from a local variable.
3726  *
3727  * A variant of sub_positive(), which does not use explicit load-store
3728  * and is thus optimized for local variable updates.
3729  */
3730 #define lsub_positive(_ptr, _val) do {				\
3731 	typeof(_ptr) ptr = (_ptr);				\
3732 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3733 } while (0)
3734 
3735 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3736 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3737 {
3738 	cfs_rq->avg.load_avg += se->avg.load_avg;
3739 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3740 }
3741 
3742 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3743 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3744 {
3745 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3746 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3747 	/* See update_cfs_rq_load_avg() */
3748 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3749 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3750 }
3751 
3752 static void place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags);
3753 
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)3754 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3755 			    unsigned long weight)
3756 {
3757 	bool curr = cfs_rq->curr == se;
3758 
3759 	if (se->on_rq) {
3760 		/* commit outstanding execution time */
3761 		update_curr(cfs_rq);
3762 		update_entity_lag(cfs_rq, se);
3763 		se->deadline -= se->vruntime;
3764 		se->rel_deadline = 1;
3765 		cfs_rq->nr_queued--;
3766 		if (!curr)
3767 			__dequeue_entity(cfs_rq, se);
3768 		update_load_sub(&cfs_rq->load, se->load.weight);
3769 	}
3770 	dequeue_load_avg(cfs_rq, se);
3771 
3772 	/*
3773 	 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3774 	 * we need to scale se->vlag when w_i changes.
3775 	 */
3776 	se->vlag = div_s64(se->vlag * se->load.weight, weight);
3777 	if (se->rel_deadline)
3778 		se->deadline = div_s64(se->deadline * se->load.weight, weight);
3779 
3780 	update_load_set(&se->load, weight);
3781 
3782 	do {
3783 		u32 divider = get_pelt_divider(&se->avg);
3784 
3785 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3786 	} while (0);
3787 
3788 	enqueue_load_avg(cfs_rq, se);
3789 	if (se->on_rq) {
3790 		place_entity(cfs_rq, se, 0);
3791 		update_load_add(&cfs_rq->load, se->load.weight);
3792 		if (!curr)
3793 			__enqueue_entity(cfs_rq, se);
3794 		cfs_rq->nr_queued++;
3795 	}
3796 }
3797 
reweight_task_fair(struct rq * rq,struct task_struct * p,const struct load_weight * lw)3798 static void reweight_task_fair(struct rq *rq, struct task_struct *p,
3799 			       const struct load_weight *lw)
3800 {
3801 	struct sched_entity *se = &p->se;
3802 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3803 	struct load_weight *load = &se->load;
3804 
3805 	reweight_entity(cfs_rq, se, lw->weight);
3806 	load->inv_weight = lw->inv_weight;
3807 }
3808 
3809 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3810 
3811 #ifdef CONFIG_FAIR_GROUP_SCHED
3812 /*
3813  * All this does is approximate the hierarchical proportion which includes that
3814  * global sum we all love to hate.
3815  *
3816  * That is, the weight of a group entity, is the proportional share of the
3817  * group weight based on the group runqueue weights. That is:
3818  *
3819  *                     tg->weight * grq->load.weight
3820  *   ge->load.weight = -----------------------------               (1)
3821  *                       \Sum grq->load.weight
3822  *
3823  * Now, because computing that sum is prohibitively expensive to compute (been
3824  * there, done that) we approximate it with this average stuff. The average
3825  * moves slower and therefore the approximation is cheaper and more stable.
3826  *
3827  * So instead of the above, we substitute:
3828  *
3829  *   grq->load.weight -> grq->avg.load_avg                         (2)
3830  *
3831  * which yields the following:
3832  *
3833  *                     tg->weight * grq->avg.load_avg
3834  *   ge->load.weight = ------------------------------              (3)
3835  *                             tg->load_avg
3836  *
3837  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3838  *
3839  * That is shares_avg, and it is right (given the approximation (2)).
3840  *
3841  * The problem with it is that because the average is slow -- it was designed
3842  * to be exactly that of course -- this leads to transients in boundary
3843  * conditions. In specific, the case where the group was idle and we start the
3844  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3845  * yielding bad latency etc..
3846  *
3847  * Now, in that special case (1) reduces to:
3848  *
3849  *                     tg->weight * grq->load.weight
3850  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3851  *                         grp->load.weight
3852  *
3853  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3854  *
3855  * So what we do is modify our approximation (3) to approach (4) in the (near)
3856  * UP case, like:
3857  *
3858  *   ge->load.weight =
3859  *
3860  *              tg->weight * grq->load.weight
3861  *     ---------------------------------------------------         (5)
3862  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3863  *
3864  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3865  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3866  *
3867  *
3868  *                     tg->weight * grq->load.weight
3869  *   ge->load.weight = -----------------------------		   (6)
3870  *                             tg_load_avg'
3871  *
3872  * Where:
3873  *
3874  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3875  *                  max(grq->load.weight, grq->avg.load_avg)
3876  *
3877  * And that is shares_weight and is icky. In the (near) UP case it approaches
3878  * (4) while in the normal case it approaches (3). It consistently
3879  * overestimates the ge->load.weight and therefore:
3880  *
3881  *   \Sum ge->load.weight >= tg->weight
3882  *
3883  * hence icky!
3884  */
calc_group_shares(struct cfs_rq * cfs_rq)3885 static long calc_group_shares(struct cfs_rq *cfs_rq)
3886 {
3887 	long tg_weight, tg_shares, load, shares;
3888 	struct task_group *tg = cfs_rq->tg;
3889 
3890 	tg_shares = READ_ONCE(tg->shares);
3891 
3892 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3893 
3894 	tg_weight = atomic_long_read(&tg->load_avg);
3895 
3896 	/* Ensure tg_weight >= load */
3897 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3898 	tg_weight += load;
3899 
3900 	shares = (tg_shares * load);
3901 	if (tg_weight)
3902 		shares /= tg_weight;
3903 
3904 	/*
3905 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3906 	 * of a group with small tg->shares value. It is a floor value which is
3907 	 * assigned as a minimum load.weight to the sched_entity representing
3908 	 * the group on a CPU.
3909 	 *
3910 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3911 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3912 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3913 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3914 	 * instead of 0.
3915 	 */
3916 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3917 }
3918 
3919 /*
3920  * Recomputes the group entity based on the current state of its group
3921  * runqueue.
3922  */
update_cfs_group(struct sched_entity * se)3923 static void update_cfs_group(struct sched_entity *se)
3924 {
3925 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3926 	long shares;
3927 
3928 	/*
3929 	 * When a group becomes empty, preserve its weight. This matters for
3930 	 * DELAY_DEQUEUE.
3931 	 */
3932 	if (!gcfs_rq || !gcfs_rq->load.weight)
3933 		return;
3934 
3935 	shares = calc_group_shares(gcfs_rq);
3936 	if (unlikely(se->load.weight != shares))
3937 		reweight_entity(cfs_rq_of(se), se, shares);
3938 }
3939 
3940 #else /* !CONFIG_FAIR_GROUP_SCHED: */
update_cfs_group(struct sched_entity * se)3941 static inline void update_cfs_group(struct sched_entity *se)
3942 {
3943 }
3944 #endif /* !CONFIG_FAIR_GROUP_SCHED */
3945 
cfs_rq_util_change(struct cfs_rq * cfs_rq,int flags)3946 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3947 {
3948 	struct rq *rq = rq_of(cfs_rq);
3949 
3950 	if (&rq->cfs == cfs_rq) {
3951 		/*
3952 		 * There are a few boundary cases this might miss but it should
3953 		 * get called often enough that that should (hopefully) not be
3954 		 * a real problem.
3955 		 *
3956 		 * It will not get called when we go idle, because the idle
3957 		 * thread is a different class (!fair), nor will the utilization
3958 		 * number include things like RT tasks.
3959 		 *
3960 		 * As is, the util number is not freq-invariant (we'd have to
3961 		 * implement arch_scale_freq_capacity() for that).
3962 		 *
3963 		 * See cpu_util_cfs().
3964 		 */
3965 		cpufreq_update_util(rq, flags);
3966 	}
3967 }
3968 
load_avg_is_decayed(struct sched_avg * sa)3969 static inline bool load_avg_is_decayed(struct sched_avg *sa)
3970 {
3971 	if (sa->load_sum)
3972 		return false;
3973 
3974 	if (sa->util_sum)
3975 		return false;
3976 
3977 	if (sa->runnable_sum)
3978 		return false;
3979 
3980 	/*
3981 	 * _avg must be null when _sum are null because _avg = _sum / divider
3982 	 * Make sure that rounding and/or propagation of PELT values never
3983 	 * break this.
3984 	 */
3985 	WARN_ON_ONCE(sa->load_avg ||
3986 		      sa->util_avg ||
3987 		      sa->runnable_avg);
3988 
3989 	return true;
3990 }
3991 
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)3992 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3993 {
3994 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
3995 				 cfs_rq->last_update_time_copy);
3996 }
3997 #ifdef CONFIG_FAIR_GROUP_SCHED
3998 /*
3999  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4000  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4001  * bottom-up, we only have to test whether the cfs_rq before us on the list
4002  * is our child.
4003  * If cfs_rq is not on the list, test whether a child needs its to be added to
4004  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
4005  */
child_cfs_rq_on_list(struct cfs_rq * cfs_rq)4006 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4007 {
4008 	struct cfs_rq *prev_cfs_rq;
4009 	struct list_head *prev;
4010 	struct rq *rq = rq_of(cfs_rq);
4011 
4012 	if (cfs_rq->on_list) {
4013 		prev = cfs_rq->leaf_cfs_rq_list.prev;
4014 	} else {
4015 		prev = rq->tmp_alone_branch;
4016 	}
4017 
4018 	if (prev == &rq->leaf_cfs_rq_list)
4019 		return false;
4020 
4021 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4022 
4023 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4024 }
4025 
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)4026 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4027 {
4028 	if (cfs_rq->load.weight)
4029 		return false;
4030 
4031 	if (!load_avg_is_decayed(&cfs_rq->avg))
4032 		return false;
4033 
4034 	if (child_cfs_rq_on_list(cfs_rq))
4035 		return false;
4036 
4037 	return true;
4038 }
4039 
4040 /**
4041  * update_tg_load_avg - update the tg's load avg
4042  * @cfs_rq: the cfs_rq whose avg changed
4043  *
4044  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4045  * However, because tg->load_avg is a global value there are performance
4046  * considerations.
4047  *
4048  * In order to avoid having to look at the other cfs_rq's, we use a
4049  * differential update where we store the last value we propagated. This in
4050  * turn allows skipping updates if the differential is 'small'.
4051  *
4052  * Updating tg's load_avg is necessary before update_cfs_share().
4053  */
update_tg_load_avg(struct cfs_rq * cfs_rq)4054 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4055 {
4056 	long delta;
4057 	u64 now;
4058 
4059 	/*
4060 	 * No need to update load_avg for root_task_group as it is not used.
4061 	 */
4062 	if (cfs_rq->tg == &root_task_group)
4063 		return;
4064 
4065 	/* rq has been offline and doesn't contribute to the share anymore: */
4066 	if (!cpu_active(cpu_of(rq_of(cfs_rq))))
4067 		return;
4068 
4069 	/*
4070 	 * For migration heavy workloads, access to tg->load_avg can be
4071 	 * unbound. Limit the update rate to at most once per ms.
4072 	 */
4073 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4074 	if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
4075 		return;
4076 
4077 	delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4078 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4079 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
4080 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4081 		cfs_rq->last_update_tg_load_avg = now;
4082 	}
4083 }
4084 
clear_tg_load_avg(struct cfs_rq * cfs_rq)4085 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq)
4086 {
4087 	long delta;
4088 	u64 now;
4089 
4090 	/*
4091 	 * No need to update load_avg for root_task_group, as it is not used.
4092 	 */
4093 	if (cfs_rq->tg == &root_task_group)
4094 		return;
4095 
4096 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4097 	delta = 0 - cfs_rq->tg_load_avg_contrib;
4098 	atomic_long_add(delta, &cfs_rq->tg->load_avg);
4099 	cfs_rq->tg_load_avg_contrib = 0;
4100 	cfs_rq->last_update_tg_load_avg = now;
4101 }
4102 
4103 /* CPU offline callback: */
clear_tg_offline_cfs_rqs(struct rq * rq)4104 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq)
4105 {
4106 	struct task_group *tg;
4107 
4108 	lockdep_assert_rq_held(rq);
4109 
4110 	/*
4111 	 * The rq clock has already been updated in
4112 	 * set_rq_offline(), so we should skip updating
4113 	 * the rq clock again in unthrottle_cfs_rq().
4114 	 */
4115 	rq_clock_start_loop_update(rq);
4116 
4117 	rcu_read_lock();
4118 	list_for_each_entry_rcu(tg, &task_groups, list) {
4119 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4120 
4121 		clear_tg_load_avg(cfs_rq);
4122 	}
4123 	rcu_read_unlock();
4124 
4125 	rq_clock_stop_loop_update(rq);
4126 }
4127 
4128 /*
4129  * Called within set_task_rq() right before setting a task's CPU. The
4130  * caller only guarantees p->pi_lock is held; no other assumptions,
4131  * including the state of rq->lock, should be made.
4132  */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)4133 void set_task_rq_fair(struct sched_entity *se,
4134 		      struct cfs_rq *prev, struct cfs_rq *next)
4135 {
4136 	u64 p_last_update_time;
4137 	u64 n_last_update_time;
4138 
4139 	if (!sched_feat(ATTACH_AGE_LOAD))
4140 		return;
4141 
4142 	/*
4143 	 * We are supposed to update the task to "current" time, then its up to
4144 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4145 	 * getting what current time is, so simply throw away the out-of-date
4146 	 * time. This will result in the wakee task is less decayed, but giving
4147 	 * the wakee more load sounds not bad.
4148 	 */
4149 	if (!(se->avg.last_update_time && prev))
4150 		return;
4151 
4152 	p_last_update_time = cfs_rq_last_update_time(prev);
4153 	n_last_update_time = cfs_rq_last_update_time(next);
4154 
4155 	__update_load_avg_blocked_se(p_last_update_time, se);
4156 	se->avg.last_update_time = n_last_update_time;
4157 }
4158 
4159 /*
4160  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4161  * propagate its contribution. The key to this propagation is the invariant
4162  * that for each group:
4163  *
4164  *   ge->avg == grq->avg						(1)
4165  *
4166  * _IFF_ we look at the pure running and runnable sums. Because they
4167  * represent the very same entity, just at different points in the hierarchy.
4168  *
4169  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4170  * and simply copies the running/runnable sum over (but still wrong, because
4171  * the group entity and group rq do not have their PELT windows aligned).
4172  *
4173  * However, update_tg_cfs_load() is more complex. So we have:
4174  *
4175  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
4176  *
4177  * And since, like util, the runnable part should be directly transferable,
4178  * the following would _appear_ to be the straight forward approach:
4179  *
4180  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
4181  *
4182  * And per (1) we have:
4183  *
4184  *   ge->avg.runnable_avg == grq->avg.runnable_avg
4185  *
4186  * Which gives:
4187  *
4188  *                      ge->load.weight * grq->avg.load_avg
4189  *   ge->avg.load_avg = -----------------------------------		(4)
4190  *                               grq->load.weight
4191  *
4192  * Except that is wrong!
4193  *
4194  * Because while for entities historical weight is not important and we
4195  * really only care about our future and therefore can consider a pure
4196  * runnable sum, runqueues can NOT do this.
4197  *
4198  * We specifically want runqueues to have a load_avg that includes
4199  * historical weights. Those represent the blocked load, the load we expect
4200  * to (shortly) return to us. This only works by keeping the weights as
4201  * integral part of the sum. We therefore cannot decompose as per (3).
4202  *
4203  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4204  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4205  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4206  * runnable section of these tasks overlap (or not). If they were to perfectly
4207  * align the rq as a whole would be runnable 2/3 of the time. If however we
4208  * always have at least 1 runnable task, the rq as a whole is always runnable.
4209  *
4210  * So we'll have to approximate.. :/
4211  *
4212  * Given the constraint:
4213  *
4214  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4215  *
4216  * We can construct a rule that adds runnable to a rq by assuming minimal
4217  * overlap.
4218  *
4219  * On removal, we'll assume each task is equally runnable; which yields:
4220  *
4221  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4222  *
4223  * XXX: only do this for the part of runnable > running ?
4224  *
4225  */
4226 static inline void
update_tg_cfs_util(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4227 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4228 {
4229 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4230 	u32 new_sum, divider;
4231 
4232 	/* Nothing to update */
4233 	if (!delta_avg)
4234 		return;
4235 
4236 	/*
4237 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4238 	 * See ___update_load_avg() for details.
4239 	 */
4240 	divider = get_pelt_divider(&cfs_rq->avg);
4241 
4242 
4243 	/* Set new sched_entity's utilization */
4244 	se->avg.util_avg = gcfs_rq->avg.util_avg;
4245 	new_sum = se->avg.util_avg * divider;
4246 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
4247 	se->avg.util_sum = new_sum;
4248 
4249 	/* Update parent cfs_rq utilization */
4250 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
4251 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
4252 
4253 	/* See update_cfs_rq_load_avg() */
4254 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4255 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4256 }
4257 
4258 static inline void
update_tg_cfs_runnable(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4259 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4260 {
4261 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4262 	u32 new_sum, divider;
4263 
4264 	/* Nothing to update */
4265 	if (!delta_avg)
4266 		return;
4267 
4268 	/*
4269 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4270 	 * See ___update_load_avg() for details.
4271 	 */
4272 	divider = get_pelt_divider(&cfs_rq->avg);
4273 
4274 	/* Set new sched_entity's runnable */
4275 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4276 	new_sum = se->avg.runnable_avg * divider;
4277 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4278 	se->avg.runnable_sum = new_sum;
4279 
4280 	/* Update parent cfs_rq runnable */
4281 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4282 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4283 	/* See update_cfs_rq_load_avg() */
4284 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4285 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4286 }
4287 
4288 static inline void
update_tg_cfs_load(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4289 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4290 {
4291 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4292 	unsigned long load_avg;
4293 	u64 load_sum = 0;
4294 	s64 delta_sum;
4295 	u32 divider;
4296 
4297 	if (!runnable_sum)
4298 		return;
4299 
4300 	gcfs_rq->prop_runnable_sum = 0;
4301 
4302 	/*
4303 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4304 	 * See ___update_load_avg() for details.
4305 	 */
4306 	divider = get_pelt_divider(&cfs_rq->avg);
4307 
4308 	if (runnable_sum >= 0) {
4309 		/*
4310 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4311 		 * the CPU is saturated running == runnable.
4312 		 */
4313 		runnable_sum += se->avg.load_sum;
4314 		runnable_sum = min_t(long, runnable_sum, divider);
4315 	} else {
4316 		/*
4317 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4318 		 * assuming all tasks are equally runnable.
4319 		 */
4320 		if (scale_load_down(gcfs_rq->load.weight)) {
4321 			load_sum = div_u64(gcfs_rq->avg.load_sum,
4322 				scale_load_down(gcfs_rq->load.weight));
4323 		}
4324 
4325 		/* But make sure to not inflate se's runnable */
4326 		runnable_sum = min(se->avg.load_sum, load_sum);
4327 	}
4328 
4329 	/*
4330 	 * runnable_sum can't be lower than running_sum
4331 	 * Rescale running sum to be in the same range as runnable sum
4332 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
4333 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
4334 	 */
4335 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4336 	runnable_sum = max(runnable_sum, running_sum);
4337 
4338 	load_sum = se_weight(se) * runnable_sum;
4339 	load_avg = div_u64(load_sum, divider);
4340 
4341 	delta_avg = load_avg - se->avg.load_avg;
4342 	if (!delta_avg)
4343 		return;
4344 
4345 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4346 
4347 	se->avg.load_sum = runnable_sum;
4348 	se->avg.load_avg = load_avg;
4349 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
4350 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
4351 	/* See update_cfs_rq_load_avg() */
4352 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4353 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4354 }
4355 
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4356 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4357 {
4358 	cfs_rq->propagate = 1;
4359 	cfs_rq->prop_runnable_sum += runnable_sum;
4360 }
4361 
4362 /* Update task and its cfs_rq load average */
propagate_entity_load_avg(struct sched_entity * se)4363 static inline int propagate_entity_load_avg(struct sched_entity *se)
4364 {
4365 	struct cfs_rq *cfs_rq, *gcfs_rq;
4366 
4367 	if (entity_is_task(se))
4368 		return 0;
4369 
4370 	gcfs_rq = group_cfs_rq(se);
4371 	if (!gcfs_rq->propagate)
4372 		return 0;
4373 
4374 	gcfs_rq->propagate = 0;
4375 
4376 	cfs_rq = cfs_rq_of(se);
4377 
4378 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4379 
4380 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4381 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4382 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4383 
4384 	trace_pelt_cfs_tp(cfs_rq);
4385 	trace_pelt_se_tp(se);
4386 
4387 	return 1;
4388 }
4389 
4390 /*
4391  * Check if we need to update the load and the utilization of a blocked
4392  * group_entity:
4393  */
skip_blocked_update(struct sched_entity * se)4394 static inline bool skip_blocked_update(struct sched_entity *se)
4395 {
4396 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4397 
4398 	/*
4399 	 * If sched_entity still have not zero load or utilization, we have to
4400 	 * decay it:
4401 	 */
4402 	if (se->avg.load_avg || se->avg.util_avg)
4403 		return false;
4404 
4405 	/*
4406 	 * If there is a pending propagation, we have to update the load and
4407 	 * the utilization of the sched_entity:
4408 	 */
4409 	if (gcfs_rq->propagate)
4410 		return false;
4411 
4412 	/*
4413 	 * Otherwise, the load and the utilization of the sched_entity is
4414 	 * already zero and there is no pending propagation, so it will be a
4415 	 * waste of time to try to decay it:
4416 	 */
4417 	return true;
4418 }
4419 
4420 #else /* !CONFIG_FAIR_GROUP_SCHED: */
4421 
update_tg_load_avg(struct cfs_rq * cfs_rq)4422 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4423 
clear_tg_offline_cfs_rqs(struct rq * rq)4424 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {}
4425 
propagate_entity_load_avg(struct sched_entity * se)4426 static inline int propagate_entity_load_avg(struct sched_entity *se)
4427 {
4428 	return 0;
4429 }
4430 
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4431 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4432 
4433 #endif /* !CONFIG_FAIR_GROUP_SCHED */
4434 
4435 #ifdef CONFIG_NO_HZ_COMMON
migrate_se_pelt_lag(struct sched_entity * se)4436 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4437 {
4438 	u64 throttled = 0, now, lut;
4439 	struct cfs_rq *cfs_rq;
4440 	struct rq *rq;
4441 	bool is_idle;
4442 
4443 	if (load_avg_is_decayed(&se->avg))
4444 		return;
4445 
4446 	cfs_rq = cfs_rq_of(se);
4447 	rq = rq_of(cfs_rq);
4448 
4449 	rcu_read_lock();
4450 	is_idle = is_idle_task(rcu_dereference(rq->curr));
4451 	rcu_read_unlock();
4452 
4453 	/*
4454 	 * The lag estimation comes with a cost we don't want to pay all the
4455 	 * time. Hence, limiting to the case where the source CPU is idle and
4456 	 * we know we are at the greatest risk to have an outdated clock.
4457 	 */
4458 	if (!is_idle)
4459 		return;
4460 
4461 	/*
4462 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4463 	 *
4464 	 *   last_update_time (the cfs_rq's last_update_time)
4465 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
4466 	 *      = rq_clock_pelt()@cfs_rq_idle
4467 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
4468 	 *
4469 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
4470 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4471 	 *
4472 	 *   rq_idle_lag (delta between now and rq's update)
4473 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
4474 	 *
4475 	 * We can then write:
4476 	 *
4477 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4478 	 *          sched_clock_cpu() - rq_clock()@rq_idle
4479 	 * Where:
4480 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4481 	 *      rq_clock()@rq_idle      is rq->clock_idle
4482 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
4483 	 *                              is cfs_rq->throttled_pelt_idle
4484 	 */
4485 
4486 #ifdef CONFIG_CFS_BANDWIDTH
4487 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4488 	/* The clock has been stopped for throttling */
4489 	if (throttled == U64_MAX)
4490 		return;
4491 #endif
4492 	now = u64_u32_load(rq->clock_pelt_idle);
4493 	/*
4494 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4495 	 * is observed the old clock_pelt_idle value and the new clock_idle,
4496 	 * which lead to an underestimation. The opposite would lead to an
4497 	 * overestimation.
4498 	 */
4499 	smp_rmb();
4500 	lut = cfs_rq_last_update_time(cfs_rq);
4501 
4502 	now -= throttled;
4503 	if (now < lut)
4504 		/*
4505 		 * cfs_rq->avg.last_update_time is more recent than our
4506 		 * estimation, let's use it.
4507 		 */
4508 		now = lut;
4509 	else
4510 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4511 
4512 	__update_load_avg_blocked_se(now, se);
4513 }
4514 #else /* !CONFIG_NO_HZ_COMMON: */
migrate_se_pelt_lag(struct sched_entity * se)4515 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4516 #endif /* !CONFIG_NO_HZ_COMMON */
4517 
4518 /**
4519  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4520  * @now: current time, as per cfs_rq_clock_pelt()
4521  * @cfs_rq: cfs_rq to update
4522  *
4523  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4524  * avg. The immediate corollary is that all (fair) tasks must be attached.
4525  *
4526  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4527  *
4528  * Return: true if the load decayed or we removed load.
4529  *
4530  * Since both these conditions indicate a changed cfs_rq->avg.load we should
4531  * call update_tg_load_avg() when this function returns true.
4532  */
4533 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)4534 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4535 {
4536 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4537 	struct sched_avg *sa = &cfs_rq->avg;
4538 	int decayed = 0;
4539 
4540 	if (cfs_rq->removed.nr) {
4541 		unsigned long r;
4542 		u32 divider = get_pelt_divider(&cfs_rq->avg);
4543 
4544 		raw_spin_lock(&cfs_rq->removed.lock);
4545 		swap(cfs_rq->removed.util_avg, removed_util);
4546 		swap(cfs_rq->removed.load_avg, removed_load);
4547 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4548 		cfs_rq->removed.nr = 0;
4549 		raw_spin_unlock(&cfs_rq->removed.lock);
4550 
4551 		r = removed_load;
4552 		sub_positive(&sa->load_avg, r);
4553 		sub_positive(&sa->load_sum, r * divider);
4554 		/* See sa->util_sum below */
4555 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4556 
4557 		r = removed_util;
4558 		sub_positive(&sa->util_avg, r);
4559 		sub_positive(&sa->util_sum, r * divider);
4560 		/*
4561 		 * Because of rounding, se->util_sum might ends up being +1 more than
4562 		 * cfs->util_sum. Although this is not a problem by itself, detaching
4563 		 * a lot of tasks with the rounding problem between 2 updates of
4564 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4565 		 * cfs_util_avg is not.
4566 		 * Check that util_sum is still above its lower bound for the new
4567 		 * util_avg. Given that period_contrib might have moved since the last
4568 		 * sync, we are only sure that util_sum must be above or equal to
4569 		 *    util_avg * minimum possible divider
4570 		 */
4571 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4572 
4573 		r = removed_runnable;
4574 		sub_positive(&sa->runnable_avg, r);
4575 		sub_positive(&sa->runnable_sum, r * divider);
4576 		/* See sa->util_sum above */
4577 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4578 					      sa->runnable_avg * PELT_MIN_DIVIDER);
4579 
4580 		/*
4581 		 * removed_runnable is the unweighted version of removed_load so we
4582 		 * can use it to estimate removed_load_sum.
4583 		 */
4584 		add_tg_cfs_propagate(cfs_rq,
4585 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4586 
4587 		decayed = 1;
4588 	}
4589 
4590 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4591 	u64_u32_store_copy(sa->last_update_time,
4592 			   cfs_rq->last_update_time_copy,
4593 			   sa->last_update_time);
4594 	return decayed;
4595 }
4596 
4597 /**
4598  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4599  * @cfs_rq: cfs_rq to attach to
4600  * @se: sched_entity to attach
4601  *
4602  * Must call update_cfs_rq_load_avg() before this, since we rely on
4603  * cfs_rq->avg.last_update_time being current.
4604  */
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4605 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4606 {
4607 	/*
4608 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4609 	 * See ___update_load_avg() for details.
4610 	 */
4611 	u32 divider = get_pelt_divider(&cfs_rq->avg);
4612 
4613 	/*
4614 	 * When we attach the @se to the @cfs_rq, we must align the decay
4615 	 * window because without that, really weird and wonderful things can
4616 	 * happen.
4617 	 *
4618 	 * XXX illustrate
4619 	 */
4620 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4621 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4622 
4623 	/*
4624 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4625 	 * period_contrib. This isn't strictly correct, but since we're
4626 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4627 	 * _sum a little.
4628 	 */
4629 	se->avg.util_sum = se->avg.util_avg * divider;
4630 
4631 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4632 
4633 	se->avg.load_sum = se->avg.load_avg * divider;
4634 	if (se_weight(se) < se->avg.load_sum)
4635 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4636 	else
4637 		se->avg.load_sum = 1;
4638 
4639 	enqueue_load_avg(cfs_rq, se);
4640 	cfs_rq->avg.util_avg += se->avg.util_avg;
4641 	cfs_rq->avg.util_sum += se->avg.util_sum;
4642 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4643 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4644 
4645 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4646 
4647 	cfs_rq_util_change(cfs_rq, 0);
4648 
4649 	trace_pelt_cfs_tp(cfs_rq);
4650 }
4651 
4652 /**
4653  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4654  * @cfs_rq: cfs_rq to detach from
4655  * @se: sched_entity to detach
4656  *
4657  * Must call update_cfs_rq_load_avg() before this, since we rely on
4658  * cfs_rq->avg.last_update_time being current.
4659  */
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4660 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4661 {
4662 	dequeue_load_avg(cfs_rq, se);
4663 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4664 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4665 	/* See update_cfs_rq_load_avg() */
4666 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4667 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4668 
4669 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4670 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4671 	/* See update_cfs_rq_load_avg() */
4672 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4673 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4674 
4675 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4676 
4677 	cfs_rq_util_change(cfs_rq, 0);
4678 
4679 	trace_pelt_cfs_tp(cfs_rq);
4680 }
4681 
4682 /*
4683  * Optional action to be done while updating the load average
4684  */
4685 #define UPDATE_TG	0x1
4686 #define SKIP_AGE_LOAD	0x2
4687 #define DO_ATTACH	0x4
4688 #define DO_DETACH	0x8
4689 
4690 /* Update task and its cfs_rq load average */
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4691 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4692 {
4693 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4694 	int decayed;
4695 
4696 	/*
4697 	 * Track task load average for carrying it to new CPU after migrated, and
4698 	 * track group sched_entity load average for task_h_load calculation in migration
4699 	 */
4700 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4701 		__update_load_avg_se(now, cfs_rq, se);
4702 
4703 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4704 	decayed |= propagate_entity_load_avg(se);
4705 
4706 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4707 
4708 		/*
4709 		 * DO_ATTACH means we're here from enqueue_entity().
4710 		 * !last_update_time means we've passed through
4711 		 * migrate_task_rq_fair() indicating we migrated.
4712 		 *
4713 		 * IOW we're enqueueing a task on a new CPU.
4714 		 */
4715 		attach_entity_load_avg(cfs_rq, se);
4716 		update_tg_load_avg(cfs_rq);
4717 
4718 	} else if (flags & DO_DETACH) {
4719 		/*
4720 		 * DO_DETACH means we're here from dequeue_entity()
4721 		 * and we are migrating task out of the CPU.
4722 		 */
4723 		detach_entity_load_avg(cfs_rq, se);
4724 		update_tg_load_avg(cfs_rq);
4725 	} else if (decayed) {
4726 		cfs_rq_util_change(cfs_rq, 0);
4727 
4728 		if (flags & UPDATE_TG)
4729 			update_tg_load_avg(cfs_rq);
4730 	}
4731 }
4732 
4733 /*
4734  * Synchronize entity load avg of dequeued entity without locking
4735  * the previous rq.
4736  */
sync_entity_load_avg(struct sched_entity * se)4737 static void sync_entity_load_avg(struct sched_entity *se)
4738 {
4739 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4740 	u64 last_update_time;
4741 
4742 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4743 	__update_load_avg_blocked_se(last_update_time, se);
4744 }
4745 
4746 /*
4747  * Task first catches up with cfs_rq, and then subtract
4748  * itself from the cfs_rq (task must be off the queue now).
4749  */
remove_entity_load_avg(struct sched_entity * se)4750 static void remove_entity_load_avg(struct sched_entity *se)
4751 {
4752 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4753 	unsigned long flags;
4754 
4755 	/*
4756 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4757 	 * enqueue_task_fair() which will have added things to the cfs_rq,
4758 	 * so we can remove unconditionally.
4759 	 */
4760 
4761 	sync_entity_load_avg(se);
4762 
4763 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4764 	++cfs_rq->removed.nr;
4765 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4766 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4767 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4768 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4769 }
4770 
cfs_rq_runnable_avg(struct cfs_rq * cfs_rq)4771 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4772 {
4773 	return cfs_rq->avg.runnable_avg;
4774 }
4775 
cfs_rq_load_avg(struct cfs_rq * cfs_rq)4776 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4777 {
4778 	return cfs_rq->avg.load_avg;
4779 }
4780 
4781 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf);
4782 
task_util(struct task_struct * p)4783 static inline unsigned long task_util(struct task_struct *p)
4784 {
4785 	return READ_ONCE(p->se.avg.util_avg);
4786 }
4787 
task_runnable(struct task_struct * p)4788 static inline unsigned long task_runnable(struct task_struct *p)
4789 {
4790 	return READ_ONCE(p->se.avg.runnable_avg);
4791 }
4792 
_task_util_est(struct task_struct * p)4793 static inline unsigned long _task_util_est(struct task_struct *p)
4794 {
4795 	return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED;
4796 }
4797 
task_util_est(struct task_struct * p)4798 static inline unsigned long task_util_est(struct task_struct *p)
4799 {
4800 	return max(task_util(p), _task_util_est(p));
4801 }
4802 
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)4803 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4804 				    struct task_struct *p)
4805 {
4806 	unsigned int enqueued;
4807 
4808 	if (!sched_feat(UTIL_EST))
4809 		return;
4810 
4811 	/* Update root cfs_rq's estimated utilization */
4812 	enqueued  = cfs_rq->avg.util_est;
4813 	enqueued += _task_util_est(p);
4814 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4815 
4816 	trace_sched_util_est_cfs_tp(cfs_rq);
4817 }
4818 
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4819 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4820 				    struct task_struct *p)
4821 {
4822 	unsigned int enqueued;
4823 
4824 	if (!sched_feat(UTIL_EST))
4825 		return;
4826 
4827 	/* Update root cfs_rq's estimated utilization */
4828 	enqueued  = cfs_rq->avg.util_est;
4829 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4830 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4831 
4832 	trace_sched_util_est_cfs_tp(cfs_rq);
4833 }
4834 
4835 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4836 
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4837 static inline void util_est_update(struct cfs_rq *cfs_rq,
4838 				   struct task_struct *p,
4839 				   bool task_sleep)
4840 {
4841 	unsigned int ewma, dequeued, last_ewma_diff;
4842 
4843 	if (!sched_feat(UTIL_EST))
4844 		return;
4845 
4846 	/*
4847 	 * Skip update of task's estimated utilization when the task has not
4848 	 * yet completed an activation, e.g. being migrated.
4849 	 */
4850 	if (!task_sleep)
4851 		return;
4852 
4853 	/* Get current estimate of utilization */
4854 	ewma = READ_ONCE(p->se.avg.util_est);
4855 
4856 	/*
4857 	 * If the PELT values haven't changed since enqueue time,
4858 	 * skip the util_est update.
4859 	 */
4860 	if (ewma & UTIL_AVG_UNCHANGED)
4861 		return;
4862 
4863 	/* Get utilization at dequeue */
4864 	dequeued = task_util(p);
4865 
4866 	/*
4867 	 * Reset EWMA on utilization increases, the moving average is used only
4868 	 * to smooth utilization decreases.
4869 	 */
4870 	if (ewma <= dequeued) {
4871 		ewma = dequeued;
4872 		goto done;
4873 	}
4874 
4875 	/*
4876 	 * Skip update of task's estimated utilization when its members are
4877 	 * already ~1% close to its last activation value.
4878 	 */
4879 	last_ewma_diff = ewma - dequeued;
4880 	if (last_ewma_diff < UTIL_EST_MARGIN)
4881 		goto done;
4882 
4883 	/*
4884 	 * To avoid underestimate of task utilization, skip updates of EWMA if
4885 	 * we cannot grant that thread got all CPU time it wanted.
4886 	 */
4887 	if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p))
4888 		goto done;
4889 
4890 
4891 	/*
4892 	 * Update Task's estimated utilization
4893 	 *
4894 	 * When *p completes an activation we can consolidate another sample
4895 	 * of the task size. This is done by using this value to update the
4896 	 * Exponential Weighted Moving Average (EWMA):
4897 	 *
4898 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4899 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4900 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4901 	 *          = w * (      -last_ewma_diff           ) +     ewma(t-1)
4902 	 *          = w * (-last_ewma_diff +  ewma(t-1) / w)
4903 	 *
4904 	 * Where 'w' is the weight of new samples, which is configured to be
4905 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4906 	 */
4907 	ewma <<= UTIL_EST_WEIGHT_SHIFT;
4908 	ewma  -= last_ewma_diff;
4909 	ewma >>= UTIL_EST_WEIGHT_SHIFT;
4910 done:
4911 	ewma |= UTIL_AVG_UNCHANGED;
4912 	WRITE_ONCE(p->se.avg.util_est, ewma);
4913 
4914 	trace_sched_util_est_se_tp(&p->se);
4915 }
4916 
get_actual_cpu_capacity(int cpu)4917 static inline unsigned long get_actual_cpu_capacity(int cpu)
4918 {
4919 	unsigned long capacity = arch_scale_cpu_capacity(cpu);
4920 
4921 	capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu));
4922 
4923 	return capacity;
4924 }
4925 
util_fits_cpu(unsigned long util,unsigned long uclamp_min,unsigned long uclamp_max,int cpu)4926 static inline int util_fits_cpu(unsigned long util,
4927 				unsigned long uclamp_min,
4928 				unsigned long uclamp_max,
4929 				int cpu)
4930 {
4931 	unsigned long capacity = capacity_of(cpu);
4932 	unsigned long capacity_orig;
4933 	bool fits, uclamp_max_fits;
4934 
4935 	/*
4936 	 * Check if the real util fits without any uclamp boost/cap applied.
4937 	 */
4938 	fits = fits_capacity(util, capacity);
4939 
4940 	if (!uclamp_is_used())
4941 		return fits;
4942 
4943 	/*
4944 	 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
4945 	 * uclamp_max. We only care about capacity pressure (by using
4946 	 * capacity_of()) for comparing against the real util.
4947 	 *
4948 	 * If a task is boosted to 1024 for example, we don't want a tiny
4949 	 * pressure to skew the check whether it fits a CPU or not.
4950 	 *
4951 	 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
4952 	 * should fit a little cpu even if there's some pressure.
4953 	 *
4954 	 * Only exception is for HW or cpufreq pressure since it has a direct impact
4955 	 * on available OPP of the system.
4956 	 *
4957 	 * We honour it for uclamp_min only as a drop in performance level
4958 	 * could result in not getting the requested minimum performance level.
4959 	 *
4960 	 * For uclamp_max, we can tolerate a drop in performance level as the
4961 	 * goal is to cap the task. So it's okay if it's getting less.
4962 	 */
4963 	capacity_orig = arch_scale_cpu_capacity(cpu);
4964 
4965 	/*
4966 	 * We want to force a task to fit a cpu as implied by uclamp_max.
4967 	 * But we do have some corner cases to cater for..
4968 	 *
4969 	 *
4970 	 *                                 C=z
4971 	 *   |                             ___
4972 	 *   |                  C=y       |   |
4973 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
4974 	 *   |      C=x        |   |      |   |
4975 	 *   |      ___        |   |      |   |
4976 	 *   |     |   |       |   |      |   |    (util somewhere in this region)
4977 	 *   |     |   |       |   |      |   |
4978 	 *   |     |   |       |   |      |   |
4979 	 *   +----------------------------------------
4980 	 *         CPU0        CPU1       CPU2
4981 	 *
4982 	 *   In the above example if a task is capped to a specific performance
4983 	 *   point, y, then when:
4984 	 *
4985 	 *   * util = 80% of x then it does not fit on CPU0 and should migrate
4986 	 *     to CPU1
4987 	 *   * util = 80% of y then it is forced to fit on CPU1 to honour
4988 	 *     uclamp_max request.
4989 	 *
4990 	 *   which is what we're enforcing here. A task always fits if
4991 	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
4992 	 *   the normal upmigration rules should withhold still.
4993 	 *
4994 	 *   Only exception is when we are on max capacity, then we need to be
4995 	 *   careful not to block overutilized state. This is so because:
4996 	 *
4997 	 *     1. There's no concept of capping at max_capacity! We can't go
4998 	 *        beyond this performance level anyway.
4999 	 *     2. The system is being saturated when we're operating near
5000 	 *        max capacity, it doesn't make sense to block overutilized.
5001 	 */
5002 	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5003 	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5004 	fits = fits || uclamp_max_fits;
5005 
5006 	/*
5007 	 *
5008 	 *                                 C=z
5009 	 *   |                             ___       (region a, capped, util >= uclamp_max)
5010 	 *   |                  C=y       |   |
5011 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5012 	 *   |      C=x        |   |      |   |
5013 	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
5014 	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5015 	 *   |     |   |       |   |      |   |
5016 	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
5017 	 *   +----------------------------------------
5018 	 *         CPU0        CPU1       CPU2
5019 	 *
5020 	 * a) If util > uclamp_max, then we're capped, we don't care about
5021 	 *    actual fitness value here. We only care if uclamp_max fits
5022 	 *    capacity without taking margin/pressure into account.
5023 	 *    See comment above.
5024 	 *
5025 	 * b) If uclamp_min <= util <= uclamp_max, then the normal
5026 	 *    fits_capacity() rules apply. Except we need to ensure that we
5027 	 *    enforce we remain within uclamp_max, see comment above.
5028 	 *
5029 	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5030 	 *    need to take into account the boosted value fits the CPU without
5031 	 *    taking margin/pressure into account.
5032 	 *
5033 	 * Cases (a) and (b) are handled in the 'fits' variable already. We
5034 	 * just need to consider an extra check for case (c) after ensuring we
5035 	 * handle the case uclamp_min > uclamp_max.
5036 	 */
5037 	uclamp_min = min(uclamp_min, uclamp_max);
5038 	if (fits && (util < uclamp_min) &&
5039 	    (uclamp_min > get_actual_cpu_capacity(cpu)))
5040 		return -1;
5041 
5042 	return fits;
5043 }
5044 
task_fits_cpu(struct task_struct * p,int cpu)5045 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5046 {
5047 	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5048 	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5049 	unsigned long util = task_util_est(p);
5050 	/*
5051 	 * Return true only if the cpu fully fits the task requirements, which
5052 	 * include the utilization but also the performance hints.
5053 	 */
5054 	return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5055 }
5056 
update_misfit_status(struct task_struct * p,struct rq * rq)5057 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5058 {
5059 	int cpu = cpu_of(rq);
5060 
5061 	if (!sched_asym_cpucap_active())
5062 		return;
5063 
5064 	/*
5065 	 * Affinity allows us to go somewhere higher?  Or are we on biggest
5066 	 * available CPU already? Or do we fit into this CPU ?
5067 	 */
5068 	if (!p || (p->nr_cpus_allowed == 1) ||
5069 	    (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) ||
5070 	    task_fits_cpu(p, cpu)) {
5071 
5072 		rq->misfit_task_load = 0;
5073 		return;
5074 	}
5075 
5076 	/*
5077 	 * Make sure that misfit_task_load will not be null even if
5078 	 * task_h_load() returns 0.
5079 	 */
5080 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5081 }
5082 
__setparam_fair(struct task_struct * p,const struct sched_attr * attr)5083 void __setparam_fair(struct task_struct *p, const struct sched_attr *attr)
5084 {
5085 	struct sched_entity *se = &p->se;
5086 
5087 	p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5088 	if (attr->sched_runtime) {
5089 		se->custom_slice = 1;
5090 		se->slice = clamp_t(u64, attr->sched_runtime,
5091 				      NSEC_PER_MSEC/10,   /* HZ=1000 * 10 */
5092 				      NSEC_PER_MSEC*100); /* HZ=100  / 10 */
5093 	} else {
5094 		se->custom_slice = 0;
5095 		se->slice = sysctl_sched_base_slice;
5096 	}
5097 }
5098 
5099 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5100 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5101 {
5102 	u64 vslice, vruntime = avg_vruntime(cfs_rq);
5103 	s64 lag = 0;
5104 
5105 	if (!se->custom_slice)
5106 		se->slice = sysctl_sched_base_slice;
5107 	vslice = calc_delta_fair(se->slice, se);
5108 
5109 	/*
5110 	 * Due to how V is constructed as the weighted average of entities,
5111 	 * adding tasks with positive lag, or removing tasks with negative lag
5112 	 * will move 'time' backwards, this can screw around with the lag of
5113 	 * other tasks.
5114 	 *
5115 	 * EEVDF: placement strategy #1 / #2
5116 	 */
5117 	if (sched_feat(PLACE_LAG) && cfs_rq->nr_queued && se->vlag) {
5118 		struct sched_entity *curr = cfs_rq->curr;
5119 		unsigned long load;
5120 
5121 		lag = se->vlag;
5122 
5123 		/*
5124 		 * If we want to place a task and preserve lag, we have to
5125 		 * consider the effect of the new entity on the weighted
5126 		 * average and compensate for this, otherwise lag can quickly
5127 		 * evaporate.
5128 		 *
5129 		 * Lag is defined as:
5130 		 *
5131 		 *   lag_i = S - s_i = w_i * (V - v_i)
5132 		 *
5133 		 * To avoid the 'w_i' term all over the place, we only track
5134 		 * the virtual lag:
5135 		 *
5136 		 *   vl_i = V - v_i <=> v_i = V - vl_i
5137 		 *
5138 		 * And we take V to be the weighted average of all v:
5139 		 *
5140 		 *   V = (\Sum w_j*v_j) / W
5141 		 *
5142 		 * Where W is: \Sum w_j
5143 		 *
5144 		 * Then, the weighted average after adding an entity with lag
5145 		 * vl_i is given by:
5146 		 *
5147 		 *   V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5148 		 *      = (W*V + w_i*(V - vl_i)) / (W + w_i)
5149 		 *      = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5150 		 *      = (V*(W + w_i) - w_i*vl_i) / (W + w_i)
5151 		 *      = V - w_i*vl_i / (W + w_i)
5152 		 *
5153 		 * And the actual lag after adding an entity with vl_i is:
5154 		 *
5155 		 *   vl'_i = V' - v_i
5156 		 *         = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5157 		 *         = vl_i - w_i*vl_i / (W + w_i)
5158 		 *
5159 		 * Which is strictly less than vl_i. So in order to preserve lag
5160 		 * we should inflate the lag before placement such that the
5161 		 * effective lag after placement comes out right.
5162 		 *
5163 		 * As such, invert the above relation for vl'_i to get the vl_i
5164 		 * we need to use such that the lag after placement is the lag
5165 		 * we computed before dequeue.
5166 		 *
5167 		 *   vl'_i = vl_i - w_i*vl_i / (W + w_i)
5168 		 *         = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5169 		 *
5170 		 *   (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5171 		 *                   = W*vl_i
5172 		 *
5173 		 *   vl_i = (W + w_i)*vl'_i / W
5174 		 */
5175 		load = cfs_rq->avg_load;
5176 		if (curr && curr->on_rq)
5177 			load += scale_load_down(curr->load.weight);
5178 
5179 		lag *= load + scale_load_down(se->load.weight);
5180 		if (WARN_ON_ONCE(!load))
5181 			load = 1;
5182 		lag = div_s64(lag, load);
5183 	}
5184 
5185 	se->vruntime = vruntime - lag;
5186 
5187 	if (se->rel_deadline) {
5188 		se->deadline += se->vruntime;
5189 		se->rel_deadline = 0;
5190 		return;
5191 	}
5192 
5193 	/*
5194 	 * When joining the competition; the existing tasks will be,
5195 	 * on average, halfway through their slice, as such start tasks
5196 	 * off with half a slice to ease into the competition.
5197 	 */
5198 	if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5199 		vslice /= 2;
5200 
5201 	/*
5202 	 * EEVDF: vd_i = ve_i + r_i/w_i
5203 	 */
5204 	se->deadline = se->vruntime + vslice;
5205 }
5206 
5207 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5208 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5209 
5210 static void
5211 requeue_delayed_entity(struct sched_entity *se);
5212 
5213 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5214 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5215 {
5216 	bool curr = cfs_rq->curr == se;
5217 
5218 	/*
5219 	 * If we're the current task, we must renormalise before calling
5220 	 * update_curr().
5221 	 */
5222 	if (curr)
5223 		place_entity(cfs_rq, se, flags);
5224 
5225 	update_curr(cfs_rq);
5226 
5227 	/*
5228 	 * When enqueuing a sched_entity, we must:
5229 	 *   - Update loads to have both entity and cfs_rq synced with now.
5230 	 *   - For group_entity, update its runnable_weight to reflect the new
5231 	 *     h_nr_runnable of its group cfs_rq.
5232 	 *   - For group_entity, update its weight to reflect the new share of
5233 	 *     its group cfs_rq
5234 	 *   - Add its new weight to cfs_rq->load.weight
5235 	 */
5236 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5237 	se_update_runnable(se);
5238 	/*
5239 	 * XXX update_load_avg() above will have attached us to the pelt sum;
5240 	 * but update_cfs_group() here will re-adjust the weight and have to
5241 	 * undo/redo all that. Seems wasteful.
5242 	 */
5243 	update_cfs_group(se);
5244 
5245 	/*
5246 	 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5247 	 * we can place the entity.
5248 	 */
5249 	if (!curr)
5250 		place_entity(cfs_rq, se, flags);
5251 
5252 	account_entity_enqueue(cfs_rq, se);
5253 
5254 	/* Entity has migrated, no longer consider this task hot */
5255 	if (flags & ENQUEUE_MIGRATED)
5256 		se->exec_start = 0;
5257 
5258 	check_schedstat_required();
5259 	update_stats_enqueue_fair(cfs_rq, se, flags);
5260 	if (!curr)
5261 		__enqueue_entity(cfs_rq, se);
5262 	se->on_rq = 1;
5263 
5264 	if (cfs_rq->nr_queued == 1) {
5265 		check_enqueue_throttle(cfs_rq);
5266 		list_add_leaf_cfs_rq(cfs_rq);
5267 #ifdef CONFIG_CFS_BANDWIDTH
5268 		if (cfs_rq->pelt_clock_throttled) {
5269 			struct rq *rq = rq_of(cfs_rq);
5270 
5271 			cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5272 				cfs_rq->throttled_clock_pelt;
5273 			cfs_rq->pelt_clock_throttled = 0;
5274 		}
5275 #endif
5276 	}
5277 }
5278 
__clear_buddies_next(struct sched_entity * se)5279 static void __clear_buddies_next(struct sched_entity *se)
5280 {
5281 	for_each_sched_entity(se) {
5282 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5283 		if (cfs_rq->next != se)
5284 			break;
5285 
5286 		cfs_rq->next = NULL;
5287 	}
5288 }
5289 
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)5290 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5291 {
5292 	if (cfs_rq->next == se)
5293 		__clear_buddies_next(se);
5294 }
5295 
5296 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5297 
set_delayed(struct sched_entity * se)5298 static void set_delayed(struct sched_entity *se)
5299 {
5300 	se->sched_delayed = 1;
5301 
5302 	/*
5303 	 * Delayed se of cfs_rq have no tasks queued on them.
5304 	 * Do not adjust h_nr_runnable since dequeue_entities()
5305 	 * will account it for blocked tasks.
5306 	 */
5307 	if (!entity_is_task(se))
5308 		return;
5309 
5310 	for_each_sched_entity(se) {
5311 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5312 
5313 		cfs_rq->h_nr_runnable--;
5314 	}
5315 }
5316 
clear_delayed(struct sched_entity * se)5317 static void clear_delayed(struct sched_entity *se)
5318 {
5319 	se->sched_delayed = 0;
5320 
5321 	/*
5322 	 * Delayed se of cfs_rq have no tasks queued on them.
5323 	 * Do not adjust h_nr_runnable since a dequeue has
5324 	 * already accounted for it or an enqueue of a task
5325 	 * below it will account for it in enqueue_task_fair().
5326 	 */
5327 	if (!entity_is_task(se))
5328 		return;
5329 
5330 	for_each_sched_entity(se) {
5331 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5332 
5333 		cfs_rq->h_nr_runnable++;
5334 	}
5335 }
5336 
finish_delayed_dequeue_entity(struct sched_entity * se)5337 static inline void finish_delayed_dequeue_entity(struct sched_entity *se)
5338 {
5339 	clear_delayed(se);
5340 	if (sched_feat(DELAY_ZERO) && se->vlag > 0)
5341 		se->vlag = 0;
5342 }
5343 
5344 static bool
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5345 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5346 {
5347 	bool sleep = flags & DEQUEUE_SLEEP;
5348 	int action = UPDATE_TG;
5349 
5350 	update_curr(cfs_rq);
5351 	clear_buddies(cfs_rq, se);
5352 
5353 	if (flags & DEQUEUE_DELAYED) {
5354 		WARN_ON_ONCE(!se->sched_delayed);
5355 	} else {
5356 		bool delay = sleep;
5357 		/*
5358 		 * DELAY_DEQUEUE relies on spurious wakeups, special task
5359 		 * states must not suffer spurious wakeups, excempt them.
5360 		 */
5361 		if (flags & (DEQUEUE_SPECIAL | DEQUEUE_THROTTLE))
5362 			delay = false;
5363 
5364 		WARN_ON_ONCE(delay && se->sched_delayed);
5365 
5366 		if (sched_feat(DELAY_DEQUEUE) && delay &&
5367 		    !entity_eligible(cfs_rq, se)) {
5368 			update_load_avg(cfs_rq, se, 0);
5369 			set_delayed(se);
5370 			return false;
5371 		}
5372 	}
5373 
5374 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5375 		action |= DO_DETACH;
5376 
5377 	/*
5378 	 * When dequeuing a sched_entity, we must:
5379 	 *   - Update loads to have both entity and cfs_rq synced with now.
5380 	 *   - For group_entity, update its runnable_weight to reflect the new
5381 	 *     h_nr_runnable of its group cfs_rq.
5382 	 *   - Subtract its previous weight from cfs_rq->load.weight.
5383 	 *   - For group entity, update its weight to reflect the new share
5384 	 *     of its group cfs_rq.
5385 	 */
5386 	update_load_avg(cfs_rq, se, action);
5387 	se_update_runnable(se);
5388 
5389 	update_stats_dequeue_fair(cfs_rq, se, flags);
5390 
5391 	update_entity_lag(cfs_rq, se);
5392 	if (sched_feat(PLACE_REL_DEADLINE) && !sleep) {
5393 		se->deadline -= se->vruntime;
5394 		se->rel_deadline = 1;
5395 	}
5396 
5397 	if (se != cfs_rq->curr)
5398 		__dequeue_entity(cfs_rq, se);
5399 	se->on_rq = 0;
5400 	account_entity_dequeue(cfs_rq, se);
5401 
5402 	/* return excess runtime on last dequeue */
5403 	return_cfs_rq_runtime(cfs_rq);
5404 
5405 	update_cfs_group(se);
5406 
5407 	if (flags & DEQUEUE_DELAYED)
5408 		finish_delayed_dequeue_entity(se);
5409 
5410 	if (cfs_rq->nr_queued == 0) {
5411 		update_idle_cfs_rq_clock_pelt(cfs_rq);
5412 #ifdef CONFIG_CFS_BANDWIDTH
5413 		if (throttled_hierarchy(cfs_rq)) {
5414 			struct rq *rq = rq_of(cfs_rq);
5415 
5416 			list_del_leaf_cfs_rq(cfs_rq);
5417 			cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5418 			cfs_rq->pelt_clock_throttled = 1;
5419 		}
5420 #endif
5421 	}
5422 
5423 	return true;
5424 }
5425 
5426 static void
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)5427 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5428 {
5429 	clear_buddies(cfs_rq, se);
5430 
5431 	/* 'current' is not kept within the tree. */
5432 	if (se->on_rq) {
5433 		/*
5434 		 * Any task has to be enqueued before it get to execute on
5435 		 * a CPU. So account for the time it spent waiting on the
5436 		 * runqueue.
5437 		 */
5438 		update_stats_wait_end_fair(cfs_rq, se);
5439 		__dequeue_entity(cfs_rq, se);
5440 		update_load_avg(cfs_rq, se, UPDATE_TG);
5441 
5442 		set_protect_slice(cfs_rq, se);
5443 	}
5444 
5445 	update_stats_curr_start(cfs_rq, se);
5446 	WARN_ON_ONCE(cfs_rq->curr);
5447 	cfs_rq->curr = se;
5448 
5449 	/*
5450 	 * Track our maximum slice length, if the CPU's load is at
5451 	 * least twice that of our own weight (i.e. don't track it
5452 	 * when there are only lesser-weight tasks around):
5453 	 */
5454 	if (schedstat_enabled() &&
5455 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5456 		struct sched_statistics *stats;
5457 
5458 		stats = __schedstats_from_se(se);
5459 		__schedstat_set(stats->slice_max,
5460 				max((u64)stats->slice_max,
5461 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
5462 	}
5463 
5464 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
5465 }
5466 
5467 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags);
5468 
5469 /*
5470  * Pick the next process, keeping these things in mind, in this order:
5471  * 1) keep things fair between processes/task groups
5472  * 2) pick the "next" process, since someone really wants that to run
5473  * 3) pick the "last" process, for cache locality
5474  * 4) do not run the "skip" process, if something else is available
5475  */
5476 static struct sched_entity *
pick_next_entity(struct rq * rq,struct cfs_rq * cfs_rq)5477 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq)
5478 {
5479 	struct sched_entity *se;
5480 
5481 	se = pick_eevdf(cfs_rq);
5482 	if (se->sched_delayed) {
5483 		dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
5484 		/*
5485 		 * Must not reference @se again, see __block_task().
5486 		 */
5487 		return NULL;
5488 	}
5489 	return se;
5490 }
5491 
5492 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5493 
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)5494 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5495 {
5496 	/*
5497 	 * If still on the runqueue then deactivate_task()
5498 	 * was not called and update_curr() has to be done:
5499 	 */
5500 	if (prev->on_rq)
5501 		update_curr(cfs_rq);
5502 
5503 	/* throttle cfs_rqs exceeding runtime */
5504 	check_cfs_rq_runtime(cfs_rq);
5505 
5506 	if (prev->on_rq) {
5507 		update_stats_wait_start_fair(cfs_rq, prev);
5508 		/* Put 'current' back into the tree. */
5509 		__enqueue_entity(cfs_rq, prev);
5510 		/* in !on_rq case, update occurred at dequeue */
5511 		update_load_avg(cfs_rq, prev, 0);
5512 	}
5513 	WARN_ON_ONCE(cfs_rq->curr != prev);
5514 	cfs_rq->curr = NULL;
5515 }
5516 
5517 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)5518 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5519 {
5520 	/*
5521 	 * Update run-time statistics of the 'current'.
5522 	 */
5523 	update_curr(cfs_rq);
5524 
5525 	/*
5526 	 * Ensure that runnable average is periodically updated.
5527 	 */
5528 	update_load_avg(cfs_rq, curr, UPDATE_TG);
5529 	update_cfs_group(curr);
5530 
5531 #ifdef CONFIG_SCHED_HRTICK
5532 	/*
5533 	 * queued ticks are scheduled to match the slice, so don't bother
5534 	 * validating it and just reschedule.
5535 	 */
5536 	if (queued) {
5537 		resched_curr_lazy(rq_of(cfs_rq));
5538 		return;
5539 	}
5540 #endif
5541 }
5542 
5543 
5544 /**************************************************
5545  * CFS bandwidth control machinery
5546  */
5547 
5548 #ifdef CONFIG_CFS_BANDWIDTH
5549 
5550 #ifdef CONFIG_JUMP_LABEL
5551 static struct static_key __cfs_bandwidth_used;
5552 
cfs_bandwidth_used(void)5553 static inline bool cfs_bandwidth_used(void)
5554 {
5555 	return static_key_false(&__cfs_bandwidth_used);
5556 }
5557 
cfs_bandwidth_usage_inc(void)5558 void cfs_bandwidth_usage_inc(void)
5559 {
5560 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5561 }
5562 
cfs_bandwidth_usage_dec(void)5563 void cfs_bandwidth_usage_dec(void)
5564 {
5565 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5566 }
5567 #else /* !CONFIG_JUMP_LABEL: */
cfs_bandwidth_used(void)5568 static bool cfs_bandwidth_used(void)
5569 {
5570 	return true;
5571 }
5572 
cfs_bandwidth_usage_inc(void)5573 void cfs_bandwidth_usage_inc(void) {}
cfs_bandwidth_usage_dec(void)5574 void cfs_bandwidth_usage_dec(void) {}
5575 #endif /* !CONFIG_JUMP_LABEL */
5576 
sched_cfs_bandwidth_slice(void)5577 static inline u64 sched_cfs_bandwidth_slice(void)
5578 {
5579 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5580 }
5581 
5582 /*
5583  * Replenish runtime according to assigned quota. We use sched_clock_cpu
5584  * directly instead of rq->clock to avoid adding additional synchronization
5585  * around rq->lock.
5586  *
5587  * requires cfs_b->lock
5588  */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)5589 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5590 {
5591 	s64 runtime;
5592 
5593 	if (unlikely(cfs_b->quota == RUNTIME_INF))
5594 		return;
5595 
5596 	cfs_b->runtime += cfs_b->quota;
5597 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
5598 	if (runtime > 0) {
5599 		cfs_b->burst_time += runtime;
5600 		cfs_b->nr_burst++;
5601 	}
5602 
5603 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5604 	cfs_b->runtime_snap = cfs_b->runtime;
5605 }
5606 
tg_cfs_bandwidth(struct task_group * tg)5607 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5608 {
5609 	return &tg->cfs_bandwidth;
5610 }
5611 
5612 /* returns 0 on failure to allocate runtime */
__assign_cfs_rq_runtime(struct cfs_bandwidth * cfs_b,struct cfs_rq * cfs_rq,u64 target_runtime)5613 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5614 				   struct cfs_rq *cfs_rq, u64 target_runtime)
5615 {
5616 	u64 min_amount, amount = 0;
5617 
5618 	lockdep_assert_held(&cfs_b->lock);
5619 
5620 	/* note: this is a positive sum as runtime_remaining <= 0 */
5621 	min_amount = target_runtime - cfs_rq->runtime_remaining;
5622 
5623 	if (cfs_b->quota == RUNTIME_INF)
5624 		amount = min_amount;
5625 	else {
5626 		start_cfs_bandwidth(cfs_b);
5627 
5628 		if (cfs_b->runtime > 0) {
5629 			amount = min(cfs_b->runtime, min_amount);
5630 			cfs_b->runtime -= amount;
5631 			cfs_b->idle = 0;
5632 		}
5633 	}
5634 
5635 	cfs_rq->runtime_remaining += amount;
5636 
5637 	return cfs_rq->runtime_remaining > 0;
5638 }
5639 
5640 /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)5641 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5642 {
5643 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5644 	int ret;
5645 
5646 	raw_spin_lock(&cfs_b->lock);
5647 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5648 	raw_spin_unlock(&cfs_b->lock);
5649 
5650 	return ret;
5651 }
5652 
__account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5653 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5654 {
5655 	/* dock delta_exec before expiring quota (as it could span periods) */
5656 	cfs_rq->runtime_remaining -= delta_exec;
5657 
5658 	if (likely(cfs_rq->runtime_remaining > 0))
5659 		return;
5660 
5661 	if (cfs_rq->throttled)
5662 		return;
5663 	/*
5664 	 * if we're unable to extend our runtime we resched so that the active
5665 	 * hierarchy can be throttled
5666 	 */
5667 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5668 		resched_curr(rq_of(cfs_rq));
5669 }
5670 
5671 static __always_inline
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5672 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5673 {
5674 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5675 		return;
5676 
5677 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5678 }
5679 
cfs_rq_throttled(struct cfs_rq * cfs_rq)5680 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5681 {
5682 	return cfs_bandwidth_used() && cfs_rq->throttled;
5683 }
5684 
cfs_rq_pelt_clock_throttled(struct cfs_rq * cfs_rq)5685 static inline bool cfs_rq_pelt_clock_throttled(struct cfs_rq *cfs_rq)
5686 {
5687 	return cfs_bandwidth_used() && cfs_rq->pelt_clock_throttled;
5688 }
5689 
5690 /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)5691 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5692 {
5693 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5694 }
5695 
lb_throttled_hierarchy(struct task_struct * p,int dst_cpu)5696 static inline int lb_throttled_hierarchy(struct task_struct *p, int dst_cpu)
5697 {
5698 	return throttled_hierarchy(task_group(p)->cfs_rq[dst_cpu]);
5699 }
5700 
task_is_throttled(struct task_struct * p)5701 static inline bool task_is_throttled(struct task_struct *p)
5702 {
5703 	return cfs_bandwidth_used() && p->throttled;
5704 }
5705 
5706 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags);
throttle_cfs_rq_work(struct callback_head * work)5707 static void throttle_cfs_rq_work(struct callback_head *work)
5708 {
5709 	struct task_struct *p = container_of(work, struct task_struct, sched_throttle_work);
5710 	struct sched_entity *se;
5711 	struct cfs_rq *cfs_rq;
5712 	struct rq *rq;
5713 
5714 	WARN_ON_ONCE(p != current);
5715 	p->sched_throttle_work.next = &p->sched_throttle_work;
5716 
5717 	/*
5718 	 * If task is exiting, then there won't be a return to userspace, so we
5719 	 * don't have to bother with any of this.
5720 	 */
5721 	if ((p->flags & PF_EXITING))
5722 		return;
5723 
5724 	scoped_guard(task_rq_lock, p) {
5725 		se = &p->se;
5726 		cfs_rq = cfs_rq_of(se);
5727 
5728 		/* Raced, forget */
5729 		if (p->sched_class != &fair_sched_class)
5730 			return;
5731 
5732 		/*
5733 		 * If not in limbo, then either replenish has happened or this
5734 		 * task got migrated out of the throttled cfs_rq, move along.
5735 		 */
5736 		if (!cfs_rq->throttle_count)
5737 			return;
5738 		rq = scope.rq;
5739 		update_rq_clock(rq);
5740 		WARN_ON_ONCE(p->throttled || !list_empty(&p->throttle_node));
5741 		dequeue_task_fair(rq, p, DEQUEUE_SLEEP | DEQUEUE_THROTTLE);
5742 		list_add(&p->throttle_node, &cfs_rq->throttled_limbo_list);
5743 		/*
5744 		 * Must not set throttled before dequeue or dequeue will
5745 		 * mistakenly regard this task as an already throttled one.
5746 		 */
5747 		p->throttled = true;
5748 		resched_curr(rq);
5749 	}
5750 }
5751 
init_cfs_throttle_work(struct task_struct * p)5752 void init_cfs_throttle_work(struct task_struct *p)
5753 {
5754 	init_task_work(&p->sched_throttle_work, throttle_cfs_rq_work);
5755 	/* Protect against double add, see throttle_cfs_rq() and throttle_cfs_rq_work() */
5756 	p->sched_throttle_work.next = &p->sched_throttle_work;
5757 	INIT_LIST_HEAD(&p->throttle_node);
5758 }
5759 
5760 /*
5761  * Task is throttled and someone wants to dequeue it again:
5762  * it could be sched/core when core needs to do things like
5763  * task affinity change, task group change, task sched class
5764  * change etc. and in these cases, DEQUEUE_SLEEP is not set;
5765  * or the task is blocked after throttled due to freezer etc.
5766  * and in these cases, DEQUEUE_SLEEP is set.
5767  */
5768 static void detach_task_cfs_rq(struct task_struct *p);
dequeue_throttled_task(struct task_struct * p,int flags)5769 static void dequeue_throttled_task(struct task_struct *p, int flags)
5770 {
5771 	WARN_ON_ONCE(p->se.on_rq);
5772 	list_del_init(&p->throttle_node);
5773 
5774 	/* task blocked after throttled */
5775 	if (flags & DEQUEUE_SLEEP) {
5776 		p->throttled = false;
5777 		return;
5778 	}
5779 
5780 	/*
5781 	 * task is migrating off its old cfs_rq, detach
5782 	 * the task's load from its old cfs_rq.
5783 	 */
5784 	if (task_on_rq_migrating(p))
5785 		detach_task_cfs_rq(p);
5786 }
5787 
enqueue_throttled_task(struct task_struct * p)5788 static bool enqueue_throttled_task(struct task_struct *p)
5789 {
5790 	struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
5791 
5792 	/* @p should have gone through dequeue_throttled_task() first */
5793 	WARN_ON_ONCE(!list_empty(&p->throttle_node));
5794 
5795 	/*
5796 	 * If the throttled task @p is enqueued to a throttled cfs_rq,
5797 	 * take the fast path by directly putting the task on the
5798 	 * target cfs_rq's limbo list.
5799 	 *
5800 	 * Do not do that when @p is current because the following race can
5801 	 * cause @p's group_node to be incorectly re-insterted in its rq's
5802 	 * cfs_tasks list, despite being throttled:
5803 	 *
5804 	 *     cpuX                       cpuY
5805 	 *   p ret2user
5806 	 *  throttle_cfs_rq_work()  sched_move_task(p)
5807 	 *  LOCK task_rq_lock
5808 	 *  dequeue_task_fair(p)
5809 	 *  UNLOCK task_rq_lock
5810 	 *                          LOCK task_rq_lock
5811 	 *                          task_current_donor(p) == true
5812 	 *                          task_on_rq_queued(p) == true
5813 	 *                          dequeue_task(p)
5814 	 *                          put_prev_task(p)
5815 	 *                          sched_change_group()
5816 	 *                          enqueue_task(p) -> p's new cfs_rq
5817 	 *                                             is throttled, go
5818 	 *                                             fast path and skip
5819 	 *                                             actual enqueue
5820 	 *                          set_next_task(p)
5821 	 *                    list_move(&se->group_node, &rq->cfs_tasks); // bug
5822 	 *  schedule()
5823 	 *
5824 	 * In the above race case, @p current cfs_rq is in the same rq as
5825 	 * its previous cfs_rq because sched_move_task() only moves a task
5826 	 * to a different group from the same rq, so we can use its current
5827 	 * cfs_rq to derive rq and test if the task is current.
5828 	 */
5829 	if (throttled_hierarchy(cfs_rq) &&
5830 	    !task_current_donor(rq_of(cfs_rq), p)) {
5831 		list_add(&p->throttle_node, &cfs_rq->throttled_limbo_list);
5832 		return true;
5833 	}
5834 
5835 	/* we can't take the fast path, do an actual enqueue*/
5836 	p->throttled = false;
5837 	return false;
5838 }
5839 
5840 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags);
tg_unthrottle_up(struct task_group * tg,void * data)5841 static int tg_unthrottle_up(struct task_group *tg, void *data)
5842 {
5843 	struct rq *rq = data;
5844 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5845 	struct task_struct *p, *tmp;
5846 
5847 	if (--cfs_rq->throttle_count)
5848 		return 0;
5849 
5850 	if (cfs_rq->pelt_clock_throttled) {
5851 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5852 					     cfs_rq->throttled_clock_pelt;
5853 		cfs_rq->pelt_clock_throttled = 0;
5854 	}
5855 
5856 	if (cfs_rq->throttled_clock_self) {
5857 		u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5858 
5859 		cfs_rq->throttled_clock_self = 0;
5860 
5861 		if (WARN_ON_ONCE((s64)delta < 0))
5862 			delta = 0;
5863 
5864 		cfs_rq->throttled_clock_self_time += delta;
5865 	}
5866 
5867 	/* Re-enqueue the tasks that have been throttled at this level. */
5868 	list_for_each_entry_safe(p, tmp, &cfs_rq->throttled_limbo_list, throttle_node) {
5869 		list_del_init(&p->throttle_node);
5870 		p->throttled = false;
5871 		enqueue_task_fair(rq_of(cfs_rq), p, ENQUEUE_WAKEUP);
5872 	}
5873 
5874 	/* Add cfs_rq with load or one or more already running entities to the list */
5875 	if (!cfs_rq_is_decayed(cfs_rq))
5876 		list_add_leaf_cfs_rq(cfs_rq);
5877 
5878 	return 0;
5879 }
5880 
task_has_throttle_work(struct task_struct * p)5881 static inline bool task_has_throttle_work(struct task_struct *p)
5882 {
5883 	return p->sched_throttle_work.next != &p->sched_throttle_work;
5884 }
5885 
task_throttle_setup_work(struct task_struct * p)5886 static inline void task_throttle_setup_work(struct task_struct *p)
5887 {
5888 	if (task_has_throttle_work(p))
5889 		return;
5890 
5891 	/*
5892 	 * Kthreads and exiting tasks don't return to userspace, so adding the
5893 	 * work is pointless
5894 	 */
5895 	if ((p->flags & (PF_EXITING | PF_KTHREAD)))
5896 		return;
5897 
5898 	task_work_add(p, &p->sched_throttle_work, TWA_RESUME);
5899 }
5900 
record_throttle_clock(struct cfs_rq * cfs_rq)5901 static void record_throttle_clock(struct cfs_rq *cfs_rq)
5902 {
5903 	struct rq *rq = rq_of(cfs_rq);
5904 
5905 	if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5906 		cfs_rq->throttled_clock = rq_clock(rq);
5907 
5908 	if (!cfs_rq->throttled_clock_self)
5909 		cfs_rq->throttled_clock_self = rq_clock(rq);
5910 }
5911 
tg_throttle_down(struct task_group * tg,void * data)5912 static int tg_throttle_down(struct task_group *tg, void *data)
5913 {
5914 	struct rq *rq = data;
5915 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5916 
5917 	if (cfs_rq->throttle_count++)
5918 		return 0;
5919 
5920 	/*
5921 	 * For cfs_rqs that still have entities enqueued, PELT clock
5922 	 * stop happens at dequeue time when all entities are dequeued.
5923 	 */
5924 	if (!cfs_rq->nr_queued) {
5925 		list_del_leaf_cfs_rq(cfs_rq);
5926 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5927 		cfs_rq->pelt_clock_throttled = 1;
5928 	}
5929 
5930 	WARN_ON_ONCE(cfs_rq->throttled_clock_self);
5931 	WARN_ON_ONCE(!list_empty(&cfs_rq->throttled_limbo_list));
5932 	return 0;
5933 }
5934 
throttle_cfs_rq(struct cfs_rq * cfs_rq)5935 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5936 {
5937 	struct rq *rq = rq_of(cfs_rq);
5938 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5939 	int dequeue = 1;
5940 
5941 	raw_spin_lock(&cfs_b->lock);
5942 	/* This will start the period timer if necessary */
5943 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5944 		/*
5945 		 * We have raced with bandwidth becoming available, and if we
5946 		 * actually throttled the timer might not unthrottle us for an
5947 		 * entire period. We additionally needed to make sure that any
5948 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5949 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5950 		 * for 1ns of runtime rather than just check cfs_b.
5951 		 */
5952 		dequeue = 0;
5953 	} else {
5954 		list_add_tail_rcu(&cfs_rq->throttled_list,
5955 				  &cfs_b->throttled_cfs_rq);
5956 	}
5957 	raw_spin_unlock(&cfs_b->lock);
5958 
5959 	if (!dequeue)
5960 		return false;  /* Throttle no longer required. */
5961 
5962 	/* freeze hierarchy runnable averages while throttled */
5963 	rcu_read_lock();
5964 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5965 	rcu_read_unlock();
5966 
5967 	/*
5968 	 * Note: distribution will already see us throttled via the
5969 	 * throttled-list.  rq->lock protects completion.
5970 	 */
5971 	cfs_rq->throttled = 1;
5972 	WARN_ON_ONCE(cfs_rq->throttled_clock);
5973 	return true;
5974 }
5975 
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)5976 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5977 {
5978 	struct rq *rq = rq_of(cfs_rq);
5979 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5980 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5981 
5982 	/*
5983 	 * It's possible we are called with runtime_remaining < 0 due to things
5984 	 * like async unthrottled us with a positive runtime_remaining but other
5985 	 * still running entities consumed those runtime before we reached here.
5986 	 *
5987 	 * We can't unthrottle this cfs_rq without any runtime remaining because
5988 	 * any enqueue in tg_unthrottle_up() will immediately trigger a throttle,
5989 	 * which is not supposed to happen on unthrottle path.
5990 	 */
5991 	if (cfs_rq->runtime_enabled && cfs_rq->runtime_remaining <= 0)
5992 		return;
5993 
5994 	cfs_rq->throttled = 0;
5995 
5996 	update_rq_clock(rq);
5997 
5998 	raw_spin_lock(&cfs_b->lock);
5999 	if (cfs_rq->throttled_clock) {
6000 		cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
6001 		cfs_rq->throttled_clock = 0;
6002 	}
6003 	list_del_rcu(&cfs_rq->throttled_list);
6004 	raw_spin_unlock(&cfs_b->lock);
6005 
6006 	/* update hierarchical throttle state */
6007 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
6008 
6009 	if (!cfs_rq->load.weight) {
6010 		if (!cfs_rq->on_list)
6011 			return;
6012 		/*
6013 		 * Nothing to run but something to decay (on_list)?
6014 		 * Complete the branch.
6015 		 */
6016 		for_each_sched_entity(se) {
6017 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
6018 				break;
6019 		}
6020 	}
6021 
6022 	assert_list_leaf_cfs_rq(rq);
6023 
6024 	/* Determine whether we need to wake up potentially idle CPU: */
6025 	if (rq->curr == rq->idle && rq->cfs.nr_queued)
6026 		resched_curr(rq);
6027 }
6028 
__cfsb_csd_unthrottle(void * arg)6029 static void __cfsb_csd_unthrottle(void *arg)
6030 {
6031 	struct cfs_rq *cursor, *tmp;
6032 	struct rq *rq = arg;
6033 	struct rq_flags rf;
6034 
6035 	rq_lock(rq, &rf);
6036 
6037 	/*
6038 	 * Iterating over the list can trigger several call to
6039 	 * update_rq_clock() in unthrottle_cfs_rq().
6040 	 * Do it once and skip the potential next ones.
6041 	 */
6042 	update_rq_clock(rq);
6043 	rq_clock_start_loop_update(rq);
6044 
6045 	/*
6046 	 * Since we hold rq lock we're safe from concurrent manipulation of
6047 	 * the CSD list. However, this RCU critical section annotates the
6048 	 * fact that we pair with sched_free_group_rcu(), so that we cannot
6049 	 * race with group being freed in the window between removing it
6050 	 * from the list and advancing to the next entry in the list.
6051 	 */
6052 	rcu_read_lock();
6053 
6054 	list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
6055 				 throttled_csd_list) {
6056 		list_del_init(&cursor->throttled_csd_list);
6057 
6058 		if (cfs_rq_throttled(cursor))
6059 			unthrottle_cfs_rq(cursor);
6060 	}
6061 
6062 	rcu_read_unlock();
6063 
6064 	rq_clock_stop_loop_update(rq);
6065 	rq_unlock(rq, &rf);
6066 }
6067 
__unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6068 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6069 {
6070 	struct rq *rq = rq_of(cfs_rq);
6071 	bool first;
6072 
6073 	if (rq == this_rq()) {
6074 		unthrottle_cfs_rq(cfs_rq);
6075 		return;
6076 	}
6077 
6078 	/* Already enqueued */
6079 	if (WARN_ON_ONCE(!list_empty(&cfs_rq->throttled_csd_list)))
6080 		return;
6081 
6082 	first = list_empty(&rq->cfsb_csd_list);
6083 	list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
6084 	if (first)
6085 		smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
6086 }
6087 
unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6088 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6089 {
6090 	lockdep_assert_rq_held(rq_of(cfs_rq));
6091 
6092 	if (WARN_ON_ONCE(!cfs_rq_throttled(cfs_rq) ||
6093 	    cfs_rq->runtime_remaining <= 0))
6094 		return;
6095 
6096 	__unthrottle_cfs_rq_async(cfs_rq);
6097 }
6098 
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b)6099 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
6100 {
6101 	int this_cpu = smp_processor_id();
6102 	u64 runtime, remaining = 1;
6103 	bool throttled = false;
6104 	struct cfs_rq *cfs_rq, *tmp;
6105 	struct rq_flags rf;
6106 	struct rq *rq;
6107 	LIST_HEAD(local_unthrottle);
6108 
6109 	rcu_read_lock();
6110 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6111 				throttled_list) {
6112 		rq = rq_of(cfs_rq);
6113 
6114 		if (!remaining) {
6115 			throttled = true;
6116 			break;
6117 		}
6118 
6119 		rq_lock_irqsave(rq, &rf);
6120 		if (!cfs_rq_throttled(cfs_rq))
6121 			goto next;
6122 
6123 		/* Already queued for async unthrottle */
6124 		if (!list_empty(&cfs_rq->throttled_csd_list))
6125 			goto next;
6126 
6127 		/* By the above checks, this should never be true */
6128 		WARN_ON_ONCE(cfs_rq->runtime_remaining > 0);
6129 
6130 		raw_spin_lock(&cfs_b->lock);
6131 		runtime = -cfs_rq->runtime_remaining + 1;
6132 		if (runtime > cfs_b->runtime)
6133 			runtime = cfs_b->runtime;
6134 		cfs_b->runtime -= runtime;
6135 		remaining = cfs_b->runtime;
6136 		raw_spin_unlock(&cfs_b->lock);
6137 
6138 		cfs_rq->runtime_remaining += runtime;
6139 
6140 		/* we check whether we're throttled above */
6141 		if (cfs_rq->runtime_remaining > 0) {
6142 			if (cpu_of(rq) != this_cpu) {
6143 				unthrottle_cfs_rq_async(cfs_rq);
6144 			} else {
6145 				/*
6146 				 * We currently only expect to be unthrottling
6147 				 * a single cfs_rq locally.
6148 				 */
6149 				WARN_ON_ONCE(!list_empty(&local_unthrottle));
6150 				list_add_tail(&cfs_rq->throttled_csd_list,
6151 					      &local_unthrottle);
6152 			}
6153 		} else {
6154 			throttled = true;
6155 		}
6156 
6157 next:
6158 		rq_unlock_irqrestore(rq, &rf);
6159 	}
6160 
6161 	list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
6162 				 throttled_csd_list) {
6163 		struct rq *rq = rq_of(cfs_rq);
6164 
6165 		rq_lock_irqsave(rq, &rf);
6166 
6167 		list_del_init(&cfs_rq->throttled_csd_list);
6168 
6169 		if (cfs_rq_throttled(cfs_rq))
6170 			unthrottle_cfs_rq(cfs_rq);
6171 
6172 		rq_unlock_irqrestore(rq, &rf);
6173 	}
6174 	WARN_ON_ONCE(!list_empty(&local_unthrottle));
6175 
6176 	rcu_read_unlock();
6177 
6178 	return throttled;
6179 }
6180 
6181 /*
6182  * Responsible for refilling a task_group's bandwidth and unthrottling its
6183  * cfs_rqs as appropriate. If there has been no activity within the last
6184  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6185  * used to track this state.
6186  */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun,unsigned long flags)6187 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6188 {
6189 	int throttled;
6190 
6191 	/* no need to continue the timer with no bandwidth constraint */
6192 	if (cfs_b->quota == RUNTIME_INF)
6193 		goto out_deactivate;
6194 
6195 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6196 	cfs_b->nr_periods += overrun;
6197 
6198 	/* Refill extra burst quota even if cfs_b->idle */
6199 	__refill_cfs_bandwidth_runtime(cfs_b);
6200 
6201 	/*
6202 	 * idle depends on !throttled (for the case of a large deficit), and if
6203 	 * we're going inactive then everything else can be deferred
6204 	 */
6205 	if (cfs_b->idle && !throttled)
6206 		goto out_deactivate;
6207 
6208 	if (!throttled) {
6209 		/* mark as potentially idle for the upcoming period */
6210 		cfs_b->idle = 1;
6211 		return 0;
6212 	}
6213 
6214 	/* account preceding periods in which throttling occurred */
6215 	cfs_b->nr_throttled += overrun;
6216 
6217 	/*
6218 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
6219 	 */
6220 	while (throttled && cfs_b->runtime > 0) {
6221 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6222 		/* we can't nest cfs_b->lock while distributing bandwidth */
6223 		throttled = distribute_cfs_runtime(cfs_b);
6224 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
6225 	}
6226 
6227 	/*
6228 	 * While we are ensured activity in the period following an
6229 	 * unthrottle, this also covers the case in which the new bandwidth is
6230 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
6231 	 * timer to remain active while there are any throttled entities.)
6232 	 */
6233 	cfs_b->idle = 0;
6234 
6235 	return 0;
6236 
6237 out_deactivate:
6238 	return 1;
6239 }
6240 
6241 /* a cfs_rq won't donate quota below this amount */
6242 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6243 /* minimum remaining period time to redistribute slack quota */
6244 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6245 /* how long we wait to gather additional slack before distributing */
6246 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6247 
6248 /*
6249  * Are we near the end of the current quota period?
6250  *
6251  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6252  * hrtimer base being cleared by hrtimer_start. In the case of
6253  * migrate_hrtimers, base is never cleared, so we are fine.
6254  */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)6255 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6256 {
6257 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
6258 	s64 remaining;
6259 
6260 	/* if the call-back is running a quota refresh is already occurring */
6261 	if (hrtimer_callback_running(refresh_timer))
6262 		return 1;
6263 
6264 	/* is a quota refresh about to occur? */
6265 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6266 	if (remaining < (s64)min_expire)
6267 		return 1;
6268 
6269 	return 0;
6270 }
6271 
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)6272 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6273 {
6274 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6275 
6276 	/* if there's a quota refresh soon don't bother with slack */
6277 	if (runtime_refresh_within(cfs_b, min_left))
6278 		return;
6279 
6280 	/* don't push forwards an existing deferred unthrottle */
6281 	if (cfs_b->slack_started)
6282 		return;
6283 	cfs_b->slack_started = true;
6284 
6285 	hrtimer_start(&cfs_b->slack_timer,
6286 			ns_to_ktime(cfs_bandwidth_slack_period),
6287 			HRTIMER_MODE_REL);
6288 }
6289 
6290 /* we know any runtime found here is valid as update_curr() precedes return */
__return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6291 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6292 {
6293 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6294 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6295 
6296 	if (slack_runtime <= 0)
6297 		return;
6298 
6299 	raw_spin_lock(&cfs_b->lock);
6300 	if (cfs_b->quota != RUNTIME_INF) {
6301 		cfs_b->runtime += slack_runtime;
6302 
6303 		/* we are under rq->lock, defer unthrottling using a timer */
6304 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6305 		    !list_empty(&cfs_b->throttled_cfs_rq))
6306 			start_cfs_slack_bandwidth(cfs_b);
6307 	}
6308 	raw_spin_unlock(&cfs_b->lock);
6309 
6310 	/* even if it's not valid for return we don't want to try again */
6311 	cfs_rq->runtime_remaining -= slack_runtime;
6312 }
6313 
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6314 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6315 {
6316 	if (!cfs_bandwidth_used())
6317 		return;
6318 
6319 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_queued)
6320 		return;
6321 
6322 	__return_cfs_rq_runtime(cfs_rq);
6323 }
6324 
6325 /*
6326  * This is done with a timer (instead of inline with bandwidth return) since
6327  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6328  */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)6329 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6330 {
6331 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6332 	unsigned long flags;
6333 
6334 	/* confirm we're still not at a refresh boundary */
6335 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6336 	cfs_b->slack_started = false;
6337 
6338 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6339 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6340 		return;
6341 	}
6342 
6343 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6344 		runtime = cfs_b->runtime;
6345 
6346 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6347 
6348 	if (!runtime)
6349 		return;
6350 
6351 	distribute_cfs_runtime(cfs_b);
6352 }
6353 
6354 /*
6355  * When a group wakes up we want to make sure that its quota is not already
6356  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6357  * runtime as update_curr() throttling can not trigger until it's on-rq.
6358  */
check_enqueue_throttle(struct cfs_rq * cfs_rq)6359 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6360 {
6361 	if (!cfs_bandwidth_used())
6362 		return;
6363 
6364 	/* an active group must be handled by the update_curr()->put() path */
6365 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6366 		return;
6367 
6368 	/* ensure the group is not already throttled */
6369 	if (cfs_rq_throttled(cfs_rq))
6370 		return;
6371 
6372 	/* update runtime allocation */
6373 	account_cfs_rq_runtime(cfs_rq, 0);
6374 	if (cfs_rq->runtime_remaining <= 0)
6375 		throttle_cfs_rq(cfs_rq);
6376 }
6377 
sync_throttle(struct task_group * tg,int cpu)6378 static void sync_throttle(struct task_group *tg, int cpu)
6379 {
6380 	struct cfs_rq *pcfs_rq, *cfs_rq;
6381 
6382 	if (!cfs_bandwidth_used())
6383 		return;
6384 
6385 	if (!tg->parent)
6386 		return;
6387 
6388 	cfs_rq = tg->cfs_rq[cpu];
6389 	pcfs_rq = tg->parent->cfs_rq[cpu];
6390 
6391 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
6392 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6393 
6394 	/*
6395 	 * It is not enough to sync the "pelt_clock_throttled" indicator
6396 	 * with the parent cfs_rq when the hierarchy is not queued.
6397 	 * Always join a throttled hierarchy with PELT clock throttled
6398 	 * and leaf it to the first enqueue, or distribution to
6399 	 * unthrottle the PELT clock.
6400 	 */
6401 	if (cfs_rq->throttle_count)
6402 		cfs_rq->pelt_clock_throttled = 1;
6403 }
6404 
6405 /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6406 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6407 {
6408 	if (!cfs_bandwidth_used())
6409 		return false;
6410 
6411 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6412 		return false;
6413 
6414 	/*
6415 	 * it's possible for a throttled entity to be forced into a running
6416 	 * state (e.g. set_curr_task), in this case we're finished.
6417 	 */
6418 	if (cfs_rq_throttled(cfs_rq))
6419 		return true;
6420 
6421 	return throttle_cfs_rq(cfs_rq);
6422 }
6423 
sched_cfs_slack_timer(struct hrtimer * timer)6424 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6425 {
6426 	struct cfs_bandwidth *cfs_b =
6427 		container_of(timer, struct cfs_bandwidth, slack_timer);
6428 
6429 	do_sched_cfs_slack_timer(cfs_b);
6430 
6431 	return HRTIMER_NORESTART;
6432 }
6433 
sched_cfs_period_timer(struct hrtimer * timer)6434 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6435 {
6436 	struct cfs_bandwidth *cfs_b =
6437 		container_of(timer, struct cfs_bandwidth, period_timer);
6438 	unsigned long flags;
6439 	int overrun;
6440 	int idle = 0;
6441 	int count = 0;
6442 
6443 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6444 	for (;;) {
6445 		overrun = hrtimer_forward_now(timer, cfs_b->period);
6446 		if (!overrun)
6447 			break;
6448 
6449 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6450 
6451 		if (++count > 3) {
6452 			u64 new, old = ktime_to_ns(cfs_b->period);
6453 
6454 			/*
6455 			 * Grow period by a factor of 2 to avoid losing precision.
6456 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6457 			 * to fail.
6458 			 */
6459 			new = old * 2;
6460 			if (new < max_bw_quota_period_us * NSEC_PER_USEC) {
6461 				cfs_b->period = ns_to_ktime(new);
6462 				cfs_b->quota *= 2;
6463 				cfs_b->burst *= 2;
6464 
6465 				pr_warn_ratelimited(
6466 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6467 					smp_processor_id(),
6468 					div_u64(new, NSEC_PER_USEC),
6469 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6470 			} else {
6471 				pr_warn_ratelimited(
6472 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6473 					smp_processor_id(),
6474 					div_u64(old, NSEC_PER_USEC),
6475 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6476 			}
6477 
6478 			/* reset count so we don't come right back in here */
6479 			count = 0;
6480 		}
6481 	}
6482 	if (idle)
6483 		cfs_b->period_active = 0;
6484 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6485 
6486 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6487 }
6488 
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6489 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6490 {
6491 	raw_spin_lock_init(&cfs_b->lock);
6492 	cfs_b->runtime = 0;
6493 	cfs_b->quota = RUNTIME_INF;
6494 	cfs_b->period = us_to_ktime(default_bw_period_us());
6495 	cfs_b->burst = 0;
6496 	cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6497 
6498 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6499 	hrtimer_setup(&cfs_b->period_timer, sched_cfs_period_timer, CLOCK_MONOTONIC,
6500 		      HRTIMER_MODE_ABS_PINNED);
6501 
6502 	/* Add a random offset so that timers interleave */
6503 	hrtimer_set_expires(&cfs_b->period_timer,
6504 			    get_random_u32_below(cfs_b->period));
6505 	hrtimer_setup(&cfs_b->slack_timer, sched_cfs_slack_timer, CLOCK_MONOTONIC,
6506 		      HRTIMER_MODE_REL);
6507 	cfs_b->slack_started = false;
6508 }
6509 
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6510 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6511 {
6512 	cfs_rq->runtime_enabled = 0;
6513 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
6514 	INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6515 	INIT_LIST_HEAD(&cfs_rq->throttled_limbo_list);
6516 }
6517 
start_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6518 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6519 {
6520 	lockdep_assert_held(&cfs_b->lock);
6521 
6522 	if (cfs_b->period_active)
6523 		return;
6524 
6525 	cfs_b->period_active = 1;
6526 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6527 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6528 }
6529 
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6530 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6531 {
6532 	int __maybe_unused i;
6533 
6534 	/* init_cfs_bandwidth() was not called */
6535 	if (!cfs_b->throttled_cfs_rq.next)
6536 		return;
6537 
6538 	hrtimer_cancel(&cfs_b->period_timer);
6539 	hrtimer_cancel(&cfs_b->slack_timer);
6540 
6541 	/*
6542 	 * It is possible that we still have some cfs_rq's pending on a CSD
6543 	 * list, though this race is very rare. In order for this to occur, we
6544 	 * must have raced with the last task leaving the group while there
6545 	 * exist throttled cfs_rq(s), and the period_timer must have queued the
6546 	 * CSD item but the remote cpu has not yet processed it. To handle this,
6547 	 * we can simply flush all pending CSD work inline here. We're
6548 	 * guaranteed at this point that no additional cfs_rq of this group can
6549 	 * join a CSD list.
6550 	 */
6551 	for_each_possible_cpu(i) {
6552 		struct rq *rq = cpu_rq(i);
6553 		unsigned long flags;
6554 
6555 		if (list_empty(&rq->cfsb_csd_list))
6556 			continue;
6557 
6558 		local_irq_save(flags);
6559 		__cfsb_csd_unthrottle(rq);
6560 		local_irq_restore(flags);
6561 	}
6562 }
6563 
6564 /*
6565  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6566  *
6567  * The race is harmless, since modifying bandwidth settings of unhooked group
6568  * bits doesn't do much.
6569  */
6570 
6571 /* cpu online callback */
update_runtime_enabled(struct rq * rq)6572 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6573 {
6574 	struct task_group *tg;
6575 
6576 	lockdep_assert_rq_held(rq);
6577 
6578 	rcu_read_lock();
6579 	list_for_each_entry_rcu(tg, &task_groups, list) {
6580 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6581 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6582 
6583 		raw_spin_lock(&cfs_b->lock);
6584 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6585 		raw_spin_unlock(&cfs_b->lock);
6586 	}
6587 	rcu_read_unlock();
6588 }
6589 
6590 /* cpu offline callback */
unthrottle_offline_cfs_rqs(struct rq * rq)6591 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6592 {
6593 	struct task_group *tg;
6594 
6595 	lockdep_assert_rq_held(rq);
6596 
6597 	// Do not unthrottle for an active CPU
6598 	if (cpumask_test_cpu(cpu_of(rq), cpu_active_mask))
6599 		return;
6600 
6601 	/*
6602 	 * The rq clock has already been updated in the
6603 	 * set_rq_offline(), so we should skip updating
6604 	 * the rq clock again in unthrottle_cfs_rq().
6605 	 */
6606 	rq_clock_start_loop_update(rq);
6607 
6608 	rcu_read_lock();
6609 	list_for_each_entry_rcu(tg, &task_groups, list) {
6610 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6611 
6612 		if (!cfs_rq->runtime_enabled)
6613 			continue;
6614 
6615 		/*
6616 		 * Offline rq is schedulable till CPU is completely disabled
6617 		 * in take_cpu_down(), so we prevent new cfs throttling here.
6618 		 */
6619 		cfs_rq->runtime_enabled = 0;
6620 
6621 		if (!cfs_rq_throttled(cfs_rq))
6622 			continue;
6623 
6624 		/*
6625 		 * clock_task is not advancing so we just need to make sure
6626 		 * there's some valid quota amount
6627 		 */
6628 		cfs_rq->runtime_remaining = 1;
6629 		unthrottle_cfs_rq(cfs_rq);
6630 	}
6631 	rcu_read_unlock();
6632 
6633 	rq_clock_stop_loop_update(rq);
6634 }
6635 
cfs_task_bw_constrained(struct task_struct * p)6636 bool cfs_task_bw_constrained(struct task_struct *p)
6637 {
6638 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6639 
6640 	if (!cfs_bandwidth_used())
6641 		return false;
6642 
6643 	if (cfs_rq->runtime_enabled ||
6644 	    tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6645 		return true;
6646 
6647 	return false;
6648 }
6649 
6650 #ifdef CONFIG_NO_HZ_FULL
6651 /* called from pick_next_task_fair() */
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6652 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6653 {
6654 	int cpu = cpu_of(rq);
6655 
6656 	if (!cfs_bandwidth_used())
6657 		return;
6658 
6659 	if (!tick_nohz_full_cpu(cpu))
6660 		return;
6661 
6662 	if (rq->nr_running != 1)
6663 		return;
6664 
6665 	/*
6666 	 *  We know there is only one task runnable and we've just picked it. The
6667 	 *  normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6668 	 *  be otherwise able to stop the tick. Just need to check if we are using
6669 	 *  bandwidth control.
6670 	 */
6671 	if (cfs_task_bw_constrained(p))
6672 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6673 }
6674 #endif /* CONFIG_NO_HZ_FULL */
6675 
6676 #else /* !CONFIG_CFS_BANDWIDTH: */
6677 
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)6678 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6679 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
check_enqueue_throttle(struct cfs_rq * cfs_rq)6680 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
sync_throttle(struct task_group * tg,int cpu)6681 static inline void sync_throttle(struct task_group *tg, int cpu) {}
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6682 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
task_throttle_setup_work(struct task_struct * p)6683 static void task_throttle_setup_work(struct task_struct *p) {}
task_is_throttled(struct task_struct * p)6684 static bool task_is_throttled(struct task_struct *p) { return false; }
dequeue_throttled_task(struct task_struct * p,int flags)6685 static void dequeue_throttled_task(struct task_struct *p, int flags) {}
enqueue_throttled_task(struct task_struct * p)6686 static bool enqueue_throttled_task(struct task_struct *p) { return false; }
record_throttle_clock(struct cfs_rq * cfs_rq)6687 static void record_throttle_clock(struct cfs_rq *cfs_rq) {}
6688 
cfs_rq_throttled(struct cfs_rq * cfs_rq)6689 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6690 {
6691 	return 0;
6692 }
6693 
cfs_rq_pelt_clock_throttled(struct cfs_rq * cfs_rq)6694 static inline bool cfs_rq_pelt_clock_throttled(struct cfs_rq *cfs_rq)
6695 {
6696 	return false;
6697 }
6698 
throttled_hierarchy(struct cfs_rq * cfs_rq)6699 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6700 {
6701 	return 0;
6702 }
6703 
lb_throttled_hierarchy(struct task_struct * p,int dst_cpu)6704 static inline int lb_throttled_hierarchy(struct task_struct *p, int dst_cpu)
6705 {
6706 	return 0;
6707 }
6708 
6709 #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6710 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6711 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6712 #endif
6713 
tg_cfs_bandwidth(struct task_group * tg)6714 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6715 {
6716 	return NULL;
6717 }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6718 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
update_runtime_enabled(struct rq * rq)6719 static inline void update_runtime_enabled(struct rq *rq) {}
unthrottle_offline_cfs_rqs(struct rq * rq)6720 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6721 #ifdef CONFIG_CGROUP_SCHED
cfs_task_bw_constrained(struct task_struct * p)6722 bool cfs_task_bw_constrained(struct task_struct *p)
6723 {
6724 	return false;
6725 }
6726 #endif
6727 #endif /* !CONFIG_CFS_BANDWIDTH */
6728 
6729 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6730 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6731 #endif
6732 
6733 /**************************************************
6734  * CFS operations on tasks:
6735  */
6736 
6737 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)6738 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6739 {
6740 	struct sched_entity *se = &p->se;
6741 
6742 	WARN_ON_ONCE(task_rq(p) != rq);
6743 
6744 	if (rq->cfs.h_nr_queued > 1) {
6745 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6746 		u64 slice = se->slice;
6747 		s64 delta = slice - ran;
6748 
6749 		if (delta < 0) {
6750 			if (task_current_donor(rq, p))
6751 				resched_curr(rq);
6752 			return;
6753 		}
6754 		hrtick_start(rq, delta);
6755 	}
6756 }
6757 
6758 /*
6759  * called from enqueue/dequeue and updates the hrtick when the
6760  * current task is from our class and nr_running is low enough
6761  * to matter.
6762  */
hrtick_update(struct rq * rq)6763 static void hrtick_update(struct rq *rq)
6764 {
6765 	struct task_struct *donor = rq->donor;
6766 
6767 	if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class)
6768 		return;
6769 
6770 	hrtick_start_fair(rq, donor);
6771 }
6772 #else /* !CONFIG_SCHED_HRTICK: */
6773 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)6774 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6775 {
6776 }
6777 
hrtick_update(struct rq * rq)6778 static inline void hrtick_update(struct rq *rq)
6779 {
6780 }
6781 #endif /* !CONFIG_SCHED_HRTICK */
6782 
cpu_overutilized(int cpu)6783 static inline bool cpu_overutilized(int cpu)
6784 {
6785 	unsigned long  rq_util_min, rq_util_max;
6786 
6787 	if (!sched_energy_enabled())
6788 		return false;
6789 
6790 	rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6791 	rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6792 
6793 	/* Return true only if the utilization doesn't fit CPU's capacity */
6794 	return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6795 }
6796 
6797 /*
6798  * overutilized value make sense only if EAS is enabled
6799  */
is_rd_overutilized(struct root_domain * rd)6800 static inline bool is_rd_overutilized(struct root_domain *rd)
6801 {
6802 	return !sched_energy_enabled() || READ_ONCE(rd->overutilized);
6803 }
6804 
set_rd_overutilized(struct root_domain * rd,bool flag)6805 static inline void set_rd_overutilized(struct root_domain *rd, bool flag)
6806 {
6807 	if (!sched_energy_enabled())
6808 		return;
6809 
6810 	WRITE_ONCE(rd->overutilized, flag);
6811 	trace_sched_overutilized_tp(rd, flag);
6812 }
6813 
check_update_overutilized_status(struct rq * rq)6814 static inline void check_update_overutilized_status(struct rq *rq)
6815 {
6816 	/*
6817 	 * overutilized field is used for load balancing decisions only
6818 	 * if energy aware scheduler is being used
6819 	 */
6820 
6821 	if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu))
6822 		set_rd_overutilized(rq->rd, 1);
6823 }
6824 
6825 /* Runqueue only has SCHED_IDLE tasks enqueued */
sched_idle_rq(struct rq * rq)6826 static int sched_idle_rq(struct rq *rq)
6827 {
6828 	return unlikely(rq->nr_running == rq->cfs.h_nr_idle &&
6829 			rq->nr_running);
6830 }
6831 
sched_idle_cpu(int cpu)6832 static int sched_idle_cpu(int cpu)
6833 {
6834 	return sched_idle_rq(cpu_rq(cpu));
6835 }
6836 
6837 static void
requeue_delayed_entity(struct sched_entity * se)6838 requeue_delayed_entity(struct sched_entity *se)
6839 {
6840 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
6841 
6842 	/*
6843 	 * se->sched_delayed should imply: se->on_rq == 1.
6844 	 * Because a delayed entity is one that is still on
6845 	 * the runqueue competing until elegibility.
6846 	 */
6847 	WARN_ON_ONCE(!se->sched_delayed);
6848 	WARN_ON_ONCE(!se->on_rq);
6849 
6850 	if (sched_feat(DELAY_ZERO)) {
6851 		update_entity_lag(cfs_rq, se);
6852 		if (se->vlag > 0) {
6853 			cfs_rq->nr_queued--;
6854 			if (se != cfs_rq->curr)
6855 				__dequeue_entity(cfs_rq, se);
6856 			se->vlag = 0;
6857 			place_entity(cfs_rq, se, 0);
6858 			if (se != cfs_rq->curr)
6859 				__enqueue_entity(cfs_rq, se);
6860 			cfs_rq->nr_queued++;
6861 		}
6862 	}
6863 
6864 	update_load_avg(cfs_rq, se, 0);
6865 	clear_delayed(se);
6866 }
6867 
6868 /*
6869  * The enqueue_task method is called before nr_running is
6870  * increased. Here we update the fair scheduling stats and
6871  * then put the task into the rbtree:
6872  */
6873 static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)6874 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6875 {
6876 	struct cfs_rq *cfs_rq;
6877 	struct sched_entity *se = &p->se;
6878 	int h_nr_idle = task_has_idle_policy(p);
6879 	int h_nr_runnable = 1;
6880 	int task_new = !(flags & ENQUEUE_WAKEUP);
6881 	int rq_h_nr_queued = rq->cfs.h_nr_queued;
6882 	u64 slice = 0;
6883 
6884 	if (task_is_throttled(p) && enqueue_throttled_task(p))
6885 		return;
6886 
6887 	/*
6888 	 * The code below (indirectly) updates schedutil which looks at
6889 	 * the cfs_rq utilization to select a frequency.
6890 	 * Let's add the task's estimated utilization to the cfs_rq's
6891 	 * estimated utilization, before we update schedutil.
6892 	 */
6893 	if (!p->se.sched_delayed || (flags & ENQUEUE_DELAYED))
6894 		util_est_enqueue(&rq->cfs, p);
6895 
6896 	if (flags & ENQUEUE_DELAYED) {
6897 		requeue_delayed_entity(se);
6898 		return;
6899 	}
6900 
6901 	/*
6902 	 * If in_iowait is set, the code below may not trigger any cpufreq
6903 	 * utilization updates, so do it here explicitly with the IOWAIT flag
6904 	 * passed.
6905 	 */
6906 	if (p->in_iowait)
6907 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6908 
6909 	if (task_new && se->sched_delayed)
6910 		h_nr_runnable = 0;
6911 
6912 	for_each_sched_entity(se) {
6913 		if (se->on_rq) {
6914 			if (se->sched_delayed)
6915 				requeue_delayed_entity(se);
6916 			break;
6917 		}
6918 		cfs_rq = cfs_rq_of(se);
6919 
6920 		/*
6921 		 * Basically set the slice of group entries to the min_slice of
6922 		 * their respective cfs_rq. This ensures the group can service
6923 		 * its entities in the desired time-frame.
6924 		 */
6925 		if (slice) {
6926 			se->slice = slice;
6927 			se->custom_slice = 1;
6928 		}
6929 		enqueue_entity(cfs_rq, se, flags);
6930 		slice = cfs_rq_min_slice(cfs_rq);
6931 
6932 		cfs_rq->h_nr_runnable += h_nr_runnable;
6933 		cfs_rq->h_nr_queued++;
6934 		cfs_rq->h_nr_idle += h_nr_idle;
6935 
6936 		if (cfs_rq_is_idle(cfs_rq))
6937 			h_nr_idle = 1;
6938 
6939 		flags = ENQUEUE_WAKEUP;
6940 	}
6941 
6942 	for_each_sched_entity(se) {
6943 		cfs_rq = cfs_rq_of(se);
6944 
6945 		update_load_avg(cfs_rq, se, UPDATE_TG);
6946 		se_update_runnable(se);
6947 		update_cfs_group(se);
6948 
6949 		se->slice = slice;
6950 		if (se != cfs_rq->curr)
6951 			min_vruntime_cb_propagate(&se->run_node, NULL);
6952 		slice = cfs_rq_min_slice(cfs_rq);
6953 
6954 		cfs_rq->h_nr_runnable += h_nr_runnable;
6955 		cfs_rq->h_nr_queued++;
6956 		cfs_rq->h_nr_idle += h_nr_idle;
6957 
6958 		if (cfs_rq_is_idle(cfs_rq))
6959 			h_nr_idle = 1;
6960 	}
6961 
6962 	if (!rq_h_nr_queued && rq->cfs.h_nr_queued)
6963 		dl_server_start(&rq->fair_server);
6964 
6965 	/* At this point se is NULL and we are at root level*/
6966 	add_nr_running(rq, 1);
6967 
6968 	/*
6969 	 * Since new tasks are assigned an initial util_avg equal to
6970 	 * half of the spare capacity of their CPU, tiny tasks have the
6971 	 * ability to cross the overutilized threshold, which will
6972 	 * result in the load balancer ruining all the task placement
6973 	 * done by EAS. As a way to mitigate that effect, do not account
6974 	 * for the first enqueue operation of new tasks during the
6975 	 * overutilized flag detection.
6976 	 *
6977 	 * A better way of solving this problem would be to wait for
6978 	 * the PELT signals of tasks to converge before taking them
6979 	 * into account, but that is not straightforward to implement,
6980 	 * and the following generally works well enough in practice.
6981 	 */
6982 	if (!task_new)
6983 		check_update_overutilized_status(rq);
6984 
6985 	assert_list_leaf_cfs_rq(rq);
6986 
6987 	hrtick_update(rq);
6988 }
6989 
6990 /*
6991  * Basically dequeue_task_fair(), except it can deal with dequeue_entity()
6992  * failing half-way through and resume the dequeue later.
6993  *
6994  * Returns:
6995  * -1 - dequeue delayed
6996  *  0 - dequeue throttled
6997  *  1 - dequeue complete
6998  */
dequeue_entities(struct rq * rq,struct sched_entity * se,int flags)6999 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags)
7000 {
7001 	bool was_sched_idle = sched_idle_rq(rq);
7002 	bool task_sleep = flags & DEQUEUE_SLEEP;
7003 	bool task_delayed = flags & DEQUEUE_DELAYED;
7004 	bool task_throttled = flags & DEQUEUE_THROTTLE;
7005 	struct task_struct *p = NULL;
7006 	int h_nr_idle = 0;
7007 	int h_nr_queued = 0;
7008 	int h_nr_runnable = 0;
7009 	struct cfs_rq *cfs_rq;
7010 	u64 slice = 0;
7011 
7012 	if (entity_is_task(se)) {
7013 		p = task_of(se);
7014 		h_nr_queued = 1;
7015 		h_nr_idle = task_has_idle_policy(p);
7016 		if (task_sleep || task_delayed || !se->sched_delayed)
7017 			h_nr_runnable = 1;
7018 	}
7019 
7020 	for_each_sched_entity(se) {
7021 		cfs_rq = cfs_rq_of(se);
7022 
7023 		if (!dequeue_entity(cfs_rq, se, flags)) {
7024 			if (p && &p->se == se)
7025 				return -1;
7026 
7027 			slice = cfs_rq_min_slice(cfs_rq);
7028 			break;
7029 		}
7030 
7031 		cfs_rq->h_nr_runnable -= h_nr_runnable;
7032 		cfs_rq->h_nr_queued -= h_nr_queued;
7033 		cfs_rq->h_nr_idle -= h_nr_idle;
7034 
7035 		if (cfs_rq_is_idle(cfs_rq))
7036 			h_nr_idle = h_nr_queued;
7037 
7038 		if (throttled_hierarchy(cfs_rq) && task_throttled)
7039 			record_throttle_clock(cfs_rq);
7040 
7041 		/* Don't dequeue parent if it has other entities besides us */
7042 		if (cfs_rq->load.weight) {
7043 			slice = cfs_rq_min_slice(cfs_rq);
7044 
7045 			/* Avoid re-evaluating load for this entity: */
7046 			se = parent_entity(se);
7047 			/*
7048 			 * Bias pick_next to pick a task from this cfs_rq, as
7049 			 * p is sleeping when it is within its sched_slice.
7050 			 */
7051 			if (task_sleep && se)
7052 				set_next_buddy(se);
7053 			break;
7054 		}
7055 		flags |= DEQUEUE_SLEEP;
7056 		flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL);
7057 	}
7058 
7059 	for_each_sched_entity(se) {
7060 		cfs_rq = cfs_rq_of(se);
7061 
7062 		update_load_avg(cfs_rq, se, UPDATE_TG);
7063 		se_update_runnable(se);
7064 		update_cfs_group(se);
7065 
7066 		se->slice = slice;
7067 		if (se != cfs_rq->curr)
7068 			min_vruntime_cb_propagate(&se->run_node, NULL);
7069 		slice = cfs_rq_min_slice(cfs_rq);
7070 
7071 		cfs_rq->h_nr_runnable -= h_nr_runnable;
7072 		cfs_rq->h_nr_queued -= h_nr_queued;
7073 		cfs_rq->h_nr_idle -= h_nr_idle;
7074 
7075 		if (cfs_rq_is_idle(cfs_rq))
7076 			h_nr_idle = h_nr_queued;
7077 
7078 		if (throttled_hierarchy(cfs_rq) && task_throttled)
7079 			record_throttle_clock(cfs_rq);
7080 	}
7081 
7082 	sub_nr_running(rq, h_nr_queued);
7083 
7084 	/* balance early to pull high priority tasks */
7085 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
7086 		rq->next_balance = jiffies;
7087 
7088 	if (p && task_delayed) {
7089 		WARN_ON_ONCE(!task_sleep);
7090 		WARN_ON_ONCE(p->on_rq != 1);
7091 
7092 		/* Fix-up what dequeue_task_fair() skipped */
7093 		hrtick_update(rq);
7094 
7095 		/*
7096 		 * Fix-up what block_task() skipped.
7097 		 *
7098 		 * Must be last, @p might not be valid after this.
7099 		 */
7100 		__block_task(rq, p);
7101 	}
7102 
7103 	return 1;
7104 }
7105 
7106 /*
7107  * The dequeue_task method is called before nr_running is
7108  * decreased. We remove the task from the rbtree and
7109  * update the fair scheduling stats:
7110  */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)7111 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
7112 {
7113 	if (task_is_throttled(p)) {
7114 		dequeue_throttled_task(p, flags);
7115 		return true;
7116 	}
7117 
7118 	if (!p->se.sched_delayed)
7119 		util_est_dequeue(&rq->cfs, p);
7120 
7121 	util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP);
7122 	if (dequeue_entities(rq, &p->se, flags) < 0)
7123 		return false;
7124 
7125 	/*
7126 	 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED).
7127 	 */
7128 
7129 	hrtick_update(rq);
7130 	return true;
7131 }
7132 
cfs_h_nr_delayed(struct rq * rq)7133 static inline unsigned int cfs_h_nr_delayed(struct rq *rq)
7134 {
7135 	return (rq->cfs.h_nr_queued - rq->cfs.h_nr_runnable);
7136 }
7137 
7138 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */
7139 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7140 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
7141 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
7142 
7143 #ifdef CONFIG_NO_HZ_COMMON
7144 
7145 static struct {
7146 	cpumask_var_t idle_cpus_mask;
7147 	atomic_t nr_cpus;
7148 	int has_blocked;		/* Idle CPUS has blocked load */
7149 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
7150 	unsigned long next_balance;     /* in jiffy units */
7151 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
7152 } nohz ____cacheline_aligned;
7153 
7154 #endif /* CONFIG_NO_HZ_COMMON */
7155 
cpu_load(struct rq * rq)7156 static unsigned long cpu_load(struct rq *rq)
7157 {
7158 	return cfs_rq_load_avg(&rq->cfs);
7159 }
7160 
7161 /*
7162  * cpu_load_without - compute CPU load without any contributions from *p
7163  * @cpu: the CPU which load is requested
7164  * @p: the task which load should be discounted
7165  *
7166  * The load of a CPU is defined by the load of tasks currently enqueued on that
7167  * CPU as well as tasks which are currently sleeping after an execution on that
7168  * CPU.
7169  *
7170  * This method returns the load of the specified CPU by discounting the load of
7171  * the specified task, whenever the task is currently contributing to the CPU
7172  * load.
7173  */
cpu_load_without(struct rq * rq,struct task_struct * p)7174 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
7175 {
7176 	struct cfs_rq *cfs_rq;
7177 	unsigned int load;
7178 
7179 	/* Task has no contribution or is new */
7180 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7181 		return cpu_load(rq);
7182 
7183 	cfs_rq = &rq->cfs;
7184 	load = READ_ONCE(cfs_rq->avg.load_avg);
7185 
7186 	/* Discount task's util from CPU's util */
7187 	lsub_positive(&load, task_h_load(p));
7188 
7189 	return load;
7190 }
7191 
cpu_runnable(struct rq * rq)7192 static unsigned long cpu_runnable(struct rq *rq)
7193 {
7194 	return cfs_rq_runnable_avg(&rq->cfs);
7195 }
7196 
cpu_runnable_without(struct rq * rq,struct task_struct * p)7197 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
7198 {
7199 	struct cfs_rq *cfs_rq;
7200 	unsigned int runnable;
7201 
7202 	/* Task has no contribution or is new */
7203 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7204 		return cpu_runnable(rq);
7205 
7206 	cfs_rq = &rq->cfs;
7207 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7208 
7209 	/* Discount task's runnable from CPU's runnable */
7210 	lsub_positive(&runnable, p->se.avg.runnable_avg);
7211 
7212 	return runnable;
7213 }
7214 
capacity_of(int cpu)7215 static unsigned long capacity_of(int cpu)
7216 {
7217 	return cpu_rq(cpu)->cpu_capacity;
7218 }
7219 
record_wakee(struct task_struct * p)7220 static void record_wakee(struct task_struct *p)
7221 {
7222 	/*
7223 	 * Only decay a single time; tasks that have less then 1 wakeup per
7224 	 * jiffy will not have built up many flips.
7225 	 */
7226 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
7227 		current->wakee_flips >>= 1;
7228 		current->wakee_flip_decay_ts = jiffies;
7229 	}
7230 
7231 	if (current->last_wakee != p) {
7232 		current->last_wakee = p;
7233 		current->wakee_flips++;
7234 	}
7235 }
7236 
7237 /*
7238  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
7239  *
7240  * A waker of many should wake a different task than the one last awakened
7241  * at a frequency roughly N times higher than one of its wakees.
7242  *
7243  * In order to determine whether we should let the load spread vs consolidating
7244  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
7245  * partner, and a factor of lls_size higher frequency in the other.
7246  *
7247  * With both conditions met, we can be relatively sure that the relationship is
7248  * non-monogamous, with partner count exceeding socket size.
7249  *
7250  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
7251  * whatever is irrelevant, spread criteria is apparent partner count exceeds
7252  * socket size.
7253  */
wake_wide(struct task_struct * p)7254 static int wake_wide(struct task_struct *p)
7255 {
7256 	unsigned int master = current->wakee_flips;
7257 	unsigned int slave = p->wakee_flips;
7258 	int factor = __this_cpu_read(sd_llc_size);
7259 
7260 	if (master < slave)
7261 		swap(master, slave);
7262 	if (slave < factor || master < slave * factor)
7263 		return 0;
7264 	return 1;
7265 }
7266 
7267 /*
7268  * The purpose of wake_affine() is to quickly determine on which CPU we can run
7269  * soonest. For the purpose of speed we only consider the waking and previous
7270  * CPU.
7271  *
7272  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7273  *			cache-affine and is (or	will be) idle.
7274  *
7275  * wake_affine_weight() - considers the weight to reflect the average
7276  *			  scheduling latency of the CPUs. This seems to work
7277  *			  for the overloaded case.
7278  */
7279 static int
wake_affine_idle(int this_cpu,int prev_cpu,int sync)7280 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7281 {
7282 	/*
7283 	 * If this_cpu is idle, it implies the wakeup is from interrupt
7284 	 * context. Only allow the move if cache is shared. Otherwise an
7285 	 * interrupt intensive workload could force all tasks onto one
7286 	 * node depending on the IO topology or IRQ affinity settings.
7287 	 *
7288 	 * If the prev_cpu is idle and cache affine then avoid a migration.
7289 	 * There is no guarantee that the cache hot data from an interrupt
7290 	 * is more important than cache hot data on the prev_cpu and from
7291 	 * a cpufreq perspective, it's better to have higher utilisation
7292 	 * on one CPU.
7293 	 */
7294 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7295 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7296 
7297 	if (sync) {
7298 		struct rq *rq = cpu_rq(this_cpu);
7299 
7300 		if ((rq->nr_running - cfs_h_nr_delayed(rq)) == 1)
7301 			return this_cpu;
7302 	}
7303 
7304 	if (available_idle_cpu(prev_cpu))
7305 		return prev_cpu;
7306 
7307 	return nr_cpumask_bits;
7308 }
7309 
7310 static int
wake_affine_weight(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7311 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7312 		   int this_cpu, int prev_cpu, int sync)
7313 {
7314 	s64 this_eff_load, prev_eff_load;
7315 	unsigned long task_load;
7316 
7317 	this_eff_load = cpu_load(cpu_rq(this_cpu));
7318 
7319 	if (sync) {
7320 		unsigned long current_load = task_h_load(current);
7321 
7322 		if (current_load > this_eff_load)
7323 			return this_cpu;
7324 
7325 		this_eff_load -= current_load;
7326 	}
7327 
7328 	task_load = task_h_load(p);
7329 
7330 	this_eff_load += task_load;
7331 	if (sched_feat(WA_BIAS))
7332 		this_eff_load *= 100;
7333 	this_eff_load *= capacity_of(prev_cpu);
7334 
7335 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7336 	prev_eff_load -= task_load;
7337 	if (sched_feat(WA_BIAS))
7338 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7339 	prev_eff_load *= capacity_of(this_cpu);
7340 
7341 	/*
7342 	 * If sync, adjust the weight of prev_eff_load such that if
7343 	 * prev_eff == this_eff that select_idle_sibling() will consider
7344 	 * stacking the wakee on top of the waker if no other CPU is
7345 	 * idle.
7346 	 */
7347 	if (sync)
7348 		prev_eff_load += 1;
7349 
7350 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7351 }
7352 
wake_affine(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7353 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7354 		       int this_cpu, int prev_cpu, int sync)
7355 {
7356 	int target = nr_cpumask_bits;
7357 
7358 	if (sched_feat(WA_IDLE))
7359 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
7360 
7361 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7362 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7363 
7364 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7365 	if (target != this_cpu)
7366 		return prev_cpu;
7367 
7368 	schedstat_inc(sd->ttwu_move_affine);
7369 	schedstat_inc(p->stats.nr_wakeups_affine);
7370 	return target;
7371 }
7372 
7373 static struct sched_group *
7374 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7375 
7376 /*
7377  * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group.
7378  */
7379 static int
sched_balance_find_dst_group_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)7380 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7381 {
7382 	unsigned long load, min_load = ULONG_MAX;
7383 	unsigned int min_exit_latency = UINT_MAX;
7384 	u64 latest_idle_timestamp = 0;
7385 	int least_loaded_cpu = this_cpu;
7386 	int shallowest_idle_cpu = -1;
7387 	int i;
7388 
7389 	/* Check if we have any choice: */
7390 	if (group->group_weight == 1)
7391 		return cpumask_first(sched_group_span(group));
7392 
7393 	/* Traverse only the allowed CPUs */
7394 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7395 		struct rq *rq = cpu_rq(i);
7396 
7397 		if (!sched_core_cookie_match(rq, p))
7398 			continue;
7399 
7400 		if (sched_idle_cpu(i))
7401 			return i;
7402 
7403 		if (available_idle_cpu(i)) {
7404 			struct cpuidle_state *idle = idle_get_state(rq);
7405 			if (idle && idle->exit_latency < min_exit_latency) {
7406 				/*
7407 				 * We give priority to a CPU whose idle state
7408 				 * has the smallest exit latency irrespective
7409 				 * of any idle timestamp.
7410 				 */
7411 				min_exit_latency = idle->exit_latency;
7412 				latest_idle_timestamp = rq->idle_stamp;
7413 				shallowest_idle_cpu = i;
7414 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
7415 				   rq->idle_stamp > latest_idle_timestamp) {
7416 				/*
7417 				 * If equal or no active idle state, then
7418 				 * the most recently idled CPU might have
7419 				 * a warmer cache.
7420 				 */
7421 				latest_idle_timestamp = rq->idle_stamp;
7422 				shallowest_idle_cpu = i;
7423 			}
7424 		} else if (shallowest_idle_cpu == -1) {
7425 			load = cpu_load(cpu_rq(i));
7426 			if (load < min_load) {
7427 				min_load = load;
7428 				least_loaded_cpu = i;
7429 			}
7430 		}
7431 	}
7432 
7433 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7434 }
7435 
sched_balance_find_dst_cpu(struct sched_domain * sd,struct task_struct * p,int cpu,int prev_cpu,int sd_flag)7436 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p,
7437 				  int cpu, int prev_cpu, int sd_flag)
7438 {
7439 	int new_cpu = cpu;
7440 
7441 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7442 		return prev_cpu;
7443 
7444 	/*
7445 	 * We need task's util for cpu_util_without, sync it up to
7446 	 * prev_cpu's last_update_time.
7447 	 */
7448 	if (!(sd_flag & SD_BALANCE_FORK))
7449 		sync_entity_load_avg(&p->se);
7450 
7451 	while (sd) {
7452 		struct sched_group *group;
7453 		struct sched_domain *tmp;
7454 		int weight;
7455 
7456 		if (!(sd->flags & sd_flag)) {
7457 			sd = sd->child;
7458 			continue;
7459 		}
7460 
7461 		group = sched_balance_find_dst_group(sd, p, cpu);
7462 		if (!group) {
7463 			sd = sd->child;
7464 			continue;
7465 		}
7466 
7467 		new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu);
7468 		if (new_cpu == cpu) {
7469 			/* Now try balancing at a lower domain level of 'cpu': */
7470 			sd = sd->child;
7471 			continue;
7472 		}
7473 
7474 		/* Now try balancing at a lower domain level of 'new_cpu': */
7475 		cpu = new_cpu;
7476 		weight = sd->span_weight;
7477 		sd = NULL;
7478 		for_each_domain(cpu, tmp) {
7479 			if (weight <= tmp->span_weight)
7480 				break;
7481 			if (tmp->flags & sd_flag)
7482 				sd = tmp;
7483 		}
7484 	}
7485 
7486 	return new_cpu;
7487 }
7488 
__select_idle_cpu(int cpu,struct task_struct * p)7489 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7490 {
7491 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7492 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
7493 		return cpu;
7494 
7495 	return -1;
7496 }
7497 
7498 #ifdef CONFIG_SCHED_SMT
7499 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7500 EXPORT_SYMBOL_GPL(sched_smt_present);
7501 
set_idle_cores(int cpu,int val)7502 static inline void set_idle_cores(int cpu, int val)
7503 {
7504 	struct sched_domain_shared *sds;
7505 
7506 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7507 	if (sds)
7508 		WRITE_ONCE(sds->has_idle_cores, val);
7509 }
7510 
test_idle_cores(int cpu)7511 static inline bool test_idle_cores(int cpu)
7512 {
7513 	struct sched_domain_shared *sds;
7514 
7515 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7516 	if (sds)
7517 		return READ_ONCE(sds->has_idle_cores);
7518 
7519 	return false;
7520 }
7521 
7522 /*
7523  * Scans the local SMT mask to see if the entire core is idle, and records this
7524  * information in sd_llc_shared->has_idle_cores.
7525  *
7526  * Since SMT siblings share all cache levels, inspecting this limited remote
7527  * state should be fairly cheap.
7528  */
__update_idle_core(struct rq * rq)7529 void __update_idle_core(struct rq *rq)
7530 {
7531 	int core = cpu_of(rq);
7532 	int cpu;
7533 
7534 	rcu_read_lock();
7535 	if (test_idle_cores(core))
7536 		goto unlock;
7537 
7538 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7539 		if (cpu == core)
7540 			continue;
7541 
7542 		if (!available_idle_cpu(cpu))
7543 			goto unlock;
7544 	}
7545 
7546 	set_idle_cores(core, 1);
7547 unlock:
7548 	rcu_read_unlock();
7549 }
7550 
7551 /*
7552  * Scan the entire LLC domain for idle cores; this dynamically switches off if
7553  * there are no idle cores left in the system; tracked through
7554  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7555  */
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7556 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7557 {
7558 	bool idle = true;
7559 	int cpu;
7560 
7561 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7562 		if (!available_idle_cpu(cpu)) {
7563 			idle = false;
7564 			if (*idle_cpu == -1) {
7565 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7566 					*idle_cpu = cpu;
7567 					break;
7568 				}
7569 				continue;
7570 			}
7571 			break;
7572 		}
7573 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7574 			*idle_cpu = cpu;
7575 	}
7576 
7577 	if (idle)
7578 		return core;
7579 
7580 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7581 	return -1;
7582 }
7583 
7584 /*
7585  * Scan the local SMT mask for idle CPUs.
7586  */
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7587 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7588 {
7589 	int cpu;
7590 
7591 	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7592 		if (cpu == target)
7593 			continue;
7594 		/*
7595 		 * Check if the CPU is in the LLC scheduling domain of @target.
7596 		 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7597 		 */
7598 		if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7599 			continue;
7600 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7601 			return cpu;
7602 	}
7603 
7604 	return -1;
7605 }
7606 
7607 #else /* !CONFIG_SCHED_SMT: */
7608 
set_idle_cores(int cpu,int val)7609 static inline void set_idle_cores(int cpu, int val)
7610 {
7611 }
7612 
test_idle_cores(int cpu)7613 static inline bool test_idle_cores(int cpu)
7614 {
7615 	return false;
7616 }
7617 
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7618 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7619 {
7620 	return __select_idle_cpu(core, p);
7621 }
7622 
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7623 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7624 {
7625 	return -1;
7626 }
7627 
7628 #endif /* !CONFIG_SCHED_SMT */
7629 
7630 /*
7631  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7632  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7633  * average idle time for this rq (as found in rq->avg_idle).
7634  */
select_idle_cpu(struct task_struct * p,struct sched_domain * sd,bool has_idle_core,int target)7635 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7636 {
7637 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7638 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
7639 	struct sched_domain_shared *sd_share;
7640 
7641 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7642 
7643 	if (sched_feat(SIS_UTIL)) {
7644 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7645 		if (sd_share) {
7646 			/* because !--nr is the condition to stop scan */
7647 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7648 			/* overloaded LLC is unlikely to have idle cpu/core */
7649 			if (nr == 1)
7650 				return -1;
7651 		}
7652 	}
7653 
7654 	if (static_branch_unlikely(&sched_cluster_active)) {
7655 		struct sched_group *sg = sd->groups;
7656 
7657 		if (sg->flags & SD_CLUSTER) {
7658 			for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
7659 				if (!cpumask_test_cpu(cpu, cpus))
7660 					continue;
7661 
7662 				if (has_idle_core) {
7663 					i = select_idle_core(p, cpu, cpus, &idle_cpu);
7664 					if ((unsigned int)i < nr_cpumask_bits)
7665 						return i;
7666 				} else {
7667 					if (--nr <= 0)
7668 						return -1;
7669 					idle_cpu = __select_idle_cpu(cpu, p);
7670 					if ((unsigned int)idle_cpu < nr_cpumask_bits)
7671 						return idle_cpu;
7672 				}
7673 			}
7674 			cpumask_andnot(cpus, cpus, sched_group_span(sg));
7675 		}
7676 	}
7677 
7678 	for_each_cpu_wrap(cpu, cpus, target + 1) {
7679 		if (has_idle_core) {
7680 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
7681 			if ((unsigned int)i < nr_cpumask_bits)
7682 				return i;
7683 
7684 		} else {
7685 			if (--nr <= 0)
7686 				return -1;
7687 			idle_cpu = __select_idle_cpu(cpu, p);
7688 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
7689 				break;
7690 		}
7691 	}
7692 
7693 	if (has_idle_core)
7694 		set_idle_cores(target, false);
7695 
7696 	return idle_cpu;
7697 }
7698 
7699 /*
7700  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7701  * the task fits. If no CPU is big enough, but there are idle ones, try to
7702  * maximize capacity.
7703  */
7704 static int
select_idle_capacity(struct task_struct * p,struct sched_domain * sd,int target)7705 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7706 {
7707 	unsigned long task_util, util_min, util_max, best_cap = 0;
7708 	int fits, best_fits = 0;
7709 	int cpu, best_cpu = -1;
7710 	struct cpumask *cpus;
7711 
7712 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7713 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7714 
7715 	task_util = task_util_est(p);
7716 	util_min = uclamp_eff_value(p, UCLAMP_MIN);
7717 	util_max = uclamp_eff_value(p, UCLAMP_MAX);
7718 
7719 	for_each_cpu_wrap(cpu, cpus, target) {
7720 		unsigned long cpu_cap = capacity_of(cpu);
7721 
7722 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7723 			continue;
7724 
7725 		fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7726 
7727 		/* This CPU fits with all requirements */
7728 		if (fits > 0)
7729 			return cpu;
7730 		/*
7731 		 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7732 		 * Look for the CPU with best capacity.
7733 		 */
7734 		else if (fits < 0)
7735 			cpu_cap = get_actual_cpu_capacity(cpu);
7736 
7737 		/*
7738 		 * First, select CPU which fits better (-1 being better than 0).
7739 		 * Then, select the one with best capacity at same level.
7740 		 */
7741 		if ((fits < best_fits) ||
7742 		    ((fits == best_fits) && (cpu_cap > best_cap))) {
7743 			best_cap = cpu_cap;
7744 			best_cpu = cpu;
7745 			best_fits = fits;
7746 		}
7747 	}
7748 
7749 	return best_cpu;
7750 }
7751 
asym_fits_cpu(unsigned long util,unsigned long util_min,unsigned long util_max,int cpu)7752 static inline bool asym_fits_cpu(unsigned long util,
7753 				 unsigned long util_min,
7754 				 unsigned long util_max,
7755 				 int cpu)
7756 {
7757 	if (sched_asym_cpucap_active())
7758 		/*
7759 		 * Return true only if the cpu fully fits the task requirements
7760 		 * which include the utilization and the performance hints.
7761 		 */
7762 		return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7763 
7764 	return true;
7765 }
7766 
7767 /*
7768  * Try and locate an idle core/thread in the LLC cache domain.
7769  */
select_idle_sibling(struct task_struct * p,int prev,int target)7770 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7771 {
7772 	bool has_idle_core = false;
7773 	struct sched_domain *sd;
7774 	unsigned long task_util, util_min, util_max;
7775 	int i, recent_used_cpu, prev_aff = -1;
7776 
7777 	/*
7778 	 * On asymmetric system, update task utilization because we will check
7779 	 * that the task fits with CPU's capacity.
7780 	 */
7781 	if (sched_asym_cpucap_active()) {
7782 		sync_entity_load_avg(&p->se);
7783 		task_util = task_util_est(p);
7784 		util_min = uclamp_eff_value(p, UCLAMP_MIN);
7785 		util_max = uclamp_eff_value(p, UCLAMP_MAX);
7786 	}
7787 
7788 	/*
7789 	 * per-cpu select_rq_mask usage
7790 	 */
7791 	lockdep_assert_irqs_disabled();
7792 
7793 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7794 	    asym_fits_cpu(task_util, util_min, util_max, target))
7795 		return target;
7796 
7797 	/*
7798 	 * If the previous CPU is cache affine and idle, don't be stupid:
7799 	 */
7800 	if (prev != target && cpus_share_cache(prev, target) &&
7801 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7802 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7803 
7804 		if (!static_branch_unlikely(&sched_cluster_active) ||
7805 		    cpus_share_resources(prev, target))
7806 			return prev;
7807 
7808 		prev_aff = prev;
7809 	}
7810 
7811 	/*
7812 	 * Allow a per-cpu kthread to stack with the wakee if the
7813 	 * kworker thread and the tasks previous CPUs are the same.
7814 	 * The assumption is that the wakee queued work for the
7815 	 * per-cpu kthread that is now complete and the wakeup is
7816 	 * essentially a sync wakeup. An obvious example of this
7817 	 * pattern is IO completions.
7818 	 */
7819 	if (is_per_cpu_kthread(current) &&
7820 	    in_task() &&
7821 	    prev == smp_processor_id() &&
7822 	    this_rq()->nr_running <= 1 &&
7823 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7824 		return prev;
7825 	}
7826 
7827 	/* Check a recently used CPU as a potential idle candidate: */
7828 	recent_used_cpu = p->recent_used_cpu;
7829 	p->recent_used_cpu = prev;
7830 	if (recent_used_cpu != prev &&
7831 	    recent_used_cpu != target &&
7832 	    cpus_share_cache(recent_used_cpu, target) &&
7833 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7834 	    cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7835 	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7836 
7837 		if (!static_branch_unlikely(&sched_cluster_active) ||
7838 		    cpus_share_resources(recent_used_cpu, target))
7839 			return recent_used_cpu;
7840 
7841 	} else {
7842 		recent_used_cpu = -1;
7843 	}
7844 
7845 	/*
7846 	 * For asymmetric CPU capacity systems, our domain of interest is
7847 	 * sd_asym_cpucapacity rather than sd_llc.
7848 	 */
7849 	if (sched_asym_cpucap_active()) {
7850 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7851 		/*
7852 		 * On an asymmetric CPU capacity system where an exclusive
7853 		 * cpuset defines a symmetric island (i.e. one unique
7854 		 * capacity_orig value through the cpuset), the key will be set
7855 		 * but the CPUs within that cpuset will not have a domain with
7856 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7857 		 * capacity path.
7858 		 */
7859 		if (sd) {
7860 			i = select_idle_capacity(p, sd, target);
7861 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
7862 		}
7863 	}
7864 
7865 	sd = rcu_dereference(per_cpu(sd_llc, target));
7866 	if (!sd)
7867 		return target;
7868 
7869 	if (sched_smt_active()) {
7870 		has_idle_core = test_idle_cores(target);
7871 
7872 		if (!has_idle_core && cpus_share_cache(prev, target)) {
7873 			i = select_idle_smt(p, sd, prev);
7874 			if ((unsigned int)i < nr_cpumask_bits)
7875 				return i;
7876 		}
7877 	}
7878 
7879 	i = select_idle_cpu(p, sd, has_idle_core, target);
7880 	if ((unsigned)i < nr_cpumask_bits)
7881 		return i;
7882 
7883 	/*
7884 	 * For cluster machines which have lower sharing cache like L2 or
7885 	 * LLC Tag, we tend to find an idle CPU in the target's cluster
7886 	 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
7887 	 * use them if possible when no idle CPU found in select_idle_cpu().
7888 	 */
7889 	if ((unsigned int)prev_aff < nr_cpumask_bits)
7890 		return prev_aff;
7891 	if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
7892 		return recent_used_cpu;
7893 
7894 	return target;
7895 }
7896 
7897 /**
7898  * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7899  * @cpu: the CPU to get the utilization for
7900  * @p: task for which the CPU utilization should be predicted or NULL
7901  * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7902  * @boost: 1 to enable boosting, otherwise 0
7903  *
7904  * The unit of the return value must be the same as the one of CPU capacity
7905  * so that CPU utilization can be compared with CPU capacity.
7906  *
7907  * CPU utilization is the sum of running time of runnable tasks plus the
7908  * recent utilization of currently non-runnable tasks on that CPU.
7909  * It represents the amount of CPU capacity currently used by CFS tasks in
7910  * the range [0..max CPU capacity] with max CPU capacity being the CPU
7911  * capacity at f_max.
7912  *
7913  * The estimated CPU utilization is defined as the maximum between CPU
7914  * utilization and sum of the estimated utilization of the currently
7915  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7916  * previously-executed tasks, which helps better deduce how busy a CPU will
7917  * be when a long-sleeping task wakes up. The contribution to CPU utilization
7918  * of such a task would be significantly decayed at this point of time.
7919  *
7920  * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7921  * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7922  * utilization. Boosting is implemented in cpu_util() so that internal
7923  * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7924  * latter via cpu_util_cfs_boost().
7925  *
7926  * CPU utilization can be higher than the current CPU capacity
7927  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7928  * of rounding errors as well as task migrations or wakeups of new tasks.
7929  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7930  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7931  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7932  * capacity. CPU utilization is allowed to overshoot current CPU capacity
7933  * though since this is useful for predicting the CPU capacity required
7934  * after task migrations (scheduler-driven DVFS).
7935  *
7936  * Return: (Boosted) (estimated) utilization for the specified CPU.
7937  */
7938 static unsigned long
cpu_util(int cpu,struct task_struct * p,int dst_cpu,int boost)7939 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
7940 {
7941 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
7942 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7943 	unsigned long runnable;
7944 
7945 	if (boost) {
7946 		runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7947 		util = max(util, runnable);
7948 	}
7949 
7950 	/*
7951 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
7952 	 * contribution. If @p migrates from another CPU to @cpu add its
7953 	 * contribution. In all the other cases @cpu is not impacted by the
7954 	 * migration so its util_avg is already correct.
7955 	 */
7956 	if (p && task_cpu(p) == cpu && dst_cpu != cpu)
7957 		lsub_positive(&util, task_util(p));
7958 	else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
7959 		util += task_util(p);
7960 
7961 	if (sched_feat(UTIL_EST)) {
7962 		unsigned long util_est;
7963 
7964 		util_est = READ_ONCE(cfs_rq->avg.util_est);
7965 
7966 		/*
7967 		 * During wake-up @p isn't enqueued yet and doesn't contribute
7968 		 * to any cpu_rq(cpu)->cfs.avg.util_est.
7969 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
7970 		 * has been enqueued.
7971 		 *
7972 		 * During exec (@dst_cpu = -1) @p is enqueued and does
7973 		 * contribute to cpu_rq(cpu)->cfs.util_est.
7974 		 * Remove it to "simulate" cpu_util without @p's contribution.
7975 		 *
7976 		 * Despite the task_on_rq_queued(@p) check there is still a
7977 		 * small window for a possible race when an exec
7978 		 * select_task_rq_fair() races with LB's detach_task().
7979 		 *
7980 		 *   detach_task()
7981 		 *     deactivate_task()
7982 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
7983 		 *       -------------------------------- A
7984 		 *       dequeue_task()                    \
7985 		 *         dequeue_task_fair()              + Race Time
7986 		 *           util_est_dequeue()            /
7987 		 *       -------------------------------- B
7988 		 *
7989 		 * The additional check "current == p" is required to further
7990 		 * reduce the race window.
7991 		 */
7992 		if (dst_cpu == cpu)
7993 			util_est += _task_util_est(p);
7994 		else if (p && unlikely(task_on_rq_queued(p) || current == p))
7995 			lsub_positive(&util_est, _task_util_est(p));
7996 
7997 		util = max(util, util_est);
7998 	}
7999 
8000 	return min(util, arch_scale_cpu_capacity(cpu));
8001 }
8002 
cpu_util_cfs(int cpu)8003 unsigned long cpu_util_cfs(int cpu)
8004 {
8005 	return cpu_util(cpu, NULL, -1, 0);
8006 }
8007 
cpu_util_cfs_boost(int cpu)8008 unsigned long cpu_util_cfs_boost(int cpu)
8009 {
8010 	return cpu_util(cpu, NULL, -1, 1);
8011 }
8012 
8013 /*
8014  * cpu_util_without: compute cpu utilization without any contributions from *p
8015  * @cpu: the CPU which utilization is requested
8016  * @p: the task which utilization should be discounted
8017  *
8018  * The utilization of a CPU is defined by the utilization of tasks currently
8019  * enqueued on that CPU as well as tasks which are currently sleeping after an
8020  * execution on that CPU.
8021  *
8022  * This method returns the utilization of the specified CPU by discounting the
8023  * utilization of the specified task, whenever the task is currently
8024  * contributing to the CPU utilization.
8025  */
cpu_util_without(int cpu,struct task_struct * p)8026 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
8027 {
8028 	/* Task has no contribution or is new */
8029 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8030 		p = NULL;
8031 
8032 	return cpu_util(cpu, p, -1, 0);
8033 }
8034 
8035 /*
8036  * This function computes an effective utilization for the given CPU, to be
8037  * used for frequency selection given the linear relation: f = u * f_max.
8038  *
8039  * The scheduler tracks the following metrics:
8040  *
8041  *   cpu_util_{cfs,rt,dl,irq}()
8042  *   cpu_bw_dl()
8043  *
8044  * Where the cfs,rt and dl util numbers are tracked with the same metric and
8045  * synchronized windows and are thus directly comparable.
8046  *
8047  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
8048  * which excludes things like IRQ and steal-time. These latter are then accrued
8049  * in the IRQ utilization.
8050  *
8051  * The DL bandwidth number OTOH is not a measured metric but a value computed
8052  * based on the task model parameters and gives the minimal utilization
8053  * required to meet deadlines.
8054  */
effective_cpu_util(int cpu,unsigned long util_cfs,unsigned long * min,unsigned long * max)8055 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
8056 				 unsigned long *min,
8057 				 unsigned long *max)
8058 {
8059 	unsigned long util, irq, scale;
8060 	struct rq *rq = cpu_rq(cpu);
8061 
8062 	scale = arch_scale_cpu_capacity(cpu);
8063 
8064 	/*
8065 	 * Early check to see if IRQ/steal time saturates the CPU, can be
8066 	 * because of inaccuracies in how we track these -- see
8067 	 * update_irq_load_avg().
8068 	 */
8069 	irq = cpu_util_irq(rq);
8070 	if (unlikely(irq >= scale)) {
8071 		if (min)
8072 			*min = scale;
8073 		if (max)
8074 			*max = scale;
8075 		return scale;
8076 	}
8077 
8078 	if (min) {
8079 		/*
8080 		 * The minimum utilization returns the highest level between:
8081 		 * - the computed DL bandwidth needed with the IRQ pressure which
8082 		 *   steals time to the deadline task.
8083 		 * - The minimum performance requirement for CFS and/or RT.
8084 		 */
8085 		*min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
8086 
8087 		/*
8088 		 * When an RT task is runnable and uclamp is not used, we must
8089 		 * ensure that the task will run at maximum compute capacity.
8090 		 */
8091 		if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
8092 			*min = max(*min, scale);
8093 	}
8094 
8095 	/*
8096 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
8097 	 * CFS tasks and we use the same metric to track the effective
8098 	 * utilization (PELT windows are synchronized) we can directly add them
8099 	 * to obtain the CPU's actual utilization.
8100 	 */
8101 	util = util_cfs + cpu_util_rt(rq);
8102 	util += cpu_util_dl(rq);
8103 
8104 	/*
8105 	 * The maximum hint is a soft bandwidth requirement, which can be lower
8106 	 * than the actual utilization because of uclamp_max requirements.
8107 	 */
8108 	if (max)
8109 		*max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
8110 
8111 	if (util >= scale)
8112 		return scale;
8113 
8114 	/*
8115 	 * There is still idle time; further improve the number by using the
8116 	 * IRQ metric. Because IRQ/steal time is hidden from the task clock we
8117 	 * need to scale the task numbers:
8118 	 *
8119 	 *              max - irq
8120 	 *   U' = irq + --------- * U
8121 	 *                 max
8122 	 */
8123 	util = scale_irq_capacity(util, irq, scale);
8124 	util += irq;
8125 
8126 	return min(scale, util);
8127 }
8128 
sched_cpu_util(int cpu)8129 unsigned long sched_cpu_util(int cpu)
8130 {
8131 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
8132 }
8133 
8134 /*
8135  * energy_env - Utilization landscape for energy estimation.
8136  * @task_busy_time: Utilization contribution by the task for which we test the
8137  *                  placement. Given by eenv_task_busy_time().
8138  * @pd_busy_time:   Utilization of the whole perf domain without the task
8139  *                  contribution. Given by eenv_pd_busy_time().
8140  * @cpu_cap:        Maximum CPU capacity for the perf domain.
8141  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
8142  */
8143 struct energy_env {
8144 	unsigned long task_busy_time;
8145 	unsigned long pd_busy_time;
8146 	unsigned long cpu_cap;
8147 	unsigned long pd_cap;
8148 };
8149 
8150 /*
8151  * Compute the task busy time for compute_energy(). This time cannot be
8152  * injected directly into effective_cpu_util() because of the IRQ scaling.
8153  * The latter only makes sense with the most recent CPUs where the task has
8154  * run.
8155  */
eenv_task_busy_time(struct energy_env * eenv,struct task_struct * p,int prev_cpu)8156 static inline void eenv_task_busy_time(struct energy_env *eenv,
8157 				       struct task_struct *p, int prev_cpu)
8158 {
8159 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
8160 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
8161 
8162 	if (unlikely(irq >= max_cap))
8163 		busy_time = max_cap;
8164 	else
8165 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
8166 
8167 	eenv->task_busy_time = busy_time;
8168 }
8169 
8170 /*
8171  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
8172  * utilization for each @pd_cpus, it however doesn't take into account
8173  * clamping since the ratio (utilization / cpu_capacity) is already enough to
8174  * scale the EM reported power consumption at the (eventually clamped)
8175  * cpu_capacity.
8176  *
8177  * The contribution of the task @p for which we want to estimate the
8178  * energy cost is removed (by cpu_util()) and must be calculated
8179  * separately (see eenv_task_busy_time). This ensures:
8180  *
8181  *   - A stable PD utilization, no matter which CPU of that PD we want to place
8182  *     the task on.
8183  *
8184  *   - A fair comparison between CPUs as the task contribution (task_util())
8185  *     will always be the same no matter which CPU utilization we rely on
8186  *     (util_avg or util_est).
8187  *
8188  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
8189  * exceed @eenv->pd_cap.
8190  */
eenv_pd_busy_time(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p)8191 static inline void eenv_pd_busy_time(struct energy_env *eenv,
8192 				     struct cpumask *pd_cpus,
8193 				     struct task_struct *p)
8194 {
8195 	unsigned long busy_time = 0;
8196 	int cpu;
8197 
8198 	for_each_cpu(cpu, pd_cpus) {
8199 		unsigned long util = cpu_util(cpu, p, -1, 0);
8200 
8201 		busy_time += effective_cpu_util(cpu, util, NULL, NULL);
8202 	}
8203 
8204 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
8205 }
8206 
8207 /*
8208  * Compute the maximum utilization for compute_energy() when the task @p
8209  * is placed on the cpu @dst_cpu.
8210  *
8211  * Returns the maximum utilization among @eenv->cpus. This utilization can't
8212  * exceed @eenv->cpu_cap.
8213  */
8214 static inline unsigned long
eenv_pd_max_util(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)8215 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
8216 		 struct task_struct *p, int dst_cpu)
8217 {
8218 	unsigned long max_util = 0;
8219 	int cpu;
8220 
8221 	for_each_cpu(cpu, pd_cpus) {
8222 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
8223 		unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
8224 		unsigned long eff_util, min, max;
8225 
8226 		/*
8227 		 * Performance domain frequency: utilization clamping
8228 		 * must be considered since it affects the selection
8229 		 * of the performance domain frequency.
8230 		 * NOTE: in case RT tasks are running, by default the min
8231 		 * utilization can be max OPP.
8232 		 */
8233 		eff_util = effective_cpu_util(cpu, util, &min, &max);
8234 
8235 		/* Task's uclamp can modify min and max value */
8236 		if (tsk && uclamp_is_used()) {
8237 			min = max(min, uclamp_eff_value(p, UCLAMP_MIN));
8238 
8239 			/*
8240 			 * If there is no active max uclamp constraint,
8241 			 * directly use task's one, otherwise keep max.
8242 			 */
8243 			if (uclamp_rq_is_idle(cpu_rq(cpu)))
8244 				max = uclamp_eff_value(p, UCLAMP_MAX);
8245 			else
8246 				max = max(max, uclamp_eff_value(p, UCLAMP_MAX));
8247 		}
8248 
8249 		eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max);
8250 		max_util = max(max_util, eff_util);
8251 	}
8252 
8253 	return min(max_util, eenv->cpu_cap);
8254 }
8255 
8256 /*
8257  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
8258  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
8259  * contribution is ignored.
8260  */
8261 static inline unsigned long
compute_energy(struct energy_env * eenv,struct perf_domain * pd,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)8262 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
8263 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
8264 {
8265 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
8266 	unsigned long busy_time = eenv->pd_busy_time;
8267 	unsigned long energy;
8268 
8269 	if (dst_cpu >= 0)
8270 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
8271 
8272 	energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
8273 
8274 	trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
8275 
8276 	return energy;
8277 }
8278 
8279 /*
8280  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
8281  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
8282  * spare capacity in each performance domain and uses it as a potential
8283  * candidate to execute the task. Then, it uses the Energy Model to figure
8284  * out which of the CPU candidates is the most energy-efficient.
8285  *
8286  * The rationale for this heuristic is as follows. In a performance domain,
8287  * all the most energy efficient CPU candidates (according to the Energy
8288  * Model) are those for which we'll request a low frequency. When there are
8289  * several CPUs for which the frequency request will be the same, we don't
8290  * have enough data to break the tie between them, because the Energy Model
8291  * only includes active power costs. With this model, if we assume that
8292  * frequency requests follow utilization (e.g. using schedutil), the CPU with
8293  * the maximum spare capacity in a performance domain is guaranteed to be among
8294  * the best candidates of the performance domain.
8295  *
8296  * In practice, it could be preferable from an energy standpoint to pack
8297  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
8298  * but that could also hurt our chances to go cluster idle, and we have no
8299  * ways to tell with the current Energy Model if this is actually a good
8300  * idea or not. So, find_energy_efficient_cpu() basically favors
8301  * cluster-packing, and spreading inside a cluster. That should at least be
8302  * a good thing for latency, and this is consistent with the idea that most
8303  * of the energy savings of EAS come from the asymmetry of the system, and
8304  * not so much from breaking the tie between identical CPUs. That's also the
8305  * reason why EAS is enabled in the topology code only for systems where
8306  * SD_ASYM_CPUCAPACITY is set.
8307  *
8308  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
8309  * they don't have any useful utilization data yet and it's not possible to
8310  * forecast their impact on energy consumption. Consequently, they will be
8311  * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out
8312  * to be energy-inefficient in some use-cases. The alternative would be to
8313  * bias new tasks towards specific types of CPUs first, or to try to infer
8314  * their util_avg from the parent task, but those heuristics could hurt
8315  * other use-cases too. So, until someone finds a better way to solve this,
8316  * let's keep things simple by re-using the existing slow path.
8317  */
find_energy_efficient_cpu(struct task_struct * p,int prev_cpu)8318 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
8319 {
8320 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
8321 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
8322 	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
8323 	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
8324 	struct root_domain *rd = this_rq()->rd;
8325 	int cpu, best_energy_cpu, target = -1;
8326 	int prev_fits = -1, best_fits = -1;
8327 	unsigned long best_actual_cap = 0;
8328 	unsigned long prev_actual_cap = 0;
8329 	struct sched_domain *sd;
8330 	struct perf_domain *pd;
8331 	struct energy_env eenv;
8332 
8333 	rcu_read_lock();
8334 	pd = rcu_dereference(rd->pd);
8335 	if (!pd)
8336 		goto unlock;
8337 
8338 	/*
8339 	 * Energy-aware wake-up happens on the lowest sched_domain starting
8340 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
8341 	 */
8342 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
8343 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
8344 		sd = sd->parent;
8345 	if (!sd)
8346 		goto unlock;
8347 
8348 	target = prev_cpu;
8349 
8350 	sync_entity_load_avg(&p->se);
8351 	if (!task_util_est(p) && p_util_min == 0)
8352 		goto unlock;
8353 
8354 	eenv_task_busy_time(&eenv, p, prev_cpu);
8355 
8356 	for (; pd; pd = pd->next) {
8357 		unsigned long util_min = p_util_min, util_max = p_util_max;
8358 		unsigned long cpu_cap, cpu_actual_cap, util;
8359 		long prev_spare_cap = -1, max_spare_cap = -1;
8360 		unsigned long rq_util_min, rq_util_max;
8361 		unsigned long cur_delta, base_energy;
8362 		int max_spare_cap_cpu = -1;
8363 		int fits, max_fits = -1;
8364 
8365 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
8366 
8367 		if (cpumask_empty(cpus))
8368 			continue;
8369 
8370 		/* Account external pressure for the energy estimation */
8371 		cpu = cpumask_first(cpus);
8372 		cpu_actual_cap = get_actual_cpu_capacity(cpu);
8373 
8374 		eenv.cpu_cap = cpu_actual_cap;
8375 		eenv.pd_cap = 0;
8376 
8377 		for_each_cpu(cpu, cpus) {
8378 			struct rq *rq = cpu_rq(cpu);
8379 
8380 			eenv.pd_cap += cpu_actual_cap;
8381 
8382 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8383 				continue;
8384 
8385 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8386 				continue;
8387 
8388 			util = cpu_util(cpu, p, cpu, 0);
8389 			cpu_cap = capacity_of(cpu);
8390 
8391 			/*
8392 			 * Skip CPUs that cannot satisfy the capacity request.
8393 			 * IOW, placing the task there would make the CPU
8394 			 * overutilized. Take uclamp into account to see how
8395 			 * much capacity we can get out of the CPU; this is
8396 			 * aligned with sched_cpu_util().
8397 			 */
8398 			if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8399 				/*
8400 				 * Open code uclamp_rq_util_with() except for
8401 				 * the clamp() part. I.e.: apply max aggregation
8402 				 * only. util_fits_cpu() logic requires to
8403 				 * operate on non clamped util but must use the
8404 				 * max-aggregated uclamp_{min, max}.
8405 				 */
8406 				rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8407 				rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8408 
8409 				util_min = max(rq_util_min, p_util_min);
8410 				util_max = max(rq_util_max, p_util_max);
8411 			}
8412 
8413 			fits = util_fits_cpu(util, util_min, util_max, cpu);
8414 			if (!fits)
8415 				continue;
8416 
8417 			lsub_positive(&cpu_cap, util);
8418 
8419 			if (cpu == prev_cpu) {
8420 				/* Always use prev_cpu as a candidate. */
8421 				prev_spare_cap = cpu_cap;
8422 				prev_fits = fits;
8423 			} else if ((fits > max_fits) ||
8424 				   ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8425 				/*
8426 				 * Find the CPU with the maximum spare capacity
8427 				 * among the remaining CPUs in the performance
8428 				 * domain.
8429 				 */
8430 				max_spare_cap = cpu_cap;
8431 				max_spare_cap_cpu = cpu;
8432 				max_fits = fits;
8433 			}
8434 		}
8435 
8436 		if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8437 			continue;
8438 
8439 		eenv_pd_busy_time(&eenv, cpus, p);
8440 		/* Compute the 'base' energy of the pd, without @p */
8441 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8442 
8443 		/* Evaluate the energy impact of using prev_cpu. */
8444 		if (prev_spare_cap > -1) {
8445 			prev_delta = compute_energy(&eenv, pd, cpus, p,
8446 						    prev_cpu);
8447 			/* CPU utilization has changed */
8448 			if (prev_delta < base_energy)
8449 				goto unlock;
8450 			prev_delta -= base_energy;
8451 			prev_actual_cap = cpu_actual_cap;
8452 			best_delta = min(best_delta, prev_delta);
8453 		}
8454 
8455 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
8456 		if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8457 			/* Current best energy cpu fits better */
8458 			if (max_fits < best_fits)
8459 				continue;
8460 
8461 			/*
8462 			 * Both don't fit performance hint (i.e. uclamp_min)
8463 			 * but best energy cpu has better capacity.
8464 			 */
8465 			if ((max_fits < 0) &&
8466 			    (cpu_actual_cap <= best_actual_cap))
8467 				continue;
8468 
8469 			cur_delta = compute_energy(&eenv, pd, cpus, p,
8470 						   max_spare_cap_cpu);
8471 			/* CPU utilization has changed */
8472 			if (cur_delta < base_energy)
8473 				goto unlock;
8474 			cur_delta -= base_energy;
8475 
8476 			/*
8477 			 * Both fit for the task but best energy cpu has lower
8478 			 * energy impact.
8479 			 */
8480 			if ((max_fits > 0) && (best_fits > 0) &&
8481 			    (cur_delta >= best_delta))
8482 				continue;
8483 
8484 			best_delta = cur_delta;
8485 			best_energy_cpu = max_spare_cap_cpu;
8486 			best_fits = max_fits;
8487 			best_actual_cap = cpu_actual_cap;
8488 		}
8489 	}
8490 	rcu_read_unlock();
8491 
8492 	if ((best_fits > prev_fits) ||
8493 	    ((best_fits > 0) && (best_delta < prev_delta)) ||
8494 	    ((best_fits < 0) && (best_actual_cap > prev_actual_cap)))
8495 		target = best_energy_cpu;
8496 
8497 	return target;
8498 
8499 unlock:
8500 	rcu_read_unlock();
8501 
8502 	return target;
8503 }
8504 
8505 /*
8506  * select_task_rq_fair: Select target runqueue for the waking task in domains
8507  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8508  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8509  *
8510  * Balances load by selecting the idlest CPU in the idlest group, or under
8511  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8512  *
8513  * Returns the target CPU number.
8514  */
8515 static int
select_task_rq_fair(struct task_struct * p,int prev_cpu,int wake_flags)8516 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8517 {
8518 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8519 	struct sched_domain *tmp, *sd = NULL;
8520 	int cpu = smp_processor_id();
8521 	int new_cpu = prev_cpu;
8522 	int want_affine = 0;
8523 	/* SD_flags and WF_flags share the first nibble */
8524 	int sd_flag = wake_flags & 0xF;
8525 
8526 	/*
8527 	 * required for stable ->cpus_allowed
8528 	 */
8529 	lockdep_assert_held(&p->pi_lock);
8530 	if (wake_flags & WF_TTWU) {
8531 		record_wakee(p);
8532 
8533 		if ((wake_flags & WF_CURRENT_CPU) &&
8534 		    cpumask_test_cpu(cpu, p->cpus_ptr))
8535 			return cpu;
8536 
8537 		if (!is_rd_overutilized(this_rq()->rd)) {
8538 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8539 			if (new_cpu >= 0)
8540 				return new_cpu;
8541 			new_cpu = prev_cpu;
8542 		}
8543 
8544 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8545 	}
8546 
8547 	rcu_read_lock();
8548 	for_each_domain(cpu, tmp) {
8549 		/*
8550 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
8551 		 * cpu is a valid SD_WAKE_AFFINE target.
8552 		 */
8553 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8554 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8555 			if (cpu != prev_cpu)
8556 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8557 
8558 			sd = NULL; /* Prefer wake_affine over balance flags */
8559 			break;
8560 		}
8561 
8562 		/*
8563 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8564 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8565 		 * will usually go to the fast path.
8566 		 */
8567 		if (tmp->flags & sd_flag)
8568 			sd = tmp;
8569 		else if (!want_affine)
8570 			break;
8571 	}
8572 
8573 	if (unlikely(sd)) {
8574 		/* Slow path */
8575 		new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag);
8576 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
8577 		/* Fast path */
8578 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8579 	}
8580 	rcu_read_unlock();
8581 
8582 	return new_cpu;
8583 }
8584 
8585 /*
8586  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8587  * cfs_rq_of(p) references at time of call are still valid and identify the
8588  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8589  */
migrate_task_rq_fair(struct task_struct * p,int new_cpu)8590 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8591 {
8592 	struct sched_entity *se = &p->se;
8593 
8594 	if (!task_on_rq_migrating(p)) {
8595 		remove_entity_load_avg(se);
8596 
8597 		/*
8598 		 * Here, the task's PELT values have been updated according to
8599 		 * the current rq's clock. But if that clock hasn't been
8600 		 * updated in a while, a substantial idle time will be missed,
8601 		 * leading to an inflation after wake-up on the new rq.
8602 		 *
8603 		 * Estimate the missing time from the cfs_rq last_update_time
8604 		 * and update sched_avg to improve the PELT continuity after
8605 		 * migration.
8606 		 */
8607 		migrate_se_pelt_lag(se);
8608 	}
8609 
8610 	/* Tell new CPU we are migrated */
8611 	se->avg.last_update_time = 0;
8612 
8613 	update_scan_period(p, new_cpu);
8614 }
8615 
task_dead_fair(struct task_struct * p)8616 static void task_dead_fair(struct task_struct *p)
8617 {
8618 	struct sched_entity *se = &p->se;
8619 
8620 	if (se->sched_delayed) {
8621 		struct rq_flags rf;
8622 		struct rq *rq;
8623 
8624 		rq = task_rq_lock(p, &rf);
8625 		if (se->sched_delayed) {
8626 			update_rq_clock(rq);
8627 			dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
8628 		}
8629 		task_rq_unlock(rq, p, &rf);
8630 	}
8631 
8632 	remove_entity_load_avg(se);
8633 }
8634 
8635 /*
8636  * Set the max capacity the task is allowed to run at for misfit detection.
8637  */
set_task_max_allowed_capacity(struct task_struct * p)8638 static void set_task_max_allowed_capacity(struct task_struct *p)
8639 {
8640 	struct asym_cap_data *entry;
8641 
8642 	if (!sched_asym_cpucap_active())
8643 		return;
8644 
8645 	rcu_read_lock();
8646 	list_for_each_entry_rcu(entry, &asym_cap_list, link) {
8647 		cpumask_t *cpumask;
8648 
8649 		cpumask = cpu_capacity_span(entry);
8650 		if (!cpumask_intersects(p->cpus_ptr, cpumask))
8651 			continue;
8652 
8653 		p->max_allowed_capacity = entry->capacity;
8654 		break;
8655 	}
8656 	rcu_read_unlock();
8657 }
8658 
set_cpus_allowed_fair(struct task_struct * p,struct affinity_context * ctx)8659 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx)
8660 {
8661 	set_cpus_allowed_common(p, ctx);
8662 	set_task_max_allowed_capacity(p);
8663 }
8664 
set_next_buddy(struct sched_entity * se)8665 static void set_next_buddy(struct sched_entity *se)
8666 {
8667 	for_each_sched_entity(se) {
8668 		if (WARN_ON_ONCE(!se->on_rq))
8669 			return;
8670 		if (se_is_idle(se))
8671 			return;
8672 		cfs_rq_of(se)->next = se;
8673 	}
8674 }
8675 
8676 enum preempt_wakeup_action {
8677 	PREEMPT_WAKEUP_NONE,	/* No preemption. */
8678 	PREEMPT_WAKEUP_SHORT,	/* Ignore slice protection. */
8679 	PREEMPT_WAKEUP_PICK,	/* Let __pick_eevdf() decide. */
8680 	PREEMPT_WAKEUP_RESCHED,	/* Force reschedule. */
8681 };
8682 
8683 static inline bool
set_preempt_buddy(struct cfs_rq * cfs_rq,int wake_flags,struct sched_entity * pse,struct sched_entity * se)8684 set_preempt_buddy(struct cfs_rq *cfs_rq, int wake_flags,
8685 		  struct sched_entity *pse, struct sched_entity *se)
8686 {
8687 	/*
8688 	 * Keep existing buddy if the deadline is sooner than pse.
8689 	 * The older buddy may be cache cold and completely unrelated
8690 	 * to the current wakeup but that is unpredictable where as
8691 	 * obeying the deadline is more in line with EEVDF objectives.
8692 	 */
8693 	if (cfs_rq->next && entity_before(cfs_rq->next, pse))
8694 		return false;
8695 
8696 	set_next_buddy(pse);
8697 	return true;
8698 }
8699 
8700 /*
8701  * WF_SYNC|WF_TTWU indicates the waker expects to sleep but it is not
8702  * strictly enforced because the hint is either misunderstood or
8703  * multiple tasks must be woken up.
8704  */
8705 static inline enum preempt_wakeup_action
preempt_sync(struct rq * rq,int wake_flags,struct sched_entity * pse,struct sched_entity * se)8706 preempt_sync(struct rq *rq, int wake_flags,
8707 	     struct sched_entity *pse, struct sched_entity *se)
8708 {
8709 	u64 threshold, delta;
8710 
8711 	/*
8712 	 * WF_SYNC without WF_TTWU is not expected so warn if it happens even
8713 	 * though it is likely harmless.
8714 	 */
8715 	WARN_ON_ONCE(!(wake_flags & WF_TTWU));
8716 
8717 	threshold = sysctl_sched_migration_cost;
8718 	delta = rq_clock_task(rq) - se->exec_start;
8719 	if ((s64)delta < 0)
8720 		delta = 0;
8721 
8722 	/*
8723 	 * WF_RQ_SELECTED implies the tasks are stacking on a CPU when they
8724 	 * could run on other CPUs. Reduce the threshold before preemption is
8725 	 * allowed to an arbitrary lower value as it is more likely (but not
8726 	 * guaranteed) the waker requires the wakee to finish.
8727 	 */
8728 	if (wake_flags & WF_RQ_SELECTED)
8729 		threshold >>= 2;
8730 
8731 	/*
8732 	 * As WF_SYNC is not strictly obeyed, allow some runtime for batch
8733 	 * wakeups to be issued.
8734 	 */
8735 	if (entity_before(pse, se) && delta >= threshold)
8736 		return PREEMPT_WAKEUP_RESCHED;
8737 
8738 	return PREEMPT_WAKEUP_NONE;
8739 }
8740 
8741 /*
8742  * Preempt the current task with a newly woken task if needed:
8743  */
check_preempt_wakeup_fair(struct rq * rq,struct task_struct * p,int wake_flags)8744 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8745 {
8746 	enum preempt_wakeup_action preempt_action = PREEMPT_WAKEUP_PICK;
8747 	struct task_struct *donor = rq->donor;
8748 	struct sched_entity *se = &donor->se, *pse = &p->se;
8749 	struct cfs_rq *cfs_rq = task_cfs_rq(donor);
8750 	int cse_is_idle, pse_is_idle;
8751 
8752 	if (unlikely(se == pse))
8753 		return;
8754 
8755 	/*
8756 	 * This is possible from callers such as attach_tasks(), in which we
8757 	 * unconditionally wakeup_preempt() after an enqueue (which may have
8758 	 * lead to a throttle).  This both saves work and prevents false
8759 	 * next-buddy nomination below.
8760 	 */
8761 	if (task_is_throttled(p))
8762 		return;
8763 
8764 	/*
8765 	 * We can come here with TIF_NEED_RESCHED already set from new task
8766 	 * wake up path.
8767 	 *
8768 	 * Note: this also catches the edge-case of curr being in a throttled
8769 	 * group (e.g. via set_curr_task), since update_curr() (in the
8770 	 * enqueue of curr) will have resulted in resched being set.  This
8771 	 * prevents us from potentially nominating it as a false LAST_BUDDY
8772 	 * below.
8773 	 */
8774 	if (test_tsk_need_resched(rq->curr))
8775 		return;
8776 
8777 	if (!sched_feat(WAKEUP_PREEMPTION))
8778 		return;
8779 
8780 	find_matching_se(&se, &pse);
8781 	WARN_ON_ONCE(!pse);
8782 
8783 	cse_is_idle = se_is_idle(se);
8784 	pse_is_idle = se_is_idle(pse);
8785 
8786 	/*
8787 	 * Preempt an idle entity in favor of a non-idle entity (and don't preempt
8788 	 * in the inverse case).
8789 	 */
8790 	if (cse_is_idle && !pse_is_idle) {
8791 		/*
8792 		 * When non-idle entity preempt an idle entity,
8793 		 * don't give idle entity slice protection.
8794 		 */
8795 		preempt_action = PREEMPT_WAKEUP_SHORT;
8796 		goto preempt;
8797 	}
8798 
8799 	if (cse_is_idle != pse_is_idle)
8800 		return;
8801 
8802 	/*
8803 	 * BATCH and IDLE tasks do not preempt others.
8804 	 */
8805 	if (unlikely(!normal_policy(p->policy)))
8806 		return;
8807 
8808 	cfs_rq = cfs_rq_of(se);
8809 	update_curr(cfs_rq);
8810 	/*
8811 	 * If @p has a shorter slice than current and @p is eligible, override
8812 	 * current's slice protection in order to allow preemption.
8813 	 */
8814 	if (sched_feat(PREEMPT_SHORT) && (pse->slice < se->slice)) {
8815 		preempt_action = PREEMPT_WAKEUP_SHORT;
8816 		goto pick;
8817 	}
8818 
8819 	/*
8820 	 * Ignore wakee preemption on WF_FORK as it is less likely that
8821 	 * there is shared data as exec often follow fork. Do not
8822 	 * preempt for tasks that are sched_delayed as it would violate
8823 	 * EEVDF to forcibly queue an ineligible task.
8824 	 */
8825 	if ((wake_flags & WF_FORK) || pse->sched_delayed)
8826 		return;
8827 
8828 	/*
8829 	 * If @p potentially is completing work required by current then
8830 	 * consider preemption.
8831 	 *
8832 	 * Reschedule if waker is no longer eligible. */
8833 	if (in_task() && !entity_eligible(cfs_rq, se)) {
8834 		preempt_action = PREEMPT_WAKEUP_RESCHED;
8835 		goto preempt;
8836 	}
8837 
8838 	/* Prefer picking wakee soon if appropriate. */
8839 	if (sched_feat(NEXT_BUDDY) &&
8840 	    set_preempt_buddy(cfs_rq, wake_flags, pse, se)) {
8841 
8842 		/*
8843 		 * Decide whether to obey WF_SYNC hint for a new buddy. Old
8844 		 * buddies are ignored as they may not be relevant to the
8845 		 * waker and less likely to be cache hot.
8846 		 */
8847 		if (wake_flags & WF_SYNC)
8848 			preempt_action = preempt_sync(rq, wake_flags, pse, se);
8849 	}
8850 
8851 	switch (preempt_action) {
8852 	case PREEMPT_WAKEUP_NONE:
8853 		return;
8854 	case PREEMPT_WAKEUP_RESCHED:
8855 		goto preempt;
8856 	case PREEMPT_WAKEUP_SHORT:
8857 		fallthrough;
8858 	case PREEMPT_WAKEUP_PICK:
8859 		break;
8860 	}
8861 
8862 pick:
8863 	/*
8864 	 * If @p has become the most eligible task, force preemption.
8865 	 */
8866 	if (__pick_eevdf(cfs_rq, preempt_action != PREEMPT_WAKEUP_SHORT) == pse)
8867 		goto preempt;
8868 
8869 	if (sched_feat(RUN_TO_PARITY))
8870 		update_protect_slice(cfs_rq, se);
8871 
8872 	return;
8873 
8874 preempt:
8875 	if (preempt_action == PREEMPT_WAKEUP_SHORT)
8876 		cancel_protect_slice(se);
8877 
8878 	resched_curr_lazy(rq);
8879 }
8880 
pick_task_fair(struct rq * rq,struct rq_flags * rf)8881 static struct task_struct *pick_task_fair(struct rq *rq, struct rq_flags *rf)
8882 {
8883 	struct sched_entity *se;
8884 	struct cfs_rq *cfs_rq;
8885 	struct task_struct *p;
8886 	bool throttled;
8887 
8888 again:
8889 	cfs_rq = &rq->cfs;
8890 	if (!cfs_rq->nr_queued)
8891 		return NULL;
8892 
8893 	throttled = false;
8894 
8895 	do {
8896 		/* Might not have done put_prev_entity() */
8897 		if (cfs_rq->curr && cfs_rq->curr->on_rq)
8898 			update_curr(cfs_rq);
8899 
8900 		throttled |= check_cfs_rq_runtime(cfs_rq);
8901 
8902 		se = pick_next_entity(rq, cfs_rq);
8903 		if (!se)
8904 			goto again;
8905 		cfs_rq = group_cfs_rq(se);
8906 	} while (cfs_rq);
8907 
8908 	p = task_of(se);
8909 	if (unlikely(throttled))
8910 		task_throttle_setup_work(p);
8911 	return p;
8912 }
8913 
8914 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8915 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8916 
8917 struct task_struct *
pick_next_task_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8918 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8919 {
8920 	struct sched_entity *se;
8921 	struct task_struct *p;
8922 	int new_tasks;
8923 
8924 again:
8925 	p = pick_task_fair(rq, rf);
8926 	if (!p)
8927 		goto idle;
8928 	se = &p->se;
8929 
8930 #ifdef CONFIG_FAIR_GROUP_SCHED
8931 	if (prev->sched_class != &fair_sched_class)
8932 		goto simple;
8933 
8934 	__put_prev_set_next_dl_server(rq, prev, p);
8935 
8936 	/*
8937 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8938 	 * likely that a next task is from the same cgroup as the current.
8939 	 *
8940 	 * Therefore attempt to avoid putting and setting the entire cgroup
8941 	 * hierarchy, only change the part that actually changes.
8942 	 *
8943 	 * Since we haven't yet done put_prev_entity and if the selected task
8944 	 * is a different task than we started out with, try and touch the
8945 	 * least amount of cfs_rqs.
8946 	 */
8947 	if (prev != p) {
8948 		struct sched_entity *pse = &prev->se;
8949 		struct cfs_rq *cfs_rq;
8950 
8951 		while (!(cfs_rq = is_same_group(se, pse))) {
8952 			int se_depth = se->depth;
8953 			int pse_depth = pse->depth;
8954 
8955 			if (se_depth <= pse_depth) {
8956 				put_prev_entity(cfs_rq_of(pse), pse);
8957 				pse = parent_entity(pse);
8958 			}
8959 			if (se_depth >= pse_depth) {
8960 				set_next_entity(cfs_rq_of(se), se);
8961 				se = parent_entity(se);
8962 			}
8963 		}
8964 
8965 		put_prev_entity(cfs_rq, pse);
8966 		set_next_entity(cfs_rq, se);
8967 
8968 		__set_next_task_fair(rq, p, true);
8969 	}
8970 
8971 	return p;
8972 
8973 simple:
8974 #endif /* CONFIG_FAIR_GROUP_SCHED */
8975 	put_prev_set_next_task(rq, prev, p);
8976 	return p;
8977 
8978 idle:
8979 	if (rf) {
8980 		new_tasks = sched_balance_newidle(rq, rf);
8981 
8982 		/*
8983 		 * Because sched_balance_newidle() releases (and re-acquires)
8984 		 * rq->lock, it is possible for any higher priority task to
8985 		 * appear. In that case we must re-start the pick_next_entity()
8986 		 * loop.
8987 		 */
8988 		if (new_tasks < 0)
8989 			return RETRY_TASK;
8990 
8991 		if (new_tasks > 0)
8992 			goto again;
8993 	}
8994 
8995 	/*
8996 	 * rq is about to be idle, check if we need to update the
8997 	 * lost_idle_time of clock_pelt
8998 	 */
8999 	update_idle_rq_clock_pelt(rq);
9000 
9001 	return NULL;
9002 }
9003 
9004 static struct task_struct *
fair_server_pick_task(struct sched_dl_entity * dl_se,struct rq_flags * rf)9005 fair_server_pick_task(struct sched_dl_entity *dl_se, struct rq_flags *rf)
9006 {
9007 	return pick_task_fair(dl_se->rq, rf);
9008 }
9009 
fair_server_init(struct rq * rq)9010 void fair_server_init(struct rq *rq)
9011 {
9012 	struct sched_dl_entity *dl_se = &rq->fair_server;
9013 
9014 	init_dl_entity(dl_se);
9015 
9016 	dl_server_init(dl_se, rq, fair_server_pick_task);
9017 }
9018 
9019 /*
9020  * Account for a descheduled task:
9021  */
put_prev_task_fair(struct rq * rq,struct task_struct * prev,struct task_struct * next)9022 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next)
9023 {
9024 	struct sched_entity *se = &prev->se;
9025 	struct cfs_rq *cfs_rq;
9026 
9027 	for_each_sched_entity(se) {
9028 		cfs_rq = cfs_rq_of(se);
9029 		put_prev_entity(cfs_rq, se);
9030 	}
9031 }
9032 
9033 /*
9034  * sched_yield() is very simple
9035  */
yield_task_fair(struct rq * rq)9036 static void yield_task_fair(struct rq *rq)
9037 {
9038 	struct task_struct *curr = rq->donor;
9039 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
9040 	struct sched_entity *se = &curr->se;
9041 
9042 	/*
9043 	 * Are we the only task in the tree?
9044 	 */
9045 	if (unlikely(rq->nr_running == 1))
9046 		return;
9047 
9048 	clear_buddies(cfs_rq, se);
9049 
9050 	update_rq_clock(rq);
9051 	/*
9052 	 * Update run-time statistics of the 'current'.
9053 	 */
9054 	update_curr(cfs_rq);
9055 	/*
9056 	 * Tell update_rq_clock() that we've just updated,
9057 	 * so we don't do microscopic update in schedule()
9058 	 * and double the fastpath cost.
9059 	 */
9060 	rq_clock_skip_update(rq);
9061 
9062 	/*
9063 	 * Forfeit the remaining vruntime, only if the entity is eligible. This
9064 	 * condition is necessary because in core scheduling we prefer to run
9065 	 * ineligible tasks rather than force idling. If this happens we may
9066 	 * end up in a loop where the core scheduler picks the yielding task,
9067 	 * which yields immediately again; without the condition the vruntime
9068 	 * ends up quickly running away.
9069 	 */
9070 	if (entity_eligible(cfs_rq, se)) {
9071 		se->vruntime = se->deadline;
9072 		se->deadline += calc_delta_fair(se->slice, se);
9073 	}
9074 }
9075 
yield_to_task_fair(struct rq * rq,struct task_struct * p)9076 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
9077 {
9078 	struct sched_entity *se = &p->se;
9079 
9080 	/* !se->on_rq also covers throttled task */
9081 	if (!se->on_rq)
9082 		return false;
9083 
9084 	/* Tell the scheduler that we'd really like se to run next. */
9085 	set_next_buddy(se);
9086 
9087 	yield_task_fair(rq);
9088 
9089 	return true;
9090 }
9091 
9092 /**************************************************
9093  * Fair scheduling class load-balancing methods.
9094  *
9095  * BASICS
9096  *
9097  * The purpose of load-balancing is to achieve the same basic fairness the
9098  * per-CPU scheduler provides, namely provide a proportional amount of compute
9099  * time to each task. This is expressed in the following equation:
9100  *
9101  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
9102  *
9103  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
9104  * W_i,0 is defined as:
9105  *
9106  *   W_i,0 = \Sum_j w_i,j                                             (2)
9107  *
9108  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
9109  * is derived from the nice value as per sched_prio_to_weight[].
9110  *
9111  * The weight average is an exponential decay average of the instantaneous
9112  * weight:
9113  *
9114  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
9115  *
9116  * C_i is the compute capacity of CPU i, typically it is the
9117  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
9118  * can also include other factors [XXX].
9119  *
9120  * To achieve this balance we define a measure of imbalance which follows
9121  * directly from (1):
9122  *
9123  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
9124  *
9125  * We them move tasks around to minimize the imbalance. In the continuous
9126  * function space it is obvious this converges, in the discrete case we get
9127  * a few fun cases generally called infeasible weight scenarios.
9128  *
9129  * [XXX expand on:
9130  *     - infeasible weights;
9131  *     - local vs global optima in the discrete case. ]
9132  *
9133  *
9134  * SCHED DOMAINS
9135  *
9136  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
9137  * for all i,j solution, we create a tree of CPUs that follows the hardware
9138  * topology where each level pairs two lower groups (or better). This results
9139  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
9140  * tree to only the first of the previous level and we decrease the frequency
9141  * of load-balance at each level inversely proportional to the number of CPUs in
9142  * the groups.
9143  *
9144  * This yields:
9145  *
9146  *     log_2 n     1     n
9147  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
9148  *     i = 0      2^i   2^i
9149  *                               `- size of each group
9150  *         |         |     `- number of CPUs doing load-balance
9151  *         |         `- freq
9152  *         `- sum over all levels
9153  *
9154  * Coupled with a limit on how many tasks we can migrate every balance pass,
9155  * this makes (5) the runtime complexity of the balancer.
9156  *
9157  * An important property here is that each CPU is still (indirectly) connected
9158  * to every other CPU in at most O(log n) steps:
9159  *
9160  * The adjacency matrix of the resulting graph is given by:
9161  *
9162  *             log_2 n
9163  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
9164  *             k = 0
9165  *
9166  * And you'll find that:
9167  *
9168  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
9169  *
9170  * Showing there's indeed a path between every CPU in at most O(log n) steps.
9171  * The task movement gives a factor of O(m), giving a convergence complexity
9172  * of:
9173  *
9174  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
9175  *
9176  *
9177  * WORK CONSERVING
9178  *
9179  * In order to avoid CPUs going idle while there's still work to do, new idle
9180  * balancing is more aggressive and has the newly idle CPU iterate up the domain
9181  * tree itself instead of relying on other CPUs to bring it work.
9182  *
9183  * This adds some complexity to both (5) and (8) but it reduces the total idle
9184  * time.
9185  *
9186  * [XXX more?]
9187  *
9188  *
9189  * CGROUPS
9190  *
9191  * Cgroups make a horror show out of (2), instead of a simple sum we get:
9192  *
9193  *                                s_k,i
9194  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
9195  *                                 S_k
9196  *
9197  * Where
9198  *
9199  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
9200  *
9201  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
9202  *
9203  * The big problem is S_k, its a global sum needed to compute a local (W_i)
9204  * property.
9205  *
9206  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
9207  *      rewrite all of this once again.]
9208  */
9209 
9210 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
9211 
9212 enum fbq_type { regular, remote, all };
9213 
9214 /*
9215  * 'group_type' describes the group of CPUs at the moment of load balancing.
9216  *
9217  * The enum is ordered by pulling priority, with the group with lowest priority
9218  * first so the group_type can simply be compared when selecting the busiest
9219  * group. See update_sd_pick_busiest().
9220  */
9221 enum group_type {
9222 	/* The group has spare capacity that can be used to run more tasks.  */
9223 	group_has_spare = 0,
9224 	/*
9225 	 * The group is fully used and the tasks don't compete for more CPU
9226 	 * cycles. Nevertheless, some tasks might wait before running.
9227 	 */
9228 	group_fully_busy,
9229 	/*
9230 	 * One task doesn't fit with CPU's capacity and must be migrated to a
9231 	 * more powerful CPU.
9232 	 */
9233 	group_misfit_task,
9234 	/*
9235 	 * Balance SMT group that's fully busy. Can benefit from migration
9236 	 * a task on SMT with busy sibling to another CPU on idle core.
9237 	 */
9238 	group_smt_balance,
9239 	/*
9240 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
9241 	 * and the task should be migrated to it instead of running on the
9242 	 * current CPU.
9243 	 */
9244 	group_asym_packing,
9245 	/*
9246 	 * The tasks' affinity constraints previously prevented the scheduler
9247 	 * from balancing the load across the system.
9248 	 */
9249 	group_imbalanced,
9250 	/*
9251 	 * The CPU is overloaded and can't provide expected CPU cycles to all
9252 	 * tasks.
9253 	 */
9254 	group_overloaded
9255 };
9256 
9257 enum migration_type {
9258 	migrate_load = 0,
9259 	migrate_util,
9260 	migrate_task,
9261 	migrate_misfit
9262 };
9263 
9264 #define LBF_ALL_PINNED	0x01
9265 #define LBF_NEED_BREAK	0x02
9266 #define LBF_DST_PINNED  0x04
9267 #define LBF_SOME_PINNED	0x08
9268 #define LBF_ACTIVE_LB	0x10
9269 
9270 struct lb_env {
9271 	struct sched_domain	*sd;
9272 
9273 	struct rq		*src_rq;
9274 	int			src_cpu;
9275 
9276 	int			dst_cpu;
9277 	struct rq		*dst_rq;
9278 
9279 	struct cpumask		*dst_grpmask;
9280 	int			new_dst_cpu;
9281 	enum cpu_idle_type	idle;
9282 	long			imbalance;
9283 	/* The set of CPUs under consideration for load-balancing */
9284 	struct cpumask		*cpus;
9285 
9286 	unsigned int		flags;
9287 
9288 	unsigned int		loop;
9289 	unsigned int		loop_break;
9290 	unsigned int		loop_max;
9291 
9292 	enum fbq_type		fbq_type;
9293 	enum migration_type	migration_type;
9294 	struct list_head	tasks;
9295 };
9296 
9297 /*
9298  * Is this task likely cache-hot:
9299  */
task_hot(struct task_struct * p,struct lb_env * env)9300 static int task_hot(struct task_struct *p, struct lb_env *env)
9301 {
9302 	s64 delta;
9303 
9304 	lockdep_assert_rq_held(env->src_rq);
9305 
9306 	if (p->sched_class != &fair_sched_class)
9307 		return 0;
9308 
9309 	if (unlikely(task_has_idle_policy(p)))
9310 		return 0;
9311 
9312 	/* SMT siblings share cache */
9313 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
9314 		return 0;
9315 
9316 	/*
9317 	 * Buddy candidates are cache hot:
9318 	 */
9319 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
9320 	    (&p->se == cfs_rq_of(&p->se)->next))
9321 		return 1;
9322 
9323 	if (sysctl_sched_migration_cost == -1)
9324 		return 1;
9325 
9326 	/*
9327 	 * Don't migrate task if the task's cookie does not match
9328 	 * with the destination CPU's core cookie.
9329 	 */
9330 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
9331 		return 1;
9332 
9333 	if (sysctl_sched_migration_cost == 0)
9334 		return 0;
9335 
9336 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
9337 
9338 	return delta < (s64)sysctl_sched_migration_cost;
9339 }
9340 
9341 #ifdef CONFIG_NUMA_BALANCING
9342 /*
9343  * Returns a positive value, if task migration degrades locality.
9344  * Returns 0, if task migration is not affected by locality.
9345  * Returns a negative value, if task migration improves locality i.e migration preferred.
9346  */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)9347 static long migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
9348 {
9349 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
9350 	unsigned long src_weight, dst_weight;
9351 	int src_nid, dst_nid, dist;
9352 
9353 	if (!static_branch_likely(&sched_numa_balancing))
9354 		return 0;
9355 
9356 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
9357 		return 0;
9358 
9359 	src_nid = cpu_to_node(env->src_cpu);
9360 	dst_nid = cpu_to_node(env->dst_cpu);
9361 
9362 	if (src_nid == dst_nid)
9363 		return 0;
9364 
9365 	/* Migrating away from the preferred node is always bad. */
9366 	if (src_nid == p->numa_preferred_nid) {
9367 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
9368 			return 1;
9369 		else
9370 			return 0;
9371 	}
9372 
9373 	/* Encourage migration to the preferred node. */
9374 	if (dst_nid == p->numa_preferred_nid)
9375 		return -1;
9376 
9377 	/* Leaving a core idle is often worse than degrading locality. */
9378 	if (env->idle == CPU_IDLE)
9379 		return 0;
9380 
9381 	dist = node_distance(src_nid, dst_nid);
9382 	if (numa_group) {
9383 		src_weight = group_weight(p, src_nid, dist);
9384 		dst_weight = group_weight(p, dst_nid, dist);
9385 	} else {
9386 		src_weight = task_weight(p, src_nid, dist);
9387 		dst_weight = task_weight(p, dst_nid, dist);
9388 	}
9389 
9390 	return src_weight - dst_weight;
9391 }
9392 
9393 #else /* !CONFIG_NUMA_BALANCING: */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)9394 static inline long migrate_degrades_locality(struct task_struct *p,
9395 					     struct lb_env *env)
9396 {
9397 	return 0;
9398 }
9399 #endif /* !CONFIG_NUMA_BALANCING */
9400 
9401 /*
9402  * Check whether the task is ineligible on the destination cpu
9403  *
9404  * When the PLACE_LAG scheduling feature is enabled and
9405  * dst_cfs_rq->nr_queued is greater than 1, if the task
9406  * is ineligible, it will also be ineligible when
9407  * it is migrated to the destination cpu.
9408  */
task_is_ineligible_on_dst_cpu(struct task_struct * p,int dest_cpu)9409 static inline int task_is_ineligible_on_dst_cpu(struct task_struct *p, int dest_cpu)
9410 {
9411 	struct cfs_rq *dst_cfs_rq;
9412 
9413 #ifdef CONFIG_FAIR_GROUP_SCHED
9414 	dst_cfs_rq = task_group(p)->cfs_rq[dest_cpu];
9415 #else
9416 	dst_cfs_rq = &cpu_rq(dest_cpu)->cfs;
9417 #endif
9418 	if (sched_feat(PLACE_LAG) && dst_cfs_rq->nr_queued &&
9419 	    !entity_eligible(task_cfs_rq(p), &p->se))
9420 		return 1;
9421 
9422 	return 0;
9423 }
9424 
9425 /*
9426  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
9427  */
9428 static
can_migrate_task(struct task_struct * p,struct lb_env * env)9429 int can_migrate_task(struct task_struct *p, struct lb_env *env)
9430 {
9431 	long degrades, hot;
9432 
9433 	lockdep_assert_rq_held(env->src_rq);
9434 	if (p->sched_task_hot)
9435 		p->sched_task_hot = 0;
9436 
9437 	/*
9438 	 * We do not migrate tasks that are:
9439 	 * 1) delayed dequeued unless we migrate load, or
9440 	 * 2) target cfs_rq is in throttled hierarchy, or
9441 	 * 3) cannot be migrated to this CPU due to cpus_ptr, or
9442 	 * 4) running (obviously), or
9443 	 * 5) are cache-hot on their current CPU, or
9444 	 * 6) are blocked on mutexes (if SCHED_PROXY_EXEC is enabled)
9445 	 */
9446 	if ((p->se.sched_delayed) && (env->migration_type != migrate_load))
9447 		return 0;
9448 
9449 	if (lb_throttled_hierarchy(p, env->dst_cpu))
9450 		return 0;
9451 
9452 	/*
9453 	 * We want to prioritize the migration of eligible tasks.
9454 	 * For ineligible tasks we soft-limit them and only allow
9455 	 * them to migrate when nr_balance_failed is non-zero to
9456 	 * avoid load-balancing trying very hard to balance the load.
9457 	 */
9458 	if (!env->sd->nr_balance_failed &&
9459 	    task_is_ineligible_on_dst_cpu(p, env->dst_cpu))
9460 		return 0;
9461 
9462 	/* Disregard percpu kthreads; they are where they need to be. */
9463 	if (kthread_is_per_cpu(p))
9464 		return 0;
9465 
9466 	if (task_is_blocked(p))
9467 		return 0;
9468 
9469 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
9470 		int cpu;
9471 
9472 		schedstat_inc(p->stats.nr_failed_migrations_affine);
9473 
9474 		env->flags |= LBF_SOME_PINNED;
9475 
9476 		/*
9477 		 * Remember if this task can be migrated to any other CPU in
9478 		 * our sched_group. We may want to revisit it if we couldn't
9479 		 * meet load balance goals by pulling other tasks on src_cpu.
9480 		 *
9481 		 * Avoid computing new_dst_cpu
9482 		 * - for NEWLY_IDLE
9483 		 * - if we have already computed one in current iteration
9484 		 * - if it's an active balance
9485 		 */
9486 		if (env->idle == CPU_NEWLY_IDLE ||
9487 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
9488 			return 0;
9489 
9490 		/* Prevent to re-select dst_cpu via env's CPUs: */
9491 		cpu = cpumask_first_and_and(env->dst_grpmask, env->cpus, p->cpus_ptr);
9492 
9493 		if (cpu < nr_cpu_ids) {
9494 			env->flags |= LBF_DST_PINNED;
9495 			env->new_dst_cpu = cpu;
9496 		}
9497 
9498 		return 0;
9499 	}
9500 
9501 	/* Record that we found at least one task that could run on dst_cpu */
9502 	env->flags &= ~LBF_ALL_PINNED;
9503 
9504 	if (task_on_cpu(env->src_rq, p) ||
9505 	    task_current_donor(env->src_rq, p)) {
9506 		schedstat_inc(p->stats.nr_failed_migrations_running);
9507 		return 0;
9508 	}
9509 
9510 	/*
9511 	 * Aggressive migration if:
9512 	 * 1) active balance
9513 	 * 2) destination numa is preferred
9514 	 * 3) task is cache cold, or
9515 	 * 4) too many balance attempts have failed.
9516 	 */
9517 	if (env->flags & LBF_ACTIVE_LB)
9518 		return 1;
9519 
9520 	degrades = migrate_degrades_locality(p, env);
9521 	if (!degrades)
9522 		hot = task_hot(p, env);
9523 	else
9524 		hot = degrades > 0;
9525 
9526 	if (!hot || env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
9527 		if (hot)
9528 			p->sched_task_hot = 1;
9529 		return 1;
9530 	}
9531 
9532 	schedstat_inc(p->stats.nr_failed_migrations_hot);
9533 	return 0;
9534 }
9535 
9536 /*
9537  * detach_task() -- detach the task for the migration specified in env
9538  */
detach_task(struct task_struct * p,struct lb_env * env)9539 static void detach_task(struct task_struct *p, struct lb_env *env)
9540 {
9541 	lockdep_assert_rq_held(env->src_rq);
9542 
9543 	if (p->sched_task_hot) {
9544 		p->sched_task_hot = 0;
9545 		schedstat_inc(env->sd->lb_hot_gained[env->idle]);
9546 		schedstat_inc(p->stats.nr_forced_migrations);
9547 	}
9548 
9549 	WARN_ON(task_current(env->src_rq, p));
9550 	WARN_ON(task_current_donor(env->src_rq, p));
9551 
9552 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9553 	set_task_cpu(p, env->dst_cpu);
9554 }
9555 
9556 /*
9557  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9558  * part of active balancing operations within "domain".
9559  *
9560  * Returns a task if successful and NULL otherwise.
9561  */
detach_one_task(struct lb_env * env)9562 static struct task_struct *detach_one_task(struct lb_env *env)
9563 {
9564 	struct task_struct *p;
9565 
9566 	lockdep_assert_rq_held(env->src_rq);
9567 
9568 	list_for_each_entry_reverse(p,
9569 			&env->src_rq->cfs_tasks, se.group_node) {
9570 		if (!can_migrate_task(p, env))
9571 			continue;
9572 
9573 		detach_task(p, env);
9574 
9575 		/*
9576 		 * Right now, this is only the second place where
9577 		 * lb_gained[env->idle] is updated (other is detach_tasks)
9578 		 * so we can safely collect stats here rather than
9579 		 * inside detach_tasks().
9580 		 */
9581 		schedstat_inc(env->sd->lb_gained[env->idle]);
9582 		return p;
9583 	}
9584 	return NULL;
9585 }
9586 
9587 /*
9588  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9589  * busiest_rq, as part of a balancing operation within domain "sd".
9590  *
9591  * Returns number of detached tasks if successful and 0 otherwise.
9592  */
detach_tasks(struct lb_env * env)9593 static int detach_tasks(struct lb_env *env)
9594 {
9595 	struct list_head *tasks = &env->src_rq->cfs_tasks;
9596 	unsigned long util, load;
9597 	struct task_struct *p;
9598 	int detached = 0;
9599 
9600 	lockdep_assert_rq_held(env->src_rq);
9601 
9602 	/*
9603 	 * Source run queue has been emptied by another CPU, clear
9604 	 * LBF_ALL_PINNED flag as we will not test any task.
9605 	 */
9606 	if (env->src_rq->nr_running <= 1) {
9607 		env->flags &= ~LBF_ALL_PINNED;
9608 		return 0;
9609 	}
9610 
9611 	if (env->imbalance <= 0)
9612 		return 0;
9613 
9614 	while (!list_empty(tasks)) {
9615 		/*
9616 		 * We don't want to steal all, otherwise we may be treated likewise,
9617 		 * which could at worst lead to a livelock crash.
9618 		 */
9619 		if (env->idle && env->src_rq->nr_running <= 1)
9620 			break;
9621 
9622 		env->loop++;
9623 		/* We've more or less seen every task there is, call it quits */
9624 		if (env->loop > env->loop_max)
9625 			break;
9626 
9627 		/* take a breather every nr_migrate tasks */
9628 		if (env->loop > env->loop_break) {
9629 			env->loop_break += SCHED_NR_MIGRATE_BREAK;
9630 			env->flags |= LBF_NEED_BREAK;
9631 			break;
9632 		}
9633 
9634 		p = list_last_entry(tasks, struct task_struct, se.group_node);
9635 
9636 		if (!can_migrate_task(p, env))
9637 			goto next;
9638 
9639 		switch (env->migration_type) {
9640 		case migrate_load:
9641 			/*
9642 			 * Depending of the number of CPUs and tasks and the
9643 			 * cgroup hierarchy, task_h_load() can return a null
9644 			 * value. Make sure that env->imbalance decreases
9645 			 * otherwise detach_tasks() will stop only after
9646 			 * detaching up to loop_max tasks.
9647 			 */
9648 			load = max_t(unsigned long, task_h_load(p), 1);
9649 
9650 			if (sched_feat(LB_MIN) &&
9651 			    load < 16 && !env->sd->nr_balance_failed)
9652 				goto next;
9653 
9654 			/*
9655 			 * Make sure that we don't migrate too much load.
9656 			 * Nevertheless, let relax the constraint if
9657 			 * scheduler fails to find a good waiting task to
9658 			 * migrate.
9659 			 */
9660 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9661 				goto next;
9662 
9663 			env->imbalance -= load;
9664 			break;
9665 
9666 		case migrate_util:
9667 			util = task_util_est(p);
9668 
9669 			if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance)
9670 				goto next;
9671 
9672 			env->imbalance -= util;
9673 			break;
9674 
9675 		case migrate_task:
9676 			env->imbalance--;
9677 			break;
9678 
9679 		case migrate_misfit:
9680 			/* This is not a misfit task */
9681 			if (task_fits_cpu(p, env->src_cpu))
9682 				goto next;
9683 
9684 			env->imbalance = 0;
9685 			break;
9686 		}
9687 
9688 		detach_task(p, env);
9689 		list_add(&p->se.group_node, &env->tasks);
9690 
9691 		detached++;
9692 
9693 #ifdef CONFIG_PREEMPTION
9694 		/*
9695 		 * NEWIDLE balancing is a source of latency, so preemptible
9696 		 * kernels will stop after the first task is detached to minimize
9697 		 * the critical section.
9698 		 */
9699 		if (env->idle == CPU_NEWLY_IDLE)
9700 			break;
9701 #endif
9702 
9703 		/*
9704 		 * We only want to steal up to the prescribed amount of
9705 		 * load/util/tasks.
9706 		 */
9707 		if (env->imbalance <= 0)
9708 			break;
9709 
9710 		continue;
9711 next:
9712 		if (p->sched_task_hot)
9713 			schedstat_inc(p->stats.nr_failed_migrations_hot);
9714 
9715 		list_move(&p->se.group_node, tasks);
9716 	}
9717 
9718 	/*
9719 	 * Right now, this is one of only two places we collect this stat
9720 	 * so we can safely collect detach_one_task() stats here rather
9721 	 * than inside detach_one_task().
9722 	 */
9723 	schedstat_add(env->sd->lb_gained[env->idle], detached);
9724 
9725 	return detached;
9726 }
9727 
9728 /*
9729  * attach_task() -- attach the task detached by detach_task() to its new rq.
9730  */
attach_task(struct rq * rq,struct task_struct * p)9731 static void attach_task(struct rq *rq, struct task_struct *p)
9732 {
9733 	lockdep_assert_rq_held(rq);
9734 
9735 	WARN_ON_ONCE(task_rq(p) != rq);
9736 	activate_task(rq, p, ENQUEUE_NOCLOCK);
9737 	wakeup_preempt(rq, p, 0);
9738 }
9739 
9740 /*
9741  * attach_one_task() -- attaches the task returned from detach_one_task() to
9742  * its new rq.
9743  */
attach_one_task(struct rq * rq,struct task_struct * p)9744 static void attach_one_task(struct rq *rq, struct task_struct *p)
9745 {
9746 	struct rq_flags rf;
9747 
9748 	rq_lock(rq, &rf);
9749 	update_rq_clock(rq);
9750 	attach_task(rq, p);
9751 	rq_unlock(rq, &rf);
9752 }
9753 
9754 /*
9755  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9756  * new rq.
9757  */
attach_tasks(struct lb_env * env)9758 static void attach_tasks(struct lb_env *env)
9759 {
9760 	struct list_head *tasks = &env->tasks;
9761 	struct task_struct *p;
9762 	struct rq_flags rf;
9763 
9764 	rq_lock(env->dst_rq, &rf);
9765 	update_rq_clock(env->dst_rq);
9766 
9767 	while (!list_empty(tasks)) {
9768 		p = list_first_entry(tasks, struct task_struct, se.group_node);
9769 		list_del_init(&p->se.group_node);
9770 
9771 		attach_task(env->dst_rq, p);
9772 	}
9773 
9774 	rq_unlock(env->dst_rq, &rf);
9775 }
9776 
9777 #ifdef CONFIG_NO_HZ_COMMON
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9778 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9779 {
9780 	if (cfs_rq->avg.load_avg)
9781 		return true;
9782 
9783 	if (cfs_rq->avg.util_avg)
9784 		return true;
9785 
9786 	return false;
9787 }
9788 
others_have_blocked(struct rq * rq)9789 static inline bool others_have_blocked(struct rq *rq)
9790 {
9791 	if (cpu_util_rt(rq))
9792 		return true;
9793 
9794 	if (cpu_util_dl(rq))
9795 		return true;
9796 
9797 	if (hw_load_avg(rq))
9798 		return true;
9799 
9800 	if (cpu_util_irq(rq))
9801 		return true;
9802 
9803 	return false;
9804 }
9805 
update_blocked_load_tick(struct rq * rq)9806 static inline void update_blocked_load_tick(struct rq *rq)
9807 {
9808 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9809 }
9810 
update_blocked_load_status(struct rq * rq,bool has_blocked)9811 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9812 {
9813 	if (!has_blocked)
9814 		rq->has_blocked_load = 0;
9815 }
9816 #else /* !CONFIG_NO_HZ_COMMON: */
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9817 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
others_have_blocked(struct rq * rq)9818 static inline bool others_have_blocked(struct rq *rq) { return false; }
update_blocked_load_tick(struct rq * rq)9819 static inline void update_blocked_load_tick(struct rq *rq) {}
update_blocked_load_status(struct rq * rq,bool has_blocked)9820 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9821 #endif /* !CONFIG_NO_HZ_COMMON */
9822 
__update_blocked_others(struct rq * rq,bool * done)9823 static bool __update_blocked_others(struct rq *rq, bool *done)
9824 {
9825 	bool updated;
9826 
9827 	/*
9828 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9829 	 * DL and IRQ signals have been updated before updating CFS.
9830 	 */
9831 	updated = update_other_load_avgs(rq);
9832 
9833 	if (others_have_blocked(rq))
9834 		*done = false;
9835 
9836 	return updated;
9837 }
9838 
9839 #ifdef CONFIG_FAIR_GROUP_SCHED
9840 
__update_blocked_fair(struct rq * rq,bool * done)9841 static bool __update_blocked_fair(struct rq *rq, bool *done)
9842 {
9843 	struct cfs_rq *cfs_rq, *pos;
9844 	bool decayed = false;
9845 	int cpu = cpu_of(rq);
9846 
9847 	/*
9848 	 * Iterates the task_group tree in a bottom up fashion, see
9849 	 * list_add_leaf_cfs_rq() for details.
9850 	 */
9851 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9852 		struct sched_entity *se;
9853 
9854 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9855 			update_tg_load_avg(cfs_rq);
9856 
9857 			if (cfs_rq->nr_queued == 0)
9858 				update_idle_cfs_rq_clock_pelt(cfs_rq);
9859 
9860 			if (cfs_rq == &rq->cfs)
9861 				decayed = true;
9862 		}
9863 
9864 		/* Propagate pending load changes to the parent, if any: */
9865 		se = cfs_rq->tg->se[cpu];
9866 		if (se && !skip_blocked_update(se))
9867 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9868 
9869 		/*
9870 		 * There can be a lot of idle CPU cgroups.  Don't let fully
9871 		 * decayed cfs_rqs linger on the list.
9872 		 */
9873 		if (cfs_rq_is_decayed(cfs_rq))
9874 			list_del_leaf_cfs_rq(cfs_rq);
9875 
9876 		/* Don't need periodic decay once load/util_avg are null */
9877 		if (cfs_rq_has_blocked(cfs_rq))
9878 			*done = false;
9879 	}
9880 
9881 	return decayed;
9882 }
9883 
9884 /*
9885  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9886  * This needs to be done in a top-down fashion because the load of a child
9887  * group is a fraction of its parents load.
9888  */
update_cfs_rq_h_load(struct cfs_rq * cfs_rq)9889 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9890 {
9891 	struct rq *rq = rq_of(cfs_rq);
9892 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9893 	unsigned long now = jiffies;
9894 	unsigned long load;
9895 
9896 	if (cfs_rq->last_h_load_update == now)
9897 		return;
9898 
9899 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
9900 	for_each_sched_entity(se) {
9901 		cfs_rq = cfs_rq_of(se);
9902 		WRITE_ONCE(cfs_rq->h_load_next, se);
9903 		if (cfs_rq->last_h_load_update == now)
9904 			break;
9905 	}
9906 
9907 	if (!se) {
9908 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9909 		cfs_rq->last_h_load_update = now;
9910 	}
9911 
9912 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9913 		load = cfs_rq->h_load;
9914 		load = div64_ul(load * se->avg.load_avg,
9915 			cfs_rq_load_avg(cfs_rq) + 1);
9916 		cfs_rq = group_cfs_rq(se);
9917 		cfs_rq->h_load = load;
9918 		cfs_rq->last_h_load_update = now;
9919 	}
9920 }
9921 
task_h_load(struct task_struct * p)9922 static unsigned long task_h_load(struct task_struct *p)
9923 {
9924 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
9925 
9926 	update_cfs_rq_h_load(cfs_rq);
9927 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9928 			cfs_rq_load_avg(cfs_rq) + 1);
9929 }
9930 #else /* !CONFIG_FAIR_GROUP_SCHED: */
__update_blocked_fair(struct rq * rq,bool * done)9931 static bool __update_blocked_fair(struct rq *rq, bool *done)
9932 {
9933 	struct cfs_rq *cfs_rq = &rq->cfs;
9934 	bool decayed;
9935 
9936 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9937 	if (cfs_rq_has_blocked(cfs_rq))
9938 		*done = false;
9939 
9940 	return decayed;
9941 }
9942 
task_h_load(struct task_struct * p)9943 static unsigned long task_h_load(struct task_struct *p)
9944 {
9945 	return p->se.avg.load_avg;
9946 }
9947 #endif /* !CONFIG_FAIR_GROUP_SCHED */
9948 
sched_balance_update_blocked_averages(int cpu)9949 static void sched_balance_update_blocked_averages(int cpu)
9950 {
9951 	bool decayed = false, done = true;
9952 	struct rq *rq = cpu_rq(cpu);
9953 	struct rq_flags rf;
9954 
9955 	rq_lock_irqsave(rq, &rf);
9956 	update_blocked_load_tick(rq);
9957 	update_rq_clock(rq);
9958 
9959 	decayed |= __update_blocked_others(rq, &done);
9960 	decayed |= __update_blocked_fair(rq, &done);
9961 
9962 	update_blocked_load_status(rq, !done);
9963 	if (decayed)
9964 		cpufreq_update_util(rq, 0);
9965 	rq_unlock_irqrestore(rq, &rf);
9966 }
9967 
9968 /********** Helpers for sched_balance_find_src_group ************************/
9969 
9970 /*
9971  * sg_lb_stats - stats of a sched_group required for load-balancing:
9972  */
9973 struct sg_lb_stats {
9974 	unsigned long avg_load;			/* Avg load            over the CPUs of the group */
9975 	unsigned long group_load;		/* Total load          over the CPUs of the group */
9976 	unsigned long group_capacity;		/* Capacity            over the CPUs of the group */
9977 	unsigned long group_util;		/* Total utilization   over the CPUs of the group */
9978 	unsigned long group_runnable;		/* Total runnable time over the CPUs of the group */
9979 	unsigned int sum_nr_running;		/* Nr of all tasks running in the group */
9980 	unsigned int sum_h_nr_running;		/* Nr of CFS tasks running in the group */
9981 	unsigned int idle_cpus;                 /* Nr of idle CPUs         in the group */
9982 	unsigned int group_weight;
9983 	enum group_type group_type;
9984 	unsigned int group_asym_packing;	/* Tasks should be moved to preferred CPU */
9985 	unsigned int group_smt_balance;		/* Task on busy SMT be moved */
9986 	unsigned long group_misfit_task_load;	/* A CPU has a task too big for its capacity */
9987 #ifdef CONFIG_NUMA_BALANCING
9988 	unsigned int nr_numa_running;
9989 	unsigned int nr_preferred_running;
9990 #endif
9991 };
9992 
9993 /*
9994  * sd_lb_stats - stats of a sched_domain required for load-balancing:
9995  */
9996 struct sd_lb_stats {
9997 	struct sched_group *busiest;		/* Busiest group in this sd */
9998 	struct sched_group *local;		/* Local group in this sd */
9999 	unsigned long total_load;		/* Total load of all groups in sd */
10000 	unsigned long total_capacity;		/* Total capacity of all groups in sd */
10001 	unsigned long avg_load;			/* Average load across all groups in sd */
10002 	unsigned int prefer_sibling;		/* Tasks should go to sibling first */
10003 
10004 	struct sg_lb_stats busiest_stat;	/* Statistics of the busiest group */
10005 	struct sg_lb_stats local_stat;		/* Statistics of the local group */
10006 };
10007 
init_sd_lb_stats(struct sd_lb_stats * sds)10008 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
10009 {
10010 	/*
10011 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
10012 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
10013 	 * We must however set busiest_stat::group_type and
10014 	 * busiest_stat::idle_cpus to the worst busiest group because
10015 	 * update_sd_pick_busiest() reads these before assignment.
10016 	 */
10017 	*sds = (struct sd_lb_stats){
10018 		.busiest = NULL,
10019 		.local = NULL,
10020 		.total_load = 0UL,
10021 		.total_capacity = 0UL,
10022 		.busiest_stat = {
10023 			.idle_cpus = UINT_MAX,
10024 			.group_type = group_has_spare,
10025 		},
10026 	};
10027 }
10028 
scale_rt_capacity(int cpu)10029 static unsigned long scale_rt_capacity(int cpu)
10030 {
10031 	unsigned long max = get_actual_cpu_capacity(cpu);
10032 	struct rq *rq = cpu_rq(cpu);
10033 	unsigned long used, free;
10034 	unsigned long irq;
10035 
10036 	irq = cpu_util_irq(rq);
10037 
10038 	if (unlikely(irq >= max))
10039 		return 1;
10040 
10041 	/*
10042 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
10043 	 * (running and not running) with weights 0 and 1024 respectively.
10044 	 */
10045 	used = cpu_util_rt(rq);
10046 	used += cpu_util_dl(rq);
10047 
10048 	if (unlikely(used >= max))
10049 		return 1;
10050 
10051 	free = max - used;
10052 
10053 	return scale_irq_capacity(free, irq, max);
10054 }
10055 
update_cpu_capacity(struct sched_domain * sd,int cpu)10056 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
10057 {
10058 	unsigned long capacity = scale_rt_capacity(cpu);
10059 	struct sched_group *sdg = sd->groups;
10060 
10061 	if (!capacity)
10062 		capacity = 1;
10063 
10064 	cpu_rq(cpu)->cpu_capacity = capacity;
10065 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
10066 
10067 	sdg->sgc->capacity = capacity;
10068 	sdg->sgc->min_capacity = capacity;
10069 	sdg->sgc->max_capacity = capacity;
10070 }
10071 
update_group_capacity(struct sched_domain * sd,int cpu)10072 void update_group_capacity(struct sched_domain *sd, int cpu)
10073 {
10074 	struct sched_domain *child = sd->child;
10075 	struct sched_group *group, *sdg = sd->groups;
10076 	unsigned long capacity, min_capacity, max_capacity;
10077 	unsigned long interval;
10078 
10079 	interval = msecs_to_jiffies(sd->balance_interval);
10080 	interval = clamp(interval, 1UL, max_load_balance_interval);
10081 	sdg->sgc->next_update = jiffies + interval;
10082 
10083 	if (!child) {
10084 		update_cpu_capacity(sd, cpu);
10085 		return;
10086 	}
10087 
10088 	capacity = 0;
10089 	min_capacity = ULONG_MAX;
10090 	max_capacity = 0;
10091 
10092 	if (child->flags & SD_NUMA) {
10093 		/*
10094 		 * SD_NUMA domains cannot assume that child groups
10095 		 * span the current group.
10096 		 */
10097 
10098 		for_each_cpu(cpu, sched_group_span(sdg)) {
10099 			unsigned long cpu_cap = capacity_of(cpu);
10100 
10101 			capacity += cpu_cap;
10102 			min_capacity = min(cpu_cap, min_capacity);
10103 			max_capacity = max(cpu_cap, max_capacity);
10104 		}
10105 	} else  {
10106 		/*
10107 		 * !SD_NUMA domains can assume that child groups
10108 		 * span the current group.
10109 		 */
10110 
10111 		group = child->groups;
10112 		do {
10113 			struct sched_group_capacity *sgc = group->sgc;
10114 
10115 			capacity += sgc->capacity;
10116 			min_capacity = min(sgc->min_capacity, min_capacity);
10117 			max_capacity = max(sgc->max_capacity, max_capacity);
10118 			group = group->next;
10119 		} while (group != child->groups);
10120 	}
10121 
10122 	sdg->sgc->capacity = capacity;
10123 	sdg->sgc->min_capacity = min_capacity;
10124 	sdg->sgc->max_capacity = max_capacity;
10125 }
10126 
10127 /*
10128  * Check whether the capacity of the rq has been noticeably reduced by side
10129  * activity. The imbalance_pct is used for the threshold.
10130  * Return true is the capacity is reduced
10131  */
10132 static inline int
check_cpu_capacity(struct rq * rq,struct sched_domain * sd)10133 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
10134 {
10135 	return ((rq->cpu_capacity * sd->imbalance_pct) <
10136 				(arch_scale_cpu_capacity(cpu_of(rq)) * 100));
10137 }
10138 
10139 /* Check if the rq has a misfit task */
check_misfit_status(struct rq * rq)10140 static inline bool check_misfit_status(struct rq *rq)
10141 {
10142 	return rq->misfit_task_load;
10143 }
10144 
10145 /*
10146  * Group imbalance indicates (and tries to solve) the problem where balancing
10147  * groups is inadequate due to ->cpus_ptr constraints.
10148  *
10149  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
10150  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
10151  * Something like:
10152  *
10153  *	{ 0 1 2 3 } { 4 5 6 7 }
10154  *	        *     * * *
10155  *
10156  * If we were to balance group-wise we'd place two tasks in the first group and
10157  * two tasks in the second group. Clearly this is undesired as it will overload
10158  * cpu 3 and leave one of the CPUs in the second group unused.
10159  *
10160  * The current solution to this issue is detecting the skew in the first group
10161  * by noticing the lower domain failed to reach balance and had difficulty
10162  * moving tasks due to affinity constraints.
10163  *
10164  * When this is so detected; this group becomes a candidate for busiest; see
10165  * update_sd_pick_busiest(). And calculate_imbalance() and
10166  * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it
10167  * to create an effective group imbalance.
10168  *
10169  * This is a somewhat tricky proposition since the next run might not find the
10170  * group imbalance and decide the groups need to be balanced again. A most
10171  * subtle and fragile situation.
10172  */
10173 
sg_imbalanced(struct sched_group * group)10174 static inline int sg_imbalanced(struct sched_group *group)
10175 {
10176 	return group->sgc->imbalance;
10177 }
10178 
10179 /*
10180  * group_has_capacity returns true if the group has spare capacity that could
10181  * be used by some tasks.
10182  * We consider that a group has spare capacity if the number of task is
10183  * smaller than the number of CPUs or if the utilization is lower than the
10184  * available capacity for CFS tasks.
10185  * For the latter, we use a threshold to stabilize the state, to take into
10186  * account the variance of the tasks' load and to return true if the available
10187  * capacity in meaningful for the load balancer.
10188  * As an example, an available capacity of 1% can appear but it doesn't make
10189  * any benefit for the load balance.
10190  */
10191 static inline bool
group_has_capacity(unsigned int imbalance_pct,struct sg_lb_stats * sgs)10192 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10193 {
10194 	if (sgs->sum_nr_running < sgs->group_weight)
10195 		return true;
10196 
10197 	if ((sgs->group_capacity * imbalance_pct) <
10198 			(sgs->group_runnable * 100))
10199 		return false;
10200 
10201 	if ((sgs->group_capacity * 100) >
10202 			(sgs->group_util * imbalance_pct))
10203 		return true;
10204 
10205 	return false;
10206 }
10207 
10208 /*
10209  *  group_is_overloaded returns true if the group has more tasks than it can
10210  *  handle.
10211  *  group_is_overloaded is not equals to !group_has_capacity because a group
10212  *  with the exact right number of tasks, has no more spare capacity but is not
10213  *  overloaded so both group_has_capacity and group_is_overloaded return
10214  *  false.
10215  */
10216 static inline bool
group_is_overloaded(unsigned int imbalance_pct,struct sg_lb_stats * sgs)10217 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10218 {
10219 	if (sgs->sum_nr_running <= sgs->group_weight)
10220 		return false;
10221 
10222 	if ((sgs->group_capacity * 100) <
10223 			(sgs->group_util * imbalance_pct))
10224 		return true;
10225 
10226 	if ((sgs->group_capacity * imbalance_pct) <
10227 			(sgs->group_runnable * 100))
10228 		return true;
10229 
10230 	return false;
10231 }
10232 
10233 static inline enum
group_classify(unsigned int imbalance_pct,struct sched_group * group,struct sg_lb_stats * sgs)10234 group_type group_classify(unsigned int imbalance_pct,
10235 			  struct sched_group *group,
10236 			  struct sg_lb_stats *sgs)
10237 {
10238 	if (group_is_overloaded(imbalance_pct, sgs))
10239 		return group_overloaded;
10240 
10241 	if (sg_imbalanced(group))
10242 		return group_imbalanced;
10243 
10244 	if (sgs->group_asym_packing)
10245 		return group_asym_packing;
10246 
10247 	if (sgs->group_smt_balance)
10248 		return group_smt_balance;
10249 
10250 	if (sgs->group_misfit_task_load)
10251 		return group_misfit_task;
10252 
10253 	if (!group_has_capacity(imbalance_pct, sgs))
10254 		return group_fully_busy;
10255 
10256 	return group_has_spare;
10257 }
10258 
10259 /**
10260  * sched_use_asym_prio - Check whether asym_packing priority must be used
10261  * @sd:		The scheduling domain of the load balancing
10262  * @cpu:	A CPU
10263  *
10264  * Always use CPU priority when balancing load between SMT siblings. When
10265  * balancing load between cores, it is not sufficient that @cpu is idle. Only
10266  * use CPU priority if the whole core is idle.
10267  *
10268  * Returns: True if the priority of @cpu must be followed. False otherwise.
10269  */
sched_use_asym_prio(struct sched_domain * sd,int cpu)10270 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
10271 {
10272 	if (!(sd->flags & SD_ASYM_PACKING))
10273 		return false;
10274 
10275 	if (!sched_smt_active())
10276 		return true;
10277 
10278 	return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
10279 }
10280 
sched_asym(struct sched_domain * sd,int dst_cpu,int src_cpu)10281 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu)
10282 {
10283 	/*
10284 	 * First check if @dst_cpu can do asym_packing load balance. Only do it
10285 	 * if it has higher priority than @src_cpu.
10286 	 */
10287 	return sched_use_asym_prio(sd, dst_cpu) &&
10288 		sched_asym_prefer(dst_cpu, src_cpu);
10289 }
10290 
10291 /**
10292  * sched_group_asym - Check if the destination CPU can do asym_packing balance
10293  * @env:	The load balancing environment
10294  * @sgs:	Load-balancing statistics of the candidate busiest group
10295  * @group:	The candidate busiest group
10296  *
10297  * @env::dst_cpu can do asym_packing if it has higher priority than the
10298  * preferred CPU of @group.
10299  *
10300  * Return: true if @env::dst_cpu can do with asym_packing load balance. False
10301  * otherwise.
10302  */
10303 static inline bool
sched_group_asym(struct lb_env * env,struct sg_lb_stats * sgs,struct sched_group * group)10304 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group)
10305 {
10306 	/*
10307 	 * CPU priorities do not make sense for SMT cores with more than one
10308 	 * busy sibling.
10309 	 */
10310 	if ((group->flags & SD_SHARE_CPUCAPACITY) &&
10311 	    (sgs->group_weight - sgs->idle_cpus != 1))
10312 		return false;
10313 
10314 	return sched_asym(env->sd, env->dst_cpu, READ_ONCE(group->asym_prefer_cpu));
10315 }
10316 
10317 /* One group has more than one SMT CPU while the other group does not */
smt_vs_nonsmt_groups(struct sched_group * sg1,struct sched_group * sg2)10318 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
10319 				    struct sched_group *sg2)
10320 {
10321 	if (!sg1 || !sg2)
10322 		return false;
10323 
10324 	return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
10325 		(sg2->flags & SD_SHARE_CPUCAPACITY);
10326 }
10327 
smt_balance(struct lb_env * env,struct sg_lb_stats * sgs,struct sched_group * group)10328 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
10329 			       struct sched_group *group)
10330 {
10331 	if (!env->idle)
10332 		return false;
10333 
10334 	/*
10335 	 * For SMT source group, it is better to move a task
10336 	 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
10337 	 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
10338 	 * will not be on.
10339 	 */
10340 	if (group->flags & SD_SHARE_CPUCAPACITY &&
10341 	    sgs->sum_h_nr_running > 1)
10342 		return true;
10343 
10344 	return false;
10345 }
10346 
sibling_imbalance(struct lb_env * env,struct sd_lb_stats * sds,struct sg_lb_stats * busiest,struct sg_lb_stats * local)10347 static inline long sibling_imbalance(struct lb_env *env,
10348 				    struct sd_lb_stats *sds,
10349 				    struct sg_lb_stats *busiest,
10350 				    struct sg_lb_stats *local)
10351 {
10352 	int ncores_busiest, ncores_local;
10353 	long imbalance;
10354 
10355 	if (!env->idle || !busiest->sum_nr_running)
10356 		return 0;
10357 
10358 	ncores_busiest = sds->busiest->cores;
10359 	ncores_local = sds->local->cores;
10360 
10361 	if (ncores_busiest == ncores_local) {
10362 		imbalance = busiest->sum_nr_running;
10363 		lsub_positive(&imbalance, local->sum_nr_running);
10364 		return imbalance;
10365 	}
10366 
10367 	/* Balance such that nr_running/ncores ratio are same on both groups */
10368 	imbalance = ncores_local * busiest->sum_nr_running;
10369 	lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
10370 	/* Normalize imbalance and do rounding on normalization */
10371 	imbalance = 2 * imbalance + ncores_local + ncores_busiest;
10372 	imbalance /= ncores_local + ncores_busiest;
10373 
10374 	/* Take advantage of resource in an empty sched group */
10375 	if (imbalance <= 1 && local->sum_nr_running == 0 &&
10376 	    busiest->sum_nr_running > 1)
10377 		imbalance = 2;
10378 
10379 	return imbalance;
10380 }
10381 
10382 static inline bool
sched_reduced_capacity(struct rq * rq,struct sched_domain * sd)10383 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
10384 {
10385 	/*
10386 	 * When there is more than 1 task, the group_overloaded case already
10387 	 * takes care of cpu with reduced capacity
10388 	 */
10389 	if (rq->cfs.h_nr_runnable != 1)
10390 		return false;
10391 
10392 	return check_cpu_capacity(rq, sd);
10393 }
10394 
10395 /**
10396  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
10397  * @env: The load balancing environment.
10398  * @sds: Load-balancing data with statistics of the local group.
10399  * @group: sched_group whose statistics are to be updated.
10400  * @sgs: variable to hold the statistics for this group.
10401  * @sg_overloaded: sched_group is overloaded
10402  * @sg_overutilized: sched_group is overutilized
10403  */
update_sg_lb_stats(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * group,struct sg_lb_stats * sgs,bool * sg_overloaded,bool * sg_overutilized)10404 static inline void update_sg_lb_stats(struct lb_env *env,
10405 				      struct sd_lb_stats *sds,
10406 				      struct sched_group *group,
10407 				      struct sg_lb_stats *sgs,
10408 				      bool *sg_overloaded,
10409 				      bool *sg_overutilized)
10410 {
10411 	int i, nr_running, local_group, sd_flags = env->sd->flags;
10412 	bool balancing_at_rd = !env->sd->parent;
10413 
10414 	memset(sgs, 0, sizeof(*sgs));
10415 
10416 	local_group = group == sds->local;
10417 
10418 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10419 		struct rq *rq = cpu_rq(i);
10420 		unsigned long load = cpu_load(rq);
10421 
10422 		sgs->group_load += load;
10423 		sgs->group_util += cpu_util_cfs(i);
10424 		sgs->group_runnable += cpu_runnable(rq);
10425 		sgs->sum_h_nr_running += rq->cfs.h_nr_runnable;
10426 
10427 		nr_running = rq->nr_running;
10428 		sgs->sum_nr_running += nr_running;
10429 
10430 		if (cpu_overutilized(i))
10431 			*sg_overutilized = 1;
10432 
10433 		/*
10434 		 * No need to call idle_cpu() if nr_running is not 0
10435 		 */
10436 		if (!nr_running && idle_cpu(i)) {
10437 			sgs->idle_cpus++;
10438 			/* Idle cpu can't have misfit task */
10439 			continue;
10440 		}
10441 
10442 		/* Overload indicator is only updated at root domain */
10443 		if (balancing_at_rd && nr_running > 1)
10444 			*sg_overloaded = 1;
10445 
10446 #ifdef CONFIG_NUMA_BALANCING
10447 		/* Only fbq_classify_group() uses this to classify NUMA groups */
10448 		if (sd_flags & SD_NUMA) {
10449 			sgs->nr_numa_running += rq->nr_numa_running;
10450 			sgs->nr_preferred_running += rq->nr_preferred_running;
10451 		}
10452 #endif
10453 		if (local_group)
10454 			continue;
10455 
10456 		if (sd_flags & SD_ASYM_CPUCAPACITY) {
10457 			/* Check for a misfit task on the cpu */
10458 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
10459 				sgs->group_misfit_task_load = rq->misfit_task_load;
10460 				*sg_overloaded = 1;
10461 			}
10462 		} else if (env->idle && sched_reduced_capacity(rq, env->sd)) {
10463 			/* Check for a task running on a CPU with reduced capacity */
10464 			if (sgs->group_misfit_task_load < load)
10465 				sgs->group_misfit_task_load = load;
10466 		}
10467 	}
10468 
10469 	sgs->group_capacity = group->sgc->capacity;
10470 
10471 	sgs->group_weight = group->group_weight;
10472 
10473 	/* Check if dst CPU is idle and preferred to this group */
10474 	if (!local_group && env->idle && sgs->sum_h_nr_running &&
10475 	    sched_group_asym(env, sgs, group))
10476 		sgs->group_asym_packing = 1;
10477 
10478 	/* Check for loaded SMT group to be balanced to dst CPU */
10479 	if (!local_group && smt_balance(env, sgs, group))
10480 		sgs->group_smt_balance = 1;
10481 
10482 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
10483 
10484 	/* Computing avg_load makes sense only when group is overloaded */
10485 	if (sgs->group_type == group_overloaded)
10486 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10487 				sgs->group_capacity;
10488 }
10489 
10490 /**
10491  * update_sd_pick_busiest - return 1 on busiest group
10492  * @env: The load balancing environment.
10493  * @sds: sched_domain statistics
10494  * @sg: sched_group candidate to be checked for being the busiest
10495  * @sgs: sched_group statistics
10496  *
10497  * Determine if @sg is a busier group than the previously selected
10498  * busiest group.
10499  *
10500  * Return: %true if @sg is a busier group than the previously selected
10501  * busiest group. %false otherwise.
10502  */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)10503 static bool update_sd_pick_busiest(struct lb_env *env,
10504 				   struct sd_lb_stats *sds,
10505 				   struct sched_group *sg,
10506 				   struct sg_lb_stats *sgs)
10507 {
10508 	struct sg_lb_stats *busiest = &sds->busiest_stat;
10509 
10510 	/* Make sure that there is at least one task to pull */
10511 	if (!sgs->sum_h_nr_running)
10512 		return false;
10513 
10514 	/*
10515 	 * Don't try to pull misfit tasks we can't help.
10516 	 * We can use max_capacity here as reduction in capacity on some
10517 	 * CPUs in the group should either be possible to resolve
10518 	 * internally or be covered by avg_load imbalance (eventually).
10519 	 */
10520 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10521 	    (sgs->group_type == group_misfit_task) &&
10522 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
10523 	     sds->local_stat.group_type != group_has_spare))
10524 		return false;
10525 
10526 	if (sgs->group_type > busiest->group_type)
10527 		return true;
10528 
10529 	if (sgs->group_type < busiest->group_type)
10530 		return false;
10531 
10532 	/*
10533 	 * The candidate and the current busiest group are the same type of
10534 	 * group. Let check which one is the busiest according to the type.
10535 	 */
10536 
10537 	switch (sgs->group_type) {
10538 	case group_overloaded:
10539 		/* Select the overloaded group with highest avg_load. */
10540 		return sgs->avg_load > busiest->avg_load;
10541 
10542 	case group_imbalanced:
10543 		/*
10544 		 * Select the 1st imbalanced group as we don't have any way to
10545 		 * choose one more than another.
10546 		 */
10547 		return false;
10548 
10549 	case group_asym_packing:
10550 		/* Prefer to move from lowest priority CPU's work */
10551 		return sched_asym_prefer(READ_ONCE(sds->busiest->asym_prefer_cpu),
10552 					 READ_ONCE(sg->asym_prefer_cpu));
10553 
10554 	case group_misfit_task:
10555 		/*
10556 		 * If we have more than one misfit sg go with the biggest
10557 		 * misfit.
10558 		 */
10559 		return sgs->group_misfit_task_load > busiest->group_misfit_task_load;
10560 
10561 	case group_smt_balance:
10562 		/*
10563 		 * Check if we have spare CPUs on either SMT group to
10564 		 * choose has spare or fully busy handling.
10565 		 */
10566 		if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10567 			goto has_spare;
10568 
10569 		fallthrough;
10570 
10571 	case group_fully_busy:
10572 		/*
10573 		 * Select the fully busy group with highest avg_load. In
10574 		 * theory, there is no need to pull task from such kind of
10575 		 * group because tasks have all compute capacity that they need
10576 		 * but we can still improve the overall throughput by reducing
10577 		 * contention when accessing shared HW resources.
10578 		 *
10579 		 * XXX for now avg_load is not computed and always 0 so we
10580 		 * select the 1st one, except if @sg is composed of SMT
10581 		 * siblings.
10582 		 */
10583 
10584 		if (sgs->avg_load < busiest->avg_load)
10585 			return false;
10586 
10587 		if (sgs->avg_load == busiest->avg_load) {
10588 			/*
10589 			 * SMT sched groups need more help than non-SMT groups.
10590 			 * If @sg happens to also be SMT, either choice is good.
10591 			 */
10592 			if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10593 				return false;
10594 		}
10595 
10596 		break;
10597 
10598 	case group_has_spare:
10599 		/*
10600 		 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10601 		 * as we do not want to pull task off SMT core with one task
10602 		 * and make the core idle.
10603 		 */
10604 		if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10605 			if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10606 				return false;
10607 			else
10608 				return true;
10609 		}
10610 has_spare:
10611 
10612 		/*
10613 		 * Select not overloaded group with lowest number of idle CPUs
10614 		 * and highest number of running tasks. We could also compare
10615 		 * the spare capacity which is more stable but it can end up
10616 		 * that the group has less spare capacity but finally more idle
10617 		 * CPUs which means less opportunity to pull tasks.
10618 		 */
10619 		if (sgs->idle_cpus > busiest->idle_cpus)
10620 			return false;
10621 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10622 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
10623 			return false;
10624 
10625 		break;
10626 	}
10627 
10628 	/*
10629 	 * Candidate sg has no more than one task per CPU and has higher
10630 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10631 	 * throughput. Maximize throughput, power/energy consequences are not
10632 	 * considered.
10633 	 */
10634 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10635 	    (sgs->group_type <= group_fully_busy) &&
10636 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10637 		return false;
10638 
10639 	return true;
10640 }
10641 
10642 #ifdef CONFIG_NUMA_BALANCING
fbq_classify_group(struct sg_lb_stats * sgs)10643 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10644 {
10645 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10646 		return regular;
10647 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10648 		return remote;
10649 	return all;
10650 }
10651 
fbq_classify_rq(struct rq * rq)10652 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10653 {
10654 	if (rq->nr_running > rq->nr_numa_running)
10655 		return regular;
10656 	if (rq->nr_running > rq->nr_preferred_running)
10657 		return remote;
10658 	return all;
10659 }
10660 #else /* !CONFIG_NUMA_BALANCING: */
fbq_classify_group(struct sg_lb_stats * sgs)10661 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10662 {
10663 	return all;
10664 }
10665 
fbq_classify_rq(struct rq * rq)10666 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10667 {
10668 	return regular;
10669 }
10670 #endif /* !CONFIG_NUMA_BALANCING */
10671 
10672 
10673 struct sg_lb_stats;
10674 
10675 /*
10676  * task_running_on_cpu - return 1 if @p is running on @cpu.
10677  */
10678 
task_running_on_cpu(int cpu,struct task_struct * p)10679 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10680 {
10681 	/* Task has no contribution or is new */
10682 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10683 		return 0;
10684 
10685 	if (task_on_rq_queued(p))
10686 		return 1;
10687 
10688 	return 0;
10689 }
10690 
10691 /**
10692  * idle_cpu_without - would a given CPU be idle without p ?
10693  * @cpu: the processor on which idleness is tested.
10694  * @p: task which should be ignored.
10695  *
10696  * Return: 1 if the CPU would be idle. 0 otherwise.
10697  */
idle_cpu_without(int cpu,struct task_struct * p)10698 static int idle_cpu_without(int cpu, struct task_struct *p)
10699 {
10700 	struct rq *rq = cpu_rq(cpu);
10701 
10702 	if (rq->curr != rq->idle && rq->curr != p)
10703 		return 0;
10704 
10705 	/*
10706 	 * rq->nr_running can't be used but an updated version without the
10707 	 * impact of p on cpu must be used instead. The updated nr_running
10708 	 * be computed and tested before calling idle_cpu_without().
10709 	 */
10710 
10711 	if (rq->ttwu_pending)
10712 		return 0;
10713 
10714 	return 1;
10715 }
10716 
10717 /*
10718  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10719  * @sd: The sched_domain level to look for idlest group.
10720  * @group: sched_group whose statistics are to be updated.
10721  * @sgs: variable to hold the statistics for this group.
10722  * @p: The task for which we look for the idlest group/CPU.
10723  */
update_sg_wakeup_stats(struct sched_domain * sd,struct sched_group * group,struct sg_lb_stats * sgs,struct task_struct * p)10724 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10725 					  struct sched_group *group,
10726 					  struct sg_lb_stats *sgs,
10727 					  struct task_struct *p)
10728 {
10729 	int i, nr_running;
10730 
10731 	memset(sgs, 0, sizeof(*sgs));
10732 
10733 	/* Assume that task can't fit any CPU of the group */
10734 	if (sd->flags & SD_ASYM_CPUCAPACITY)
10735 		sgs->group_misfit_task_load = 1;
10736 
10737 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
10738 		struct rq *rq = cpu_rq(i);
10739 		unsigned int local;
10740 
10741 		sgs->group_load += cpu_load_without(rq, p);
10742 		sgs->group_util += cpu_util_without(i, p);
10743 		sgs->group_runnable += cpu_runnable_without(rq, p);
10744 		local = task_running_on_cpu(i, p);
10745 		sgs->sum_h_nr_running += rq->cfs.h_nr_runnable - local;
10746 
10747 		nr_running = rq->nr_running - local;
10748 		sgs->sum_nr_running += nr_running;
10749 
10750 		/*
10751 		 * No need to call idle_cpu_without() if nr_running is not 0
10752 		 */
10753 		if (!nr_running && idle_cpu_without(i, p))
10754 			sgs->idle_cpus++;
10755 
10756 		/* Check if task fits in the CPU */
10757 		if (sd->flags & SD_ASYM_CPUCAPACITY &&
10758 		    sgs->group_misfit_task_load &&
10759 		    task_fits_cpu(p, i))
10760 			sgs->group_misfit_task_load = 0;
10761 
10762 	}
10763 
10764 	sgs->group_capacity = group->sgc->capacity;
10765 
10766 	sgs->group_weight = group->group_weight;
10767 
10768 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10769 
10770 	/*
10771 	 * Computing avg_load makes sense only when group is fully busy or
10772 	 * overloaded
10773 	 */
10774 	if (sgs->group_type == group_fully_busy ||
10775 		sgs->group_type == group_overloaded)
10776 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10777 				sgs->group_capacity;
10778 }
10779 
update_pick_idlest(struct sched_group * idlest,struct sg_lb_stats * idlest_sgs,struct sched_group * group,struct sg_lb_stats * sgs)10780 static bool update_pick_idlest(struct sched_group *idlest,
10781 			       struct sg_lb_stats *idlest_sgs,
10782 			       struct sched_group *group,
10783 			       struct sg_lb_stats *sgs)
10784 {
10785 	if (sgs->group_type < idlest_sgs->group_type)
10786 		return true;
10787 
10788 	if (sgs->group_type > idlest_sgs->group_type)
10789 		return false;
10790 
10791 	/*
10792 	 * The candidate and the current idlest group are the same type of
10793 	 * group. Let check which one is the idlest according to the type.
10794 	 */
10795 
10796 	switch (sgs->group_type) {
10797 	case group_overloaded:
10798 	case group_fully_busy:
10799 		/* Select the group with lowest avg_load. */
10800 		if (idlest_sgs->avg_load <= sgs->avg_load)
10801 			return false;
10802 		break;
10803 
10804 	case group_imbalanced:
10805 	case group_asym_packing:
10806 	case group_smt_balance:
10807 		/* Those types are not used in the slow wakeup path */
10808 		return false;
10809 
10810 	case group_misfit_task:
10811 		/* Select group with the highest max capacity */
10812 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10813 			return false;
10814 		break;
10815 
10816 	case group_has_spare:
10817 		/* Select group with most idle CPUs */
10818 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10819 			return false;
10820 
10821 		/* Select group with lowest group_util */
10822 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10823 			idlest_sgs->group_util <= sgs->group_util)
10824 			return false;
10825 
10826 		break;
10827 	}
10828 
10829 	return true;
10830 }
10831 
10832 /*
10833  * sched_balance_find_dst_group() finds and returns the least busy CPU group within the
10834  * domain.
10835  *
10836  * Assumes p is allowed on at least one CPU in sd.
10837  */
10838 static struct sched_group *
sched_balance_find_dst_group(struct sched_domain * sd,struct task_struct * p,int this_cpu)10839 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10840 {
10841 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10842 	struct sg_lb_stats local_sgs, tmp_sgs;
10843 	struct sg_lb_stats *sgs;
10844 	unsigned long imbalance;
10845 	struct sg_lb_stats idlest_sgs = {
10846 			.avg_load = UINT_MAX,
10847 			.group_type = group_overloaded,
10848 	};
10849 
10850 	do {
10851 		int local_group;
10852 
10853 		/* Skip over this group if it has no CPUs allowed */
10854 		if (!cpumask_intersects(sched_group_span(group),
10855 					p->cpus_ptr))
10856 			continue;
10857 
10858 		/* Skip over this group if no cookie matched */
10859 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10860 			continue;
10861 
10862 		local_group = cpumask_test_cpu(this_cpu,
10863 					       sched_group_span(group));
10864 
10865 		if (local_group) {
10866 			sgs = &local_sgs;
10867 			local = group;
10868 		} else {
10869 			sgs = &tmp_sgs;
10870 		}
10871 
10872 		update_sg_wakeup_stats(sd, group, sgs, p);
10873 
10874 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10875 			idlest = group;
10876 			idlest_sgs = *sgs;
10877 		}
10878 
10879 	} while (group = group->next, group != sd->groups);
10880 
10881 
10882 	/* There is no idlest group to push tasks to */
10883 	if (!idlest)
10884 		return NULL;
10885 
10886 	/* The local group has been skipped because of CPU affinity */
10887 	if (!local)
10888 		return idlest;
10889 
10890 	/*
10891 	 * If the local group is idler than the selected idlest group
10892 	 * don't try and push the task.
10893 	 */
10894 	if (local_sgs.group_type < idlest_sgs.group_type)
10895 		return NULL;
10896 
10897 	/*
10898 	 * If the local group is busier than the selected idlest group
10899 	 * try and push the task.
10900 	 */
10901 	if (local_sgs.group_type > idlest_sgs.group_type)
10902 		return idlest;
10903 
10904 	switch (local_sgs.group_type) {
10905 	case group_overloaded:
10906 	case group_fully_busy:
10907 
10908 		/* Calculate allowed imbalance based on load */
10909 		imbalance = scale_load_down(NICE_0_LOAD) *
10910 				(sd->imbalance_pct-100) / 100;
10911 
10912 		/*
10913 		 * When comparing groups across NUMA domains, it's possible for
10914 		 * the local domain to be very lightly loaded relative to the
10915 		 * remote domains but "imbalance" skews the comparison making
10916 		 * remote CPUs look much more favourable. When considering
10917 		 * cross-domain, add imbalance to the load on the remote node
10918 		 * and consider staying local.
10919 		 */
10920 
10921 		if ((sd->flags & SD_NUMA) &&
10922 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10923 			return NULL;
10924 
10925 		/*
10926 		 * If the local group is less loaded than the selected
10927 		 * idlest group don't try and push any tasks.
10928 		 */
10929 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10930 			return NULL;
10931 
10932 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10933 			return NULL;
10934 		break;
10935 
10936 	case group_imbalanced:
10937 	case group_asym_packing:
10938 	case group_smt_balance:
10939 		/* Those type are not used in the slow wakeup path */
10940 		return NULL;
10941 
10942 	case group_misfit_task:
10943 		/* Select group with the highest max capacity */
10944 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10945 			return NULL;
10946 		break;
10947 
10948 	case group_has_spare:
10949 #ifdef CONFIG_NUMA
10950 		if (sd->flags & SD_NUMA) {
10951 			int imb_numa_nr = sd->imb_numa_nr;
10952 #ifdef CONFIG_NUMA_BALANCING
10953 			int idlest_cpu;
10954 			/*
10955 			 * If there is spare capacity at NUMA, try to select
10956 			 * the preferred node
10957 			 */
10958 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10959 				return NULL;
10960 
10961 			idlest_cpu = cpumask_first(sched_group_span(idlest));
10962 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10963 				return idlest;
10964 #endif /* CONFIG_NUMA_BALANCING */
10965 			/*
10966 			 * Otherwise, keep the task close to the wakeup source
10967 			 * and improve locality if the number of running tasks
10968 			 * would remain below threshold where an imbalance is
10969 			 * allowed while accounting for the possibility the
10970 			 * task is pinned to a subset of CPUs. If there is a
10971 			 * real need of migration, periodic load balance will
10972 			 * take care of it.
10973 			 */
10974 			if (p->nr_cpus_allowed != NR_CPUS) {
10975 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10976 
10977 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10978 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10979 			}
10980 
10981 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10982 			if (!adjust_numa_imbalance(imbalance,
10983 						   local_sgs.sum_nr_running + 1,
10984 						   imb_numa_nr)) {
10985 				return NULL;
10986 			}
10987 		}
10988 #endif /* CONFIG_NUMA */
10989 
10990 		/*
10991 		 * Select group with highest number of idle CPUs. We could also
10992 		 * compare the utilization which is more stable but it can end
10993 		 * up that the group has less spare capacity but finally more
10994 		 * idle CPUs which means more opportunity to run task.
10995 		 */
10996 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10997 			return NULL;
10998 		break;
10999 	}
11000 
11001 	return idlest;
11002 }
11003 
update_idle_cpu_scan(struct lb_env * env,unsigned long sum_util)11004 static void update_idle_cpu_scan(struct lb_env *env,
11005 				 unsigned long sum_util)
11006 {
11007 	struct sched_domain_shared *sd_share;
11008 	int llc_weight, pct;
11009 	u64 x, y, tmp;
11010 	/*
11011 	 * Update the number of CPUs to scan in LLC domain, which could
11012 	 * be used as a hint in select_idle_cpu(). The update of sd_share
11013 	 * could be expensive because it is within a shared cache line.
11014 	 * So the write of this hint only occurs during periodic load
11015 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
11016 	 * can fire way more frequently than the former.
11017 	 */
11018 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
11019 		return;
11020 
11021 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
11022 	if (env->sd->span_weight != llc_weight)
11023 		return;
11024 
11025 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
11026 	if (!sd_share)
11027 		return;
11028 
11029 	/*
11030 	 * The number of CPUs to search drops as sum_util increases, when
11031 	 * sum_util hits 85% or above, the scan stops.
11032 	 * The reason to choose 85% as the threshold is because this is the
11033 	 * imbalance_pct(117) when a LLC sched group is overloaded.
11034 	 *
11035 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
11036 	 * and y'= y / SCHED_CAPACITY_SCALE
11037 	 *
11038 	 * x is the ratio of sum_util compared to the CPU capacity:
11039 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
11040 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
11041 	 * and the number of CPUs to scan is calculated by:
11042 	 *
11043 	 * nr_scan = llc_weight * y'                                    [2]
11044 	 *
11045 	 * When x hits the threshold of overloaded, AKA, when
11046 	 * x = 100 / pct, y drops to 0. According to [1],
11047 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
11048 	 *
11049 	 * Scale x by SCHED_CAPACITY_SCALE:
11050 	 * x' = sum_util / llc_weight;                                  [3]
11051 	 *
11052 	 * and finally [1] becomes:
11053 	 * y = SCHED_CAPACITY_SCALE -
11054 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
11055 	 *
11056 	 */
11057 	/* equation [3] */
11058 	x = sum_util;
11059 	do_div(x, llc_weight);
11060 
11061 	/* equation [4] */
11062 	pct = env->sd->imbalance_pct;
11063 	tmp = x * x * pct * pct;
11064 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
11065 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
11066 	y = SCHED_CAPACITY_SCALE - tmp;
11067 
11068 	/* equation [2] */
11069 	y *= llc_weight;
11070 	do_div(y, SCHED_CAPACITY_SCALE);
11071 	if ((int)y != sd_share->nr_idle_scan)
11072 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
11073 }
11074 
11075 /**
11076  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
11077  * @env: The load balancing environment.
11078  * @sds: variable to hold the statistics for this sched_domain.
11079  */
11080 
update_sd_lb_stats(struct lb_env * env,struct sd_lb_stats * sds)11081 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
11082 {
11083 	struct sched_group *sg = env->sd->groups;
11084 	struct sg_lb_stats *local = &sds->local_stat;
11085 	struct sg_lb_stats tmp_sgs;
11086 	unsigned long sum_util = 0;
11087 	bool sg_overloaded = 0, sg_overutilized = 0;
11088 
11089 	do {
11090 		struct sg_lb_stats *sgs = &tmp_sgs;
11091 		int local_group;
11092 
11093 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
11094 		if (local_group) {
11095 			sds->local = sg;
11096 			sgs = local;
11097 
11098 			if (env->idle != CPU_NEWLY_IDLE ||
11099 			    time_after_eq(jiffies, sg->sgc->next_update))
11100 				update_group_capacity(env->sd, env->dst_cpu);
11101 		}
11102 
11103 		update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized);
11104 
11105 		if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) {
11106 			sds->busiest = sg;
11107 			sds->busiest_stat = *sgs;
11108 		}
11109 
11110 		/* Now, start updating sd_lb_stats */
11111 		sds->total_load += sgs->group_load;
11112 		sds->total_capacity += sgs->group_capacity;
11113 
11114 		sum_util += sgs->group_util;
11115 		sg = sg->next;
11116 	} while (sg != env->sd->groups);
11117 
11118 	/*
11119 	 * Indicate that the child domain of the busiest group prefers tasks
11120 	 * go to a child's sibling domains first. NB the flags of a sched group
11121 	 * are those of the child domain.
11122 	 */
11123 	if (sds->busiest)
11124 		sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
11125 
11126 
11127 	if (env->sd->flags & SD_NUMA)
11128 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
11129 
11130 	if (!env->sd->parent) {
11131 		/* update overload indicator if we are at root domain */
11132 		set_rd_overloaded(env->dst_rq->rd, sg_overloaded);
11133 
11134 		/* Update over-utilization (tipping point, U >= 0) indicator */
11135 		set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11136 	} else if (sg_overutilized) {
11137 		set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11138 	}
11139 
11140 	update_idle_cpu_scan(env, sum_util);
11141 }
11142 
11143 /**
11144  * calculate_imbalance - Calculate the amount of imbalance present within the
11145  *			 groups of a given sched_domain during load balance.
11146  * @env: load balance environment
11147  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
11148  */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)11149 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
11150 {
11151 	struct sg_lb_stats *local, *busiest;
11152 
11153 	local = &sds->local_stat;
11154 	busiest = &sds->busiest_stat;
11155 
11156 	if (busiest->group_type == group_misfit_task) {
11157 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
11158 			/* Set imbalance to allow misfit tasks to be balanced. */
11159 			env->migration_type = migrate_misfit;
11160 			env->imbalance = 1;
11161 		} else {
11162 			/*
11163 			 * Set load imbalance to allow moving task from cpu
11164 			 * with reduced capacity.
11165 			 */
11166 			env->migration_type = migrate_load;
11167 			env->imbalance = busiest->group_misfit_task_load;
11168 		}
11169 		return;
11170 	}
11171 
11172 	if (busiest->group_type == group_asym_packing) {
11173 		/*
11174 		 * In case of asym capacity, we will try to migrate all load to
11175 		 * the preferred CPU.
11176 		 */
11177 		env->migration_type = migrate_task;
11178 		env->imbalance = busiest->sum_h_nr_running;
11179 		return;
11180 	}
11181 
11182 	if (busiest->group_type == group_smt_balance) {
11183 		/* Reduce number of tasks sharing CPU capacity */
11184 		env->migration_type = migrate_task;
11185 		env->imbalance = 1;
11186 		return;
11187 	}
11188 
11189 	if (busiest->group_type == group_imbalanced) {
11190 		/*
11191 		 * In the group_imb case we cannot rely on group-wide averages
11192 		 * to ensure CPU-load equilibrium, try to move any task to fix
11193 		 * the imbalance. The next load balance will take care of
11194 		 * balancing back the system.
11195 		 */
11196 		env->migration_type = migrate_task;
11197 		env->imbalance = 1;
11198 		return;
11199 	}
11200 
11201 	/*
11202 	 * Try to use spare capacity of local group without overloading it or
11203 	 * emptying busiest.
11204 	 */
11205 	if (local->group_type == group_has_spare) {
11206 		if ((busiest->group_type > group_fully_busy) &&
11207 		    !(env->sd->flags & SD_SHARE_LLC)) {
11208 			/*
11209 			 * If busiest is overloaded, try to fill spare
11210 			 * capacity. This might end up creating spare capacity
11211 			 * in busiest or busiest still being overloaded but
11212 			 * there is no simple way to directly compute the
11213 			 * amount of load to migrate in order to balance the
11214 			 * system.
11215 			 */
11216 			env->migration_type = migrate_util;
11217 			env->imbalance = max(local->group_capacity, local->group_util) -
11218 					 local->group_util;
11219 
11220 			/*
11221 			 * In some cases, the group's utilization is max or even
11222 			 * higher than capacity because of migrations but the
11223 			 * local CPU is (newly) idle. There is at least one
11224 			 * waiting task in this overloaded busiest group. Let's
11225 			 * try to pull it.
11226 			 */
11227 			if (env->idle && env->imbalance == 0) {
11228 				env->migration_type = migrate_task;
11229 				env->imbalance = 1;
11230 			}
11231 
11232 			return;
11233 		}
11234 
11235 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
11236 			/*
11237 			 * When prefer sibling, evenly spread running tasks on
11238 			 * groups.
11239 			 */
11240 			env->migration_type = migrate_task;
11241 			env->imbalance = sibling_imbalance(env, sds, busiest, local);
11242 		} else {
11243 
11244 			/*
11245 			 * If there is no overload, we just want to even the number of
11246 			 * idle CPUs.
11247 			 */
11248 			env->migration_type = migrate_task;
11249 			env->imbalance = max_t(long, 0,
11250 					       (local->idle_cpus - busiest->idle_cpus));
11251 		}
11252 
11253 #ifdef CONFIG_NUMA
11254 		/* Consider allowing a small imbalance between NUMA groups */
11255 		if (env->sd->flags & SD_NUMA) {
11256 			env->imbalance = adjust_numa_imbalance(env->imbalance,
11257 							       local->sum_nr_running + 1,
11258 							       env->sd->imb_numa_nr);
11259 		}
11260 #endif
11261 
11262 		/* Number of tasks to move to restore balance */
11263 		env->imbalance >>= 1;
11264 
11265 		return;
11266 	}
11267 
11268 	/*
11269 	 * Local is fully busy but has to take more load to relieve the
11270 	 * busiest group
11271 	 */
11272 	if (local->group_type < group_overloaded) {
11273 		/*
11274 		 * Local will become overloaded so the avg_load metrics are
11275 		 * finally needed.
11276 		 */
11277 
11278 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
11279 				  local->group_capacity;
11280 
11281 		/*
11282 		 * If the local group is more loaded than the selected
11283 		 * busiest group don't try to pull any tasks.
11284 		 */
11285 		if (local->avg_load >= busiest->avg_load) {
11286 			env->imbalance = 0;
11287 			return;
11288 		}
11289 
11290 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
11291 				sds->total_capacity;
11292 
11293 		/*
11294 		 * If the local group is more loaded than the average system
11295 		 * load, don't try to pull any tasks.
11296 		 */
11297 		if (local->avg_load >= sds->avg_load) {
11298 			env->imbalance = 0;
11299 			return;
11300 		}
11301 
11302 	}
11303 
11304 	/*
11305 	 * Both group are or will become overloaded and we're trying to get all
11306 	 * the CPUs to the average_load, so we don't want to push ourselves
11307 	 * above the average load, nor do we wish to reduce the max loaded CPU
11308 	 * below the average load. At the same time, we also don't want to
11309 	 * reduce the group load below the group capacity. Thus we look for
11310 	 * the minimum possible imbalance.
11311 	 */
11312 	env->migration_type = migrate_load;
11313 	env->imbalance = min(
11314 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
11315 		(sds->avg_load - local->avg_load) * local->group_capacity
11316 	) / SCHED_CAPACITY_SCALE;
11317 }
11318 
11319 /******* sched_balance_find_src_group() helpers end here *********************/
11320 
11321 /*
11322  * Decision matrix according to the local and busiest group type:
11323  *
11324  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
11325  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
11326  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
11327  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
11328  * asym_packing     force     force      N/A    N/A  force      force
11329  * imbalanced       force     force      N/A    N/A  force      force
11330  * overloaded       force     force      N/A    N/A  force      avg_load
11331  *
11332  * N/A :      Not Applicable because already filtered while updating
11333  *            statistics.
11334  * balanced : The system is balanced for these 2 groups.
11335  * force :    Calculate the imbalance as load migration is probably needed.
11336  * avg_load : Only if imbalance is significant enough.
11337  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
11338  *            different in groups.
11339  */
11340 
11341 /**
11342  * sched_balance_find_src_group - Returns the busiest group within the sched_domain
11343  * if there is an imbalance.
11344  * @env: The load balancing environment.
11345  *
11346  * Also calculates the amount of runnable load which should be moved
11347  * to restore balance.
11348  *
11349  * Return:	- The busiest group if imbalance exists.
11350  */
sched_balance_find_src_group(struct lb_env * env)11351 static struct sched_group *sched_balance_find_src_group(struct lb_env *env)
11352 {
11353 	struct sg_lb_stats *local, *busiest;
11354 	struct sd_lb_stats sds;
11355 
11356 	init_sd_lb_stats(&sds);
11357 
11358 	/*
11359 	 * Compute the various statistics relevant for load balancing at
11360 	 * this level.
11361 	 */
11362 	update_sd_lb_stats(env, &sds);
11363 
11364 	/* There is no busy sibling group to pull tasks from */
11365 	if (!sds.busiest)
11366 		goto out_balanced;
11367 
11368 	busiest = &sds.busiest_stat;
11369 
11370 	/* Misfit tasks should be dealt with regardless of the avg load */
11371 	if (busiest->group_type == group_misfit_task)
11372 		goto force_balance;
11373 
11374 	if (!is_rd_overutilized(env->dst_rq->rd) &&
11375 	    rcu_dereference(env->dst_rq->rd->pd))
11376 		goto out_balanced;
11377 
11378 	/* ASYM feature bypasses nice load balance check */
11379 	if (busiest->group_type == group_asym_packing)
11380 		goto force_balance;
11381 
11382 	/*
11383 	 * If the busiest group is imbalanced the below checks don't
11384 	 * work because they assume all things are equal, which typically
11385 	 * isn't true due to cpus_ptr constraints and the like.
11386 	 */
11387 	if (busiest->group_type == group_imbalanced)
11388 		goto force_balance;
11389 
11390 	local = &sds.local_stat;
11391 	/*
11392 	 * If the local group is busier than the selected busiest group
11393 	 * don't try and pull any tasks.
11394 	 */
11395 	if (local->group_type > busiest->group_type)
11396 		goto out_balanced;
11397 
11398 	/*
11399 	 * When groups are overloaded, use the avg_load to ensure fairness
11400 	 * between tasks.
11401 	 */
11402 	if (local->group_type == group_overloaded) {
11403 		/*
11404 		 * If the local group is more loaded than the selected
11405 		 * busiest group don't try to pull any tasks.
11406 		 */
11407 		if (local->avg_load >= busiest->avg_load)
11408 			goto out_balanced;
11409 
11410 		/* XXX broken for overlapping NUMA groups */
11411 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
11412 				sds.total_capacity;
11413 
11414 		/*
11415 		 * Don't pull any tasks if this group is already above the
11416 		 * domain average load.
11417 		 */
11418 		if (local->avg_load >= sds.avg_load)
11419 			goto out_balanced;
11420 
11421 		/*
11422 		 * If the busiest group is more loaded, use imbalance_pct to be
11423 		 * conservative.
11424 		 */
11425 		if (100 * busiest->avg_load <=
11426 				env->sd->imbalance_pct * local->avg_load)
11427 			goto out_balanced;
11428 	}
11429 
11430 	/*
11431 	 * Try to move all excess tasks to a sibling domain of the busiest
11432 	 * group's child domain.
11433 	 */
11434 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
11435 	    sibling_imbalance(env, &sds, busiest, local) > 1)
11436 		goto force_balance;
11437 
11438 	if (busiest->group_type != group_overloaded) {
11439 		if (!env->idle) {
11440 			/*
11441 			 * If the busiest group is not overloaded (and as a
11442 			 * result the local one too) but this CPU is already
11443 			 * busy, let another idle CPU try to pull task.
11444 			 */
11445 			goto out_balanced;
11446 		}
11447 
11448 		if (busiest->group_type == group_smt_balance &&
11449 		    smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
11450 			/* Let non SMT CPU pull from SMT CPU sharing with sibling */
11451 			goto force_balance;
11452 		}
11453 
11454 		if (busiest->group_weight > 1 &&
11455 		    local->idle_cpus <= (busiest->idle_cpus + 1)) {
11456 			/*
11457 			 * If the busiest group is not overloaded
11458 			 * and there is no imbalance between this and busiest
11459 			 * group wrt idle CPUs, it is balanced. The imbalance
11460 			 * becomes significant if the diff is greater than 1
11461 			 * otherwise we might end up to just move the imbalance
11462 			 * on another group. Of course this applies only if
11463 			 * there is more than 1 CPU per group.
11464 			 */
11465 			goto out_balanced;
11466 		}
11467 
11468 		if (busiest->sum_h_nr_running == 1) {
11469 			/*
11470 			 * busiest doesn't have any tasks waiting to run
11471 			 */
11472 			goto out_balanced;
11473 		}
11474 	}
11475 
11476 force_balance:
11477 	/* Looks like there is an imbalance. Compute it */
11478 	calculate_imbalance(env, &sds);
11479 	return env->imbalance ? sds.busiest : NULL;
11480 
11481 out_balanced:
11482 	env->imbalance = 0;
11483 	return NULL;
11484 }
11485 
11486 /*
11487  * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group.
11488  */
sched_balance_find_src_rq(struct lb_env * env,struct sched_group * group)11489 static struct rq *sched_balance_find_src_rq(struct lb_env *env,
11490 				     struct sched_group *group)
11491 {
11492 	struct rq *busiest = NULL, *rq;
11493 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
11494 	unsigned int busiest_nr = 0;
11495 	int i;
11496 
11497 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
11498 		unsigned long capacity, load, util;
11499 		unsigned int nr_running;
11500 		enum fbq_type rt;
11501 
11502 		rq = cpu_rq(i);
11503 		rt = fbq_classify_rq(rq);
11504 
11505 		/*
11506 		 * We classify groups/runqueues into three groups:
11507 		 *  - regular: there are !numa tasks
11508 		 *  - remote:  there are numa tasks that run on the 'wrong' node
11509 		 *  - all:     there is no distinction
11510 		 *
11511 		 * In order to avoid migrating ideally placed numa tasks,
11512 		 * ignore those when there's better options.
11513 		 *
11514 		 * If we ignore the actual busiest queue to migrate another
11515 		 * task, the next balance pass can still reduce the busiest
11516 		 * queue by moving tasks around inside the node.
11517 		 *
11518 		 * If we cannot move enough load due to this classification
11519 		 * the next pass will adjust the group classification and
11520 		 * allow migration of more tasks.
11521 		 *
11522 		 * Both cases only affect the total convergence complexity.
11523 		 */
11524 		if (rt > env->fbq_type)
11525 			continue;
11526 
11527 		nr_running = rq->cfs.h_nr_runnable;
11528 		if (!nr_running)
11529 			continue;
11530 
11531 		capacity = capacity_of(i);
11532 
11533 		/*
11534 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11535 		 * eventually lead to active_balancing high->low capacity.
11536 		 * Higher per-CPU capacity is considered better than balancing
11537 		 * average load.
11538 		 */
11539 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11540 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11541 		    nr_running == 1)
11542 			continue;
11543 
11544 		/*
11545 		 * Make sure we only pull tasks from a CPU of lower priority
11546 		 * when balancing between SMT siblings.
11547 		 *
11548 		 * If balancing between cores, let lower priority CPUs help
11549 		 * SMT cores with more than one busy sibling.
11550 		 */
11551 		if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1)
11552 			continue;
11553 
11554 		switch (env->migration_type) {
11555 		case migrate_load:
11556 			/*
11557 			 * When comparing with load imbalance, use cpu_load()
11558 			 * which is not scaled with the CPU capacity.
11559 			 */
11560 			load = cpu_load(rq);
11561 
11562 			if (nr_running == 1 && load > env->imbalance &&
11563 			    !check_cpu_capacity(rq, env->sd))
11564 				break;
11565 
11566 			/*
11567 			 * For the load comparisons with the other CPUs,
11568 			 * consider the cpu_load() scaled with the CPU
11569 			 * capacity, so that the load can be moved away
11570 			 * from the CPU that is potentially running at a
11571 			 * lower capacity.
11572 			 *
11573 			 * Thus we're looking for max(load_i / capacity_i),
11574 			 * crosswise multiplication to rid ourselves of the
11575 			 * division works out to:
11576 			 * load_i * capacity_j > load_j * capacity_i;
11577 			 * where j is our previous maximum.
11578 			 */
11579 			if (load * busiest_capacity > busiest_load * capacity) {
11580 				busiest_load = load;
11581 				busiest_capacity = capacity;
11582 				busiest = rq;
11583 			}
11584 			break;
11585 
11586 		case migrate_util:
11587 			util = cpu_util_cfs_boost(i);
11588 
11589 			/*
11590 			 * Don't try to pull utilization from a CPU with one
11591 			 * running task. Whatever its utilization, we will fail
11592 			 * detach the task.
11593 			 */
11594 			if (nr_running <= 1)
11595 				continue;
11596 
11597 			if (busiest_util < util) {
11598 				busiest_util = util;
11599 				busiest = rq;
11600 			}
11601 			break;
11602 
11603 		case migrate_task:
11604 			if (busiest_nr < nr_running) {
11605 				busiest_nr = nr_running;
11606 				busiest = rq;
11607 			}
11608 			break;
11609 
11610 		case migrate_misfit:
11611 			/*
11612 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
11613 			 * simply seek the "biggest" misfit task.
11614 			 */
11615 			if (rq->misfit_task_load > busiest_load) {
11616 				busiest_load = rq->misfit_task_load;
11617 				busiest = rq;
11618 			}
11619 
11620 			break;
11621 
11622 		}
11623 	}
11624 
11625 	return busiest;
11626 }
11627 
11628 /*
11629  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11630  * so long as it is large enough.
11631  */
11632 #define MAX_PINNED_INTERVAL	512
11633 
11634 static inline bool
asym_active_balance(struct lb_env * env)11635 asym_active_balance(struct lb_env *env)
11636 {
11637 	/*
11638 	 * ASYM_PACKING needs to force migrate tasks from busy but lower
11639 	 * priority CPUs in order to pack all tasks in the highest priority
11640 	 * CPUs. When done between cores, do it only if the whole core if the
11641 	 * whole core is idle.
11642 	 *
11643 	 * If @env::src_cpu is an SMT core with busy siblings, let
11644 	 * the lower priority @env::dst_cpu help it. Do not follow
11645 	 * CPU priority.
11646 	 */
11647 	return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) &&
11648 	       (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11649 		!sched_use_asym_prio(env->sd, env->src_cpu));
11650 }
11651 
11652 static inline bool
imbalanced_active_balance(struct lb_env * env)11653 imbalanced_active_balance(struct lb_env *env)
11654 {
11655 	struct sched_domain *sd = env->sd;
11656 
11657 	/*
11658 	 * The imbalanced case includes the case of pinned tasks preventing a fair
11659 	 * distribution of the load on the system but also the even distribution of the
11660 	 * threads on a system with spare capacity
11661 	 */
11662 	if ((env->migration_type == migrate_task) &&
11663 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
11664 		return 1;
11665 
11666 	return 0;
11667 }
11668 
need_active_balance(struct lb_env * env)11669 static int need_active_balance(struct lb_env *env)
11670 {
11671 	struct sched_domain *sd = env->sd;
11672 
11673 	if (asym_active_balance(env))
11674 		return 1;
11675 
11676 	if (imbalanced_active_balance(env))
11677 		return 1;
11678 
11679 	/*
11680 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11681 	 * It's worth migrating the task if the src_cpu's capacity is reduced
11682 	 * because of other sched_class or IRQs if more capacity stays
11683 	 * available on dst_cpu.
11684 	 */
11685 	if (env->idle &&
11686 	    (env->src_rq->cfs.h_nr_runnable == 1)) {
11687 		if ((check_cpu_capacity(env->src_rq, sd)) &&
11688 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11689 			return 1;
11690 	}
11691 
11692 	if (env->migration_type == migrate_misfit)
11693 		return 1;
11694 
11695 	return 0;
11696 }
11697 
11698 static int active_load_balance_cpu_stop(void *data);
11699 
should_we_balance(struct lb_env * env)11700 static int should_we_balance(struct lb_env *env)
11701 {
11702 	struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11703 	struct sched_group *sg = env->sd->groups;
11704 	int cpu, idle_smt = -1;
11705 
11706 	/*
11707 	 * Ensure the balancing environment is consistent; can happen
11708 	 * when the softirq triggers 'during' hotplug.
11709 	 */
11710 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11711 		return 0;
11712 
11713 	/*
11714 	 * In the newly idle case, we will allow all the CPUs
11715 	 * to do the newly idle load balance.
11716 	 *
11717 	 * However, we bail out if we already have tasks or a wakeup pending,
11718 	 * to optimize wakeup latency.
11719 	 */
11720 	if (env->idle == CPU_NEWLY_IDLE) {
11721 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11722 			return 0;
11723 		return 1;
11724 	}
11725 
11726 	cpumask_copy(swb_cpus, group_balance_mask(sg));
11727 	/* Try to find first idle CPU */
11728 	for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11729 		if (!idle_cpu(cpu))
11730 			continue;
11731 
11732 		/*
11733 		 * Don't balance to idle SMT in busy core right away when
11734 		 * balancing cores, but remember the first idle SMT CPU for
11735 		 * later consideration.  Find CPU on an idle core first.
11736 		 */
11737 		if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11738 			if (idle_smt == -1)
11739 				idle_smt = cpu;
11740 			/*
11741 			 * If the core is not idle, and first SMT sibling which is
11742 			 * idle has been found, then its not needed to check other
11743 			 * SMT siblings for idleness:
11744 			 */
11745 #ifdef CONFIG_SCHED_SMT
11746 			cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11747 #endif
11748 			continue;
11749 		}
11750 
11751 		/*
11752 		 * Are we the first idle core in a non-SMT domain or higher,
11753 		 * or the first idle CPU in a SMT domain?
11754 		 */
11755 		return cpu == env->dst_cpu;
11756 	}
11757 
11758 	/* Are we the first idle CPU with busy siblings? */
11759 	if (idle_smt != -1)
11760 		return idle_smt == env->dst_cpu;
11761 
11762 	/* Are we the first CPU of this group ? */
11763 	return group_balance_cpu(sg) == env->dst_cpu;
11764 }
11765 
update_lb_imbalance_stat(struct lb_env * env,struct sched_domain * sd,enum cpu_idle_type idle)11766 static void update_lb_imbalance_stat(struct lb_env *env, struct sched_domain *sd,
11767 				     enum cpu_idle_type idle)
11768 {
11769 	if (!schedstat_enabled())
11770 		return;
11771 
11772 	switch (env->migration_type) {
11773 	case migrate_load:
11774 		__schedstat_add(sd->lb_imbalance_load[idle], env->imbalance);
11775 		break;
11776 	case migrate_util:
11777 		__schedstat_add(sd->lb_imbalance_util[idle], env->imbalance);
11778 		break;
11779 	case migrate_task:
11780 		__schedstat_add(sd->lb_imbalance_task[idle], env->imbalance);
11781 		break;
11782 	case migrate_misfit:
11783 		__schedstat_add(sd->lb_imbalance_misfit[idle], env->imbalance);
11784 		break;
11785 	}
11786 }
11787 
11788 /*
11789  * This flag serializes load-balancing passes over large domains
11790  * (above the NODE topology level) - only one load-balancing instance
11791  * may run at a time, to reduce overhead on very large systems with
11792  * lots of CPUs and large NUMA distances.
11793  *
11794  * - Note that load-balancing passes triggered while another one
11795  *   is executing are skipped and not re-tried.
11796  *
11797  * - Also note that this does not serialize rebalance_domains()
11798  *   execution, as non-SD_SERIALIZE domains will still be
11799  *   load-balanced in parallel.
11800  */
11801 static atomic_t sched_balance_running = ATOMIC_INIT(0);
11802 
11803 /*
11804  * Check this_cpu to ensure it is balanced within domain. Attempt to move
11805  * tasks if there is an imbalance.
11806  */
sched_balance_rq(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * continue_balancing)11807 static int sched_balance_rq(int this_cpu, struct rq *this_rq,
11808 			struct sched_domain *sd, enum cpu_idle_type idle,
11809 			int *continue_balancing)
11810 {
11811 	int ld_moved, cur_ld_moved, active_balance = 0;
11812 	struct sched_domain *sd_parent = sd->parent;
11813 	struct sched_group *group;
11814 	struct rq *busiest;
11815 	struct rq_flags rf;
11816 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11817 	struct lb_env env = {
11818 		.sd		= sd,
11819 		.dst_cpu	= this_cpu,
11820 		.dst_rq		= this_rq,
11821 		.dst_grpmask    = group_balance_mask(sd->groups),
11822 		.idle		= idle,
11823 		.loop_break	= SCHED_NR_MIGRATE_BREAK,
11824 		.cpus		= cpus,
11825 		.fbq_type	= all,
11826 		.tasks		= LIST_HEAD_INIT(env.tasks),
11827 	};
11828 	bool need_unlock = false;
11829 
11830 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11831 
11832 	schedstat_inc(sd->lb_count[idle]);
11833 
11834 redo:
11835 	if (!should_we_balance(&env)) {
11836 		*continue_balancing = 0;
11837 		goto out_balanced;
11838 	}
11839 
11840 	if (!need_unlock && (sd->flags & SD_SERIALIZE)) {
11841 		int zero = 0;
11842 		if (!atomic_try_cmpxchg_acquire(&sched_balance_running, &zero, 1))
11843 			goto out_balanced;
11844 
11845 		need_unlock = true;
11846 	}
11847 
11848 	group = sched_balance_find_src_group(&env);
11849 	if (!group) {
11850 		schedstat_inc(sd->lb_nobusyg[idle]);
11851 		goto out_balanced;
11852 	}
11853 
11854 	busiest = sched_balance_find_src_rq(&env, group);
11855 	if (!busiest) {
11856 		schedstat_inc(sd->lb_nobusyq[idle]);
11857 		goto out_balanced;
11858 	}
11859 
11860 	WARN_ON_ONCE(busiest == env.dst_rq);
11861 
11862 	update_lb_imbalance_stat(&env, sd, idle);
11863 
11864 	env.src_cpu = busiest->cpu;
11865 	env.src_rq = busiest;
11866 
11867 	ld_moved = 0;
11868 	/* Clear this flag as soon as we find a pullable task */
11869 	env.flags |= LBF_ALL_PINNED;
11870 	if (busiest->nr_running > 1) {
11871 		/*
11872 		 * Attempt to move tasks. If sched_balance_find_src_group has found
11873 		 * an imbalance but busiest->nr_running <= 1, the group is
11874 		 * still unbalanced. ld_moved simply stays zero, so it is
11875 		 * correctly treated as an imbalance.
11876 		 */
11877 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
11878 
11879 more_balance:
11880 		rq_lock_irqsave(busiest, &rf);
11881 		update_rq_clock(busiest);
11882 
11883 		/*
11884 		 * cur_ld_moved - load moved in current iteration
11885 		 * ld_moved     - cumulative load moved across iterations
11886 		 */
11887 		cur_ld_moved = detach_tasks(&env);
11888 
11889 		/*
11890 		 * We've detached some tasks from busiest_rq. Every
11891 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11892 		 * unlock busiest->lock, and we are able to be sure
11893 		 * that nobody can manipulate the tasks in parallel.
11894 		 * See task_rq_lock() family for the details.
11895 		 */
11896 
11897 		rq_unlock(busiest, &rf);
11898 
11899 		if (cur_ld_moved) {
11900 			attach_tasks(&env);
11901 			ld_moved += cur_ld_moved;
11902 		}
11903 
11904 		local_irq_restore(rf.flags);
11905 
11906 		if (env.flags & LBF_NEED_BREAK) {
11907 			env.flags &= ~LBF_NEED_BREAK;
11908 			goto more_balance;
11909 		}
11910 
11911 		/*
11912 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11913 		 * us and move them to an alternate dst_cpu in our sched_group
11914 		 * where they can run. The upper limit on how many times we
11915 		 * iterate on same src_cpu is dependent on number of CPUs in our
11916 		 * sched_group.
11917 		 *
11918 		 * This changes load balance semantics a bit on who can move
11919 		 * load to a given_cpu. In addition to the given_cpu itself
11920 		 * (or a ilb_cpu acting on its behalf where given_cpu is
11921 		 * nohz-idle), we now have balance_cpu in a position to move
11922 		 * load to given_cpu. In rare situations, this may cause
11923 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11924 		 * _independently_ and at _same_ time to move some load to
11925 		 * given_cpu) causing excess load to be moved to given_cpu.
11926 		 * This however should not happen so much in practice and
11927 		 * moreover subsequent load balance cycles should correct the
11928 		 * excess load moved.
11929 		 */
11930 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11931 
11932 			/* Prevent to re-select dst_cpu via env's CPUs */
11933 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
11934 
11935 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
11936 			env.dst_cpu	 = env.new_dst_cpu;
11937 			env.flags	&= ~LBF_DST_PINNED;
11938 			env.loop	 = 0;
11939 			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
11940 
11941 			/*
11942 			 * Go back to "more_balance" rather than "redo" since we
11943 			 * need to continue with same src_cpu.
11944 			 */
11945 			goto more_balance;
11946 		}
11947 
11948 		/*
11949 		 * We failed to reach balance because of affinity.
11950 		 */
11951 		if (sd_parent) {
11952 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11953 
11954 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11955 				*group_imbalance = 1;
11956 		}
11957 
11958 		/* All tasks on this runqueue were pinned by CPU affinity */
11959 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
11960 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
11961 			/*
11962 			 * Attempting to continue load balancing at the current
11963 			 * sched_domain level only makes sense if there are
11964 			 * active CPUs remaining as possible busiest CPUs to
11965 			 * pull load from which are not contained within the
11966 			 * destination group that is receiving any migrated
11967 			 * load.
11968 			 */
11969 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
11970 				env.loop = 0;
11971 				env.loop_break = SCHED_NR_MIGRATE_BREAK;
11972 				goto redo;
11973 			}
11974 			goto out_all_pinned;
11975 		}
11976 	}
11977 
11978 	if (!ld_moved) {
11979 		schedstat_inc(sd->lb_failed[idle]);
11980 		/*
11981 		 * Increment the failure counter only on periodic balance.
11982 		 * We do not want newidle balance, which can be very
11983 		 * frequent, pollute the failure counter causing
11984 		 * excessive cache_hot migrations and active balances.
11985 		 *
11986 		 * Similarly for migration_misfit which is not related to
11987 		 * load/util migration, don't pollute nr_balance_failed.
11988 		 */
11989 		if (idle != CPU_NEWLY_IDLE &&
11990 		    env.migration_type != migrate_misfit)
11991 			sd->nr_balance_failed++;
11992 
11993 		if (need_active_balance(&env)) {
11994 			unsigned long flags;
11995 
11996 			raw_spin_rq_lock_irqsave(busiest, flags);
11997 
11998 			/*
11999 			 * Don't kick the active_load_balance_cpu_stop,
12000 			 * if the curr task on busiest CPU can't be
12001 			 * moved to this_cpu:
12002 			 */
12003 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
12004 				raw_spin_rq_unlock_irqrestore(busiest, flags);
12005 				goto out_one_pinned;
12006 			}
12007 
12008 			/* Record that we found at least one task that could run on this_cpu */
12009 			env.flags &= ~LBF_ALL_PINNED;
12010 
12011 			/*
12012 			 * ->active_balance synchronizes accesses to
12013 			 * ->active_balance_work.  Once set, it's cleared
12014 			 * only after active load balance is finished.
12015 			 */
12016 			if (!busiest->active_balance) {
12017 				busiest->active_balance = 1;
12018 				busiest->push_cpu = this_cpu;
12019 				active_balance = 1;
12020 			}
12021 
12022 			preempt_disable();
12023 			raw_spin_rq_unlock_irqrestore(busiest, flags);
12024 			if (active_balance) {
12025 				stop_one_cpu_nowait(cpu_of(busiest),
12026 					active_load_balance_cpu_stop, busiest,
12027 					&busiest->active_balance_work);
12028 			}
12029 			preempt_enable();
12030 		}
12031 	} else {
12032 		sd->nr_balance_failed = 0;
12033 	}
12034 
12035 	if (likely(!active_balance) || need_active_balance(&env)) {
12036 		/* We were unbalanced, so reset the balancing interval */
12037 		sd->balance_interval = sd->min_interval;
12038 	}
12039 
12040 	goto out;
12041 
12042 out_balanced:
12043 	/*
12044 	 * We reach balance although we may have faced some affinity
12045 	 * constraints. Clear the imbalance flag only if other tasks got
12046 	 * a chance to move and fix the imbalance.
12047 	 */
12048 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
12049 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
12050 
12051 		if (*group_imbalance)
12052 			*group_imbalance = 0;
12053 	}
12054 
12055 out_all_pinned:
12056 	/*
12057 	 * We reach balance because all tasks are pinned at this level so
12058 	 * we can't migrate them. Let the imbalance flag set so parent level
12059 	 * can try to migrate them.
12060 	 */
12061 	schedstat_inc(sd->lb_balanced[idle]);
12062 
12063 	sd->nr_balance_failed = 0;
12064 
12065 out_one_pinned:
12066 	ld_moved = 0;
12067 
12068 	/*
12069 	 * sched_balance_newidle() disregards balance intervals, so we could
12070 	 * repeatedly reach this code, which would lead to balance_interval
12071 	 * skyrocketing in a short amount of time. Skip the balance_interval
12072 	 * increase logic to avoid that.
12073 	 *
12074 	 * Similarly misfit migration which is not necessarily an indication of
12075 	 * the system being busy and requires lb to backoff to let it settle
12076 	 * down.
12077 	 */
12078 	if (env.idle == CPU_NEWLY_IDLE ||
12079 	    env.migration_type == migrate_misfit)
12080 		goto out;
12081 
12082 	/* tune up the balancing interval */
12083 	if ((env.flags & LBF_ALL_PINNED &&
12084 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
12085 	    sd->balance_interval < sd->max_interval)
12086 		sd->balance_interval *= 2;
12087 out:
12088 	if (need_unlock)
12089 		atomic_set_release(&sched_balance_running, 0);
12090 
12091 	return ld_moved;
12092 }
12093 
12094 static inline unsigned long
get_sd_balance_interval(struct sched_domain * sd,int cpu_busy)12095 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
12096 {
12097 	unsigned long interval = sd->balance_interval;
12098 
12099 	if (cpu_busy)
12100 		interval *= sd->busy_factor;
12101 
12102 	/* scale ms to jiffies */
12103 	interval = msecs_to_jiffies(interval);
12104 
12105 	/*
12106 	 * Reduce likelihood of busy balancing at higher domains racing with
12107 	 * balancing at lower domains by preventing their balancing periods
12108 	 * from being multiples of each other.
12109 	 */
12110 	if (cpu_busy)
12111 		interval -= 1;
12112 
12113 	interval = clamp(interval, 1UL, max_load_balance_interval);
12114 
12115 	return interval;
12116 }
12117 
12118 static inline void
update_next_balance(struct sched_domain * sd,unsigned long * next_balance)12119 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
12120 {
12121 	unsigned long interval, next;
12122 
12123 	/* used by idle balance, so cpu_busy = 0 */
12124 	interval = get_sd_balance_interval(sd, 0);
12125 	next = sd->last_balance + interval;
12126 
12127 	if (time_after(*next_balance, next))
12128 		*next_balance = next;
12129 }
12130 
12131 /*
12132  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
12133  * running tasks off the busiest CPU onto idle CPUs. It requires at
12134  * least 1 task to be running on each physical CPU where possible, and
12135  * avoids physical / logical imbalances.
12136  */
active_load_balance_cpu_stop(void * data)12137 static int active_load_balance_cpu_stop(void *data)
12138 {
12139 	struct rq *busiest_rq = data;
12140 	int busiest_cpu = cpu_of(busiest_rq);
12141 	int target_cpu = busiest_rq->push_cpu;
12142 	struct rq *target_rq = cpu_rq(target_cpu);
12143 	struct sched_domain *sd;
12144 	struct task_struct *p = NULL;
12145 	struct rq_flags rf;
12146 
12147 	rq_lock_irq(busiest_rq, &rf);
12148 	/*
12149 	 * Between queueing the stop-work and running it is a hole in which
12150 	 * CPUs can become inactive. We should not move tasks from or to
12151 	 * inactive CPUs.
12152 	 */
12153 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
12154 		goto out_unlock;
12155 
12156 	/* Make sure the requested CPU hasn't gone down in the meantime: */
12157 	if (unlikely(busiest_cpu != smp_processor_id() ||
12158 		     !busiest_rq->active_balance))
12159 		goto out_unlock;
12160 
12161 	/* Is there any task to move? */
12162 	if (busiest_rq->nr_running <= 1)
12163 		goto out_unlock;
12164 
12165 	/*
12166 	 * This condition is "impossible", if it occurs
12167 	 * we need to fix it. Originally reported by
12168 	 * Bjorn Helgaas on a 128-CPU setup.
12169 	 */
12170 	WARN_ON_ONCE(busiest_rq == target_rq);
12171 
12172 	/* Search for an sd spanning us and the target CPU. */
12173 	rcu_read_lock();
12174 	for_each_domain(target_cpu, sd) {
12175 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
12176 			break;
12177 	}
12178 
12179 	if (likely(sd)) {
12180 		struct lb_env env = {
12181 			.sd		= sd,
12182 			.dst_cpu	= target_cpu,
12183 			.dst_rq		= target_rq,
12184 			.src_cpu	= busiest_rq->cpu,
12185 			.src_rq		= busiest_rq,
12186 			.idle		= CPU_IDLE,
12187 			.flags		= LBF_ACTIVE_LB,
12188 		};
12189 
12190 		schedstat_inc(sd->alb_count);
12191 		update_rq_clock(busiest_rq);
12192 
12193 		p = detach_one_task(&env);
12194 		if (p) {
12195 			schedstat_inc(sd->alb_pushed);
12196 			/* Active balancing done, reset the failure counter. */
12197 			sd->nr_balance_failed = 0;
12198 		} else {
12199 			schedstat_inc(sd->alb_failed);
12200 		}
12201 	}
12202 	rcu_read_unlock();
12203 out_unlock:
12204 	busiest_rq->active_balance = 0;
12205 	rq_unlock(busiest_rq, &rf);
12206 
12207 	if (p)
12208 		attach_one_task(target_rq, p);
12209 
12210 	local_irq_enable();
12211 
12212 	return 0;
12213 }
12214 
12215 /*
12216  * Scale the max sched_balance_rq interval with the number of CPUs in the system.
12217  * This trades load-balance latency on larger machines for less cross talk.
12218  */
update_max_interval(void)12219 void update_max_interval(void)
12220 {
12221 	max_load_balance_interval = HZ*num_online_cpus()/10;
12222 }
12223 
update_newidle_stats(struct sched_domain * sd,unsigned int success)12224 static inline void update_newidle_stats(struct sched_domain *sd, unsigned int success)
12225 {
12226 	sd->newidle_call++;
12227 	sd->newidle_success += success;
12228 
12229 	if (sd->newidle_call >= 1024) {
12230 		sd->newidle_ratio = sd->newidle_success;
12231 		sd->newidle_call /= 2;
12232 		sd->newidle_success /= 2;
12233 	}
12234 }
12235 
12236 static inline bool
update_newidle_cost(struct sched_domain * sd,u64 cost,unsigned int success)12237 update_newidle_cost(struct sched_domain *sd, u64 cost, unsigned int success)
12238 {
12239 	unsigned long next_decay = sd->last_decay_max_lb_cost + HZ;
12240 	unsigned long now = jiffies;
12241 
12242 	if (cost)
12243 		update_newidle_stats(sd, success);
12244 
12245 	if (cost > sd->max_newidle_lb_cost) {
12246 		/*
12247 		 * Track max cost of a domain to make sure to not delay the
12248 		 * next wakeup on the CPU.
12249 		 */
12250 		sd->max_newidle_lb_cost = cost;
12251 		sd->last_decay_max_lb_cost = now;
12252 
12253 	} else if (time_after(now, next_decay)) {
12254 		/*
12255 		 * Decay the newidle max times by ~1% per second to ensure that
12256 		 * it is not outdated and the current max cost is actually
12257 		 * shorter.
12258 		 */
12259 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
12260 		sd->last_decay_max_lb_cost = now;
12261 		return true;
12262 	}
12263 
12264 	return false;
12265 }
12266 
12267 /*
12268  * It checks each scheduling domain to see if it is due to be balanced,
12269  * and initiates a balancing operation if so.
12270  *
12271  * Balancing parameters are set up in init_sched_domains.
12272  */
sched_balance_domains(struct rq * rq,enum cpu_idle_type idle)12273 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle)
12274 {
12275 	int continue_balancing = 1;
12276 	int cpu = rq->cpu;
12277 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
12278 	unsigned long interval;
12279 	struct sched_domain *sd;
12280 	/* Earliest time when we have to do rebalance again */
12281 	unsigned long next_balance = jiffies + 60*HZ;
12282 	int update_next_balance = 0;
12283 	int need_decay = 0;
12284 	u64 max_cost = 0;
12285 
12286 	rcu_read_lock();
12287 	for_each_domain(cpu, sd) {
12288 		/*
12289 		 * Decay the newidle max times here because this is a regular
12290 		 * visit to all the domains.
12291 		 */
12292 		need_decay = update_newidle_cost(sd, 0, 0);
12293 		max_cost += sd->max_newidle_lb_cost;
12294 
12295 		/*
12296 		 * Stop the load balance at this level. There is another
12297 		 * CPU in our sched group which is doing load balancing more
12298 		 * actively.
12299 		 */
12300 		if (!continue_balancing) {
12301 			if (need_decay)
12302 				continue;
12303 			break;
12304 		}
12305 
12306 		interval = get_sd_balance_interval(sd, busy);
12307 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
12308 			if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) {
12309 				/*
12310 				 * The LBF_DST_PINNED logic could have changed
12311 				 * env->dst_cpu, so we can't know our idle
12312 				 * state even if we migrated tasks. Update it.
12313 				 */
12314 				idle = idle_cpu(cpu);
12315 				busy = !idle && !sched_idle_cpu(cpu);
12316 			}
12317 			sd->last_balance = jiffies;
12318 			interval = get_sd_balance_interval(sd, busy);
12319 		}
12320 		if (time_after(next_balance, sd->last_balance + interval)) {
12321 			next_balance = sd->last_balance + interval;
12322 			update_next_balance = 1;
12323 		}
12324 	}
12325 	if (need_decay) {
12326 		/*
12327 		 * Ensure the rq-wide value also decays but keep it at a
12328 		 * reasonable floor to avoid funnies with rq->avg_idle.
12329 		 */
12330 		rq->max_idle_balance_cost =
12331 			max((u64)sysctl_sched_migration_cost, max_cost);
12332 	}
12333 	rcu_read_unlock();
12334 
12335 	/*
12336 	 * next_balance will be updated only when there is a need.
12337 	 * When the cpu is attached to null domain for ex, it will not be
12338 	 * updated.
12339 	 */
12340 	if (likely(update_next_balance))
12341 		rq->next_balance = next_balance;
12342 
12343 }
12344 
on_null_domain(struct rq * rq)12345 static inline int on_null_domain(struct rq *rq)
12346 {
12347 	return unlikely(!rcu_dereference_sched(rq->sd));
12348 }
12349 
12350 #ifdef CONFIG_NO_HZ_COMMON
12351 /*
12352  * NOHZ idle load balancing (ILB) details:
12353  *
12354  * - When one of the busy CPUs notices that there may be an idle rebalancing
12355  *   needed, they will kick the idle load balancer, which then does idle
12356  *   load balancing for all the idle CPUs.
12357  */
find_new_ilb(void)12358 static inline int find_new_ilb(void)
12359 {
12360 	const struct cpumask *hk_mask;
12361 	int ilb_cpu;
12362 
12363 	hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE);
12364 
12365 	for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
12366 
12367 		if (ilb_cpu == smp_processor_id())
12368 			continue;
12369 
12370 		if (idle_cpu(ilb_cpu))
12371 			return ilb_cpu;
12372 	}
12373 
12374 	return -1;
12375 }
12376 
12377 /*
12378  * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
12379  * SMP function call (IPI).
12380  *
12381  * We pick the first idle CPU in the HK_TYPE_KERNEL_NOISE housekeeping set
12382  * (if there is one).
12383  */
kick_ilb(unsigned int flags)12384 static void kick_ilb(unsigned int flags)
12385 {
12386 	int ilb_cpu;
12387 
12388 	/*
12389 	 * Increase nohz.next_balance only when if full ilb is triggered but
12390 	 * not if we only update stats.
12391 	 */
12392 	if (flags & NOHZ_BALANCE_KICK)
12393 		nohz.next_balance = jiffies+1;
12394 
12395 	ilb_cpu = find_new_ilb();
12396 	if (ilb_cpu < 0)
12397 		return;
12398 
12399 	/*
12400 	 * Don't bother if no new NOHZ balance work items for ilb_cpu,
12401 	 * i.e. all bits in flags are already set in ilb_cpu.
12402 	 */
12403 	if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags)
12404 		return;
12405 
12406 	/*
12407 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
12408 	 * the first flag owns it; cleared by nohz_csd_func().
12409 	 */
12410 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
12411 	if (flags & NOHZ_KICK_MASK)
12412 		return;
12413 
12414 	/*
12415 	 * This way we generate an IPI on the target CPU which
12416 	 * is idle, and the softirq performing NOHZ idle load balancing
12417 	 * will be run before returning from the IPI.
12418 	 */
12419 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
12420 }
12421 
12422 /*
12423  * Current decision point for kicking the idle load balancer in the presence
12424  * of idle CPUs in the system.
12425  */
nohz_balancer_kick(struct rq * rq)12426 static void nohz_balancer_kick(struct rq *rq)
12427 {
12428 	unsigned long now = jiffies;
12429 	struct sched_domain_shared *sds;
12430 	struct sched_domain *sd;
12431 	int nr_busy, i, cpu = rq->cpu;
12432 	unsigned int flags = 0;
12433 
12434 	if (unlikely(rq->idle_balance))
12435 		return;
12436 
12437 	/*
12438 	 * We may be recently in ticked or tickless idle mode. At the first
12439 	 * busy tick after returning from idle, we will update the busy stats.
12440 	 */
12441 	nohz_balance_exit_idle(rq);
12442 
12443 	/*
12444 	 * None are in tickless mode and hence no need for NOHZ idle load
12445 	 * balancing:
12446 	 */
12447 	if (likely(!atomic_read(&nohz.nr_cpus)))
12448 		return;
12449 
12450 	if (READ_ONCE(nohz.has_blocked) &&
12451 	    time_after(now, READ_ONCE(nohz.next_blocked)))
12452 		flags = NOHZ_STATS_KICK;
12453 
12454 	if (time_before(now, nohz.next_balance))
12455 		goto out;
12456 
12457 	if (rq->nr_running >= 2) {
12458 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12459 		goto out;
12460 	}
12461 
12462 	rcu_read_lock();
12463 
12464 	sd = rcu_dereference(rq->sd);
12465 	if (sd) {
12466 		/*
12467 		 * If there's a runnable CFS task and the current CPU has reduced
12468 		 * capacity, kick the ILB to see if there's a better CPU to run on:
12469 		 */
12470 		if (rq->cfs.h_nr_runnable >= 1 && check_cpu_capacity(rq, sd)) {
12471 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12472 			goto unlock;
12473 		}
12474 	}
12475 
12476 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
12477 	if (sd) {
12478 		/*
12479 		 * When ASYM_PACKING; see if there's a more preferred CPU
12480 		 * currently idle; in which case, kick the ILB to move tasks
12481 		 * around.
12482 		 *
12483 		 * When balancing between cores, all the SMT siblings of the
12484 		 * preferred CPU must be idle.
12485 		 */
12486 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
12487 			if (sched_asym(sd, i, cpu)) {
12488 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12489 				goto unlock;
12490 			}
12491 		}
12492 	}
12493 
12494 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
12495 	if (sd) {
12496 		/*
12497 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
12498 		 * to run the misfit task on.
12499 		 */
12500 		if (check_misfit_status(rq)) {
12501 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12502 			goto unlock;
12503 		}
12504 
12505 		/*
12506 		 * For asymmetric systems, we do not want to nicely balance
12507 		 * cache use, instead we want to embrace asymmetry and only
12508 		 * ensure tasks have enough CPU capacity.
12509 		 *
12510 		 * Skip the LLC logic because it's not relevant in that case.
12511 		 */
12512 		goto unlock;
12513 	}
12514 
12515 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
12516 	if (sds) {
12517 		/*
12518 		 * If there is an imbalance between LLC domains (IOW we could
12519 		 * increase the overall cache utilization), we need a less-loaded LLC
12520 		 * domain to pull some load from. Likewise, we may need to spread
12521 		 * load within the current LLC domain (e.g. packed SMT cores but
12522 		 * other CPUs are idle). We can't really know from here how busy
12523 		 * the others are - so just get a NOHZ balance going if it looks
12524 		 * like this LLC domain has tasks we could move.
12525 		 */
12526 		nr_busy = atomic_read(&sds->nr_busy_cpus);
12527 		if (nr_busy > 1) {
12528 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12529 			goto unlock;
12530 		}
12531 	}
12532 unlock:
12533 	rcu_read_unlock();
12534 out:
12535 	if (READ_ONCE(nohz.needs_update))
12536 		flags |= NOHZ_NEXT_KICK;
12537 
12538 	if (flags)
12539 		kick_ilb(flags);
12540 }
12541 
set_cpu_sd_state_busy(int cpu)12542 static void set_cpu_sd_state_busy(int cpu)
12543 {
12544 	struct sched_domain *sd;
12545 
12546 	rcu_read_lock();
12547 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12548 
12549 	if (!sd || !sd->nohz_idle)
12550 		goto unlock;
12551 	sd->nohz_idle = 0;
12552 
12553 	atomic_inc(&sd->shared->nr_busy_cpus);
12554 unlock:
12555 	rcu_read_unlock();
12556 }
12557 
nohz_balance_exit_idle(struct rq * rq)12558 void nohz_balance_exit_idle(struct rq *rq)
12559 {
12560 	WARN_ON_ONCE(rq != this_rq());
12561 
12562 	if (likely(!rq->nohz_tick_stopped))
12563 		return;
12564 
12565 	rq->nohz_tick_stopped = 0;
12566 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
12567 	atomic_dec(&nohz.nr_cpus);
12568 
12569 	set_cpu_sd_state_busy(rq->cpu);
12570 }
12571 
set_cpu_sd_state_idle(int cpu)12572 static void set_cpu_sd_state_idle(int cpu)
12573 {
12574 	struct sched_domain *sd;
12575 
12576 	rcu_read_lock();
12577 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12578 
12579 	if (!sd || sd->nohz_idle)
12580 		goto unlock;
12581 	sd->nohz_idle = 1;
12582 
12583 	atomic_dec(&sd->shared->nr_busy_cpus);
12584 unlock:
12585 	rcu_read_unlock();
12586 }
12587 
12588 /*
12589  * This routine will record that the CPU is going idle with tick stopped.
12590  * This info will be used in performing idle load balancing in the future.
12591  */
nohz_balance_enter_idle(int cpu)12592 void nohz_balance_enter_idle(int cpu)
12593 {
12594 	struct rq *rq = cpu_rq(cpu);
12595 
12596 	WARN_ON_ONCE(cpu != smp_processor_id());
12597 
12598 	/* If this CPU is going down, then nothing needs to be done: */
12599 	if (!cpu_active(cpu))
12600 		return;
12601 
12602 	/*
12603 	 * Can be set safely without rq->lock held
12604 	 * If a clear happens, it will have evaluated last additions because
12605 	 * rq->lock is held during the check and the clear
12606 	 */
12607 	rq->has_blocked_load = 1;
12608 
12609 	/*
12610 	 * The tick is still stopped but load could have been added in the
12611 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
12612 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12613 	 * of nohz.has_blocked can only happen after checking the new load
12614 	 */
12615 	if (rq->nohz_tick_stopped)
12616 		goto out;
12617 
12618 	/* If we're a completely isolated CPU, we don't play: */
12619 	if (on_null_domain(rq))
12620 		return;
12621 
12622 	rq->nohz_tick_stopped = 1;
12623 
12624 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12625 	atomic_inc(&nohz.nr_cpus);
12626 
12627 	/*
12628 	 * Ensures that if nohz_idle_balance() fails to observe our
12629 	 * @idle_cpus_mask store, it must observe the @has_blocked
12630 	 * and @needs_update stores.
12631 	 */
12632 	smp_mb__after_atomic();
12633 
12634 	set_cpu_sd_state_idle(cpu);
12635 
12636 	WRITE_ONCE(nohz.needs_update, 1);
12637 out:
12638 	/*
12639 	 * Each time a cpu enter idle, we assume that it has blocked load and
12640 	 * enable the periodic update of the load of idle CPUs
12641 	 */
12642 	WRITE_ONCE(nohz.has_blocked, 1);
12643 }
12644 
update_nohz_stats(struct rq * rq)12645 static bool update_nohz_stats(struct rq *rq)
12646 {
12647 	unsigned int cpu = rq->cpu;
12648 
12649 	if (!rq->has_blocked_load)
12650 		return false;
12651 
12652 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12653 		return false;
12654 
12655 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12656 		return true;
12657 
12658 	sched_balance_update_blocked_averages(cpu);
12659 
12660 	return rq->has_blocked_load;
12661 }
12662 
12663 /*
12664  * Internal function that runs load balance for all idle CPUs. The load balance
12665  * can be a simple update of blocked load or a complete load balance with
12666  * tasks movement depending of flags.
12667  */
_nohz_idle_balance(struct rq * this_rq,unsigned int flags)12668 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12669 {
12670 	/* Earliest time when we have to do rebalance again */
12671 	unsigned long now = jiffies;
12672 	unsigned long next_balance = now + 60*HZ;
12673 	bool has_blocked_load = false;
12674 	int update_next_balance = 0;
12675 	int this_cpu = this_rq->cpu;
12676 	int balance_cpu;
12677 	struct rq *rq;
12678 
12679 	WARN_ON_ONCE((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12680 
12681 	/*
12682 	 * We assume there will be no idle load after this update and clear
12683 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12684 	 * set the has_blocked flag and trigger another update of idle load.
12685 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12686 	 * setting the flag, we are sure to not clear the state and not
12687 	 * check the load of an idle cpu.
12688 	 *
12689 	 * Same applies to idle_cpus_mask vs needs_update.
12690 	 */
12691 	if (flags & NOHZ_STATS_KICK)
12692 		WRITE_ONCE(nohz.has_blocked, 0);
12693 	if (flags & NOHZ_NEXT_KICK)
12694 		WRITE_ONCE(nohz.needs_update, 0);
12695 
12696 	/*
12697 	 * Ensures that if we miss the CPU, we must see the has_blocked
12698 	 * store from nohz_balance_enter_idle().
12699 	 */
12700 	smp_mb();
12701 
12702 	/*
12703 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12704 	 * chance for other idle cpu to pull load.
12705 	 */
12706 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
12707 		if (!idle_cpu(balance_cpu))
12708 			continue;
12709 
12710 		/*
12711 		 * If this CPU gets work to do, stop the load balancing
12712 		 * work being done for other CPUs. Next load
12713 		 * balancing owner will pick it up.
12714 		 */
12715 		if (!idle_cpu(this_cpu) && need_resched()) {
12716 			if (flags & NOHZ_STATS_KICK)
12717 				has_blocked_load = true;
12718 			if (flags & NOHZ_NEXT_KICK)
12719 				WRITE_ONCE(nohz.needs_update, 1);
12720 			goto abort;
12721 		}
12722 
12723 		rq = cpu_rq(balance_cpu);
12724 
12725 		if (flags & NOHZ_STATS_KICK)
12726 			has_blocked_load |= update_nohz_stats(rq);
12727 
12728 		/*
12729 		 * If time for next balance is due,
12730 		 * do the balance.
12731 		 */
12732 		if (time_after_eq(jiffies, rq->next_balance)) {
12733 			struct rq_flags rf;
12734 
12735 			rq_lock_irqsave(rq, &rf);
12736 			update_rq_clock(rq);
12737 			rq_unlock_irqrestore(rq, &rf);
12738 
12739 			if (flags & NOHZ_BALANCE_KICK)
12740 				sched_balance_domains(rq, CPU_IDLE);
12741 		}
12742 
12743 		if (time_after(next_balance, rq->next_balance)) {
12744 			next_balance = rq->next_balance;
12745 			update_next_balance = 1;
12746 		}
12747 	}
12748 
12749 	/*
12750 	 * next_balance will be updated only when there is a need.
12751 	 * When the CPU is attached to null domain for ex, it will not be
12752 	 * updated.
12753 	 */
12754 	if (likely(update_next_balance))
12755 		nohz.next_balance = next_balance;
12756 
12757 	if (flags & NOHZ_STATS_KICK)
12758 		WRITE_ONCE(nohz.next_blocked,
12759 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12760 
12761 abort:
12762 	/* There is still blocked load, enable periodic update */
12763 	if (has_blocked_load)
12764 		WRITE_ONCE(nohz.has_blocked, 1);
12765 }
12766 
12767 /*
12768  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12769  * rebalancing for all the CPUs for whom scheduler ticks are stopped.
12770  */
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12771 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12772 {
12773 	unsigned int flags = this_rq->nohz_idle_balance;
12774 
12775 	if (!flags)
12776 		return false;
12777 
12778 	this_rq->nohz_idle_balance = 0;
12779 
12780 	if (idle != CPU_IDLE)
12781 		return false;
12782 
12783 	_nohz_idle_balance(this_rq, flags);
12784 
12785 	return true;
12786 }
12787 
12788 /*
12789  * Check if we need to directly run the ILB for updating blocked load before
12790  * entering idle state. Here we run ILB directly without issuing IPIs.
12791  *
12792  * Note that when this function is called, the tick may not yet be stopped on
12793  * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
12794  * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
12795  * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
12796  * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
12797  * called from this function on (this) CPU that's not yet in the mask. That's
12798  * OK because the goal of nohz_run_idle_balance() is to run ILB only for
12799  * updating the blocked load of already idle CPUs without waking up one of
12800  * those idle CPUs and outside the preempt disable / IRQ off phase of the local
12801  * cpu about to enter idle, because it can take a long time.
12802  */
nohz_run_idle_balance(int cpu)12803 void nohz_run_idle_balance(int cpu)
12804 {
12805 	unsigned int flags;
12806 
12807 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12808 
12809 	/*
12810 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12811 	 * (i.e. NOHZ_STATS_KICK set) and will do the same.
12812 	 */
12813 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12814 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12815 }
12816 
nohz_newidle_balance(struct rq * this_rq)12817 static void nohz_newidle_balance(struct rq *this_rq)
12818 {
12819 	int this_cpu = this_rq->cpu;
12820 
12821 	/* Will wake up very soon. No time for doing anything else*/
12822 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
12823 		return;
12824 
12825 	/* Don't need to update blocked load of idle CPUs*/
12826 	if (!READ_ONCE(nohz.has_blocked) ||
12827 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12828 		return;
12829 
12830 	/*
12831 	 * Set the need to trigger ILB in order to update blocked load
12832 	 * before entering idle state.
12833 	 */
12834 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12835 }
12836 
12837 #else /* !CONFIG_NO_HZ_COMMON: */
nohz_balancer_kick(struct rq * rq)12838 static inline void nohz_balancer_kick(struct rq *rq) { }
12839 
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12840 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12841 {
12842 	return false;
12843 }
12844 
nohz_newidle_balance(struct rq * this_rq)12845 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12846 #endif /* !CONFIG_NO_HZ_COMMON */
12847 
12848 /*
12849  * sched_balance_newidle is called by schedule() if this_cpu is about to become
12850  * idle. Attempts to pull tasks from other CPUs.
12851  *
12852  * Returns:
12853  *   < 0 - we released the lock and there are !fair tasks present
12854  *     0 - failed, no new tasks
12855  *   > 0 - success, new (fair) tasks present
12856  */
sched_balance_newidle(struct rq * this_rq,struct rq_flags * rf)12857 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf)
12858 {
12859 	unsigned long next_balance = jiffies + HZ;
12860 	int this_cpu = this_rq->cpu;
12861 	int continue_balancing = 1;
12862 	u64 t0, t1, curr_cost = 0;
12863 	struct sched_domain *sd;
12864 	int pulled_task = 0;
12865 
12866 	update_misfit_status(NULL, this_rq);
12867 
12868 	/*
12869 	 * There is a task waiting to run. No need to search for one.
12870 	 * Return 0; the task will be enqueued when switching to idle.
12871 	 */
12872 	if (this_rq->ttwu_pending)
12873 		return 0;
12874 
12875 	/*
12876 	 * We must set idle_stamp _before_ calling sched_balance_rq()
12877 	 * for CPU_NEWLY_IDLE, such that we measure the this duration
12878 	 * as idle time.
12879 	 */
12880 	this_rq->idle_stamp = rq_clock(this_rq);
12881 
12882 	/*
12883 	 * Do not pull tasks towards !active CPUs...
12884 	 */
12885 	if (!cpu_active(this_cpu))
12886 		return 0;
12887 
12888 	/*
12889 	 * This is OK, because current is on_cpu, which avoids it being picked
12890 	 * for load-balance and preemption/IRQs are still disabled avoiding
12891 	 * further scheduler activity on it and we're being very careful to
12892 	 * re-start the picking loop.
12893 	 */
12894 	rq_unpin_lock(this_rq, rf);
12895 
12896 	rcu_read_lock();
12897 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
12898 	if (!sd) {
12899 		rcu_read_unlock();
12900 		goto out;
12901 	}
12902 
12903 	if (!get_rd_overloaded(this_rq->rd) ||
12904 	    this_rq->avg_idle < sd->max_newidle_lb_cost) {
12905 
12906 		update_next_balance(sd, &next_balance);
12907 		rcu_read_unlock();
12908 		goto out;
12909 	}
12910 	rcu_read_unlock();
12911 
12912 	rq_modified_clear(this_rq);
12913 	raw_spin_rq_unlock(this_rq);
12914 
12915 	t0 = sched_clock_cpu(this_cpu);
12916 	sched_balance_update_blocked_averages(this_cpu);
12917 
12918 	rcu_read_lock();
12919 	for_each_domain(this_cpu, sd) {
12920 		u64 domain_cost;
12921 
12922 		update_next_balance(sd, &next_balance);
12923 
12924 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12925 			break;
12926 
12927 		if (sd->flags & SD_BALANCE_NEWIDLE) {
12928 			unsigned int weight = 1;
12929 
12930 			if (sched_feat(NI_RANDOM)) {
12931 				/*
12932 				 * Throw a 1k sided dice; and only run
12933 				 * newidle_balance according to the success
12934 				 * rate.
12935 				 */
12936 				u32 d1k = sched_rng() % 1024;
12937 				weight = 1 + sd->newidle_ratio;
12938 				if (d1k > weight) {
12939 					update_newidle_stats(sd, 0);
12940 					continue;
12941 				}
12942 				weight = (1024 + weight/2) / weight;
12943 			}
12944 
12945 			pulled_task = sched_balance_rq(this_cpu, this_rq,
12946 						   sd, CPU_NEWLY_IDLE,
12947 						   &continue_balancing);
12948 
12949 			t1 = sched_clock_cpu(this_cpu);
12950 			domain_cost = t1 - t0;
12951 			curr_cost += domain_cost;
12952 			t0 = t1;
12953 
12954 			/*
12955 			 * Track max cost of a domain to make sure to not delay the
12956 			 * next wakeup on the CPU.
12957 			 */
12958 			update_newidle_cost(sd, domain_cost, weight * !!pulled_task);
12959 		}
12960 
12961 		/*
12962 		 * Stop searching for tasks to pull if there are
12963 		 * now runnable tasks on this rq.
12964 		 */
12965 		if (pulled_task || !continue_balancing)
12966 			break;
12967 	}
12968 	rcu_read_unlock();
12969 
12970 	raw_spin_rq_lock(this_rq);
12971 
12972 	if (curr_cost > this_rq->max_idle_balance_cost)
12973 		this_rq->max_idle_balance_cost = curr_cost;
12974 
12975 	/*
12976 	 * While browsing the domains, we released the rq lock, a task could
12977 	 * have been enqueued in the meantime. Since we're not going idle,
12978 	 * pretend we pulled a task.
12979 	 */
12980 	if (this_rq->cfs.h_nr_queued && !pulled_task)
12981 		pulled_task = 1;
12982 
12983 	/* If a higher prio class was modified, restart the pick */
12984 	if (rq_modified_above(this_rq, &fair_sched_class))
12985 		pulled_task = -1;
12986 
12987 out:
12988 	/* Move the next balance forward */
12989 	if (time_after(this_rq->next_balance, next_balance))
12990 		this_rq->next_balance = next_balance;
12991 
12992 	if (pulled_task)
12993 		this_rq->idle_stamp = 0;
12994 	else
12995 		nohz_newidle_balance(this_rq);
12996 
12997 	rq_repin_lock(this_rq, rf);
12998 
12999 	return pulled_task;
13000 }
13001 
13002 /*
13003  * This softirq handler is triggered via SCHED_SOFTIRQ from two places:
13004  *
13005  * - directly from the local sched_tick() for periodic load balancing
13006  *
13007  * - indirectly from a remote sched_tick() for NOHZ idle balancing
13008  *   through the SMP cross-call nohz_csd_func()
13009  */
sched_balance_softirq(void)13010 static __latent_entropy void sched_balance_softirq(void)
13011 {
13012 	struct rq *this_rq = this_rq();
13013 	enum cpu_idle_type idle = this_rq->idle_balance;
13014 	/*
13015 	 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the
13016 	 * balancing on behalf of the other idle CPUs whose ticks are
13017 	 * stopped. Do nohz_idle_balance *before* sched_balance_domains to
13018 	 * give the idle CPUs a chance to load balance. Else we may
13019 	 * load balance only within the local sched_domain hierarchy
13020 	 * and abort nohz_idle_balance altogether if we pull some load.
13021 	 */
13022 	if (nohz_idle_balance(this_rq, idle))
13023 		return;
13024 
13025 	/* normal load balance */
13026 	sched_balance_update_blocked_averages(this_rq->cpu);
13027 	sched_balance_domains(this_rq, idle);
13028 }
13029 
13030 /*
13031  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
13032  */
sched_balance_trigger(struct rq * rq)13033 void sched_balance_trigger(struct rq *rq)
13034 {
13035 	/*
13036 	 * Don't need to rebalance while attached to NULL domain or
13037 	 * runqueue CPU is not active
13038 	 */
13039 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
13040 		return;
13041 
13042 	if (time_after_eq(jiffies, rq->next_balance))
13043 		raise_softirq(SCHED_SOFTIRQ);
13044 
13045 	nohz_balancer_kick(rq);
13046 }
13047 
rq_online_fair(struct rq * rq)13048 static void rq_online_fair(struct rq *rq)
13049 {
13050 	update_sysctl();
13051 
13052 	update_runtime_enabled(rq);
13053 }
13054 
rq_offline_fair(struct rq * rq)13055 static void rq_offline_fair(struct rq *rq)
13056 {
13057 	update_sysctl();
13058 
13059 	/* Ensure any throttled groups are reachable by pick_next_task */
13060 	unthrottle_offline_cfs_rqs(rq);
13061 
13062 	/* Ensure that we remove rq contribution to group share: */
13063 	clear_tg_offline_cfs_rqs(rq);
13064 }
13065 
13066 #ifdef CONFIG_SCHED_CORE
13067 static inline bool
__entity_slice_used(struct sched_entity * se,int min_nr_tasks)13068 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
13069 {
13070 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
13071 	u64 slice = se->slice;
13072 
13073 	return (rtime * min_nr_tasks > slice);
13074 }
13075 
13076 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
task_tick_core(struct rq * rq,struct task_struct * curr)13077 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
13078 {
13079 	if (!sched_core_enabled(rq))
13080 		return;
13081 
13082 	/*
13083 	 * If runqueue has only one task which used up its slice and
13084 	 * if the sibling is forced idle, then trigger schedule to
13085 	 * give forced idle task a chance.
13086 	 *
13087 	 * sched_slice() considers only this active rq and it gets the
13088 	 * whole slice. But during force idle, we have siblings acting
13089 	 * like a single runqueue and hence we need to consider runnable
13090 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
13091 	 * go through the forced idle rq, but that would be a perf hit.
13092 	 * We can assume that the forced idle CPU has at least
13093 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
13094 	 * if we need to give up the CPU.
13095 	 */
13096 	if (rq->core->core_forceidle_count && rq->cfs.nr_queued == 1 &&
13097 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
13098 		resched_curr(rq);
13099 }
13100 
13101 /*
13102  * Consider any infeasible weight scenario. Take for instance two tasks,
13103  * each bound to their respective sibling, one with weight 1 and one with
13104  * weight 2. Then the lower weight task will run ahead of the higher weight
13105  * task without bound.
13106  *
13107  * This utterly destroys the concept of a shared time base.
13108  *
13109  * Remember; all this is about a proportionally fair scheduling, where each
13110  * tasks receives:
13111  *
13112  *              w_i
13113  *   dt_i = ---------- dt                                     (1)
13114  *          \Sum_j w_j
13115  *
13116  * which we do by tracking a virtual time, s_i:
13117  *
13118  *          1
13119  *   s_i = --- d[t]_i                                         (2)
13120  *         w_i
13121  *
13122  * Where d[t] is a delta of discrete time, while dt is an infinitesimal.
13123  * The immediate corollary is that the ideal schedule S, where (2) to use
13124  * an infinitesimal delta, is:
13125  *
13126  *           1
13127  *   S = ---------- dt                                        (3)
13128  *       \Sum_i w_i
13129  *
13130  * From which we can define the lag, or deviation from the ideal, as:
13131  *
13132  *   lag(i) = S - s_i                                         (4)
13133  *
13134  * And since the one and only purpose is to approximate S, we get that:
13135  *
13136  *   \Sum_i w_i lag(i) := 0                                   (5)
13137  *
13138  * If this were not so, we no longer converge to S, and we can no longer
13139  * claim our scheduler has any of the properties we derive from S. This is
13140  * exactly what you did above, you broke it!
13141  *
13142  *
13143  * Let's continue for a while though; to see if there is anything useful to
13144  * be learned. We can combine (1)-(3) or (4)-(5) and express S in s_i:
13145  *
13146  *       \Sum_i w_i s_i
13147  *   S = --------------                                       (6)
13148  *         \Sum_i w_i
13149  *
13150  * Which gives us a way to compute S, given our s_i. Now, if you've read
13151  * our code, you know that we do not in fact do this, the reason for this
13152  * is two-fold. Firstly, computing S in that way requires a 64bit division
13153  * for every time we'd use it (see 12), and secondly, this only describes
13154  * the steady-state, it doesn't handle dynamics.
13155  *
13156  * Anyway, in (6):  s_i -> x + (s_i - x), to get:
13157  *
13158  *           \Sum_i w_i (s_i - x)
13159  *   S - x = --------------------                             (7)
13160  *              \Sum_i w_i
13161  *
13162  * Which shows that S and s_i transform alike (which makes perfect sense
13163  * given that S is basically the (weighted) average of s_i).
13164  *
13165  * So the thing to remember is that the above is strictly UP. It is
13166  * possible to generalize to multiple runqueues -- however it gets really
13167  * yuck when you have to add affinity support, as illustrated by our very
13168  * first counter-example.
13169  *
13170  * Luckily I think we can avoid needing a full multi-queue variant for
13171  * core-scheduling (or load-balancing). The crucial observation is that we
13172  * only actually need this comparison in the presence of forced-idle; only
13173  * then do we need to tell if the stalled rq has higher priority over the
13174  * other.
13175  *
13176  * [XXX assumes SMT2; better consider the more general case, I suspect
13177  * it'll work out because our comparison is always between 2 rqs and the
13178  * answer is only interesting if one of them is forced-idle]
13179  *
13180  * And (under assumption of SMT2) when there is forced-idle, there is only
13181  * a single queue, so everything works like normal.
13182  *
13183  * Let, for our runqueue 'k':
13184  *
13185  *   T_k = \Sum_i w_i s_i
13186  *   W_k = \Sum_i w_i      ; for all i of k                  (8)
13187  *
13188  * Then we can write (6) like:
13189  *
13190  *         T_k
13191  *   S_k = ---                                               (9)
13192  *         W_k
13193  *
13194  * From which immediately follows that:
13195  *
13196  *           T_k + T_l
13197  *   S_k+l = ---------                                       (10)
13198  *           W_k + W_l
13199  *
13200  * On which we can define a combined lag:
13201  *
13202  *   lag_k+l(i) := S_k+l - s_i                               (11)
13203  *
13204  * And that gives us the tools to compare tasks across a combined runqueue.
13205  *
13206  *
13207  * Combined this gives the following:
13208  *
13209  *  a) when a runqueue enters force-idle, sync it against it's sibling rq(s)
13210  *     using (7); this only requires storing single 'time'-stamps.
13211  *
13212  *  b) when comparing tasks between 2 runqueues of which one is forced-idle,
13213  *     compare the combined lag, per (11).
13214  *
13215  * Now, of course cgroups (I so hate them) make this more interesting in
13216  * that a) seems to suggest we need to iterate all cgroup on a CPU at such
13217  * boundaries, but I think we can avoid that. The force-idle is for the
13218  * whole CPU, all it's rqs. So we can mark it in the root and lazily
13219  * propagate downward on demand.
13220  */
13221 
13222 /*
13223  * So this sync is basically a relative reset of S to 0.
13224  *
13225  * So with 2 queues, when one goes idle, we drop them both to 0 and one
13226  * then increases due to not being idle, and the idle one builds up lag to
13227  * get re-elected. So far so simple, right?
13228  *
13229  * When there's 3, we can have the situation where 2 run and one is idle,
13230  * we sync to 0 and let the idle one build up lag to get re-election. Now
13231  * suppose another one also drops idle. At this point dropping all to 0
13232  * again would destroy the built-up lag from the queue that was already
13233  * idle, not good.
13234  *
13235  * So instead of syncing everything, we can:
13236  *
13237  *   less := !((s64)(s_a - s_b) <= 0)
13238  *
13239  *   (v_a - S_a) - (v_b - S_b) == v_a - v_b - S_a + S_b
13240  *                             == v_a - (v_b - S_a + S_b)
13241  *
13242  * IOW, we can recast the (lag) comparison to a one-sided difference.
13243  * So if then, instead of syncing the whole queue, sync the idle queue
13244  * against the active queue with S_a + S_b at the point where we sync.
13245  *
13246  * (XXX consider the implication of living in a cyclic group: N / 2^n N)
13247  *
13248  * This gives us means of syncing single queues against the active queue,
13249  * and for already idle queues to preserve their build-up lag.
13250  *
13251  * Of course, then we get the situation where there's 2 active and one
13252  * going idle, who do we pick to sync against? Theory would have us sync
13253  * against the combined S, but as we've already demonstrated, there is no
13254  * such thing in infeasible weight scenarios.
13255  *
13256  * One thing I've considered; and this is where that core_active rudiment
13257  * came from, is having active queues sync up between themselves after
13258  * every tick. This limits the observed divergence due to the work
13259  * conservancy.
13260  *
13261  * On top of that, we can improve upon things by employing (10) here.
13262  */
13263 
13264 /*
13265  * se_fi_update - Update the cfs_rq->zero_vruntime_fi in a CFS hierarchy if needed.
13266  */
se_fi_update(const struct sched_entity * se,unsigned int fi_seq,bool forceidle)13267 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
13268 			 bool forceidle)
13269 {
13270 	for_each_sched_entity(se) {
13271 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
13272 
13273 		if (forceidle) {
13274 			if (cfs_rq->forceidle_seq == fi_seq)
13275 				break;
13276 			cfs_rq->forceidle_seq = fi_seq;
13277 		}
13278 
13279 		cfs_rq->zero_vruntime_fi = cfs_rq->zero_vruntime;
13280 	}
13281 }
13282 
task_vruntime_update(struct rq * rq,struct task_struct * p,bool in_fi)13283 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
13284 {
13285 	struct sched_entity *se = &p->se;
13286 
13287 	if (p->sched_class != &fair_sched_class)
13288 		return;
13289 
13290 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
13291 }
13292 
cfs_prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)13293 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
13294 			bool in_fi)
13295 {
13296 	struct rq *rq = task_rq(a);
13297 	const struct sched_entity *sea = &a->se;
13298 	const struct sched_entity *seb = &b->se;
13299 	struct cfs_rq *cfs_rqa;
13300 	struct cfs_rq *cfs_rqb;
13301 	s64 delta;
13302 
13303 	WARN_ON_ONCE(task_rq(b)->core != rq->core);
13304 
13305 #ifdef CONFIG_FAIR_GROUP_SCHED
13306 	/*
13307 	 * Find an se in the hierarchy for tasks a and b, such that the se's
13308 	 * are immediate siblings.
13309 	 */
13310 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
13311 		int sea_depth = sea->depth;
13312 		int seb_depth = seb->depth;
13313 
13314 		if (sea_depth >= seb_depth)
13315 			sea = parent_entity(sea);
13316 		if (sea_depth <= seb_depth)
13317 			seb = parent_entity(seb);
13318 	}
13319 
13320 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
13321 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
13322 
13323 	cfs_rqa = sea->cfs_rq;
13324 	cfs_rqb = seb->cfs_rq;
13325 #else /* !CONFIG_FAIR_GROUP_SCHED: */
13326 	cfs_rqa = &task_rq(a)->cfs;
13327 	cfs_rqb = &task_rq(b)->cfs;
13328 #endif /* !CONFIG_FAIR_GROUP_SCHED */
13329 
13330 	/*
13331 	 * Find delta after normalizing se's vruntime with its cfs_rq's
13332 	 * zero_vruntime_fi, which would have been updated in prior calls
13333 	 * to se_fi_update().
13334 	 */
13335 	delta = (s64)(sea->vruntime - seb->vruntime) +
13336 		(s64)(cfs_rqb->zero_vruntime_fi - cfs_rqa->zero_vruntime_fi);
13337 
13338 	return delta > 0;
13339 }
13340 
task_is_throttled_fair(struct task_struct * p,int cpu)13341 static int task_is_throttled_fair(struct task_struct *p, int cpu)
13342 {
13343 	struct cfs_rq *cfs_rq;
13344 
13345 #ifdef CONFIG_FAIR_GROUP_SCHED
13346 	cfs_rq = task_group(p)->cfs_rq[cpu];
13347 #else
13348 	cfs_rq = &cpu_rq(cpu)->cfs;
13349 #endif
13350 	return throttled_hierarchy(cfs_rq);
13351 }
13352 #else /* !CONFIG_SCHED_CORE: */
task_tick_core(struct rq * rq,struct task_struct * curr)13353 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
13354 #endif /* !CONFIG_SCHED_CORE */
13355 
13356 /*
13357  * scheduler tick hitting a task of our scheduling class.
13358  *
13359  * NOTE: This function can be called remotely by the tick offload that
13360  * goes along full dynticks. Therefore no local assumption can be made
13361  * and everything must be accessed through the @rq and @curr passed in
13362  * parameters.
13363  */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)13364 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
13365 {
13366 	struct cfs_rq *cfs_rq;
13367 	struct sched_entity *se = &curr->se;
13368 
13369 	for_each_sched_entity(se) {
13370 		cfs_rq = cfs_rq_of(se);
13371 		entity_tick(cfs_rq, se, queued);
13372 	}
13373 
13374 	if (static_branch_unlikely(&sched_numa_balancing))
13375 		task_tick_numa(rq, curr);
13376 
13377 	update_misfit_status(curr, rq);
13378 	check_update_overutilized_status(task_rq(curr));
13379 
13380 	task_tick_core(rq, curr);
13381 }
13382 
13383 /*
13384  * called on fork with the child task as argument from the parent's context
13385  *  - child not yet on the tasklist
13386  *  - preemption disabled
13387  */
task_fork_fair(struct task_struct * p)13388 static void task_fork_fair(struct task_struct *p)
13389 {
13390 	set_task_max_allowed_capacity(p);
13391 }
13392 
13393 /*
13394  * Priority of the task has changed. Check to see if we preempt
13395  * the current task.
13396  */
13397 static void
prio_changed_fair(struct rq * rq,struct task_struct * p,u64 oldprio)13398 prio_changed_fair(struct rq *rq, struct task_struct *p, u64 oldprio)
13399 {
13400 	if (!task_on_rq_queued(p))
13401 		return;
13402 
13403 	if (p->prio == oldprio)
13404 		return;
13405 
13406 	if (rq->cfs.nr_queued == 1)
13407 		return;
13408 
13409 	/*
13410 	 * Reschedule if we are currently running on this runqueue and
13411 	 * our priority decreased, or if we are not currently running on
13412 	 * this runqueue and our priority is higher than the current's
13413 	 */
13414 	if (task_current_donor(rq, p)) {
13415 		if (p->prio > oldprio)
13416 			resched_curr(rq);
13417 	} else {
13418 		wakeup_preempt(rq, p, 0);
13419 	}
13420 }
13421 
13422 #ifdef CONFIG_FAIR_GROUP_SCHED
13423 /*
13424  * Propagate the changes of the sched_entity across the tg tree to make it
13425  * visible to the root
13426  */
propagate_entity_cfs_rq(struct sched_entity * se)13427 static void propagate_entity_cfs_rq(struct sched_entity *se)
13428 {
13429 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13430 
13431 	/*
13432 	 * If a task gets attached to this cfs_rq and before being queued,
13433 	 * it gets migrated to another CPU due to reasons like affinity
13434 	 * change, make sure this cfs_rq stays on leaf cfs_rq list to have
13435 	 * that removed load decayed or it can cause faireness problem.
13436 	 */
13437 	if (!cfs_rq_pelt_clock_throttled(cfs_rq))
13438 		list_add_leaf_cfs_rq(cfs_rq);
13439 
13440 	/* Start to propagate at parent */
13441 	se = se->parent;
13442 
13443 	for_each_sched_entity(se) {
13444 		cfs_rq = cfs_rq_of(se);
13445 
13446 		update_load_avg(cfs_rq, se, UPDATE_TG);
13447 
13448 		if (!cfs_rq_pelt_clock_throttled(cfs_rq))
13449 			list_add_leaf_cfs_rq(cfs_rq);
13450 	}
13451 
13452 	assert_list_leaf_cfs_rq(rq_of(cfs_rq));
13453 }
13454 #else /* !CONFIG_FAIR_GROUP_SCHED: */
propagate_entity_cfs_rq(struct sched_entity * se)13455 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
13456 #endif /* !CONFIG_FAIR_GROUP_SCHED */
13457 
detach_entity_cfs_rq(struct sched_entity * se)13458 static void detach_entity_cfs_rq(struct sched_entity *se)
13459 {
13460 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13461 
13462 	/*
13463 	 * In case the task sched_avg hasn't been attached:
13464 	 * - A forked task which hasn't been woken up by wake_up_new_task().
13465 	 * - A task which has been woken up by try_to_wake_up() but is
13466 	 *   waiting for actually being woken up by sched_ttwu_pending().
13467 	 */
13468 	if (!se->avg.last_update_time)
13469 		return;
13470 
13471 	/* Catch up with the cfs_rq and remove our load when we leave */
13472 	update_load_avg(cfs_rq, se, 0);
13473 	detach_entity_load_avg(cfs_rq, se);
13474 	update_tg_load_avg(cfs_rq);
13475 	propagate_entity_cfs_rq(se);
13476 }
13477 
attach_entity_cfs_rq(struct sched_entity * se)13478 static void attach_entity_cfs_rq(struct sched_entity *se)
13479 {
13480 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13481 
13482 	/* Synchronize entity with its cfs_rq */
13483 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
13484 	attach_entity_load_avg(cfs_rq, se);
13485 	update_tg_load_avg(cfs_rq);
13486 	propagate_entity_cfs_rq(se);
13487 }
13488 
detach_task_cfs_rq(struct task_struct * p)13489 static void detach_task_cfs_rq(struct task_struct *p)
13490 {
13491 	struct sched_entity *se = &p->se;
13492 
13493 	detach_entity_cfs_rq(se);
13494 }
13495 
attach_task_cfs_rq(struct task_struct * p)13496 static void attach_task_cfs_rq(struct task_struct *p)
13497 {
13498 	struct sched_entity *se = &p->se;
13499 
13500 	attach_entity_cfs_rq(se);
13501 }
13502 
switching_from_fair(struct rq * rq,struct task_struct * p)13503 static void switching_from_fair(struct rq *rq, struct task_struct *p)
13504 {
13505 	if (p->se.sched_delayed)
13506 		dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK);
13507 }
13508 
switched_from_fair(struct rq * rq,struct task_struct * p)13509 static void switched_from_fair(struct rq *rq, struct task_struct *p)
13510 {
13511 	detach_task_cfs_rq(p);
13512 }
13513 
switched_to_fair(struct rq * rq,struct task_struct * p)13514 static void switched_to_fair(struct rq *rq, struct task_struct *p)
13515 {
13516 	WARN_ON_ONCE(p->se.sched_delayed);
13517 
13518 	attach_task_cfs_rq(p);
13519 
13520 	set_task_max_allowed_capacity(p);
13521 
13522 	if (task_on_rq_queued(p)) {
13523 		/*
13524 		 * We were most likely switched from sched_rt, so
13525 		 * kick off the schedule if running, otherwise just see
13526 		 * if we can still preempt the current task.
13527 		 */
13528 		if (task_current_donor(rq, p))
13529 			resched_curr(rq);
13530 		else
13531 			wakeup_preempt(rq, p, 0);
13532 	}
13533 }
13534 
__set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)13535 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13536 {
13537 	struct sched_entity *se = &p->se;
13538 
13539 	if (task_on_rq_queued(p)) {
13540 		/*
13541 		 * Move the next running task to the front of the list, so our
13542 		 * cfs_tasks list becomes MRU one.
13543 		 */
13544 		list_move(&se->group_node, &rq->cfs_tasks);
13545 	}
13546 	if (!first)
13547 		return;
13548 
13549 	WARN_ON_ONCE(se->sched_delayed);
13550 
13551 	if (hrtick_enabled_fair(rq))
13552 		hrtick_start_fair(rq, p);
13553 
13554 	update_misfit_status(p, rq);
13555 	sched_fair_update_stop_tick(rq, p);
13556 }
13557 
13558 /*
13559  * Account for a task changing its policy or group.
13560  *
13561  * This routine is mostly called to set cfs_rq->curr field when a task
13562  * migrates between groups/classes.
13563  */
set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)13564 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13565 {
13566 	struct sched_entity *se = &p->se;
13567 
13568 	for_each_sched_entity(se) {
13569 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
13570 
13571 		set_next_entity(cfs_rq, se);
13572 		/* ensure bandwidth has been allocated on our new cfs_rq */
13573 		account_cfs_rq_runtime(cfs_rq, 0);
13574 	}
13575 
13576 	__set_next_task_fair(rq, p, first);
13577 }
13578 
init_cfs_rq(struct cfs_rq * cfs_rq)13579 void init_cfs_rq(struct cfs_rq *cfs_rq)
13580 {
13581 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
13582 	cfs_rq->zero_vruntime = (u64)(-(1LL << 20));
13583 	raw_spin_lock_init(&cfs_rq->removed.lock);
13584 }
13585 
13586 #ifdef CONFIG_FAIR_GROUP_SCHED
task_change_group_fair(struct task_struct * p)13587 static void task_change_group_fair(struct task_struct *p)
13588 {
13589 	/*
13590 	 * We couldn't detach or attach a forked task which
13591 	 * hasn't been woken up by wake_up_new_task().
13592 	 */
13593 	if (READ_ONCE(p->__state) == TASK_NEW)
13594 		return;
13595 
13596 	detach_task_cfs_rq(p);
13597 
13598 	/* Tell se's cfs_rq has been changed -- migrated */
13599 	p->se.avg.last_update_time = 0;
13600 	set_task_rq(p, task_cpu(p));
13601 	attach_task_cfs_rq(p);
13602 }
13603 
free_fair_sched_group(struct task_group * tg)13604 void free_fair_sched_group(struct task_group *tg)
13605 {
13606 	int i;
13607 
13608 	for_each_possible_cpu(i) {
13609 		if (tg->cfs_rq)
13610 			kfree(tg->cfs_rq[i]);
13611 		if (tg->se)
13612 			kfree(tg->se[i]);
13613 	}
13614 
13615 	kfree(tg->cfs_rq);
13616 	kfree(tg->se);
13617 }
13618 
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)13619 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
13620 {
13621 	struct sched_entity *se;
13622 	struct cfs_rq *cfs_rq;
13623 	int i;
13624 
13625 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
13626 	if (!tg->cfs_rq)
13627 		goto err;
13628 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
13629 	if (!tg->se)
13630 		goto err;
13631 
13632 	tg->shares = NICE_0_LOAD;
13633 
13634 	init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
13635 
13636 	for_each_possible_cpu(i) {
13637 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
13638 				      GFP_KERNEL, cpu_to_node(i));
13639 		if (!cfs_rq)
13640 			goto err;
13641 
13642 		se = kzalloc_node(sizeof(struct sched_entity_stats),
13643 				  GFP_KERNEL, cpu_to_node(i));
13644 		if (!se)
13645 			goto err_free_rq;
13646 
13647 		init_cfs_rq(cfs_rq);
13648 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
13649 		init_entity_runnable_average(se);
13650 	}
13651 
13652 	return 1;
13653 
13654 err_free_rq:
13655 	kfree(cfs_rq);
13656 err:
13657 	return 0;
13658 }
13659 
online_fair_sched_group(struct task_group * tg)13660 void online_fair_sched_group(struct task_group *tg)
13661 {
13662 	struct sched_entity *se;
13663 	struct rq_flags rf;
13664 	struct rq *rq;
13665 	int i;
13666 
13667 	for_each_possible_cpu(i) {
13668 		rq = cpu_rq(i);
13669 		se = tg->se[i];
13670 		rq_lock_irq(rq, &rf);
13671 		update_rq_clock(rq);
13672 		attach_entity_cfs_rq(se);
13673 		sync_throttle(tg, i);
13674 		rq_unlock_irq(rq, &rf);
13675 	}
13676 }
13677 
unregister_fair_sched_group(struct task_group * tg)13678 void unregister_fair_sched_group(struct task_group *tg)
13679 {
13680 	int cpu;
13681 
13682 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
13683 
13684 	for_each_possible_cpu(cpu) {
13685 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
13686 		struct sched_entity *se = tg->se[cpu];
13687 		struct rq *rq = cpu_rq(cpu);
13688 
13689 		if (se) {
13690 			if (se->sched_delayed) {
13691 				guard(rq_lock_irqsave)(rq);
13692 				if (se->sched_delayed) {
13693 					update_rq_clock(rq);
13694 					dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
13695 				}
13696 				list_del_leaf_cfs_rq(cfs_rq);
13697 			}
13698 			remove_entity_load_avg(se);
13699 		}
13700 
13701 		/*
13702 		 * Only empty task groups can be destroyed; so we can speculatively
13703 		 * check on_list without danger of it being re-added.
13704 		 */
13705 		if (cfs_rq->on_list) {
13706 			guard(rq_lock_irqsave)(rq);
13707 			list_del_leaf_cfs_rq(cfs_rq);
13708 		}
13709 	}
13710 }
13711 
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)13712 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
13713 			struct sched_entity *se, int cpu,
13714 			struct sched_entity *parent)
13715 {
13716 	struct rq *rq = cpu_rq(cpu);
13717 
13718 	cfs_rq->tg = tg;
13719 	cfs_rq->rq = rq;
13720 	init_cfs_rq_runtime(cfs_rq);
13721 
13722 	tg->cfs_rq[cpu] = cfs_rq;
13723 	tg->se[cpu] = se;
13724 
13725 	/* se could be NULL for root_task_group */
13726 	if (!se)
13727 		return;
13728 
13729 	if (!parent) {
13730 		se->cfs_rq = &rq->cfs;
13731 		se->depth = 0;
13732 	} else {
13733 		se->cfs_rq = parent->my_q;
13734 		se->depth = parent->depth + 1;
13735 	}
13736 
13737 	se->my_q = cfs_rq;
13738 	/* guarantee group entities always have weight */
13739 	update_load_set(&se->load, NICE_0_LOAD);
13740 	se->parent = parent;
13741 }
13742 
13743 static DEFINE_MUTEX(shares_mutex);
13744 
__sched_group_set_shares(struct task_group * tg,unsigned long shares)13745 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
13746 {
13747 	int i;
13748 
13749 	lockdep_assert_held(&shares_mutex);
13750 
13751 	/*
13752 	 * We can't change the weight of the root cgroup.
13753 	 */
13754 	if (!tg->se[0])
13755 		return -EINVAL;
13756 
13757 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
13758 
13759 	if (tg->shares == shares)
13760 		return 0;
13761 
13762 	tg->shares = shares;
13763 	for_each_possible_cpu(i) {
13764 		struct rq *rq = cpu_rq(i);
13765 		struct sched_entity *se = tg->se[i];
13766 		struct rq_flags rf;
13767 
13768 		/* Propagate contribution to hierarchy */
13769 		rq_lock_irqsave(rq, &rf);
13770 		update_rq_clock(rq);
13771 		for_each_sched_entity(se) {
13772 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
13773 			update_cfs_group(se);
13774 		}
13775 		rq_unlock_irqrestore(rq, &rf);
13776 	}
13777 
13778 	return 0;
13779 }
13780 
sched_group_set_shares(struct task_group * tg,unsigned long shares)13781 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13782 {
13783 	int ret;
13784 
13785 	mutex_lock(&shares_mutex);
13786 	if (tg_is_idle(tg))
13787 		ret = -EINVAL;
13788 	else
13789 		ret = __sched_group_set_shares(tg, shares);
13790 	mutex_unlock(&shares_mutex);
13791 
13792 	return ret;
13793 }
13794 
sched_group_set_idle(struct task_group * tg,long idle)13795 int sched_group_set_idle(struct task_group *tg, long idle)
13796 {
13797 	int i;
13798 
13799 	if (tg == &root_task_group)
13800 		return -EINVAL;
13801 
13802 	if (idle < 0 || idle > 1)
13803 		return -EINVAL;
13804 
13805 	mutex_lock(&shares_mutex);
13806 
13807 	if (tg->idle == idle) {
13808 		mutex_unlock(&shares_mutex);
13809 		return 0;
13810 	}
13811 
13812 	tg->idle = idle;
13813 
13814 	for_each_possible_cpu(i) {
13815 		struct rq *rq = cpu_rq(i);
13816 		struct sched_entity *se = tg->se[i];
13817 		struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i];
13818 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13819 		long idle_task_delta;
13820 		struct rq_flags rf;
13821 
13822 		rq_lock_irqsave(rq, &rf);
13823 
13824 		grp_cfs_rq->idle = idle;
13825 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13826 			goto next_cpu;
13827 
13828 		idle_task_delta = grp_cfs_rq->h_nr_queued -
13829 				  grp_cfs_rq->h_nr_idle;
13830 		if (!cfs_rq_is_idle(grp_cfs_rq))
13831 			idle_task_delta *= -1;
13832 
13833 		for_each_sched_entity(se) {
13834 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
13835 
13836 			if (!se->on_rq)
13837 				break;
13838 
13839 			cfs_rq->h_nr_idle += idle_task_delta;
13840 
13841 			/* Already accounted at parent level and above. */
13842 			if (cfs_rq_is_idle(cfs_rq))
13843 				break;
13844 		}
13845 
13846 next_cpu:
13847 		rq_unlock_irqrestore(rq, &rf);
13848 	}
13849 
13850 	/* Idle groups have minimum weight. */
13851 	if (tg_is_idle(tg))
13852 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13853 	else
13854 		__sched_group_set_shares(tg, NICE_0_LOAD);
13855 
13856 	mutex_unlock(&shares_mutex);
13857 	return 0;
13858 }
13859 
13860 #endif /* CONFIG_FAIR_GROUP_SCHED */
13861 
13862 
get_rr_interval_fair(struct rq * rq,struct task_struct * task)13863 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13864 {
13865 	struct sched_entity *se = &task->se;
13866 	unsigned int rr_interval = 0;
13867 
13868 	/*
13869 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13870 	 * idle runqueue:
13871 	 */
13872 	if (rq->cfs.load.weight)
13873 		rr_interval = NS_TO_JIFFIES(se->slice);
13874 
13875 	return rr_interval;
13876 }
13877 
13878 /*
13879  * All the scheduling class methods:
13880  */
13881 DEFINE_SCHED_CLASS(fair) = {
13882 
13883 	.queue_mask		= 2,
13884 
13885 	.enqueue_task		= enqueue_task_fair,
13886 	.dequeue_task		= dequeue_task_fair,
13887 	.yield_task		= yield_task_fair,
13888 	.yield_to_task		= yield_to_task_fair,
13889 
13890 	.wakeup_preempt		= check_preempt_wakeup_fair,
13891 
13892 	.pick_task		= pick_task_fair,
13893 	.pick_next_task		= pick_next_task_fair,
13894 	.put_prev_task		= put_prev_task_fair,
13895 	.set_next_task          = set_next_task_fair,
13896 
13897 	.select_task_rq		= select_task_rq_fair,
13898 	.migrate_task_rq	= migrate_task_rq_fair,
13899 
13900 	.rq_online		= rq_online_fair,
13901 	.rq_offline		= rq_offline_fair,
13902 
13903 	.task_dead		= task_dead_fair,
13904 	.set_cpus_allowed	= set_cpus_allowed_fair,
13905 
13906 	.task_tick		= task_tick_fair,
13907 	.task_fork		= task_fork_fair,
13908 
13909 	.reweight_task		= reweight_task_fair,
13910 	.prio_changed		= prio_changed_fair,
13911 	.switching_from		= switching_from_fair,
13912 	.switched_from		= switched_from_fair,
13913 	.switched_to		= switched_to_fair,
13914 
13915 	.get_rr_interval	= get_rr_interval_fair,
13916 
13917 	.update_curr		= update_curr_fair,
13918 
13919 #ifdef CONFIG_FAIR_GROUP_SCHED
13920 	.task_change_group	= task_change_group_fair,
13921 #endif
13922 
13923 #ifdef CONFIG_SCHED_CORE
13924 	.task_is_throttled	= task_is_throttled_fair,
13925 #endif
13926 
13927 #ifdef CONFIG_UCLAMP_TASK
13928 	.uclamp_enabled		= 1,
13929 #endif
13930 };
13931 
print_cfs_stats(struct seq_file * m,int cpu)13932 void print_cfs_stats(struct seq_file *m, int cpu)
13933 {
13934 	struct cfs_rq *cfs_rq, *pos;
13935 
13936 	rcu_read_lock();
13937 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13938 		print_cfs_rq(m, cpu, cfs_rq);
13939 	rcu_read_unlock();
13940 }
13941 
13942 #ifdef CONFIG_NUMA_BALANCING
show_numa_stats(struct task_struct * p,struct seq_file * m)13943 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13944 {
13945 	int node;
13946 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13947 	struct numa_group *ng;
13948 
13949 	rcu_read_lock();
13950 	ng = rcu_dereference(p->numa_group);
13951 	for_each_online_node(node) {
13952 		if (p->numa_faults) {
13953 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13954 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13955 		}
13956 		if (ng) {
13957 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13958 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13959 		}
13960 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13961 	}
13962 	rcu_read_unlock();
13963 }
13964 #endif /* CONFIG_NUMA_BALANCING */
13965 
init_sched_fair_class(void)13966 __init void init_sched_fair_class(void)
13967 {
13968 	int i;
13969 
13970 	for_each_possible_cpu(i) {
13971 		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13972 		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
13973 		zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13974 					GFP_KERNEL, cpu_to_node(i));
13975 
13976 #ifdef CONFIG_CFS_BANDWIDTH
13977 		INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13978 		INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13979 #endif
13980 	}
13981 
13982 	open_softirq(SCHED_SOFTIRQ, sched_balance_softirq);
13983 
13984 #ifdef CONFIG_NO_HZ_COMMON
13985 	nohz.next_balance = jiffies;
13986 	nohz.next_blocked = jiffies;
13987 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13988 #endif
13989 }
13990