1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * eCryptfs: Linux filesystem encryption layer
4 *
5 * Copyright (C) 1997-2004 Erez Zadok
6 * Copyright (C) 2001-2004 Stony Brook University
7 * Copyright (C) 2004-2007 International Business Machines Corp.
8 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
9 * Michael C. Thompson <mcthomps@us.ibm.com>
10 */
11
12 #include <crypto/skcipher.h>
13 #include <linux/fs.h>
14 #include <linux/mount.h>
15 #include <linux/pagemap.h>
16 #include <linux/random.h>
17 #include <linux/compiler.h>
18 #include <linux/key.h>
19 #include <linux/namei.h>
20 #include <linux/file.h>
21 #include <linux/scatterlist.h>
22 #include <linux/slab.h>
23 #include <linux/unaligned.h>
24 #include <linux/kernel.h>
25 #include <linux/xattr.h>
26 #include "ecryptfs_kernel.h"
27
28 #define DECRYPT 0
29 #define ENCRYPT 1
30
31 /**
32 * ecryptfs_from_hex
33 * @dst: Buffer to take the bytes from src hex; must be at least of
34 * size (src_size / 2)
35 * @src: Buffer to be converted from a hex string representation to raw value
36 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
37 */
ecryptfs_from_hex(char * dst,char * src,int dst_size)38 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
39 {
40 int x;
41 char tmp[3] = { 0, };
42
43 for (x = 0; x < dst_size; x++) {
44 tmp[0] = src[x * 2];
45 tmp[1] = src[x * 2 + 1];
46 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
47 }
48 }
49
ecryptfs_crypto_api_algify_cipher_name(char ** algified_name,char * cipher_name,char * chaining_modifier)50 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
51 char *cipher_name,
52 char *chaining_modifier)
53 {
54 int cipher_name_len = strlen(cipher_name);
55 int chaining_modifier_len = strlen(chaining_modifier);
56 int algified_name_len;
57 int rc;
58
59 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
60 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
61 if (!(*algified_name)) {
62 rc = -ENOMEM;
63 goto out;
64 }
65 snprintf((*algified_name), algified_name_len, "%s(%s)",
66 chaining_modifier, cipher_name);
67 rc = 0;
68 out:
69 return rc;
70 }
71
72 /**
73 * ecryptfs_derive_iv
74 * @iv: destination for the derived iv vale
75 * @crypt_stat: Pointer to crypt_stat struct for the current inode
76 * @offset: Offset of the extent whose IV we are to derive
77 *
78 * Generate the initialization vector from the given root IV and page
79 * offset.
80 */
ecryptfs_derive_iv(char * iv,struct ecryptfs_crypt_stat * crypt_stat,loff_t offset)81 void ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
82 loff_t offset)
83 {
84 char dst[MD5_DIGEST_SIZE];
85 char src[ECRYPTFS_MAX_IV_BYTES + 16];
86
87 if (unlikely(ecryptfs_verbosity > 0)) {
88 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
89 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
90 }
91 /* TODO: It is probably secure to just cast the least
92 * significant bits of the root IV into an unsigned long and
93 * add the offset to that rather than go through all this
94 * hashing business. -Halcrow */
95 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
96 memset((src + crypt_stat->iv_bytes), 0, 16);
97 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
98 if (unlikely(ecryptfs_verbosity > 0)) {
99 ecryptfs_printk(KERN_DEBUG, "source:\n");
100 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
101 }
102 md5(src, crypt_stat->iv_bytes + 16, dst);
103 memcpy(iv, dst, crypt_stat->iv_bytes);
104 if (unlikely(ecryptfs_verbosity > 0)) {
105 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
106 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
107 }
108 }
109
110 /**
111 * ecryptfs_init_crypt_stat
112 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
113 *
114 * Initialize the crypt_stat structure.
115 */
ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat * crypt_stat)116 void ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
117 {
118 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
119 INIT_LIST_HEAD(&crypt_stat->keysig_list);
120 mutex_init(&crypt_stat->keysig_list_mutex);
121 mutex_init(&crypt_stat->cs_mutex);
122 mutex_init(&crypt_stat->cs_tfm_mutex);
123 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
124 }
125
126 /**
127 * ecryptfs_destroy_crypt_stat
128 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
129 *
130 * Releases all memory associated with a crypt_stat struct.
131 */
ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat * crypt_stat)132 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
133 {
134 struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
135
136 crypto_free_skcipher(crypt_stat->tfm);
137 list_for_each_entry_safe(key_sig, key_sig_tmp,
138 &crypt_stat->keysig_list, crypt_stat_list) {
139 list_del(&key_sig->crypt_stat_list);
140 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
141 }
142 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
143 }
144
ecryptfs_destroy_mount_crypt_stat(struct ecryptfs_mount_crypt_stat * mount_crypt_stat)145 void ecryptfs_destroy_mount_crypt_stat(
146 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
147 {
148 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
149
150 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
151 return;
152 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
153 list_for_each_entry_safe(auth_tok, auth_tok_tmp,
154 &mount_crypt_stat->global_auth_tok_list,
155 mount_crypt_stat_list) {
156 list_del(&auth_tok->mount_crypt_stat_list);
157 if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
158 key_put(auth_tok->global_auth_tok_key);
159 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
160 }
161 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
162 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
163 }
164
165 /**
166 * virt_to_scatterlist
167 * @addr: Virtual address
168 * @size: Size of data; should be an even multiple of the block size
169 * @sg: Pointer to scatterlist array; set to NULL to obtain only
170 * the number of scatterlist structs required in array
171 * @sg_size: Max array size
172 *
173 * Fills in a scatterlist array with page references for a passed
174 * virtual address.
175 *
176 * Returns the number of scatterlist structs in array used
177 */
virt_to_scatterlist(const void * addr,int size,struct scatterlist * sg,int sg_size)178 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
179 int sg_size)
180 {
181 int i = 0;
182 struct page *pg;
183 int offset;
184 int remainder_of_page;
185
186 sg_init_table(sg, sg_size);
187
188 while (size > 0 && i < sg_size) {
189 pg = virt_to_page(addr);
190 offset = offset_in_page(addr);
191 sg_set_page(&sg[i], pg, 0, offset);
192 remainder_of_page = PAGE_SIZE - offset;
193 if (size >= remainder_of_page) {
194 sg[i].length = remainder_of_page;
195 addr += remainder_of_page;
196 size -= remainder_of_page;
197 } else {
198 sg[i].length = size;
199 addr += size;
200 size = 0;
201 }
202 i++;
203 }
204 if (size > 0)
205 return -ENOMEM;
206 return i;
207 }
208
209 /**
210 * crypt_scatterlist
211 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
212 * @dst_sg: Destination of the data after performing the crypto operation
213 * @src_sg: Data to be encrypted or decrypted
214 * @size: Length of data
215 * @iv: IV to use
216 * @op: ENCRYPT or DECRYPT to indicate the desired operation
217 *
218 * Returns the number of bytes encrypted or decrypted; negative value on error
219 */
crypt_scatterlist(struct ecryptfs_crypt_stat * crypt_stat,struct scatterlist * dst_sg,struct scatterlist * src_sg,int size,unsigned char * iv,int op)220 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
221 struct scatterlist *dst_sg,
222 struct scatterlist *src_sg, int size,
223 unsigned char *iv, int op)
224 {
225 struct skcipher_request *req = NULL;
226 DECLARE_CRYPTO_WAIT(ecr);
227 int rc = 0;
228
229 if (unlikely(ecryptfs_verbosity > 0)) {
230 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
231 crypt_stat->key_size);
232 ecryptfs_dump_hex(crypt_stat->key,
233 crypt_stat->key_size);
234 }
235
236 mutex_lock(&crypt_stat->cs_tfm_mutex);
237 req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
238 if (!req) {
239 mutex_unlock(&crypt_stat->cs_tfm_mutex);
240 rc = -ENOMEM;
241 goto out;
242 }
243
244 skcipher_request_set_callback(req,
245 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
246 crypto_req_done, &ecr);
247 /* Consider doing this once, when the file is opened */
248 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
249 rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
250 crypt_stat->key_size);
251 if (rc) {
252 ecryptfs_printk(KERN_ERR,
253 "Error setting key; rc = [%d]\n",
254 rc);
255 mutex_unlock(&crypt_stat->cs_tfm_mutex);
256 rc = -EINVAL;
257 goto out;
258 }
259 crypt_stat->flags |= ECRYPTFS_KEY_SET;
260 }
261 mutex_unlock(&crypt_stat->cs_tfm_mutex);
262 skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
263 rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
264 crypto_skcipher_decrypt(req);
265 rc = crypto_wait_req(rc, &ecr);
266 out:
267 skcipher_request_free(req);
268 return rc;
269 }
270
271 /*
272 * lower_offset_for_page
273 *
274 * Convert an eCryptfs page index into a lower byte offset
275 */
lower_offset_for_page(struct ecryptfs_crypt_stat * crypt_stat,struct folio * folio)276 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
277 struct folio *folio)
278 {
279 return ecryptfs_lower_header_size(crypt_stat) +
280 (loff_t)folio->index * PAGE_SIZE;
281 }
282
283 /**
284 * crypt_extent
285 * @crypt_stat: crypt_stat containing cryptographic context for the
286 * encryption operation
287 * @dst_page: The page to write the result into
288 * @src_page: The page to read from
289 * @page_index: The offset in the file (in units of PAGE_SIZE)
290 * @extent_offset: Page extent offset for use in generating IV
291 * @op: ENCRYPT or DECRYPT to indicate the desired operation
292 *
293 * Encrypts or decrypts one extent of data.
294 *
295 * Return zero on success; non-zero otherwise
296 */
crypt_extent(struct ecryptfs_crypt_stat * crypt_stat,struct page * dst_page,struct page * src_page,pgoff_t page_index,unsigned long extent_offset,int op)297 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
298 struct page *dst_page,
299 struct page *src_page,
300 pgoff_t page_index,
301 unsigned long extent_offset, int op)
302 {
303 loff_t extent_base;
304 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
305 struct scatterlist src_sg, dst_sg;
306 size_t extent_size = crypt_stat->extent_size;
307 int rc;
308
309 extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
310 ecryptfs_derive_iv(extent_iv, crypt_stat, extent_base + extent_offset);
311
312 sg_init_table(&src_sg, 1);
313 sg_init_table(&dst_sg, 1);
314
315 sg_set_page(&src_sg, src_page, extent_size,
316 extent_offset * extent_size);
317 sg_set_page(&dst_sg, dst_page, extent_size,
318 extent_offset * extent_size);
319
320 rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
321 extent_iv, op);
322 if (rc < 0) {
323 printk(KERN_ERR "%s: Error attempting to crypt page with "
324 "page_index = [%ld], extent_offset = [%ld]; "
325 "rc = [%d]\n", __func__, page_index, extent_offset, rc);
326 goto out;
327 }
328 rc = 0;
329 out:
330 return rc;
331 }
332
333 /**
334 * ecryptfs_encrypt_page
335 * @folio: Folio mapped from the eCryptfs inode for the file; contains
336 * decrypted content that needs to be encrypted (to a temporary
337 * page; not in place) and written out to the lower file
338 *
339 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
340 * that eCryptfs pages may straddle the lower pages -- for instance,
341 * if the file was created on a machine with an 8K page size
342 * (resulting in an 8K header), and then the file is copied onto a
343 * host with a 32K page size, then when reading page 0 of the eCryptfs
344 * file, 24K of page 0 of the lower file will be read and decrypted,
345 * and then 8K of page 1 of the lower file will be read and decrypted.
346 *
347 * Returns zero on success; negative on error
348 */
ecryptfs_encrypt_page(struct folio * folio)349 int ecryptfs_encrypt_page(struct folio *folio)
350 {
351 struct inode *ecryptfs_inode;
352 struct ecryptfs_crypt_stat *crypt_stat;
353 char *enc_extent_virt;
354 struct page *enc_extent_page = NULL;
355 loff_t extent_offset;
356 loff_t lower_offset;
357 int rc = 0;
358
359 ecryptfs_inode = folio->mapping->host;
360 crypt_stat =
361 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
362 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
363 enc_extent_page = alloc_page(GFP_USER);
364 if (!enc_extent_page) {
365 rc = -ENOMEM;
366 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
367 "encrypted extent\n");
368 goto out;
369 }
370
371 for (extent_offset = 0;
372 extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
373 extent_offset++) {
374 rc = crypt_extent(crypt_stat, enc_extent_page,
375 folio_page(folio, 0), folio->index,
376 extent_offset, ENCRYPT);
377 if (rc) {
378 printk(KERN_ERR "%s: Error encrypting extent; "
379 "rc = [%d]\n", __func__, rc);
380 goto out;
381 }
382 }
383
384 lower_offset = lower_offset_for_page(crypt_stat, folio);
385 enc_extent_virt = kmap_local_page(enc_extent_page);
386 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
387 PAGE_SIZE);
388 kunmap_local(enc_extent_virt);
389 if (rc < 0) {
390 ecryptfs_printk(KERN_ERR,
391 "Error attempting to write lower page; rc = [%d]\n",
392 rc);
393 goto out;
394 }
395 rc = 0;
396 out:
397 if (enc_extent_page) {
398 __free_page(enc_extent_page);
399 }
400 return rc;
401 }
402
403 /**
404 * ecryptfs_decrypt_page
405 * @folio: Folio mapped from the eCryptfs inode for the file; data read
406 * and decrypted from the lower file will be written into this
407 * page
408 *
409 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
410 * that eCryptfs pages may straddle the lower pages -- for instance,
411 * if the file was created on a machine with an 8K page size
412 * (resulting in an 8K header), and then the file is copied onto a
413 * host with a 32K page size, then when reading page 0 of the eCryptfs
414 * file, 24K of page 0 of the lower file will be read and decrypted,
415 * and then 8K of page 1 of the lower file will be read and decrypted.
416 *
417 * Returns zero on success; negative on error
418 */
ecryptfs_decrypt_page(struct folio * folio)419 int ecryptfs_decrypt_page(struct folio *folio)
420 {
421 struct inode *ecryptfs_inode;
422 struct ecryptfs_crypt_stat *crypt_stat;
423 char *page_virt;
424 unsigned long extent_offset;
425 loff_t lower_offset;
426 int rc = 0;
427
428 ecryptfs_inode = folio->mapping->host;
429 crypt_stat =
430 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
431 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
432
433 lower_offset = lower_offset_for_page(crypt_stat, folio);
434 page_virt = kmap_local_folio(folio, 0);
435 rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
436 ecryptfs_inode);
437 kunmap_local(page_virt);
438 if (rc < 0) {
439 ecryptfs_printk(KERN_ERR,
440 "Error attempting to read lower page; rc = [%d]\n",
441 rc);
442 goto out;
443 }
444
445 for (extent_offset = 0;
446 extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
447 extent_offset++) {
448 struct page *page = folio_page(folio, 0);
449 rc = crypt_extent(crypt_stat, page, page, folio->index,
450 extent_offset, DECRYPT);
451 if (rc) {
452 printk(KERN_ERR "%s: Error decrypting extent; "
453 "rc = [%d]\n", __func__, rc);
454 goto out;
455 }
456 }
457 out:
458 return rc;
459 }
460
461 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
462
463 /**
464 * ecryptfs_init_crypt_ctx
465 * @crypt_stat: Uninitialized crypt stats structure
466 *
467 * Initialize the crypto context.
468 *
469 * TODO: Performance: Keep a cache of initialized cipher contexts;
470 * only init if needed
471 */
ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat * crypt_stat)472 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
473 {
474 char *full_alg_name;
475 int rc = -EINVAL;
476
477 ecryptfs_printk(KERN_DEBUG,
478 "Initializing cipher [%s]; strlen = [%d]; "
479 "key_size_bits = [%zd]\n",
480 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
481 crypt_stat->key_size << 3);
482 mutex_lock(&crypt_stat->cs_tfm_mutex);
483 if (crypt_stat->tfm) {
484 rc = 0;
485 goto out_unlock;
486 }
487 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
488 crypt_stat->cipher, "cbc");
489 if (rc)
490 goto out_unlock;
491 crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
492 if (IS_ERR(crypt_stat->tfm)) {
493 rc = PTR_ERR(crypt_stat->tfm);
494 crypt_stat->tfm = NULL;
495 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
496 "Error initializing cipher [%s]\n",
497 full_alg_name);
498 goto out_free;
499 }
500 crypto_skcipher_set_flags(crypt_stat->tfm,
501 CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
502 rc = 0;
503 out_free:
504 kfree(full_alg_name);
505 out_unlock:
506 mutex_unlock(&crypt_stat->cs_tfm_mutex);
507 return rc;
508 }
509
set_extent_mask_and_shift(struct ecryptfs_crypt_stat * crypt_stat)510 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
511 {
512 int extent_size_tmp;
513
514 crypt_stat->extent_mask = 0xFFFFFFFF;
515 crypt_stat->extent_shift = 0;
516 if (crypt_stat->extent_size == 0)
517 return;
518 extent_size_tmp = crypt_stat->extent_size;
519 while ((extent_size_tmp & 0x01) == 0) {
520 extent_size_tmp >>= 1;
521 crypt_stat->extent_mask <<= 1;
522 crypt_stat->extent_shift++;
523 }
524 }
525
ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat * crypt_stat)526 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
527 {
528 /* Default values; may be overwritten as we are parsing the
529 * packets. */
530 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
531 set_extent_mask_and_shift(crypt_stat);
532 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
533 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
534 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
535 else {
536 if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
537 crypt_stat->metadata_size =
538 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
539 else
540 crypt_stat->metadata_size = PAGE_SIZE;
541 }
542 }
543
544 /*
545 * ecryptfs_compute_root_iv
546 *
547 * On error, sets the root IV to all 0's.
548 */
ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat * crypt_stat)549 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
550 {
551 char dst[MD5_DIGEST_SIZE];
552
553 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
554 BUG_ON(crypt_stat->iv_bytes <= 0);
555 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
556 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
557 "cannot generate root IV\n");
558 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
559 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
560 return -EINVAL;
561 }
562 md5(crypt_stat->key, crypt_stat->key_size, dst);
563 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
564 return 0;
565 }
566
ecryptfs_generate_new_key(struct ecryptfs_crypt_stat * crypt_stat)567 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
568 {
569 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
570 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
571 ecryptfs_compute_root_iv(crypt_stat);
572 if (unlikely(ecryptfs_verbosity > 0)) {
573 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
574 ecryptfs_dump_hex(crypt_stat->key,
575 crypt_stat->key_size);
576 }
577 }
578
579 /**
580 * ecryptfs_copy_mount_wide_flags_to_inode_flags
581 * @crypt_stat: The inode's cryptographic context
582 * @mount_crypt_stat: The mount point's cryptographic context
583 *
584 * This function propagates the mount-wide flags to individual inode
585 * flags.
586 */
ecryptfs_copy_mount_wide_flags_to_inode_flags(struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)587 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
588 struct ecryptfs_crypt_stat *crypt_stat,
589 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
590 {
591 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
592 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
593 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
594 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
595 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
596 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
597 if (mount_crypt_stat->flags
598 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
599 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
600 else if (mount_crypt_stat->flags
601 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
602 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
603 }
604 }
605
ecryptfs_copy_mount_wide_sigs_to_inode_sigs(struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)606 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
607 struct ecryptfs_crypt_stat *crypt_stat,
608 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
609 {
610 struct ecryptfs_global_auth_tok *global_auth_tok;
611 int rc = 0;
612
613 mutex_lock(&crypt_stat->keysig_list_mutex);
614 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
615
616 list_for_each_entry(global_auth_tok,
617 &mount_crypt_stat->global_auth_tok_list,
618 mount_crypt_stat_list) {
619 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
620 continue;
621 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
622 if (rc) {
623 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
624 goto out;
625 }
626 }
627
628 out:
629 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
630 mutex_unlock(&crypt_stat->keysig_list_mutex);
631 return rc;
632 }
633
634 /**
635 * ecryptfs_set_default_crypt_stat_vals
636 * @crypt_stat: The inode's cryptographic context
637 * @mount_crypt_stat: The mount point's cryptographic context
638 *
639 * Default values in the event that policy does not override them.
640 */
ecryptfs_set_default_crypt_stat_vals(struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)641 static void ecryptfs_set_default_crypt_stat_vals(
642 struct ecryptfs_crypt_stat *crypt_stat,
643 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
644 {
645 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
646 mount_crypt_stat);
647 ecryptfs_set_default_sizes(crypt_stat);
648 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
649 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
650 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
651 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
652 crypt_stat->mount_crypt_stat = mount_crypt_stat;
653 }
654
655 /**
656 * ecryptfs_new_file_context
657 * @ecryptfs_inode: The eCryptfs inode
658 *
659 * If the crypto context for the file has not yet been established,
660 * this is where we do that. Establishing a new crypto context
661 * involves the following decisions:
662 * - What cipher to use?
663 * - What set of authentication tokens to use?
664 * Here we just worry about getting enough information into the
665 * authentication tokens so that we know that they are available.
666 * We associate the available authentication tokens with the new file
667 * via the set of signatures in the crypt_stat struct. Later, when
668 * the headers are actually written out, we may again defer to
669 * userspace to perform the encryption of the session key; for the
670 * foreseeable future, this will be the case with public key packets.
671 *
672 * Returns zero on success; non-zero otherwise
673 */
ecryptfs_new_file_context(struct inode * ecryptfs_inode)674 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
675 {
676 struct ecryptfs_crypt_stat *crypt_stat =
677 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
678 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
679 &ecryptfs_superblock_to_private(
680 ecryptfs_inode->i_sb)->mount_crypt_stat;
681 int cipher_name_len;
682 int rc = 0;
683
684 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
685 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
686 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
687 mount_crypt_stat);
688 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
689 mount_crypt_stat);
690 if (rc) {
691 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
692 "to the inode key sigs; rc = [%d]\n", rc);
693 goto out;
694 }
695 cipher_name_len =
696 strlen(mount_crypt_stat->global_default_cipher_name);
697 memcpy(crypt_stat->cipher,
698 mount_crypt_stat->global_default_cipher_name,
699 cipher_name_len);
700 crypt_stat->cipher[cipher_name_len] = '\0';
701 crypt_stat->key_size =
702 mount_crypt_stat->global_default_cipher_key_size;
703 ecryptfs_generate_new_key(crypt_stat);
704 rc = ecryptfs_init_crypt_ctx(crypt_stat);
705 if (rc)
706 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
707 "context for cipher [%s]: rc = [%d]\n",
708 crypt_stat->cipher, rc);
709 out:
710 return rc;
711 }
712
713 /**
714 * ecryptfs_validate_marker - check for the ecryptfs marker
715 * @data: The data block in which to check
716 *
717 * Returns zero if marker found; -EINVAL if not found
718 */
ecryptfs_validate_marker(char * data)719 static int ecryptfs_validate_marker(char *data)
720 {
721 u32 m_1, m_2;
722
723 m_1 = get_unaligned_be32(data);
724 m_2 = get_unaligned_be32(data + 4);
725 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
726 return 0;
727 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
728 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
729 MAGIC_ECRYPTFS_MARKER);
730 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
731 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
732 return -EINVAL;
733 }
734
735 struct ecryptfs_flag_map_elem {
736 u32 file_flag;
737 u32 local_flag;
738 };
739
740 /* Add support for additional flags by adding elements here. */
741 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
742 {0x00000001, ECRYPTFS_ENABLE_HMAC},
743 {0x00000002, ECRYPTFS_ENCRYPTED},
744 {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
745 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
746 };
747
748 /**
749 * ecryptfs_process_flags
750 * @crypt_stat: The cryptographic context
751 * @page_virt: Source data to be parsed
752 * @bytes_read: Updated with the number of bytes read
753 */
ecryptfs_process_flags(struct ecryptfs_crypt_stat * crypt_stat,char * page_virt,int * bytes_read)754 static void ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
755 char *page_virt, int *bytes_read)
756 {
757 int i;
758 u32 flags;
759
760 flags = get_unaligned_be32(page_virt);
761 for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
762 if (flags & ecryptfs_flag_map[i].file_flag) {
763 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
764 } else
765 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
766 /* Version is in top 8 bits of the 32-bit flag vector */
767 crypt_stat->file_version = ((flags >> 24) & 0xFF);
768 (*bytes_read) = 4;
769 }
770
771 /**
772 * write_ecryptfs_marker
773 * @page_virt: The pointer to in a page to begin writing the marker
774 * @written: Number of bytes written
775 *
776 * Marker = 0x3c81b7f5
777 */
write_ecryptfs_marker(char * page_virt,size_t * written)778 static void write_ecryptfs_marker(char *page_virt, size_t *written)
779 {
780 u32 m_1, m_2;
781
782 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
783 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
784 put_unaligned_be32(m_1, page_virt);
785 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
786 put_unaligned_be32(m_2, page_virt);
787 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
788 }
789
ecryptfs_write_crypt_stat_flags(char * page_virt,struct ecryptfs_crypt_stat * crypt_stat,size_t * written)790 void ecryptfs_write_crypt_stat_flags(char *page_virt,
791 struct ecryptfs_crypt_stat *crypt_stat,
792 size_t *written)
793 {
794 u32 flags = 0;
795 int i;
796
797 for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
798 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
799 flags |= ecryptfs_flag_map[i].file_flag;
800 /* Version is in top 8 bits of the 32-bit flag vector */
801 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
802 put_unaligned_be32(flags, page_virt);
803 (*written) = 4;
804 }
805
806 struct ecryptfs_cipher_code_str_map_elem {
807 char cipher_str[16];
808 u8 cipher_code;
809 };
810
811 /* Add support for additional ciphers by adding elements here. The
812 * cipher_code is whatever OpenPGP applications use to identify the
813 * ciphers. List in order of probability. */
814 static struct ecryptfs_cipher_code_str_map_elem
815 ecryptfs_cipher_code_str_map[] = {
816 {"aes",RFC2440_CIPHER_AES_128 },
817 {"blowfish", RFC2440_CIPHER_BLOWFISH},
818 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
819 {"cast5", RFC2440_CIPHER_CAST_5},
820 {"twofish", RFC2440_CIPHER_TWOFISH},
821 {"cast6", RFC2440_CIPHER_CAST_6},
822 {"aes", RFC2440_CIPHER_AES_192},
823 {"aes", RFC2440_CIPHER_AES_256}
824 };
825
826 /**
827 * ecryptfs_code_for_cipher_string
828 * @cipher_name: The string alias for the cipher
829 * @key_bytes: Length of key in bytes; used for AES code selection
830 *
831 * Returns zero on no match, or the cipher code on match
832 */
ecryptfs_code_for_cipher_string(char * cipher_name,size_t key_bytes)833 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
834 {
835 int i;
836 u8 code = 0;
837 struct ecryptfs_cipher_code_str_map_elem *map =
838 ecryptfs_cipher_code_str_map;
839
840 if (strcmp(cipher_name, "aes") == 0) {
841 switch (key_bytes) {
842 case 16:
843 code = RFC2440_CIPHER_AES_128;
844 break;
845 case 24:
846 code = RFC2440_CIPHER_AES_192;
847 break;
848 case 32:
849 code = RFC2440_CIPHER_AES_256;
850 }
851 } else {
852 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
853 if (strcmp(cipher_name, map[i].cipher_str) == 0) {
854 code = map[i].cipher_code;
855 break;
856 }
857 }
858 return code;
859 }
860
861 /**
862 * ecryptfs_cipher_code_to_string
863 * @str: Destination to write out the cipher name
864 * @cipher_code: The code to convert to cipher name string
865 *
866 * Returns zero on success
867 */
ecryptfs_cipher_code_to_string(char * str,u8 cipher_code)868 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
869 {
870 int rc = 0;
871 int i;
872
873 str[0] = '\0';
874 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
875 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
876 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
877 if (str[0] == '\0') {
878 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
879 "[%d]\n", cipher_code);
880 rc = -EINVAL;
881 }
882 return rc;
883 }
884
ecryptfs_read_and_validate_header_region(struct inode * inode)885 int ecryptfs_read_and_validate_header_region(struct inode *inode)
886 {
887 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
888 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
889 int rc;
890
891 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
892 inode);
893 if (rc < 0)
894 return rc;
895 else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
896 return -EINVAL;
897 rc = ecryptfs_validate_marker(marker);
898 if (!rc)
899 ecryptfs_i_size_init(file_size, inode);
900 return rc;
901 }
902
903 void
ecryptfs_write_header_metadata(char * virt,struct ecryptfs_crypt_stat * crypt_stat,size_t * written)904 ecryptfs_write_header_metadata(char *virt,
905 struct ecryptfs_crypt_stat *crypt_stat,
906 size_t *written)
907 {
908 u32 header_extent_size;
909 u16 num_header_extents_at_front;
910
911 header_extent_size = (u32)crypt_stat->extent_size;
912 num_header_extents_at_front =
913 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
914 put_unaligned_be32(header_extent_size, virt);
915 virt += 4;
916 put_unaligned_be16(num_header_extents_at_front, virt);
917 (*written) = 6;
918 }
919
920 struct kmem_cache *ecryptfs_header_cache;
921
922 /**
923 * ecryptfs_write_headers_virt
924 * @page_virt: The virtual address to write the headers to
925 * @max: The size of memory allocated at page_virt
926 * @size: Set to the number of bytes written by this function
927 * @crypt_stat: The cryptographic context
928 * @ecryptfs_dentry: The eCryptfs dentry
929 *
930 * Format version: 1
931 *
932 * Header Extent:
933 * Octets 0-7: Unencrypted file size (big-endian)
934 * Octets 8-15: eCryptfs special marker
935 * Octets 16-19: Flags
936 * Octet 16: File format version number (between 0 and 255)
937 * Octets 17-18: Reserved
938 * Octet 19: Bit 1 (lsb): Reserved
939 * Bit 2: Encrypted?
940 * Bits 3-8: Reserved
941 * Octets 20-23: Header extent size (big-endian)
942 * Octets 24-25: Number of header extents at front of file
943 * (big-endian)
944 * Octet 26: Begin RFC 2440 authentication token packet set
945 * Data Extent 0:
946 * Lower data (CBC encrypted)
947 * Data Extent 1:
948 * Lower data (CBC encrypted)
949 * ...
950 *
951 * Returns zero on success
952 */
ecryptfs_write_headers_virt(char * page_virt,size_t max,size_t * size,struct ecryptfs_crypt_stat * crypt_stat,struct dentry * ecryptfs_dentry)953 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
954 size_t *size,
955 struct ecryptfs_crypt_stat *crypt_stat,
956 struct dentry *ecryptfs_dentry)
957 {
958 int rc;
959 size_t written;
960 size_t offset;
961
962 offset = ECRYPTFS_FILE_SIZE_BYTES;
963 write_ecryptfs_marker((page_virt + offset), &written);
964 offset += written;
965 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
966 &written);
967 offset += written;
968 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
969 &written);
970 offset += written;
971 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
972 ecryptfs_dentry, &written,
973 max - offset);
974 if (rc)
975 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
976 "set; rc = [%d]\n", rc);
977 if (size) {
978 offset += written;
979 *size = offset;
980 }
981 return rc;
982 }
983
984 static int
ecryptfs_write_metadata_to_contents(struct inode * ecryptfs_inode,char * virt,size_t virt_len)985 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
986 char *virt, size_t virt_len)
987 {
988 int rc;
989
990 rc = ecryptfs_write_lower(ecryptfs_inode, virt,
991 0, virt_len);
992 if (rc < 0)
993 printk(KERN_ERR "%s: Error attempting to write header "
994 "information to lower file; rc = [%d]\n", __func__, rc);
995 else
996 rc = 0;
997 return rc;
998 }
999
1000 static int
ecryptfs_write_metadata_to_xattr(struct dentry * ecryptfs_dentry,struct inode * ecryptfs_inode,char * page_virt,size_t size)1001 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1002 struct inode *ecryptfs_inode,
1003 char *page_virt, size_t size)
1004 {
1005 int rc;
1006 struct dentry *lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
1007 struct inode *lower_inode = d_inode(lower_dentry);
1008
1009 if (!(lower_inode->i_opflags & IOP_XATTR)) {
1010 rc = -EOPNOTSUPP;
1011 goto out;
1012 }
1013
1014 inode_lock(lower_inode);
1015 rc = __vfs_setxattr(&nop_mnt_idmap, lower_dentry, lower_inode,
1016 ECRYPTFS_XATTR_NAME, page_virt, size, 0);
1017 if (!rc && ecryptfs_inode)
1018 fsstack_copy_attr_all(ecryptfs_inode, lower_inode);
1019 inode_unlock(lower_inode);
1020 out:
1021 return rc;
1022 }
1023
ecryptfs_get_zeroed_pages(gfp_t gfp_mask,unsigned int order)1024 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1025 unsigned int order)
1026 {
1027 struct page *page;
1028
1029 page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1030 if (page)
1031 return (unsigned long) page_address(page);
1032 return 0;
1033 }
1034
1035 /**
1036 * ecryptfs_write_metadata
1037 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1038 * @ecryptfs_inode: The newly created eCryptfs inode
1039 *
1040 * Write the file headers out. This will likely involve a userspace
1041 * callout, in which the session key is encrypted with one or more
1042 * public keys and/or the passphrase necessary to do the encryption is
1043 * retrieved via a prompt. Exactly what happens at this point should
1044 * be policy-dependent.
1045 *
1046 * Returns zero on success; non-zero on error
1047 */
ecryptfs_write_metadata(struct dentry * ecryptfs_dentry,struct inode * ecryptfs_inode)1048 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1049 struct inode *ecryptfs_inode)
1050 {
1051 struct ecryptfs_crypt_stat *crypt_stat =
1052 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1053 unsigned int order;
1054 char *virt;
1055 size_t virt_len;
1056 size_t size = 0;
1057 int rc = 0;
1058
1059 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1060 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1061 printk(KERN_ERR "Key is invalid; bailing out\n");
1062 rc = -EINVAL;
1063 goto out;
1064 }
1065 } else {
1066 printk(KERN_WARNING "%s: Encrypted flag not set\n",
1067 __func__);
1068 rc = -EINVAL;
1069 goto out;
1070 }
1071 virt_len = crypt_stat->metadata_size;
1072 order = get_order(virt_len);
1073 /* Released in this function */
1074 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1075 if (!virt) {
1076 printk(KERN_ERR "%s: Out of memory\n", __func__);
1077 rc = -ENOMEM;
1078 goto out;
1079 }
1080 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1081 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1082 ecryptfs_dentry);
1083 if (unlikely(rc)) {
1084 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1085 __func__, rc);
1086 goto out_free;
1087 }
1088 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1089 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1090 virt, size);
1091 else
1092 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1093 virt_len);
1094 if (rc) {
1095 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1096 "rc = [%d]\n", __func__, rc);
1097 goto out_free;
1098 }
1099 out_free:
1100 free_pages((unsigned long)virt, order);
1101 out:
1102 return rc;
1103 }
1104
1105 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1106 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
parse_header_metadata(struct ecryptfs_crypt_stat * crypt_stat,char * virt,int * bytes_read,int validate_header_size)1107 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1108 char *virt, int *bytes_read,
1109 int validate_header_size)
1110 {
1111 int rc = 0;
1112 u32 header_extent_size;
1113 u16 num_header_extents_at_front;
1114
1115 header_extent_size = get_unaligned_be32(virt);
1116 virt += sizeof(__be32);
1117 num_header_extents_at_front = get_unaligned_be16(virt);
1118 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1119 * (size_t)header_extent_size));
1120 (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1121 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1122 && (crypt_stat->metadata_size
1123 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1124 rc = -EINVAL;
1125 printk(KERN_WARNING "Invalid header size: [%zd]\n",
1126 crypt_stat->metadata_size);
1127 }
1128 return rc;
1129 }
1130
1131 /**
1132 * set_default_header_data
1133 * @crypt_stat: The cryptographic context
1134 *
1135 * For version 0 file format; this function is only for backwards
1136 * compatibility for files created with the prior versions of
1137 * eCryptfs.
1138 */
set_default_header_data(struct ecryptfs_crypt_stat * crypt_stat)1139 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1140 {
1141 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1142 }
1143
ecryptfs_i_size_init(const char * page_virt,struct inode * inode)1144 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1145 {
1146 struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1147 struct ecryptfs_crypt_stat *crypt_stat;
1148 u64 file_size;
1149
1150 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1151 mount_crypt_stat =
1152 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1153 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1154 file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1155 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1156 file_size += crypt_stat->metadata_size;
1157 } else
1158 file_size = get_unaligned_be64(page_virt);
1159 i_size_write(inode, (loff_t)file_size);
1160 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1161 }
1162
1163 /**
1164 * ecryptfs_read_headers_virt
1165 * @page_virt: The virtual address into which to read the headers
1166 * @crypt_stat: The cryptographic context
1167 * @ecryptfs_dentry: The eCryptfs dentry
1168 * @validate_header_size: Whether to validate the header size while reading
1169 *
1170 * Read/parse the header data. The header format is detailed in the
1171 * comment block for the ecryptfs_write_headers_virt() function.
1172 *
1173 * Returns zero on success
1174 */
ecryptfs_read_headers_virt(char * page_virt,struct ecryptfs_crypt_stat * crypt_stat,struct dentry * ecryptfs_dentry,int validate_header_size)1175 static int ecryptfs_read_headers_virt(char *page_virt,
1176 struct ecryptfs_crypt_stat *crypt_stat,
1177 struct dentry *ecryptfs_dentry,
1178 int validate_header_size)
1179 {
1180 int rc = 0;
1181 int offset;
1182 int bytes_read;
1183
1184 ecryptfs_set_default_sizes(crypt_stat);
1185 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1186 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1187 offset = ECRYPTFS_FILE_SIZE_BYTES;
1188 rc = ecryptfs_validate_marker(page_virt + offset);
1189 if (rc)
1190 goto out;
1191 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1192 ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1193 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1194 ecryptfs_process_flags(crypt_stat, (page_virt + offset), &bytes_read);
1195 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1196 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1197 "file version [%d] is supported by this "
1198 "version of eCryptfs\n",
1199 crypt_stat->file_version,
1200 ECRYPTFS_SUPPORTED_FILE_VERSION);
1201 rc = -EINVAL;
1202 goto out;
1203 }
1204 offset += bytes_read;
1205 if (crypt_stat->file_version >= 1) {
1206 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1207 &bytes_read, validate_header_size);
1208 if (rc) {
1209 ecryptfs_printk(KERN_WARNING, "Error reading header "
1210 "metadata; rc = [%d]\n", rc);
1211 }
1212 offset += bytes_read;
1213 } else
1214 set_default_header_data(crypt_stat);
1215 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1216 ecryptfs_dentry);
1217 out:
1218 return rc;
1219 }
1220
1221 /**
1222 * ecryptfs_read_xattr_region
1223 * @page_virt: The vitual address into which to read the xattr data
1224 * @ecryptfs_inode: The eCryptfs inode
1225 *
1226 * Attempts to read the crypto metadata from the extended attribute
1227 * region of the lower file.
1228 *
1229 * Returns zero on success; non-zero on error
1230 */
ecryptfs_read_xattr_region(char * page_virt,struct inode * ecryptfs_inode)1231 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1232 {
1233 struct dentry *lower_dentry =
1234 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1235 ssize_t size;
1236 int rc = 0;
1237
1238 size = ecryptfs_getxattr_lower(lower_dentry,
1239 ecryptfs_inode_to_lower(ecryptfs_inode),
1240 ECRYPTFS_XATTR_NAME,
1241 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1242 if (size < 0) {
1243 if (unlikely(ecryptfs_verbosity > 0))
1244 printk(KERN_INFO "Error attempting to read the [%s] "
1245 "xattr from the lower file; return value = "
1246 "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1247 rc = -EINVAL;
1248 goto out;
1249 }
1250 out:
1251 return rc;
1252 }
1253
ecryptfs_read_and_validate_xattr_region(struct dentry * dentry,struct inode * inode)1254 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1255 struct inode *inode)
1256 {
1257 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1258 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1259 int rc;
1260
1261 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1262 ecryptfs_inode_to_lower(inode),
1263 ECRYPTFS_XATTR_NAME, file_size,
1264 ECRYPTFS_SIZE_AND_MARKER_BYTES);
1265 if (rc < 0)
1266 return rc;
1267 else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1268 return -EINVAL;
1269 rc = ecryptfs_validate_marker(marker);
1270 if (!rc)
1271 ecryptfs_i_size_init(file_size, inode);
1272 return rc;
1273 }
1274
1275 /*
1276 * ecryptfs_read_metadata
1277 *
1278 * Common entry point for reading file metadata. From here, we could
1279 * retrieve the header information from the header region of the file,
1280 * the xattr region of the file, or some other repository that is
1281 * stored separately from the file itself. The current implementation
1282 * supports retrieving the metadata information from the file contents
1283 * and from the xattr region.
1284 *
1285 * Returns zero if valid headers found and parsed; non-zero otherwise
1286 */
ecryptfs_read_metadata(struct dentry * ecryptfs_dentry)1287 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1288 {
1289 int rc;
1290 char *page_virt;
1291 struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1292 struct ecryptfs_crypt_stat *crypt_stat =
1293 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1294 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1295 &ecryptfs_superblock_to_private(
1296 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1297
1298 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1299 mount_crypt_stat);
1300 /* Read the first page from the underlying file */
1301 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1302 if (!page_virt) {
1303 rc = -ENOMEM;
1304 goto out;
1305 }
1306 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1307 ecryptfs_inode);
1308 if (rc >= 0)
1309 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1310 ecryptfs_dentry,
1311 ECRYPTFS_VALIDATE_HEADER_SIZE);
1312 if (rc) {
1313 /* metadata is not in the file header, so try xattrs */
1314 memset(page_virt, 0, PAGE_SIZE);
1315 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1316 if (rc) {
1317 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1318 "file header region or xattr region, inode %lu\n",
1319 ecryptfs_inode->i_ino);
1320 rc = -EINVAL;
1321 goto out;
1322 }
1323 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1324 ecryptfs_dentry,
1325 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1326 if (rc) {
1327 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1328 "file xattr region either, inode %lu\n",
1329 ecryptfs_inode->i_ino);
1330 rc = -EINVAL;
1331 }
1332 if (crypt_stat->mount_crypt_stat->flags
1333 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1334 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1335 } else {
1336 printk(KERN_WARNING "Attempt to access file with "
1337 "crypto metadata only in the extended attribute "
1338 "region, but eCryptfs was mounted without "
1339 "xattr support enabled. eCryptfs will not treat "
1340 "this like an encrypted file, inode %lu\n",
1341 ecryptfs_inode->i_ino);
1342 rc = -EINVAL;
1343 }
1344 }
1345 out:
1346 if (page_virt) {
1347 memset(page_virt, 0, PAGE_SIZE);
1348 kmem_cache_free(ecryptfs_header_cache, page_virt);
1349 }
1350 return rc;
1351 }
1352
1353 /*
1354 * ecryptfs_encrypt_filename - encrypt filename
1355 *
1356 * CBC-encrypts the filename. We do not want to encrypt the same
1357 * filename with the same key and IV, which may happen with hard
1358 * links, so we prepend random bits to each filename.
1359 *
1360 * Returns zero on success; non-zero otherwise
1361 */
1362 static int
ecryptfs_encrypt_filename(struct ecryptfs_filename * filename,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)1363 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1364 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1365 {
1366 int rc = 0;
1367
1368 filename->encrypted_filename = NULL;
1369 filename->encrypted_filename_size = 0;
1370 if (mount_crypt_stat && (mount_crypt_stat->flags
1371 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1372 size_t packet_size;
1373 size_t remaining_bytes;
1374
1375 rc = ecryptfs_write_tag_70_packet(
1376 NULL, NULL,
1377 &filename->encrypted_filename_size,
1378 mount_crypt_stat, NULL,
1379 filename->filename_size);
1380 if (rc) {
1381 printk(KERN_ERR "%s: Error attempting to get packet "
1382 "size for tag 72; rc = [%d]\n", __func__,
1383 rc);
1384 filename->encrypted_filename_size = 0;
1385 goto out;
1386 }
1387 filename->encrypted_filename =
1388 kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1389 if (!filename->encrypted_filename) {
1390 rc = -ENOMEM;
1391 goto out;
1392 }
1393 remaining_bytes = filename->encrypted_filename_size;
1394 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1395 &remaining_bytes,
1396 &packet_size,
1397 mount_crypt_stat,
1398 filename->filename,
1399 filename->filename_size);
1400 if (rc) {
1401 printk(KERN_ERR "%s: Error attempting to generate "
1402 "tag 70 packet; rc = [%d]\n", __func__,
1403 rc);
1404 kfree(filename->encrypted_filename);
1405 filename->encrypted_filename = NULL;
1406 filename->encrypted_filename_size = 0;
1407 goto out;
1408 }
1409 filename->encrypted_filename_size = packet_size;
1410 } else {
1411 printk(KERN_ERR "%s: No support for requested filename "
1412 "encryption method in this release\n", __func__);
1413 rc = -EOPNOTSUPP;
1414 goto out;
1415 }
1416 out:
1417 return rc;
1418 }
1419
ecryptfs_copy_filename(char ** copied_name,size_t * copied_name_size,const char * name,size_t name_size)1420 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1421 const char *name, size_t name_size)
1422 {
1423 int rc = 0;
1424
1425 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1426 if (!(*copied_name)) {
1427 rc = -ENOMEM;
1428 goto out;
1429 }
1430 memcpy((void *)(*copied_name), (void *)name, name_size);
1431 (*copied_name)[(name_size)] = '\0'; /* Only for convenience
1432 * in printing out the
1433 * string in debug
1434 * messages */
1435 (*copied_name_size) = name_size;
1436 out:
1437 return rc;
1438 }
1439
1440 /**
1441 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1442 * @key_tfm: Crypto context for key material, set by this function
1443 * @cipher_name: Name of the cipher
1444 * @key_size: Size of the key in bytes
1445 *
1446 * Returns zero on success. Any crypto_tfm structs allocated here
1447 * should be released by other functions, such as on a superblock put
1448 * event, regardless of whether this function succeeds for fails.
1449 */
1450 static int
ecryptfs_process_key_cipher(struct crypto_skcipher ** key_tfm,char * cipher_name,size_t * key_size)1451 ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
1452 char *cipher_name, size_t *key_size)
1453 {
1454 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1455 char *full_alg_name = NULL;
1456 int rc;
1457
1458 *key_tfm = NULL;
1459 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1460 rc = -EINVAL;
1461 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1462 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1463 goto out;
1464 }
1465 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1466 "ecb");
1467 if (rc)
1468 goto out;
1469 *key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1470 if (IS_ERR(*key_tfm)) {
1471 rc = PTR_ERR(*key_tfm);
1472 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1473 "[%s]; rc = [%d]\n", full_alg_name, rc);
1474 goto out;
1475 }
1476 crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
1477 if (*key_size == 0)
1478 *key_size = crypto_skcipher_max_keysize(*key_tfm);
1479 get_random_bytes(dummy_key, *key_size);
1480 rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
1481 if (rc) {
1482 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1483 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1484 rc);
1485 rc = -EINVAL;
1486 goto out;
1487 }
1488 out:
1489 kfree(full_alg_name);
1490 return rc;
1491 }
1492
1493 struct kmem_cache *ecryptfs_key_tfm_cache;
1494 static struct list_head key_tfm_list;
1495 DEFINE_MUTEX(key_tfm_list_mutex);
1496
ecryptfs_init_crypto(void)1497 int __init ecryptfs_init_crypto(void)
1498 {
1499 INIT_LIST_HEAD(&key_tfm_list);
1500 return 0;
1501 }
1502
1503 /**
1504 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1505 *
1506 * Called only at module unload time
1507 */
ecryptfs_destroy_crypto(void)1508 int ecryptfs_destroy_crypto(void)
1509 {
1510 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1511
1512 mutex_lock(&key_tfm_list_mutex);
1513 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1514 key_tfm_list) {
1515 list_del(&key_tfm->key_tfm_list);
1516 crypto_free_skcipher(key_tfm->key_tfm);
1517 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1518 }
1519 mutex_unlock(&key_tfm_list_mutex);
1520 return 0;
1521 }
1522
1523 int
ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm ** key_tfm,char * cipher_name,size_t key_size)1524 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1525 size_t key_size)
1526 {
1527 struct ecryptfs_key_tfm *tmp_tfm;
1528 int rc = 0;
1529
1530 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1531
1532 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1533 if (key_tfm)
1534 (*key_tfm) = tmp_tfm;
1535 if (!tmp_tfm) {
1536 rc = -ENOMEM;
1537 goto out;
1538 }
1539 mutex_init(&tmp_tfm->key_tfm_mutex);
1540 strscpy(tmp_tfm->cipher_name, cipher_name);
1541 tmp_tfm->key_size = key_size;
1542 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1543 tmp_tfm->cipher_name,
1544 &tmp_tfm->key_size);
1545 if (rc) {
1546 printk(KERN_ERR "Error attempting to initialize key TFM "
1547 "cipher with name = [%s]; rc = [%d]\n",
1548 tmp_tfm->cipher_name, rc);
1549 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1550 if (key_tfm)
1551 (*key_tfm) = NULL;
1552 goto out;
1553 }
1554 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1555 out:
1556 return rc;
1557 }
1558
1559 /**
1560 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1561 * @cipher_name: the name of the cipher to search for
1562 * @key_tfm: set to corresponding tfm if found
1563 *
1564 * Searches for cached key_tfm matching @cipher_name
1565 * Must be called with &key_tfm_list_mutex held
1566 * Returns 1 if found, with @key_tfm set
1567 * Returns 0 if not found, with @key_tfm set to NULL
1568 */
ecryptfs_tfm_exists(char * cipher_name,struct ecryptfs_key_tfm ** key_tfm)1569 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1570 {
1571 struct ecryptfs_key_tfm *tmp_key_tfm;
1572
1573 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1574
1575 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1576 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1577 if (key_tfm)
1578 (*key_tfm) = tmp_key_tfm;
1579 return 1;
1580 }
1581 }
1582 if (key_tfm)
1583 (*key_tfm) = NULL;
1584 return 0;
1585 }
1586
1587 /**
1588 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1589 *
1590 * @tfm: set to cached tfm found, or new tfm created
1591 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1592 * @cipher_name: the name of the cipher to search for and/or add
1593 *
1594 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1595 * Searches for cached item first, and creates new if not found.
1596 * Returns 0 on success, non-zero if adding new cipher failed
1597 */
ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher ** tfm,struct mutex ** tfm_mutex,char * cipher_name)1598 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
1599 struct mutex **tfm_mutex,
1600 char *cipher_name)
1601 {
1602 struct ecryptfs_key_tfm *key_tfm;
1603 int rc = 0;
1604
1605 (*tfm) = NULL;
1606 (*tfm_mutex) = NULL;
1607
1608 mutex_lock(&key_tfm_list_mutex);
1609 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1610 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1611 if (rc) {
1612 printk(KERN_ERR "Error adding new key_tfm to list; "
1613 "rc = [%d]\n", rc);
1614 goto out;
1615 }
1616 }
1617 (*tfm) = key_tfm->key_tfm;
1618 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1619 out:
1620 mutex_unlock(&key_tfm_list_mutex);
1621 return rc;
1622 }
1623
1624 /* 64 characters forming a 6-bit target field */
1625 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1626 "EFGHIJKLMNOPQRST"
1627 "UVWXYZabcdefghij"
1628 "klmnopqrstuvwxyz");
1629
1630 /* We could either offset on every reverse map or just pad some 0x00's
1631 * at the front here */
1632 static const unsigned char filename_rev_map[256] = {
1633 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1634 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1635 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1636 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1637 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1638 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1639 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1640 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1641 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1642 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1643 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1644 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1645 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1646 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1647 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1648 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1649 };
1650
1651 /**
1652 * ecryptfs_encode_for_filename
1653 * @dst: Destination location for encoded filename
1654 * @dst_size: Size of the encoded filename in bytes
1655 * @src: Source location for the filename to encode
1656 * @src_size: Size of the source in bytes
1657 */
ecryptfs_encode_for_filename(unsigned char * dst,size_t * dst_size,unsigned char * src,size_t src_size)1658 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1659 unsigned char *src, size_t src_size)
1660 {
1661 size_t num_blocks;
1662 size_t block_num = 0;
1663 size_t dst_offset = 0;
1664 unsigned char last_block[3];
1665
1666 if (src_size == 0) {
1667 (*dst_size) = 0;
1668 goto out;
1669 }
1670 num_blocks = (src_size / 3);
1671 if ((src_size % 3) == 0) {
1672 memcpy(last_block, (&src[src_size - 3]), 3);
1673 } else {
1674 num_blocks++;
1675 last_block[2] = 0x00;
1676 switch (src_size % 3) {
1677 case 1:
1678 last_block[0] = src[src_size - 1];
1679 last_block[1] = 0x00;
1680 break;
1681 case 2:
1682 last_block[0] = src[src_size - 2];
1683 last_block[1] = src[src_size - 1];
1684 }
1685 }
1686 (*dst_size) = (num_blocks * 4);
1687 if (!dst)
1688 goto out;
1689 while (block_num < num_blocks) {
1690 unsigned char *src_block;
1691 unsigned char dst_block[4];
1692
1693 if (block_num == (num_blocks - 1))
1694 src_block = last_block;
1695 else
1696 src_block = &src[block_num * 3];
1697 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1698 dst_block[1] = (((src_block[0] << 4) & 0x30)
1699 | ((src_block[1] >> 4) & 0x0F));
1700 dst_block[2] = (((src_block[1] << 2) & 0x3C)
1701 | ((src_block[2] >> 6) & 0x03));
1702 dst_block[3] = (src_block[2] & 0x3F);
1703 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1704 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1705 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1706 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1707 block_num++;
1708 }
1709 out:
1710 return;
1711 }
1712
ecryptfs_max_decoded_size(size_t encoded_size)1713 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1714 {
1715 /* Not exact; conservatively long. Every block of 4
1716 * encoded characters decodes into a block of 3
1717 * decoded characters. This segment of code provides
1718 * the caller with the maximum amount of allocated
1719 * space that @dst will need to point to in a
1720 * subsequent call. */
1721 return ((encoded_size + 1) * 3) / 4;
1722 }
1723
1724 /**
1725 * ecryptfs_decode_from_filename
1726 * @dst: If NULL, this function only sets @dst_size and returns. If
1727 * non-NULL, this function decodes the encoded octets in @src
1728 * into the memory that @dst points to.
1729 * @dst_size: Set to the size of the decoded string.
1730 * @src: The encoded set of octets to decode.
1731 * @src_size: The size of the encoded set of octets to decode.
1732 */
1733 static void
ecryptfs_decode_from_filename(unsigned char * dst,size_t * dst_size,const unsigned char * src,size_t src_size)1734 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1735 const unsigned char *src, size_t src_size)
1736 {
1737 u8 current_bit_offset = 0;
1738 size_t src_byte_offset = 0;
1739 size_t dst_byte_offset = 0;
1740
1741 if (!dst) {
1742 (*dst_size) = ecryptfs_max_decoded_size(src_size);
1743 goto out;
1744 }
1745 while (src_byte_offset < src_size) {
1746 unsigned char src_byte =
1747 filename_rev_map[(int)src[src_byte_offset]];
1748
1749 switch (current_bit_offset) {
1750 case 0:
1751 dst[dst_byte_offset] = (src_byte << 2);
1752 current_bit_offset = 6;
1753 break;
1754 case 6:
1755 dst[dst_byte_offset++] |= (src_byte >> 4);
1756 dst[dst_byte_offset] = ((src_byte & 0xF)
1757 << 4);
1758 current_bit_offset = 4;
1759 break;
1760 case 4:
1761 dst[dst_byte_offset++] |= (src_byte >> 2);
1762 dst[dst_byte_offset] = (src_byte << 6);
1763 current_bit_offset = 2;
1764 break;
1765 case 2:
1766 dst[dst_byte_offset++] |= (src_byte);
1767 current_bit_offset = 0;
1768 break;
1769 }
1770 src_byte_offset++;
1771 }
1772 (*dst_size) = dst_byte_offset;
1773 out:
1774 return;
1775 }
1776
1777 /**
1778 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1779 * @encoded_name: The encrypted name
1780 * @encoded_name_size: Length of the encrypted name
1781 * @mount_crypt_stat: The crypt_stat struct associated with the file name to encode
1782 * @name: The plaintext name
1783 * @name_size: The length of the plaintext name
1784 *
1785 * Encrypts and encodes a filename into something that constitutes a
1786 * valid filename for a filesystem, with printable characters.
1787 *
1788 * We assume that we have a properly initialized crypto context,
1789 * pointed to by crypt_stat->tfm.
1790 *
1791 * Returns zero on success; non-zero on otherwise
1792 */
ecryptfs_encrypt_and_encode_filename(char ** encoded_name,size_t * encoded_name_size,struct ecryptfs_mount_crypt_stat * mount_crypt_stat,const char * name,size_t name_size)1793 int ecryptfs_encrypt_and_encode_filename(
1794 char **encoded_name,
1795 size_t *encoded_name_size,
1796 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1797 const char *name, size_t name_size)
1798 {
1799 size_t encoded_name_no_prefix_size;
1800 int rc = 0;
1801
1802 (*encoded_name) = NULL;
1803 (*encoded_name_size) = 0;
1804 if (mount_crypt_stat && (mount_crypt_stat->flags
1805 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
1806 struct ecryptfs_filename *filename;
1807
1808 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1809 if (!filename) {
1810 rc = -ENOMEM;
1811 goto out;
1812 }
1813 filename->filename = (char *)name;
1814 filename->filename_size = name_size;
1815 rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
1816 if (rc) {
1817 printk(KERN_ERR "%s: Error attempting to encrypt "
1818 "filename; rc = [%d]\n", __func__, rc);
1819 kfree(filename);
1820 goto out;
1821 }
1822 ecryptfs_encode_for_filename(
1823 NULL, &encoded_name_no_prefix_size,
1824 filename->encrypted_filename,
1825 filename->encrypted_filename_size);
1826 if (mount_crypt_stat
1827 && (mount_crypt_stat->flags
1828 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
1829 (*encoded_name_size) =
1830 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1831 + encoded_name_no_prefix_size);
1832 else
1833 (*encoded_name_size) =
1834 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1835 + encoded_name_no_prefix_size);
1836 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1837 if (!(*encoded_name)) {
1838 rc = -ENOMEM;
1839 kfree(filename->encrypted_filename);
1840 kfree(filename);
1841 goto out;
1842 }
1843 if (mount_crypt_stat
1844 && (mount_crypt_stat->flags
1845 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1846 memcpy((*encoded_name),
1847 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1848 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1849 ecryptfs_encode_for_filename(
1850 ((*encoded_name)
1851 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
1852 &encoded_name_no_prefix_size,
1853 filename->encrypted_filename,
1854 filename->encrypted_filename_size);
1855 (*encoded_name_size) =
1856 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1857 + encoded_name_no_prefix_size);
1858 (*encoded_name)[(*encoded_name_size)] = '\0';
1859 } else {
1860 rc = -EOPNOTSUPP;
1861 }
1862 if (rc) {
1863 printk(KERN_ERR "%s: Error attempting to encode "
1864 "encrypted filename; rc = [%d]\n", __func__,
1865 rc);
1866 kfree((*encoded_name));
1867 (*encoded_name) = NULL;
1868 (*encoded_name_size) = 0;
1869 }
1870 kfree(filename->encrypted_filename);
1871 kfree(filename);
1872 } else {
1873 rc = ecryptfs_copy_filename(encoded_name,
1874 encoded_name_size,
1875 name, name_size);
1876 }
1877 out:
1878 return rc;
1879 }
1880
1881 /**
1882 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
1883 * @plaintext_name: The plaintext name
1884 * @plaintext_name_size: The plaintext name size
1885 * @sb: Ecryptfs's super_block
1886 * @name: The filename in cipher text
1887 * @name_size: The cipher text name size
1888 *
1889 * Decrypts and decodes the filename.
1890 *
1891 * Returns zero on error; non-zero otherwise
1892 */
ecryptfs_decode_and_decrypt_filename(char ** plaintext_name,size_t * plaintext_name_size,struct super_block * sb,const char * name,size_t name_size)1893 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
1894 size_t *plaintext_name_size,
1895 struct super_block *sb,
1896 const char *name, size_t name_size)
1897 {
1898 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1899 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
1900 char *decoded_name;
1901 size_t decoded_name_size;
1902 size_t packet_size;
1903 int rc = 0;
1904
1905 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) &&
1906 !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) {
1907 if (is_dot_dotdot(name, name_size)) {
1908 rc = ecryptfs_copy_filename(plaintext_name,
1909 plaintext_name_size,
1910 name, name_size);
1911 goto out;
1912 }
1913
1914 if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE ||
1915 strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1916 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) {
1917 rc = -EINVAL;
1918 goto out;
1919 }
1920
1921 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
1922 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
1923 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
1924 name, name_size);
1925 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
1926 if (!decoded_name) {
1927 rc = -ENOMEM;
1928 goto out;
1929 }
1930 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
1931 name, name_size);
1932 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
1933 plaintext_name_size,
1934 &packet_size,
1935 mount_crypt_stat,
1936 decoded_name,
1937 decoded_name_size);
1938 if (rc) {
1939 ecryptfs_printk(KERN_DEBUG,
1940 "%s: Could not parse tag 70 packet from filename\n",
1941 __func__);
1942 goto out_free;
1943 }
1944 } else {
1945 rc = ecryptfs_copy_filename(plaintext_name,
1946 plaintext_name_size,
1947 name, name_size);
1948 goto out;
1949 }
1950 out_free:
1951 kfree(decoded_name);
1952 out:
1953 return rc;
1954 }
1955
1956 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143
1957
ecryptfs_set_f_namelen(long * namelen,long lower_namelen,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)1958 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
1959 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1960 {
1961 struct crypto_skcipher *tfm;
1962 struct mutex *tfm_mutex;
1963 size_t cipher_blocksize;
1964 int rc;
1965
1966 if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
1967 (*namelen) = lower_namelen;
1968 return 0;
1969 }
1970
1971 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
1972 mount_crypt_stat->global_default_fn_cipher_name);
1973 if (unlikely(rc)) {
1974 (*namelen) = 0;
1975 return rc;
1976 }
1977
1978 mutex_lock(tfm_mutex);
1979 cipher_blocksize = crypto_skcipher_blocksize(tfm);
1980 mutex_unlock(tfm_mutex);
1981
1982 /* Return an exact amount for the common cases */
1983 if (lower_namelen == NAME_MAX
1984 && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
1985 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
1986 return 0;
1987 }
1988
1989 /* Return a safe estimate for the uncommon cases */
1990 (*namelen) = lower_namelen;
1991 (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
1992 /* Since this is the max decoded size, subtract 1 "decoded block" len */
1993 (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
1994 (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
1995 (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
1996 /* Worst case is that the filename is padded nearly a full block size */
1997 (*namelen) -= cipher_blocksize - 1;
1998
1999 if ((*namelen) < 0)
2000 (*namelen) = 0;
2001
2002 return 0;
2003 }
2004