xref: /linux/security/keys/encrypted-keys/encrypted.c (revision b4e5bb555594826bb98aaf8bcd9f957f0428cb07)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2010 IBM Corporation
4  * Copyright (C) 2010 Politecnico di Torino, Italy
5  *                    TORSEC group -- https://security.polito.it
6  *
7  * Authors:
8  * Mimi Zohar <zohar@us.ibm.com>
9  * Roberto Sassu <roberto.sassu@polito.it>
10  *
11  * See Documentation/security/keys/trusted-encrypted.rst
12  */
13 
14 #include <linux/uaccess.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/parser.h>
19 #include <linux/string.h>
20 #include <linux/err.h>
21 #include <keys/user-type.h>
22 #include <keys/trusted-type.h>
23 #include <keys/encrypted-type.h>
24 #include <linux/key-type.h>
25 #include <linux/random.h>
26 #include <linux/rcupdate.h>
27 #include <linux/scatterlist.h>
28 #include <linux/ctype.h>
29 #include <crypto/aes.h>
30 #include <crypto/sha2.h>
31 #include <crypto/skcipher.h>
32 #include <crypto/utils.h>
33 
34 #include "encrypted.h"
35 #include "ecryptfs_format.h"
36 
37 static const char KEY_TRUSTED_PREFIX[] = "trusted:";
38 static const char KEY_USER_PREFIX[] = "user:";
39 static const char blkcipher_alg[] = "cbc(aes)";
40 static const char key_format_default[] = "default";
41 static const char key_format_ecryptfs[] = "ecryptfs";
42 static const char key_format_enc32[] = "enc32";
43 static unsigned int ivsize;
44 static int blksize;
45 
46 #define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1)
47 #define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1)
48 #define KEY_ECRYPTFS_DESC_LEN 16
49 #define HASH_SIZE SHA256_DIGEST_SIZE
50 #define MAX_DATA_SIZE 4096
51 #define MIN_DATA_SIZE  20
52 #define KEY_ENC32_PAYLOAD_LEN 32
53 
54 enum {
55 	Opt_new, Opt_load, Opt_update, Opt_err
56 };
57 
58 enum {
59 	Opt_default, Opt_ecryptfs, Opt_enc32, Opt_error
60 };
61 
62 static const match_table_t key_format_tokens = {
63 	{Opt_default, "default"},
64 	{Opt_ecryptfs, "ecryptfs"},
65 	{Opt_enc32, "enc32"},
66 	{Opt_error, NULL}
67 };
68 
69 static const match_table_t key_tokens = {
70 	{Opt_new, "new"},
71 	{Opt_load, "load"},
72 	{Opt_update, "update"},
73 	{Opt_err, NULL}
74 };
75 
76 static bool user_decrypted_data = IS_ENABLED(CONFIG_USER_DECRYPTED_DATA);
77 module_param(user_decrypted_data, bool, 0);
78 MODULE_PARM_DESC(user_decrypted_data,
79 	"Allow instantiation of encrypted keys using provided decrypted data");
80 
81 static int aes_get_sizes(void)
82 {
83 	struct crypto_skcipher *tfm;
84 
85 	tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
86 	if (IS_ERR(tfm)) {
87 		pr_err("encrypted_key: failed to alloc_cipher (%ld)\n",
88 		       PTR_ERR(tfm));
89 		return PTR_ERR(tfm);
90 	}
91 	ivsize = crypto_skcipher_ivsize(tfm);
92 	blksize = crypto_skcipher_blocksize(tfm);
93 	crypto_free_skcipher(tfm);
94 	return 0;
95 }
96 
97 /*
98  * valid_ecryptfs_desc - verify the description of a new/loaded encrypted key
99  *
100  * The description of a encrypted key with format 'ecryptfs' must contain
101  * exactly 16 hexadecimal characters.
102  *
103  */
104 static int valid_ecryptfs_desc(const char *ecryptfs_desc)
105 {
106 	int i;
107 
108 	if (strlen(ecryptfs_desc) != KEY_ECRYPTFS_DESC_LEN) {
109 		pr_err("encrypted_key: key description must be %d hexadecimal "
110 		       "characters long\n", KEY_ECRYPTFS_DESC_LEN);
111 		return -EINVAL;
112 	}
113 
114 	for (i = 0; i < KEY_ECRYPTFS_DESC_LEN; i++) {
115 		if (!isxdigit(ecryptfs_desc[i])) {
116 			pr_err("encrypted_key: key description must contain "
117 			       "only hexadecimal characters\n");
118 			return -EINVAL;
119 		}
120 	}
121 
122 	return 0;
123 }
124 
125 /*
126  * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key
127  *
128  * key-type:= "trusted:" | "user:"
129  * desc:= master-key description
130  *
131  * Verify that 'key-type' is valid and that 'desc' exists. On key update,
132  * only the master key description is permitted to change, not the key-type.
133  * The key-type remains constant.
134  *
135  * On success returns 0, otherwise -EINVAL.
136  */
137 static int valid_master_desc(const char *new_desc, const char *orig_desc)
138 {
139 	int prefix_len;
140 
141 	if (!strncmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN))
142 		prefix_len = KEY_TRUSTED_PREFIX_LEN;
143 	else if (!strncmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN))
144 		prefix_len = KEY_USER_PREFIX_LEN;
145 	else
146 		return -EINVAL;
147 
148 	if (!new_desc[prefix_len])
149 		return -EINVAL;
150 
151 	if (orig_desc && strncmp(new_desc, orig_desc, prefix_len))
152 		return -EINVAL;
153 
154 	return 0;
155 }
156 
157 /*
158  * datablob_parse - parse the keyctl data
159  *
160  * datablob format:
161  * new [<format>] <master-key name> <decrypted data length> [<decrypted data>]
162  * load [<format>] <master-key name> <decrypted data length>
163  *     <encrypted iv + data>
164  * update <new-master-key name>
165  *
166  * Tokenizes a copy of the keyctl data, returning a pointer to each token,
167  * which is null terminated.
168  *
169  * On success returns 0, otherwise -EINVAL.
170  */
171 static int datablob_parse(char *datablob, const char **format,
172 			  char **master_desc, char **decrypted_datalen,
173 			  char **hex_encoded_iv, char **decrypted_data)
174 {
175 	substring_t args[MAX_OPT_ARGS];
176 	int ret = -EINVAL;
177 	int key_cmd;
178 	int key_format;
179 	char *p, *keyword;
180 
181 	keyword = strsep(&datablob, " \t");
182 	if (!keyword) {
183 		pr_info("encrypted_key: insufficient parameters specified\n");
184 		return ret;
185 	}
186 	key_cmd = match_token(keyword, key_tokens, args);
187 
188 	/* Get optional format: default | ecryptfs */
189 	p = strsep(&datablob, " \t");
190 	if (!p) {
191 		pr_err("encrypted_key: insufficient parameters specified\n");
192 		return ret;
193 	}
194 
195 	key_format = match_token(p, key_format_tokens, args);
196 	switch (key_format) {
197 	case Opt_ecryptfs:
198 	case Opt_enc32:
199 	case Opt_default:
200 		*format = p;
201 		*master_desc = strsep(&datablob, " \t");
202 		break;
203 	case Opt_error:
204 		*master_desc = p;
205 		break;
206 	}
207 
208 	if (!*master_desc) {
209 		pr_info("encrypted_key: master key parameter is missing\n");
210 		goto out;
211 	}
212 
213 	if (valid_master_desc(*master_desc, NULL) < 0) {
214 		pr_info("encrypted_key: master key parameter \'%s\' "
215 			"is invalid\n", *master_desc);
216 		goto out;
217 	}
218 
219 	if (decrypted_datalen) {
220 		*decrypted_datalen = strsep(&datablob, " \t");
221 		if (!*decrypted_datalen) {
222 			pr_info("encrypted_key: keylen parameter is missing\n");
223 			goto out;
224 		}
225 	}
226 
227 	switch (key_cmd) {
228 	case Opt_new:
229 		if (!decrypted_datalen) {
230 			pr_info("encrypted_key: keyword \'%s\' not allowed "
231 				"when called from .update method\n", keyword);
232 			break;
233 		}
234 		*decrypted_data = strsep(&datablob, " \t");
235 		ret = 0;
236 		break;
237 	case Opt_load:
238 		if (!decrypted_datalen) {
239 			pr_info("encrypted_key: keyword \'%s\' not allowed "
240 				"when called from .update method\n", keyword);
241 			break;
242 		}
243 		*hex_encoded_iv = strsep(&datablob, " \t");
244 		if (!*hex_encoded_iv) {
245 			pr_info("encrypted_key: hex blob is missing\n");
246 			break;
247 		}
248 		ret = 0;
249 		break;
250 	case Opt_update:
251 		if (decrypted_datalen) {
252 			pr_info("encrypted_key: keyword \'%s\' not allowed "
253 				"when called from .instantiate method\n",
254 				keyword);
255 			break;
256 		}
257 		ret = 0;
258 		break;
259 	case Opt_err:
260 		pr_info("encrypted_key: keyword \'%s\' not recognized\n",
261 			keyword);
262 		break;
263 	}
264 out:
265 	return ret;
266 }
267 
268 /*
269  * datablob_format - format as an ascii string, before copying to userspace
270  */
271 static char *datablob_format(struct encrypted_key_payload *epayload,
272 			     size_t asciiblob_len)
273 {
274 	char *ascii_buf, *bufp;
275 	u8 *iv = epayload->iv;
276 	int len;
277 	int i;
278 
279 	ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL);
280 	if (!ascii_buf)
281 		goto out;
282 
283 	ascii_buf[asciiblob_len] = '\0';
284 
285 	/* copy datablob master_desc and datalen strings */
286 	len = sprintf(ascii_buf, "%s %s %s ", epayload->format,
287 		      epayload->master_desc, epayload->datalen);
288 
289 	/* convert the hex encoded iv, encrypted-data and HMAC to ascii */
290 	bufp = &ascii_buf[len];
291 	for (i = 0; i < (asciiblob_len - len) / 2; i++)
292 		bufp = hex_byte_pack(bufp, iv[i]);
293 out:
294 	return ascii_buf;
295 }
296 
297 /*
298  * request_user_key - request the user key
299  *
300  * Use a user provided key to encrypt/decrypt an encrypted-key.
301  */
302 static struct key *request_user_key(const char *master_desc, const u8 **master_key,
303 				    size_t *master_keylen)
304 {
305 	const struct user_key_payload *upayload;
306 	struct key *ukey;
307 
308 	ukey = request_key(&key_type_user, master_desc, NULL);
309 	if (IS_ERR(ukey))
310 		goto error;
311 
312 	down_read(&ukey->sem);
313 	upayload = user_key_payload_locked(ukey);
314 	if (!upayload) {
315 		/* key was revoked before we acquired its semaphore */
316 		up_read(&ukey->sem);
317 		key_put(ukey);
318 		ukey = ERR_PTR(-EKEYREVOKED);
319 		goto error;
320 	}
321 	*master_key = upayload->data;
322 	*master_keylen = upayload->datalen;
323 error:
324 	return ukey;
325 }
326 
327 enum derived_key_type { ENC_KEY, AUTH_KEY };
328 
329 /* Derive authentication/encryption key from trusted key */
330 static int get_derived_key(u8 *derived_key, enum derived_key_type key_type,
331 			   const u8 *master_key, size_t master_keylen)
332 {
333 	u8 *derived_buf;
334 	unsigned int derived_buf_len;
335 
336 	derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen;
337 	if (derived_buf_len < HASH_SIZE)
338 		derived_buf_len = HASH_SIZE;
339 
340 	derived_buf = kzalloc(derived_buf_len, GFP_KERNEL);
341 	if (!derived_buf)
342 		return -ENOMEM;
343 
344 	if (key_type)
345 		strcpy(derived_buf, "AUTH_KEY");
346 	else
347 		strcpy(derived_buf, "ENC_KEY");
348 
349 	memcpy(derived_buf + strlen(derived_buf) + 1, master_key,
350 	       master_keylen);
351 	sha256(derived_buf, derived_buf_len, derived_key);
352 	kfree_sensitive(derived_buf);
353 	return 0;
354 }
355 
356 static struct skcipher_request *init_skcipher_req(const u8 *key,
357 						  unsigned int key_len)
358 {
359 	struct skcipher_request *req;
360 	struct crypto_skcipher *tfm;
361 	int ret;
362 
363 	tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
364 	if (IS_ERR(tfm)) {
365 		pr_err("encrypted_key: failed to load %s transform (%ld)\n",
366 		       blkcipher_alg, PTR_ERR(tfm));
367 		return ERR_CAST(tfm);
368 	}
369 
370 	ret = crypto_skcipher_setkey(tfm, key, key_len);
371 	if (ret < 0) {
372 		pr_err("encrypted_key: failed to setkey (%d)\n", ret);
373 		crypto_free_skcipher(tfm);
374 		return ERR_PTR(ret);
375 	}
376 
377 	req = skcipher_request_alloc(tfm, GFP_KERNEL);
378 	if (!req) {
379 		pr_err("encrypted_key: failed to allocate request for %s\n",
380 		       blkcipher_alg);
381 		crypto_free_skcipher(tfm);
382 		return ERR_PTR(-ENOMEM);
383 	}
384 
385 	skcipher_request_set_callback(req, 0, NULL, NULL);
386 	return req;
387 }
388 
389 static struct key *request_master_key(struct encrypted_key_payload *epayload,
390 				      const u8 **master_key, size_t *master_keylen)
391 {
392 	struct key *mkey = ERR_PTR(-EINVAL);
393 
394 	if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX,
395 		     KEY_TRUSTED_PREFIX_LEN)) {
396 		mkey = request_trusted_key(epayload->master_desc +
397 					   KEY_TRUSTED_PREFIX_LEN,
398 					   master_key, master_keylen);
399 	} else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX,
400 			    KEY_USER_PREFIX_LEN)) {
401 		mkey = request_user_key(epayload->master_desc +
402 					KEY_USER_PREFIX_LEN,
403 					master_key, master_keylen);
404 	} else
405 		goto out;
406 
407 	if (IS_ERR(mkey)) {
408 		int ret = PTR_ERR(mkey);
409 
410 		if (ret == -ENOTSUPP)
411 			pr_info("encrypted_key: key %s not supported",
412 				epayload->master_desc);
413 		else
414 			pr_info("encrypted_key: key %s not found",
415 				epayload->master_desc);
416 		goto out;
417 	}
418 
419 	dump_master_key(*master_key, *master_keylen);
420 out:
421 	return mkey;
422 }
423 
424 /* Before returning data to userspace, encrypt decrypted data. */
425 static int derived_key_encrypt(struct encrypted_key_payload *epayload,
426 			       const u8 *derived_key,
427 			       unsigned int derived_keylen)
428 {
429 	struct scatterlist sg_in[2];
430 	struct scatterlist sg_out[1];
431 	struct crypto_skcipher *tfm;
432 	struct skcipher_request *req;
433 	unsigned int encrypted_datalen;
434 	u8 iv[AES_BLOCK_SIZE];
435 	int ret;
436 
437 	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
438 
439 	req = init_skcipher_req(derived_key, derived_keylen);
440 	ret = PTR_ERR(req);
441 	if (IS_ERR(req))
442 		goto out;
443 	dump_decrypted_data(epayload);
444 
445 	sg_init_table(sg_in, 2);
446 	sg_set_buf(&sg_in[0], epayload->decrypted_data,
447 		   epayload->decrypted_datalen);
448 	sg_set_page(&sg_in[1], ZERO_PAGE(0), AES_BLOCK_SIZE, 0);
449 
450 	sg_init_table(sg_out, 1);
451 	sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen);
452 
453 	memcpy(iv, epayload->iv, sizeof(iv));
454 	skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
455 	ret = crypto_skcipher_encrypt(req);
456 	tfm = crypto_skcipher_reqtfm(req);
457 	skcipher_request_free(req);
458 	crypto_free_skcipher(tfm);
459 	if (ret < 0)
460 		pr_err("encrypted_key: failed to encrypt (%d)\n", ret);
461 	else
462 		dump_encrypted_data(epayload, encrypted_datalen);
463 out:
464 	return ret;
465 }
466 
467 static int datablob_hmac_append(struct encrypted_key_payload *epayload,
468 				const u8 *master_key, size_t master_keylen)
469 {
470 	u8 derived_key[HASH_SIZE];
471 	u8 *digest;
472 	int ret;
473 
474 	ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
475 	if (ret < 0)
476 		goto out;
477 
478 	digest = epayload->format + epayload->datablob_len;
479 	hmac_sha256_usingrawkey(derived_key, sizeof(derived_key),
480 				epayload->format, epayload->datablob_len,
481 				digest);
482 	dump_hmac(NULL, digest, HASH_SIZE);
483 out:
484 	memzero_explicit(derived_key, sizeof(derived_key));
485 	return ret;
486 }
487 
488 /* verify HMAC before decrypting encrypted key */
489 static int datablob_hmac_verify(struct encrypted_key_payload *epayload,
490 				const u8 *format, const u8 *master_key,
491 				size_t master_keylen)
492 {
493 	u8 derived_key[HASH_SIZE];
494 	u8 digest[HASH_SIZE];
495 	int ret;
496 	char *p;
497 	unsigned short len;
498 
499 	ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
500 	if (ret < 0)
501 		goto out;
502 
503 	len = epayload->datablob_len;
504 	if (!format) {
505 		p = epayload->master_desc;
506 		len -= strlen(epayload->format) + 1;
507 	} else
508 		p = epayload->format;
509 
510 	hmac_sha256_usingrawkey(derived_key, sizeof(derived_key), p, len,
511 				digest);
512 	ret = crypto_memneq(digest, epayload->format + epayload->datablob_len,
513 			    sizeof(digest));
514 	if (ret) {
515 		ret = -EINVAL;
516 		dump_hmac("datablob",
517 			  epayload->format + epayload->datablob_len,
518 			  HASH_SIZE);
519 		dump_hmac("calc", digest, HASH_SIZE);
520 	}
521 out:
522 	memzero_explicit(derived_key, sizeof(derived_key));
523 	return ret;
524 }
525 
526 static int derived_key_decrypt(struct encrypted_key_payload *epayload,
527 			       const u8 *derived_key,
528 			       unsigned int derived_keylen)
529 {
530 	struct scatterlist sg_in[1];
531 	struct scatterlist sg_out[2];
532 	struct crypto_skcipher *tfm;
533 	struct skcipher_request *req;
534 	unsigned int encrypted_datalen;
535 	u8 iv[AES_BLOCK_SIZE];
536 	u8 *pad;
537 	int ret;
538 
539 	/* Throwaway buffer to hold the unused zero padding at the end */
540 	pad = kmalloc(AES_BLOCK_SIZE, GFP_KERNEL);
541 	if (!pad)
542 		return -ENOMEM;
543 
544 	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
545 	req = init_skcipher_req(derived_key, derived_keylen);
546 	ret = PTR_ERR(req);
547 	if (IS_ERR(req))
548 		goto out;
549 	dump_encrypted_data(epayload, encrypted_datalen);
550 
551 	sg_init_table(sg_in, 1);
552 	sg_init_table(sg_out, 2);
553 	sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen);
554 	sg_set_buf(&sg_out[0], epayload->decrypted_data,
555 		   epayload->decrypted_datalen);
556 	sg_set_buf(&sg_out[1], pad, AES_BLOCK_SIZE);
557 
558 	memcpy(iv, epayload->iv, sizeof(iv));
559 	skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
560 	ret = crypto_skcipher_decrypt(req);
561 	tfm = crypto_skcipher_reqtfm(req);
562 	skcipher_request_free(req);
563 	crypto_free_skcipher(tfm);
564 	if (ret < 0)
565 		goto out;
566 	dump_decrypted_data(epayload);
567 out:
568 	kfree(pad);
569 	return ret;
570 }
571 
572 /* Allocate memory for decrypted key and datablob. */
573 static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
574 							 const char *format,
575 							 const char *master_desc,
576 							 const char *datalen,
577 							 const char *decrypted_data)
578 {
579 	struct encrypted_key_payload *epayload = NULL;
580 	unsigned short datablob_len;
581 	unsigned short decrypted_datalen;
582 	unsigned short payload_datalen;
583 	unsigned int encrypted_datalen;
584 	unsigned int format_len;
585 	long dlen;
586 	int i;
587 	int ret;
588 
589 	ret = kstrtol(datalen, 10, &dlen);
590 	if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE)
591 		return ERR_PTR(-EINVAL);
592 
593 	format_len = (!format) ? strlen(key_format_default) : strlen(format);
594 	decrypted_datalen = dlen;
595 	payload_datalen = decrypted_datalen;
596 
597 	if (decrypted_data) {
598 		if (!user_decrypted_data) {
599 			pr_err("encrypted key: instantiation of keys using provided decrypted data is disabled since CONFIG_USER_DECRYPTED_DATA is set to false\n");
600 			return ERR_PTR(-EINVAL);
601 		}
602 		if (strlen(decrypted_data) != decrypted_datalen * 2) {
603 			pr_err("encrypted key: decrypted data provided does not match decrypted data length provided\n");
604 			return ERR_PTR(-EINVAL);
605 		}
606 		for (i = 0; i < strlen(decrypted_data); i++) {
607 			if (!isxdigit(decrypted_data[i])) {
608 				pr_err("encrypted key: decrypted data provided must contain only hexadecimal characters\n");
609 				return ERR_PTR(-EINVAL);
610 			}
611 		}
612 	}
613 
614 	if (format) {
615 		if (!strcmp(format, key_format_ecryptfs)) {
616 			if (dlen != ECRYPTFS_MAX_KEY_BYTES) {
617 				pr_err("encrypted_key: keylen for the ecryptfs format must be equal to %d bytes\n",
618 					ECRYPTFS_MAX_KEY_BYTES);
619 				return ERR_PTR(-EINVAL);
620 			}
621 			decrypted_datalen = ECRYPTFS_MAX_KEY_BYTES;
622 			payload_datalen = sizeof(struct ecryptfs_auth_tok);
623 		} else if (!strcmp(format, key_format_enc32)) {
624 			if (decrypted_datalen != KEY_ENC32_PAYLOAD_LEN) {
625 				pr_err("encrypted_key: enc32 key payload incorrect length: %d\n",
626 						decrypted_datalen);
627 				return ERR_PTR(-EINVAL);
628 			}
629 		}
630 	}
631 
632 	encrypted_datalen = roundup(decrypted_datalen, blksize);
633 
634 	datablob_len = format_len + 1 + strlen(master_desc) + 1
635 	    + strlen(datalen) + 1 + ivsize + 1 + encrypted_datalen;
636 
637 	ret = key_payload_reserve(key, payload_datalen + datablob_len
638 				  + HASH_SIZE + 1);
639 	if (ret < 0)
640 		return ERR_PTR(ret);
641 
642 	epayload = kzalloc(sizeof(*epayload) + payload_datalen +
643 			   datablob_len + HASH_SIZE + 1, GFP_KERNEL);
644 	if (!epayload)
645 		return ERR_PTR(-ENOMEM);
646 
647 	epayload->payload_datalen = payload_datalen;
648 	epayload->decrypted_datalen = decrypted_datalen;
649 	epayload->datablob_len = datablob_len;
650 	return epayload;
651 }
652 
653 static int encrypted_key_decrypt(struct encrypted_key_payload *epayload,
654 				 const char *format, const char *hex_encoded_iv)
655 {
656 	struct key *mkey;
657 	u8 derived_key[HASH_SIZE];
658 	const u8 *master_key;
659 	u8 *hmac;
660 	const char *hex_encoded_data;
661 	unsigned int encrypted_datalen;
662 	size_t master_keylen;
663 	size_t asciilen;
664 	int ret;
665 
666 	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
667 	asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2;
668 	if (strlen(hex_encoded_iv) != asciilen)
669 		return -EINVAL;
670 
671 	hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2;
672 	ret = hex2bin(epayload->iv, hex_encoded_iv, ivsize);
673 	if (ret < 0)
674 		return -EINVAL;
675 	ret = hex2bin(epayload->encrypted_data, hex_encoded_data,
676 		      encrypted_datalen);
677 	if (ret < 0)
678 		return -EINVAL;
679 
680 	hmac = epayload->format + epayload->datablob_len;
681 	ret = hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2),
682 		      HASH_SIZE);
683 	if (ret < 0)
684 		return -EINVAL;
685 
686 	mkey = request_master_key(epayload, &master_key, &master_keylen);
687 	if (IS_ERR(mkey))
688 		return PTR_ERR(mkey);
689 
690 	ret = datablob_hmac_verify(epayload, format, master_key, master_keylen);
691 	if (ret < 0) {
692 		pr_err("encrypted_key: bad hmac (%d)\n", ret);
693 		goto out;
694 	}
695 
696 	ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
697 	if (ret < 0)
698 		goto out;
699 
700 	ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key);
701 	if (ret < 0)
702 		pr_err("encrypted_key: failed to decrypt key (%d)\n", ret);
703 out:
704 	up_read(&mkey->sem);
705 	key_put(mkey);
706 	memzero_explicit(derived_key, sizeof(derived_key));
707 	return ret;
708 }
709 
710 static void __ekey_init(struct encrypted_key_payload *epayload,
711 			const char *format, const char *master_desc,
712 			const char *datalen)
713 {
714 	unsigned int format_len;
715 
716 	format_len = (!format) ? strlen(key_format_default) : strlen(format);
717 	epayload->format = epayload->payload_data + epayload->payload_datalen;
718 	epayload->master_desc = epayload->format + format_len + 1;
719 	epayload->datalen = epayload->master_desc + strlen(master_desc) + 1;
720 	epayload->iv = epayload->datalen + strlen(datalen) + 1;
721 	epayload->encrypted_data = epayload->iv + ivsize + 1;
722 	epayload->decrypted_data = epayload->payload_data;
723 
724 	if (!format)
725 		memcpy(epayload->format, key_format_default, format_len);
726 	else {
727 		if (!strcmp(format, key_format_ecryptfs))
728 			epayload->decrypted_data =
729 				ecryptfs_get_auth_tok_key((struct ecryptfs_auth_tok *)epayload->payload_data);
730 
731 		memcpy(epayload->format, format, format_len);
732 	}
733 
734 	memcpy(epayload->master_desc, master_desc, strlen(master_desc));
735 	memcpy(epayload->datalen, datalen, strlen(datalen));
736 }
737 
738 /*
739  * encrypted_init - initialize an encrypted key
740  *
741  * For a new key, use either a random number or user-provided decrypted data in
742  * case it is provided. A random number is used for the iv in both cases. For
743  * an old key, decrypt the hex encoded data.
744  */
745 static int encrypted_init(struct encrypted_key_payload *epayload,
746 			  const char *key_desc, const char *format,
747 			  const char *master_desc, const char *datalen,
748 			  const char *hex_encoded_iv, const char *decrypted_data)
749 {
750 	int ret = 0;
751 
752 	if (format && !strcmp(format, key_format_ecryptfs)) {
753 		ret = valid_ecryptfs_desc(key_desc);
754 		if (ret < 0)
755 			return ret;
756 
757 		ecryptfs_fill_auth_tok((struct ecryptfs_auth_tok *)epayload->payload_data,
758 				       key_desc);
759 	}
760 
761 	__ekey_init(epayload, format, master_desc, datalen);
762 	if (hex_encoded_iv) {
763 		ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv);
764 	} else if (decrypted_data) {
765 		get_random_bytes(epayload->iv, ivsize);
766 		ret = hex2bin(epayload->decrypted_data, decrypted_data,
767 			      epayload->decrypted_datalen);
768 	} else {
769 		get_random_bytes(epayload->iv, ivsize);
770 		get_random_bytes(epayload->decrypted_data, epayload->decrypted_datalen);
771 	}
772 	return ret;
773 }
774 
775 /*
776  * encrypted_instantiate - instantiate an encrypted key
777  *
778  * Instantiates the key:
779  * - by decrypting an existing encrypted datablob, or
780  * - by creating a new encrypted key based on a kernel random number, or
781  * - using provided decrypted data.
782  *
783  * On success, return 0. Otherwise return errno.
784  */
785 static int encrypted_instantiate(struct key *key,
786 				 struct key_preparsed_payload *prep)
787 {
788 	struct encrypted_key_payload *epayload = NULL;
789 	char *datablob = NULL;
790 	const char *format = NULL;
791 	char *master_desc = NULL;
792 	char *decrypted_datalen = NULL;
793 	char *hex_encoded_iv = NULL;
794 	char *decrypted_data = NULL;
795 	size_t datalen = prep->datalen;
796 	int ret;
797 
798 	if (datalen <= 0 || datalen > 32767 || !prep->data)
799 		return -EINVAL;
800 
801 	datablob = kmalloc(datalen + 1, GFP_KERNEL);
802 	if (!datablob)
803 		return -ENOMEM;
804 	datablob[datalen] = 0;
805 	memcpy(datablob, prep->data, datalen);
806 	ret = datablob_parse(datablob, &format, &master_desc,
807 			     &decrypted_datalen, &hex_encoded_iv, &decrypted_data);
808 	if (ret < 0)
809 		goto out;
810 
811 	epayload = encrypted_key_alloc(key, format, master_desc,
812 				       decrypted_datalen, decrypted_data);
813 	if (IS_ERR(epayload)) {
814 		ret = PTR_ERR(epayload);
815 		goto out;
816 	}
817 	ret = encrypted_init(epayload, key->description, format, master_desc,
818 			     decrypted_datalen, hex_encoded_iv, decrypted_data);
819 	if (ret < 0) {
820 		kfree_sensitive(epayload);
821 		goto out;
822 	}
823 
824 	rcu_assign_keypointer(key, epayload);
825 out:
826 	kfree_sensitive(datablob);
827 	return ret;
828 }
829 
830 static void encrypted_rcu_free(struct rcu_head *rcu)
831 {
832 	struct encrypted_key_payload *epayload;
833 
834 	epayload = container_of(rcu, struct encrypted_key_payload, rcu);
835 	kfree_sensitive(epayload);
836 }
837 
838 /*
839  * encrypted_update - update the master key description
840  *
841  * Change the master key description for an existing encrypted key.
842  * The next read will return an encrypted datablob using the new
843  * master key description.
844  *
845  * On success, return 0. Otherwise return errno.
846  */
847 static int encrypted_update(struct key *key, struct key_preparsed_payload *prep)
848 {
849 	struct encrypted_key_payload *epayload = key->payload.data[0];
850 	struct encrypted_key_payload *new_epayload;
851 	char *buf;
852 	char *new_master_desc = NULL;
853 	const char *format = NULL;
854 	size_t datalen = prep->datalen;
855 	int ret = 0;
856 
857 	if (key_is_negative(key))
858 		return -ENOKEY;
859 	if (datalen <= 0 || datalen > 32767 || !prep->data)
860 		return -EINVAL;
861 
862 	buf = kmalloc(datalen + 1, GFP_KERNEL);
863 	if (!buf)
864 		return -ENOMEM;
865 
866 	buf[datalen] = 0;
867 	memcpy(buf, prep->data, datalen);
868 	ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL, NULL);
869 	if (ret < 0)
870 		goto out;
871 
872 	ret = valid_master_desc(new_master_desc, epayload->master_desc);
873 	if (ret < 0)
874 		goto out;
875 
876 	new_epayload = encrypted_key_alloc(key, epayload->format,
877 					   new_master_desc, epayload->datalen, NULL);
878 	if (IS_ERR(new_epayload)) {
879 		ret = PTR_ERR(new_epayload);
880 		goto out;
881 	}
882 
883 	__ekey_init(new_epayload, epayload->format, new_master_desc,
884 		    epayload->datalen);
885 
886 	memcpy(new_epayload->iv, epayload->iv, ivsize);
887 	memcpy(new_epayload->payload_data, epayload->payload_data,
888 	       epayload->payload_datalen);
889 
890 	rcu_assign_keypointer(key, new_epayload);
891 	call_rcu(&epayload->rcu, encrypted_rcu_free);
892 out:
893 	kfree_sensitive(buf);
894 	return ret;
895 }
896 
897 /*
898  * encrypted_read - format and copy out the encrypted data
899  *
900  * The resulting datablob format is:
901  * <master-key name> <decrypted data length> <encrypted iv> <encrypted data>
902  *
903  * On success, return to userspace the encrypted key datablob size.
904  */
905 static long encrypted_read(const struct key *key, char *buffer,
906 			   size_t buflen)
907 {
908 	struct encrypted_key_payload *epayload;
909 	struct key *mkey;
910 	const u8 *master_key;
911 	size_t master_keylen;
912 	char derived_key[HASH_SIZE];
913 	char *ascii_buf;
914 	size_t asciiblob_len;
915 	int ret;
916 
917 	epayload = dereference_key_locked(key);
918 
919 	/* returns the hex encoded iv, encrypted-data, and hmac as ascii */
920 	asciiblob_len = epayload->datablob_len + ivsize + 1
921 	    + roundup(epayload->decrypted_datalen, blksize)
922 	    + (HASH_SIZE * 2);
923 
924 	if (!buffer || buflen < asciiblob_len)
925 		return asciiblob_len;
926 
927 	mkey = request_master_key(epayload, &master_key, &master_keylen);
928 	if (IS_ERR(mkey))
929 		return PTR_ERR(mkey);
930 
931 	ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
932 	if (ret < 0)
933 		goto out;
934 
935 	ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key);
936 	if (ret < 0)
937 		goto out;
938 
939 	ret = datablob_hmac_append(epayload, master_key, master_keylen);
940 	if (ret < 0)
941 		goto out;
942 
943 	ascii_buf = datablob_format(epayload, asciiblob_len);
944 	if (!ascii_buf) {
945 		ret = -ENOMEM;
946 		goto out;
947 	}
948 
949 	up_read(&mkey->sem);
950 	key_put(mkey);
951 	memzero_explicit(derived_key, sizeof(derived_key));
952 
953 	memcpy(buffer, ascii_buf, asciiblob_len);
954 	kfree_sensitive(ascii_buf);
955 
956 	return asciiblob_len;
957 out:
958 	up_read(&mkey->sem);
959 	key_put(mkey);
960 	memzero_explicit(derived_key, sizeof(derived_key));
961 	return ret;
962 }
963 
964 /*
965  * encrypted_destroy - clear and free the key's payload
966  */
967 static void encrypted_destroy(struct key *key)
968 {
969 	kfree_sensitive(key->payload.data[0]);
970 }
971 
972 struct key_type key_type_encrypted = {
973 	.name = "encrypted",
974 	.instantiate = encrypted_instantiate,
975 	.update = encrypted_update,
976 	.destroy = encrypted_destroy,
977 	.describe = user_describe,
978 	.read = encrypted_read,
979 };
980 EXPORT_SYMBOL_GPL(key_type_encrypted);
981 
982 static int __init init_encrypted(void)
983 {
984 	int ret;
985 
986 	ret = aes_get_sizes();
987 	if (ret < 0)
988 		return ret;
989 	return register_key_type(&key_type_encrypted);
990 }
991 
992 static void __exit cleanup_encrypted(void)
993 {
994 	unregister_key_type(&key_type_encrypted);
995 }
996 
997 late_initcall(init_encrypted);
998 module_exit(cleanup_encrypted);
999 
1000 MODULE_DESCRIPTION("Encrypted key type");
1001 MODULE_LICENSE("GPL");
1002