xref: /linux/drivers/iommu/intel/iommu.h (revision 8477ab143069c6b05d6da4a8184ded8b969240f5)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright © 2006-2015, Intel Corporation.
4  *
5  * Authors: Ashok Raj <ashok.raj@intel.com>
6  *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
7  *          David Woodhouse <David.Woodhouse@intel.com>
8  */
9 
10 #ifndef _INTEL_IOMMU_H_
11 #define _INTEL_IOMMU_H_
12 
13 #include <linux/types.h>
14 #include <linux/iova.h>
15 #include <linux/io.h>
16 #include <linux/idr.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/list.h>
19 #include <linux/iommu.h>
20 #include <linux/io-64-nonatomic-lo-hi.h>
21 #include <linux/dmar.h>
22 #include <linux/bitfield.h>
23 #include <linux/xarray.h>
24 #include <linux/perf_event.h>
25 #include <linux/pci.h>
26 
27 #include <asm/cacheflush.h>
28 #include <asm/iommu.h>
29 #include <uapi/linux/iommufd.h>
30 
31 /*
32  * VT-d hardware uses 4KiB page size regardless of host page size.
33  */
34 #define VTD_PAGE_SHIFT		(12)
35 #define VTD_PAGE_SIZE		(1UL << VTD_PAGE_SHIFT)
36 #define VTD_PAGE_MASK		(((u64)-1) << VTD_PAGE_SHIFT)
37 #define VTD_PAGE_ALIGN(addr)	(((addr) + VTD_PAGE_SIZE - 1) & VTD_PAGE_MASK)
38 
39 #define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
40 
41 #define VTD_STRIDE_SHIFT        (9)
42 #define VTD_STRIDE_MASK         (((u64)-1) << VTD_STRIDE_SHIFT)
43 
44 #define DMA_PTE_READ		BIT_ULL(0)
45 #define DMA_PTE_WRITE		BIT_ULL(1)
46 #define DMA_PTE_LARGE_PAGE	BIT_ULL(7)
47 #define DMA_PTE_SNP		BIT_ULL(11)
48 
49 #define DMA_FL_PTE_PRESENT	BIT_ULL(0)
50 #define DMA_FL_PTE_US		BIT_ULL(2)
51 #define DMA_FL_PTE_ACCESS	BIT_ULL(5)
52 #define DMA_FL_PTE_DIRTY	BIT_ULL(6)
53 
54 #define DMA_SL_PTE_DIRTY_BIT	9
55 #define DMA_SL_PTE_DIRTY	BIT_ULL(DMA_SL_PTE_DIRTY_BIT)
56 
57 #define ADDR_WIDTH_5LEVEL	(57)
58 #define ADDR_WIDTH_4LEVEL	(48)
59 
60 #define CONTEXT_TT_MULTI_LEVEL	0
61 #define CONTEXT_TT_DEV_IOTLB	1
62 #define CONTEXT_TT_PASS_THROUGH 2
63 #define CONTEXT_PASIDE		BIT_ULL(3)
64 
65 /*
66  * Intel IOMMU register specification per version 1.0 public spec.
67  */
68 #define	DMAR_VER_REG	0x0	/* Arch version supported by this IOMMU */
69 #define	DMAR_CAP_REG	0x8	/* Hardware supported capabilities */
70 #define	DMAR_ECAP_REG	0x10	/* Extended capabilities supported */
71 #define	DMAR_GCMD_REG	0x18	/* Global command register */
72 #define	DMAR_GSTS_REG	0x1c	/* Global status register */
73 #define	DMAR_RTADDR_REG	0x20	/* Root entry table */
74 #define	DMAR_CCMD_REG	0x28	/* Context command reg */
75 #define	DMAR_FSTS_REG	0x34	/* Fault Status register */
76 #define	DMAR_FECTL_REG	0x38	/* Fault control register */
77 #define	DMAR_FEDATA_REG	0x3c	/* Fault event interrupt data register */
78 #define	DMAR_FEADDR_REG	0x40	/* Fault event interrupt addr register */
79 #define	DMAR_FEUADDR_REG 0x44	/* Upper address register */
80 #define	DMAR_AFLOG_REG	0x58	/* Advanced Fault control */
81 #define	DMAR_PMEN_REG	0x64	/* Enable Protected Memory Region */
82 #define	DMAR_PLMBASE_REG 0x68	/* PMRR Low addr */
83 #define	DMAR_PLMLIMIT_REG 0x6c	/* PMRR low limit */
84 #define	DMAR_PHMBASE_REG 0x70	/* pmrr high base addr */
85 #define	DMAR_PHMLIMIT_REG 0x78	/* pmrr high limit */
86 #define DMAR_IQH_REG	0x80	/* Invalidation queue head register */
87 #define DMAR_IQT_REG	0x88	/* Invalidation queue tail register */
88 #define DMAR_IQ_SHIFT	4	/* Invalidation queue head/tail shift */
89 #define DMAR_IQA_REG	0x90	/* Invalidation queue addr register */
90 #define DMAR_ICS_REG	0x9c	/* Invalidation complete status register */
91 #define DMAR_IQER_REG	0xb0	/* Invalidation queue error record register */
92 #define DMAR_IRTA_REG	0xb8    /* Interrupt remapping table addr register */
93 #define DMAR_PQH_REG	0xc0	/* Page request queue head register */
94 #define DMAR_PQT_REG	0xc8	/* Page request queue tail register */
95 #define DMAR_PQA_REG	0xd0	/* Page request queue address register */
96 #define DMAR_PRS_REG	0xdc	/* Page request status register */
97 #define DMAR_PECTL_REG	0xe0	/* Page request event control register */
98 #define	DMAR_PEDATA_REG	0xe4	/* Page request event interrupt data register */
99 #define	DMAR_PEADDR_REG	0xe8	/* Page request event interrupt addr register */
100 #define	DMAR_PEUADDR_REG 0xec	/* Page request event Upper address register */
101 #define DMAR_MTRRCAP_REG 0x100	/* MTRR capability register */
102 #define DMAR_MTRRDEF_REG 0x108	/* MTRR default type register */
103 #define DMAR_MTRR_FIX64K_00000_REG 0x120 /* MTRR Fixed range registers */
104 #define DMAR_MTRR_FIX16K_80000_REG 0x128
105 #define DMAR_MTRR_FIX16K_A0000_REG 0x130
106 #define DMAR_MTRR_FIX4K_C0000_REG 0x138
107 #define DMAR_MTRR_FIX4K_C8000_REG 0x140
108 #define DMAR_MTRR_FIX4K_D0000_REG 0x148
109 #define DMAR_MTRR_FIX4K_D8000_REG 0x150
110 #define DMAR_MTRR_FIX4K_E0000_REG 0x158
111 #define DMAR_MTRR_FIX4K_E8000_REG 0x160
112 #define DMAR_MTRR_FIX4K_F0000_REG 0x168
113 #define DMAR_MTRR_FIX4K_F8000_REG 0x170
114 #define DMAR_MTRR_PHYSBASE0_REG 0x180 /* MTRR Variable range registers */
115 #define DMAR_MTRR_PHYSMASK0_REG 0x188
116 #define DMAR_MTRR_PHYSBASE1_REG 0x190
117 #define DMAR_MTRR_PHYSMASK1_REG 0x198
118 #define DMAR_MTRR_PHYSBASE2_REG 0x1a0
119 #define DMAR_MTRR_PHYSMASK2_REG 0x1a8
120 #define DMAR_MTRR_PHYSBASE3_REG 0x1b0
121 #define DMAR_MTRR_PHYSMASK3_REG 0x1b8
122 #define DMAR_MTRR_PHYSBASE4_REG 0x1c0
123 #define DMAR_MTRR_PHYSMASK4_REG 0x1c8
124 #define DMAR_MTRR_PHYSBASE5_REG 0x1d0
125 #define DMAR_MTRR_PHYSMASK5_REG 0x1d8
126 #define DMAR_MTRR_PHYSBASE6_REG 0x1e0
127 #define DMAR_MTRR_PHYSMASK6_REG 0x1e8
128 #define DMAR_MTRR_PHYSBASE7_REG 0x1f0
129 #define DMAR_MTRR_PHYSMASK7_REG 0x1f8
130 #define DMAR_MTRR_PHYSBASE8_REG 0x200
131 #define DMAR_MTRR_PHYSMASK8_REG 0x208
132 #define DMAR_MTRR_PHYSBASE9_REG 0x210
133 #define DMAR_MTRR_PHYSMASK9_REG 0x218
134 #define DMAR_PERFCAP_REG	0x300
135 #define DMAR_PERFCFGOFF_REG	0x310
136 #define DMAR_PERFOVFOFF_REG	0x318
137 #define DMAR_PERFCNTROFF_REG	0x31c
138 #define DMAR_PERFINTRSTS_REG	0x324
139 #define DMAR_PERFINTRCTL_REG	0x328
140 #define DMAR_PERFEVNTCAP_REG	0x380
141 #define DMAR_ECMD_REG		0x400
142 #define DMAR_ECEO_REG		0x408
143 #define DMAR_ECRSP_REG		0x410
144 #define DMAR_ECCAP_REG		0x430
145 
146 #define DMAR_IQER_REG_IQEI(reg)		FIELD_GET(GENMASK_ULL(3, 0), reg)
147 #define DMAR_IQER_REG_ITESID(reg)	FIELD_GET(GENMASK_ULL(47, 32), reg)
148 #define DMAR_IQER_REG_ICESID(reg)	FIELD_GET(GENMASK_ULL(63, 48), reg)
149 
150 #define OFFSET_STRIDE		(9)
151 
152 #define dmar_readq(a) readq(a)
153 #define dmar_writeq(a,v) writeq(v,a)
154 #define dmar_readl(a) readl(a)
155 #define dmar_writel(a, v) writel(v, a)
156 
157 #define DMAR_VER_MAJOR(v)		(((v) & 0xf0) >> 4)
158 #define DMAR_VER_MINOR(v)		((v) & 0x0f)
159 
160 /*
161  * Decoding Capability Register
162  */
163 #define cap_esrtps(c)		(((c) >> 63) & 1)
164 #define cap_esirtps(c)		(((c) >> 62) & 1)
165 #define cap_ecmds(c)		(((c) >> 61) & 1)
166 #define cap_fl5lp_support(c)	(((c) >> 60) & 1)
167 #define cap_pi_support(c)	(((c) >> 59) & 1)
168 #define cap_fl1gp_support(c)	(((c) >> 56) & 1)
169 #define cap_read_drain(c)	(((c) >> 55) & 1)
170 #define cap_write_drain(c)	(((c) >> 54) & 1)
171 #define cap_max_amask_val(c)	(((c) >> 48) & 0x3f)
172 #define cap_num_fault_regs(c)	((((c) >> 40) & 0xff) + 1)
173 #define cap_pgsel_inv(c)	(((c) >> 39) & 1)
174 
175 #define cap_super_page_val(c)	(((c) >> 34) & 0xf)
176 #define cap_super_offset(c)	(((find_first_bit(&cap_super_page_val(c), 4)) \
177 					* OFFSET_STRIDE) + 21)
178 
179 #define cap_fault_reg_offset(c)	((((c) >> 24) & 0x3ff) * 16)
180 #define cap_max_fault_reg_offset(c) \
181 	(cap_fault_reg_offset(c) + cap_num_fault_regs(c) * 16)
182 
183 #define cap_zlr(c)		(((c) >> 22) & 1)
184 #define cap_isoch(c)		(((c) >> 23) & 1)
185 #define cap_mgaw(c)		((((c) >> 16) & 0x3f) + 1)
186 #define cap_sagaw(c)		(((c) >> 8) & 0x1f)
187 #define cap_caching_mode(c)	(((c) >> 7) & 1)
188 #define cap_phmr(c)		(((c) >> 6) & 1)
189 #define cap_plmr(c)		(((c) >> 5) & 1)
190 #define cap_rwbf(c)		(((c) >> 4) & 1)
191 #define cap_afl(c)		(((c) >> 3) & 1)
192 #define cap_ndoms(c)		(((unsigned long)1) << (4 + 2 * ((c) & 0x7)))
193 /*
194  * Extended Capability Register
195  */
196 
197 #define ecap_pms(e)		(((e) >> 51) & 0x1)
198 #define ecap_rps(e)		(((e) >> 49) & 0x1)
199 #define ecap_smpwc(e)		(((e) >> 48) & 0x1)
200 #define ecap_flts(e)		(((e) >> 47) & 0x1)
201 #define ecap_slts(e)		(((e) >> 46) & 0x1)
202 #define ecap_slads(e)		(((e) >> 45) & 0x1)
203 #define ecap_smts(e)		(((e) >> 43) & 0x1)
204 #define ecap_dit(e)		(((e) >> 41) & 0x1)
205 #define ecap_pds(e)		(((e) >> 42) & 0x1)
206 #define ecap_pasid(e)		(((e) >> 40) & 0x1)
207 #define ecap_pss(e)		(((e) >> 35) & 0x1f)
208 #define ecap_eafs(e)		(((e) >> 34) & 0x1)
209 #define ecap_nwfs(e)		(((e) >> 33) & 0x1)
210 #define ecap_srs(e)		(((e) >> 31) & 0x1)
211 #define ecap_ers(e)		(((e) >> 30) & 0x1)
212 #define ecap_prs(e)		(((e) >> 29) & 0x1)
213 #define ecap_broken_pasid(e)	(((e) >> 28) & 0x1)
214 #define ecap_dis(e)		(((e) >> 27) & 0x1)
215 #define ecap_nest(e)		(((e) >> 26) & 0x1)
216 #define ecap_mts(e)		(((e) >> 25) & 0x1)
217 #define ecap_iotlb_offset(e) 	((((e) >> 8) & 0x3ff) * 16)
218 #define ecap_max_iotlb_offset(e) (ecap_iotlb_offset(e) + 16)
219 #define ecap_coherent(e)	((e) & 0x1)
220 #define ecap_qis(e)		((e) & 0x2)
221 #define ecap_pass_through(e)	(((e) >> 6) & 0x1)
222 #define ecap_eim_support(e)	(((e) >> 4) & 0x1)
223 #define ecap_ir_support(e)	(((e) >> 3) & 0x1)
224 #define ecap_dev_iotlb_support(e)	(((e) >> 2) & 0x1)
225 #define ecap_max_handle_mask(e) (((e) >> 20) & 0xf)
226 #define ecap_sc_support(e)	(((e) >> 7) & 0x1) /* Snooping Control */
227 
228 /*
229  * Decoding Perf Capability Register
230  */
231 #define pcap_num_cntr(p)	((p) & 0xffff)
232 #define pcap_cntr_width(p)	(((p) >> 16) & 0x7f)
233 #define pcap_num_event_group(p)	(((p) >> 24) & 0x1f)
234 #define pcap_filters_mask(p)	(((p) >> 32) & 0x1f)
235 #define pcap_interrupt(p)	(((p) >> 50) & 0x1)
236 /* The counter stride is calculated as 2 ^ (x+10) bytes */
237 #define pcap_cntr_stride(p)	(1ULL << ((((p) >> 52) & 0x7) + 10))
238 
239 /*
240  * Decoding Perf Event Capability Register
241  */
242 #define pecap_es(p)		((p) & 0xfffffff)
243 
244 /* Virtual command interface capability */
245 #define vccap_pasid(v)		(((v) & DMA_VCS_PAS)) /* PASID allocation */
246 
247 /* IOTLB_REG */
248 #define DMA_TLB_FLUSH_GRANU_OFFSET  60
249 #define DMA_TLB_GLOBAL_FLUSH (((u64)1) << 60)
250 #define DMA_TLB_DSI_FLUSH (((u64)2) << 60)
251 #define DMA_TLB_PSI_FLUSH (((u64)3) << 60)
252 #define DMA_TLB_IIRG(type) ((type >> 60) & 3)
253 #define DMA_TLB_IAIG(val) (((val) >> 57) & 3)
254 #define DMA_TLB_READ_DRAIN (((u64)1) << 49)
255 #define DMA_TLB_WRITE_DRAIN (((u64)1) << 48)
256 #define DMA_TLB_DID(id)	(((u64)((id) & 0xffff)) << 32)
257 #define DMA_TLB_IVT (((u64)1) << 63)
258 #define DMA_TLB_IH_NONLEAF (((u64)1) << 6)
259 #define DMA_TLB_MAX_SIZE (0x3f)
260 
261 /* INVALID_DESC */
262 #define DMA_CCMD_INVL_GRANU_OFFSET  61
263 #define DMA_ID_TLB_GLOBAL_FLUSH	(((u64)1) << 4)
264 #define DMA_ID_TLB_DSI_FLUSH	(((u64)2) << 4)
265 #define DMA_ID_TLB_PSI_FLUSH	(((u64)3) << 4)
266 #define DMA_ID_TLB_READ_DRAIN	(((u64)1) << 7)
267 #define DMA_ID_TLB_WRITE_DRAIN	(((u64)1) << 6)
268 #define DMA_ID_TLB_DID(id)	(((u64)((id & 0xffff) << 16)))
269 #define DMA_ID_TLB_IH_NONLEAF	(((u64)1) << 6)
270 #define DMA_ID_TLB_ADDR(addr)	(addr)
271 #define DMA_ID_TLB_ADDR_MASK(mask)	(mask)
272 
273 /* PMEN_REG */
274 #define DMA_PMEN_EPM (((u32)1)<<31)
275 #define DMA_PMEN_PRS (((u32)1)<<0)
276 
277 /* GCMD_REG */
278 #define DMA_GCMD_TE (((u32)1) << 31)
279 #define DMA_GCMD_SRTP (((u32)1) << 30)
280 #define DMA_GCMD_SFL (((u32)1) << 29)
281 #define DMA_GCMD_EAFL (((u32)1) << 28)
282 #define DMA_GCMD_WBF (((u32)1) << 27)
283 #define DMA_GCMD_QIE (((u32)1) << 26)
284 #define DMA_GCMD_SIRTP (((u32)1) << 24)
285 #define DMA_GCMD_IRE (((u32) 1) << 25)
286 #define DMA_GCMD_CFI (((u32) 1) << 23)
287 
288 /* GSTS_REG */
289 #define DMA_GSTS_TES (((u32)1) << 31)
290 #define DMA_GSTS_RTPS (((u32)1) << 30)
291 #define DMA_GSTS_FLS (((u32)1) << 29)
292 #define DMA_GSTS_AFLS (((u32)1) << 28)
293 #define DMA_GSTS_WBFS (((u32)1) << 27)
294 #define DMA_GSTS_QIES (((u32)1) << 26)
295 #define DMA_GSTS_IRTPS (((u32)1) << 24)
296 #define DMA_GSTS_IRES (((u32)1) << 25)
297 #define DMA_GSTS_CFIS (((u32)1) << 23)
298 
299 /* DMA_RTADDR_REG */
300 #define DMA_RTADDR_SMT (((u64)1) << 10)
301 
302 /* CCMD_REG */
303 #define DMA_CCMD_ICC (((u64)1) << 63)
304 #define DMA_CCMD_GLOBAL_INVL (((u64)1) << 61)
305 #define DMA_CCMD_DOMAIN_INVL (((u64)2) << 61)
306 #define DMA_CCMD_DEVICE_INVL (((u64)3) << 61)
307 #define DMA_CCMD_FM(m) (((u64)((m) & 0x3)) << 32)
308 #define DMA_CCMD_MASK_NOBIT 0
309 #define DMA_CCMD_MASK_1BIT 1
310 #define DMA_CCMD_MASK_2BIT 2
311 #define DMA_CCMD_MASK_3BIT 3
312 #define DMA_CCMD_SID(s) (((u64)((s) & 0xffff)) << 16)
313 #define DMA_CCMD_DID(d) ((u64)((d) & 0xffff))
314 
315 /* ECMD_REG */
316 #define DMA_MAX_NUM_ECMD		256
317 #define DMA_MAX_NUM_ECMDCAP		(DMA_MAX_NUM_ECMD / 64)
318 #define DMA_ECMD_REG_STEP		8
319 #define DMA_ECMD_ENABLE			0xf0
320 #define DMA_ECMD_DISABLE		0xf1
321 #define DMA_ECMD_FREEZE			0xf4
322 #define DMA_ECMD_UNFREEZE		0xf5
323 #define DMA_ECMD_OA_SHIFT		16
324 #define DMA_ECMD_ECRSP_IP		0x1
325 #define DMA_ECMD_ECCAP3			3
326 #define DMA_ECMD_ECCAP3_ECNTS		BIT_ULL(48)
327 #define DMA_ECMD_ECCAP3_DCNTS		BIT_ULL(49)
328 #define DMA_ECMD_ECCAP3_FCNTS		BIT_ULL(52)
329 #define DMA_ECMD_ECCAP3_UFCNTS		BIT_ULL(53)
330 #define DMA_ECMD_ECCAP3_ESSENTIAL	(DMA_ECMD_ECCAP3_ECNTS |	\
331 					 DMA_ECMD_ECCAP3_DCNTS |	\
332 					 DMA_ECMD_ECCAP3_FCNTS |	\
333 					 DMA_ECMD_ECCAP3_UFCNTS)
334 
335 /* FECTL_REG */
336 #define DMA_FECTL_IM (((u32)1) << 31)
337 
338 /* FSTS_REG */
339 #define DMA_FSTS_PFO (1 << 0) /* Primary Fault Overflow */
340 #define DMA_FSTS_PPF (1 << 1) /* Primary Pending Fault */
341 #define DMA_FSTS_IQE (1 << 4) /* Invalidation Queue Error */
342 #define DMA_FSTS_ICE (1 << 5) /* Invalidation Completion Error */
343 #define DMA_FSTS_ITE (1 << 6) /* Invalidation Time-out Error */
344 #define DMA_FSTS_PRO (1 << 7) /* Page Request Overflow */
345 #define dma_fsts_fault_record_index(s) (((s) >> 8) & 0xff)
346 
347 /* FRCD_REG, 32 bits access */
348 #define DMA_FRCD_F (((u32)1) << 31)
349 #define dma_frcd_type(d) ((d >> 30) & 1)
350 #define dma_frcd_fault_reason(c) (c & 0xff)
351 #define dma_frcd_source_id(c) (c & 0xffff)
352 #define dma_frcd_pasid_value(c) (((c) >> 8) & 0xfffff)
353 #define dma_frcd_pasid_present(c) (((c) >> 31) & 1)
354 /* low 64 bit */
355 #define dma_frcd_page_addr(d) (d & (((u64)-1) << PAGE_SHIFT))
356 
357 /* PRS_REG */
358 #define DMA_PRS_PPR	((u32)1)
359 #define DMA_PRS_PRO	((u32)2)
360 
361 #define DMA_VCS_PAS	((u64)1)
362 
363 /* PERFINTRSTS_REG */
364 #define DMA_PERFINTRSTS_PIS	((u32)1)
365 
366 #define IOMMU_WAIT_OP(iommu, offset, op, cond, sts)			\
367 do {									\
368 	cycles_t start_time = get_cycles();				\
369 	while (1) {							\
370 		sts = op(iommu->reg + offset);				\
371 		if (cond)						\
372 			break;						\
373 		if (DMAR_OPERATION_TIMEOUT < (get_cycles() - start_time))\
374 			panic("DMAR hardware is malfunctioning\n");	\
375 		cpu_relax();						\
376 	}								\
377 } while (0)
378 
379 #define QI_LENGTH	256	/* queue length */
380 
381 enum {
382 	QI_FREE,
383 	QI_IN_USE,
384 	QI_DONE,
385 	QI_ABORT
386 };
387 
388 #define QI_CC_TYPE		0x1
389 #define QI_IOTLB_TYPE		0x2
390 #define QI_DIOTLB_TYPE		0x3
391 #define QI_IEC_TYPE		0x4
392 #define QI_IWD_TYPE		0x5
393 #define QI_EIOTLB_TYPE		0x6
394 #define QI_PC_TYPE		0x7
395 #define QI_DEIOTLB_TYPE		0x8
396 #define QI_PGRP_RESP_TYPE	0x9
397 #define QI_PSTRM_RESP_TYPE	0xa
398 
399 #define QI_IEC_SELECTIVE	(((u64)1) << 4)
400 #define QI_IEC_IIDEX(idx)	(((u64)(idx & 0xffff) << 32))
401 #define QI_IEC_IM(m)		(((u64)(m & 0x1f) << 27))
402 
403 #define QI_IWD_STATUS_DATA(d)	(((u64)d) << 32)
404 #define QI_IWD_STATUS_WRITE	(((u64)1) << 5)
405 #define QI_IWD_FENCE		(((u64)1) << 6)
406 #define QI_IWD_PRQ_DRAIN	(((u64)1) << 7)
407 
408 #define QI_IOTLB_DID(did) 	(((u64)did) << 16)
409 #define QI_IOTLB_DR(dr) 	(((u64)dr) << 7)
410 #define QI_IOTLB_DW(dw) 	(((u64)dw) << 6)
411 #define QI_IOTLB_GRAN(gran) 	(((u64)gran) >> (DMA_TLB_FLUSH_GRANU_OFFSET-4))
412 #define QI_IOTLB_ADDR(addr)	(((u64)addr) & VTD_PAGE_MASK)
413 #define QI_IOTLB_IH(ih)		(((u64)ih) << 6)
414 #define QI_IOTLB_AM(am)		(((u8)am) & 0x3f)
415 
416 #define QI_CC_FM(fm)		(((u64)fm) << 48)
417 #define QI_CC_SID(sid)		(((u64)sid) << 32)
418 #define QI_CC_DID(did)		(((u64)did) << 16)
419 #define QI_CC_GRAN(gran)	(((u64)gran) >> (DMA_CCMD_INVL_GRANU_OFFSET-4))
420 
421 #define QI_DEV_IOTLB_SID(sid)	((u64)((sid) & 0xffff) << 32)
422 #define QI_DEV_IOTLB_QDEP(qdep)	(((qdep) & 0x1f) << 16)
423 #define QI_DEV_IOTLB_ADDR(addr)	((u64)(addr) & VTD_PAGE_MASK)
424 #define QI_DEV_IOTLB_PFSID(pfsid) (((u64)(pfsid & 0xf) << 12) | \
425 				   ((u64)((pfsid >> 4) & 0xfff) << 52))
426 #define QI_DEV_IOTLB_SIZE	1
427 #define QI_DEV_IOTLB_MAX_INVS	32
428 
429 #define QI_PC_PASID(pasid)	(((u64)pasid) << 32)
430 #define QI_PC_DID(did)		(((u64)did) << 16)
431 #define QI_PC_GRAN(gran)	(((u64)gran) << 4)
432 
433 /* PASID cache invalidation granu */
434 #define QI_PC_ALL_PASIDS	0
435 #define QI_PC_PASID_SEL		1
436 #define QI_PC_GLOBAL		3
437 
438 #define QI_EIOTLB_ADDR(addr)	((u64)(addr) & VTD_PAGE_MASK)
439 #define QI_EIOTLB_IH(ih)	(((u64)ih) << 6)
440 #define QI_EIOTLB_AM(am)	(((u64)am) & 0x3f)
441 #define QI_EIOTLB_PASID(pasid) 	(((u64)pasid) << 32)
442 #define QI_EIOTLB_DID(did)	(((u64)did) << 16)
443 #define QI_EIOTLB_GRAN(gran) 	(((u64)gran) << 4)
444 
445 /* QI Dev-IOTLB inv granu */
446 #define QI_DEV_IOTLB_GRAN_ALL		1
447 #define QI_DEV_IOTLB_GRAN_PASID_SEL	0
448 
449 #define QI_DEV_EIOTLB_ADDR(a)	((u64)(a) & VTD_PAGE_MASK)
450 #define QI_DEV_EIOTLB_SIZE	(((u64)1) << 11)
451 #define QI_DEV_EIOTLB_PASID(p)	((u64)((p) & 0xfffff) << 32)
452 #define QI_DEV_EIOTLB_SID(sid)	((u64)((sid) & 0xffff) << 16)
453 #define QI_DEV_EIOTLB_QDEP(qd)	((u64)((qd) & 0x1f) << 4)
454 #define QI_DEV_EIOTLB_PFSID(pfsid) (((u64)(pfsid & 0xf) << 12) | \
455 				    ((u64)((pfsid >> 4) & 0xfff) << 52))
456 #define QI_DEV_EIOTLB_MAX_INVS	32
457 
458 /* Page group response descriptor QW0 */
459 #define QI_PGRP_PASID_P(p)	(((u64)(p)) << 4)
460 #define QI_PGRP_RESP_CODE(res)	(((u64)(res)) << 12)
461 #define QI_PGRP_DID(rid)	(((u64)(rid)) << 16)
462 #define QI_PGRP_PASID(pasid)	(((u64)(pasid)) << 32)
463 
464 /* Page group response descriptor QW1 */
465 #define QI_PGRP_LPIG(x)		(((u64)(x)) << 2)
466 #define QI_PGRP_IDX(idx)	(((u64)(idx)) << 3)
467 
468 
469 #define QI_RESP_SUCCESS		0x0
470 #define QI_RESP_INVALID		0x1
471 #define QI_RESP_FAILURE		0xf
472 
473 #define QI_GRAN_NONG_PASID		2
474 #define QI_GRAN_PSI_PASID		3
475 
476 #define qi_shift(iommu)		(DMAR_IQ_SHIFT + !!ecap_smts((iommu)->ecap))
477 
478 struct qi_desc {
479 	u64 qw0;
480 	u64 qw1;
481 	u64 qw2;
482 	u64 qw3;
483 };
484 
485 struct q_inval {
486 	raw_spinlock_t  q_lock;
487 	void		*desc;          /* invalidation queue */
488 	int             *desc_status;   /* desc status */
489 	int             free_head;      /* first free entry */
490 	int             free_tail;      /* last free entry */
491 	int             free_cnt;
492 };
493 
494 /* Page Request Queue depth */
495 #define PRQ_ORDER	4
496 #define PRQ_SIZE	(SZ_4K << PRQ_ORDER)
497 #define PRQ_RING_MASK	(PRQ_SIZE - 0x20)
498 #define PRQ_DEPTH	(PRQ_SIZE >> 5)
499 
500 struct dmar_pci_notify_info;
501 
502 #ifdef CONFIG_IRQ_REMAP
503 #define INTR_REMAP_TABLE_REG_SIZE	0xf
504 #define INTR_REMAP_TABLE_REG_SIZE_MASK  0xf
505 
506 #define INTR_REMAP_TABLE_ENTRIES	65536
507 
508 struct irq_domain;
509 
510 struct ir_table {
511 	struct irte *base;
512 	unsigned long *bitmap;
513 };
514 
515 void intel_irq_remap_add_device(struct dmar_pci_notify_info *info);
516 #else
517 static inline void
intel_irq_remap_add_device(struct dmar_pci_notify_info * info)518 intel_irq_remap_add_device(struct dmar_pci_notify_info *info) { }
519 #endif
520 
521 struct iommu_flush {
522 	void (*flush_context)(struct intel_iommu *iommu, u16 did, u16 sid,
523 			      u8 fm, u64 type);
524 	void (*flush_iotlb)(struct intel_iommu *iommu, u16 did, u64 addr,
525 			    unsigned int size_order, u64 type);
526 };
527 
528 enum {
529 	SR_DMAR_FECTL_REG,
530 	SR_DMAR_FEDATA_REG,
531 	SR_DMAR_FEADDR_REG,
532 	SR_DMAR_FEUADDR_REG,
533 	MAX_SR_DMAR_REGS
534 };
535 
536 #define VTD_FLAG_TRANS_PRE_ENABLED	(1 << 0)
537 #define VTD_FLAG_IRQ_REMAP_PRE_ENABLED	(1 << 1)
538 #define VTD_FLAG_SVM_CAPABLE		(1 << 2)
539 
540 #define sm_supported(iommu)	(intel_iommu_sm && ecap_smts((iommu)->ecap))
541 #define pasid_supported(iommu)	(sm_supported(iommu) &&			\
542 				 ecap_pasid((iommu)->ecap))
543 #define ssads_supported(iommu) (sm_supported(iommu) &&                 \
544 				ecap_slads((iommu)->ecap))
545 #define nested_supported(iommu)	(sm_supported(iommu) &&			\
546 				 ecap_nest((iommu)->ecap))
547 
548 struct pasid_entry;
549 struct pasid_state_entry;
550 struct page_req_dsc;
551 
552 /*
553  * 0: Present
554  * 1-11: Reserved
555  * 12-63: Context Ptr (12 - (haw-1))
556  * 64-127: Reserved
557  */
558 struct root_entry {
559 	u64     lo;
560 	u64     hi;
561 };
562 
563 /*
564  * low 64 bits:
565  * 0: present
566  * 1: fault processing disable
567  * 2-3: translation type
568  * 12-63: address space root
569  * high 64 bits:
570  * 0-2: address width
571  * 3-6: aval
572  * 8-23: domain id
573  */
574 struct context_entry {
575 	u64 lo;
576 	u64 hi;
577 };
578 
579 struct iommu_domain_info {
580 	struct intel_iommu *iommu;
581 	unsigned int refcnt;		/* Refcount of devices per iommu */
582 	u16 did;			/* Domain ids per IOMMU. Use u16 since
583 					 * domain ids are 16 bit wide according
584 					 * to VT-d spec, section 9.3 */
585 };
586 
587 /*
588  * We start simply by using a fixed size for the batched descriptors. This
589  * size is currently sufficient for our needs. Future improvements could
590  * involve dynamically allocating the batch buffer based on actual demand,
591  * allowing us to adjust the batch size for optimal performance in different
592  * scenarios.
593  */
594 #define QI_MAX_BATCHED_DESC_COUNT 16
595 struct qi_batch {
596 	struct qi_desc descs[QI_MAX_BATCHED_DESC_COUNT];
597 	unsigned int index;
598 };
599 
600 struct dmar_domain {
601 	int	nid;			/* node id */
602 	struct xarray iommu_array;	/* Attached IOMMU array */
603 
604 	u8 iommu_coherency: 1;		/* indicate coherency of iommu access */
605 	u8 force_snooping : 1;		/* Create IOPTEs with snoop control */
606 	u8 set_pte_snp:1;
607 	u8 use_first_level:1;		/* DMA translation for the domain goes
608 					 * through the first level page table,
609 					 * otherwise, goes through the second
610 					 * level.
611 					 */
612 	u8 dirty_tracking:1;		/* Dirty tracking is enabled */
613 	u8 nested_parent:1;		/* Has other domains nested on it */
614 	u8 has_mappings:1;		/* Has mappings configured through
615 					 * iommu_map() interface.
616 					 */
617 
618 	spinlock_t lock;		/* Protect device tracking lists */
619 	struct list_head devices;	/* all devices' list */
620 	struct list_head dev_pasids;	/* all attached pasids */
621 
622 	spinlock_t cache_lock;		/* Protect the cache tag list */
623 	struct list_head cache_tags;	/* Cache tag list */
624 	struct qi_batch *qi_batch;	/* Batched QI descriptors */
625 
626 	int		iommu_superpage;/* Level of superpages supported:
627 					   0 == 4KiB (no superpages), 1 == 2MiB,
628 					   2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
629 	union {
630 		/* DMA remapping domain */
631 		struct {
632 			/* virtual address */
633 			struct dma_pte	*pgd;
634 			/* max guest address width */
635 			int		gaw;
636 			/*
637 			 * adjusted guest address width:
638 			 *   0: level 2 30-bit
639 			 *   1: level 3 39-bit
640 			 *   2: level 4 48-bit
641 			 *   3: level 5 57-bit
642 			 */
643 			int		agaw;
644 			/* maximum mapped address */
645 			u64		max_addr;
646 			/* Protect the s1_domains list */
647 			spinlock_t	s1_lock;
648 			/* Track s1_domains nested on this domain */
649 			struct list_head s1_domains;
650 		};
651 
652 		/* Nested user domain */
653 		struct {
654 			/* parent page table which the user domain is nested on */
655 			struct dmar_domain *s2_domain;
656 			/* page table attributes */
657 			struct iommu_hwpt_vtd_s1 s1_cfg;
658 			/* link to parent domain siblings */
659 			struct list_head s2_link;
660 		};
661 
662 		/* SVA domain */
663 		struct {
664 			struct mmu_notifier notifier;
665 		};
666 	};
667 
668 	struct iommu_domain domain;	/* generic domain data structure for
669 					   iommu core */
670 };
671 
672 /*
673  * In theory, the VT-d 4.0 spec can support up to 2 ^ 16 counters.
674  * But in practice, there are only 14 counters for the existing
675  * platform. Setting the max number of counters to 64 should be good
676  * enough for a long time. Also, supporting more than 64 counters
677  * requires more extras, e.g., extra freeze and overflow registers,
678  * which is not necessary for now.
679  */
680 #define IOMMU_PMU_IDX_MAX		64
681 
682 struct iommu_pmu {
683 	struct intel_iommu	*iommu;
684 	u32			num_cntr;	/* Number of counters */
685 	u32			num_eg;		/* Number of event group */
686 	u32			cntr_width;	/* Counter width */
687 	u32			cntr_stride;	/* Counter Stride */
688 	u32			filter;		/* Bitmask of filter support */
689 	void __iomem		*base;		/* the PerfMon base address */
690 	void __iomem		*cfg_reg;	/* counter configuration base address */
691 	void __iomem		*cntr_reg;	/* counter 0 address*/
692 	void __iomem		*overflow;	/* overflow status register */
693 
694 	u64			*evcap;		/* Indicates all supported events */
695 	u32			**cntr_evcap;	/* Supported events of each counter. */
696 
697 	struct pmu		pmu;
698 	DECLARE_BITMAP(used_mask, IOMMU_PMU_IDX_MAX);
699 	struct perf_event	*event_list[IOMMU_PMU_IDX_MAX];
700 	unsigned char		irq_name[16];
701 };
702 
703 #define IOMMU_IRQ_ID_OFFSET_PRQ		(DMAR_UNITS_SUPPORTED)
704 #define IOMMU_IRQ_ID_OFFSET_PERF	(2 * DMAR_UNITS_SUPPORTED)
705 
706 struct intel_iommu {
707 	void __iomem	*reg; /* Pointer to hardware regs, virtual addr */
708 	u64 		reg_phys; /* physical address of hw register set */
709 	u64		reg_size; /* size of hw register set */
710 	u64		cap;
711 	u64		ecap;
712 	u64		vccap;
713 	u64		ecmdcap[DMA_MAX_NUM_ECMDCAP];
714 	u32		gcmd; /* Holds TE, EAFL. Don't need SRTP, SFL, WBF */
715 	raw_spinlock_t	register_lock; /* protect register handling */
716 	int		seq_id;	/* sequence id of the iommu */
717 	int		agaw; /* agaw of this iommu */
718 	int		msagaw; /* max sagaw of this iommu */
719 	unsigned int	irq, pr_irq, perf_irq;
720 	u16		segment;     /* PCI segment# */
721 	unsigned char	name[16];    /* Device Name */
722 
723 #ifdef CONFIG_INTEL_IOMMU
724 	/* mutex to protect domain_ida */
725 	struct mutex	did_lock;
726 	struct ida	domain_ida; /* domain id allocator */
727 	unsigned long	*copied_tables; /* bitmap of copied tables */
728 	spinlock_t	lock; /* protect context, domain ids */
729 	struct root_entry *root_entry; /* virtual address */
730 
731 	struct iommu_flush flush;
732 #endif
733 	struct page_req_dsc *prq;
734 	unsigned char prq_name[16];    /* Name for PRQ interrupt */
735 	unsigned long prq_seq_number;
736 	struct completion prq_complete;
737 	struct iopf_queue *iopf_queue;
738 	unsigned char iopfq_name[16];
739 	/* Synchronization between fault report and iommu device release. */
740 	struct mutex iopf_lock;
741 	struct q_inval  *qi;            /* Queued invalidation info */
742 	u32 iommu_state[MAX_SR_DMAR_REGS]; /* Store iommu states between suspend and resume.*/
743 
744 	/* rb tree for all probed devices */
745 	struct rb_root device_rbtree;
746 	/* protect the device_rbtree */
747 	spinlock_t device_rbtree_lock;
748 
749 #ifdef CONFIG_IRQ_REMAP
750 	struct ir_table *ir_table;	/* Interrupt remapping info */
751 	struct irq_domain *ir_domain;
752 #endif
753 	struct iommu_device iommu;  /* IOMMU core code handle */
754 	int		node;
755 	u32		flags;      /* Software defined flags */
756 
757 	struct dmar_drhd_unit *drhd;
758 	void *perf_statistic;
759 
760 	struct iommu_pmu *pmu;
761 };
762 
763 /* PCI domain-device relationship */
764 struct device_domain_info {
765 	struct list_head link;	/* link to domain siblings */
766 	u32 segment;		/* PCI segment number */
767 	u8 bus;			/* PCI bus number */
768 	u8 devfn;		/* PCI devfn number */
769 	u16 pfsid;		/* SRIOV physical function source ID */
770 	u8 pasid_supported:3;
771 	u8 pasid_enabled:1;
772 	u8 pri_supported:1;
773 	u8 pri_enabled:1;
774 	u8 ats_supported:1;
775 	u8 ats_enabled:1;
776 	u8 dtlb_extra_inval:1;	/* Quirk for devices need extra flush */
777 	u8 domain_attached:1;	/* Device has domain attached */
778 	u8 ats_qdep;
779 	unsigned int iopf_refcount;
780 	struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
781 	struct intel_iommu *iommu; /* IOMMU used by this device */
782 	struct dmar_domain *domain; /* pointer to domain */
783 	struct pasid_table *pasid_table; /* pasid table */
784 	/* device tracking node(lookup by PCI RID) */
785 	struct rb_node node;
786 #ifdef CONFIG_INTEL_IOMMU_DEBUGFS
787 	struct dentry *debugfs_dentry; /* pointer to device directory dentry */
788 #endif
789 };
790 
791 struct dev_pasid_info {
792 	struct list_head link_domain;	/* link to domain siblings */
793 	struct device *dev;
794 	ioasid_t pasid;
795 #ifdef CONFIG_INTEL_IOMMU_DEBUGFS
796 	struct dentry *debugfs_dentry; /* pointer to pasid directory dentry */
797 #endif
798 };
799 
__iommu_flush_cache(struct intel_iommu * iommu,void * addr,int size)800 static inline void __iommu_flush_cache(
801 	struct intel_iommu *iommu, void *addr, int size)
802 {
803 	if (!ecap_coherent(iommu->ecap))
804 		clflush_cache_range(addr, size);
805 }
806 
807 /* Convert generic struct iommu_domain to private struct dmar_domain */
to_dmar_domain(struct iommu_domain * dom)808 static inline struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
809 {
810 	return container_of(dom, struct dmar_domain, domain);
811 }
812 
813 /*
814  * Domain ID 0 and 1 are reserved:
815  *
816  * If Caching mode is set, then invalid translations are tagged
817  * with domain-id 0, hence we need to pre-allocate it. We also
818  * use domain-id 0 as a marker for non-allocated domain-id, so
819  * make sure it is not used for a real domain.
820  *
821  * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid
822  * entry for first-level or pass-through translation modes should
823  * be programmed with a domain id different from those used for
824  * second-level or nested translation. We reserve a domain id for
825  * this purpose. This domain id is also used for identity domain
826  * in legacy mode.
827  */
828 #define FLPT_DEFAULT_DID		1
829 #define IDA_START_DID			2
830 
831 /* Retrieve the domain ID which has allocated to the domain */
832 static inline u16
domain_id_iommu(struct dmar_domain * domain,struct intel_iommu * iommu)833 domain_id_iommu(struct dmar_domain *domain, struct intel_iommu *iommu)
834 {
835 	struct iommu_domain_info *info =
836 			xa_load(&domain->iommu_array, iommu->seq_id);
837 
838 	return info->did;
839 }
840 
841 static inline u16
iommu_domain_did(struct iommu_domain * domain,struct intel_iommu * iommu)842 iommu_domain_did(struct iommu_domain *domain, struct intel_iommu *iommu)
843 {
844 	if (domain->type == IOMMU_DOMAIN_SVA ||
845 	    domain->type == IOMMU_DOMAIN_IDENTITY)
846 		return FLPT_DEFAULT_DID;
847 	return domain_id_iommu(to_dmar_domain(domain), iommu);
848 }
849 
dev_is_real_dma_subdevice(struct device * dev)850 static inline bool dev_is_real_dma_subdevice(struct device *dev)
851 {
852 	return dev && dev_is_pci(dev) &&
853 	       pci_real_dma_dev(to_pci_dev(dev)) != to_pci_dev(dev);
854 }
855 
856 /*
857  * 0: readable
858  * 1: writable
859  * 2-6: reserved
860  * 7: super page
861  * 8-10: available
862  * 11: snoop behavior
863  * 12-63: Host physical address
864  */
865 struct dma_pte {
866 	u64 val;
867 };
868 
dma_clear_pte(struct dma_pte * pte)869 static inline void dma_clear_pte(struct dma_pte *pte)
870 {
871 	pte->val = 0;
872 }
873 
dma_pte_addr(struct dma_pte * pte)874 static inline u64 dma_pte_addr(struct dma_pte *pte)
875 {
876 #ifdef CONFIG_64BIT
877 	return pte->val & VTD_PAGE_MASK;
878 #else
879 	/* Must have a full atomic 64-bit read */
880 	return  __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
881 #endif
882 }
883 
dma_pte_present(struct dma_pte * pte)884 static inline bool dma_pte_present(struct dma_pte *pte)
885 {
886 	return (pte->val & 3) != 0;
887 }
888 
dma_sl_pte_test_and_clear_dirty(struct dma_pte * pte,unsigned long flags)889 static inline bool dma_sl_pte_test_and_clear_dirty(struct dma_pte *pte,
890 						   unsigned long flags)
891 {
892 	if (flags & IOMMU_DIRTY_NO_CLEAR)
893 		return (pte->val & DMA_SL_PTE_DIRTY) != 0;
894 
895 	return test_and_clear_bit(DMA_SL_PTE_DIRTY_BIT,
896 				  (unsigned long *)&pte->val);
897 }
898 
dma_pte_superpage(struct dma_pte * pte)899 static inline bool dma_pte_superpage(struct dma_pte *pte)
900 {
901 	return (pte->val & DMA_PTE_LARGE_PAGE);
902 }
903 
first_pte_in_page(struct dma_pte * pte)904 static inline bool first_pte_in_page(struct dma_pte *pte)
905 {
906 	return IS_ALIGNED((unsigned long)pte, VTD_PAGE_SIZE);
907 }
908 
nr_pte_to_next_page(struct dma_pte * pte)909 static inline int nr_pte_to_next_page(struct dma_pte *pte)
910 {
911 	return first_pte_in_page(pte) ? BIT_ULL(VTD_STRIDE_SHIFT) :
912 		(struct dma_pte *)ALIGN((unsigned long)pte, VTD_PAGE_SIZE) - pte;
913 }
914 
context_present(struct context_entry * context)915 static inline bool context_present(struct context_entry *context)
916 {
917 	return (context->lo & 1);
918 }
919 
920 #define LEVEL_STRIDE		(9)
921 #define LEVEL_MASK		(((u64)1 << LEVEL_STRIDE) - 1)
922 #define MAX_AGAW_WIDTH		(64)
923 #define MAX_AGAW_PFN_WIDTH	(MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
924 
agaw_to_level(int agaw)925 static inline int agaw_to_level(int agaw)
926 {
927 	return agaw + 2;
928 }
929 
agaw_to_width(int agaw)930 static inline int agaw_to_width(int agaw)
931 {
932 	return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
933 }
934 
width_to_agaw(int width)935 static inline int width_to_agaw(int width)
936 {
937 	return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
938 }
939 
level_to_offset_bits(int level)940 static inline unsigned int level_to_offset_bits(int level)
941 {
942 	return (level - 1) * LEVEL_STRIDE;
943 }
944 
pfn_level_offset(u64 pfn,int level)945 static inline int pfn_level_offset(u64 pfn, int level)
946 {
947 	return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
948 }
949 
level_mask(int level)950 static inline u64 level_mask(int level)
951 {
952 	return -1ULL << level_to_offset_bits(level);
953 }
954 
level_size(int level)955 static inline u64 level_size(int level)
956 {
957 	return 1ULL << level_to_offset_bits(level);
958 }
959 
align_to_level(u64 pfn,int level)960 static inline u64 align_to_level(u64 pfn, int level)
961 {
962 	return (pfn + level_size(level) - 1) & level_mask(level);
963 }
964 
lvl_to_nr_pages(unsigned int lvl)965 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
966 {
967 	return 1UL << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
968 }
969 
context_set_present(struct context_entry * context)970 static inline void context_set_present(struct context_entry *context)
971 {
972 	context->lo |= 1;
973 }
974 
context_set_fault_enable(struct context_entry * context)975 static inline void context_set_fault_enable(struct context_entry *context)
976 {
977 	context->lo &= (((u64)-1) << 2) | 1;
978 }
979 
context_set_translation_type(struct context_entry * context,unsigned long value)980 static inline void context_set_translation_type(struct context_entry *context,
981 						unsigned long value)
982 {
983 	context->lo &= (((u64)-1) << 4) | 3;
984 	context->lo |= (value & 3) << 2;
985 }
986 
context_set_address_root(struct context_entry * context,unsigned long value)987 static inline void context_set_address_root(struct context_entry *context,
988 					    unsigned long value)
989 {
990 	context->lo &= ~VTD_PAGE_MASK;
991 	context->lo |= value & VTD_PAGE_MASK;
992 }
993 
context_set_address_width(struct context_entry * context,unsigned long value)994 static inline void context_set_address_width(struct context_entry *context,
995 					     unsigned long value)
996 {
997 	context->hi |= value & 7;
998 }
999 
context_set_domain_id(struct context_entry * context,unsigned long value)1000 static inline void context_set_domain_id(struct context_entry *context,
1001 					 unsigned long value)
1002 {
1003 	context->hi |= (value & ((1 << 16) - 1)) << 8;
1004 }
1005 
context_set_pasid(struct context_entry * context)1006 static inline void context_set_pasid(struct context_entry *context)
1007 {
1008 	context->lo |= CONTEXT_PASIDE;
1009 }
1010 
context_domain_id(struct context_entry * c)1011 static inline int context_domain_id(struct context_entry *c)
1012 {
1013 	return((c->hi >> 8) & 0xffff);
1014 }
1015 
context_clear_entry(struct context_entry * context)1016 static inline void context_clear_entry(struct context_entry *context)
1017 {
1018 	context->lo = 0;
1019 	context->hi = 0;
1020 }
1021 
1022 #ifdef CONFIG_INTEL_IOMMU
context_copied(struct intel_iommu * iommu,u8 bus,u8 devfn)1023 static inline bool context_copied(struct intel_iommu *iommu, u8 bus, u8 devfn)
1024 {
1025 	if (!iommu->copied_tables)
1026 		return false;
1027 
1028 	return test_bit(((long)bus << 8) | devfn, iommu->copied_tables);
1029 }
1030 
1031 static inline void
set_context_copied(struct intel_iommu * iommu,u8 bus,u8 devfn)1032 set_context_copied(struct intel_iommu *iommu, u8 bus, u8 devfn)
1033 {
1034 	set_bit(((long)bus << 8) | devfn, iommu->copied_tables);
1035 }
1036 
1037 static inline void
clear_context_copied(struct intel_iommu * iommu,u8 bus,u8 devfn)1038 clear_context_copied(struct intel_iommu *iommu, u8 bus, u8 devfn)
1039 {
1040 	clear_bit(((long)bus << 8) | devfn, iommu->copied_tables);
1041 }
1042 #endif /* CONFIG_INTEL_IOMMU */
1043 
1044 /*
1045  * Set the RID_PASID field of a scalable mode context entry. The
1046  * IOMMU hardware will use the PASID value set in this field for
1047  * DMA translations of DMA requests without PASID.
1048  */
1049 static inline void
context_set_sm_rid2pasid(struct context_entry * context,unsigned long pasid)1050 context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid)
1051 {
1052 	context->hi |= pasid & ((1 << 20) - 1);
1053 }
1054 
1055 /*
1056  * Set the DTE(Device-TLB Enable) field of a scalable mode context
1057  * entry.
1058  */
context_set_sm_dte(struct context_entry * context)1059 static inline void context_set_sm_dte(struct context_entry *context)
1060 {
1061 	context->lo |= BIT_ULL(2);
1062 }
1063 
1064 /*
1065  * Set the PRE(Page Request Enable) field of a scalable mode context
1066  * entry.
1067  */
context_set_sm_pre(struct context_entry * context)1068 static inline void context_set_sm_pre(struct context_entry *context)
1069 {
1070 	context->lo |= BIT_ULL(4);
1071 }
1072 
1073 /*
1074  * Clear the PRE(Page Request Enable) field of a scalable mode context
1075  * entry.
1076  */
context_clear_sm_pre(struct context_entry * context)1077 static inline void context_clear_sm_pre(struct context_entry *context)
1078 {
1079 	context->lo &= ~BIT_ULL(4);
1080 }
1081 
1082 /* Returns a number of VTD pages, but aligned to MM page size */
aligned_nrpages(unsigned long host_addr,size_t size)1083 static inline unsigned long aligned_nrpages(unsigned long host_addr, size_t size)
1084 {
1085 	host_addr &= ~PAGE_MASK;
1086 	return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1087 }
1088 
1089 /* Return a size from number of VTD pages. */
nrpages_to_size(unsigned long npages)1090 static inline unsigned long nrpages_to_size(unsigned long npages)
1091 {
1092 	return npages << VTD_PAGE_SHIFT;
1093 }
1094 
qi_desc_iotlb(struct intel_iommu * iommu,u16 did,u64 addr,unsigned int size_order,u64 type,struct qi_desc * desc)1095 static inline void qi_desc_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1096 				 unsigned int size_order, u64 type,
1097 				 struct qi_desc *desc)
1098 {
1099 	u8 dw = 0, dr = 0;
1100 	int ih = 0;
1101 
1102 	if (cap_write_drain(iommu->cap))
1103 		dw = 1;
1104 
1105 	if (cap_read_drain(iommu->cap))
1106 		dr = 1;
1107 
1108 	desc->qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1109 		| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1110 	desc->qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1111 		| QI_IOTLB_AM(size_order);
1112 	desc->qw2 = 0;
1113 	desc->qw3 = 0;
1114 }
1115 
qi_desc_dev_iotlb(u16 sid,u16 pfsid,u16 qdep,u64 addr,unsigned int mask,struct qi_desc * desc)1116 static inline void qi_desc_dev_iotlb(u16 sid, u16 pfsid, u16 qdep, u64 addr,
1117 				     unsigned int mask, struct qi_desc *desc)
1118 {
1119 	if (mask) {
1120 		addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1121 		desc->qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1122 	} else {
1123 		desc->qw1 = QI_DEV_IOTLB_ADDR(addr);
1124 	}
1125 
1126 	if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1127 		qdep = 0;
1128 
1129 	desc->qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1130 		   QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1131 	desc->qw2 = 0;
1132 	desc->qw3 = 0;
1133 }
1134 
qi_desc_piotlb(u16 did,u32 pasid,u64 addr,unsigned long npages,bool ih,struct qi_desc * desc)1135 static inline void qi_desc_piotlb(u16 did, u32 pasid, u64 addr,
1136 				  unsigned long npages, bool ih,
1137 				  struct qi_desc *desc)
1138 {
1139 	if (npages == -1) {
1140 		desc->qw0 = QI_EIOTLB_PASID(pasid) |
1141 				QI_EIOTLB_DID(did) |
1142 				QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1143 				QI_EIOTLB_TYPE;
1144 		desc->qw1 = 0;
1145 	} else {
1146 		int mask = ilog2(__roundup_pow_of_two(npages));
1147 		unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1148 
1149 		if (WARN_ON_ONCE(!IS_ALIGNED(addr, align)))
1150 			addr = ALIGN_DOWN(addr, align);
1151 
1152 		desc->qw0 = QI_EIOTLB_PASID(pasid) |
1153 				QI_EIOTLB_DID(did) |
1154 				QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1155 				QI_EIOTLB_TYPE;
1156 		desc->qw1 = QI_EIOTLB_ADDR(addr) |
1157 				QI_EIOTLB_IH(ih) |
1158 				QI_EIOTLB_AM(mask);
1159 	}
1160 }
1161 
qi_desc_dev_iotlb_pasid(u16 sid,u16 pfsid,u32 pasid,u16 qdep,u64 addr,unsigned int size_order,struct qi_desc * desc)1162 static inline void qi_desc_dev_iotlb_pasid(u16 sid, u16 pfsid, u32 pasid,
1163 					   u16 qdep, u64 addr,
1164 					   unsigned int size_order,
1165 					   struct qi_desc *desc)
1166 {
1167 	unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
1168 
1169 	desc->qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
1170 		QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
1171 		QI_DEV_IOTLB_PFSID(pfsid);
1172 
1173 	/*
1174 	 * If S bit is 0, we only flush a single page. If S bit is set,
1175 	 * The least significant zero bit indicates the invalidation address
1176 	 * range. VT-d spec 6.5.2.6.
1177 	 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
1178 	 * size order = 0 is PAGE_SIZE 4KB
1179 	 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
1180 	 * ECAP.
1181 	 */
1182 	if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order))
1183 		pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
1184 				    addr, size_order);
1185 
1186 	/* Take page address */
1187 	desc->qw1 = QI_DEV_EIOTLB_ADDR(addr);
1188 
1189 	if (size_order) {
1190 		/*
1191 		 * Existing 0s in address below size_order may be the least
1192 		 * significant bit, we must set them to 1s to avoid having
1193 		 * smaller size than desired.
1194 		 */
1195 		desc->qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
1196 					VTD_PAGE_SHIFT);
1197 		/* Clear size_order bit to indicate size */
1198 		desc->qw1 &= ~mask;
1199 		/* Set the S bit to indicate flushing more than 1 page */
1200 		desc->qw1 |= QI_DEV_EIOTLB_SIZE;
1201 	}
1202 }
1203 
1204 /* Convert value to context PASID directory size field coding. */
1205 #define context_pdts(pds)	(((pds) & 0x7) << 9)
1206 
1207 struct dmar_drhd_unit *dmar_find_matched_drhd_unit(struct pci_dev *dev);
1208 
1209 int dmar_enable_qi(struct intel_iommu *iommu);
1210 void dmar_disable_qi(struct intel_iommu *iommu);
1211 int dmar_reenable_qi(struct intel_iommu *iommu);
1212 void qi_global_iec(struct intel_iommu *iommu);
1213 
1214 void qi_flush_context(struct intel_iommu *iommu, u16 did,
1215 		      u16 sid, u8 fm, u64 type);
1216 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1217 		    unsigned int size_order, u64 type);
1218 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1219 			u16 qdep, u64 addr, unsigned mask);
1220 
1221 void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1222 		     unsigned long npages, bool ih);
1223 
1224 void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1225 			      u32 pasid, u16 qdep, u64 addr,
1226 			      unsigned int size_order);
1227 void quirk_extra_dev_tlb_flush(struct device_domain_info *info,
1228 			       unsigned long address, unsigned long pages,
1229 			       u32 pasid, u16 qdep);
1230 void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did, u64 granu,
1231 			  u32 pasid);
1232 
1233 int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1234 		   unsigned int count, unsigned long options);
1235 
1236 void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1237 			 unsigned int size_order, u64 type);
1238 /*
1239  * Options used in qi_submit_sync:
1240  * QI_OPT_WAIT_DRAIN - Wait for PRQ drain completion, spec 6.5.2.8.
1241  */
1242 #define QI_OPT_WAIT_DRAIN		BIT(0)
1243 
1244 int domain_attach_iommu(struct dmar_domain *domain, struct intel_iommu *iommu);
1245 void domain_detach_iommu(struct dmar_domain *domain, struct intel_iommu *iommu);
1246 void device_block_translation(struct device *dev);
1247 int paging_domain_compatible(struct iommu_domain *domain, struct device *dev);
1248 
1249 struct dev_pasid_info *
1250 domain_add_dev_pasid(struct iommu_domain *domain,
1251 		     struct device *dev, ioasid_t pasid);
1252 void domain_remove_dev_pasid(struct iommu_domain *domain,
1253 			     struct device *dev, ioasid_t pasid);
1254 
1255 int __domain_setup_first_level(struct intel_iommu *iommu,
1256 			       struct device *dev, ioasid_t pasid,
1257 			       u16 did, pgd_t *pgd, int flags,
1258 			       struct iommu_domain *old);
1259 
1260 int dmar_ir_support(void);
1261 
1262 void iommu_flush_write_buffer(struct intel_iommu *iommu);
1263 struct iommu_domain *
1264 intel_iommu_domain_alloc_nested(struct device *dev, struct iommu_domain *parent,
1265 				u32 flags,
1266 				const struct iommu_user_data *user_data);
1267 struct device *device_rbtree_find(struct intel_iommu *iommu, u16 rid);
1268 
1269 enum cache_tag_type {
1270 	CACHE_TAG_IOTLB,
1271 	CACHE_TAG_DEVTLB,
1272 	CACHE_TAG_NESTING_IOTLB,
1273 	CACHE_TAG_NESTING_DEVTLB,
1274 };
1275 
1276 struct cache_tag {
1277 	struct list_head node;
1278 	enum cache_tag_type type;
1279 	struct intel_iommu *iommu;
1280 	/*
1281 	 * The @dev field represents the location of the cache. For IOTLB, it
1282 	 * resides on the IOMMU hardware. @dev stores the device pointer to
1283 	 * the IOMMU hardware. For DevTLB, it locates in the PCIe endpoint.
1284 	 * @dev stores the device pointer to that endpoint.
1285 	 */
1286 	struct device *dev;
1287 	u16 domain_id;
1288 	ioasid_t pasid;
1289 	unsigned int users;
1290 };
1291 
1292 int cache_tag_assign_domain(struct dmar_domain *domain,
1293 			    struct device *dev, ioasid_t pasid);
1294 void cache_tag_unassign_domain(struct dmar_domain *domain,
1295 			       struct device *dev, ioasid_t pasid);
1296 void cache_tag_flush_range(struct dmar_domain *domain, unsigned long start,
1297 			   unsigned long end, int ih);
1298 void cache_tag_flush_all(struct dmar_domain *domain);
1299 void cache_tag_flush_range_np(struct dmar_domain *domain, unsigned long start,
1300 			      unsigned long end);
1301 
1302 void intel_context_flush_no_pasid(struct device_domain_info *info,
1303 				  struct context_entry *context, u16 did);
1304 
1305 int intel_iommu_enable_prq(struct intel_iommu *iommu);
1306 int intel_iommu_finish_prq(struct intel_iommu *iommu);
1307 void intel_iommu_page_response(struct device *dev, struct iopf_fault *evt,
1308 			       struct iommu_page_response *msg);
1309 void intel_iommu_drain_pasid_prq(struct device *dev, u32 pasid);
1310 
1311 int intel_iommu_enable_iopf(struct device *dev);
1312 void intel_iommu_disable_iopf(struct device *dev);
1313 
iopf_for_domain_set(struct iommu_domain * domain,struct device * dev)1314 static inline int iopf_for_domain_set(struct iommu_domain *domain,
1315 				      struct device *dev)
1316 {
1317 	if (!domain || !domain->iopf_handler)
1318 		return 0;
1319 
1320 	return intel_iommu_enable_iopf(dev);
1321 }
1322 
iopf_for_domain_remove(struct iommu_domain * domain,struct device * dev)1323 static inline void iopf_for_domain_remove(struct iommu_domain *domain,
1324 					  struct device *dev)
1325 {
1326 	if (!domain || !domain->iopf_handler)
1327 		return;
1328 
1329 	intel_iommu_disable_iopf(dev);
1330 }
1331 
iopf_for_domain_replace(struct iommu_domain * new,struct iommu_domain * old,struct device * dev)1332 static inline int iopf_for_domain_replace(struct iommu_domain *new,
1333 					  struct iommu_domain *old,
1334 					  struct device *dev)
1335 {
1336 	int ret;
1337 
1338 	ret = iopf_for_domain_set(new, dev);
1339 	if (ret)
1340 		return ret;
1341 
1342 	iopf_for_domain_remove(old, dev);
1343 
1344 	return 0;
1345 }
1346 
1347 #ifdef CONFIG_INTEL_IOMMU_SVM
1348 void intel_svm_check(struct intel_iommu *iommu);
1349 struct iommu_domain *intel_svm_domain_alloc(struct device *dev,
1350 					    struct mm_struct *mm);
1351 #else
intel_svm_check(struct intel_iommu * iommu)1352 static inline void intel_svm_check(struct intel_iommu *iommu) {}
intel_svm_domain_alloc(struct device * dev,struct mm_struct * mm)1353 static inline struct iommu_domain *intel_svm_domain_alloc(struct device *dev,
1354 							  struct mm_struct *mm)
1355 {
1356 	return ERR_PTR(-ENODEV);
1357 }
1358 #endif
1359 
1360 #ifdef CONFIG_INTEL_IOMMU_DEBUGFS
1361 void intel_iommu_debugfs_init(void);
1362 void intel_iommu_debugfs_create_dev(struct device_domain_info *info);
1363 void intel_iommu_debugfs_remove_dev(struct device_domain_info *info);
1364 void intel_iommu_debugfs_create_dev_pasid(struct dev_pasid_info *dev_pasid);
1365 void intel_iommu_debugfs_remove_dev_pasid(struct dev_pasid_info *dev_pasid);
1366 #else
intel_iommu_debugfs_init(void)1367 static inline void intel_iommu_debugfs_init(void) {}
intel_iommu_debugfs_create_dev(struct device_domain_info * info)1368 static inline void intel_iommu_debugfs_create_dev(struct device_domain_info *info) {}
intel_iommu_debugfs_remove_dev(struct device_domain_info * info)1369 static inline void intel_iommu_debugfs_remove_dev(struct device_domain_info *info) {}
intel_iommu_debugfs_create_dev_pasid(struct dev_pasid_info * dev_pasid)1370 static inline void intel_iommu_debugfs_create_dev_pasid(struct dev_pasid_info *dev_pasid) {}
intel_iommu_debugfs_remove_dev_pasid(struct dev_pasid_info * dev_pasid)1371 static inline void intel_iommu_debugfs_remove_dev_pasid(struct dev_pasid_info *dev_pasid) {}
1372 #endif /* CONFIG_INTEL_IOMMU_DEBUGFS */
1373 
1374 extern const struct attribute_group *intel_iommu_groups[];
1375 struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
1376 					 u8 devfn, int alloc);
1377 
1378 extern const struct iommu_ops intel_iommu_ops;
1379 
1380 #ifdef CONFIG_INTEL_IOMMU
1381 extern int intel_iommu_sm;
1382 int iommu_calculate_agaw(struct intel_iommu *iommu);
1383 int iommu_calculate_max_sagaw(struct intel_iommu *iommu);
1384 int ecmd_submit_sync(struct intel_iommu *iommu, u8 ecmd, u64 oa, u64 ob);
1385 
ecmd_has_pmu_essential(struct intel_iommu * iommu)1386 static inline bool ecmd_has_pmu_essential(struct intel_iommu *iommu)
1387 {
1388 	return (iommu->ecmdcap[DMA_ECMD_ECCAP3] & DMA_ECMD_ECCAP3_ESSENTIAL) ==
1389 		DMA_ECMD_ECCAP3_ESSENTIAL;
1390 }
1391 
1392 extern int dmar_disabled;
1393 extern int intel_iommu_enabled;
1394 #else
iommu_calculate_agaw(struct intel_iommu * iommu)1395 static inline int iommu_calculate_agaw(struct intel_iommu *iommu)
1396 {
1397 	return 0;
1398 }
iommu_calculate_max_sagaw(struct intel_iommu * iommu)1399 static inline int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
1400 {
1401 	return 0;
1402 }
1403 #define dmar_disabled	(1)
1404 #define intel_iommu_enabled (0)
1405 #define intel_iommu_sm (0)
1406 #endif
1407 
decode_prq_descriptor(char * str,size_t size,u64 dw0,u64 dw1,u64 dw2,u64 dw3)1408 static inline const char *decode_prq_descriptor(char *str, size_t size,
1409 		u64 dw0, u64 dw1, u64 dw2, u64 dw3)
1410 {
1411 	char *buf = str;
1412 	int bytes;
1413 
1414 	bytes = snprintf(buf, size,
1415 			 "rid=0x%llx addr=0x%llx %c%c%c%c%c pasid=0x%llx index=0x%llx",
1416 			 FIELD_GET(GENMASK_ULL(31, 16), dw0),
1417 			 FIELD_GET(GENMASK_ULL(63, 12), dw1),
1418 			 dw1 & BIT_ULL(0) ? 'r' : '-',
1419 			 dw1 & BIT_ULL(1) ? 'w' : '-',
1420 			 dw0 & BIT_ULL(52) ? 'x' : '-',
1421 			 dw0 & BIT_ULL(53) ? 'p' : '-',
1422 			 dw1 & BIT_ULL(2) ? 'l' : '-',
1423 			 FIELD_GET(GENMASK_ULL(51, 32), dw0),
1424 			 FIELD_GET(GENMASK_ULL(11, 3), dw1));
1425 
1426 	/* Private Data */
1427 	if (dw0 & BIT_ULL(9)) {
1428 		size -= bytes;
1429 		buf += bytes;
1430 		snprintf(buf, size, " private=0x%llx/0x%llx\n", dw2, dw3);
1431 	}
1432 
1433 	return str;
1434 }
1435 
1436 #endif
1437