xref: /linux/drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c (revision 9b043680446067358913edc2e9dd71bf8ffae208)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2008,2010 Intel Corporation
4  */
5 
6 #include <linux/dma-resv.h>
7 #include <linux/highmem.h>
8 #include <linux/sync_file.h>
9 #include <linux/uaccess.h>
10 
11 #include <drm/drm_auth.h>
12 #include <drm/drm_print.h>
13 #include <drm/drm_syncobj.h>
14 
15 #include "gem/i915_gem_ioctls.h"
16 #include "gt/intel_context.h"
17 #include "gt/intel_gpu_commands.h"
18 #include "gt/intel_gt.h"
19 #include "gt/intel_gt_buffer_pool.h"
20 #include "gt/intel_gt_pm.h"
21 #include "gt/intel_ring.h"
22 
23 #include "pxp/intel_pxp.h"
24 
25 #include "i915_cmd_parser.h"
26 #include "i915_drv.h"
27 #include "i915_file_private.h"
28 #include "i915_gem_clflush.h"
29 #include "i915_gem_context.h"
30 #include "i915_gem_evict.h"
31 #include "i915_gem_ioctls.h"
32 #include "i915_reg.h"
33 #include "i915_trace.h"
34 #include "i915_user_extensions.h"
35 
36 struct eb_vma {
37 	struct i915_vma *vma;
38 	unsigned int flags;
39 
40 	/** This vma's place in the execbuf reservation list */
41 	struct drm_i915_gem_exec_object2 *exec;
42 	struct list_head bind_link;
43 	struct list_head reloc_link;
44 
45 	struct hlist_node node;
46 	u32 handle;
47 };
48 
49 enum {
50 	FORCE_CPU_RELOC = 1,
51 	FORCE_GTT_RELOC,
52 	FORCE_GPU_RELOC,
53 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
54 };
55 
56 /* __EXEC_OBJECT_ flags > BIT(29) defined in i915_vma.h */
57 #define __EXEC_OBJECT_HAS_PIN		BIT(29)
58 #define __EXEC_OBJECT_HAS_FENCE		BIT(28)
59 #define __EXEC_OBJECT_USERPTR_INIT	BIT(27)
60 #define __EXEC_OBJECT_NEEDS_MAP		BIT(26)
61 #define __EXEC_OBJECT_NEEDS_BIAS	BIT(25)
62 #define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 25) /* all of the above + */
63 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
64 
65 #define __EXEC_HAS_RELOC	BIT(31)
66 #define __EXEC_ENGINE_PINNED	BIT(30)
67 #define __EXEC_USERPTR_USED	BIT(29)
68 #define __EXEC_INTERNAL_FLAGS	(~0u << 29)
69 #define UPDATE			PIN_OFFSET_FIXED
70 
71 #define BATCH_OFFSET_BIAS (256*1024)
72 
73 #define __I915_EXEC_ILLEGAL_FLAGS \
74 	(__I915_EXEC_UNKNOWN_FLAGS | \
75 	 I915_EXEC_CONSTANTS_MASK  | \
76 	 I915_EXEC_RESOURCE_STREAMER)
77 
78 /* Catch emission of unexpected errors for CI! */
79 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
80 #undef EINVAL
81 #define EINVAL ({ \
82 	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
83 	22; \
84 })
85 #endif
86 
87 /**
88  * DOC: User command execution
89  *
90  * Userspace submits commands to be executed on the GPU as an instruction
91  * stream within a GEM object we call a batchbuffer. This instructions may
92  * refer to other GEM objects containing auxiliary state such as kernels,
93  * samplers, render targets and even secondary batchbuffers. Userspace does
94  * not know where in the GPU memory these objects reside and so before the
95  * batchbuffer is passed to the GPU for execution, those addresses in the
96  * batchbuffer and auxiliary objects are updated. This is known as relocation,
97  * or patching. To try and avoid having to relocate each object on the next
98  * execution, userspace is told the location of those objects in this pass,
99  * but this remains just a hint as the kernel may choose a new location for
100  * any object in the future.
101  *
102  * At the level of talking to the hardware, submitting a batchbuffer for the
103  * GPU to execute is to add content to a buffer from which the HW
104  * command streamer is reading.
105  *
106  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
107  *    Execlists, this command is not placed on the same buffer as the
108  *    remaining items.
109  *
110  * 2. Add a command to invalidate caches to the buffer.
111  *
112  * 3. Add a batchbuffer start command to the buffer; the start command is
113  *    essentially a token together with the GPU address of the batchbuffer
114  *    to be executed.
115  *
116  * 4. Add a pipeline flush to the buffer.
117  *
118  * 5. Add a memory write command to the buffer to record when the GPU
119  *    is done executing the batchbuffer. The memory write writes the
120  *    global sequence number of the request, ``i915_request::global_seqno``;
121  *    the i915 driver uses the current value in the register to determine
122  *    if the GPU has completed the batchbuffer.
123  *
124  * 6. Add a user interrupt command to the buffer. This command instructs
125  *    the GPU to issue an interrupt when the command, pipeline flush and
126  *    memory write are completed.
127  *
128  * 7. Inform the hardware of the additional commands added to the buffer
129  *    (by updating the tail pointer).
130  *
131  * Processing an execbuf ioctl is conceptually split up into a few phases.
132  *
133  * 1. Validation - Ensure all the pointers, handles and flags are valid.
134  * 2. Reservation - Assign GPU address space for every object
135  * 3. Relocation - Update any addresses to point to the final locations
136  * 4. Serialisation - Order the request with respect to its dependencies
137  * 5. Construction - Construct a request to execute the batchbuffer
138  * 6. Submission (at some point in the future execution)
139  *
140  * Reserving resources for the execbuf is the most complicated phase. We
141  * neither want to have to migrate the object in the address space, nor do
142  * we want to have to update any relocations pointing to this object. Ideally,
143  * we want to leave the object where it is and for all the existing relocations
144  * to match. If the object is given a new address, or if userspace thinks the
145  * object is elsewhere, we have to parse all the relocation entries and update
146  * the addresses. Userspace can set the I915_EXEC_NO_RELOC flag to hint that
147  * all the target addresses in all of its objects match the value in the
148  * relocation entries and that they all match the presumed offsets given by the
149  * list of execbuffer objects. Using this knowledge, we know that if we haven't
150  * moved any buffers, all the relocation entries are valid and we can skip
151  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
152  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
153  *
154  *      The addresses written in the objects must match the corresponding
155  *      reloc.presumed_offset which in turn must match the corresponding
156  *      execobject.offset.
157  *
158  *      Any render targets written to in the batch must be flagged with
159  *      EXEC_OBJECT_WRITE.
160  *
161  *      To avoid stalling, execobject.offset should match the current
162  *      address of that object within the active context.
163  *
164  * The reservation is done is multiple phases. First we try and keep any
165  * object already bound in its current location - so as long as meets the
166  * constraints imposed by the new execbuffer. Any object left unbound after the
167  * first pass is then fitted into any available idle space. If an object does
168  * not fit, all objects are removed from the reservation and the process rerun
169  * after sorting the objects into a priority order (more difficult to fit
170  * objects are tried first). Failing that, the entire VM is cleared and we try
171  * to fit the execbuf once last time before concluding that it simply will not
172  * fit.
173  *
174  * A small complication to all of this is that we allow userspace not only to
175  * specify an alignment and a size for the object in the address space, but
176  * we also allow userspace to specify the exact offset. This objects are
177  * simpler to place (the location is known a priori) all we have to do is make
178  * sure the space is available.
179  *
180  * Once all the objects are in place, patching up the buried pointers to point
181  * to the final locations is a fairly simple job of walking over the relocation
182  * entry arrays, looking up the right address and rewriting the value into
183  * the object. Simple! ... The relocation entries are stored in user memory
184  * and so to access them we have to copy them into a local buffer. That copy
185  * has to avoid taking any pagefaults as they may lead back to a GEM object
186  * requiring the vm->mutex (i.e. recursive deadlock). So once again we split
187  * the relocation into multiple passes. First we try to do everything within an
188  * atomic context (avoid the pagefaults) which requires that we never wait. If
189  * we detect that we may wait, or if we need to fault, then we have to fallback
190  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
191  * bells yet?) Dropping the mutex means that we lose all the state we have
192  * built up so far for the execbuf and we must reset any global data. However,
193  * we do leave the objects pinned in their final locations - which is a
194  * potential issue for concurrent execbufs. Once we have left the mutex, we can
195  * allocate and copy all the relocation entries into a large array at our
196  * leisure, reacquire the mutex, reclaim all the objects and other state and
197  * then proceed to update any incorrect addresses with the objects.
198  *
199  * As we process the relocation entries, we maintain a record of whether the
200  * object is being written to. Using NORELOC, we expect userspace to provide
201  * this information instead. We also check whether we can skip the relocation
202  * by comparing the expected value inside the relocation entry with the target's
203  * final address. If they differ, we have to map the current object and rewrite
204  * the 4 or 8 byte pointer within.
205  *
206  * Serialising an execbuf is quite simple according to the rules of the GEM
207  * ABI. Execution within each context is ordered by the order of submission.
208  * Writes to any GEM object are in order of submission and are exclusive. Reads
209  * from a GEM object are unordered with respect to other reads, but ordered by
210  * writes. A write submitted after a read cannot occur before the read, and
211  * similarly any read submitted after a write cannot occur before the write.
212  * Writes are ordered between engines such that only one write occurs at any
213  * time (completing any reads beforehand) - using semaphores where available
214  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
215  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
216  * reads before starting, and any read (either using set-domain or pread) must
217  * flush all GPU writes before starting. (Note we only employ a barrier before,
218  * we currently rely on userspace not concurrently starting a new execution
219  * whilst reading or writing to an object. This may be an advantage or not
220  * depending on how much you trust userspace not to shoot themselves in the
221  * foot.) Serialisation may just result in the request being inserted into
222  * a DAG awaiting its turn, but most simple is to wait on the CPU until
223  * all dependencies are resolved.
224  *
225  * After all of that, is just a matter of closing the request and handing it to
226  * the hardware (well, leaving it in a queue to be executed). However, we also
227  * offer the ability for batchbuffers to be run with elevated privileges so
228  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
229  * Before any batch is given extra privileges we first must check that it
230  * contains no nefarious instructions, we check that each instruction is from
231  * our whitelist and all registers are also from an allowed list. We first
232  * copy the user's batchbuffer to a shadow (so that the user doesn't have
233  * access to it, either by the CPU or GPU as we scan it) and then parse each
234  * instruction. If everything is ok, we set a flag telling the hardware to run
235  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
236  */
237 
238 struct eb_fence {
239 	struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
240 	struct dma_fence *dma_fence;
241 	u64 value;
242 	struct dma_fence_chain *chain_fence;
243 };
244 
245 struct i915_execbuffer {
246 	struct drm_i915_private *i915; /** i915 backpointer */
247 	struct drm_file *file; /** per-file lookup tables and limits */
248 	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
249 	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
250 	struct eb_vma *vma;
251 
252 	struct intel_gt *gt; /* gt for the execbuf */
253 	struct intel_context *context; /* logical state for the request */
254 	struct i915_gem_context *gem_context; /** caller's context */
255 	intel_wakeref_t wakeref;
256 	intel_wakeref_t wakeref_gt0;
257 
258 	/** our requests to build */
259 	struct i915_request *requests[MAX_ENGINE_INSTANCE + 1];
260 	/** identity of the batch obj/vma */
261 	struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1];
262 	struct i915_vma *trampoline; /** trampoline used for chaining */
263 
264 	/** used for excl fence in dma_resv objects when > 1 BB submitted */
265 	struct dma_fence *composite_fence;
266 
267 	/** actual size of execobj[] as we may extend it for the cmdparser */
268 	unsigned int buffer_count;
269 
270 	/* number of batches in execbuf IOCTL */
271 	unsigned int num_batches;
272 
273 	/** list of vma not yet bound during reservation phase */
274 	struct list_head unbound;
275 
276 	/** list of vma that have execobj.relocation_count */
277 	struct list_head relocs;
278 
279 	struct i915_gem_ww_ctx ww;
280 
281 	/**
282 	 * Track the most recently used object for relocations, as we
283 	 * frequently have to perform multiple relocations within the same
284 	 * obj/page
285 	 */
286 	struct reloc_cache {
287 		struct drm_mm_node node; /** temporary GTT binding */
288 		unsigned long vaddr; /** Current kmap address */
289 		unsigned long page; /** Currently mapped page index */
290 		unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
291 		bool use_64bit_reloc : 1;
292 		bool has_llc : 1;
293 		bool has_fence : 1;
294 		bool needs_unfenced : 1;
295 	} reloc_cache;
296 
297 	u64 invalid_flags; /** Set of execobj.flags that are invalid */
298 
299 	/** Length of batch within object */
300 	u64 batch_len[MAX_ENGINE_INSTANCE + 1];
301 	u32 batch_start_offset; /** Location within object of batch */
302 	u32 batch_flags; /** Flags composed for emit_bb_start() */
303 	struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
304 
305 	/**
306 	 * Indicate either the size of the hashtable used to resolve
307 	 * relocation handles, or if negative that we are using a direct
308 	 * index into the execobj[].
309 	 */
310 	int lut_size;
311 	struct hlist_head *buckets; /** ht for relocation handles */
312 
313 	struct eb_fence *fences;
314 	unsigned long num_fences;
315 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
316 	struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1];
317 #endif
318 };
319 
320 static int eb_parse(struct i915_execbuffer *eb);
321 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle);
322 static void eb_unpin_engine(struct i915_execbuffer *eb);
323 static void eb_capture_release(struct i915_execbuffer *eb);
324 
eb_use_cmdparser(const struct i915_execbuffer * eb)325 static bool eb_use_cmdparser(const struct i915_execbuffer *eb)
326 {
327 	return intel_engine_requires_cmd_parser(eb->context->engine) ||
328 		(intel_engine_using_cmd_parser(eb->context->engine) &&
329 		 eb->args->batch_len);
330 }
331 
eb_create(struct i915_execbuffer * eb)332 static int eb_create(struct i915_execbuffer *eb)
333 {
334 	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
335 		unsigned int size = 1 + ilog2(eb->buffer_count);
336 
337 		/*
338 		 * Without a 1:1 association between relocation handles and
339 		 * the execobject[] index, we instead create a hashtable.
340 		 * We size it dynamically based on available memory, starting
341 		 * first with 1:1 associative hash and scaling back until
342 		 * the allocation succeeds.
343 		 *
344 		 * Later on we use a positive lut_size to indicate we are
345 		 * using this hashtable, and a negative value to indicate a
346 		 * direct lookup.
347 		 */
348 		do {
349 			gfp_t flags;
350 
351 			/* While we can still reduce the allocation size, don't
352 			 * raise a warning and allow the allocation to fail.
353 			 * On the last pass though, we want to try as hard
354 			 * as possible to perform the allocation and warn
355 			 * if it fails.
356 			 */
357 			flags = GFP_KERNEL;
358 			if (size > 1)
359 				flags |= __GFP_NORETRY | __GFP_NOWARN;
360 
361 			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
362 					      flags);
363 			if (eb->buckets)
364 				break;
365 		} while (--size);
366 
367 		if (unlikely(!size))
368 			return -ENOMEM;
369 
370 		eb->lut_size = size;
371 	} else {
372 		eb->lut_size = -eb->buffer_count;
373 	}
374 
375 	return 0;
376 }
377 
378 static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 * entry,const struct i915_vma * vma,unsigned int flags)379 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
380 		 const struct i915_vma *vma,
381 		 unsigned int flags)
382 {
383 	const u64 start = i915_vma_offset(vma);
384 	const u64 size = i915_vma_size(vma);
385 
386 	if (size < entry->pad_to_size)
387 		return true;
388 
389 	if (entry->alignment && !IS_ALIGNED(start, entry->alignment))
390 		return true;
391 
392 	if (flags & EXEC_OBJECT_PINNED &&
393 	    start != entry->offset)
394 		return true;
395 
396 	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
397 	    start < BATCH_OFFSET_BIAS)
398 		return true;
399 
400 	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
401 	    (start + size + 4095) >> 32)
402 		return true;
403 
404 	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
405 	    !i915_vma_is_map_and_fenceable(vma))
406 		return true;
407 
408 	return false;
409 }
410 
eb_pin_flags(const struct drm_i915_gem_exec_object2 * entry,unsigned int exec_flags)411 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
412 			unsigned int exec_flags)
413 {
414 	u64 pin_flags = 0;
415 
416 	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
417 		pin_flags |= PIN_GLOBAL;
418 
419 	/*
420 	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
421 	 * limit address to the first 4GBs for unflagged objects.
422 	 */
423 	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
424 		pin_flags |= PIN_ZONE_4G;
425 
426 	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
427 		pin_flags |= PIN_MAPPABLE;
428 
429 	if (exec_flags & EXEC_OBJECT_PINNED)
430 		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
431 	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
432 		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
433 
434 	return pin_flags;
435 }
436 
437 static int
eb_pin_vma(struct i915_execbuffer * eb,const struct drm_i915_gem_exec_object2 * entry,struct eb_vma * ev)438 eb_pin_vma(struct i915_execbuffer *eb,
439 	   const struct drm_i915_gem_exec_object2 *entry,
440 	   struct eb_vma *ev)
441 {
442 	struct i915_vma *vma = ev->vma;
443 	u64 pin_flags;
444 	int err;
445 
446 	if (vma->node.size)
447 		pin_flags =  __i915_vma_offset(vma);
448 	else
449 		pin_flags = entry->offset & PIN_OFFSET_MASK;
450 
451 	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE;
452 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
453 		pin_flags |= PIN_GLOBAL;
454 
455 	/* Attempt to reuse the current location if available */
456 	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
457 	if (err == -EDEADLK)
458 		return err;
459 
460 	if (unlikely(err)) {
461 		if (entry->flags & EXEC_OBJECT_PINNED)
462 			return err;
463 
464 		/* Failing that pick any _free_ space if suitable */
465 		err = i915_vma_pin_ww(vma, &eb->ww,
466 					     entry->pad_to_size,
467 					     entry->alignment,
468 					     eb_pin_flags(entry, ev->flags) |
469 					     PIN_USER | PIN_NOEVICT | PIN_VALIDATE);
470 		if (unlikely(err))
471 			return err;
472 	}
473 
474 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
475 		err = i915_vma_pin_fence(vma);
476 		if (unlikely(err))
477 			return err;
478 
479 		if (vma->fence)
480 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
481 	}
482 
483 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
484 	if (eb_vma_misplaced(entry, vma, ev->flags))
485 		return -EBADSLT;
486 
487 	return 0;
488 }
489 
490 static void
eb_unreserve_vma(struct eb_vma * ev)491 eb_unreserve_vma(struct eb_vma *ev)
492 {
493 	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
494 		__i915_vma_unpin_fence(ev->vma);
495 
496 	ev->flags &= ~__EXEC_OBJECT_RESERVED;
497 }
498 
499 static int
eb_validate_vma(struct i915_execbuffer * eb,struct drm_i915_gem_exec_object2 * entry,struct i915_vma * vma)500 eb_validate_vma(struct i915_execbuffer *eb,
501 		struct drm_i915_gem_exec_object2 *entry,
502 		struct i915_vma *vma)
503 {
504 	/* Relocations are disallowed for all platforms after TGL-LP.  This
505 	 * also covers all platforms with local memory.
506 	 */
507 	if (entry->relocation_count &&
508 	    GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
509 		return -EINVAL;
510 
511 	if (unlikely(entry->flags & eb->invalid_flags))
512 		return -EINVAL;
513 
514 	if (unlikely(entry->alignment &&
515 		     !is_power_of_2_u64(entry->alignment)))
516 		return -EINVAL;
517 
518 	/*
519 	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
520 	 * any non-page-aligned or non-canonical addresses.
521 	 */
522 	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
523 		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
524 		return -EINVAL;
525 
526 	/* pad_to_size was once a reserved field, so sanitize it */
527 	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
528 		if (unlikely(offset_in_page(entry->pad_to_size)))
529 			return -EINVAL;
530 	} else {
531 		entry->pad_to_size = 0;
532 	}
533 	/*
534 	 * From drm_mm perspective address space is continuous,
535 	 * so from this point we're always using non-canonical
536 	 * form internally.
537 	 */
538 	entry->offset = gen8_noncanonical_addr(entry->offset);
539 
540 	if (!eb->reloc_cache.has_fence) {
541 		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
542 	} else {
543 		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
544 		     eb->reloc_cache.needs_unfenced) &&
545 		    i915_gem_object_is_tiled(vma->obj))
546 			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
547 	}
548 
549 	return 0;
550 }
551 
552 static bool
is_batch_buffer(struct i915_execbuffer * eb,unsigned int buffer_idx)553 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx)
554 {
555 	return eb->args->flags & I915_EXEC_BATCH_FIRST ?
556 		buffer_idx < eb->num_batches :
557 		buffer_idx >= eb->args->buffer_count - eb->num_batches;
558 }
559 
560 static int
eb_add_vma(struct i915_execbuffer * eb,unsigned int * current_batch,unsigned int i,struct i915_vma * vma)561 eb_add_vma(struct i915_execbuffer *eb,
562 	   unsigned int *current_batch,
563 	   unsigned int i,
564 	   struct i915_vma *vma)
565 {
566 	struct drm_i915_private *i915 = eb->i915;
567 	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
568 	struct eb_vma *ev = &eb->vma[i];
569 
570 	ev->vma = vma;
571 	ev->exec = entry;
572 	ev->flags = entry->flags;
573 
574 	if (eb->lut_size > 0) {
575 		ev->handle = entry->handle;
576 		hlist_add_head(&ev->node,
577 			       &eb->buckets[hash_32(entry->handle,
578 						    eb->lut_size)]);
579 	}
580 
581 	if (entry->relocation_count)
582 		list_add_tail(&ev->reloc_link, &eb->relocs);
583 
584 	/*
585 	 * SNA is doing fancy tricks with compressing batch buffers, which leads
586 	 * to negative relocation deltas. Usually that works out ok since the
587 	 * relocate address is still positive, except when the batch is placed
588 	 * very low in the GTT. Ensure this doesn't happen.
589 	 *
590 	 * Note that actual hangs have only been observed on gen7, but for
591 	 * paranoia do it everywhere.
592 	 */
593 	if (is_batch_buffer(eb, i)) {
594 		if (entry->relocation_count &&
595 		    !(ev->flags & EXEC_OBJECT_PINNED))
596 			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
597 		if (eb->reloc_cache.has_fence)
598 			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
599 
600 		eb->batches[*current_batch] = ev;
601 
602 		if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) {
603 			drm_dbg(&i915->drm,
604 				"Attempting to use self-modifying batch buffer\n");
605 			return -EINVAL;
606 		}
607 
608 		if (range_overflows_t(u64,
609 				      eb->batch_start_offset,
610 				      eb->args->batch_len,
611 				      ev->vma->size)) {
612 			drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
613 			return -EINVAL;
614 		}
615 
616 		if (eb->args->batch_len == 0)
617 			eb->batch_len[*current_batch] = ev->vma->size -
618 				eb->batch_start_offset;
619 		else
620 			eb->batch_len[*current_batch] = eb->args->batch_len;
621 		if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */
622 			drm_dbg(&i915->drm, "Invalid batch length\n");
623 			return -EINVAL;
624 		}
625 
626 		++*current_batch;
627 	}
628 
629 	return 0;
630 }
631 
use_cpu_reloc(const struct reloc_cache * cache,const struct drm_i915_gem_object * obj)632 static int use_cpu_reloc(const struct reloc_cache *cache,
633 			 const struct drm_i915_gem_object *obj)
634 {
635 	if (!i915_gem_object_has_struct_page(obj))
636 		return false;
637 
638 	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
639 		return true;
640 
641 	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
642 		return false;
643 
644 	/*
645 	 * For objects created by userspace through GEM_CREATE with pat_index
646 	 * set by set_pat extension, i915_gem_object_has_cache_level() always
647 	 * return true, otherwise the call would fall back to checking whether
648 	 * the object is un-cached.
649 	 */
650 	return (cache->has_llc ||
651 		obj->cache_dirty ||
652 		!i915_gem_object_has_cache_level(obj, I915_CACHE_NONE));
653 }
654 
eb_reserve_vma(struct i915_execbuffer * eb,struct eb_vma * ev,u64 pin_flags)655 static int eb_reserve_vma(struct i915_execbuffer *eb,
656 			  struct eb_vma *ev,
657 			  u64 pin_flags)
658 {
659 	struct drm_i915_gem_exec_object2 *entry = ev->exec;
660 	struct i915_vma *vma = ev->vma;
661 	int err;
662 
663 	if (drm_mm_node_allocated(&vma->node) &&
664 	    eb_vma_misplaced(entry, vma, ev->flags)) {
665 		err = i915_vma_unbind(vma);
666 		if (err)
667 			return err;
668 	}
669 
670 	err = i915_vma_pin_ww(vma, &eb->ww,
671 			   entry->pad_to_size, entry->alignment,
672 			   eb_pin_flags(entry, ev->flags) | pin_flags);
673 	if (err)
674 		return err;
675 
676 	if (entry->offset != i915_vma_offset(vma)) {
677 		entry->offset = i915_vma_offset(vma) | UPDATE;
678 		eb->args->flags |= __EXEC_HAS_RELOC;
679 	}
680 
681 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
682 		err = i915_vma_pin_fence(vma);
683 		if (unlikely(err))
684 			return err;
685 
686 		if (vma->fence)
687 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
688 	}
689 
690 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
691 	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
692 
693 	return 0;
694 }
695 
eb_unbind(struct i915_execbuffer * eb,bool force)696 static bool eb_unbind(struct i915_execbuffer *eb, bool force)
697 {
698 	const unsigned int count = eb->buffer_count;
699 	unsigned int i;
700 	struct list_head last;
701 	bool unpinned = false;
702 
703 	/* Resort *all* the objects into priority order */
704 	INIT_LIST_HEAD(&eb->unbound);
705 	INIT_LIST_HEAD(&last);
706 
707 	for (i = 0; i < count; i++) {
708 		struct eb_vma *ev = &eb->vma[i];
709 		unsigned int flags = ev->flags;
710 
711 		if (!force && flags & EXEC_OBJECT_PINNED &&
712 		    flags & __EXEC_OBJECT_HAS_PIN)
713 			continue;
714 
715 		unpinned = true;
716 		eb_unreserve_vma(ev);
717 
718 		if (flags & EXEC_OBJECT_PINNED)
719 			/* Pinned must have their slot */
720 			list_add(&ev->bind_link, &eb->unbound);
721 		else if (flags & __EXEC_OBJECT_NEEDS_MAP)
722 			/* Map require the lowest 256MiB (aperture) */
723 			list_add_tail(&ev->bind_link, &eb->unbound);
724 		else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
725 			/* Prioritise 4GiB region for restricted bo */
726 			list_add(&ev->bind_link, &last);
727 		else
728 			list_add_tail(&ev->bind_link, &last);
729 	}
730 
731 	list_splice_tail(&last, &eb->unbound);
732 	return unpinned;
733 }
734 
eb_reserve(struct i915_execbuffer * eb)735 static int eb_reserve(struct i915_execbuffer *eb)
736 {
737 	struct eb_vma *ev;
738 	unsigned int pass;
739 	int err = 0;
740 
741 	/*
742 	 * We have one more buffers that we couldn't bind, which could be due to
743 	 * various reasons. To resolve this we have 4 passes, with every next
744 	 * level turning the screws tighter:
745 	 *
746 	 * 0. Unbind all objects that do not match the GTT constraints for the
747 	 * execbuffer (fenceable, mappable, alignment etc). Bind all new
748 	 * objects.  This avoids unnecessary unbinding of later objects in order
749 	 * to make room for the earlier objects *unless* we need to defragment.
750 	 *
751 	 * 1. Reorder the buffers, where objects with the most restrictive
752 	 * placement requirements go first (ignoring fixed location buffers for
753 	 * now).  For example, objects needing the mappable aperture (the first
754 	 * 256M of GTT), should go first vs objects that can be placed just
755 	 * about anywhere. Repeat the previous pass.
756 	 *
757 	 * 2. Consider buffers that are pinned at a fixed location. Also try to
758 	 * evict the entire VM this time, leaving only objects that we were
759 	 * unable to lock. Try again to bind the buffers. (still using the new
760 	 * buffer order).
761 	 *
762 	 * 3. We likely have object lock contention for one or more stubborn
763 	 * objects in the VM, for which we need to evict to make forward
764 	 * progress (perhaps we are fighting the shrinker?). When evicting the
765 	 * VM this time around, anything that we can't lock we now track using
766 	 * the busy_bo, using the full lock (after dropping the vm->mutex to
767 	 * prevent deadlocks), instead of trylock. We then continue to evict the
768 	 * VM, this time with the stubborn object locked, which we can now
769 	 * hopefully unbind (if still bound in the VM). Repeat until the VM is
770 	 * evicted. Finally we should be able bind everything.
771 	 */
772 	for (pass = 0; pass <= 3; pass++) {
773 		int pin_flags = PIN_USER | PIN_VALIDATE;
774 
775 		if (pass == 0)
776 			pin_flags |= PIN_NONBLOCK;
777 
778 		if (pass >= 1)
779 			eb_unbind(eb, pass >= 2);
780 
781 		if (pass == 2) {
782 			err = mutex_lock_interruptible(&eb->context->vm->mutex);
783 			if (!err) {
784 				err = i915_gem_evict_vm(eb->context->vm, &eb->ww, NULL);
785 				mutex_unlock(&eb->context->vm->mutex);
786 			}
787 			if (err)
788 				return err;
789 		}
790 
791 		if (pass == 3) {
792 retry:
793 			err = mutex_lock_interruptible(&eb->context->vm->mutex);
794 			if (!err) {
795 				struct drm_i915_gem_object *busy_bo = NULL;
796 
797 				err = i915_gem_evict_vm(eb->context->vm, &eb->ww, &busy_bo);
798 				mutex_unlock(&eb->context->vm->mutex);
799 				if (err && busy_bo) {
800 					err = i915_gem_object_lock(busy_bo, &eb->ww);
801 					i915_gem_object_put(busy_bo);
802 					if (!err)
803 						goto retry;
804 				}
805 			}
806 			if (err)
807 				return err;
808 		}
809 
810 		list_for_each_entry(ev, &eb->unbound, bind_link) {
811 			err = eb_reserve_vma(eb, ev, pin_flags);
812 			if (err)
813 				break;
814 		}
815 
816 		if (err != -ENOSPC)
817 			break;
818 	}
819 
820 	return err;
821 }
822 
eb_select_context(struct i915_execbuffer * eb)823 static int eb_select_context(struct i915_execbuffer *eb)
824 {
825 	struct i915_gem_context *ctx;
826 
827 	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
828 	if (IS_ERR(ctx))
829 		return PTR_ERR(ctx);
830 
831 	eb->gem_context = ctx;
832 	if (i915_gem_context_has_full_ppgtt(ctx))
833 		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
834 
835 	return 0;
836 }
837 
__eb_add_lut(struct i915_execbuffer * eb,u32 handle,struct i915_vma * vma)838 static int __eb_add_lut(struct i915_execbuffer *eb,
839 			u32 handle, struct i915_vma *vma)
840 {
841 	struct i915_gem_context *ctx = eb->gem_context;
842 	struct i915_lut_handle *lut;
843 	int err;
844 
845 	lut = i915_lut_handle_alloc();
846 	if (unlikely(!lut))
847 		return -ENOMEM;
848 
849 	i915_vma_get(vma);
850 	if (!atomic_fetch_inc(&vma->open_count))
851 		i915_vma_reopen(vma);
852 	lut->handle = handle;
853 	lut->ctx = ctx;
854 
855 	/* Check that the context hasn't been closed in the meantime */
856 	err = -EINTR;
857 	if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
858 		if (likely(!i915_gem_context_is_closed(ctx)))
859 			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
860 		else
861 			err = -ENOENT;
862 		if (err == 0) { /* And nor has this handle */
863 			struct drm_i915_gem_object *obj = vma->obj;
864 
865 			spin_lock(&obj->lut_lock);
866 			if (idr_find(&eb->file->object_idr, handle) == obj) {
867 				list_add(&lut->obj_link, &obj->lut_list);
868 			} else {
869 				radix_tree_delete(&ctx->handles_vma, handle);
870 				err = -ENOENT;
871 			}
872 			spin_unlock(&obj->lut_lock);
873 		}
874 		mutex_unlock(&ctx->lut_mutex);
875 	}
876 	if (unlikely(err))
877 		goto err;
878 
879 	return 0;
880 
881 err:
882 	i915_vma_close(vma);
883 	i915_vma_put(vma);
884 	i915_lut_handle_free(lut);
885 	return err;
886 }
887 
eb_lookup_vma(struct i915_execbuffer * eb,u32 handle)888 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
889 {
890 	struct i915_address_space *vm = eb->context->vm;
891 
892 	do {
893 		struct drm_i915_gem_object *obj;
894 		struct i915_vma *vma;
895 		int err;
896 
897 		rcu_read_lock();
898 		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
899 		if (likely(vma && vma->vm == vm))
900 			vma = i915_vma_tryget(vma);
901 		rcu_read_unlock();
902 		if (likely(vma))
903 			return vma;
904 
905 		obj = i915_gem_object_lookup(eb->file, handle);
906 		if (unlikely(!obj))
907 			return ERR_PTR(-ENOENT);
908 
909 		/*
910 		 * If the user has opted-in for protected-object tracking, make
911 		 * sure the object encryption can be used.
912 		 * We only need to do this when the object is first used with
913 		 * this context, because the context itself will be banned when
914 		 * the protected objects become invalid.
915 		 */
916 		if (i915_gem_context_uses_protected_content(eb->gem_context) &&
917 		    i915_gem_object_is_protected(obj)) {
918 			err = intel_pxp_key_check(intel_bo_to_drm_bo(obj), true);
919 			if (err) {
920 				i915_gem_object_put(obj);
921 				return ERR_PTR(err);
922 			}
923 		}
924 
925 		vma = i915_vma_instance(obj, vm, NULL);
926 		if (IS_ERR(vma)) {
927 			i915_gem_object_put(obj);
928 			return vma;
929 		}
930 
931 		err = __eb_add_lut(eb, handle, vma);
932 		if (likely(!err))
933 			return vma;
934 
935 		i915_gem_object_put(obj);
936 		if (err != -EEXIST)
937 			return ERR_PTR(err);
938 	} while (1);
939 }
940 
eb_lookup_vmas(struct i915_execbuffer * eb)941 static int eb_lookup_vmas(struct i915_execbuffer *eb)
942 {
943 	unsigned int i, current_batch = 0;
944 	int err = 0;
945 
946 	INIT_LIST_HEAD(&eb->relocs);
947 
948 	for (i = 0; i < eb->buffer_count; i++) {
949 		struct i915_vma *vma;
950 
951 		vma = eb_lookup_vma(eb, eb->exec[i].handle);
952 		if (IS_ERR(vma)) {
953 			err = PTR_ERR(vma);
954 			return err;
955 		}
956 
957 		err = eb_validate_vma(eb, &eb->exec[i], vma);
958 		if (unlikely(err)) {
959 			i915_vma_put(vma);
960 			return err;
961 		}
962 
963 		err = eb_add_vma(eb, &current_batch, i, vma);
964 		if (err)
965 			return err;
966 
967 		if (i915_gem_object_is_userptr(vma->obj)) {
968 			err = i915_gem_object_userptr_submit_init(vma->obj);
969 			if (err)
970 				return err;
971 
972 			eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
973 			eb->args->flags |= __EXEC_USERPTR_USED;
974 		}
975 	}
976 
977 	return 0;
978 }
979 
eb_lock_vmas(struct i915_execbuffer * eb)980 static int eb_lock_vmas(struct i915_execbuffer *eb)
981 {
982 	unsigned int i;
983 	int err;
984 
985 	for (i = 0; i < eb->buffer_count; i++) {
986 		struct eb_vma *ev = &eb->vma[i];
987 		struct i915_vma *vma = ev->vma;
988 
989 		err = i915_gem_object_lock(vma->obj, &eb->ww);
990 		if (err)
991 			return err;
992 	}
993 
994 	return 0;
995 }
996 
eb_validate_vmas(struct i915_execbuffer * eb)997 static int eb_validate_vmas(struct i915_execbuffer *eb)
998 {
999 	unsigned int i;
1000 	int err;
1001 
1002 	INIT_LIST_HEAD(&eb->unbound);
1003 
1004 	err = eb_lock_vmas(eb);
1005 	if (err)
1006 		return err;
1007 
1008 	for (i = 0; i < eb->buffer_count; i++) {
1009 		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
1010 		struct eb_vma *ev = &eb->vma[i];
1011 		struct i915_vma *vma = ev->vma;
1012 
1013 		err = eb_pin_vma(eb, entry, ev);
1014 		if (err == -EDEADLK)
1015 			return err;
1016 
1017 		if (!err) {
1018 			if (entry->offset != i915_vma_offset(vma)) {
1019 				entry->offset = i915_vma_offset(vma) | UPDATE;
1020 				eb->args->flags |= __EXEC_HAS_RELOC;
1021 			}
1022 		} else {
1023 			eb_unreserve_vma(ev);
1024 
1025 			list_add_tail(&ev->bind_link, &eb->unbound);
1026 			if (drm_mm_node_allocated(&vma->node)) {
1027 				err = i915_vma_unbind(vma);
1028 				if (err)
1029 					return err;
1030 			}
1031 		}
1032 
1033 		/* Reserve enough slots to accommodate composite fences */
1034 		err = dma_resv_reserve_fences(vma->obj->base.resv, eb->num_batches);
1035 		if (err)
1036 			return err;
1037 
1038 		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
1039 			   eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
1040 	}
1041 
1042 	if (!list_empty(&eb->unbound))
1043 		return eb_reserve(eb);
1044 
1045 	return 0;
1046 }
1047 
1048 static struct eb_vma *
eb_get_vma(const struct i915_execbuffer * eb,unsigned long handle)1049 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
1050 {
1051 	if (eb->lut_size < 0) {
1052 		if (handle >= -eb->lut_size)
1053 			return NULL;
1054 		return &eb->vma[handle];
1055 	} else {
1056 		struct hlist_head *head;
1057 		struct eb_vma *ev;
1058 
1059 		head = &eb->buckets[hash_32(handle, eb->lut_size)];
1060 		hlist_for_each_entry(ev, head, node) {
1061 			if (ev->handle == handle)
1062 				return ev;
1063 		}
1064 		return NULL;
1065 	}
1066 }
1067 
eb_release_vmas(struct i915_execbuffer * eb,bool final)1068 static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
1069 {
1070 	const unsigned int count = eb->buffer_count;
1071 	unsigned int i;
1072 
1073 	for (i = 0; i < count; i++) {
1074 		struct eb_vma *ev = &eb->vma[i];
1075 		struct i915_vma *vma = ev->vma;
1076 
1077 		if (!vma)
1078 			break;
1079 
1080 		eb_unreserve_vma(ev);
1081 
1082 		if (final)
1083 			i915_vma_put(vma);
1084 	}
1085 
1086 	eb_capture_release(eb);
1087 	eb_unpin_engine(eb);
1088 }
1089 
eb_destroy(const struct i915_execbuffer * eb)1090 static void eb_destroy(const struct i915_execbuffer *eb)
1091 {
1092 	if (eb->lut_size > 0)
1093 		kfree(eb->buckets);
1094 }
1095 
1096 static u64
relocation_target(const struct drm_i915_gem_relocation_entry * reloc,const struct i915_vma * target)1097 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
1098 		  const struct i915_vma *target)
1099 {
1100 	return gen8_canonical_addr((int)reloc->delta + i915_vma_offset(target));
1101 }
1102 
reloc_cache_init(struct reloc_cache * cache,struct drm_i915_private * i915)1103 static void reloc_cache_init(struct reloc_cache *cache,
1104 			     struct drm_i915_private *i915)
1105 {
1106 	cache->page = -1;
1107 	cache->vaddr = 0;
1108 	/* Must be a variable in the struct to allow GCC to unroll. */
1109 	cache->graphics_ver = GRAPHICS_VER(i915);
1110 	cache->has_llc = HAS_LLC(i915);
1111 	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1112 	cache->has_fence = cache->graphics_ver < 4;
1113 	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1114 	cache->node.flags = 0;
1115 }
1116 
unmask_page(unsigned long p)1117 static void *unmask_page(unsigned long p)
1118 {
1119 	return (void *)(uintptr_t)(p & PAGE_MASK);
1120 }
1121 
unmask_flags(unsigned long p)1122 static unsigned int unmask_flags(unsigned long p)
1123 {
1124 	return p & ~PAGE_MASK;
1125 }
1126 
1127 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
1128 
cache_to_ggtt(struct reloc_cache * cache)1129 static struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1130 {
1131 	struct drm_i915_private *i915 =
1132 		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1133 	return to_gt(i915)->ggtt;
1134 }
1135 
reloc_cache_unmap(struct reloc_cache * cache)1136 static void reloc_cache_unmap(struct reloc_cache *cache)
1137 {
1138 	void *vaddr;
1139 
1140 	if (!cache->vaddr)
1141 		return;
1142 
1143 	vaddr = unmask_page(cache->vaddr);
1144 	if (cache->vaddr & KMAP)
1145 		kunmap_local(vaddr);
1146 	else
1147 		io_mapping_unmap_atomic((void __iomem *)vaddr);
1148 }
1149 
reloc_cache_remap(struct reloc_cache * cache,struct drm_i915_gem_object * obj)1150 static void reloc_cache_remap(struct reloc_cache *cache,
1151 			      struct drm_i915_gem_object *obj)
1152 {
1153 	void *vaddr;
1154 
1155 	if (!cache->vaddr)
1156 		return;
1157 
1158 	if (cache->vaddr & KMAP) {
1159 		struct page *page = i915_gem_object_get_page(obj, cache->page);
1160 
1161 		vaddr = kmap_local_page(page);
1162 		cache->vaddr = unmask_flags(cache->vaddr) |
1163 			(unsigned long)vaddr;
1164 	} else {
1165 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1166 		unsigned long offset;
1167 
1168 		offset = cache->node.start;
1169 		if (!drm_mm_node_allocated(&cache->node))
1170 			offset += cache->page << PAGE_SHIFT;
1171 
1172 		cache->vaddr = (unsigned long)
1173 			io_mapping_map_atomic_wc(&ggtt->iomap, offset);
1174 	}
1175 }
1176 
reloc_cache_reset(struct reloc_cache * cache,struct i915_execbuffer * eb)1177 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1178 {
1179 	void *vaddr;
1180 
1181 	if (!cache->vaddr)
1182 		return;
1183 
1184 	vaddr = unmask_page(cache->vaddr);
1185 	if (cache->vaddr & KMAP) {
1186 		struct drm_i915_gem_object *obj =
1187 			(struct drm_i915_gem_object *)cache->node.mm;
1188 		if (cache->vaddr & CLFLUSH_AFTER)
1189 			mb();
1190 
1191 		kunmap_local(vaddr);
1192 		i915_gem_object_finish_access(obj);
1193 	} else {
1194 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1195 
1196 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1197 		io_mapping_unmap_atomic((void __iomem *)vaddr);
1198 
1199 		if (drm_mm_node_allocated(&cache->node)) {
1200 			ggtt->vm.clear_range(&ggtt->vm,
1201 					     cache->node.start,
1202 					     cache->node.size);
1203 			mutex_lock(&ggtt->vm.mutex);
1204 			drm_mm_remove_node(&cache->node);
1205 			mutex_unlock(&ggtt->vm.mutex);
1206 		} else {
1207 			i915_vma_unpin((struct i915_vma *)cache->node.mm);
1208 		}
1209 	}
1210 
1211 	cache->vaddr = 0;
1212 	cache->page = -1;
1213 }
1214 
reloc_kmap(struct drm_i915_gem_object * obj,struct reloc_cache * cache,unsigned long pageno)1215 static void *reloc_kmap(struct drm_i915_gem_object *obj,
1216 			struct reloc_cache *cache,
1217 			unsigned long pageno)
1218 {
1219 	void *vaddr;
1220 	struct page *page;
1221 
1222 	if (cache->vaddr) {
1223 		kunmap_local(unmask_page(cache->vaddr));
1224 	} else {
1225 		unsigned int flushes;
1226 		int err;
1227 
1228 		err = i915_gem_object_prepare_write(obj, &flushes);
1229 		if (err)
1230 			return ERR_PTR(err);
1231 
1232 		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1233 		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1234 
1235 		cache->vaddr = flushes | KMAP;
1236 		cache->node.mm = (void *)obj;
1237 		if (flushes)
1238 			mb();
1239 	}
1240 
1241 	page = i915_gem_object_get_page(obj, pageno);
1242 	if (!obj->mm.dirty)
1243 		set_page_dirty(page);
1244 
1245 	vaddr = kmap_local_page(page);
1246 	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1247 	cache->page = pageno;
1248 
1249 	return vaddr;
1250 }
1251 
reloc_iomap(struct i915_vma * batch,struct i915_execbuffer * eb,unsigned long page)1252 static void *reloc_iomap(struct i915_vma *batch,
1253 			 struct i915_execbuffer *eb,
1254 			 unsigned long page)
1255 {
1256 	struct drm_i915_gem_object *obj = batch->obj;
1257 	struct reloc_cache *cache = &eb->reloc_cache;
1258 	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1259 	unsigned long offset;
1260 	void *vaddr;
1261 
1262 	if (cache->vaddr) {
1263 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1264 		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1265 	} else {
1266 		struct i915_vma *vma = ERR_PTR(-ENODEV);
1267 		int err;
1268 
1269 		if (i915_gem_object_is_tiled(obj))
1270 			return ERR_PTR(-EINVAL);
1271 
1272 		if (use_cpu_reloc(cache, obj))
1273 			return NULL;
1274 
1275 		err = i915_gem_object_set_to_gtt_domain(obj, true);
1276 		if (err)
1277 			return ERR_PTR(err);
1278 
1279 		/*
1280 		 * i915_gem_object_ggtt_pin_ww may attempt to remove the batch
1281 		 * VMA from the object list because we no longer pin.
1282 		 *
1283 		 * Only attempt to pin the batch buffer to ggtt if the current batch
1284 		 * is not inside ggtt, or the batch buffer is not misplaced.
1285 		 */
1286 		if (!i915_is_ggtt(batch->vm) ||
1287 		    !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) {
1288 			vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1289 							  PIN_MAPPABLE |
1290 							  PIN_NONBLOCK /* NOWARN */ |
1291 							  PIN_NOEVICT);
1292 		}
1293 
1294 		if (vma == ERR_PTR(-EDEADLK))
1295 			return vma;
1296 
1297 		if (IS_ERR(vma)) {
1298 			memset(&cache->node, 0, sizeof(cache->node));
1299 			mutex_lock(&ggtt->vm.mutex);
1300 			err = drm_mm_insert_node_in_range
1301 				(&ggtt->vm.mm, &cache->node,
1302 				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1303 				 0, ggtt->mappable_end,
1304 				 DRM_MM_INSERT_LOW);
1305 			mutex_unlock(&ggtt->vm.mutex);
1306 			if (err) /* no inactive aperture space, use cpu reloc */
1307 				return NULL;
1308 		} else {
1309 			cache->node.start = i915_ggtt_offset(vma);
1310 			cache->node.mm = (void *)vma;
1311 		}
1312 	}
1313 
1314 	offset = cache->node.start;
1315 	if (drm_mm_node_allocated(&cache->node)) {
1316 		ggtt->vm.insert_page(&ggtt->vm,
1317 				     i915_gem_object_get_dma_address(obj, page),
1318 				     offset,
1319 				     i915_gem_get_pat_index(ggtt->vm.i915,
1320 							    I915_CACHE_NONE),
1321 				     0);
1322 	} else {
1323 		offset += page << PAGE_SHIFT;
1324 	}
1325 
1326 	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1327 							 offset);
1328 	cache->page = page;
1329 	cache->vaddr = (unsigned long)vaddr;
1330 
1331 	return vaddr;
1332 }
1333 
reloc_vaddr(struct i915_vma * vma,struct i915_execbuffer * eb,unsigned long page)1334 static void *reloc_vaddr(struct i915_vma *vma,
1335 			 struct i915_execbuffer *eb,
1336 			 unsigned long page)
1337 {
1338 	struct reloc_cache *cache = &eb->reloc_cache;
1339 	void *vaddr;
1340 
1341 	if (cache->page == page) {
1342 		vaddr = unmask_page(cache->vaddr);
1343 	} else {
1344 		vaddr = NULL;
1345 		if ((cache->vaddr & KMAP) == 0)
1346 			vaddr = reloc_iomap(vma, eb, page);
1347 		if (!vaddr)
1348 			vaddr = reloc_kmap(vma->obj, cache, page);
1349 	}
1350 
1351 	return vaddr;
1352 }
1353 
clflush_write32(u32 * addr,u32 value,unsigned int flushes)1354 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1355 {
1356 	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1357 		if (flushes & CLFLUSH_BEFORE)
1358 			drm_clflush_virt_range(addr, sizeof(*addr));
1359 
1360 		*addr = value;
1361 
1362 		/*
1363 		 * Writes to the same cacheline are serialised by the CPU
1364 		 * (including clflush). On the write path, we only require
1365 		 * that it hits memory in an orderly fashion and place
1366 		 * mb barriers at the start and end of the relocation phase
1367 		 * to ensure ordering of clflush wrt to the system.
1368 		 */
1369 		if (flushes & CLFLUSH_AFTER)
1370 			drm_clflush_virt_range(addr, sizeof(*addr));
1371 	} else {
1372 		*addr = value;
1373 	}
1374 }
1375 
1376 static u64
relocate_entry(struct i915_vma * vma,const struct drm_i915_gem_relocation_entry * reloc,struct i915_execbuffer * eb,const struct i915_vma * target)1377 relocate_entry(struct i915_vma *vma,
1378 	       const struct drm_i915_gem_relocation_entry *reloc,
1379 	       struct i915_execbuffer *eb,
1380 	       const struct i915_vma *target)
1381 {
1382 	u64 target_addr = relocation_target(reloc, target);
1383 	u64 offset = reloc->offset;
1384 	bool wide = eb->reloc_cache.use_64bit_reloc;
1385 	void *vaddr;
1386 
1387 repeat:
1388 	vaddr = reloc_vaddr(vma, eb,
1389 			    offset >> PAGE_SHIFT);
1390 	if (IS_ERR(vaddr))
1391 		return PTR_ERR(vaddr);
1392 
1393 	GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1394 	clflush_write32(vaddr + offset_in_page(offset),
1395 			lower_32_bits(target_addr),
1396 			eb->reloc_cache.vaddr);
1397 
1398 	if (wide) {
1399 		offset += sizeof(u32);
1400 		target_addr >>= 32;
1401 		wide = false;
1402 		goto repeat;
1403 	}
1404 
1405 	return target->node.start | UPDATE;
1406 }
1407 
1408 static u64
eb_relocate_entry(struct i915_execbuffer * eb,struct eb_vma * ev,const struct drm_i915_gem_relocation_entry * reloc)1409 eb_relocate_entry(struct i915_execbuffer *eb,
1410 		  struct eb_vma *ev,
1411 		  const struct drm_i915_gem_relocation_entry *reloc)
1412 {
1413 	struct drm_i915_private *i915 = eb->i915;
1414 	struct eb_vma *target;
1415 	int err;
1416 
1417 	/* we've already hold a reference to all valid objects */
1418 	target = eb_get_vma(eb, reloc->target_handle);
1419 	if (unlikely(!target))
1420 		return -ENOENT;
1421 
1422 	/* Validate that the target is in a valid r/w GPU domain */
1423 	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1424 		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1425 			  "target %d offset %d "
1426 			  "read %08x write %08x\n",
1427 			  reloc->target_handle,
1428 			  (int) reloc->offset,
1429 			  reloc->read_domains,
1430 			  reloc->write_domain);
1431 		return -EINVAL;
1432 	}
1433 	if (unlikely((reloc->write_domain | reloc->read_domains)
1434 		     & ~I915_GEM_GPU_DOMAINS)) {
1435 		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1436 			  "target %d offset %d "
1437 			  "read %08x write %08x\n",
1438 			  reloc->target_handle,
1439 			  (int) reloc->offset,
1440 			  reloc->read_domains,
1441 			  reloc->write_domain);
1442 		return -EINVAL;
1443 	}
1444 
1445 	if (reloc->write_domain) {
1446 		target->flags |= EXEC_OBJECT_WRITE;
1447 
1448 		/*
1449 		 * Sandybridge PPGTT errata: We need a global gtt mapping
1450 		 * for MI and pipe_control writes because the gpu doesn't
1451 		 * properly redirect them through the ppgtt for non_secure
1452 		 * batchbuffers.
1453 		 */
1454 		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1455 		    GRAPHICS_VER(eb->i915) == 6 &&
1456 		    !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) {
1457 			struct i915_vma *vma = target->vma;
1458 
1459 			reloc_cache_unmap(&eb->reloc_cache);
1460 			mutex_lock(&vma->vm->mutex);
1461 			err = i915_vma_bind(target->vma,
1462 					    target->vma->obj->pat_index,
1463 					    PIN_GLOBAL, NULL, NULL);
1464 			mutex_unlock(&vma->vm->mutex);
1465 			reloc_cache_remap(&eb->reloc_cache, ev->vma->obj);
1466 			if (err)
1467 				return err;
1468 		}
1469 	}
1470 
1471 	/*
1472 	 * If the relocation already has the right value in it, no
1473 	 * more work needs to be done.
1474 	 */
1475 	if (!DBG_FORCE_RELOC &&
1476 	    gen8_canonical_addr(i915_vma_offset(target->vma)) == reloc->presumed_offset)
1477 		return 0;
1478 
1479 	/* Check that the relocation address is valid... */
1480 	if (unlikely(reloc->offset >
1481 		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1482 		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1483 			  "target %d offset %d size %d.\n",
1484 			  reloc->target_handle,
1485 			  (int)reloc->offset,
1486 			  (int)ev->vma->size);
1487 		return -EINVAL;
1488 	}
1489 	if (unlikely(reloc->offset & 3)) {
1490 		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1491 			  "target %d offset %d.\n",
1492 			  reloc->target_handle,
1493 			  (int)reloc->offset);
1494 		return -EINVAL;
1495 	}
1496 
1497 	/*
1498 	 * If we write into the object, we need to force the synchronisation
1499 	 * barrier, either with an asynchronous clflush or if we executed the
1500 	 * patching using the GPU (though that should be serialised by the
1501 	 * timeline). To be completely sure, and since we are required to
1502 	 * do relocations we are already stalling, disable the user's opt
1503 	 * out of our synchronisation.
1504 	 */
1505 	ev->flags &= ~EXEC_OBJECT_ASYNC;
1506 
1507 	/* and update the user's relocation entry */
1508 	return relocate_entry(ev->vma, reloc, eb, target->vma);
1509 }
1510 
eb_relocate_vma(struct i915_execbuffer * eb,struct eb_vma * ev)1511 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1512 {
1513 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1514 	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1515 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1516 	struct drm_i915_gem_relocation_entry __user *urelocs =
1517 		u64_to_user_ptr(entry->relocs_ptr);
1518 	unsigned long remain = entry->relocation_count;
1519 
1520 	if (unlikely(remain > N_RELOC(INT_MAX)))
1521 		return -EINVAL;
1522 
1523 	/*
1524 	 * We must check that the entire relocation array is safe
1525 	 * to read. However, if the array is not writable the user loses
1526 	 * the updated relocation values.
1527 	 */
1528 	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1529 		return -EFAULT;
1530 
1531 	do {
1532 		struct drm_i915_gem_relocation_entry *r = stack;
1533 		unsigned int count =
1534 			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1535 		unsigned int copied;
1536 
1537 		/*
1538 		 * This is the fast path and we cannot handle a pagefault
1539 		 * whilst holding the struct mutex lest the user pass in the
1540 		 * relocations contained within a mmaped bo. For in such a case
1541 		 * we, the page fault handler would call i915_gem_fault() and
1542 		 * we would try to acquire the struct mutex again. Obviously
1543 		 * this is bad and so lockdep complains vehemently.
1544 		 */
1545 		pagefault_disable();
1546 		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1547 		pagefault_enable();
1548 		if (unlikely(copied)) {
1549 			remain = -EFAULT;
1550 			goto out;
1551 		}
1552 
1553 		remain -= count;
1554 		do {
1555 			u64 offset = eb_relocate_entry(eb, ev, r);
1556 
1557 			if (likely(offset == 0))
1558 				continue;
1559 
1560 			if ((s64)offset < 0) {
1561 				remain = (int)offset;
1562 				goto out;
1563 			}
1564 			/*
1565 			 * Note that reporting an error now
1566 			 * leaves everything in an inconsistent
1567 			 * state as we have *already* changed
1568 			 * the relocation value inside the
1569 			 * object. As we have not changed the
1570 			 * reloc.presumed_offset or will not
1571 			 * change the execobject.offset, on the
1572 			 * call we may not rewrite the value
1573 			 * inside the object, leaving it
1574 			 * dangling and causing a GPU hang. Unless
1575 			 * userspace dynamically rebuilds the
1576 			 * relocations on each execbuf rather than
1577 			 * presume a static tree.
1578 			 *
1579 			 * We did previously check if the relocations
1580 			 * were writable (access_ok), an error now
1581 			 * would be a strange race with mprotect,
1582 			 * having already demonstrated that we
1583 			 * can read from this userspace address.
1584 			 */
1585 			offset = gen8_canonical_addr(offset & ~UPDATE);
1586 			__put_user(offset, &urelocs[r - stack].presumed_offset);
1587 		} while (r++, --count);
1588 		urelocs += ARRAY_SIZE(stack);
1589 	} while (remain);
1590 out:
1591 	reloc_cache_reset(&eb->reloc_cache, eb);
1592 	return remain;
1593 }
1594 
1595 static int
eb_relocate_vma_slow(struct i915_execbuffer * eb,struct eb_vma * ev)1596 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1597 {
1598 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1599 	struct drm_i915_gem_relocation_entry *relocs =
1600 		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1601 	unsigned int i;
1602 	int err;
1603 
1604 	for (i = 0; i < entry->relocation_count; i++) {
1605 		u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1606 
1607 		if ((s64)offset < 0) {
1608 			err = (int)offset;
1609 			goto err;
1610 		}
1611 	}
1612 	err = 0;
1613 err:
1614 	reloc_cache_reset(&eb->reloc_cache, eb);
1615 	return err;
1616 }
1617 
check_relocations(const struct drm_i915_gem_exec_object2 * entry)1618 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1619 {
1620 	const char __user *addr, *end;
1621 	unsigned long size;
1622 	char __maybe_unused c;
1623 
1624 	size = entry->relocation_count;
1625 	if (size == 0)
1626 		return 0;
1627 
1628 	if (size > N_RELOC(INT_MAX))
1629 		return -EINVAL;
1630 
1631 	addr = u64_to_user_ptr(entry->relocs_ptr);
1632 	size *= sizeof(struct drm_i915_gem_relocation_entry);
1633 	if (!access_ok(addr, size))
1634 		return -EFAULT;
1635 
1636 	end = addr + size;
1637 	for (; addr < end; addr += PAGE_SIZE) {
1638 		int err = __get_user(c, addr);
1639 		if (err)
1640 			return err;
1641 	}
1642 	return __get_user(c, end - 1);
1643 }
1644 
eb_copy_relocations(const struct i915_execbuffer * eb)1645 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1646 {
1647 	struct drm_i915_gem_relocation_entry *relocs;
1648 	const unsigned int count = eb->buffer_count;
1649 	unsigned int i;
1650 	int err;
1651 
1652 	for (i = 0; i < count; i++) {
1653 		const unsigned int nreloc = eb->exec[i].relocation_count;
1654 		struct drm_i915_gem_relocation_entry __user *urelocs;
1655 		unsigned long size;
1656 		unsigned long copied;
1657 
1658 		if (nreloc == 0)
1659 			continue;
1660 
1661 		err = check_relocations(&eb->exec[i]);
1662 		if (err)
1663 			goto err;
1664 
1665 		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1666 		size = nreloc * sizeof(*relocs);
1667 
1668 		relocs = kvmalloc_array(1, size, GFP_KERNEL);
1669 		if (!relocs) {
1670 			err = -ENOMEM;
1671 			goto err;
1672 		}
1673 
1674 		/* copy_from_user is limited to < 4GiB */
1675 		copied = 0;
1676 		do {
1677 			unsigned int len =
1678 				min_t(u64, BIT_ULL(31), size - copied);
1679 
1680 			if (__copy_from_user((char *)relocs + copied,
1681 					     (char __user *)urelocs + copied,
1682 					     len))
1683 				goto end;
1684 
1685 			copied += len;
1686 		} while (copied < size);
1687 
1688 		/*
1689 		 * As we do not update the known relocation offsets after
1690 		 * relocating (due to the complexities in lock handling),
1691 		 * we need to mark them as invalid now so that we force the
1692 		 * relocation processing next time. Just in case the target
1693 		 * object is evicted and then rebound into its old
1694 		 * presumed_offset before the next execbuffer - if that
1695 		 * happened we would make the mistake of assuming that the
1696 		 * relocations were valid.
1697 		 */
1698 		if (!user_access_begin(urelocs, size))
1699 			goto end;
1700 
1701 		for (copied = 0; copied < nreloc; copied++)
1702 			unsafe_put_user(-1,
1703 					&urelocs[copied].presumed_offset,
1704 					end_user);
1705 		user_access_end();
1706 
1707 		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1708 	}
1709 
1710 	return 0;
1711 
1712 end_user:
1713 	user_access_end();
1714 end:
1715 	kvfree(relocs);
1716 	err = -EFAULT;
1717 err:
1718 	while (i--) {
1719 		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1720 		if (eb->exec[i].relocation_count)
1721 			kvfree(relocs);
1722 	}
1723 	return err;
1724 }
1725 
eb_prefault_relocations(const struct i915_execbuffer * eb)1726 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1727 {
1728 	const unsigned int count = eb->buffer_count;
1729 	unsigned int i;
1730 
1731 	for (i = 0; i < count; i++) {
1732 		int err;
1733 
1734 		err = check_relocations(&eb->exec[i]);
1735 		if (err)
1736 			return err;
1737 	}
1738 
1739 	return 0;
1740 }
1741 
eb_reinit_userptr(struct i915_execbuffer * eb)1742 static int eb_reinit_userptr(struct i915_execbuffer *eb)
1743 {
1744 	const unsigned int count = eb->buffer_count;
1745 	unsigned int i;
1746 	int ret;
1747 
1748 	if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
1749 		return 0;
1750 
1751 	for (i = 0; i < count; i++) {
1752 		struct eb_vma *ev = &eb->vma[i];
1753 
1754 		if (!i915_gem_object_is_userptr(ev->vma->obj))
1755 			continue;
1756 
1757 		ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
1758 		if (ret)
1759 			return ret;
1760 
1761 		ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
1762 	}
1763 
1764 	return 0;
1765 }
1766 
eb_relocate_parse_slow(struct i915_execbuffer * eb)1767 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb)
1768 {
1769 	bool have_copy = false;
1770 	struct eb_vma *ev;
1771 	int err = 0;
1772 
1773 repeat:
1774 	if (signal_pending(current)) {
1775 		err = -ERESTARTSYS;
1776 		goto out;
1777 	}
1778 
1779 	/* We may process another execbuffer during the unlock... */
1780 	eb_release_vmas(eb, false);
1781 	i915_gem_ww_ctx_fini(&eb->ww);
1782 
1783 	/*
1784 	 * We take 3 passes through the slowpatch.
1785 	 *
1786 	 * 1 - we try to just prefault all the user relocation entries and
1787 	 * then attempt to reuse the atomic pagefault disabled fast path again.
1788 	 *
1789 	 * 2 - we copy the user entries to a local buffer here outside of the
1790 	 * local and allow ourselves to wait upon any rendering before
1791 	 * relocations
1792 	 *
1793 	 * 3 - we already have a local copy of the relocation entries, but
1794 	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1795 	 */
1796 	if (!err) {
1797 		err = eb_prefault_relocations(eb);
1798 	} else if (!have_copy) {
1799 		err = eb_copy_relocations(eb);
1800 		have_copy = err == 0;
1801 	} else {
1802 		cond_resched();
1803 		err = 0;
1804 	}
1805 
1806 	if (!err)
1807 		err = eb_reinit_userptr(eb);
1808 
1809 	i915_gem_ww_ctx_init(&eb->ww, true);
1810 	if (err)
1811 		goto out;
1812 
1813 	/* reacquire the objects */
1814 repeat_validate:
1815 	err = eb_pin_engine(eb, false);
1816 	if (err)
1817 		goto err;
1818 
1819 	err = eb_validate_vmas(eb);
1820 	if (err)
1821 		goto err;
1822 
1823 	GEM_BUG_ON(!eb->batches[0]);
1824 
1825 	list_for_each_entry(ev, &eb->relocs, reloc_link) {
1826 		if (!have_copy) {
1827 			err = eb_relocate_vma(eb, ev);
1828 			if (err)
1829 				break;
1830 		} else {
1831 			err = eb_relocate_vma_slow(eb, ev);
1832 			if (err)
1833 				break;
1834 		}
1835 	}
1836 
1837 	if (err == -EDEADLK)
1838 		goto err;
1839 
1840 	if (err && !have_copy)
1841 		goto repeat;
1842 
1843 	if (err)
1844 		goto err;
1845 
1846 	/* as last step, parse the command buffer */
1847 	err = eb_parse(eb);
1848 	if (err)
1849 		goto err;
1850 
1851 	/*
1852 	 * Leave the user relocations as are, this is the painfully slow path,
1853 	 * and we want to avoid the complication of dropping the lock whilst
1854 	 * having buffers reserved in the aperture and so causing spurious
1855 	 * ENOSPC for random operations.
1856 	 */
1857 
1858 err:
1859 	if (err == -EDEADLK) {
1860 		eb_release_vmas(eb, false);
1861 		err = i915_gem_ww_ctx_backoff(&eb->ww);
1862 		if (!err)
1863 			goto repeat_validate;
1864 	}
1865 
1866 	if (err == -EAGAIN)
1867 		goto repeat;
1868 
1869 out:
1870 	if (have_copy) {
1871 		const unsigned int count = eb->buffer_count;
1872 		unsigned int i;
1873 
1874 		for (i = 0; i < count; i++) {
1875 			const struct drm_i915_gem_exec_object2 *entry =
1876 				&eb->exec[i];
1877 			struct drm_i915_gem_relocation_entry *relocs;
1878 
1879 			if (!entry->relocation_count)
1880 				continue;
1881 
1882 			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1883 			kvfree(relocs);
1884 		}
1885 	}
1886 
1887 	return err;
1888 }
1889 
eb_relocate_parse(struct i915_execbuffer * eb)1890 static int eb_relocate_parse(struct i915_execbuffer *eb)
1891 {
1892 	int err;
1893 	bool throttle = true;
1894 
1895 retry:
1896 	err = eb_pin_engine(eb, throttle);
1897 	if (err) {
1898 		if (err != -EDEADLK)
1899 			return err;
1900 
1901 		goto err;
1902 	}
1903 
1904 	/* only throttle once, even if we didn't need to throttle */
1905 	throttle = false;
1906 
1907 	err = eb_validate_vmas(eb);
1908 	if (err == -EAGAIN)
1909 		goto slow;
1910 	else if (err)
1911 		goto err;
1912 
1913 	/* The objects are in their final locations, apply the relocations. */
1914 	if (eb->args->flags & __EXEC_HAS_RELOC) {
1915 		struct eb_vma *ev;
1916 
1917 		list_for_each_entry(ev, &eb->relocs, reloc_link) {
1918 			err = eb_relocate_vma(eb, ev);
1919 			if (err)
1920 				break;
1921 		}
1922 
1923 		if (err == -EDEADLK)
1924 			goto err;
1925 		else if (err)
1926 			goto slow;
1927 	}
1928 
1929 	if (!err)
1930 		err = eb_parse(eb);
1931 
1932 err:
1933 	if (err == -EDEADLK) {
1934 		eb_release_vmas(eb, false);
1935 		err = i915_gem_ww_ctx_backoff(&eb->ww);
1936 		if (!err)
1937 			goto retry;
1938 	}
1939 
1940 	return err;
1941 
1942 slow:
1943 	err = eb_relocate_parse_slow(eb);
1944 	if (err)
1945 		/*
1946 		 * If the user expects the execobject.offset and
1947 		 * reloc.presumed_offset to be an exact match,
1948 		 * as for using NO_RELOC, then we cannot update
1949 		 * the execobject.offset until we have completed
1950 		 * relocation.
1951 		 */
1952 		eb->args->flags &= ~__EXEC_HAS_RELOC;
1953 
1954 	return err;
1955 }
1956 
1957 /*
1958  * Using two helper loops for the order of which requests / batches are created
1959  * and added the to backend. Requests are created in order from the parent to
1960  * the last child. Requests are added in the reverse order, from the last child
1961  * to parent. This is done for locking reasons as the timeline lock is acquired
1962  * during request creation and released when the request is added to the
1963  * backend. To make lockdep happy (see intel_context_timeline_lock) this must be
1964  * the ordering.
1965  */
1966 #define for_each_batch_create_order(_eb, _i) \
1967 	for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i))
1968 #define for_each_batch_add_order(_eb, _i) \
1969 	BUILD_BUG_ON(!typecheck(int, _i)); \
1970 	for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i))
1971 
1972 static struct i915_request *
eb_find_first_request_added(struct i915_execbuffer * eb)1973 eb_find_first_request_added(struct i915_execbuffer *eb)
1974 {
1975 	int i;
1976 
1977 	for_each_batch_add_order(eb, i)
1978 		if (eb->requests[i])
1979 			return eb->requests[i];
1980 
1981 	GEM_BUG_ON("Request not found");
1982 
1983 	return NULL;
1984 }
1985 
1986 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
1987 
1988 /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */
eb_capture_stage(struct i915_execbuffer * eb)1989 static int eb_capture_stage(struct i915_execbuffer *eb)
1990 {
1991 	const unsigned int count = eb->buffer_count;
1992 	unsigned int i = count, j;
1993 
1994 	while (i--) {
1995 		struct eb_vma *ev = &eb->vma[i];
1996 		struct i915_vma *vma = ev->vma;
1997 		unsigned int flags = ev->flags;
1998 
1999 		if (!(flags & EXEC_OBJECT_CAPTURE))
2000 			continue;
2001 
2002 		if (i915_gem_context_is_recoverable(eb->gem_context) &&
2003 		    (IS_DGFX(eb->i915) || GRAPHICS_VER_FULL(eb->i915) > IP_VER(12, 0)))
2004 			return -EINVAL;
2005 
2006 		for_each_batch_create_order(eb, j) {
2007 			struct i915_capture_list *capture;
2008 
2009 			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
2010 			if (!capture)
2011 				continue;
2012 
2013 			capture->next = eb->capture_lists[j];
2014 			capture->vma_res = i915_vma_resource_get(vma->resource);
2015 			eb->capture_lists[j] = capture;
2016 		}
2017 	}
2018 
2019 	return 0;
2020 }
2021 
2022 /* Commit once we're in the critical path */
eb_capture_commit(struct i915_execbuffer * eb)2023 static void eb_capture_commit(struct i915_execbuffer *eb)
2024 {
2025 	unsigned int j;
2026 
2027 	for_each_batch_create_order(eb, j) {
2028 		struct i915_request *rq = eb->requests[j];
2029 
2030 		if (!rq)
2031 			break;
2032 
2033 		rq->capture_list = eb->capture_lists[j];
2034 		eb->capture_lists[j] = NULL;
2035 	}
2036 }
2037 
2038 /*
2039  * Release anything that didn't get committed due to errors.
2040  * The capture_list will otherwise be freed at request retire.
2041  */
eb_capture_release(struct i915_execbuffer * eb)2042 static void eb_capture_release(struct i915_execbuffer *eb)
2043 {
2044 	unsigned int j;
2045 
2046 	for_each_batch_create_order(eb, j) {
2047 		if (eb->capture_lists[j]) {
2048 			i915_request_free_capture_list(eb->capture_lists[j]);
2049 			eb->capture_lists[j] = NULL;
2050 		}
2051 	}
2052 }
2053 
eb_capture_list_clear(struct i915_execbuffer * eb)2054 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2055 {
2056 	memset(eb->capture_lists, 0, sizeof(eb->capture_lists));
2057 }
2058 
2059 #else
2060 
eb_capture_stage(struct i915_execbuffer * eb)2061 static int eb_capture_stage(struct i915_execbuffer *eb)
2062 {
2063 	return 0;
2064 }
2065 
eb_capture_commit(struct i915_execbuffer * eb)2066 static void eb_capture_commit(struct i915_execbuffer *eb)
2067 {
2068 }
2069 
eb_capture_release(struct i915_execbuffer * eb)2070 static void eb_capture_release(struct i915_execbuffer *eb)
2071 {
2072 }
2073 
eb_capture_list_clear(struct i915_execbuffer * eb)2074 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2075 {
2076 }
2077 
2078 #endif
2079 
eb_move_to_gpu(struct i915_execbuffer * eb)2080 static int eb_move_to_gpu(struct i915_execbuffer *eb)
2081 {
2082 	const unsigned int count = eb->buffer_count;
2083 	unsigned int i = count;
2084 	int err = 0, j;
2085 
2086 	while (i--) {
2087 		struct eb_vma *ev = &eb->vma[i];
2088 		struct i915_vma *vma = ev->vma;
2089 		unsigned int flags = ev->flags;
2090 		struct drm_i915_gem_object *obj = vma->obj;
2091 
2092 		assert_vma_held(vma);
2093 
2094 		/*
2095 		 * If the GPU is not _reading_ through the CPU cache, we need
2096 		 * to make sure that any writes (both previous GPU writes from
2097 		 * before a change in snooping levels and normal CPU writes)
2098 		 * caught in that cache are flushed to main memory.
2099 		 *
2100 		 * We want to say
2101 		 *   obj->cache_dirty &&
2102 		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2103 		 * but gcc's optimiser doesn't handle that as well and emits
2104 		 * two jumps instead of one. Maybe one day...
2105 		 *
2106 		 * FIXME: There is also sync flushing in set_pages(), which
2107 		 * serves a different purpose(some of the time at least).
2108 		 *
2109 		 * We should consider:
2110 		 *
2111 		 *   1. Rip out the async flush code.
2112 		 *
2113 		 *   2. Or make the sync flushing use the async clflush path
2114 		 *   using mandatory fences underneath. Currently the below
2115 		 *   async flush happens after we bind the object.
2116 		 */
2117 		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2118 			if (i915_gem_clflush_object(obj, 0))
2119 				flags &= ~EXEC_OBJECT_ASYNC;
2120 		}
2121 
2122 		/* We only need to await on the first request */
2123 		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2124 			err = i915_request_await_object
2125 				(eb_find_first_request_added(eb), obj,
2126 				 flags & EXEC_OBJECT_WRITE);
2127 		}
2128 
2129 		for_each_batch_add_order(eb, j) {
2130 			if (err)
2131 				break;
2132 			if (!eb->requests[j])
2133 				continue;
2134 
2135 			err = _i915_vma_move_to_active(vma, eb->requests[j],
2136 						       j ? NULL :
2137 						       eb->composite_fence ?
2138 						       eb->composite_fence :
2139 						       &eb->requests[j]->fence,
2140 						       flags | __EXEC_OBJECT_NO_RESERVE |
2141 						       __EXEC_OBJECT_NO_REQUEST_AWAIT);
2142 		}
2143 	}
2144 
2145 #ifdef CONFIG_MMU_NOTIFIER
2146 	if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
2147 		for (i = 0; i < count; i++) {
2148 			struct eb_vma *ev = &eb->vma[i];
2149 			struct drm_i915_gem_object *obj = ev->vma->obj;
2150 
2151 			if (!i915_gem_object_is_userptr(obj))
2152 				continue;
2153 
2154 			err = i915_gem_object_userptr_submit_done(obj);
2155 			if (err)
2156 				break;
2157 		}
2158 	}
2159 #endif
2160 
2161 	if (unlikely(err))
2162 		goto err_skip;
2163 
2164 	/* Unconditionally flush any chipset caches (for streaming writes). */
2165 	intel_gt_chipset_flush(eb->gt);
2166 	eb_capture_commit(eb);
2167 
2168 	return 0;
2169 
2170 err_skip:
2171 	for_each_batch_create_order(eb, j) {
2172 		if (!eb->requests[j])
2173 			break;
2174 
2175 		i915_request_set_error_once(eb->requests[j], err);
2176 	}
2177 	return err;
2178 }
2179 
i915_gem_check_execbuffer(struct drm_i915_private * i915,struct drm_i915_gem_execbuffer2 * exec)2180 static int i915_gem_check_execbuffer(struct drm_i915_private *i915,
2181 				     struct drm_i915_gem_execbuffer2 *exec)
2182 {
2183 	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
2184 		return -EINVAL;
2185 
2186 	/* Kernel clipping was a DRI1 misfeature */
2187 	if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2188 			     I915_EXEC_USE_EXTENSIONS))) {
2189 		if (exec->num_cliprects || exec->cliprects_ptr)
2190 			return -EINVAL;
2191 	}
2192 
2193 	if (exec->DR4 == 0xffffffff) {
2194 		drm_dbg(&i915->drm, "UXA submitting garbage DR4, fixing up\n");
2195 		exec->DR4 = 0;
2196 	}
2197 	if (exec->DR1 || exec->DR4)
2198 		return -EINVAL;
2199 
2200 	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
2201 		return -EINVAL;
2202 
2203 	return 0;
2204 }
2205 
i915_reset_gen7_sol_offsets(struct i915_request * rq)2206 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2207 {
2208 	u32 *cs;
2209 	int i;
2210 
2211 	if (GRAPHICS_VER(rq->i915) != 7 || rq->engine->id != RCS0) {
2212 		drm_dbg(&rq->i915->drm, "sol reset is gen7/rcs only\n");
2213 		return -EINVAL;
2214 	}
2215 
2216 	cs = intel_ring_begin(rq, 4 * 2 + 2);
2217 	if (IS_ERR(cs))
2218 		return PTR_ERR(cs);
2219 
2220 	*cs++ = MI_LOAD_REGISTER_IMM(4);
2221 	for (i = 0; i < 4; i++) {
2222 		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2223 		*cs++ = 0;
2224 	}
2225 	*cs++ = MI_NOOP;
2226 	intel_ring_advance(rq, cs);
2227 
2228 	return 0;
2229 }
2230 
2231 static struct i915_vma *
shadow_batch_pin(struct i915_execbuffer * eb,struct drm_i915_gem_object * obj,struct i915_address_space * vm,unsigned int flags)2232 shadow_batch_pin(struct i915_execbuffer *eb,
2233 		 struct drm_i915_gem_object *obj,
2234 		 struct i915_address_space *vm,
2235 		 unsigned int flags)
2236 {
2237 	struct i915_vma *vma;
2238 	int err;
2239 
2240 	vma = i915_vma_instance(obj, vm, NULL);
2241 	if (IS_ERR(vma))
2242 		return vma;
2243 
2244 	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE);
2245 	if (err)
2246 		return ERR_PTR(err);
2247 
2248 	return vma;
2249 }
2250 
eb_dispatch_secure(struct i915_execbuffer * eb,struct i915_vma * vma)2251 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2252 {
2253 	/*
2254 	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2255 	 * batch" bit. Hence we need to pin secure batches into the global gtt.
2256 	 * hsw should have this fixed, but bdw mucks it up again. */
2257 	if (eb->batch_flags & I915_DISPATCH_SECURE)
2258 		return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE);
2259 
2260 	return NULL;
2261 }
2262 
eb_parse(struct i915_execbuffer * eb)2263 static int eb_parse(struct i915_execbuffer *eb)
2264 {
2265 	struct drm_i915_private *i915 = eb->i915;
2266 	struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2267 	struct i915_vma *shadow, *trampoline, *batch;
2268 	unsigned long len;
2269 	int err;
2270 
2271 	if (!eb_use_cmdparser(eb)) {
2272 		batch = eb_dispatch_secure(eb, eb->batches[0]->vma);
2273 		if (IS_ERR(batch))
2274 			return PTR_ERR(batch);
2275 
2276 		goto secure_batch;
2277 	}
2278 
2279 	if (intel_context_is_parallel(eb->context))
2280 		return -EINVAL;
2281 
2282 	len = eb->batch_len[0];
2283 	if (!CMDPARSER_USES_GGTT(eb->i915)) {
2284 		/*
2285 		 * ppGTT backed shadow buffers must be mapped RO, to prevent
2286 		 * post-scan tampering
2287 		 */
2288 		if (!eb->context->vm->has_read_only) {
2289 			drm_dbg(&i915->drm,
2290 				"Cannot prevent post-scan tampering without RO capable vm\n");
2291 			return -EINVAL;
2292 		}
2293 	} else {
2294 		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2295 	}
2296 	if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */
2297 		return -EINVAL;
2298 
2299 	if (!pool) {
2300 		pool = intel_gt_get_buffer_pool(eb->gt, len,
2301 						I915_MAP_WB);
2302 		if (IS_ERR(pool))
2303 			return PTR_ERR(pool);
2304 		eb->batch_pool = pool;
2305 	}
2306 
2307 	err = i915_gem_object_lock(pool->obj, &eb->ww);
2308 	if (err)
2309 		return err;
2310 
2311 	shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2312 	if (IS_ERR(shadow))
2313 		return PTR_ERR(shadow);
2314 
2315 	intel_gt_buffer_pool_mark_used(pool);
2316 	i915_gem_object_set_readonly(shadow->obj);
2317 	shadow->private = pool;
2318 
2319 	trampoline = NULL;
2320 	if (CMDPARSER_USES_GGTT(eb->i915)) {
2321 		trampoline = shadow;
2322 
2323 		shadow = shadow_batch_pin(eb, pool->obj,
2324 					  &eb->gt->ggtt->vm,
2325 					  PIN_GLOBAL);
2326 		if (IS_ERR(shadow))
2327 			return PTR_ERR(shadow);
2328 
2329 		shadow->private = pool;
2330 
2331 		eb->batch_flags |= I915_DISPATCH_SECURE;
2332 	}
2333 
2334 	batch = eb_dispatch_secure(eb, shadow);
2335 	if (IS_ERR(batch))
2336 		return PTR_ERR(batch);
2337 
2338 	err = dma_resv_reserve_fences(shadow->obj->base.resv, 1);
2339 	if (err)
2340 		return err;
2341 
2342 	err = intel_engine_cmd_parser(eb->context->engine,
2343 				      eb->batches[0]->vma,
2344 				      eb->batch_start_offset,
2345 				      eb->batch_len[0],
2346 				      shadow, trampoline);
2347 	if (err)
2348 		return err;
2349 
2350 	eb->batches[0] = &eb->vma[eb->buffer_count++];
2351 	eb->batches[0]->vma = i915_vma_get(shadow);
2352 	eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2353 
2354 	eb->trampoline = trampoline;
2355 	eb->batch_start_offset = 0;
2356 
2357 secure_batch:
2358 	if (batch) {
2359 		if (intel_context_is_parallel(eb->context))
2360 			return -EINVAL;
2361 
2362 		eb->batches[0] = &eb->vma[eb->buffer_count++];
2363 		eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2364 		eb->batches[0]->vma = i915_vma_get(batch);
2365 	}
2366 	return 0;
2367 }
2368 
eb_request_submit(struct i915_execbuffer * eb,struct i915_request * rq,struct i915_vma * batch,u64 batch_len)2369 static int eb_request_submit(struct i915_execbuffer *eb,
2370 			     struct i915_request *rq,
2371 			     struct i915_vma *batch,
2372 			     u64 batch_len)
2373 {
2374 	int err;
2375 
2376 	if (intel_context_nopreempt(rq->context))
2377 		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags);
2378 
2379 	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2380 		err = i915_reset_gen7_sol_offsets(rq);
2381 		if (err)
2382 			return err;
2383 	}
2384 
2385 	/*
2386 	 * After we completed waiting for other engines (using HW semaphores)
2387 	 * then we can signal that this request/batch is ready to run. This
2388 	 * allows us to determine if the batch is still waiting on the GPU
2389 	 * or actually running by checking the breadcrumb.
2390 	 */
2391 	if (rq->context->engine->emit_init_breadcrumb) {
2392 		err = rq->context->engine->emit_init_breadcrumb(rq);
2393 		if (err)
2394 			return err;
2395 	}
2396 
2397 	err = rq->context->engine->emit_bb_start(rq,
2398 						 i915_vma_offset(batch) +
2399 						 eb->batch_start_offset,
2400 						 batch_len,
2401 						 eb->batch_flags);
2402 	if (err)
2403 		return err;
2404 
2405 	if (eb->trampoline) {
2406 		GEM_BUG_ON(intel_context_is_parallel(rq->context));
2407 		GEM_BUG_ON(eb->batch_start_offset);
2408 		err = rq->context->engine->emit_bb_start(rq,
2409 							 i915_vma_offset(eb->trampoline) +
2410 							 batch_len, 0, 0);
2411 		if (err)
2412 			return err;
2413 	}
2414 
2415 	return 0;
2416 }
2417 
eb_submit(struct i915_execbuffer * eb)2418 static int eb_submit(struct i915_execbuffer *eb)
2419 {
2420 	unsigned int i;
2421 	int err;
2422 
2423 	err = eb_move_to_gpu(eb);
2424 
2425 	for_each_batch_create_order(eb, i) {
2426 		if (!eb->requests[i])
2427 			break;
2428 
2429 		trace_i915_request_queue(eb->requests[i], eb->batch_flags);
2430 		if (!err)
2431 			err = eb_request_submit(eb, eb->requests[i],
2432 						eb->batches[i]->vma,
2433 						eb->batch_len[i]);
2434 	}
2435 
2436 	return err;
2437 }
2438 
2439 /*
2440  * Find one BSD ring to dispatch the corresponding BSD command.
2441  * The engine index is returned.
2442  */
2443 static unsigned int
gen8_dispatch_bsd_engine(struct drm_i915_private * i915,struct drm_file * file)2444 gen8_dispatch_bsd_engine(struct drm_i915_private *i915,
2445 			 struct drm_file *file)
2446 {
2447 	struct drm_i915_file_private *file_priv = file->driver_priv;
2448 
2449 	/* Check whether the file_priv has already selected one ring. */
2450 	if ((int)file_priv->bsd_engine < 0)
2451 		file_priv->bsd_engine =
2452 			get_random_u32_below(i915->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO]);
2453 
2454 	return file_priv->bsd_engine;
2455 }
2456 
2457 static const enum intel_engine_id user_ring_map[] = {
2458 	[I915_EXEC_DEFAULT]	= RCS0,
2459 	[I915_EXEC_RENDER]	= RCS0,
2460 	[I915_EXEC_BLT]		= BCS0,
2461 	[I915_EXEC_BSD]		= VCS0,
2462 	[I915_EXEC_VEBOX]	= VECS0
2463 };
2464 
eb_throttle(struct i915_execbuffer * eb,struct intel_context * ce)2465 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2466 {
2467 	struct intel_ring *ring = ce->ring;
2468 	struct intel_timeline *tl = ce->timeline;
2469 	struct i915_request *rq;
2470 
2471 	/*
2472 	 * Completely unscientific finger-in-the-air estimates for suitable
2473 	 * maximum user request size (to avoid blocking) and then backoff.
2474 	 */
2475 	if (intel_ring_update_space(ring) >= PAGE_SIZE)
2476 		return NULL;
2477 
2478 	/*
2479 	 * Find a request that after waiting upon, there will be at least half
2480 	 * the ring available. The hysteresis allows us to compete for the
2481 	 * shared ring and should mean that we sleep less often prior to
2482 	 * claiming our resources, but not so long that the ring completely
2483 	 * drains before we can submit our next request.
2484 	 */
2485 	list_for_each_entry(rq, &tl->requests, link) {
2486 		if (rq->ring != ring)
2487 			continue;
2488 
2489 		if (__intel_ring_space(rq->postfix,
2490 				       ring->emit, ring->size) > ring->size / 2)
2491 			break;
2492 	}
2493 	if (&rq->link == &tl->requests)
2494 		return NULL; /* weird, we will check again later for real */
2495 
2496 	return i915_request_get(rq);
2497 }
2498 
eb_pin_timeline(struct i915_execbuffer * eb,struct intel_context * ce,bool throttle)2499 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce,
2500 			   bool throttle)
2501 {
2502 	struct intel_timeline *tl;
2503 	struct i915_request *rq = NULL;
2504 
2505 	/*
2506 	 * Take a local wakeref for preparing to dispatch the execbuf as
2507 	 * we expect to access the hardware fairly frequently in the
2508 	 * process, and require the engine to be kept awake between accesses.
2509 	 * Upon dispatch, we acquire another prolonged wakeref that we hold
2510 	 * until the timeline is idle, which in turn releases the wakeref
2511 	 * taken on the engine, and the parent device.
2512 	 */
2513 	tl = intel_context_timeline_lock(ce);
2514 	if (IS_ERR(tl))
2515 		return PTR_ERR(tl);
2516 
2517 	intel_context_enter(ce);
2518 	if (throttle)
2519 		rq = eb_throttle(eb, ce);
2520 	intel_context_timeline_unlock(tl);
2521 
2522 	if (rq) {
2523 		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2524 		long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT;
2525 
2526 		if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
2527 				      timeout) < 0) {
2528 			i915_request_put(rq);
2529 
2530 			/*
2531 			 * Error path, cannot use intel_context_timeline_lock as
2532 			 * that is user interruptible and this clean up step
2533 			 * must be done.
2534 			 */
2535 			mutex_lock(&ce->timeline->mutex);
2536 			intel_context_exit(ce);
2537 			mutex_unlock(&ce->timeline->mutex);
2538 
2539 			if (nonblock)
2540 				return -EWOULDBLOCK;
2541 			else
2542 				return -EINTR;
2543 		}
2544 		i915_request_put(rq);
2545 	}
2546 
2547 	return 0;
2548 }
2549 
eb_pin_engine(struct i915_execbuffer * eb,bool throttle)2550 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2551 {
2552 	struct intel_context *ce = eb->context, *child;
2553 	int err;
2554 	int i = 0, j = 0;
2555 
2556 	GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2557 
2558 	if (unlikely(intel_context_is_banned(ce)))
2559 		return -EIO;
2560 
2561 	/*
2562 	 * Pinning the contexts may generate requests in order to acquire
2563 	 * GGTT space, so do this first before we reserve a seqno for
2564 	 * ourselves.
2565 	 */
2566 	err = intel_context_pin_ww(ce, &eb->ww);
2567 	if (err)
2568 		return err;
2569 	for_each_child(ce, child) {
2570 		err = intel_context_pin_ww(child, &eb->ww);
2571 		GEM_BUG_ON(err);	/* perma-pinned should incr a counter */
2572 	}
2573 
2574 	for_each_child(ce, child) {
2575 		err = eb_pin_timeline(eb, child, throttle);
2576 		if (err)
2577 			goto unwind;
2578 		++i;
2579 	}
2580 	err = eb_pin_timeline(eb, ce, throttle);
2581 	if (err)
2582 		goto unwind;
2583 
2584 	eb->args->flags |= __EXEC_ENGINE_PINNED;
2585 	return 0;
2586 
2587 unwind:
2588 	for_each_child(ce, child) {
2589 		if (j++ < i) {
2590 			mutex_lock(&child->timeline->mutex);
2591 			intel_context_exit(child);
2592 			mutex_unlock(&child->timeline->mutex);
2593 		}
2594 	}
2595 	for_each_child(ce, child)
2596 		intel_context_unpin(child);
2597 	intel_context_unpin(ce);
2598 	return err;
2599 }
2600 
eb_unpin_engine(struct i915_execbuffer * eb)2601 static void eb_unpin_engine(struct i915_execbuffer *eb)
2602 {
2603 	struct intel_context *ce = eb->context, *child;
2604 
2605 	if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2606 		return;
2607 
2608 	eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2609 
2610 	for_each_child(ce, child) {
2611 		mutex_lock(&child->timeline->mutex);
2612 		intel_context_exit(child);
2613 		mutex_unlock(&child->timeline->mutex);
2614 
2615 		intel_context_unpin(child);
2616 	}
2617 
2618 	mutex_lock(&ce->timeline->mutex);
2619 	intel_context_exit(ce);
2620 	mutex_unlock(&ce->timeline->mutex);
2621 
2622 	intel_context_unpin(ce);
2623 }
2624 
2625 static unsigned int
eb_select_legacy_ring(struct i915_execbuffer * eb)2626 eb_select_legacy_ring(struct i915_execbuffer *eb)
2627 {
2628 	struct drm_i915_private *i915 = eb->i915;
2629 	struct drm_i915_gem_execbuffer2 *args = eb->args;
2630 	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2631 
2632 	if (user_ring_id != I915_EXEC_BSD &&
2633 	    (args->flags & I915_EXEC_BSD_MASK)) {
2634 		drm_dbg(&i915->drm,
2635 			"execbuf with non bsd ring but with invalid "
2636 			"bsd dispatch flags: %d\n", (int)(args->flags));
2637 		return -1;
2638 	}
2639 
2640 	if (user_ring_id == I915_EXEC_BSD &&
2641 	    i915->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO] > 1) {
2642 		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2643 
2644 		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2645 			bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2646 		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2647 			   bsd_idx <= I915_EXEC_BSD_RING2) {
2648 			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2649 			bsd_idx--;
2650 		} else {
2651 			drm_dbg(&i915->drm,
2652 				"execbuf with unknown bsd ring: %u\n",
2653 				bsd_idx);
2654 			return -1;
2655 		}
2656 
2657 		return _VCS(bsd_idx);
2658 	}
2659 
2660 	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2661 		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2662 			user_ring_id);
2663 		return -1;
2664 	}
2665 
2666 	return user_ring_map[user_ring_id];
2667 }
2668 
2669 static int
eb_select_engine(struct i915_execbuffer * eb)2670 eb_select_engine(struct i915_execbuffer *eb)
2671 {
2672 	struct intel_context *ce, *child;
2673 	struct intel_gt *gt;
2674 	unsigned int idx;
2675 	int err;
2676 
2677 	if (i915_gem_context_user_engines(eb->gem_context))
2678 		idx = eb->args->flags & I915_EXEC_RING_MASK;
2679 	else
2680 		idx = eb_select_legacy_ring(eb);
2681 
2682 	ce = i915_gem_context_get_engine(eb->gem_context, idx);
2683 	if (IS_ERR(ce))
2684 		return PTR_ERR(ce);
2685 
2686 	if (intel_context_is_parallel(ce)) {
2687 		if (eb->buffer_count < ce->parallel.number_children + 1) {
2688 			intel_context_put(ce);
2689 			return -EINVAL;
2690 		}
2691 		if (eb->batch_start_offset || eb->args->batch_len) {
2692 			intel_context_put(ce);
2693 			return -EINVAL;
2694 		}
2695 	}
2696 	eb->num_batches = ce->parallel.number_children + 1;
2697 	gt = ce->engine->gt;
2698 
2699 	for_each_child(ce, child)
2700 		intel_context_get(child);
2701 	eb->wakeref = intel_gt_pm_get(ce->engine->gt);
2702 	/*
2703 	 * Keep GT0 active on MTL so that i915_vma_parked() doesn't
2704 	 * free VMAs while execbuf ioctl is validating VMAs.
2705 	 */
2706 	if (gt->info.id)
2707 		eb->wakeref_gt0 = intel_gt_pm_get(to_gt(gt->i915));
2708 
2709 	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2710 		err = intel_context_alloc_state(ce);
2711 		if (err)
2712 			goto err;
2713 	}
2714 	for_each_child(ce, child) {
2715 		if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) {
2716 			err = intel_context_alloc_state(child);
2717 			if (err)
2718 				goto err;
2719 		}
2720 	}
2721 
2722 	/*
2723 	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2724 	 * EIO if the GPU is already wedged.
2725 	 */
2726 	err = intel_gt_terminally_wedged(ce->engine->gt);
2727 	if (err)
2728 		goto err;
2729 
2730 	if (!i915_vm_tryget(ce->vm)) {
2731 		err = -ENOENT;
2732 		goto err;
2733 	}
2734 
2735 	eb->context = ce;
2736 	eb->gt = ce->engine->gt;
2737 
2738 	/*
2739 	 * Make sure engine pool stays alive even if we call intel_context_put
2740 	 * during ww handling. The pool is destroyed when last pm reference
2741 	 * is dropped, which breaks our -EDEADLK handling.
2742 	 */
2743 	return err;
2744 
2745 err:
2746 	if (gt->info.id)
2747 		intel_gt_pm_put(to_gt(gt->i915), eb->wakeref_gt0);
2748 
2749 	intel_gt_pm_put(ce->engine->gt, eb->wakeref);
2750 	for_each_child(ce, child)
2751 		intel_context_put(child);
2752 	intel_context_put(ce);
2753 	return err;
2754 }
2755 
2756 static void
eb_put_engine(struct i915_execbuffer * eb)2757 eb_put_engine(struct i915_execbuffer *eb)
2758 {
2759 	struct intel_context *child;
2760 
2761 	i915_vm_put(eb->context->vm);
2762 	/*
2763 	 * This works in conjunction with eb_select_engine() to prevent
2764 	 * i915_vma_parked() from interfering while execbuf validates vmas.
2765 	 */
2766 	if (eb->gt->info.id)
2767 		intel_gt_pm_put(to_gt(eb->gt->i915), eb->wakeref_gt0);
2768 	intel_gt_pm_put(eb->context->engine->gt, eb->wakeref);
2769 	for_each_child(eb->context, child)
2770 		intel_context_put(child);
2771 	intel_context_put(eb->context);
2772 }
2773 
2774 static void
__free_fence_array(struct eb_fence * fences,unsigned int n)2775 __free_fence_array(struct eb_fence *fences, unsigned int n)
2776 {
2777 	while (n--) {
2778 		drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2779 		dma_fence_put(fences[n].dma_fence);
2780 		dma_fence_chain_free(fences[n].chain_fence);
2781 	}
2782 	kvfree(fences);
2783 }
2784 
2785 static int
add_timeline_fence_array(struct i915_execbuffer * eb,const struct drm_i915_gem_execbuffer_ext_timeline_fences * timeline_fences)2786 add_timeline_fence_array(struct i915_execbuffer *eb,
2787 			 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2788 {
2789 	struct drm_i915_gem_exec_fence __user *user_fences;
2790 	u64 __user *user_values;
2791 	struct eb_fence *f;
2792 	u64 nfences;
2793 	int err = 0;
2794 
2795 	nfences = timeline_fences->fence_count;
2796 	if (!nfences)
2797 		return 0;
2798 
2799 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2800 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2801 	if (nfences > min_t(unsigned long,
2802 			    ULONG_MAX / sizeof(*user_fences),
2803 			    SIZE_MAX / sizeof(*f)) - eb->num_fences)
2804 		return -EINVAL;
2805 
2806 	user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2807 	if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2808 		return -EFAULT;
2809 
2810 	user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2811 	if (!access_ok(user_values, nfences * sizeof(*user_values)))
2812 		return -EFAULT;
2813 
2814 	f = krealloc(eb->fences,
2815 		     (eb->num_fences + nfences) * sizeof(*f),
2816 		     __GFP_NOWARN | GFP_KERNEL);
2817 	if (!f)
2818 		return -ENOMEM;
2819 
2820 	eb->fences = f;
2821 	f += eb->num_fences;
2822 
2823 	BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2824 		     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2825 
2826 	while (nfences--) {
2827 		struct drm_i915_gem_exec_fence user_fence;
2828 		struct drm_syncobj *syncobj;
2829 		struct dma_fence *fence = NULL;
2830 		u64 point;
2831 
2832 		if (__copy_from_user(&user_fence,
2833 				     user_fences++,
2834 				     sizeof(user_fence)))
2835 			return -EFAULT;
2836 
2837 		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2838 			return -EINVAL;
2839 
2840 		if (__get_user(point, user_values++))
2841 			return -EFAULT;
2842 
2843 		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2844 		if (!syncobj) {
2845 			drm_dbg(&eb->i915->drm,
2846 				"Invalid syncobj handle provided\n");
2847 			return -ENOENT;
2848 		}
2849 
2850 		fence = drm_syncobj_fence_get(syncobj);
2851 
2852 		if (!fence && user_fence.flags &&
2853 		    !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2854 			drm_dbg(&eb->i915->drm,
2855 				"Syncobj handle has no fence\n");
2856 			drm_syncobj_put(syncobj);
2857 			return -EINVAL;
2858 		}
2859 
2860 		if (fence)
2861 			err = dma_fence_chain_find_seqno(&fence, point);
2862 
2863 		if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2864 			drm_dbg(&eb->i915->drm,
2865 				"Syncobj handle missing requested point %llu\n",
2866 				point);
2867 			dma_fence_put(fence);
2868 			drm_syncobj_put(syncobj);
2869 			return err;
2870 		}
2871 
2872 		/*
2873 		 * A point might have been signaled already and
2874 		 * garbage collected from the timeline. In this case
2875 		 * just ignore the point and carry on.
2876 		 */
2877 		if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2878 			drm_syncobj_put(syncobj);
2879 			continue;
2880 		}
2881 
2882 		/*
2883 		 * For timeline syncobjs we need to preallocate chains for
2884 		 * later signaling.
2885 		 */
2886 		if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2887 			/*
2888 			 * Waiting and signaling the same point (when point !=
2889 			 * 0) would break the timeline.
2890 			 */
2891 			if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2892 				drm_dbg(&eb->i915->drm,
2893 					"Trying to wait & signal the same timeline point.\n");
2894 				dma_fence_put(fence);
2895 				drm_syncobj_put(syncobj);
2896 				return -EINVAL;
2897 			}
2898 
2899 			f->chain_fence = dma_fence_chain_alloc();
2900 			if (!f->chain_fence) {
2901 				drm_syncobj_put(syncobj);
2902 				dma_fence_put(fence);
2903 				return -ENOMEM;
2904 			}
2905 		} else {
2906 			f->chain_fence = NULL;
2907 		}
2908 
2909 		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2910 		f->dma_fence = fence;
2911 		f->value = point;
2912 		f++;
2913 		eb->num_fences++;
2914 	}
2915 
2916 	return 0;
2917 }
2918 
add_fence_array(struct i915_execbuffer * eb)2919 static int add_fence_array(struct i915_execbuffer *eb)
2920 {
2921 	struct drm_i915_gem_execbuffer2 *args = eb->args;
2922 	struct drm_i915_gem_exec_fence __user *user;
2923 	unsigned long num_fences = args->num_cliprects;
2924 	struct eb_fence *f;
2925 
2926 	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2927 		return 0;
2928 
2929 	if (!num_fences)
2930 		return 0;
2931 
2932 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2933 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2934 	if (num_fences > min_t(unsigned long,
2935 			       ULONG_MAX / sizeof(*user),
2936 			       SIZE_MAX / sizeof(*f) - eb->num_fences))
2937 		return -EINVAL;
2938 
2939 	user = u64_to_user_ptr(args->cliprects_ptr);
2940 	if (!access_ok(user, num_fences * sizeof(*user)))
2941 		return -EFAULT;
2942 
2943 	f = krealloc(eb->fences,
2944 		     (eb->num_fences + num_fences) * sizeof(*f),
2945 		     __GFP_NOWARN | GFP_KERNEL);
2946 	if (!f)
2947 		return -ENOMEM;
2948 
2949 	eb->fences = f;
2950 	f += eb->num_fences;
2951 	while (num_fences--) {
2952 		struct drm_i915_gem_exec_fence user_fence;
2953 		struct drm_syncobj *syncobj;
2954 		struct dma_fence *fence = NULL;
2955 
2956 		if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2957 			return -EFAULT;
2958 
2959 		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2960 			return -EINVAL;
2961 
2962 		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2963 		if (!syncobj) {
2964 			drm_dbg(&eb->i915->drm,
2965 				"Invalid syncobj handle provided\n");
2966 			return -ENOENT;
2967 		}
2968 
2969 		if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2970 			fence = drm_syncobj_fence_get(syncobj);
2971 			if (!fence) {
2972 				drm_dbg(&eb->i915->drm,
2973 					"Syncobj handle has no fence\n");
2974 				drm_syncobj_put(syncobj);
2975 				return -EINVAL;
2976 			}
2977 		}
2978 
2979 		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2980 			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2981 
2982 		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2983 		f->dma_fence = fence;
2984 		f->value = 0;
2985 		f->chain_fence = NULL;
2986 		f++;
2987 		eb->num_fences++;
2988 	}
2989 
2990 	return 0;
2991 }
2992 
put_fence_array(struct eb_fence * fences,int num_fences)2993 static void put_fence_array(struct eb_fence *fences, int num_fences)
2994 {
2995 	if (fences)
2996 		__free_fence_array(fences, num_fences);
2997 }
2998 
2999 static int
await_fence_array(struct i915_execbuffer * eb,struct i915_request * rq)3000 await_fence_array(struct i915_execbuffer *eb,
3001 		  struct i915_request *rq)
3002 {
3003 	unsigned int n;
3004 	int err;
3005 
3006 	for (n = 0; n < eb->num_fences; n++) {
3007 		if (!eb->fences[n].dma_fence)
3008 			continue;
3009 
3010 		err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence);
3011 		if (err < 0)
3012 			return err;
3013 	}
3014 
3015 	return 0;
3016 }
3017 
signal_fence_array(const struct i915_execbuffer * eb,struct dma_fence * const fence)3018 static void signal_fence_array(const struct i915_execbuffer *eb,
3019 			       struct dma_fence * const fence)
3020 {
3021 	unsigned int n;
3022 
3023 	for (n = 0; n < eb->num_fences; n++) {
3024 		struct drm_syncobj *syncobj;
3025 		unsigned int flags;
3026 
3027 		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3028 		if (!(flags & I915_EXEC_FENCE_SIGNAL))
3029 			continue;
3030 
3031 		if (eb->fences[n].chain_fence) {
3032 			drm_syncobj_add_point(syncobj,
3033 					      eb->fences[n].chain_fence,
3034 					      fence,
3035 					      eb->fences[n].value);
3036 			/*
3037 			 * The chain's ownership is transferred to the
3038 			 * timeline.
3039 			 */
3040 			eb->fences[n].chain_fence = NULL;
3041 		} else {
3042 			drm_syncobj_replace_fence(syncobj, fence);
3043 		}
3044 	}
3045 }
3046 
3047 static int
parse_timeline_fences(struct i915_user_extension __user * ext,void * data)3048 parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
3049 {
3050 	struct i915_execbuffer *eb = data;
3051 	struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
3052 
3053 	if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3054 		return -EFAULT;
3055 
3056 	return add_timeline_fence_array(eb, &timeline_fences);
3057 }
3058 
retire_requests(struct intel_timeline * tl,struct i915_request * end)3059 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3060 {
3061 	struct i915_request *rq, *rn;
3062 
3063 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
3064 		if (rq == end || !i915_request_retire(rq))
3065 			break;
3066 }
3067 
eb_request_add(struct i915_execbuffer * eb,struct i915_request * rq,int err,bool last_parallel)3068 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq,
3069 			  int err, bool last_parallel)
3070 {
3071 	struct intel_timeline * const tl = i915_request_timeline(rq);
3072 	struct i915_sched_attr attr = {};
3073 	struct i915_request *prev;
3074 
3075 	lockdep_assert_held(&tl->mutex);
3076 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
3077 
3078 	trace_i915_request_add(rq);
3079 
3080 	prev = __i915_request_commit(rq);
3081 
3082 	/* Check that the context wasn't destroyed before submission */
3083 	if (likely(!intel_context_is_closed(eb->context))) {
3084 		attr = eb->gem_context->sched;
3085 	} else {
3086 		/* Serialise with context_close via the add_to_timeline */
3087 		i915_request_set_error_once(rq, -ENOENT);
3088 		__i915_request_skip(rq);
3089 		err = -ENOENT; /* override any transient errors */
3090 	}
3091 
3092 	if (intel_context_is_parallel(eb->context)) {
3093 		if (err) {
3094 			__i915_request_skip(rq);
3095 			set_bit(I915_FENCE_FLAG_SKIP_PARALLEL,
3096 				&rq->fence.flags);
3097 		}
3098 		if (last_parallel)
3099 			set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL,
3100 				&rq->fence.flags);
3101 	}
3102 
3103 	__i915_request_queue(rq, &attr);
3104 
3105 	/* Try to clean up the client's timeline after submitting the request */
3106 	if (prev)
3107 		retire_requests(tl, prev);
3108 
3109 	mutex_unlock(&tl->mutex);
3110 
3111 	return err;
3112 }
3113 
eb_requests_add(struct i915_execbuffer * eb,int err)3114 static int eb_requests_add(struct i915_execbuffer *eb, int err)
3115 {
3116 	int i;
3117 
3118 	/*
3119 	 * We iterate in reverse order of creation to release timeline mutexes in
3120 	 * same order.
3121 	 */
3122 	for_each_batch_add_order(eb, i) {
3123 		struct i915_request *rq = eb->requests[i];
3124 
3125 		if (!rq)
3126 			continue;
3127 		err |= eb_request_add(eb, rq, err, i == 0);
3128 	}
3129 
3130 	return err;
3131 }
3132 
3133 static const i915_user_extension_fn execbuf_extensions[] = {
3134 	[DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3135 };
3136 
3137 static int
parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 * args,struct i915_execbuffer * eb)3138 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3139 			  struct i915_execbuffer *eb)
3140 {
3141 	if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3142 		return 0;
3143 
3144 	/* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3145 	 * have another flag also using it at the same time.
3146 	 */
3147 	if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3148 		return -EINVAL;
3149 
3150 	if (args->num_cliprects != 0)
3151 		return -EINVAL;
3152 
3153 	return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3154 				    execbuf_extensions,
3155 				    ARRAY_SIZE(execbuf_extensions),
3156 				    eb);
3157 }
3158 
eb_requests_get(struct i915_execbuffer * eb)3159 static void eb_requests_get(struct i915_execbuffer *eb)
3160 {
3161 	unsigned int i;
3162 
3163 	for_each_batch_create_order(eb, i) {
3164 		if (!eb->requests[i])
3165 			break;
3166 
3167 		i915_request_get(eb->requests[i]);
3168 	}
3169 }
3170 
eb_requests_put(struct i915_execbuffer * eb)3171 static void eb_requests_put(struct i915_execbuffer *eb)
3172 {
3173 	unsigned int i;
3174 
3175 	for_each_batch_create_order(eb, i) {
3176 		if (!eb->requests[i])
3177 			break;
3178 
3179 		i915_request_put(eb->requests[i]);
3180 	}
3181 }
3182 
3183 static struct sync_file *
eb_composite_fence_create(struct i915_execbuffer * eb,int out_fence_fd)3184 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd)
3185 {
3186 	struct sync_file *out_fence = NULL;
3187 	struct dma_fence_array *fence_array;
3188 	struct dma_fence **fences;
3189 	unsigned int i;
3190 
3191 	GEM_BUG_ON(!intel_context_is_parent(eb->context));
3192 
3193 	fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL);
3194 	if (!fences)
3195 		return ERR_PTR(-ENOMEM);
3196 
3197 	for_each_batch_create_order(eb, i) {
3198 		fences[i] = &eb->requests[i]->fence;
3199 		__set_bit(I915_FENCE_FLAG_COMPOSITE,
3200 			  &eb->requests[i]->fence.flags);
3201 	}
3202 
3203 	fence_array = dma_fence_array_create(eb->num_batches,
3204 					     fences,
3205 					     eb->context->parallel.fence_context,
3206 					     eb->context->parallel.seqno++,
3207 					     false);
3208 	if (!fence_array) {
3209 		kfree(fences);
3210 		return ERR_PTR(-ENOMEM);
3211 	}
3212 
3213 	/* Move ownership to the dma_fence_array created above */
3214 	for_each_batch_create_order(eb, i)
3215 		dma_fence_get(fences[i]);
3216 
3217 	if (out_fence_fd != -1) {
3218 		out_fence = sync_file_create(&fence_array->base);
3219 		/* sync_file now owns fence_arry, drop creation ref */
3220 		dma_fence_put(&fence_array->base);
3221 		if (!out_fence)
3222 			return ERR_PTR(-ENOMEM);
3223 	}
3224 
3225 	eb->composite_fence = &fence_array->base;
3226 
3227 	return out_fence;
3228 }
3229 
3230 static struct sync_file *
eb_fences_add(struct i915_execbuffer * eb,struct i915_request * rq,struct dma_fence * in_fence,int out_fence_fd)3231 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq,
3232 	      struct dma_fence *in_fence, int out_fence_fd)
3233 {
3234 	struct sync_file *out_fence = NULL;
3235 	int err;
3236 
3237 	if (unlikely(eb->gem_context->syncobj)) {
3238 		struct dma_fence *fence;
3239 
3240 		fence = drm_syncobj_fence_get(eb->gem_context->syncobj);
3241 		err = i915_request_await_dma_fence(rq, fence);
3242 		dma_fence_put(fence);
3243 		if (err)
3244 			return ERR_PTR(err);
3245 	}
3246 
3247 	if (in_fence) {
3248 		if (eb->args->flags & I915_EXEC_FENCE_SUBMIT)
3249 			err = i915_request_await_execution(rq, in_fence);
3250 		else
3251 			err = i915_request_await_dma_fence(rq, in_fence);
3252 		if (err < 0)
3253 			return ERR_PTR(err);
3254 	}
3255 
3256 	if (eb->fences) {
3257 		err = await_fence_array(eb, rq);
3258 		if (err)
3259 			return ERR_PTR(err);
3260 	}
3261 
3262 	if (intel_context_is_parallel(eb->context)) {
3263 		out_fence = eb_composite_fence_create(eb, out_fence_fd);
3264 		if (IS_ERR(out_fence))
3265 			return ERR_PTR(-ENOMEM);
3266 	} else if (out_fence_fd != -1) {
3267 		out_fence = sync_file_create(&rq->fence);
3268 		if (!out_fence)
3269 			return ERR_PTR(-ENOMEM);
3270 	}
3271 
3272 	return out_fence;
3273 }
3274 
3275 static struct intel_context *
eb_find_context(struct i915_execbuffer * eb,unsigned int context_number)3276 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number)
3277 {
3278 	struct intel_context *child;
3279 
3280 	if (likely(context_number == 0))
3281 		return eb->context;
3282 
3283 	for_each_child(eb->context, child)
3284 		if (!--context_number)
3285 			return child;
3286 
3287 	GEM_BUG_ON("Context not found");
3288 
3289 	return NULL;
3290 }
3291 
3292 static struct sync_file *
eb_requests_create(struct i915_execbuffer * eb,struct dma_fence * in_fence,int out_fence_fd)3293 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence,
3294 		   int out_fence_fd)
3295 {
3296 	struct sync_file *out_fence = NULL;
3297 	unsigned int i;
3298 
3299 	for_each_batch_create_order(eb, i) {
3300 		/* Allocate a request for this batch buffer nice and early. */
3301 		eb->requests[i] = i915_request_create(eb_find_context(eb, i));
3302 		if (IS_ERR(eb->requests[i])) {
3303 			out_fence = ERR_CAST(eb->requests[i]);
3304 			eb->requests[i] = NULL;
3305 			return out_fence;
3306 		}
3307 
3308 		/*
3309 		 * Only the first request added (committed to backend) has to
3310 		 * take the in fences into account as all subsequent requests
3311 		 * will have fences inserted inbetween them.
3312 		 */
3313 		if (i + 1 == eb->num_batches) {
3314 			out_fence = eb_fences_add(eb, eb->requests[i],
3315 						  in_fence, out_fence_fd);
3316 			if (IS_ERR(out_fence))
3317 				return out_fence;
3318 		}
3319 
3320 		/*
3321 		 * Not really on stack, but we don't want to call
3322 		 * kfree on the batch_snapshot when we put it, so use the
3323 		 * _onstack interface.
3324 		 */
3325 		if (eb->batches[i]->vma)
3326 			eb->requests[i]->batch_res =
3327 				i915_vma_resource_get(eb->batches[i]->vma->resource);
3328 		if (eb->batch_pool) {
3329 			GEM_BUG_ON(intel_context_is_parallel(eb->context));
3330 			intel_gt_buffer_pool_mark_active(eb->batch_pool,
3331 							 eb->requests[i]);
3332 		}
3333 	}
3334 
3335 	return out_fence;
3336 }
3337 
3338 static int
i915_gem_do_execbuffer(struct drm_device * dev,struct drm_file * file,struct drm_i915_gem_execbuffer2 * args,struct drm_i915_gem_exec_object2 * exec)3339 i915_gem_do_execbuffer(struct drm_device *dev,
3340 		       struct drm_file *file,
3341 		       struct drm_i915_gem_execbuffer2 *args,
3342 		       struct drm_i915_gem_exec_object2 *exec)
3343 {
3344 	struct drm_i915_private *i915 = to_i915(dev);
3345 	struct i915_execbuffer eb;
3346 	struct dma_fence *in_fence = NULL;
3347 	struct sync_file *out_fence = NULL;
3348 	int out_fence_fd = -1;
3349 	int err;
3350 
3351 	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3352 	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3353 		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3354 
3355 	eb.i915 = i915;
3356 	eb.file = file;
3357 	eb.args = args;
3358 	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3359 		args->flags |= __EXEC_HAS_RELOC;
3360 
3361 	eb.exec = exec;
3362 	eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3363 	memset(eb.vma, 0, (args->buffer_count + 1) * sizeof(struct eb_vma));
3364 
3365 	eb.batch_pool = NULL;
3366 
3367 	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3368 	reloc_cache_init(&eb.reloc_cache, eb.i915);
3369 
3370 	eb.buffer_count = args->buffer_count;
3371 	eb.batch_start_offset = args->batch_start_offset;
3372 	eb.trampoline = NULL;
3373 
3374 	eb.fences = NULL;
3375 	eb.num_fences = 0;
3376 
3377 	eb_capture_list_clear(&eb);
3378 
3379 	memset(eb.requests, 0, sizeof(struct i915_request *) *
3380 	       ARRAY_SIZE(eb.requests));
3381 	eb.composite_fence = NULL;
3382 
3383 	eb.batch_flags = 0;
3384 	if (args->flags & I915_EXEC_SECURE) {
3385 		if (GRAPHICS_VER(i915) >= 11)
3386 			return -ENODEV;
3387 
3388 		/* Return -EPERM to trigger fallback code on old binaries. */
3389 		if (!HAS_SECURE_BATCHES(i915))
3390 			return -EPERM;
3391 
3392 		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3393 			return -EPERM;
3394 
3395 		eb.batch_flags |= I915_DISPATCH_SECURE;
3396 	}
3397 	if (args->flags & I915_EXEC_IS_PINNED)
3398 		eb.batch_flags |= I915_DISPATCH_PINNED;
3399 
3400 	err = parse_execbuf2_extensions(args, &eb);
3401 	if (err)
3402 		goto err_ext;
3403 
3404 	err = add_fence_array(&eb);
3405 	if (err)
3406 		goto err_ext;
3407 
3408 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3409 	if (args->flags & IN_FENCES) {
3410 		if ((args->flags & IN_FENCES) == IN_FENCES)
3411 			return -EINVAL;
3412 
3413 		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3414 		if (!in_fence) {
3415 			err = -EINVAL;
3416 			goto err_ext;
3417 		}
3418 	}
3419 #undef IN_FENCES
3420 
3421 	if (args->flags & I915_EXEC_FENCE_OUT) {
3422 		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3423 		if (out_fence_fd < 0) {
3424 			err = out_fence_fd;
3425 			goto err_in_fence;
3426 		}
3427 	}
3428 
3429 	err = eb_create(&eb);
3430 	if (err)
3431 		goto err_out_fence;
3432 
3433 	GEM_BUG_ON(!eb.lut_size);
3434 
3435 	err = eb_select_context(&eb);
3436 	if (unlikely(err))
3437 		goto err_destroy;
3438 
3439 	err = eb_select_engine(&eb);
3440 	if (unlikely(err))
3441 		goto err_context;
3442 
3443 	err = eb_lookup_vmas(&eb);
3444 	if (err) {
3445 		eb_release_vmas(&eb, true);
3446 		goto err_engine;
3447 	}
3448 
3449 	i915_gem_ww_ctx_init(&eb.ww, true);
3450 
3451 	err = eb_relocate_parse(&eb);
3452 	if (err) {
3453 		/*
3454 		 * If the user expects the execobject.offset and
3455 		 * reloc.presumed_offset to be an exact match,
3456 		 * as for using NO_RELOC, then we cannot update
3457 		 * the execobject.offset until we have completed
3458 		 * relocation.
3459 		 */
3460 		args->flags &= ~__EXEC_HAS_RELOC;
3461 		goto err_vma;
3462 	}
3463 
3464 	ww_acquire_done(&eb.ww.ctx);
3465 	err = eb_capture_stage(&eb);
3466 	if (err)
3467 		goto err_vma;
3468 
3469 	out_fence = eb_requests_create(&eb, in_fence, out_fence_fd);
3470 	if (IS_ERR(out_fence)) {
3471 		err = PTR_ERR(out_fence);
3472 		out_fence = NULL;
3473 		if (eb.requests[0])
3474 			goto err_request;
3475 		else
3476 			goto err_vma;
3477 	}
3478 
3479 	err = eb_submit(&eb);
3480 
3481 err_request:
3482 	eb_requests_get(&eb);
3483 	err = eb_requests_add(&eb, err);
3484 
3485 	if (eb.fences)
3486 		signal_fence_array(&eb, eb.composite_fence ?
3487 				   eb.composite_fence :
3488 				   &eb.requests[0]->fence);
3489 
3490 	if (unlikely(eb.gem_context->syncobj)) {
3491 		drm_syncobj_replace_fence(eb.gem_context->syncobj,
3492 					  eb.composite_fence ?
3493 					  eb.composite_fence :
3494 					  &eb.requests[0]->fence);
3495 	}
3496 
3497 	if (out_fence) {
3498 		if (err == 0) {
3499 			fd_install(out_fence_fd, out_fence->file);
3500 			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3501 			args->rsvd2 |= (u64)out_fence_fd << 32;
3502 			out_fence_fd = -1;
3503 		} else {
3504 			fput(out_fence->file);
3505 		}
3506 	}
3507 
3508 	if (!out_fence && eb.composite_fence)
3509 		dma_fence_put(eb.composite_fence);
3510 
3511 	eb_requests_put(&eb);
3512 
3513 err_vma:
3514 	eb_release_vmas(&eb, true);
3515 	WARN_ON(err == -EDEADLK);
3516 	i915_gem_ww_ctx_fini(&eb.ww);
3517 
3518 	if (eb.batch_pool)
3519 		intel_gt_buffer_pool_put(eb.batch_pool);
3520 err_engine:
3521 	eb_put_engine(&eb);
3522 err_context:
3523 	i915_gem_context_put(eb.gem_context);
3524 err_destroy:
3525 	eb_destroy(&eb);
3526 err_out_fence:
3527 	if (out_fence_fd != -1)
3528 		put_unused_fd(out_fence_fd);
3529 err_in_fence:
3530 	dma_fence_put(in_fence);
3531 err_ext:
3532 	put_fence_array(eb.fences, eb.num_fences);
3533 	return err;
3534 }
3535 
eb_element_size(void)3536 static size_t eb_element_size(void)
3537 {
3538 	return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3539 }
3540 
check_buffer_count(size_t count)3541 static bool check_buffer_count(size_t count)
3542 {
3543 	const size_t sz = eb_element_size();
3544 
3545 	/*
3546 	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3547 	 * array size (see eb_create()). Otherwise, we can accept an array as
3548 	 * large as can be addressed (though use large arrays at your peril)!
3549 	 */
3550 
3551 	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3552 }
3553 
3554 int
i915_gem_execbuffer2_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3555 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3556 			   struct drm_file *file)
3557 {
3558 	struct drm_i915_private *i915 = to_i915(dev);
3559 	struct drm_i915_gem_execbuffer2 *args = data;
3560 	struct drm_i915_gem_exec_object2 *exec2_list;
3561 	const size_t count = args->buffer_count;
3562 	int err;
3563 
3564 	if (!check_buffer_count(count)) {
3565 		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3566 		return -EINVAL;
3567 	}
3568 
3569 	err = i915_gem_check_execbuffer(i915, args);
3570 	if (err)
3571 		return err;
3572 
3573 	/*
3574 	 * Allocate extra slots for use by the command parser.
3575 	 *
3576 	 * Note that this allocation handles two different arrays (the
3577 	 * exec2_list array, and the eventual eb.vma array introduced in
3578 	 * i915_gem_do_execbuffer()), that reside in virtually contiguous
3579 	 * memory. Also note that the allocation intentionally doesn't fill the
3580 	 * area with zeros, because the exec2_list part doesn't need to be, as
3581 	 * it's immediately overwritten by user data a few lines below.
3582 	 * However, the eb.vma part is explicitly zeroed later in
3583 	 * i915_gem_do_execbuffer().
3584 	 */
3585 	exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3586 				    __GFP_NOWARN | GFP_KERNEL);
3587 	if (exec2_list == NULL) {
3588 		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3589 			count);
3590 		return -ENOMEM;
3591 	}
3592 	if (copy_from_user(exec2_list,
3593 			   u64_to_user_ptr(args->buffers_ptr),
3594 			   sizeof(*exec2_list) * count)) {
3595 		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3596 		kvfree(exec2_list);
3597 		return -EFAULT;
3598 	}
3599 
3600 	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3601 
3602 	/*
3603 	 * Now that we have begun execution of the batchbuffer, we ignore
3604 	 * any new error after this point. Also given that we have already
3605 	 * updated the associated relocations, we try to write out the current
3606 	 * object locations irrespective of any error.
3607 	 */
3608 	if (args->flags & __EXEC_HAS_RELOC) {
3609 		struct drm_i915_gem_exec_object2 __user *user_exec_list =
3610 			u64_to_user_ptr(args->buffers_ptr);
3611 		unsigned int i;
3612 
3613 		/* Copy the new buffer offsets back to the user's exec list. */
3614 		/*
3615 		 * Note: count * sizeof(*user_exec_list) does not overflow,
3616 		 * because we checked 'count' in check_buffer_count().
3617 		 *
3618 		 * And this range already got effectively checked earlier
3619 		 * when we did the "copy_from_user()" above.
3620 		 */
3621 		if (!user_write_access_begin(user_exec_list,
3622 					     count * sizeof(*user_exec_list)))
3623 			goto end;
3624 
3625 		for (i = 0; i < args->buffer_count; i++) {
3626 			if (!(exec2_list[i].offset & UPDATE))
3627 				continue;
3628 
3629 			exec2_list[i].offset =
3630 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3631 			unsafe_put_user(exec2_list[i].offset,
3632 					&user_exec_list[i].offset,
3633 					end_user);
3634 		}
3635 end_user:
3636 		user_write_access_end();
3637 end:;
3638 	}
3639 
3640 	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3641 	kvfree(exec2_list);
3642 	return err;
3643 }
3644