1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2008,2010 Intel Corporation
4 */
5
6 #include <linux/dma-resv.h>
7 #include <linux/highmem.h>
8 #include <linux/sync_file.h>
9 #include <linux/uaccess.h>
10
11 #include <drm/drm_auth.h>
12 #include <drm/drm_print.h>
13 #include <drm/drm_syncobj.h>
14
15 #include "gem/i915_gem_ioctls.h"
16 #include "gt/intel_context.h"
17 #include "gt/intel_gpu_commands.h"
18 #include "gt/intel_gt.h"
19 #include "gt/intel_gt_buffer_pool.h"
20 #include "gt/intel_gt_pm.h"
21 #include "gt/intel_ring.h"
22
23 #include "pxp/intel_pxp.h"
24
25 #include "i915_cmd_parser.h"
26 #include "i915_drv.h"
27 #include "i915_file_private.h"
28 #include "i915_gem_clflush.h"
29 #include "i915_gem_context.h"
30 #include "i915_gem_evict.h"
31 #include "i915_gem_ioctls.h"
32 #include "i915_reg.h"
33 #include "i915_trace.h"
34 #include "i915_user_extensions.h"
35
36 struct eb_vma {
37 struct i915_vma *vma;
38 unsigned int flags;
39
40 /** This vma's place in the execbuf reservation list */
41 struct drm_i915_gem_exec_object2 *exec;
42 struct list_head bind_link;
43 struct list_head reloc_link;
44
45 struct hlist_node node;
46 u32 handle;
47 };
48
49 enum {
50 FORCE_CPU_RELOC = 1,
51 FORCE_GTT_RELOC,
52 FORCE_GPU_RELOC,
53 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
54 };
55
56 /* __EXEC_OBJECT_ flags > BIT(29) defined in i915_vma.h */
57 #define __EXEC_OBJECT_HAS_PIN BIT(29)
58 #define __EXEC_OBJECT_HAS_FENCE BIT(28)
59 #define __EXEC_OBJECT_USERPTR_INIT BIT(27)
60 #define __EXEC_OBJECT_NEEDS_MAP BIT(26)
61 #define __EXEC_OBJECT_NEEDS_BIAS BIT(25)
62 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 25) /* all of the above + */
63 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
64
65 #define __EXEC_HAS_RELOC BIT(31)
66 #define __EXEC_ENGINE_PINNED BIT(30)
67 #define __EXEC_USERPTR_USED BIT(29)
68 #define __EXEC_INTERNAL_FLAGS (~0u << 29)
69 #define UPDATE PIN_OFFSET_FIXED
70
71 #define BATCH_OFFSET_BIAS (256*1024)
72
73 #define __I915_EXEC_ILLEGAL_FLAGS \
74 (__I915_EXEC_UNKNOWN_FLAGS | \
75 I915_EXEC_CONSTANTS_MASK | \
76 I915_EXEC_RESOURCE_STREAMER)
77
78 /* Catch emission of unexpected errors for CI! */
79 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
80 #undef EINVAL
81 #define EINVAL ({ \
82 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
83 22; \
84 })
85 #endif
86
87 /**
88 * DOC: User command execution
89 *
90 * Userspace submits commands to be executed on the GPU as an instruction
91 * stream within a GEM object we call a batchbuffer. This instructions may
92 * refer to other GEM objects containing auxiliary state such as kernels,
93 * samplers, render targets and even secondary batchbuffers. Userspace does
94 * not know where in the GPU memory these objects reside and so before the
95 * batchbuffer is passed to the GPU for execution, those addresses in the
96 * batchbuffer and auxiliary objects are updated. This is known as relocation,
97 * or patching. To try and avoid having to relocate each object on the next
98 * execution, userspace is told the location of those objects in this pass,
99 * but this remains just a hint as the kernel may choose a new location for
100 * any object in the future.
101 *
102 * At the level of talking to the hardware, submitting a batchbuffer for the
103 * GPU to execute is to add content to a buffer from which the HW
104 * command streamer is reading.
105 *
106 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
107 * Execlists, this command is not placed on the same buffer as the
108 * remaining items.
109 *
110 * 2. Add a command to invalidate caches to the buffer.
111 *
112 * 3. Add a batchbuffer start command to the buffer; the start command is
113 * essentially a token together with the GPU address of the batchbuffer
114 * to be executed.
115 *
116 * 4. Add a pipeline flush to the buffer.
117 *
118 * 5. Add a memory write command to the buffer to record when the GPU
119 * is done executing the batchbuffer. The memory write writes the
120 * global sequence number of the request, ``i915_request::global_seqno``;
121 * the i915 driver uses the current value in the register to determine
122 * if the GPU has completed the batchbuffer.
123 *
124 * 6. Add a user interrupt command to the buffer. This command instructs
125 * the GPU to issue an interrupt when the command, pipeline flush and
126 * memory write are completed.
127 *
128 * 7. Inform the hardware of the additional commands added to the buffer
129 * (by updating the tail pointer).
130 *
131 * Processing an execbuf ioctl is conceptually split up into a few phases.
132 *
133 * 1. Validation - Ensure all the pointers, handles and flags are valid.
134 * 2. Reservation - Assign GPU address space for every object
135 * 3. Relocation - Update any addresses to point to the final locations
136 * 4. Serialisation - Order the request with respect to its dependencies
137 * 5. Construction - Construct a request to execute the batchbuffer
138 * 6. Submission (at some point in the future execution)
139 *
140 * Reserving resources for the execbuf is the most complicated phase. We
141 * neither want to have to migrate the object in the address space, nor do
142 * we want to have to update any relocations pointing to this object. Ideally,
143 * we want to leave the object where it is and for all the existing relocations
144 * to match. If the object is given a new address, or if userspace thinks the
145 * object is elsewhere, we have to parse all the relocation entries and update
146 * the addresses. Userspace can set the I915_EXEC_NO_RELOC flag to hint that
147 * all the target addresses in all of its objects match the value in the
148 * relocation entries and that they all match the presumed offsets given by the
149 * list of execbuffer objects. Using this knowledge, we know that if we haven't
150 * moved any buffers, all the relocation entries are valid and we can skip
151 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
152 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
153 *
154 * The addresses written in the objects must match the corresponding
155 * reloc.presumed_offset which in turn must match the corresponding
156 * execobject.offset.
157 *
158 * Any render targets written to in the batch must be flagged with
159 * EXEC_OBJECT_WRITE.
160 *
161 * To avoid stalling, execobject.offset should match the current
162 * address of that object within the active context.
163 *
164 * The reservation is done is multiple phases. First we try and keep any
165 * object already bound in its current location - so as long as meets the
166 * constraints imposed by the new execbuffer. Any object left unbound after the
167 * first pass is then fitted into any available idle space. If an object does
168 * not fit, all objects are removed from the reservation and the process rerun
169 * after sorting the objects into a priority order (more difficult to fit
170 * objects are tried first). Failing that, the entire VM is cleared and we try
171 * to fit the execbuf once last time before concluding that it simply will not
172 * fit.
173 *
174 * A small complication to all of this is that we allow userspace not only to
175 * specify an alignment and a size for the object in the address space, but
176 * we also allow userspace to specify the exact offset. This objects are
177 * simpler to place (the location is known a priori) all we have to do is make
178 * sure the space is available.
179 *
180 * Once all the objects are in place, patching up the buried pointers to point
181 * to the final locations is a fairly simple job of walking over the relocation
182 * entry arrays, looking up the right address and rewriting the value into
183 * the object. Simple! ... The relocation entries are stored in user memory
184 * and so to access them we have to copy them into a local buffer. That copy
185 * has to avoid taking any pagefaults as they may lead back to a GEM object
186 * requiring the vm->mutex (i.e. recursive deadlock). So once again we split
187 * the relocation into multiple passes. First we try to do everything within an
188 * atomic context (avoid the pagefaults) which requires that we never wait. If
189 * we detect that we may wait, or if we need to fault, then we have to fallback
190 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
191 * bells yet?) Dropping the mutex means that we lose all the state we have
192 * built up so far for the execbuf and we must reset any global data. However,
193 * we do leave the objects pinned in their final locations - which is a
194 * potential issue for concurrent execbufs. Once we have left the mutex, we can
195 * allocate and copy all the relocation entries into a large array at our
196 * leisure, reacquire the mutex, reclaim all the objects and other state and
197 * then proceed to update any incorrect addresses with the objects.
198 *
199 * As we process the relocation entries, we maintain a record of whether the
200 * object is being written to. Using NORELOC, we expect userspace to provide
201 * this information instead. We also check whether we can skip the relocation
202 * by comparing the expected value inside the relocation entry with the target's
203 * final address. If they differ, we have to map the current object and rewrite
204 * the 4 or 8 byte pointer within.
205 *
206 * Serialising an execbuf is quite simple according to the rules of the GEM
207 * ABI. Execution within each context is ordered by the order of submission.
208 * Writes to any GEM object are in order of submission and are exclusive. Reads
209 * from a GEM object are unordered with respect to other reads, but ordered by
210 * writes. A write submitted after a read cannot occur before the read, and
211 * similarly any read submitted after a write cannot occur before the write.
212 * Writes are ordered between engines such that only one write occurs at any
213 * time (completing any reads beforehand) - using semaphores where available
214 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
215 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
216 * reads before starting, and any read (either using set-domain or pread) must
217 * flush all GPU writes before starting. (Note we only employ a barrier before,
218 * we currently rely on userspace not concurrently starting a new execution
219 * whilst reading or writing to an object. This may be an advantage or not
220 * depending on how much you trust userspace not to shoot themselves in the
221 * foot.) Serialisation may just result in the request being inserted into
222 * a DAG awaiting its turn, but most simple is to wait on the CPU until
223 * all dependencies are resolved.
224 *
225 * After all of that, is just a matter of closing the request and handing it to
226 * the hardware (well, leaving it in a queue to be executed). However, we also
227 * offer the ability for batchbuffers to be run with elevated privileges so
228 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
229 * Before any batch is given extra privileges we first must check that it
230 * contains no nefarious instructions, we check that each instruction is from
231 * our whitelist and all registers are also from an allowed list. We first
232 * copy the user's batchbuffer to a shadow (so that the user doesn't have
233 * access to it, either by the CPU or GPU as we scan it) and then parse each
234 * instruction. If everything is ok, we set a flag telling the hardware to run
235 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
236 */
237
238 struct eb_fence {
239 struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
240 struct dma_fence *dma_fence;
241 u64 value;
242 struct dma_fence_chain *chain_fence;
243 };
244
245 struct i915_execbuffer {
246 struct drm_i915_private *i915; /** i915 backpointer */
247 struct drm_file *file; /** per-file lookup tables and limits */
248 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
249 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
250 struct eb_vma *vma;
251
252 struct intel_gt *gt; /* gt for the execbuf */
253 struct intel_context *context; /* logical state for the request */
254 struct i915_gem_context *gem_context; /** caller's context */
255 intel_wakeref_t wakeref;
256 intel_wakeref_t wakeref_gt0;
257
258 /** our requests to build */
259 struct i915_request *requests[MAX_ENGINE_INSTANCE + 1];
260 /** identity of the batch obj/vma */
261 struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1];
262 struct i915_vma *trampoline; /** trampoline used for chaining */
263
264 /** used for excl fence in dma_resv objects when > 1 BB submitted */
265 struct dma_fence *composite_fence;
266
267 /** actual size of execobj[] as we may extend it for the cmdparser */
268 unsigned int buffer_count;
269
270 /* number of batches in execbuf IOCTL */
271 unsigned int num_batches;
272
273 /** list of vma not yet bound during reservation phase */
274 struct list_head unbound;
275
276 /** list of vma that have execobj.relocation_count */
277 struct list_head relocs;
278
279 struct i915_gem_ww_ctx ww;
280
281 /**
282 * Track the most recently used object for relocations, as we
283 * frequently have to perform multiple relocations within the same
284 * obj/page
285 */
286 struct reloc_cache {
287 struct drm_mm_node node; /** temporary GTT binding */
288 unsigned long vaddr; /** Current kmap address */
289 unsigned long page; /** Currently mapped page index */
290 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
291 bool use_64bit_reloc : 1;
292 bool has_llc : 1;
293 bool has_fence : 1;
294 bool needs_unfenced : 1;
295 } reloc_cache;
296
297 u64 invalid_flags; /** Set of execobj.flags that are invalid */
298
299 /** Length of batch within object */
300 u64 batch_len[MAX_ENGINE_INSTANCE + 1];
301 u32 batch_start_offset; /** Location within object of batch */
302 u32 batch_flags; /** Flags composed for emit_bb_start() */
303 struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
304
305 /**
306 * Indicate either the size of the hashtable used to resolve
307 * relocation handles, or if negative that we are using a direct
308 * index into the execobj[].
309 */
310 int lut_size;
311 struct hlist_head *buckets; /** ht for relocation handles */
312
313 struct eb_fence *fences;
314 unsigned long num_fences;
315 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
316 struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1];
317 #endif
318 };
319
320 static int eb_parse(struct i915_execbuffer *eb);
321 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle);
322 static void eb_unpin_engine(struct i915_execbuffer *eb);
323 static void eb_capture_release(struct i915_execbuffer *eb);
324
eb_use_cmdparser(const struct i915_execbuffer * eb)325 static bool eb_use_cmdparser(const struct i915_execbuffer *eb)
326 {
327 return intel_engine_requires_cmd_parser(eb->context->engine) ||
328 (intel_engine_using_cmd_parser(eb->context->engine) &&
329 eb->args->batch_len);
330 }
331
eb_create(struct i915_execbuffer * eb)332 static int eb_create(struct i915_execbuffer *eb)
333 {
334 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
335 unsigned int size = 1 + ilog2(eb->buffer_count);
336
337 /*
338 * Without a 1:1 association between relocation handles and
339 * the execobject[] index, we instead create a hashtable.
340 * We size it dynamically based on available memory, starting
341 * first with 1:1 associative hash and scaling back until
342 * the allocation succeeds.
343 *
344 * Later on we use a positive lut_size to indicate we are
345 * using this hashtable, and a negative value to indicate a
346 * direct lookup.
347 */
348 do {
349 gfp_t flags;
350
351 /* While we can still reduce the allocation size, don't
352 * raise a warning and allow the allocation to fail.
353 * On the last pass though, we want to try as hard
354 * as possible to perform the allocation and warn
355 * if it fails.
356 */
357 flags = GFP_KERNEL;
358 if (size > 1)
359 flags |= __GFP_NORETRY | __GFP_NOWARN;
360
361 eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
362 flags);
363 if (eb->buckets)
364 break;
365 } while (--size);
366
367 if (unlikely(!size))
368 return -ENOMEM;
369
370 eb->lut_size = size;
371 } else {
372 eb->lut_size = -eb->buffer_count;
373 }
374
375 return 0;
376 }
377
378 static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 * entry,const struct i915_vma * vma,unsigned int flags)379 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
380 const struct i915_vma *vma,
381 unsigned int flags)
382 {
383 const u64 start = i915_vma_offset(vma);
384 const u64 size = i915_vma_size(vma);
385
386 if (size < entry->pad_to_size)
387 return true;
388
389 if (entry->alignment && !IS_ALIGNED(start, entry->alignment))
390 return true;
391
392 if (flags & EXEC_OBJECT_PINNED &&
393 start != entry->offset)
394 return true;
395
396 if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
397 start < BATCH_OFFSET_BIAS)
398 return true;
399
400 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
401 (start + size + 4095) >> 32)
402 return true;
403
404 if (flags & __EXEC_OBJECT_NEEDS_MAP &&
405 !i915_vma_is_map_and_fenceable(vma))
406 return true;
407
408 return false;
409 }
410
eb_pin_flags(const struct drm_i915_gem_exec_object2 * entry,unsigned int exec_flags)411 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
412 unsigned int exec_flags)
413 {
414 u64 pin_flags = 0;
415
416 if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
417 pin_flags |= PIN_GLOBAL;
418
419 /*
420 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
421 * limit address to the first 4GBs for unflagged objects.
422 */
423 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
424 pin_flags |= PIN_ZONE_4G;
425
426 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
427 pin_flags |= PIN_MAPPABLE;
428
429 if (exec_flags & EXEC_OBJECT_PINNED)
430 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
431 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
432 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
433
434 return pin_flags;
435 }
436
437 static int
eb_pin_vma(struct i915_execbuffer * eb,const struct drm_i915_gem_exec_object2 * entry,struct eb_vma * ev)438 eb_pin_vma(struct i915_execbuffer *eb,
439 const struct drm_i915_gem_exec_object2 *entry,
440 struct eb_vma *ev)
441 {
442 struct i915_vma *vma = ev->vma;
443 u64 pin_flags;
444 int err;
445
446 if (vma->node.size)
447 pin_flags = __i915_vma_offset(vma);
448 else
449 pin_flags = entry->offset & PIN_OFFSET_MASK;
450
451 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE;
452 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
453 pin_flags |= PIN_GLOBAL;
454
455 /* Attempt to reuse the current location if available */
456 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
457 if (err == -EDEADLK)
458 return err;
459
460 if (unlikely(err)) {
461 if (entry->flags & EXEC_OBJECT_PINNED)
462 return err;
463
464 /* Failing that pick any _free_ space if suitable */
465 err = i915_vma_pin_ww(vma, &eb->ww,
466 entry->pad_to_size,
467 entry->alignment,
468 eb_pin_flags(entry, ev->flags) |
469 PIN_USER | PIN_NOEVICT | PIN_VALIDATE);
470 if (unlikely(err))
471 return err;
472 }
473
474 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
475 err = i915_vma_pin_fence(vma);
476 if (unlikely(err))
477 return err;
478
479 if (vma->fence)
480 ev->flags |= __EXEC_OBJECT_HAS_FENCE;
481 }
482
483 ev->flags |= __EXEC_OBJECT_HAS_PIN;
484 if (eb_vma_misplaced(entry, vma, ev->flags))
485 return -EBADSLT;
486
487 return 0;
488 }
489
490 static void
eb_unreserve_vma(struct eb_vma * ev)491 eb_unreserve_vma(struct eb_vma *ev)
492 {
493 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
494 __i915_vma_unpin_fence(ev->vma);
495
496 ev->flags &= ~__EXEC_OBJECT_RESERVED;
497 }
498
499 static int
eb_validate_vma(struct i915_execbuffer * eb,struct drm_i915_gem_exec_object2 * entry,struct i915_vma * vma)500 eb_validate_vma(struct i915_execbuffer *eb,
501 struct drm_i915_gem_exec_object2 *entry,
502 struct i915_vma *vma)
503 {
504 /* Relocations are disallowed for all platforms after TGL-LP. This
505 * also covers all platforms with local memory.
506 */
507 if (entry->relocation_count &&
508 GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
509 return -EINVAL;
510
511 if (unlikely(entry->flags & eb->invalid_flags))
512 return -EINVAL;
513
514 if (unlikely(entry->alignment &&
515 !is_power_of_2_u64(entry->alignment)))
516 return -EINVAL;
517
518 /*
519 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
520 * any non-page-aligned or non-canonical addresses.
521 */
522 if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
523 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
524 return -EINVAL;
525
526 /* pad_to_size was once a reserved field, so sanitize it */
527 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
528 if (unlikely(offset_in_page(entry->pad_to_size)))
529 return -EINVAL;
530 } else {
531 entry->pad_to_size = 0;
532 }
533 /*
534 * From drm_mm perspective address space is continuous,
535 * so from this point we're always using non-canonical
536 * form internally.
537 */
538 entry->offset = gen8_noncanonical_addr(entry->offset);
539
540 if (!eb->reloc_cache.has_fence) {
541 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
542 } else {
543 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
544 eb->reloc_cache.needs_unfenced) &&
545 i915_gem_object_is_tiled(vma->obj))
546 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
547 }
548
549 return 0;
550 }
551
552 static bool
is_batch_buffer(struct i915_execbuffer * eb,unsigned int buffer_idx)553 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx)
554 {
555 return eb->args->flags & I915_EXEC_BATCH_FIRST ?
556 buffer_idx < eb->num_batches :
557 buffer_idx >= eb->args->buffer_count - eb->num_batches;
558 }
559
560 static int
eb_add_vma(struct i915_execbuffer * eb,unsigned int * current_batch,unsigned int i,struct i915_vma * vma)561 eb_add_vma(struct i915_execbuffer *eb,
562 unsigned int *current_batch,
563 unsigned int i,
564 struct i915_vma *vma)
565 {
566 struct drm_i915_private *i915 = eb->i915;
567 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
568 struct eb_vma *ev = &eb->vma[i];
569
570 ev->vma = vma;
571 ev->exec = entry;
572 ev->flags = entry->flags;
573
574 if (eb->lut_size > 0) {
575 ev->handle = entry->handle;
576 hlist_add_head(&ev->node,
577 &eb->buckets[hash_32(entry->handle,
578 eb->lut_size)]);
579 }
580
581 if (entry->relocation_count)
582 list_add_tail(&ev->reloc_link, &eb->relocs);
583
584 /*
585 * SNA is doing fancy tricks with compressing batch buffers, which leads
586 * to negative relocation deltas. Usually that works out ok since the
587 * relocate address is still positive, except when the batch is placed
588 * very low in the GTT. Ensure this doesn't happen.
589 *
590 * Note that actual hangs have only been observed on gen7, but for
591 * paranoia do it everywhere.
592 */
593 if (is_batch_buffer(eb, i)) {
594 if (entry->relocation_count &&
595 !(ev->flags & EXEC_OBJECT_PINNED))
596 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
597 if (eb->reloc_cache.has_fence)
598 ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
599
600 eb->batches[*current_batch] = ev;
601
602 if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) {
603 drm_dbg(&i915->drm,
604 "Attempting to use self-modifying batch buffer\n");
605 return -EINVAL;
606 }
607
608 if (range_overflows_t(u64,
609 eb->batch_start_offset,
610 eb->args->batch_len,
611 ev->vma->size)) {
612 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
613 return -EINVAL;
614 }
615
616 if (eb->args->batch_len == 0)
617 eb->batch_len[*current_batch] = ev->vma->size -
618 eb->batch_start_offset;
619 else
620 eb->batch_len[*current_batch] = eb->args->batch_len;
621 if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */
622 drm_dbg(&i915->drm, "Invalid batch length\n");
623 return -EINVAL;
624 }
625
626 ++*current_batch;
627 }
628
629 return 0;
630 }
631
use_cpu_reloc(const struct reloc_cache * cache,const struct drm_i915_gem_object * obj)632 static int use_cpu_reloc(const struct reloc_cache *cache,
633 const struct drm_i915_gem_object *obj)
634 {
635 if (!i915_gem_object_has_struct_page(obj))
636 return false;
637
638 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
639 return true;
640
641 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
642 return false;
643
644 /*
645 * For objects created by userspace through GEM_CREATE with pat_index
646 * set by set_pat extension, i915_gem_object_has_cache_level() always
647 * return true, otherwise the call would fall back to checking whether
648 * the object is un-cached.
649 */
650 return (cache->has_llc ||
651 obj->cache_dirty ||
652 !i915_gem_object_has_cache_level(obj, I915_CACHE_NONE));
653 }
654
eb_reserve_vma(struct i915_execbuffer * eb,struct eb_vma * ev,u64 pin_flags)655 static int eb_reserve_vma(struct i915_execbuffer *eb,
656 struct eb_vma *ev,
657 u64 pin_flags)
658 {
659 struct drm_i915_gem_exec_object2 *entry = ev->exec;
660 struct i915_vma *vma = ev->vma;
661 int err;
662
663 if (drm_mm_node_allocated(&vma->node) &&
664 eb_vma_misplaced(entry, vma, ev->flags)) {
665 err = i915_vma_unbind(vma);
666 if (err)
667 return err;
668 }
669
670 err = i915_vma_pin_ww(vma, &eb->ww,
671 entry->pad_to_size, entry->alignment,
672 eb_pin_flags(entry, ev->flags) | pin_flags);
673 if (err)
674 return err;
675
676 if (entry->offset != i915_vma_offset(vma)) {
677 entry->offset = i915_vma_offset(vma) | UPDATE;
678 eb->args->flags |= __EXEC_HAS_RELOC;
679 }
680
681 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
682 err = i915_vma_pin_fence(vma);
683 if (unlikely(err))
684 return err;
685
686 if (vma->fence)
687 ev->flags |= __EXEC_OBJECT_HAS_FENCE;
688 }
689
690 ev->flags |= __EXEC_OBJECT_HAS_PIN;
691 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
692
693 return 0;
694 }
695
eb_unbind(struct i915_execbuffer * eb,bool force)696 static bool eb_unbind(struct i915_execbuffer *eb, bool force)
697 {
698 const unsigned int count = eb->buffer_count;
699 unsigned int i;
700 struct list_head last;
701 bool unpinned = false;
702
703 /* Resort *all* the objects into priority order */
704 INIT_LIST_HEAD(&eb->unbound);
705 INIT_LIST_HEAD(&last);
706
707 for (i = 0; i < count; i++) {
708 struct eb_vma *ev = &eb->vma[i];
709 unsigned int flags = ev->flags;
710
711 if (!force && flags & EXEC_OBJECT_PINNED &&
712 flags & __EXEC_OBJECT_HAS_PIN)
713 continue;
714
715 unpinned = true;
716 eb_unreserve_vma(ev);
717
718 if (flags & EXEC_OBJECT_PINNED)
719 /* Pinned must have their slot */
720 list_add(&ev->bind_link, &eb->unbound);
721 else if (flags & __EXEC_OBJECT_NEEDS_MAP)
722 /* Map require the lowest 256MiB (aperture) */
723 list_add_tail(&ev->bind_link, &eb->unbound);
724 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
725 /* Prioritise 4GiB region for restricted bo */
726 list_add(&ev->bind_link, &last);
727 else
728 list_add_tail(&ev->bind_link, &last);
729 }
730
731 list_splice_tail(&last, &eb->unbound);
732 return unpinned;
733 }
734
eb_reserve(struct i915_execbuffer * eb)735 static int eb_reserve(struct i915_execbuffer *eb)
736 {
737 struct eb_vma *ev;
738 unsigned int pass;
739 int err = 0;
740
741 /*
742 * We have one more buffers that we couldn't bind, which could be due to
743 * various reasons. To resolve this we have 4 passes, with every next
744 * level turning the screws tighter:
745 *
746 * 0. Unbind all objects that do not match the GTT constraints for the
747 * execbuffer (fenceable, mappable, alignment etc). Bind all new
748 * objects. This avoids unnecessary unbinding of later objects in order
749 * to make room for the earlier objects *unless* we need to defragment.
750 *
751 * 1. Reorder the buffers, where objects with the most restrictive
752 * placement requirements go first (ignoring fixed location buffers for
753 * now). For example, objects needing the mappable aperture (the first
754 * 256M of GTT), should go first vs objects that can be placed just
755 * about anywhere. Repeat the previous pass.
756 *
757 * 2. Consider buffers that are pinned at a fixed location. Also try to
758 * evict the entire VM this time, leaving only objects that we were
759 * unable to lock. Try again to bind the buffers. (still using the new
760 * buffer order).
761 *
762 * 3. We likely have object lock contention for one or more stubborn
763 * objects in the VM, for which we need to evict to make forward
764 * progress (perhaps we are fighting the shrinker?). When evicting the
765 * VM this time around, anything that we can't lock we now track using
766 * the busy_bo, using the full lock (after dropping the vm->mutex to
767 * prevent deadlocks), instead of trylock. We then continue to evict the
768 * VM, this time with the stubborn object locked, which we can now
769 * hopefully unbind (if still bound in the VM). Repeat until the VM is
770 * evicted. Finally we should be able bind everything.
771 */
772 for (pass = 0; pass <= 3; pass++) {
773 int pin_flags = PIN_USER | PIN_VALIDATE;
774
775 if (pass == 0)
776 pin_flags |= PIN_NONBLOCK;
777
778 if (pass >= 1)
779 eb_unbind(eb, pass >= 2);
780
781 if (pass == 2) {
782 err = mutex_lock_interruptible(&eb->context->vm->mutex);
783 if (!err) {
784 err = i915_gem_evict_vm(eb->context->vm, &eb->ww, NULL);
785 mutex_unlock(&eb->context->vm->mutex);
786 }
787 if (err)
788 return err;
789 }
790
791 if (pass == 3) {
792 retry:
793 err = mutex_lock_interruptible(&eb->context->vm->mutex);
794 if (!err) {
795 struct drm_i915_gem_object *busy_bo = NULL;
796
797 err = i915_gem_evict_vm(eb->context->vm, &eb->ww, &busy_bo);
798 mutex_unlock(&eb->context->vm->mutex);
799 if (err && busy_bo) {
800 err = i915_gem_object_lock(busy_bo, &eb->ww);
801 i915_gem_object_put(busy_bo);
802 if (!err)
803 goto retry;
804 }
805 }
806 if (err)
807 return err;
808 }
809
810 list_for_each_entry(ev, &eb->unbound, bind_link) {
811 err = eb_reserve_vma(eb, ev, pin_flags);
812 if (err)
813 break;
814 }
815
816 if (err != -ENOSPC)
817 break;
818 }
819
820 return err;
821 }
822
eb_select_context(struct i915_execbuffer * eb)823 static int eb_select_context(struct i915_execbuffer *eb)
824 {
825 struct i915_gem_context *ctx;
826
827 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
828 if (IS_ERR(ctx))
829 return PTR_ERR(ctx);
830
831 eb->gem_context = ctx;
832 if (i915_gem_context_has_full_ppgtt(ctx))
833 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
834
835 return 0;
836 }
837
__eb_add_lut(struct i915_execbuffer * eb,u32 handle,struct i915_vma * vma)838 static int __eb_add_lut(struct i915_execbuffer *eb,
839 u32 handle, struct i915_vma *vma)
840 {
841 struct i915_gem_context *ctx = eb->gem_context;
842 struct i915_lut_handle *lut;
843 int err;
844
845 lut = i915_lut_handle_alloc();
846 if (unlikely(!lut))
847 return -ENOMEM;
848
849 i915_vma_get(vma);
850 if (!atomic_fetch_inc(&vma->open_count))
851 i915_vma_reopen(vma);
852 lut->handle = handle;
853 lut->ctx = ctx;
854
855 /* Check that the context hasn't been closed in the meantime */
856 err = -EINTR;
857 if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
858 if (likely(!i915_gem_context_is_closed(ctx)))
859 err = radix_tree_insert(&ctx->handles_vma, handle, vma);
860 else
861 err = -ENOENT;
862 if (err == 0) { /* And nor has this handle */
863 struct drm_i915_gem_object *obj = vma->obj;
864
865 spin_lock(&obj->lut_lock);
866 if (idr_find(&eb->file->object_idr, handle) == obj) {
867 list_add(&lut->obj_link, &obj->lut_list);
868 } else {
869 radix_tree_delete(&ctx->handles_vma, handle);
870 err = -ENOENT;
871 }
872 spin_unlock(&obj->lut_lock);
873 }
874 mutex_unlock(&ctx->lut_mutex);
875 }
876 if (unlikely(err))
877 goto err;
878
879 return 0;
880
881 err:
882 i915_vma_close(vma);
883 i915_vma_put(vma);
884 i915_lut_handle_free(lut);
885 return err;
886 }
887
eb_lookup_vma(struct i915_execbuffer * eb,u32 handle)888 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
889 {
890 struct i915_address_space *vm = eb->context->vm;
891
892 do {
893 struct drm_i915_gem_object *obj;
894 struct i915_vma *vma;
895 int err;
896
897 rcu_read_lock();
898 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
899 if (likely(vma && vma->vm == vm))
900 vma = i915_vma_tryget(vma);
901 rcu_read_unlock();
902 if (likely(vma))
903 return vma;
904
905 obj = i915_gem_object_lookup(eb->file, handle);
906 if (unlikely(!obj))
907 return ERR_PTR(-ENOENT);
908
909 /*
910 * If the user has opted-in for protected-object tracking, make
911 * sure the object encryption can be used.
912 * We only need to do this when the object is first used with
913 * this context, because the context itself will be banned when
914 * the protected objects become invalid.
915 */
916 if (i915_gem_context_uses_protected_content(eb->gem_context) &&
917 i915_gem_object_is_protected(obj)) {
918 err = intel_pxp_key_check(intel_bo_to_drm_bo(obj), true);
919 if (err) {
920 i915_gem_object_put(obj);
921 return ERR_PTR(err);
922 }
923 }
924
925 vma = i915_vma_instance(obj, vm, NULL);
926 if (IS_ERR(vma)) {
927 i915_gem_object_put(obj);
928 return vma;
929 }
930
931 err = __eb_add_lut(eb, handle, vma);
932 if (likely(!err))
933 return vma;
934
935 i915_gem_object_put(obj);
936 if (err != -EEXIST)
937 return ERR_PTR(err);
938 } while (1);
939 }
940
eb_lookup_vmas(struct i915_execbuffer * eb)941 static int eb_lookup_vmas(struct i915_execbuffer *eb)
942 {
943 unsigned int i, current_batch = 0;
944 int err = 0;
945
946 INIT_LIST_HEAD(&eb->relocs);
947
948 for (i = 0; i < eb->buffer_count; i++) {
949 struct i915_vma *vma;
950
951 vma = eb_lookup_vma(eb, eb->exec[i].handle);
952 if (IS_ERR(vma)) {
953 err = PTR_ERR(vma);
954 return err;
955 }
956
957 err = eb_validate_vma(eb, &eb->exec[i], vma);
958 if (unlikely(err)) {
959 i915_vma_put(vma);
960 return err;
961 }
962
963 err = eb_add_vma(eb, ¤t_batch, i, vma);
964 if (err)
965 return err;
966
967 if (i915_gem_object_is_userptr(vma->obj)) {
968 err = i915_gem_object_userptr_submit_init(vma->obj);
969 if (err)
970 return err;
971
972 eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
973 eb->args->flags |= __EXEC_USERPTR_USED;
974 }
975 }
976
977 return 0;
978 }
979
eb_lock_vmas(struct i915_execbuffer * eb)980 static int eb_lock_vmas(struct i915_execbuffer *eb)
981 {
982 unsigned int i;
983 int err;
984
985 for (i = 0; i < eb->buffer_count; i++) {
986 struct eb_vma *ev = &eb->vma[i];
987 struct i915_vma *vma = ev->vma;
988
989 err = i915_gem_object_lock(vma->obj, &eb->ww);
990 if (err)
991 return err;
992 }
993
994 return 0;
995 }
996
eb_validate_vmas(struct i915_execbuffer * eb)997 static int eb_validate_vmas(struct i915_execbuffer *eb)
998 {
999 unsigned int i;
1000 int err;
1001
1002 INIT_LIST_HEAD(&eb->unbound);
1003
1004 err = eb_lock_vmas(eb);
1005 if (err)
1006 return err;
1007
1008 for (i = 0; i < eb->buffer_count; i++) {
1009 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
1010 struct eb_vma *ev = &eb->vma[i];
1011 struct i915_vma *vma = ev->vma;
1012
1013 err = eb_pin_vma(eb, entry, ev);
1014 if (err == -EDEADLK)
1015 return err;
1016
1017 if (!err) {
1018 if (entry->offset != i915_vma_offset(vma)) {
1019 entry->offset = i915_vma_offset(vma) | UPDATE;
1020 eb->args->flags |= __EXEC_HAS_RELOC;
1021 }
1022 } else {
1023 eb_unreserve_vma(ev);
1024
1025 list_add_tail(&ev->bind_link, &eb->unbound);
1026 if (drm_mm_node_allocated(&vma->node)) {
1027 err = i915_vma_unbind(vma);
1028 if (err)
1029 return err;
1030 }
1031 }
1032
1033 /* Reserve enough slots to accommodate composite fences */
1034 err = dma_resv_reserve_fences(vma->obj->base.resv, eb->num_batches);
1035 if (err)
1036 return err;
1037
1038 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
1039 eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
1040 }
1041
1042 if (!list_empty(&eb->unbound))
1043 return eb_reserve(eb);
1044
1045 return 0;
1046 }
1047
1048 static struct eb_vma *
eb_get_vma(const struct i915_execbuffer * eb,unsigned long handle)1049 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
1050 {
1051 if (eb->lut_size < 0) {
1052 if (handle >= -eb->lut_size)
1053 return NULL;
1054 return &eb->vma[handle];
1055 } else {
1056 struct hlist_head *head;
1057 struct eb_vma *ev;
1058
1059 head = &eb->buckets[hash_32(handle, eb->lut_size)];
1060 hlist_for_each_entry(ev, head, node) {
1061 if (ev->handle == handle)
1062 return ev;
1063 }
1064 return NULL;
1065 }
1066 }
1067
eb_release_vmas(struct i915_execbuffer * eb,bool final)1068 static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
1069 {
1070 const unsigned int count = eb->buffer_count;
1071 unsigned int i;
1072
1073 for (i = 0; i < count; i++) {
1074 struct eb_vma *ev = &eb->vma[i];
1075 struct i915_vma *vma = ev->vma;
1076
1077 if (!vma)
1078 break;
1079
1080 eb_unreserve_vma(ev);
1081
1082 if (final)
1083 i915_vma_put(vma);
1084 }
1085
1086 eb_capture_release(eb);
1087 eb_unpin_engine(eb);
1088 }
1089
eb_destroy(const struct i915_execbuffer * eb)1090 static void eb_destroy(const struct i915_execbuffer *eb)
1091 {
1092 if (eb->lut_size > 0)
1093 kfree(eb->buckets);
1094 }
1095
1096 static u64
relocation_target(const struct drm_i915_gem_relocation_entry * reloc,const struct i915_vma * target)1097 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
1098 const struct i915_vma *target)
1099 {
1100 return gen8_canonical_addr((int)reloc->delta + i915_vma_offset(target));
1101 }
1102
reloc_cache_init(struct reloc_cache * cache,struct drm_i915_private * i915)1103 static void reloc_cache_init(struct reloc_cache *cache,
1104 struct drm_i915_private *i915)
1105 {
1106 cache->page = -1;
1107 cache->vaddr = 0;
1108 /* Must be a variable in the struct to allow GCC to unroll. */
1109 cache->graphics_ver = GRAPHICS_VER(i915);
1110 cache->has_llc = HAS_LLC(i915);
1111 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1112 cache->has_fence = cache->graphics_ver < 4;
1113 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1114 cache->node.flags = 0;
1115 }
1116
unmask_page(unsigned long p)1117 static void *unmask_page(unsigned long p)
1118 {
1119 return (void *)(uintptr_t)(p & PAGE_MASK);
1120 }
1121
unmask_flags(unsigned long p)1122 static unsigned int unmask_flags(unsigned long p)
1123 {
1124 return p & ~PAGE_MASK;
1125 }
1126
1127 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
1128
cache_to_ggtt(struct reloc_cache * cache)1129 static struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1130 {
1131 struct drm_i915_private *i915 =
1132 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1133 return to_gt(i915)->ggtt;
1134 }
1135
reloc_cache_unmap(struct reloc_cache * cache)1136 static void reloc_cache_unmap(struct reloc_cache *cache)
1137 {
1138 void *vaddr;
1139
1140 if (!cache->vaddr)
1141 return;
1142
1143 vaddr = unmask_page(cache->vaddr);
1144 if (cache->vaddr & KMAP)
1145 kunmap_local(vaddr);
1146 else
1147 io_mapping_unmap_atomic((void __iomem *)vaddr);
1148 }
1149
reloc_cache_remap(struct reloc_cache * cache,struct drm_i915_gem_object * obj)1150 static void reloc_cache_remap(struct reloc_cache *cache,
1151 struct drm_i915_gem_object *obj)
1152 {
1153 void *vaddr;
1154
1155 if (!cache->vaddr)
1156 return;
1157
1158 if (cache->vaddr & KMAP) {
1159 struct page *page = i915_gem_object_get_page(obj, cache->page);
1160
1161 vaddr = kmap_local_page(page);
1162 cache->vaddr = unmask_flags(cache->vaddr) |
1163 (unsigned long)vaddr;
1164 } else {
1165 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1166 unsigned long offset;
1167
1168 offset = cache->node.start;
1169 if (!drm_mm_node_allocated(&cache->node))
1170 offset += cache->page << PAGE_SHIFT;
1171
1172 cache->vaddr = (unsigned long)
1173 io_mapping_map_atomic_wc(&ggtt->iomap, offset);
1174 }
1175 }
1176
reloc_cache_reset(struct reloc_cache * cache,struct i915_execbuffer * eb)1177 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1178 {
1179 void *vaddr;
1180
1181 if (!cache->vaddr)
1182 return;
1183
1184 vaddr = unmask_page(cache->vaddr);
1185 if (cache->vaddr & KMAP) {
1186 struct drm_i915_gem_object *obj =
1187 (struct drm_i915_gem_object *)cache->node.mm;
1188 if (cache->vaddr & CLFLUSH_AFTER)
1189 mb();
1190
1191 kunmap_local(vaddr);
1192 i915_gem_object_finish_access(obj);
1193 } else {
1194 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1195
1196 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1197 io_mapping_unmap_atomic((void __iomem *)vaddr);
1198
1199 if (drm_mm_node_allocated(&cache->node)) {
1200 ggtt->vm.clear_range(&ggtt->vm,
1201 cache->node.start,
1202 cache->node.size);
1203 mutex_lock(&ggtt->vm.mutex);
1204 drm_mm_remove_node(&cache->node);
1205 mutex_unlock(&ggtt->vm.mutex);
1206 } else {
1207 i915_vma_unpin((struct i915_vma *)cache->node.mm);
1208 }
1209 }
1210
1211 cache->vaddr = 0;
1212 cache->page = -1;
1213 }
1214
reloc_kmap(struct drm_i915_gem_object * obj,struct reloc_cache * cache,unsigned long pageno)1215 static void *reloc_kmap(struct drm_i915_gem_object *obj,
1216 struct reloc_cache *cache,
1217 unsigned long pageno)
1218 {
1219 void *vaddr;
1220 struct page *page;
1221
1222 if (cache->vaddr) {
1223 kunmap_local(unmask_page(cache->vaddr));
1224 } else {
1225 unsigned int flushes;
1226 int err;
1227
1228 err = i915_gem_object_prepare_write(obj, &flushes);
1229 if (err)
1230 return ERR_PTR(err);
1231
1232 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1233 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1234
1235 cache->vaddr = flushes | KMAP;
1236 cache->node.mm = (void *)obj;
1237 if (flushes)
1238 mb();
1239 }
1240
1241 page = i915_gem_object_get_page(obj, pageno);
1242 if (!obj->mm.dirty)
1243 set_page_dirty(page);
1244
1245 vaddr = kmap_local_page(page);
1246 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1247 cache->page = pageno;
1248
1249 return vaddr;
1250 }
1251
reloc_iomap(struct i915_vma * batch,struct i915_execbuffer * eb,unsigned long page)1252 static void *reloc_iomap(struct i915_vma *batch,
1253 struct i915_execbuffer *eb,
1254 unsigned long page)
1255 {
1256 struct drm_i915_gem_object *obj = batch->obj;
1257 struct reloc_cache *cache = &eb->reloc_cache;
1258 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1259 unsigned long offset;
1260 void *vaddr;
1261
1262 if (cache->vaddr) {
1263 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1264 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1265 } else {
1266 struct i915_vma *vma = ERR_PTR(-ENODEV);
1267 int err;
1268
1269 if (i915_gem_object_is_tiled(obj))
1270 return ERR_PTR(-EINVAL);
1271
1272 if (use_cpu_reloc(cache, obj))
1273 return NULL;
1274
1275 err = i915_gem_object_set_to_gtt_domain(obj, true);
1276 if (err)
1277 return ERR_PTR(err);
1278
1279 /*
1280 * i915_gem_object_ggtt_pin_ww may attempt to remove the batch
1281 * VMA from the object list because we no longer pin.
1282 *
1283 * Only attempt to pin the batch buffer to ggtt if the current batch
1284 * is not inside ggtt, or the batch buffer is not misplaced.
1285 */
1286 if (!i915_is_ggtt(batch->vm) ||
1287 !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) {
1288 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1289 PIN_MAPPABLE |
1290 PIN_NONBLOCK /* NOWARN */ |
1291 PIN_NOEVICT);
1292 }
1293
1294 if (vma == ERR_PTR(-EDEADLK))
1295 return vma;
1296
1297 if (IS_ERR(vma)) {
1298 memset(&cache->node, 0, sizeof(cache->node));
1299 mutex_lock(&ggtt->vm.mutex);
1300 err = drm_mm_insert_node_in_range
1301 (&ggtt->vm.mm, &cache->node,
1302 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1303 0, ggtt->mappable_end,
1304 DRM_MM_INSERT_LOW);
1305 mutex_unlock(&ggtt->vm.mutex);
1306 if (err) /* no inactive aperture space, use cpu reloc */
1307 return NULL;
1308 } else {
1309 cache->node.start = i915_ggtt_offset(vma);
1310 cache->node.mm = (void *)vma;
1311 }
1312 }
1313
1314 offset = cache->node.start;
1315 if (drm_mm_node_allocated(&cache->node)) {
1316 ggtt->vm.insert_page(&ggtt->vm,
1317 i915_gem_object_get_dma_address(obj, page),
1318 offset,
1319 i915_gem_get_pat_index(ggtt->vm.i915,
1320 I915_CACHE_NONE),
1321 0);
1322 } else {
1323 offset += page << PAGE_SHIFT;
1324 }
1325
1326 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1327 offset);
1328 cache->page = page;
1329 cache->vaddr = (unsigned long)vaddr;
1330
1331 return vaddr;
1332 }
1333
reloc_vaddr(struct i915_vma * vma,struct i915_execbuffer * eb,unsigned long page)1334 static void *reloc_vaddr(struct i915_vma *vma,
1335 struct i915_execbuffer *eb,
1336 unsigned long page)
1337 {
1338 struct reloc_cache *cache = &eb->reloc_cache;
1339 void *vaddr;
1340
1341 if (cache->page == page) {
1342 vaddr = unmask_page(cache->vaddr);
1343 } else {
1344 vaddr = NULL;
1345 if ((cache->vaddr & KMAP) == 0)
1346 vaddr = reloc_iomap(vma, eb, page);
1347 if (!vaddr)
1348 vaddr = reloc_kmap(vma->obj, cache, page);
1349 }
1350
1351 return vaddr;
1352 }
1353
clflush_write32(u32 * addr,u32 value,unsigned int flushes)1354 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1355 {
1356 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1357 if (flushes & CLFLUSH_BEFORE)
1358 drm_clflush_virt_range(addr, sizeof(*addr));
1359
1360 *addr = value;
1361
1362 /*
1363 * Writes to the same cacheline are serialised by the CPU
1364 * (including clflush). On the write path, we only require
1365 * that it hits memory in an orderly fashion and place
1366 * mb barriers at the start and end of the relocation phase
1367 * to ensure ordering of clflush wrt to the system.
1368 */
1369 if (flushes & CLFLUSH_AFTER)
1370 drm_clflush_virt_range(addr, sizeof(*addr));
1371 } else {
1372 *addr = value;
1373 }
1374 }
1375
1376 static u64
relocate_entry(struct i915_vma * vma,const struct drm_i915_gem_relocation_entry * reloc,struct i915_execbuffer * eb,const struct i915_vma * target)1377 relocate_entry(struct i915_vma *vma,
1378 const struct drm_i915_gem_relocation_entry *reloc,
1379 struct i915_execbuffer *eb,
1380 const struct i915_vma *target)
1381 {
1382 u64 target_addr = relocation_target(reloc, target);
1383 u64 offset = reloc->offset;
1384 bool wide = eb->reloc_cache.use_64bit_reloc;
1385 void *vaddr;
1386
1387 repeat:
1388 vaddr = reloc_vaddr(vma, eb,
1389 offset >> PAGE_SHIFT);
1390 if (IS_ERR(vaddr))
1391 return PTR_ERR(vaddr);
1392
1393 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1394 clflush_write32(vaddr + offset_in_page(offset),
1395 lower_32_bits(target_addr),
1396 eb->reloc_cache.vaddr);
1397
1398 if (wide) {
1399 offset += sizeof(u32);
1400 target_addr >>= 32;
1401 wide = false;
1402 goto repeat;
1403 }
1404
1405 return target->node.start | UPDATE;
1406 }
1407
1408 static u64
eb_relocate_entry(struct i915_execbuffer * eb,struct eb_vma * ev,const struct drm_i915_gem_relocation_entry * reloc)1409 eb_relocate_entry(struct i915_execbuffer *eb,
1410 struct eb_vma *ev,
1411 const struct drm_i915_gem_relocation_entry *reloc)
1412 {
1413 struct drm_i915_private *i915 = eb->i915;
1414 struct eb_vma *target;
1415 int err;
1416
1417 /* we've already hold a reference to all valid objects */
1418 target = eb_get_vma(eb, reloc->target_handle);
1419 if (unlikely(!target))
1420 return -ENOENT;
1421
1422 /* Validate that the target is in a valid r/w GPU domain */
1423 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1424 drm_dbg(&i915->drm, "reloc with multiple write domains: "
1425 "target %d offset %d "
1426 "read %08x write %08x\n",
1427 reloc->target_handle,
1428 (int) reloc->offset,
1429 reloc->read_domains,
1430 reloc->write_domain);
1431 return -EINVAL;
1432 }
1433 if (unlikely((reloc->write_domain | reloc->read_domains)
1434 & ~I915_GEM_GPU_DOMAINS)) {
1435 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1436 "target %d offset %d "
1437 "read %08x write %08x\n",
1438 reloc->target_handle,
1439 (int) reloc->offset,
1440 reloc->read_domains,
1441 reloc->write_domain);
1442 return -EINVAL;
1443 }
1444
1445 if (reloc->write_domain) {
1446 target->flags |= EXEC_OBJECT_WRITE;
1447
1448 /*
1449 * Sandybridge PPGTT errata: We need a global gtt mapping
1450 * for MI and pipe_control writes because the gpu doesn't
1451 * properly redirect them through the ppgtt for non_secure
1452 * batchbuffers.
1453 */
1454 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1455 GRAPHICS_VER(eb->i915) == 6 &&
1456 !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) {
1457 struct i915_vma *vma = target->vma;
1458
1459 reloc_cache_unmap(&eb->reloc_cache);
1460 mutex_lock(&vma->vm->mutex);
1461 err = i915_vma_bind(target->vma,
1462 target->vma->obj->pat_index,
1463 PIN_GLOBAL, NULL, NULL);
1464 mutex_unlock(&vma->vm->mutex);
1465 reloc_cache_remap(&eb->reloc_cache, ev->vma->obj);
1466 if (err)
1467 return err;
1468 }
1469 }
1470
1471 /*
1472 * If the relocation already has the right value in it, no
1473 * more work needs to be done.
1474 */
1475 if (!DBG_FORCE_RELOC &&
1476 gen8_canonical_addr(i915_vma_offset(target->vma)) == reloc->presumed_offset)
1477 return 0;
1478
1479 /* Check that the relocation address is valid... */
1480 if (unlikely(reloc->offset >
1481 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1482 drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1483 "target %d offset %d size %d.\n",
1484 reloc->target_handle,
1485 (int)reloc->offset,
1486 (int)ev->vma->size);
1487 return -EINVAL;
1488 }
1489 if (unlikely(reloc->offset & 3)) {
1490 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1491 "target %d offset %d.\n",
1492 reloc->target_handle,
1493 (int)reloc->offset);
1494 return -EINVAL;
1495 }
1496
1497 /*
1498 * If we write into the object, we need to force the synchronisation
1499 * barrier, either with an asynchronous clflush or if we executed the
1500 * patching using the GPU (though that should be serialised by the
1501 * timeline). To be completely sure, and since we are required to
1502 * do relocations we are already stalling, disable the user's opt
1503 * out of our synchronisation.
1504 */
1505 ev->flags &= ~EXEC_OBJECT_ASYNC;
1506
1507 /* and update the user's relocation entry */
1508 return relocate_entry(ev->vma, reloc, eb, target->vma);
1509 }
1510
eb_relocate_vma(struct i915_execbuffer * eb,struct eb_vma * ev)1511 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1512 {
1513 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1514 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1515 const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1516 struct drm_i915_gem_relocation_entry __user *urelocs =
1517 u64_to_user_ptr(entry->relocs_ptr);
1518 unsigned long remain = entry->relocation_count;
1519
1520 if (unlikely(remain > N_RELOC(INT_MAX)))
1521 return -EINVAL;
1522
1523 /*
1524 * We must check that the entire relocation array is safe
1525 * to read. However, if the array is not writable the user loses
1526 * the updated relocation values.
1527 */
1528 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1529 return -EFAULT;
1530
1531 do {
1532 struct drm_i915_gem_relocation_entry *r = stack;
1533 unsigned int count =
1534 min_t(unsigned long, remain, ARRAY_SIZE(stack));
1535 unsigned int copied;
1536
1537 /*
1538 * This is the fast path and we cannot handle a pagefault
1539 * whilst holding the struct mutex lest the user pass in the
1540 * relocations contained within a mmaped bo. For in such a case
1541 * we, the page fault handler would call i915_gem_fault() and
1542 * we would try to acquire the struct mutex again. Obviously
1543 * this is bad and so lockdep complains vehemently.
1544 */
1545 pagefault_disable();
1546 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1547 pagefault_enable();
1548 if (unlikely(copied)) {
1549 remain = -EFAULT;
1550 goto out;
1551 }
1552
1553 remain -= count;
1554 do {
1555 u64 offset = eb_relocate_entry(eb, ev, r);
1556
1557 if (likely(offset == 0))
1558 continue;
1559
1560 if ((s64)offset < 0) {
1561 remain = (int)offset;
1562 goto out;
1563 }
1564 /*
1565 * Note that reporting an error now
1566 * leaves everything in an inconsistent
1567 * state as we have *already* changed
1568 * the relocation value inside the
1569 * object. As we have not changed the
1570 * reloc.presumed_offset or will not
1571 * change the execobject.offset, on the
1572 * call we may not rewrite the value
1573 * inside the object, leaving it
1574 * dangling and causing a GPU hang. Unless
1575 * userspace dynamically rebuilds the
1576 * relocations on each execbuf rather than
1577 * presume a static tree.
1578 *
1579 * We did previously check if the relocations
1580 * were writable (access_ok), an error now
1581 * would be a strange race with mprotect,
1582 * having already demonstrated that we
1583 * can read from this userspace address.
1584 */
1585 offset = gen8_canonical_addr(offset & ~UPDATE);
1586 __put_user(offset, &urelocs[r - stack].presumed_offset);
1587 } while (r++, --count);
1588 urelocs += ARRAY_SIZE(stack);
1589 } while (remain);
1590 out:
1591 reloc_cache_reset(&eb->reloc_cache, eb);
1592 return remain;
1593 }
1594
1595 static int
eb_relocate_vma_slow(struct i915_execbuffer * eb,struct eb_vma * ev)1596 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1597 {
1598 const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1599 struct drm_i915_gem_relocation_entry *relocs =
1600 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1601 unsigned int i;
1602 int err;
1603
1604 for (i = 0; i < entry->relocation_count; i++) {
1605 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1606
1607 if ((s64)offset < 0) {
1608 err = (int)offset;
1609 goto err;
1610 }
1611 }
1612 err = 0;
1613 err:
1614 reloc_cache_reset(&eb->reloc_cache, eb);
1615 return err;
1616 }
1617
check_relocations(const struct drm_i915_gem_exec_object2 * entry)1618 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1619 {
1620 const char __user *addr, *end;
1621 unsigned long size;
1622 char __maybe_unused c;
1623
1624 size = entry->relocation_count;
1625 if (size == 0)
1626 return 0;
1627
1628 if (size > N_RELOC(INT_MAX))
1629 return -EINVAL;
1630
1631 addr = u64_to_user_ptr(entry->relocs_ptr);
1632 size *= sizeof(struct drm_i915_gem_relocation_entry);
1633 if (!access_ok(addr, size))
1634 return -EFAULT;
1635
1636 end = addr + size;
1637 for (; addr < end; addr += PAGE_SIZE) {
1638 int err = __get_user(c, addr);
1639 if (err)
1640 return err;
1641 }
1642 return __get_user(c, end - 1);
1643 }
1644
eb_copy_relocations(const struct i915_execbuffer * eb)1645 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1646 {
1647 struct drm_i915_gem_relocation_entry *relocs;
1648 const unsigned int count = eb->buffer_count;
1649 unsigned int i;
1650 int err;
1651
1652 for (i = 0; i < count; i++) {
1653 const unsigned int nreloc = eb->exec[i].relocation_count;
1654 struct drm_i915_gem_relocation_entry __user *urelocs;
1655 unsigned long size;
1656 unsigned long copied;
1657
1658 if (nreloc == 0)
1659 continue;
1660
1661 err = check_relocations(&eb->exec[i]);
1662 if (err)
1663 goto err;
1664
1665 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1666 size = nreloc * sizeof(*relocs);
1667
1668 relocs = kvmalloc_array(1, size, GFP_KERNEL);
1669 if (!relocs) {
1670 err = -ENOMEM;
1671 goto err;
1672 }
1673
1674 /* copy_from_user is limited to < 4GiB */
1675 copied = 0;
1676 do {
1677 unsigned int len =
1678 min_t(u64, BIT_ULL(31), size - copied);
1679
1680 if (__copy_from_user((char *)relocs + copied,
1681 (char __user *)urelocs + copied,
1682 len))
1683 goto end;
1684
1685 copied += len;
1686 } while (copied < size);
1687
1688 /*
1689 * As we do not update the known relocation offsets after
1690 * relocating (due to the complexities in lock handling),
1691 * we need to mark them as invalid now so that we force the
1692 * relocation processing next time. Just in case the target
1693 * object is evicted and then rebound into its old
1694 * presumed_offset before the next execbuffer - if that
1695 * happened we would make the mistake of assuming that the
1696 * relocations were valid.
1697 */
1698 if (!user_access_begin(urelocs, size))
1699 goto end;
1700
1701 for (copied = 0; copied < nreloc; copied++)
1702 unsafe_put_user(-1,
1703 &urelocs[copied].presumed_offset,
1704 end_user);
1705 user_access_end();
1706
1707 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1708 }
1709
1710 return 0;
1711
1712 end_user:
1713 user_access_end();
1714 end:
1715 kvfree(relocs);
1716 err = -EFAULT;
1717 err:
1718 while (i--) {
1719 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1720 if (eb->exec[i].relocation_count)
1721 kvfree(relocs);
1722 }
1723 return err;
1724 }
1725
eb_prefault_relocations(const struct i915_execbuffer * eb)1726 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1727 {
1728 const unsigned int count = eb->buffer_count;
1729 unsigned int i;
1730
1731 for (i = 0; i < count; i++) {
1732 int err;
1733
1734 err = check_relocations(&eb->exec[i]);
1735 if (err)
1736 return err;
1737 }
1738
1739 return 0;
1740 }
1741
eb_reinit_userptr(struct i915_execbuffer * eb)1742 static int eb_reinit_userptr(struct i915_execbuffer *eb)
1743 {
1744 const unsigned int count = eb->buffer_count;
1745 unsigned int i;
1746 int ret;
1747
1748 if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
1749 return 0;
1750
1751 for (i = 0; i < count; i++) {
1752 struct eb_vma *ev = &eb->vma[i];
1753
1754 if (!i915_gem_object_is_userptr(ev->vma->obj))
1755 continue;
1756
1757 ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
1758 if (ret)
1759 return ret;
1760
1761 ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
1762 }
1763
1764 return 0;
1765 }
1766
eb_relocate_parse_slow(struct i915_execbuffer * eb)1767 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb)
1768 {
1769 bool have_copy = false;
1770 struct eb_vma *ev;
1771 int err = 0;
1772
1773 repeat:
1774 if (signal_pending(current)) {
1775 err = -ERESTARTSYS;
1776 goto out;
1777 }
1778
1779 /* We may process another execbuffer during the unlock... */
1780 eb_release_vmas(eb, false);
1781 i915_gem_ww_ctx_fini(&eb->ww);
1782
1783 /*
1784 * We take 3 passes through the slowpatch.
1785 *
1786 * 1 - we try to just prefault all the user relocation entries and
1787 * then attempt to reuse the atomic pagefault disabled fast path again.
1788 *
1789 * 2 - we copy the user entries to a local buffer here outside of the
1790 * local and allow ourselves to wait upon any rendering before
1791 * relocations
1792 *
1793 * 3 - we already have a local copy of the relocation entries, but
1794 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1795 */
1796 if (!err) {
1797 err = eb_prefault_relocations(eb);
1798 } else if (!have_copy) {
1799 err = eb_copy_relocations(eb);
1800 have_copy = err == 0;
1801 } else {
1802 cond_resched();
1803 err = 0;
1804 }
1805
1806 if (!err)
1807 err = eb_reinit_userptr(eb);
1808
1809 i915_gem_ww_ctx_init(&eb->ww, true);
1810 if (err)
1811 goto out;
1812
1813 /* reacquire the objects */
1814 repeat_validate:
1815 err = eb_pin_engine(eb, false);
1816 if (err)
1817 goto err;
1818
1819 err = eb_validate_vmas(eb);
1820 if (err)
1821 goto err;
1822
1823 GEM_BUG_ON(!eb->batches[0]);
1824
1825 list_for_each_entry(ev, &eb->relocs, reloc_link) {
1826 if (!have_copy) {
1827 err = eb_relocate_vma(eb, ev);
1828 if (err)
1829 break;
1830 } else {
1831 err = eb_relocate_vma_slow(eb, ev);
1832 if (err)
1833 break;
1834 }
1835 }
1836
1837 if (err == -EDEADLK)
1838 goto err;
1839
1840 if (err && !have_copy)
1841 goto repeat;
1842
1843 if (err)
1844 goto err;
1845
1846 /* as last step, parse the command buffer */
1847 err = eb_parse(eb);
1848 if (err)
1849 goto err;
1850
1851 /*
1852 * Leave the user relocations as are, this is the painfully slow path,
1853 * and we want to avoid the complication of dropping the lock whilst
1854 * having buffers reserved in the aperture and so causing spurious
1855 * ENOSPC for random operations.
1856 */
1857
1858 err:
1859 if (err == -EDEADLK) {
1860 eb_release_vmas(eb, false);
1861 err = i915_gem_ww_ctx_backoff(&eb->ww);
1862 if (!err)
1863 goto repeat_validate;
1864 }
1865
1866 if (err == -EAGAIN)
1867 goto repeat;
1868
1869 out:
1870 if (have_copy) {
1871 const unsigned int count = eb->buffer_count;
1872 unsigned int i;
1873
1874 for (i = 0; i < count; i++) {
1875 const struct drm_i915_gem_exec_object2 *entry =
1876 &eb->exec[i];
1877 struct drm_i915_gem_relocation_entry *relocs;
1878
1879 if (!entry->relocation_count)
1880 continue;
1881
1882 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1883 kvfree(relocs);
1884 }
1885 }
1886
1887 return err;
1888 }
1889
eb_relocate_parse(struct i915_execbuffer * eb)1890 static int eb_relocate_parse(struct i915_execbuffer *eb)
1891 {
1892 int err;
1893 bool throttle = true;
1894
1895 retry:
1896 err = eb_pin_engine(eb, throttle);
1897 if (err) {
1898 if (err != -EDEADLK)
1899 return err;
1900
1901 goto err;
1902 }
1903
1904 /* only throttle once, even if we didn't need to throttle */
1905 throttle = false;
1906
1907 err = eb_validate_vmas(eb);
1908 if (err == -EAGAIN)
1909 goto slow;
1910 else if (err)
1911 goto err;
1912
1913 /* The objects are in their final locations, apply the relocations. */
1914 if (eb->args->flags & __EXEC_HAS_RELOC) {
1915 struct eb_vma *ev;
1916
1917 list_for_each_entry(ev, &eb->relocs, reloc_link) {
1918 err = eb_relocate_vma(eb, ev);
1919 if (err)
1920 break;
1921 }
1922
1923 if (err == -EDEADLK)
1924 goto err;
1925 else if (err)
1926 goto slow;
1927 }
1928
1929 if (!err)
1930 err = eb_parse(eb);
1931
1932 err:
1933 if (err == -EDEADLK) {
1934 eb_release_vmas(eb, false);
1935 err = i915_gem_ww_ctx_backoff(&eb->ww);
1936 if (!err)
1937 goto retry;
1938 }
1939
1940 return err;
1941
1942 slow:
1943 err = eb_relocate_parse_slow(eb);
1944 if (err)
1945 /*
1946 * If the user expects the execobject.offset and
1947 * reloc.presumed_offset to be an exact match,
1948 * as for using NO_RELOC, then we cannot update
1949 * the execobject.offset until we have completed
1950 * relocation.
1951 */
1952 eb->args->flags &= ~__EXEC_HAS_RELOC;
1953
1954 return err;
1955 }
1956
1957 /*
1958 * Using two helper loops for the order of which requests / batches are created
1959 * and added the to backend. Requests are created in order from the parent to
1960 * the last child. Requests are added in the reverse order, from the last child
1961 * to parent. This is done for locking reasons as the timeline lock is acquired
1962 * during request creation and released when the request is added to the
1963 * backend. To make lockdep happy (see intel_context_timeline_lock) this must be
1964 * the ordering.
1965 */
1966 #define for_each_batch_create_order(_eb, _i) \
1967 for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i))
1968 #define for_each_batch_add_order(_eb, _i) \
1969 BUILD_BUG_ON(!typecheck(int, _i)); \
1970 for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i))
1971
1972 static struct i915_request *
eb_find_first_request_added(struct i915_execbuffer * eb)1973 eb_find_first_request_added(struct i915_execbuffer *eb)
1974 {
1975 int i;
1976
1977 for_each_batch_add_order(eb, i)
1978 if (eb->requests[i])
1979 return eb->requests[i];
1980
1981 GEM_BUG_ON("Request not found");
1982
1983 return NULL;
1984 }
1985
1986 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
1987
1988 /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */
eb_capture_stage(struct i915_execbuffer * eb)1989 static int eb_capture_stage(struct i915_execbuffer *eb)
1990 {
1991 const unsigned int count = eb->buffer_count;
1992 unsigned int i = count, j;
1993
1994 while (i--) {
1995 struct eb_vma *ev = &eb->vma[i];
1996 struct i915_vma *vma = ev->vma;
1997 unsigned int flags = ev->flags;
1998
1999 if (!(flags & EXEC_OBJECT_CAPTURE))
2000 continue;
2001
2002 if (i915_gem_context_is_recoverable(eb->gem_context) &&
2003 (IS_DGFX(eb->i915) || GRAPHICS_VER_FULL(eb->i915) > IP_VER(12, 0)))
2004 return -EINVAL;
2005
2006 for_each_batch_create_order(eb, j) {
2007 struct i915_capture_list *capture;
2008
2009 capture = kmalloc(sizeof(*capture), GFP_KERNEL);
2010 if (!capture)
2011 continue;
2012
2013 capture->next = eb->capture_lists[j];
2014 capture->vma_res = i915_vma_resource_get(vma->resource);
2015 eb->capture_lists[j] = capture;
2016 }
2017 }
2018
2019 return 0;
2020 }
2021
2022 /* Commit once we're in the critical path */
eb_capture_commit(struct i915_execbuffer * eb)2023 static void eb_capture_commit(struct i915_execbuffer *eb)
2024 {
2025 unsigned int j;
2026
2027 for_each_batch_create_order(eb, j) {
2028 struct i915_request *rq = eb->requests[j];
2029
2030 if (!rq)
2031 break;
2032
2033 rq->capture_list = eb->capture_lists[j];
2034 eb->capture_lists[j] = NULL;
2035 }
2036 }
2037
2038 /*
2039 * Release anything that didn't get committed due to errors.
2040 * The capture_list will otherwise be freed at request retire.
2041 */
eb_capture_release(struct i915_execbuffer * eb)2042 static void eb_capture_release(struct i915_execbuffer *eb)
2043 {
2044 unsigned int j;
2045
2046 for_each_batch_create_order(eb, j) {
2047 if (eb->capture_lists[j]) {
2048 i915_request_free_capture_list(eb->capture_lists[j]);
2049 eb->capture_lists[j] = NULL;
2050 }
2051 }
2052 }
2053
eb_capture_list_clear(struct i915_execbuffer * eb)2054 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2055 {
2056 memset(eb->capture_lists, 0, sizeof(eb->capture_lists));
2057 }
2058
2059 #else
2060
eb_capture_stage(struct i915_execbuffer * eb)2061 static int eb_capture_stage(struct i915_execbuffer *eb)
2062 {
2063 return 0;
2064 }
2065
eb_capture_commit(struct i915_execbuffer * eb)2066 static void eb_capture_commit(struct i915_execbuffer *eb)
2067 {
2068 }
2069
eb_capture_release(struct i915_execbuffer * eb)2070 static void eb_capture_release(struct i915_execbuffer *eb)
2071 {
2072 }
2073
eb_capture_list_clear(struct i915_execbuffer * eb)2074 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2075 {
2076 }
2077
2078 #endif
2079
eb_move_to_gpu(struct i915_execbuffer * eb)2080 static int eb_move_to_gpu(struct i915_execbuffer *eb)
2081 {
2082 const unsigned int count = eb->buffer_count;
2083 unsigned int i = count;
2084 int err = 0, j;
2085
2086 while (i--) {
2087 struct eb_vma *ev = &eb->vma[i];
2088 struct i915_vma *vma = ev->vma;
2089 unsigned int flags = ev->flags;
2090 struct drm_i915_gem_object *obj = vma->obj;
2091
2092 assert_vma_held(vma);
2093
2094 /*
2095 * If the GPU is not _reading_ through the CPU cache, we need
2096 * to make sure that any writes (both previous GPU writes from
2097 * before a change in snooping levels and normal CPU writes)
2098 * caught in that cache are flushed to main memory.
2099 *
2100 * We want to say
2101 * obj->cache_dirty &&
2102 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2103 * but gcc's optimiser doesn't handle that as well and emits
2104 * two jumps instead of one. Maybe one day...
2105 *
2106 * FIXME: There is also sync flushing in set_pages(), which
2107 * serves a different purpose(some of the time at least).
2108 *
2109 * We should consider:
2110 *
2111 * 1. Rip out the async flush code.
2112 *
2113 * 2. Or make the sync flushing use the async clflush path
2114 * using mandatory fences underneath. Currently the below
2115 * async flush happens after we bind the object.
2116 */
2117 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2118 if (i915_gem_clflush_object(obj, 0))
2119 flags &= ~EXEC_OBJECT_ASYNC;
2120 }
2121
2122 /* We only need to await on the first request */
2123 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2124 err = i915_request_await_object
2125 (eb_find_first_request_added(eb), obj,
2126 flags & EXEC_OBJECT_WRITE);
2127 }
2128
2129 for_each_batch_add_order(eb, j) {
2130 if (err)
2131 break;
2132 if (!eb->requests[j])
2133 continue;
2134
2135 err = _i915_vma_move_to_active(vma, eb->requests[j],
2136 j ? NULL :
2137 eb->composite_fence ?
2138 eb->composite_fence :
2139 &eb->requests[j]->fence,
2140 flags | __EXEC_OBJECT_NO_RESERVE |
2141 __EXEC_OBJECT_NO_REQUEST_AWAIT);
2142 }
2143 }
2144
2145 #ifdef CONFIG_MMU_NOTIFIER
2146 if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
2147 for (i = 0; i < count; i++) {
2148 struct eb_vma *ev = &eb->vma[i];
2149 struct drm_i915_gem_object *obj = ev->vma->obj;
2150
2151 if (!i915_gem_object_is_userptr(obj))
2152 continue;
2153
2154 err = i915_gem_object_userptr_submit_done(obj);
2155 if (err)
2156 break;
2157 }
2158 }
2159 #endif
2160
2161 if (unlikely(err))
2162 goto err_skip;
2163
2164 /* Unconditionally flush any chipset caches (for streaming writes). */
2165 intel_gt_chipset_flush(eb->gt);
2166 eb_capture_commit(eb);
2167
2168 return 0;
2169
2170 err_skip:
2171 for_each_batch_create_order(eb, j) {
2172 if (!eb->requests[j])
2173 break;
2174
2175 i915_request_set_error_once(eb->requests[j], err);
2176 }
2177 return err;
2178 }
2179
i915_gem_check_execbuffer(struct drm_i915_private * i915,struct drm_i915_gem_execbuffer2 * exec)2180 static int i915_gem_check_execbuffer(struct drm_i915_private *i915,
2181 struct drm_i915_gem_execbuffer2 *exec)
2182 {
2183 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
2184 return -EINVAL;
2185
2186 /* Kernel clipping was a DRI1 misfeature */
2187 if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2188 I915_EXEC_USE_EXTENSIONS))) {
2189 if (exec->num_cliprects || exec->cliprects_ptr)
2190 return -EINVAL;
2191 }
2192
2193 if (exec->DR4 == 0xffffffff) {
2194 drm_dbg(&i915->drm, "UXA submitting garbage DR4, fixing up\n");
2195 exec->DR4 = 0;
2196 }
2197 if (exec->DR1 || exec->DR4)
2198 return -EINVAL;
2199
2200 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
2201 return -EINVAL;
2202
2203 return 0;
2204 }
2205
i915_reset_gen7_sol_offsets(struct i915_request * rq)2206 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2207 {
2208 u32 *cs;
2209 int i;
2210
2211 if (GRAPHICS_VER(rq->i915) != 7 || rq->engine->id != RCS0) {
2212 drm_dbg(&rq->i915->drm, "sol reset is gen7/rcs only\n");
2213 return -EINVAL;
2214 }
2215
2216 cs = intel_ring_begin(rq, 4 * 2 + 2);
2217 if (IS_ERR(cs))
2218 return PTR_ERR(cs);
2219
2220 *cs++ = MI_LOAD_REGISTER_IMM(4);
2221 for (i = 0; i < 4; i++) {
2222 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2223 *cs++ = 0;
2224 }
2225 *cs++ = MI_NOOP;
2226 intel_ring_advance(rq, cs);
2227
2228 return 0;
2229 }
2230
2231 static struct i915_vma *
shadow_batch_pin(struct i915_execbuffer * eb,struct drm_i915_gem_object * obj,struct i915_address_space * vm,unsigned int flags)2232 shadow_batch_pin(struct i915_execbuffer *eb,
2233 struct drm_i915_gem_object *obj,
2234 struct i915_address_space *vm,
2235 unsigned int flags)
2236 {
2237 struct i915_vma *vma;
2238 int err;
2239
2240 vma = i915_vma_instance(obj, vm, NULL);
2241 if (IS_ERR(vma))
2242 return vma;
2243
2244 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE);
2245 if (err)
2246 return ERR_PTR(err);
2247
2248 return vma;
2249 }
2250
eb_dispatch_secure(struct i915_execbuffer * eb,struct i915_vma * vma)2251 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2252 {
2253 /*
2254 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2255 * batch" bit. Hence we need to pin secure batches into the global gtt.
2256 * hsw should have this fixed, but bdw mucks it up again. */
2257 if (eb->batch_flags & I915_DISPATCH_SECURE)
2258 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE);
2259
2260 return NULL;
2261 }
2262
eb_parse(struct i915_execbuffer * eb)2263 static int eb_parse(struct i915_execbuffer *eb)
2264 {
2265 struct drm_i915_private *i915 = eb->i915;
2266 struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2267 struct i915_vma *shadow, *trampoline, *batch;
2268 unsigned long len;
2269 int err;
2270
2271 if (!eb_use_cmdparser(eb)) {
2272 batch = eb_dispatch_secure(eb, eb->batches[0]->vma);
2273 if (IS_ERR(batch))
2274 return PTR_ERR(batch);
2275
2276 goto secure_batch;
2277 }
2278
2279 if (intel_context_is_parallel(eb->context))
2280 return -EINVAL;
2281
2282 len = eb->batch_len[0];
2283 if (!CMDPARSER_USES_GGTT(eb->i915)) {
2284 /*
2285 * ppGTT backed shadow buffers must be mapped RO, to prevent
2286 * post-scan tampering
2287 */
2288 if (!eb->context->vm->has_read_only) {
2289 drm_dbg(&i915->drm,
2290 "Cannot prevent post-scan tampering without RO capable vm\n");
2291 return -EINVAL;
2292 }
2293 } else {
2294 len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2295 }
2296 if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */
2297 return -EINVAL;
2298
2299 if (!pool) {
2300 pool = intel_gt_get_buffer_pool(eb->gt, len,
2301 I915_MAP_WB);
2302 if (IS_ERR(pool))
2303 return PTR_ERR(pool);
2304 eb->batch_pool = pool;
2305 }
2306
2307 err = i915_gem_object_lock(pool->obj, &eb->ww);
2308 if (err)
2309 return err;
2310
2311 shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2312 if (IS_ERR(shadow))
2313 return PTR_ERR(shadow);
2314
2315 intel_gt_buffer_pool_mark_used(pool);
2316 i915_gem_object_set_readonly(shadow->obj);
2317 shadow->private = pool;
2318
2319 trampoline = NULL;
2320 if (CMDPARSER_USES_GGTT(eb->i915)) {
2321 trampoline = shadow;
2322
2323 shadow = shadow_batch_pin(eb, pool->obj,
2324 &eb->gt->ggtt->vm,
2325 PIN_GLOBAL);
2326 if (IS_ERR(shadow))
2327 return PTR_ERR(shadow);
2328
2329 shadow->private = pool;
2330
2331 eb->batch_flags |= I915_DISPATCH_SECURE;
2332 }
2333
2334 batch = eb_dispatch_secure(eb, shadow);
2335 if (IS_ERR(batch))
2336 return PTR_ERR(batch);
2337
2338 err = dma_resv_reserve_fences(shadow->obj->base.resv, 1);
2339 if (err)
2340 return err;
2341
2342 err = intel_engine_cmd_parser(eb->context->engine,
2343 eb->batches[0]->vma,
2344 eb->batch_start_offset,
2345 eb->batch_len[0],
2346 shadow, trampoline);
2347 if (err)
2348 return err;
2349
2350 eb->batches[0] = &eb->vma[eb->buffer_count++];
2351 eb->batches[0]->vma = i915_vma_get(shadow);
2352 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2353
2354 eb->trampoline = trampoline;
2355 eb->batch_start_offset = 0;
2356
2357 secure_batch:
2358 if (batch) {
2359 if (intel_context_is_parallel(eb->context))
2360 return -EINVAL;
2361
2362 eb->batches[0] = &eb->vma[eb->buffer_count++];
2363 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2364 eb->batches[0]->vma = i915_vma_get(batch);
2365 }
2366 return 0;
2367 }
2368
eb_request_submit(struct i915_execbuffer * eb,struct i915_request * rq,struct i915_vma * batch,u64 batch_len)2369 static int eb_request_submit(struct i915_execbuffer *eb,
2370 struct i915_request *rq,
2371 struct i915_vma *batch,
2372 u64 batch_len)
2373 {
2374 int err;
2375
2376 if (intel_context_nopreempt(rq->context))
2377 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags);
2378
2379 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2380 err = i915_reset_gen7_sol_offsets(rq);
2381 if (err)
2382 return err;
2383 }
2384
2385 /*
2386 * After we completed waiting for other engines (using HW semaphores)
2387 * then we can signal that this request/batch is ready to run. This
2388 * allows us to determine if the batch is still waiting on the GPU
2389 * or actually running by checking the breadcrumb.
2390 */
2391 if (rq->context->engine->emit_init_breadcrumb) {
2392 err = rq->context->engine->emit_init_breadcrumb(rq);
2393 if (err)
2394 return err;
2395 }
2396
2397 err = rq->context->engine->emit_bb_start(rq,
2398 i915_vma_offset(batch) +
2399 eb->batch_start_offset,
2400 batch_len,
2401 eb->batch_flags);
2402 if (err)
2403 return err;
2404
2405 if (eb->trampoline) {
2406 GEM_BUG_ON(intel_context_is_parallel(rq->context));
2407 GEM_BUG_ON(eb->batch_start_offset);
2408 err = rq->context->engine->emit_bb_start(rq,
2409 i915_vma_offset(eb->trampoline) +
2410 batch_len, 0, 0);
2411 if (err)
2412 return err;
2413 }
2414
2415 return 0;
2416 }
2417
eb_submit(struct i915_execbuffer * eb)2418 static int eb_submit(struct i915_execbuffer *eb)
2419 {
2420 unsigned int i;
2421 int err;
2422
2423 err = eb_move_to_gpu(eb);
2424
2425 for_each_batch_create_order(eb, i) {
2426 if (!eb->requests[i])
2427 break;
2428
2429 trace_i915_request_queue(eb->requests[i], eb->batch_flags);
2430 if (!err)
2431 err = eb_request_submit(eb, eb->requests[i],
2432 eb->batches[i]->vma,
2433 eb->batch_len[i]);
2434 }
2435
2436 return err;
2437 }
2438
2439 /*
2440 * Find one BSD ring to dispatch the corresponding BSD command.
2441 * The engine index is returned.
2442 */
2443 static unsigned int
gen8_dispatch_bsd_engine(struct drm_i915_private * i915,struct drm_file * file)2444 gen8_dispatch_bsd_engine(struct drm_i915_private *i915,
2445 struct drm_file *file)
2446 {
2447 struct drm_i915_file_private *file_priv = file->driver_priv;
2448
2449 /* Check whether the file_priv has already selected one ring. */
2450 if ((int)file_priv->bsd_engine < 0)
2451 file_priv->bsd_engine =
2452 get_random_u32_below(i915->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO]);
2453
2454 return file_priv->bsd_engine;
2455 }
2456
2457 static const enum intel_engine_id user_ring_map[] = {
2458 [I915_EXEC_DEFAULT] = RCS0,
2459 [I915_EXEC_RENDER] = RCS0,
2460 [I915_EXEC_BLT] = BCS0,
2461 [I915_EXEC_BSD] = VCS0,
2462 [I915_EXEC_VEBOX] = VECS0
2463 };
2464
eb_throttle(struct i915_execbuffer * eb,struct intel_context * ce)2465 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2466 {
2467 struct intel_ring *ring = ce->ring;
2468 struct intel_timeline *tl = ce->timeline;
2469 struct i915_request *rq;
2470
2471 /*
2472 * Completely unscientific finger-in-the-air estimates for suitable
2473 * maximum user request size (to avoid blocking) and then backoff.
2474 */
2475 if (intel_ring_update_space(ring) >= PAGE_SIZE)
2476 return NULL;
2477
2478 /*
2479 * Find a request that after waiting upon, there will be at least half
2480 * the ring available. The hysteresis allows us to compete for the
2481 * shared ring and should mean that we sleep less often prior to
2482 * claiming our resources, but not so long that the ring completely
2483 * drains before we can submit our next request.
2484 */
2485 list_for_each_entry(rq, &tl->requests, link) {
2486 if (rq->ring != ring)
2487 continue;
2488
2489 if (__intel_ring_space(rq->postfix,
2490 ring->emit, ring->size) > ring->size / 2)
2491 break;
2492 }
2493 if (&rq->link == &tl->requests)
2494 return NULL; /* weird, we will check again later for real */
2495
2496 return i915_request_get(rq);
2497 }
2498
eb_pin_timeline(struct i915_execbuffer * eb,struct intel_context * ce,bool throttle)2499 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce,
2500 bool throttle)
2501 {
2502 struct intel_timeline *tl;
2503 struct i915_request *rq = NULL;
2504
2505 /*
2506 * Take a local wakeref for preparing to dispatch the execbuf as
2507 * we expect to access the hardware fairly frequently in the
2508 * process, and require the engine to be kept awake between accesses.
2509 * Upon dispatch, we acquire another prolonged wakeref that we hold
2510 * until the timeline is idle, which in turn releases the wakeref
2511 * taken on the engine, and the parent device.
2512 */
2513 tl = intel_context_timeline_lock(ce);
2514 if (IS_ERR(tl))
2515 return PTR_ERR(tl);
2516
2517 intel_context_enter(ce);
2518 if (throttle)
2519 rq = eb_throttle(eb, ce);
2520 intel_context_timeline_unlock(tl);
2521
2522 if (rq) {
2523 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2524 long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT;
2525
2526 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
2527 timeout) < 0) {
2528 i915_request_put(rq);
2529
2530 /*
2531 * Error path, cannot use intel_context_timeline_lock as
2532 * that is user interruptible and this clean up step
2533 * must be done.
2534 */
2535 mutex_lock(&ce->timeline->mutex);
2536 intel_context_exit(ce);
2537 mutex_unlock(&ce->timeline->mutex);
2538
2539 if (nonblock)
2540 return -EWOULDBLOCK;
2541 else
2542 return -EINTR;
2543 }
2544 i915_request_put(rq);
2545 }
2546
2547 return 0;
2548 }
2549
eb_pin_engine(struct i915_execbuffer * eb,bool throttle)2550 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2551 {
2552 struct intel_context *ce = eb->context, *child;
2553 int err;
2554 int i = 0, j = 0;
2555
2556 GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2557
2558 if (unlikely(intel_context_is_banned(ce)))
2559 return -EIO;
2560
2561 /*
2562 * Pinning the contexts may generate requests in order to acquire
2563 * GGTT space, so do this first before we reserve a seqno for
2564 * ourselves.
2565 */
2566 err = intel_context_pin_ww(ce, &eb->ww);
2567 if (err)
2568 return err;
2569 for_each_child(ce, child) {
2570 err = intel_context_pin_ww(child, &eb->ww);
2571 GEM_BUG_ON(err); /* perma-pinned should incr a counter */
2572 }
2573
2574 for_each_child(ce, child) {
2575 err = eb_pin_timeline(eb, child, throttle);
2576 if (err)
2577 goto unwind;
2578 ++i;
2579 }
2580 err = eb_pin_timeline(eb, ce, throttle);
2581 if (err)
2582 goto unwind;
2583
2584 eb->args->flags |= __EXEC_ENGINE_PINNED;
2585 return 0;
2586
2587 unwind:
2588 for_each_child(ce, child) {
2589 if (j++ < i) {
2590 mutex_lock(&child->timeline->mutex);
2591 intel_context_exit(child);
2592 mutex_unlock(&child->timeline->mutex);
2593 }
2594 }
2595 for_each_child(ce, child)
2596 intel_context_unpin(child);
2597 intel_context_unpin(ce);
2598 return err;
2599 }
2600
eb_unpin_engine(struct i915_execbuffer * eb)2601 static void eb_unpin_engine(struct i915_execbuffer *eb)
2602 {
2603 struct intel_context *ce = eb->context, *child;
2604
2605 if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2606 return;
2607
2608 eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2609
2610 for_each_child(ce, child) {
2611 mutex_lock(&child->timeline->mutex);
2612 intel_context_exit(child);
2613 mutex_unlock(&child->timeline->mutex);
2614
2615 intel_context_unpin(child);
2616 }
2617
2618 mutex_lock(&ce->timeline->mutex);
2619 intel_context_exit(ce);
2620 mutex_unlock(&ce->timeline->mutex);
2621
2622 intel_context_unpin(ce);
2623 }
2624
2625 static unsigned int
eb_select_legacy_ring(struct i915_execbuffer * eb)2626 eb_select_legacy_ring(struct i915_execbuffer *eb)
2627 {
2628 struct drm_i915_private *i915 = eb->i915;
2629 struct drm_i915_gem_execbuffer2 *args = eb->args;
2630 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2631
2632 if (user_ring_id != I915_EXEC_BSD &&
2633 (args->flags & I915_EXEC_BSD_MASK)) {
2634 drm_dbg(&i915->drm,
2635 "execbuf with non bsd ring but with invalid "
2636 "bsd dispatch flags: %d\n", (int)(args->flags));
2637 return -1;
2638 }
2639
2640 if (user_ring_id == I915_EXEC_BSD &&
2641 i915->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO] > 1) {
2642 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2643
2644 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2645 bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2646 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2647 bsd_idx <= I915_EXEC_BSD_RING2) {
2648 bsd_idx >>= I915_EXEC_BSD_SHIFT;
2649 bsd_idx--;
2650 } else {
2651 drm_dbg(&i915->drm,
2652 "execbuf with unknown bsd ring: %u\n",
2653 bsd_idx);
2654 return -1;
2655 }
2656
2657 return _VCS(bsd_idx);
2658 }
2659
2660 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2661 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2662 user_ring_id);
2663 return -1;
2664 }
2665
2666 return user_ring_map[user_ring_id];
2667 }
2668
2669 static int
eb_select_engine(struct i915_execbuffer * eb)2670 eb_select_engine(struct i915_execbuffer *eb)
2671 {
2672 struct intel_context *ce, *child;
2673 struct intel_gt *gt;
2674 unsigned int idx;
2675 int err;
2676
2677 if (i915_gem_context_user_engines(eb->gem_context))
2678 idx = eb->args->flags & I915_EXEC_RING_MASK;
2679 else
2680 idx = eb_select_legacy_ring(eb);
2681
2682 ce = i915_gem_context_get_engine(eb->gem_context, idx);
2683 if (IS_ERR(ce))
2684 return PTR_ERR(ce);
2685
2686 if (intel_context_is_parallel(ce)) {
2687 if (eb->buffer_count < ce->parallel.number_children + 1) {
2688 intel_context_put(ce);
2689 return -EINVAL;
2690 }
2691 if (eb->batch_start_offset || eb->args->batch_len) {
2692 intel_context_put(ce);
2693 return -EINVAL;
2694 }
2695 }
2696 eb->num_batches = ce->parallel.number_children + 1;
2697 gt = ce->engine->gt;
2698
2699 for_each_child(ce, child)
2700 intel_context_get(child);
2701 eb->wakeref = intel_gt_pm_get(ce->engine->gt);
2702 /*
2703 * Keep GT0 active on MTL so that i915_vma_parked() doesn't
2704 * free VMAs while execbuf ioctl is validating VMAs.
2705 */
2706 if (gt->info.id)
2707 eb->wakeref_gt0 = intel_gt_pm_get(to_gt(gt->i915));
2708
2709 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2710 err = intel_context_alloc_state(ce);
2711 if (err)
2712 goto err;
2713 }
2714 for_each_child(ce, child) {
2715 if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) {
2716 err = intel_context_alloc_state(child);
2717 if (err)
2718 goto err;
2719 }
2720 }
2721
2722 /*
2723 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2724 * EIO if the GPU is already wedged.
2725 */
2726 err = intel_gt_terminally_wedged(ce->engine->gt);
2727 if (err)
2728 goto err;
2729
2730 if (!i915_vm_tryget(ce->vm)) {
2731 err = -ENOENT;
2732 goto err;
2733 }
2734
2735 eb->context = ce;
2736 eb->gt = ce->engine->gt;
2737
2738 /*
2739 * Make sure engine pool stays alive even if we call intel_context_put
2740 * during ww handling. The pool is destroyed when last pm reference
2741 * is dropped, which breaks our -EDEADLK handling.
2742 */
2743 return err;
2744
2745 err:
2746 if (gt->info.id)
2747 intel_gt_pm_put(to_gt(gt->i915), eb->wakeref_gt0);
2748
2749 intel_gt_pm_put(ce->engine->gt, eb->wakeref);
2750 for_each_child(ce, child)
2751 intel_context_put(child);
2752 intel_context_put(ce);
2753 return err;
2754 }
2755
2756 static void
eb_put_engine(struct i915_execbuffer * eb)2757 eb_put_engine(struct i915_execbuffer *eb)
2758 {
2759 struct intel_context *child;
2760
2761 i915_vm_put(eb->context->vm);
2762 /*
2763 * This works in conjunction with eb_select_engine() to prevent
2764 * i915_vma_parked() from interfering while execbuf validates vmas.
2765 */
2766 if (eb->gt->info.id)
2767 intel_gt_pm_put(to_gt(eb->gt->i915), eb->wakeref_gt0);
2768 intel_gt_pm_put(eb->context->engine->gt, eb->wakeref);
2769 for_each_child(eb->context, child)
2770 intel_context_put(child);
2771 intel_context_put(eb->context);
2772 }
2773
2774 static void
__free_fence_array(struct eb_fence * fences,unsigned int n)2775 __free_fence_array(struct eb_fence *fences, unsigned int n)
2776 {
2777 while (n--) {
2778 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2779 dma_fence_put(fences[n].dma_fence);
2780 dma_fence_chain_free(fences[n].chain_fence);
2781 }
2782 kvfree(fences);
2783 }
2784
2785 static int
add_timeline_fence_array(struct i915_execbuffer * eb,const struct drm_i915_gem_execbuffer_ext_timeline_fences * timeline_fences)2786 add_timeline_fence_array(struct i915_execbuffer *eb,
2787 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2788 {
2789 struct drm_i915_gem_exec_fence __user *user_fences;
2790 u64 __user *user_values;
2791 struct eb_fence *f;
2792 u64 nfences;
2793 int err = 0;
2794
2795 nfences = timeline_fences->fence_count;
2796 if (!nfences)
2797 return 0;
2798
2799 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2800 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2801 if (nfences > min_t(unsigned long,
2802 ULONG_MAX / sizeof(*user_fences),
2803 SIZE_MAX / sizeof(*f)) - eb->num_fences)
2804 return -EINVAL;
2805
2806 user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2807 if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2808 return -EFAULT;
2809
2810 user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2811 if (!access_ok(user_values, nfences * sizeof(*user_values)))
2812 return -EFAULT;
2813
2814 f = krealloc(eb->fences,
2815 (eb->num_fences + nfences) * sizeof(*f),
2816 __GFP_NOWARN | GFP_KERNEL);
2817 if (!f)
2818 return -ENOMEM;
2819
2820 eb->fences = f;
2821 f += eb->num_fences;
2822
2823 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2824 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2825
2826 while (nfences--) {
2827 struct drm_i915_gem_exec_fence user_fence;
2828 struct drm_syncobj *syncobj;
2829 struct dma_fence *fence = NULL;
2830 u64 point;
2831
2832 if (__copy_from_user(&user_fence,
2833 user_fences++,
2834 sizeof(user_fence)))
2835 return -EFAULT;
2836
2837 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2838 return -EINVAL;
2839
2840 if (__get_user(point, user_values++))
2841 return -EFAULT;
2842
2843 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2844 if (!syncobj) {
2845 drm_dbg(&eb->i915->drm,
2846 "Invalid syncobj handle provided\n");
2847 return -ENOENT;
2848 }
2849
2850 fence = drm_syncobj_fence_get(syncobj);
2851
2852 if (!fence && user_fence.flags &&
2853 !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2854 drm_dbg(&eb->i915->drm,
2855 "Syncobj handle has no fence\n");
2856 drm_syncobj_put(syncobj);
2857 return -EINVAL;
2858 }
2859
2860 if (fence)
2861 err = dma_fence_chain_find_seqno(&fence, point);
2862
2863 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2864 drm_dbg(&eb->i915->drm,
2865 "Syncobj handle missing requested point %llu\n",
2866 point);
2867 dma_fence_put(fence);
2868 drm_syncobj_put(syncobj);
2869 return err;
2870 }
2871
2872 /*
2873 * A point might have been signaled already and
2874 * garbage collected from the timeline. In this case
2875 * just ignore the point and carry on.
2876 */
2877 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2878 drm_syncobj_put(syncobj);
2879 continue;
2880 }
2881
2882 /*
2883 * For timeline syncobjs we need to preallocate chains for
2884 * later signaling.
2885 */
2886 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2887 /*
2888 * Waiting and signaling the same point (when point !=
2889 * 0) would break the timeline.
2890 */
2891 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2892 drm_dbg(&eb->i915->drm,
2893 "Trying to wait & signal the same timeline point.\n");
2894 dma_fence_put(fence);
2895 drm_syncobj_put(syncobj);
2896 return -EINVAL;
2897 }
2898
2899 f->chain_fence = dma_fence_chain_alloc();
2900 if (!f->chain_fence) {
2901 drm_syncobj_put(syncobj);
2902 dma_fence_put(fence);
2903 return -ENOMEM;
2904 }
2905 } else {
2906 f->chain_fence = NULL;
2907 }
2908
2909 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2910 f->dma_fence = fence;
2911 f->value = point;
2912 f++;
2913 eb->num_fences++;
2914 }
2915
2916 return 0;
2917 }
2918
add_fence_array(struct i915_execbuffer * eb)2919 static int add_fence_array(struct i915_execbuffer *eb)
2920 {
2921 struct drm_i915_gem_execbuffer2 *args = eb->args;
2922 struct drm_i915_gem_exec_fence __user *user;
2923 unsigned long num_fences = args->num_cliprects;
2924 struct eb_fence *f;
2925
2926 if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2927 return 0;
2928
2929 if (!num_fences)
2930 return 0;
2931
2932 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2933 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2934 if (num_fences > min_t(unsigned long,
2935 ULONG_MAX / sizeof(*user),
2936 SIZE_MAX / sizeof(*f) - eb->num_fences))
2937 return -EINVAL;
2938
2939 user = u64_to_user_ptr(args->cliprects_ptr);
2940 if (!access_ok(user, num_fences * sizeof(*user)))
2941 return -EFAULT;
2942
2943 f = krealloc(eb->fences,
2944 (eb->num_fences + num_fences) * sizeof(*f),
2945 __GFP_NOWARN | GFP_KERNEL);
2946 if (!f)
2947 return -ENOMEM;
2948
2949 eb->fences = f;
2950 f += eb->num_fences;
2951 while (num_fences--) {
2952 struct drm_i915_gem_exec_fence user_fence;
2953 struct drm_syncobj *syncobj;
2954 struct dma_fence *fence = NULL;
2955
2956 if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2957 return -EFAULT;
2958
2959 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2960 return -EINVAL;
2961
2962 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2963 if (!syncobj) {
2964 drm_dbg(&eb->i915->drm,
2965 "Invalid syncobj handle provided\n");
2966 return -ENOENT;
2967 }
2968
2969 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2970 fence = drm_syncobj_fence_get(syncobj);
2971 if (!fence) {
2972 drm_dbg(&eb->i915->drm,
2973 "Syncobj handle has no fence\n");
2974 drm_syncobj_put(syncobj);
2975 return -EINVAL;
2976 }
2977 }
2978
2979 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2980 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2981
2982 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2983 f->dma_fence = fence;
2984 f->value = 0;
2985 f->chain_fence = NULL;
2986 f++;
2987 eb->num_fences++;
2988 }
2989
2990 return 0;
2991 }
2992
put_fence_array(struct eb_fence * fences,int num_fences)2993 static void put_fence_array(struct eb_fence *fences, int num_fences)
2994 {
2995 if (fences)
2996 __free_fence_array(fences, num_fences);
2997 }
2998
2999 static int
await_fence_array(struct i915_execbuffer * eb,struct i915_request * rq)3000 await_fence_array(struct i915_execbuffer *eb,
3001 struct i915_request *rq)
3002 {
3003 unsigned int n;
3004 int err;
3005
3006 for (n = 0; n < eb->num_fences; n++) {
3007 if (!eb->fences[n].dma_fence)
3008 continue;
3009
3010 err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence);
3011 if (err < 0)
3012 return err;
3013 }
3014
3015 return 0;
3016 }
3017
signal_fence_array(const struct i915_execbuffer * eb,struct dma_fence * const fence)3018 static void signal_fence_array(const struct i915_execbuffer *eb,
3019 struct dma_fence * const fence)
3020 {
3021 unsigned int n;
3022
3023 for (n = 0; n < eb->num_fences; n++) {
3024 struct drm_syncobj *syncobj;
3025 unsigned int flags;
3026
3027 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3028 if (!(flags & I915_EXEC_FENCE_SIGNAL))
3029 continue;
3030
3031 if (eb->fences[n].chain_fence) {
3032 drm_syncobj_add_point(syncobj,
3033 eb->fences[n].chain_fence,
3034 fence,
3035 eb->fences[n].value);
3036 /*
3037 * The chain's ownership is transferred to the
3038 * timeline.
3039 */
3040 eb->fences[n].chain_fence = NULL;
3041 } else {
3042 drm_syncobj_replace_fence(syncobj, fence);
3043 }
3044 }
3045 }
3046
3047 static int
parse_timeline_fences(struct i915_user_extension __user * ext,void * data)3048 parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
3049 {
3050 struct i915_execbuffer *eb = data;
3051 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
3052
3053 if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3054 return -EFAULT;
3055
3056 return add_timeline_fence_array(eb, &timeline_fences);
3057 }
3058
retire_requests(struct intel_timeline * tl,struct i915_request * end)3059 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3060 {
3061 struct i915_request *rq, *rn;
3062
3063 list_for_each_entry_safe(rq, rn, &tl->requests, link)
3064 if (rq == end || !i915_request_retire(rq))
3065 break;
3066 }
3067
eb_request_add(struct i915_execbuffer * eb,struct i915_request * rq,int err,bool last_parallel)3068 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq,
3069 int err, bool last_parallel)
3070 {
3071 struct intel_timeline * const tl = i915_request_timeline(rq);
3072 struct i915_sched_attr attr = {};
3073 struct i915_request *prev;
3074
3075 lockdep_assert_held(&tl->mutex);
3076 lockdep_unpin_lock(&tl->mutex, rq->cookie);
3077
3078 trace_i915_request_add(rq);
3079
3080 prev = __i915_request_commit(rq);
3081
3082 /* Check that the context wasn't destroyed before submission */
3083 if (likely(!intel_context_is_closed(eb->context))) {
3084 attr = eb->gem_context->sched;
3085 } else {
3086 /* Serialise with context_close via the add_to_timeline */
3087 i915_request_set_error_once(rq, -ENOENT);
3088 __i915_request_skip(rq);
3089 err = -ENOENT; /* override any transient errors */
3090 }
3091
3092 if (intel_context_is_parallel(eb->context)) {
3093 if (err) {
3094 __i915_request_skip(rq);
3095 set_bit(I915_FENCE_FLAG_SKIP_PARALLEL,
3096 &rq->fence.flags);
3097 }
3098 if (last_parallel)
3099 set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL,
3100 &rq->fence.flags);
3101 }
3102
3103 __i915_request_queue(rq, &attr);
3104
3105 /* Try to clean up the client's timeline after submitting the request */
3106 if (prev)
3107 retire_requests(tl, prev);
3108
3109 mutex_unlock(&tl->mutex);
3110
3111 return err;
3112 }
3113
eb_requests_add(struct i915_execbuffer * eb,int err)3114 static int eb_requests_add(struct i915_execbuffer *eb, int err)
3115 {
3116 int i;
3117
3118 /*
3119 * We iterate in reverse order of creation to release timeline mutexes in
3120 * same order.
3121 */
3122 for_each_batch_add_order(eb, i) {
3123 struct i915_request *rq = eb->requests[i];
3124
3125 if (!rq)
3126 continue;
3127 err |= eb_request_add(eb, rq, err, i == 0);
3128 }
3129
3130 return err;
3131 }
3132
3133 static const i915_user_extension_fn execbuf_extensions[] = {
3134 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3135 };
3136
3137 static int
parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 * args,struct i915_execbuffer * eb)3138 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3139 struct i915_execbuffer *eb)
3140 {
3141 if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3142 return 0;
3143
3144 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3145 * have another flag also using it at the same time.
3146 */
3147 if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3148 return -EINVAL;
3149
3150 if (args->num_cliprects != 0)
3151 return -EINVAL;
3152
3153 return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3154 execbuf_extensions,
3155 ARRAY_SIZE(execbuf_extensions),
3156 eb);
3157 }
3158
eb_requests_get(struct i915_execbuffer * eb)3159 static void eb_requests_get(struct i915_execbuffer *eb)
3160 {
3161 unsigned int i;
3162
3163 for_each_batch_create_order(eb, i) {
3164 if (!eb->requests[i])
3165 break;
3166
3167 i915_request_get(eb->requests[i]);
3168 }
3169 }
3170
eb_requests_put(struct i915_execbuffer * eb)3171 static void eb_requests_put(struct i915_execbuffer *eb)
3172 {
3173 unsigned int i;
3174
3175 for_each_batch_create_order(eb, i) {
3176 if (!eb->requests[i])
3177 break;
3178
3179 i915_request_put(eb->requests[i]);
3180 }
3181 }
3182
3183 static struct sync_file *
eb_composite_fence_create(struct i915_execbuffer * eb,int out_fence_fd)3184 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd)
3185 {
3186 struct sync_file *out_fence = NULL;
3187 struct dma_fence_array *fence_array;
3188 struct dma_fence **fences;
3189 unsigned int i;
3190
3191 GEM_BUG_ON(!intel_context_is_parent(eb->context));
3192
3193 fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL);
3194 if (!fences)
3195 return ERR_PTR(-ENOMEM);
3196
3197 for_each_batch_create_order(eb, i) {
3198 fences[i] = &eb->requests[i]->fence;
3199 __set_bit(I915_FENCE_FLAG_COMPOSITE,
3200 &eb->requests[i]->fence.flags);
3201 }
3202
3203 fence_array = dma_fence_array_create(eb->num_batches,
3204 fences,
3205 eb->context->parallel.fence_context,
3206 eb->context->parallel.seqno++,
3207 false);
3208 if (!fence_array) {
3209 kfree(fences);
3210 return ERR_PTR(-ENOMEM);
3211 }
3212
3213 /* Move ownership to the dma_fence_array created above */
3214 for_each_batch_create_order(eb, i)
3215 dma_fence_get(fences[i]);
3216
3217 if (out_fence_fd != -1) {
3218 out_fence = sync_file_create(&fence_array->base);
3219 /* sync_file now owns fence_arry, drop creation ref */
3220 dma_fence_put(&fence_array->base);
3221 if (!out_fence)
3222 return ERR_PTR(-ENOMEM);
3223 }
3224
3225 eb->composite_fence = &fence_array->base;
3226
3227 return out_fence;
3228 }
3229
3230 static struct sync_file *
eb_fences_add(struct i915_execbuffer * eb,struct i915_request * rq,struct dma_fence * in_fence,int out_fence_fd)3231 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq,
3232 struct dma_fence *in_fence, int out_fence_fd)
3233 {
3234 struct sync_file *out_fence = NULL;
3235 int err;
3236
3237 if (unlikely(eb->gem_context->syncobj)) {
3238 struct dma_fence *fence;
3239
3240 fence = drm_syncobj_fence_get(eb->gem_context->syncobj);
3241 err = i915_request_await_dma_fence(rq, fence);
3242 dma_fence_put(fence);
3243 if (err)
3244 return ERR_PTR(err);
3245 }
3246
3247 if (in_fence) {
3248 if (eb->args->flags & I915_EXEC_FENCE_SUBMIT)
3249 err = i915_request_await_execution(rq, in_fence);
3250 else
3251 err = i915_request_await_dma_fence(rq, in_fence);
3252 if (err < 0)
3253 return ERR_PTR(err);
3254 }
3255
3256 if (eb->fences) {
3257 err = await_fence_array(eb, rq);
3258 if (err)
3259 return ERR_PTR(err);
3260 }
3261
3262 if (intel_context_is_parallel(eb->context)) {
3263 out_fence = eb_composite_fence_create(eb, out_fence_fd);
3264 if (IS_ERR(out_fence))
3265 return ERR_PTR(-ENOMEM);
3266 } else if (out_fence_fd != -1) {
3267 out_fence = sync_file_create(&rq->fence);
3268 if (!out_fence)
3269 return ERR_PTR(-ENOMEM);
3270 }
3271
3272 return out_fence;
3273 }
3274
3275 static struct intel_context *
eb_find_context(struct i915_execbuffer * eb,unsigned int context_number)3276 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number)
3277 {
3278 struct intel_context *child;
3279
3280 if (likely(context_number == 0))
3281 return eb->context;
3282
3283 for_each_child(eb->context, child)
3284 if (!--context_number)
3285 return child;
3286
3287 GEM_BUG_ON("Context not found");
3288
3289 return NULL;
3290 }
3291
3292 static struct sync_file *
eb_requests_create(struct i915_execbuffer * eb,struct dma_fence * in_fence,int out_fence_fd)3293 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence,
3294 int out_fence_fd)
3295 {
3296 struct sync_file *out_fence = NULL;
3297 unsigned int i;
3298
3299 for_each_batch_create_order(eb, i) {
3300 /* Allocate a request for this batch buffer nice and early. */
3301 eb->requests[i] = i915_request_create(eb_find_context(eb, i));
3302 if (IS_ERR(eb->requests[i])) {
3303 out_fence = ERR_CAST(eb->requests[i]);
3304 eb->requests[i] = NULL;
3305 return out_fence;
3306 }
3307
3308 /*
3309 * Only the first request added (committed to backend) has to
3310 * take the in fences into account as all subsequent requests
3311 * will have fences inserted inbetween them.
3312 */
3313 if (i + 1 == eb->num_batches) {
3314 out_fence = eb_fences_add(eb, eb->requests[i],
3315 in_fence, out_fence_fd);
3316 if (IS_ERR(out_fence))
3317 return out_fence;
3318 }
3319
3320 /*
3321 * Not really on stack, but we don't want to call
3322 * kfree on the batch_snapshot when we put it, so use the
3323 * _onstack interface.
3324 */
3325 if (eb->batches[i]->vma)
3326 eb->requests[i]->batch_res =
3327 i915_vma_resource_get(eb->batches[i]->vma->resource);
3328 if (eb->batch_pool) {
3329 GEM_BUG_ON(intel_context_is_parallel(eb->context));
3330 intel_gt_buffer_pool_mark_active(eb->batch_pool,
3331 eb->requests[i]);
3332 }
3333 }
3334
3335 return out_fence;
3336 }
3337
3338 static int
i915_gem_do_execbuffer(struct drm_device * dev,struct drm_file * file,struct drm_i915_gem_execbuffer2 * args,struct drm_i915_gem_exec_object2 * exec)3339 i915_gem_do_execbuffer(struct drm_device *dev,
3340 struct drm_file *file,
3341 struct drm_i915_gem_execbuffer2 *args,
3342 struct drm_i915_gem_exec_object2 *exec)
3343 {
3344 struct drm_i915_private *i915 = to_i915(dev);
3345 struct i915_execbuffer eb;
3346 struct dma_fence *in_fence = NULL;
3347 struct sync_file *out_fence = NULL;
3348 int out_fence_fd = -1;
3349 int err;
3350
3351 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3352 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3353 ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3354
3355 eb.i915 = i915;
3356 eb.file = file;
3357 eb.args = args;
3358 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3359 args->flags |= __EXEC_HAS_RELOC;
3360
3361 eb.exec = exec;
3362 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3363 memset(eb.vma, 0, (args->buffer_count + 1) * sizeof(struct eb_vma));
3364
3365 eb.batch_pool = NULL;
3366
3367 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3368 reloc_cache_init(&eb.reloc_cache, eb.i915);
3369
3370 eb.buffer_count = args->buffer_count;
3371 eb.batch_start_offset = args->batch_start_offset;
3372 eb.trampoline = NULL;
3373
3374 eb.fences = NULL;
3375 eb.num_fences = 0;
3376
3377 eb_capture_list_clear(&eb);
3378
3379 memset(eb.requests, 0, sizeof(struct i915_request *) *
3380 ARRAY_SIZE(eb.requests));
3381 eb.composite_fence = NULL;
3382
3383 eb.batch_flags = 0;
3384 if (args->flags & I915_EXEC_SECURE) {
3385 if (GRAPHICS_VER(i915) >= 11)
3386 return -ENODEV;
3387
3388 /* Return -EPERM to trigger fallback code on old binaries. */
3389 if (!HAS_SECURE_BATCHES(i915))
3390 return -EPERM;
3391
3392 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3393 return -EPERM;
3394
3395 eb.batch_flags |= I915_DISPATCH_SECURE;
3396 }
3397 if (args->flags & I915_EXEC_IS_PINNED)
3398 eb.batch_flags |= I915_DISPATCH_PINNED;
3399
3400 err = parse_execbuf2_extensions(args, &eb);
3401 if (err)
3402 goto err_ext;
3403
3404 err = add_fence_array(&eb);
3405 if (err)
3406 goto err_ext;
3407
3408 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3409 if (args->flags & IN_FENCES) {
3410 if ((args->flags & IN_FENCES) == IN_FENCES)
3411 return -EINVAL;
3412
3413 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3414 if (!in_fence) {
3415 err = -EINVAL;
3416 goto err_ext;
3417 }
3418 }
3419 #undef IN_FENCES
3420
3421 if (args->flags & I915_EXEC_FENCE_OUT) {
3422 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3423 if (out_fence_fd < 0) {
3424 err = out_fence_fd;
3425 goto err_in_fence;
3426 }
3427 }
3428
3429 err = eb_create(&eb);
3430 if (err)
3431 goto err_out_fence;
3432
3433 GEM_BUG_ON(!eb.lut_size);
3434
3435 err = eb_select_context(&eb);
3436 if (unlikely(err))
3437 goto err_destroy;
3438
3439 err = eb_select_engine(&eb);
3440 if (unlikely(err))
3441 goto err_context;
3442
3443 err = eb_lookup_vmas(&eb);
3444 if (err) {
3445 eb_release_vmas(&eb, true);
3446 goto err_engine;
3447 }
3448
3449 i915_gem_ww_ctx_init(&eb.ww, true);
3450
3451 err = eb_relocate_parse(&eb);
3452 if (err) {
3453 /*
3454 * If the user expects the execobject.offset and
3455 * reloc.presumed_offset to be an exact match,
3456 * as for using NO_RELOC, then we cannot update
3457 * the execobject.offset until we have completed
3458 * relocation.
3459 */
3460 args->flags &= ~__EXEC_HAS_RELOC;
3461 goto err_vma;
3462 }
3463
3464 ww_acquire_done(&eb.ww.ctx);
3465 err = eb_capture_stage(&eb);
3466 if (err)
3467 goto err_vma;
3468
3469 out_fence = eb_requests_create(&eb, in_fence, out_fence_fd);
3470 if (IS_ERR(out_fence)) {
3471 err = PTR_ERR(out_fence);
3472 out_fence = NULL;
3473 if (eb.requests[0])
3474 goto err_request;
3475 else
3476 goto err_vma;
3477 }
3478
3479 err = eb_submit(&eb);
3480
3481 err_request:
3482 eb_requests_get(&eb);
3483 err = eb_requests_add(&eb, err);
3484
3485 if (eb.fences)
3486 signal_fence_array(&eb, eb.composite_fence ?
3487 eb.composite_fence :
3488 &eb.requests[0]->fence);
3489
3490 if (unlikely(eb.gem_context->syncobj)) {
3491 drm_syncobj_replace_fence(eb.gem_context->syncobj,
3492 eb.composite_fence ?
3493 eb.composite_fence :
3494 &eb.requests[0]->fence);
3495 }
3496
3497 if (out_fence) {
3498 if (err == 0) {
3499 fd_install(out_fence_fd, out_fence->file);
3500 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3501 args->rsvd2 |= (u64)out_fence_fd << 32;
3502 out_fence_fd = -1;
3503 } else {
3504 fput(out_fence->file);
3505 }
3506 }
3507
3508 if (!out_fence && eb.composite_fence)
3509 dma_fence_put(eb.composite_fence);
3510
3511 eb_requests_put(&eb);
3512
3513 err_vma:
3514 eb_release_vmas(&eb, true);
3515 WARN_ON(err == -EDEADLK);
3516 i915_gem_ww_ctx_fini(&eb.ww);
3517
3518 if (eb.batch_pool)
3519 intel_gt_buffer_pool_put(eb.batch_pool);
3520 err_engine:
3521 eb_put_engine(&eb);
3522 err_context:
3523 i915_gem_context_put(eb.gem_context);
3524 err_destroy:
3525 eb_destroy(&eb);
3526 err_out_fence:
3527 if (out_fence_fd != -1)
3528 put_unused_fd(out_fence_fd);
3529 err_in_fence:
3530 dma_fence_put(in_fence);
3531 err_ext:
3532 put_fence_array(eb.fences, eb.num_fences);
3533 return err;
3534 }
3535
eb_element_size(void)3536 static size_t eb_element_size(void)
3537 {
3538 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3539 }
3540
check_buffer_count(size_t count)3541 static bool check_buffer_count(size_t count)
3542 {
3543 const size_t sz = eb_element_size();
3544
3545 /*
3546 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3547 * array size (see eb_create()). Otherwise, we can accept an array as
3548 * large as can be addressed (though use large arrays at your peril)!
3549 */
3550
3551 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3552 }
3553
3554 int
i915_gem_execbuffer2_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3555 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3556 struct drm_file *file)
3557 {
3558 struct drm_i915_private *i915 = to_i915(dev);
3559 struct drm_i915_gem_execbuffer2 *args = data;
3560 struct drm_i915_gem_exec_object2 *exec2_list;
3561 const size_t count = args->buffer_count;
3562 int err;
3563
3564 if (!check_buffer_count(count)) {
3565 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3566 return -EINVAL;
3567 }
3568
3569 err = i915_gem_check_execbuffer(i915, args);
3570 if (err)
3571 return err;
3572
3573 /*
3574 * Allocate extra slots for use by the command parser.
3575 *
3576 * Note that this allocation handles two different arrays (the
3577 * exec2_list array, and the eventual eb.vma array introduced in
3578 * i915_gem_do_execbuffer()), that reside in virtually contiguous
3579 * memory. Also note that the allocation intentionally doesn't fill the
3580 * area with zeros, because the exec2_list part doesn't need to be, as
3581 * it's immediately overwritten by user data a few lines below.
3582 * However, the eb.vma part is explicitly zeroed later in
3583 * i915_gem_do_execbuffer().
3584 */
3585 exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3586 __GFP_NOWARN | GFP_KERNEL);
3587 if (exec2_list == NULL) {
3588 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3589 count);
3590 return -ENOMEM;
3591 }
3592 if (copy_from_user(exec2_list,
3593 u64_to_user_ptr(args->buffers_ptr),
3594 sizeof(*exec2_list) * count)) {
3595 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3596 kvfree(exec2_list);
3597 return -EFAULT;
3598 }
3599
3600 err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3601
3602 /*
3603 * Now that we have begun execution of the batchbuffer, we ignore
3604 * any new error after this point. Also given that we have already
3605 * updated the associated relocations, we try to write out the current
3606 * object locations irrespective of any error.
3607 */
3608 if (args->flags & __EXEC_HAS_RELOC) {
3609 struct drm_i915_gem_exec_object2 __user *user_exec_list =
3610 u64_to_user_ptr(args->buffers_ptr);
3611 unsigned int i;
3612
3613 /* Copy the new buffer offsets back to the user's exec list. */
3614 /*
3615 * Note: count * sizeof(*user_exec_list) does not overflow,
3616 * because we checked 'count' in check_buffer_count().
3617 *
3618 * And this range already got effectively checked earlier
3619 * when we did the "copy_from_user()" above.
3620 */
3621 if (!user_write_access_begin(user_exec_list,
3622 count * sizeof(*user_exec_list)))
3623 goto end;
3624
3625 for (i = 0; i < args->buffer_count; i++) {
3626 if (!(exec2_list[i].offset & UPDATE))
3627 continue;
3628
3629 exec2_list[i].offset =
3630 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3631 unsafe_put_user(exec2_list[i].offset,
3632 &user_exec_list[i].offset,
3633 end_user);
3634 }
3635 end_user:
3636 user_write_access_end();
3637 end:;
3638 }
3639
3640 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3641 kvfree(exec2_list);
3642 return err;
3643 }
3644