xref: /linux/arch/s390/kernel/smp.c (revision a1ff5a7d78a036d6c2178ee5acd6ba4946243800)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  SMP related functions
4  *
5  *    Copyright IBM Corp. 1999, 2012
6  *    Author(s): Denis Joseph Barrow,
7  *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * The code outside of smp.c uses logical cpu numbers, only smp.c does
14  * the translation of logical to physical cpu ids. All new code that
15  * operates on physical cpu numbers needs to go into smp.c.
16  */
17 
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20 
21 #include <linux/workqueue.h>
22 #include <linux/memblock.h>
23 #include <linux/export.h>
24 #include <linux/init.h>
25 #include <linux/mm.h>
26 #include <linux/err.h>
27 #include <linux/spinlock.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/irqflags.h>
32 #include <linux/irq_work.h>
33 #include <linux/cpu.h>
34 #include <linux/slab.h>
35 #include <linux/sched/hotplug.h>
36 #include <linux/sched/task_stack.h>
37 #include <linux/crash_dump.h>
38 #include <linux/kprobes.h>
39 #include <asm/access-regs.h>
40 #include <asm/asm-offsets.h>
41 #include <asm/ctlreg.h>
42 #include <asm/pfault.h>
43 #include <asm/diag.h>
44 #include <asm/facility.h>
45 #include <asm/fpu.h>
46 #include <asm/ipl.h>
47 #include <asm/setup.h>
48 #include <asm/irq.h>
49 #include <asm/tlbflush.h>
50 #include <asm/vtimer.h>
51 #include <asm/abs_lowcore.h>
52 #include <asm/sclp.h>
53 #include <asm/debug.h>
54 #include <asm/os_info.h>
55 #include <asm/sigp.h>
56 #include <asm/idle.h>
57 #include <asm/nmi.h>
58 #include <asm/stacktrace.h>
59 #include <asm/topology.h>
60 #include <asm/vdso.h>
61 #include <asm/maccess.h>
62 #include "entry.h"
63 
64 enum {
65 	ec_schedule = 0,
66 	ec_call_function_single,
67 	ec_stop_cpu,
68 	ec_mcck_pending,
69 	ec_irq_work,
70 };
71 
72 enum {
73 	CPU_STATE_STANDBY,
74 	CPU_STATE_CONFIGURED,
75 };
76 
77 static u8 boot_core_type;
78 DEFINE_PER_CPU(struct pcpu, pcpu_devices);
79 /*
80  * Pointer to the pcpu area of the boot CPU. This is required when a restart
81  * interrupt is triggered on an offline CPU. For that case accessing percpu
82  * data with the common primitives does not work, since the percpu offset is
83  * stored in a non existent lowcore.
84  */
85 static struct pcpu *ipl_pcpu;
86 
87 unsigned int smp_cpu_mt_shift;
88 EXPORT_SYMBOL(smp_cpu_mt_shift);
89 
90 unsigned int smp_cpu_mtid;
91 EXPORT_SYMBOL(smp_cpu_mtid);
92 
93 #ifdef CONFIG_CRASH_DUMP
94 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
95 #endif
96 
97 static unsigned int smp_max_threads __initdata = -1U;
98 cpumask_t cpu_setup_mask;
99 
early_nosmt(char * s)100 static int __init early_nosmt(char *s)
101 {
102 	smp_max_threads = 1;
103 	return 0;
104 }
105 early_param("nosmt", early_nosmt);
106 
early_smt(char * s)107 static int __init early_smt(char *s)
108 {
109 	get_option(&s, &smp_max_threads);
110 	return 0;
111 }
112 early_param("smt", early_smt);
113 
114 /*
115  * The smp_cpu_state_mutex must be held when changing the state or polarization
116  * member of a pcpu data structure within the pcpu_devices array.
117  */
118 DEFINE_MUTEX(smp_cpu_state_mutex);
119 
120 /*
121  * Signal processor helper functions.
122  */
__pcpu_sigp_relax(u16 addr,u8 order,unsigned long parm)123 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
124 {
125 	int cc;
126 
127 	while (1) {
128 		cc = __pcpu_sigp(addr, order, parm, NULL);
129 		if (cc != SIGP_CC_BUSY)
130 			return cc;
131 		cpu_relax();
132 	}
133 }
134 
pcpu_sigp_retry(struct pcpu * pcpu,u8 order,u32 parm)135 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
136 {
137 	int cc, retry;
138 
139 	for (retry = 0; ; retry++) {
140 		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
141 		if (cc != SIGP_CC_BUSY)
142 			break;
143 		if (retry >= 3)
144 			udelay(10);
145 	}
146 	return cc;
147 }
148 
pcpu_stopped(struct pcpu * pcpu)149 static inline int pcpu_stopped(struct pcpu *pcpu)
150 {
151 	u32 status;
152 
153 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
154 			0, &status) != SIGP_CC_STATUS_STORED)
155 		return 0;
156 	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
157 }
158 
pcpu_running(struct pcpu * pcpu)159 static inline int pcpu_running(struct pcpu *pcpu)
160 {
161 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
162 			0, NULL) != SIGP_CC_STATUS_STORED)
163 		return 1;
164 	/* Status stored condition code is equivalent to cpu not running. */
165 	return 0;
166 }
167 
168 /*
169  * Find struct pcpu by cpu address.
170  */
pcpu_find_address(const struct cpumask * mask,u16 address)171 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
172 {
173 	int cpu;
174 
175 	for_each_cpu(cpu, mask)
176 		if (per_cpu(pcpu_devices, cpu).address == address)
177 			return &per_cpu(pcpu_devices, cpu);
178 	return NULL;
179 }
180 
pcpu_ec_call(struct pcpu * pcpu,int ec_bit)181 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
182 {
183 	int order;
184 
185 	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
186 		return;
187 	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
188 	pcpu->ec_clk = get_tod_clock_fast();
189 	pcpu_sigp_retry(pcpu, order, 0);
190 }
191 
pcpu_alloc_lowcore(struct pcpu * pcpu,int cpu)192 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
193 {
194 	unsigned long async_stack, nodat_stack, mcck_stack;
195 	struct lowcore *lc;
196 
197 	lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
198 	nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
199 	async_stack = stack_alloc();
200 	mcck_stack = stack_alloc();
201 	if (!lc || !nodat_stack || !async_stack || !mcck_stack)
202 		goto out;
203 	memcpy(lc, get_lowcore(), 512);
204 	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
205 	lc->async_stack = async_stack + STACK_INIT_OFFSET;
206 	lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
207 	lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
208 	lc->cpu_nr = cpu;
209 	lc->spinlock_lockval = arch_spin_lockval(cpu);
210 	lc->spinlock_index = 0;
211 	lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
212 	lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
213 	lc->preempt_count = PREEMPT_DISABLED;
214 	if (nmi_alloc_mcesa(&lc->mcesad))
215 		goto out;
216 	if (abs_lowcore_map(cpu, lc, true))
217 		goto out_mcesa;
218 	lowcore_ptr[cpu] = lc;
219 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, __pa(lc));
220 	return 0;
221 
222 out_mcesa:
223 	nmi_free_mcesa(&lc->mcesad);
224 out:
225 	stack_free(mcck_stack);
226 	stack_free(async_stack);
227 	free_pages(nodat_stack, THREAD_SIZE_ORDER);
228 	free_pages((unsigned long) lc, LC_ORDER);
229 	return -ENOMEM;
230 }
231 
pcpu_free_lowcore(struct pcpu * pcpu,int cpu)232 static void pcpu_free_lowcore(struct pcpu *pcpu, int cpu)
233 {
234 	unsigned long async_stack, nodat_stack, mcck_stack;
235 	struct lowcore *lc;
236 
237 	lc = lowcore_ptr[cpu];
238 	nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
239 	async_stack = lc->async_stack - STACK_INIT_OFFSET;
240 	mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
241 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
242 	lowcore_ptr[cpu] = NULL;
243 	abs_lowcore_unmap(cpu);
244 	nmi_free_mcesa(&lc->mcesad);
245 	stack_free(async_stack);
246 	stack_free(mcck_stack);
247 	free_pages(nodat_stack, THREAD_SIZE_ORDER);
248 	free_pages((unsigned long) lc, LC_ORDER);
249 }
250 
pcpu_prepare_secondary(struct pcpu * pcpu,int cpu)251 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
252 {
253 	struct lowcore *lc, *abs_lc;
254 
255 	lc = lowcore_ptr[cpu];
256 	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
257 	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
258 	lc->cpu_nr = cpu;
259 	lc->pcpu = (unsigned long)pcpu;
260 	lc->restart_flags = RESTART_FLAG_CTLREGS;
261 	lc->spinlock_lockval = arch_spin_lockval(cpu);
262 	lc->spinlock_index = 0;
263 	lc->percpu_offset = __per_cpu_offset[cpu];
264 	lc->kernel_asce = get_lowcore()->kernel_asce;
265 	lc->user_asce = s390_invalid_asce;
266 	lc->machine_flags = get_lowcore()->machine_flags;
267 	lc->user_timer = lc->system_timer =
268 		lc->steal_timer = lc->avg_steal_timer = 0;
269 	abs_lc = get_abs_lowcore();
270 	memcpy(lc->cregs_save_area, abs_lc->cregs_save_area, sizeof(lc->cregs_save_area));
271 	put_abs_lowcore(abs_lc);
272 	lc->cregs_save_area[1] = lc->kernel_asce;
273 	lc->cregs_save_area[7] = lc->user_asce;
274 	save_access_regs((unsigned int *) lc->access_regs_save_area);
275 	arch_spin_lock_setup(cpu);
276 }
277 
pcpu_attach_task(int cpu,struct task_struct * tsk)278 static void pcpu_attach_task(int cpu, struct task_struct *tsk)
279 {
280 	struct lowcore *lc;
281 
282 	lc = lowcore_ptr[cpu];
283 	lc->kernel_stack = (unsigned long)task_stack_page(tsk) + STACK_INIT_OFFSET;
284 	lc->current_task = (unsigned long)tsk;
285 	lc->lpp = LPP_MAGIC;
286 	lc->current_pid = tsk->pid;
287 	lc->user_timer = tsk->thread.user_timer;
288 	lc->guest_timer = tsk->thread.guest_timer;
289 	lc->system_timer = tsk->thread.system_timer;
290 	lc->hardirq_timer = tsk->thread.hardirq_timer;
291 	lc->softirq_timer = tsk->thread.softirq_timer;
292 	lc->steal_timer = 0;
293 }
294 
pcpu_start_fn(int cpu,void (* func)(void *),void * data)295 static void pcpu_start_fn(int cpu, void (*func)(void *), void *data)
296 {
297 	struct lowcore *lc;
298 
299 	lc = lowcore_ptr[cpu];
300 	lc->restart_stack = lc->kernel_stack;
301 	lc->restart_fn = (unsigned long) func;
302 	lc->restart_data = (unsigned long) data;
303 	lc->restart_source = -1U;
304 	pcpu_sigp_retry(per_cpu_ptr(&pcpu_devices, cpu), SIGP_RESTART, 0);
305 }
306 
307 typedef void (pcpu_delegate_fn)(void *);
308 
309 /*
310  * Call function via PSW restart on pcpu and stop the current cpu.
311  */
__pcpu_delegate(pcpu_delegate_fn * func,void * data)312 static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
313 {
314 	func(data);	/* should not return */
315 }
316 
pcpu_delegate(struct pcpu * pcpu,int cpu,pcpu_delegate_fn * func,void * data,unsigned long stack)317 static void pcpu_delegate(struct pcpu *pcpu, int cpu,
318 			  pcpu_delegate_fn *func,
319 			  void *data, unsigned long stack)
320 {
321 	struct lowcore *lc, *abs_lc;
322 	unsigned int source_cpu;
323 
324 	lc = lowcore_ptr[cpu];
325 	source_cpu = stap();
326 
327 	if (pcpu->address == source_cpu) {
328 		call_on_stack(2, stack, void, __pcpu_delegate,
329 			      pcpu_delegate_fn *, func, void *, data);
330 	}
331 	/* Stop target cpu (if func returns this stops the current cpu). */
332 	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
333 	pcpu_sigp_retry(pcpu, SIGP_CPU_RESET, 0);
334 	/* Restart func on the target cpu and stop the current cpu. */
335 	if (lc) {
336 		lc->restart_stack = stack;
337 		lc->restart_fn = (unsigned long)func;
338 		lc->restart_data = (unsigned long)data;
339 		lc->restart_source = source_cpu;
340 	} else {
341 		abs_lc = get_abs_lowcore();
342 		abs_lc->restart_stack = stack;
343 		abs_lc->restart_fn = (unsigned long)func;
344 		abs_lc->restart_data = (unsigned long)data;
345 		abs_lc->restart_source = source_cpu;
346 		put_abs_lowcore(abs_lc);
347 	}
348 	asm volatile(
349 		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
350 		"	brc	2,0b	# busy, try again\n"
351 		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
352 		"	brc	2,1b	# busy, try again\n"
353 		: : "d" (pcpu->address), "d" (source_cpu),
354 		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
355 		: "0", "1", "cc");
356 	for (;;) ;
357 }
358 
359 /*
360  * Enable additional logical cpus for multi-threading.
361  */
pcpu_set_smt(unsigned int mtid)362 static int pcpu_set_smt(unsigned int mtid)
363 {
364 	int cc;
365 
366 	if (smp_cpu_mtid == mtid)
367 		return 0;
368 	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
369 	if (cc == 0) {
370 		smp_cpu_mtid = mtid;
371 		smp_cpu_mt_shift = 0;
372 		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
373 			smp_cpu_mt_shift++;
374 		per_cpu(pcpu_devices, 0).address = stap();
375 	}
376 	return cc;
377 }
378 
379 /*
380  * Call function on the ipl CPU.
381  */
smp_call_ipl_cpu(void (* func)(void *),void * data)382 void smp_call_ipl_cpu(void (*func)(void *), void *data)
383 {
384 	struct lowcore *lc = lowcore_ptr[0];
385 
386 	if (ipl_pcpu->address == stap())
387 		lc = get_lowcore();
388 
389 	pcpu_delegate(ipl_pcpu, 0, func, data, lc->nodat_stack);
390 }
391 
smp_find_processor_id(u16 address)392 int smp_find_processor_id(u16 address)
393 {
394 	int cpu;
395 
396 	for_each_present_cpu(cpu)
397 		if (per_cpu(pcpu_devices, cpu).address == address)
398 			return cpu;
399 	return -1;
400 }
401 
schedule_mcck_handler(void)402 void schedule_mcck_handler(void)
403 {
404 	pcpu_ec_call(this_cpu_ptr(&pcpu_devices), ec_mcck_pending);
405 }
406 
arch_vcpu_is_preempted(int cpu)407 bool notrace arch_vcpu_is_preempted(int cpu)
408 {
409 	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
410 		return false;
411 	if (pcpu_running(per_cpu_ptr(&pcpu_devices, cpu)))
412 		return false;
413 	return true;
414 }
415 EXPORT_SYMBOL(arch_vcpu_is_preempted);
416 
smp_yield_cpu(int cpu)417 void notrace smp_yield_cpu(int cpu)
418 {
419 	if (!MACHINE_HAS_DIAG9C)
420 		return;
421 	diag_stat_inc_norecursion(DIAG_STAT_X09C);
422 	asm volatile("diag %0,0,0x9c"
423 		     : : "d" (per_cpu(pcpu_devices, cpu).address));
424 }
425 EXPORT_SYMBOL_GPL(smp_yield_cpu);
426 
427 /*
428  * Send cpus emergency shutdown signal. This gives the cpus the
429  * opportunity to complete outstanding interrupts.
430  */
smp_emergency_stop(void)431 void notrace smp_emergency_stop(void)
432 {
433 	static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
434 	static cpumask_t cpumask;
435 	u64 end;
436 	int cpu;
437 
438 	arch_spin_lock(&lock);
439 	cpumask_copy(&cpumask, cpu_online_mask);
440 	cpumask_clear_cpu(smp_processor_id(), &cpumask);
441 
442 	end = get_tod_clock() + (1000000UL << 12);
443 	for_each_cpu(cpu, &cpumask) {
444 		struct pcpu *pcpu = per_cpu_ptr(&pcpu_devices, cpu);
445 		set_bit(ec_stop_cpu, &pcpu->ec_mask);
446 		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
447 				   0, NULL) == SIGP_CC_BUSY &&
448 		       get_tod_clock() < end)
449 			cpu_relax();
450 	}
451 	while (get_tod_clock() < end) {
452 		for_each_cpu(cpu, &cpumask)
453 			if (pcpu_stopped(per_cpu_ptr(&pcpu_devices, cpu)))
454 				cpumask_clear_cpu(cpu, &cpumask);
455 		if (cpumask_empty(&cpumask))
456 			break;
457 		cpu_relax();
458 	}
459 	arch_spin_unlock(&lock);
460 }
461 NOKPROBE_SYMBOL(smp_emergency_stop);
462 
463 /*
464  * Stop all cpus but the current one.
465  */
smp_send_stop(void)466 void smp_send_stop(void)
467 {
468 	struct pcpu *pcpu;
469 	int cpu;
470 
471 	/* Disable all interrupts/machine checks */
472 	__load_psw_mask(PSW_KERNEL_BITS);
473 	trace_hardirqs_off();
474 
475 	debug_set_critical();
476 
477 	if (oops_in_progress)
478 		smp_emergency_stop();
479 
480 	/* stop all processors */
481 	for_each_online_cpu(cpu) {
482 		if (cpu == smp_processor_id())
483 			continue;
484 		pcpu = per_cpu_ptr(&pcpu_devices, cpu);
485 		pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
486 		while (!pcpu_stopped(pcpu))
487 			cpu_relax();
488 	}
489 }
490 
491 /*
492  * This is the main routine where commands issued by other
493  * cpus are handled.
494  */
smp_handle_ext_call(void)495 static void smp_handle_ext_call(void)
496 {
497 	unsigned long bits;
498 
499 	/* handle bit signal external calls */
500 	bits = this_cpu_xchg(pcpu_devices.ec_mask, 0);
501 	if (test_bit(ec_stop_cpu, &bits))
502 		smp_stop_cpu();
503 	if (test_bit(ec_schedule, &bits))
504 		scheduler_ipi();
505 	if (test_bit(ec_call_function_single, &bits))
506 		generic_smp_call_function_single_interrupt();
507 	if (test_bit(ec_mcck_pending, &bits))
508 		s390_handle_mcck();
509 	if (test_bit(ec_irq_work, &bits))
510 		irq_work_run();
511 }
512 
do_ext_call_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)513 static void do_ext_call_interrupt(struct ext_code ext_code,
514 				  unsigned int param32, unsigned long param64)
515 {
516 	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
517 	smp_handle_ext_call();
518 }
519 
arch_send_call_function_ipi_mask(const struct cpumask * mask)520 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
521 {
522 	int cpu;
523 
524 	for_each_cpu(cpu, mask)
525 		pcpu_ec_call(per_cpu_ptr(&pcpu_devices, cpu), ec_call_function_single);
526 }
527 
arch_send_call_function_single_ipi(int cpu)528 void arch_send_call_function_single_ipi(int cpu)
529 {
530 	pcpu_ec_call(per_cpu_ptr(&pcpu_devices, cpu), ec_call_function_single);
531 }
532 
533 /*
534  * this function sends a 'reschedule' IPI to another CPU.
535  * it goes straight through and wastes no time serializing
536  * anything. Worst case is that we lose a reschedule ...
537  */
arch_smp_send_reschedule(int cpu)538 void arch_smp_send_reschedule(int cpu)
539 {
540 	pcpu_ec_call(per_cpu_ptr(&pcpu_devices, cpu), ec_schedule);
541 }
542 
543 #ifdef CONFIG_IRQ_WORK
arch_irq_work_raise(void)544 void arch_irq_work_raise(void)
545 {
546 	pcpu_ec_call(this_cpu_ptr(&pcpu_devices), ec_irq_work);
547 }
548 #endif
549 
550 #ifdef CONFIG_CRASH_DUMP
551 
smp_store_status(int cpu)552 int smp_store_status(int cpu)
553 {
554 	struct lowcore *lc;
555 	struct pcpu *pcpu;
556 	unsigned long pa;
557 
558 	pcpu = per_cpu_ptr(&pcpu_devices, cpu);
559 	lc = lowcore_ptr[cpu];
560 	pa = __pa(&lc->floating_pt_save_area);
561 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
562 			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
563 		return -EIO;
564 	if (!cpu_has_vx() && !MACHINE_HAS_GS)
565 		return 0;
566 	pa = lc->mcesad & MCESA_ORIGIN_MASK;
567 	if (MACHINE_HAS_GS)
568 		pa |= lc->mcesad & MCESA_LC_MASK;
569 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
570 			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
571 		return -EIO;
572 	return 0;
573 }
574 
575 /*
576  * Collect CPU state of the previous, crashed system.
577  * There are four cases:
578  * 1) standard zfcp/nvme dump
579  *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
580  *    The state for all CPUs except the boot CPU needs to be collected
581  *    with sigp stop-and-store-status. The boot CPU state is located in
582  *    the absolute lowcore of the memory stored in the HSA. The zcore code
583  *    will copy the boot CPU state from the HSA.
584  * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
585  *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
586  *    The state for all CPUs except the boot CPU needs to be collected
587  *    with sigp stop-and-store-status. The firmware or the boot-loader
588  *    stored the registers of the boot CPU in the absolute lowcore in the
589  *    memory of the old system.
590  * 3) kdump and the old kernel did not store the CPU state,
591  *    or stand-alone kdump for DASD
592  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
593  *    The state for all CPUs except the boot CPU needs to be collected
594  *    with sigp stop-and-store-status. The kexec code or the boot-loader
595  *    stored the registers of the boot CPU in the memory of the old system.
596  * 4) kdump and the old kernel stored the CPU state
597  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
598  *    This case does not exist for s390 anymore, setup_arch explicitly
599  *    deactivates the elfcorehdr= kernel parameter
600  */
dump_available(void)601 static bool dump_available(void)
602 {
603 	return oldmem_data.start || is_ipl_type_dump();
604 }
605 
smp_save_dump_ipl_cpu(void)606 void __init smp_save_dump_ipl_cpu(void)
607 {
608 	struct save_area *sa;
609 	void *regs;
610 
611 	if (!dump_available())
612 		return;
613 	sa = save_area_alloc(true);
614 	regs = memblock_alloc(512, 8);
615 	if (!sa || !regs)
616 		panic("could not allocate memory for boot CPU save area\n");
617 	copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512);
618 	save_area_add_regs(sa, regs);
619 	memblock_free(regs, 512);
620 	if (cpu_has_vx())
621 		save_area_add_vxrs(sa, boot_cpu_vector_save_area);
622 }
623 
smp_save_dump_secondary_cpus(void)624 void __init smp_save_dump_secondary_cpus(void)
625 {
626 	int addr, boot_cpu_addr, max_cpu_addr;
627 	struct save_area *sa;
628 	void *page;
629 
630 	if (!dump_available())
631 		return;
632 	/* Allocate a page as dumping area for the store status sigps */
633 	page = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
634 	if (!page)
635 		panic("ERROR: Failed to allocate %lx bytes below %lx\n",
636 		      PAGE_SIZE, 1UL << 31);
637 
638 	/* Set multi-threading state to the previous system. */
639 	pcpu_set_smt(sclp.mtid_prev);
640 	boot_cpu_addr = stap();
641 	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
642 	for (addr = 0; addr <= max_cpu_addr; addr++) {
643 		if (addr == boot_cpu_addr)
644 			continue;
645 		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
646 		    SIGP_CC_NOT_OPERATIONAL)
647 			continue;
648 		sa = save_area_alloc(false);
649 		if (!sa)
650 			panic("could not allocate memory for save area\n");
651 		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, __pa(page));
652 		save_area_add_regs(sa, page);
653 		if (cpu_has_vx()) {
654 			__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, __pa(page));
655 			save_area_add_vxrs(sa, page);
656 		}
657 	}
658 	memblock_free(page, PAGE_SIZE);
659 	diag_amode31_ops.diag308_reset();
660 	pcpu_set_smt(0);
661 }
662 #endif /* CONFIG_CRASH_DUMP */
663 
smp_cpu_set_polarization(int cpu,int val)664 void smp_cpu_set_polarization(int cpu, int val)
665 {
666 	per_cpu(pcpu_devices, cpu).polarization = val;
667 }
668 
smp_cpu_get_polarization(int cpu)669 int smp_cpu_get_polarization(int cpu)
670 {
671 	return per_cpu(pcpu_devices, cpu).polarization;
672 }
673 
smp_cpu_get_cpu_address(int cpu)674 int smp_cpu_get_cpu_address(int cpu)
675 {
676 	return per_cpu(pcpu_devices, cpu).address;
677 }
678 
smp_get_core_info(struct sclp_core_info * info,int early)679 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
680 {
681 	static int use_sigp_detection;
682 	int address;
683 
684 	if (use_sigp_detection || sclp_get_core_info(info, early)) {
685 		use_sigp_detection = 1;
686 		for (address = 0;
687 		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
688 		     address += (1U << smp_cpu_mt_shift)) {
689 			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
690 			    SIGP_CC_NOT_OPERATIONAL)
691 				continue;
692 			info->core[info->configured].core_id =
693 				address >> smp_cpu_mt_shift;
694 			info->configured++;
695 		}
696 		info->combined = info->configured;
697 	}
698 }
699 
smp_add_core(struct sclp_core_entry * core,cpumask_t * avail,bool configured,bool early)700 static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
701 			bool configured, bool early)
702 {
703 	struct pcpu *pcpu;
704 	int cpu, nr, i;
705 	u16 address;
706 
707 	nr = 0;
708 	if (sclp.has_core_type && core->type != boot_core_type)
709 		return nr;
710 	cpu = cpumask_first(avail);
711 	address = core->core_id << smp_cpu_mt_shift;
712 	for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
713 		if (pcpu_find_address(cpu_present_mask, address + i))
714 			continue;
715 		pcpu = per_cpu_ptr(&pcpu_devices, cpu);
716 		pcpu->address = address + i;
717 		if (configured)
718 			pcpu->state = CPU_STATE_CONFIGURED;
719 		else
720 			pcpu->state = CPU_STATE_STANDBY;
721 		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
722 		set_cpu_present(cpu, true);
723 		if (!early && arch_register_cpu(cpu))
724 			set_cpu_present(cpu, false);
725 		else
726 			nr++;
727 		cpumask_clear_cpu(cpu, avail);
728 		cpu = cpumask_next(cpu, avail);
729 	}
730 	return nr;
731 }
732 
__smp_rescan_cpus(struct sclp_core_info * info,bool early)733 static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
734 {
735 	struct sclp_core_entry *core;
736 	static cpumask_t avail;
737 	bool configured;
738 	u16 core_id;
739 	int nr, i;
740 
741 	cpus_read_lock();
742 	mutex_lock(&smp_cpu_state_mutex);
743 	nr = 0;
744 	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
745 	/*
746 	 * Add IPL core first (which got logical CPU number 0) to make sure
747 	 * that all SMT threads get subsequent logical CPU numbers.
748 	 */
749 	if (early) {
750 		core_id = per_cpu(pcpu_devices, 0).address >> smp_cpu_mt_shift;
751 		for (i = 0; i < info->configured; i++) {
752 			core = &info->core[i];
753 			if (core->core_id == core_id) {
754 				nr += smp_add_core(core, &avail, true, early);
755 				break;
756 			}
757 		}
758 	}
759 	for (i = 0; i < info->combined; i++) {
760 		configured = i < info->configured;
761 		nr += smp_add_core(&info->core[i], &avail, configured, early);
762 	}
763 	mutex_unlock(&smp_cpu_state_mutex);
764 	cpus_read_unlock();
765 	return nr;
766 }
767 
smp_detect_cpus(void)768 void __init smp_detect_cpus(void)
769 {
770 	unsigned int cpu, mtid, c_cpus, s_cpus;
771 	struct sclp_core_info *info;
772 	u16 address;
773 
774 	/* Get CPU information */
775 	info = memblock_alloc(sizeof(*info), 8);
776 	if (!info)
777 		panic("%s: Failed to allocate %zu bytes align=0x%x\n",
778 		      __func__, sizeof(*info), 8);
779 	smp_get_core_info(info, 1);
780 	/* Find boot CPU type */
781 	if (sclp.has_core_type) {
782 		address = stap();
783 		for (cpu = 0; cpu < info->combined; cpu++)
784 			if (info->core[cpu].core_id == address) {
785 				/* The boot cpu dictates the cpu type. */
786 				boot_core_type = info->core[cpu].type;
787 				break;
788 			}
789 		if (cpu >= info->combined)
790 			panic("Could not find boot CPU type");
791 	}
792 
793 	/* Set multi-threading state for the current system */
794 	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
795 	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
796 	pcpu_set_smt(mtid);
797 
798 	/* Print number of CPUs */
799 	c_cpus = s_cpus = 0;
800 	for (cpu = 0; cpu < info->combined; cpu++) {
801 		if (sclp.has_core_type &&
802 		    info->core[cpu].type != boot_core_type)
803 			continue;
804 		if (cpu < info->configured)
805 			c_cpus += smp_cpu_mtid + 1;
806 		else
807 			s_cpus += smp_cpu_mtid + 1;
808 	}
809 	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
810 	memblock_free(info, sizeof(*info));
811 }
812 
813 /*
814  *	Activate a secondary processor.
815  */
smp_start_secondary(void * cpuvoid)816 static void smp_start_secondary(void *cpuvoid)
817 {
818 	struct lowcore *lc = get_lowcore();
819 	int cpu = raw_smp_processor_id();
820 
821 	lc->last_update_clock = get_tod_clock();
822 	lc->restart_stack = (unsigned long)restart_stack;
823 	lc->restart_fn = (unsigned long)do_restart;
824 	lc->restart_data = 0;
825 	lc->restart_source = -1U;
826 	lc->restart_flags = 0;
827 	restore_access_regs(lc->access_regs_save_area);
828 	cpu_init();
829 	rcutree_report_cpu_starting(cpu);
830 	init_cpu_timer();
831 	vtime_init();
832 	vdso_getcpu_init();
833 	pfault_init();
834 	cpumask_set_cpu(cpu, &cpu_setup_mask);
835 	update_cpu_masks();
836 	notify_cpu_starting(cpu);
837 	if (topology_cpu_dedicated(cpu))
838 		set_cpu_flag(CIF_DEDICATED_CPU);
839 	else
840 		clear_cpu_flag(CIF_DEDICATED_CPU);
841 	set_cpu_online(cpu, true);
842 	inc_irq_stat(CPU_RST);
843 	local_irq_enable();
844 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
845 }
846 
847 /* Upping and downing of CPUs */
__cpu_up(unsigned int cpu,struct task_struct * tidle)848 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
849 {
850 	struct pcpu *pcpu = per_cpu_ptr(&pcpu_devices, cpu);
851 	int rc;
852 
853 	if (pcpu->state != CPU_STATE_CONFIGURED)
854 		return -EIO;
855 	if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
856 	    SIGP_CC_ORDER_CODE_ACCEPTED)
857 		return -EIO;
858 
859 	rc = pcpu_alloc_lowcore(pcpu, cpu);
860 	if (rc)
861 		return rc;
862 	/*
863 	 * Make sure global control register contents do not change
864 	 * until new CPU has initialized control registers.
865 	 */
866 	system_ctlreg_lock();
867 	pcpu_prepare_secondary(pcpu, cpu);
868 	pcpu_attach_task(cpu, tidle);
869 	pcpu_start_fn(cpu, smp_start_secondary, NULL);
870 	/* Wait until cpu puts itself in the online & active maps */
871 	while (!cpu_online(cpu))
872 		cpu_relax();
873 	system_ctlreg_unlock();
874 	return 0;
875 }
876 
877 static unsigned int setup_possible_cpus __initdata;
878 
_setup_possible_cpus(char * s)879 static int __init _setup_possible_cpus(char *s)
880 {
881 	get_option(&s, &setup_possible_cpus);
882 	return 0;
883 }
884 early_param("possible_cpus", _setup_possible_cpus);
885 
__cpu_disable(void)886 int __cpu_disable(void)
887 {
888 	struct ctlreg cregs[16];
889 	int cpu;
890 
891 	/* Handle possible pending IPIs */
892 	smp_handle_ext_call();
893 	cpu = smp_processor_id();
894 	set_cpu_online(cpu, false);
895 	cpumask_clear_cpu(cpu, &cpu_setup_mask);
896 	update_cpu_masks();
897 	/* Disable pseudo page faults on this cpu. */
898 	pfault_fini();
899 	/* Disable interrupt sources via control register. */
900 	__local_ctl_store(0, 15, cregs);
901 	cregs[0].val  &= ~0x0000ee70UL;	/* disable all external interrupts */
902 	cregs[6].val  &= ~0xff000000UL;	/* disable all I/O interrupts */
903 	cregs[14].val &= ~0x1f000000UL;	/* disable most machine checks */
904 	__local_ctl_load(0, 15, cregs);
905 	clear_cpu_flag(CIF_NOHZ_DELAY);
906 	return 0;
907 }
908 
__cpu_die(unsigned int cpu)909 void __cpu_die(unsigned int cpu)
910 {
911 	struct pcpu *pcpu;
912 
913 	/* Wait until target cpu is down */
914 	pcpu = per_cpu_ptr(&pcpu_devices, cpu);
915 	while (!pcpu_stopped(pcpu))
916 		cpu_relax();
917 	pcpu_free_lowcore(pcpu, cpu);
918 	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
919 	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
920 	pcpu->flags = 0;
921 }
922 
cpu_die(void)923 void __noreturn cpu_die(void)
924 {
925 	idle_task_exit();
926 	pcpu_sigp_retry(this_cpu_ptr(&pcpu_devices), SIGP_STOP, 0);
927 	for (;;) ;
928 }
929 
smp_fill_possible_mask(void)930 void __init smp_fill_possible_mask(void)
931 {
932 	unsigned int possible, sclp_max, cpu;
933 
934 	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
935 	sclp_max = min(smp_max_threads, sclp_max);
936 	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
937 	possible = setup_possible_cpus ?: nr_cpu_ids;
938 	possible = min(possible, sclp_max);
939 	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
940 		set_cpu_possible(cpu, true);
941 }
942 
smp_prepare_cpus(unsigned int max_cpus)943 void __init smp_prepare_cpus(unsigned int max_cpus)
944 {
945 	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
946 		panic("Couldn't request external interrupt 0x1201");
947 	system_ctl_set_bit(0, 14);
948 	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
949 		panic("Couldn't request external interrupt 0x1202");
950 	system_ctl_set_bit(0, 13);
951 	smp_rescan_cpus(true);
952 }
953 
smp_prepare_boot_cpu(void)954 void __init smp_prepare_boot_cpu(void)
955 {
956 	struct lowcore *lc = get_lowcore();
957 
958 	WARN_ON(!cpu_present(0) || !cpu_online(0));
959 	lc->percpu_offset = __per_cpu_offset[0];
960 	ipl_pcpu = per_cpu_ptr(&pcpu_devices, 0);
961 	ipl_pcpu->state = CPU_STATE_CONFIGURED;
962 	lc->pcpu = (unsigned long)ipl_pcpu;
963 	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
964 }
965 
smp_setup_processor_id(void)966 void __init smp_setup_processor_id(void)
967 {
968 	struct lowcore *lc = get_lowcore();
969 
970 	lc->cpu_nr = 0;
971 	per_cpu(pcpu_devices, 0).address = stap();
972 	lc->spinlock_lockval = arch_spin_lockval(0);
973 	lc->spinlock_index = 0;
974 }
975 
976 /*
977  * the frequency of the profiling timer can be changed
978  * by writing a multiplier value into /proc/profile.
979  *
980  * usually you want to run this on all CPUs ;)
981  */
setup_profiling_timer(unsigned int multiplier)982 int setup_profiling_timer(unsigned int multiplier)
983 {
984 	return 0;
985 }
986 
cpu_configure_show(struct device * dev,struct device_attribute * attr,char * buf)987 static ssize_t cpu_configure_show(struct device *dev,
988 				  struct device_attribute *attr, char *buf)
989 {
990 	ssize_t count;
991 
992 	mutex_lock(&smp_cpu_state_mutex);
993 	count = sprintf(buf, "%d\n", per_cpu(pcpu_devices, dev->id).state);
994 	mutex_unlock(&smp_cpu_state_mutex);
995 	return count;
996 }
997 
cpu_configure_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)998 static ssize_t cpu_configure_store(struct device *dev,
999 				   struct device_attribute *attr,
1000 				   const char *buf, size_t count)
1001 {
1002 	struct pcpu *pcpu;
1003 	int cpu, val, rc, i;
1004 	char delim;
1005 
1006 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1007 		return -EINVAL;
1008 	if (val != 0 && val != 1)
1009 		return -EINVAL;
1010 	cpus_read_lock();
1011 	mutex_lock(&smp_cpu_state_mutex);
1012 	rc = -EBUSY;
1013 	/* disallow configuration changes of online cpus */
1014 	cpu = dev->id;
1015 	cpu = smp_get_base_cpu(cpu);
1016 	for (i = 0; i <= smp_cpu_mtid; i++)
1017 		if (cpu_online(cpu + i))
1018 			goto out;
1019 	pcpu = per_cpu_ptr(&pcpu_devices, cpu);
1020 	rc = 0;
1021 	switch (val) {
1022 	case 0:
1023 		if (pcpu->state != CPU_STATE_CONFIGURED)
1024 			break;
1025 		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1026 		if (rc)
1027 			break;
1028 		for (i = 0; i <= smp_cpu_mtid; i++) {
1029 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1030 				continue;
1031 			per_cpu(pcpu_devices, cpu + i).state = CPU_STATE_STANDBY;
1032 			smp_cpu_set_polarization(cpu + i,
1033 						 POLARIZATION_UNKNOWN);
1034 		}
1035 		topology_expect_change();
1036 		break;
1037 	case 1:
1038 		if (pcpu->state != CPU_STATE_STANDBY)
1039 			break;
1040 		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1041 		if (rc)
1042 			break;
1043 		for (i = 0; i <= smp_cpu_mtid; i++) {
1044 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1045 				continue;
1046 			per_cpu(pcpu_devices, cpu + i).state = CPU_STATE_CONFIGURED;
1047 			smp_cpu_set_polarization(cpu + i,
1048 						 POLARIZATION_UNKNOWN);
1049 		}
1050 		topology_expect_change();
1051 		break;
1052 	default:
1053 		break;
1054 	}
1055 out:
1056 	mutex_unlock(&smp_cpu_state_mutex);
1057 	cpus_read_unlock();
1058 	return rc ? rc : count;
1059 }
1060 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1061 
show_cpu_address(struct device * dev,struct device_attribute * attr,char * buf)1062 static ssize_t show_cpu_address(struct device *dev,
1063 				struct device_attribute *attr, char *buf)
1064 {
1065 	return sprintf(buf, "%d\n", per_cpu(pcpu_devices, dev->id).address);
1066 }
1067 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1068 
1069 static struct attribute *cpu_common_attrs[] = {
1070 	&dev_attr_configure.attr,
1071 	&dev_attr_address.attr,
1072 	NULL,
1073 };
1074 
1075 static struct attribute_group cpu_common_attr_group = {
1076 	.attrs = cpu_common_attrs,
1077 };
1078 
1079 static struct attribute *cpu_online_attrs[] = {
1080 	&dev_attr_idle_count.attr,
1081 	&dev_attr_idle_time_us.attr,
1082 	NULL,
1083 };
1084 
1085 static struct attribute_group cpu_online_attr_group = {
1086 	.attrs = cpu_online_attrs,
1087 };
1088 
smp_cpu_online(unsigned int cpu)1089 static int smp_cpu_online(unsigned int cpu)
1090 {
1091 	struct cpu *c = per_cpu_ptr(&cpu_devices, cpu);
1092 
1093 	return sysfs_create_group(&c->dev.kobj, &cpu_online_attr_group);
1094 }
1095 
smp_cpu_pre_down(unsigned int cpu)1096 static int smp_cpu_pre_down(unsigned int cpu)
1097 {
1098 	struct cpu *c = per_cpu_ptr(&cpu_devices, cpu);
1099 
1100 	sysfs_remove_group(&c->dev.kobj, &cpu_online_attr_group);
1101 	return 0;
1102 }
1103 
arch_cpu_is_hotpluggable(int cpu)1104 bool arch_cpu_is_hotpluggable(int cpu)
1105 {
1106 	return !!cpu;
1107 }
1108 
arch_register_cpu(int cpu)1109 int arch_register_cpu(int cpu)
1110 {
1111 	struct cpu *c = per_cpu_ptr(&cpu_devices, cpu);
1112 	int rc;
1113 
1114 	c->hotpluggable = arch_cpu_is_hotpluggable(cpu);
1115 	rc = register_cpu(c, cpu);
1116 	if (rc)
1117 		goto out;
1118 	rc = sysfs_create_group(&c->dev.kobj, &cpu_common_attr_group);
1119 	if (rc)
1120 		goto out_cpu;
1121 	rc = topology_cpu_init(c);
1122 	if (rc)
1123 		goto out_topology;
1124 	return 0;
1125 
1126 out_topology:
1127 	sysfs_remove_group(&c->dev.kobj, &cpu_common_attr_group);
1128 out_cpu:
1129 	unregister_cpu(c);
1130 out:
1131 	return rc;
1132 }
1133 
smp_rescan_cpus(bool early)1134 int __ref smp_rescan_cpus(bool early)
1135 {
1136 	struct sclp_core_info *info;
1137 	int nr;
1138 
1139 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1140 	if (!info)
1141 		return -ENOMEM;
1142 	smp_get_core_info(info, 0);
1143 	nr = __smp_rescan_cpus(info, early);
1144 	kfree(info);
1145 	if (nr)
1146 		topology_schedule_update();
1147 	return 0;
1148 }
1149 
rescan_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1150 static ssize_t __ref rescan_store(struct device *dev,
1151 				  struct device_attribute *attr,
1152 				  const char *buf,
1153 				  size_t count)
1154 {
1155 	int rc;
1156 
1157 	rc = lock_device_hotplug_sysfs();
1158 	if (rc)
1159 		return rc;
1160 	rc = smp_rescan_cpus(false);
1161 	unlock_device_hotplug();
1162 	return rc ? rc : count;
1163 }
1164 static DEVICE_ATTR_WO(rescan);
1165 
s390_smp_init(void)1166 static int __init s390_smp_init(void)
1167 {
1168 	struct device *dev_root;
1169 	int rc;
1170 
1171 	dev_root = bus_get_dev_root(&cpu_subsys);
1172 	if (dev_root) {
1173 		rc = device_create_file(dev_root, &dev_attr_rescan);
1174 		put_device(dev_root);
1175 		if (rc)
1176 			return rc;
1177 	}
1178 	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1179 			       smp_cpu_online, smp_cpu_pre_down);
1180 	rc = rc <= 0 ? rc : 0;
1181 	return rc;
1182 }
1183 subsys_initcall(s390_smp_init);
1184