xref: /linux/arch/arm64/kvm/arm.c (revision 51d90a15fedf8366cb96ef68d0ea2d0bf15417d2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/vmalloc.h>
15 #include <linux/fs.h>
16 #include <linux/mman.h>
17 #include <linux/sched.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_irqfd.h>
20 #include <linux/irqbypass.h>
21 #include <linux/sched/stat.h>
22 #include <linux/psci.h>
23 #include <trace/events/kvm.h>
24 
25 #define CREATE_TRACE_POINTS
26 #include "trace_arm.h"
27 
28 #include <linux/uaccess.h>
29 #include <asm/ptrace.h>
30 #include <asm/mman.h>
31 #include <asm/tlbflush.h>
32 #include <asm/cacheflush.h>
33 #include <asm/cpufeature.h>
34 #include <asm/virt.h>
35 #include <asm/kvm_arm.h>
36 #include <asm/kvm_asm.h>
37 #include <asm/kvm_emulate.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/kvm_nested.h>
40 #include <asm/kvm_pkvm.h>
41 #include <asm/kvm_ptrauth.h>
42 #include <asm/sections.h>
43 
44 #include <kvm/arm_hypercalls.h>
45 #include <kvm/arm_pmu.h>
46 #include <kvm/arm_psci.h>
47 
48 #include "sys_regs.h"
49 
50 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
51 
52 enum kvm_wfx_trap_policy {
53 	KVM_WFX_NOTRAP_SINGLE_TASK, /* Default option */
54 	KVM_WFX_NOTRAP,
55 	KVM_WFX_TRAP,
56 };
57 
58 static enum kvm_wfx_trap_policy kvm_wfi_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK;
59 static enum kvm_wfx_trap_policy kvm_wfe_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK;
60 
61 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
62 
63 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_base);
64 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
65 
66 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
67 
68 static bool vgic_present, kvm_arm_initialised;
69 
70 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized);
71 
is_kvm_arm_initialised(void)72 bool is_kvm_arm_initialised(void)
73 {
74 	return kvm_arm_initialised;
75 }
76 
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)77 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
78 {
79 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
80 }
81 
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)82 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
83 			    struct kvm_enable_cap *cap)
84 {
85 	int r = -EINVAL;
86 
87 	if (cap->flags)
88 		return -EINVAL;
89 
90 	if (kvm_vm_is_protected(kvm) && !kvm_pvm_ext_allowed(cap->cap))
91 		return -EINVAL;
92 
93 	switch (cap->cap) {
94 	case KVM_CAP_ARM_NISV_TO_USER:
95 		r = 0;
96 		set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
97 			&kvm->arch.flags);
98 		break;
99 	case KVM_CAP_ARM_MTE:
100 		mutex_lock(&kvm->lock);
101 		if (system_supports_mte() && !kvm->created_vcpus) {
102 			r = 0;
103 			set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
104 		}
105 		mutex_unlock(&kvm->lock);
106 		break;
107 	case KVM_CAP_ARM_SYSTEM_SUSPEND:
108 		r = 0;
109 		set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
110 		break;
111 	case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
112 		mutex_lock(&kvm->slots_lock);
113 		/*
114 		 * To keep things simple, allow changing the chunk
115 		 * size only when no memory slots have been created.
116 		 */
117 		if (kvm_are_all_memslots_empty(kvm)) {
118 			u64 new_cap = cap->args[0];
119 
120 			if (!new_cap || kvm_is_block_size_supported(new_cap)) {
121 				r = 0;
122 				kvm->arch.mmu.split_page_chunk_size = new_cap;
123 			}
124 		}
125 		mutex_unlock(&kvm->slots_lock);
126 		break;
127 	case KVM_CAP_ARM_WRITABLE_IMP_ID_REGS:
128 		mutex_lock(&kvm->lock);
129 		if (!kvm->created_vcpus) {
130 			r = 0;
131 			set_bit(KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS, &kvm->arch.flags);
132 		}
133 		mutex_unlock(&kvm->lock);
134 		break;
135 	case KVM_CAP_ARM_SEA_TO_USER:
136 		r = 0;
137 		set_bit(KVM_ARCH_FLAG_EXIT_SEA, &kvm->arch.flags);
138 		break;
139 	default:
140 		break;
141 	}
142 
143 	return r;
144 }
145 
kvm_arm_default_max_vcpus(void)146 static int kvm_arm_default_max_vcpus(void)
147 {
148 	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
149 }
150 
151 /**
152  * kvm_arch_init_vm - initializes a VM data structure
153  * @kvm:	pointer to the KVM struct
154  * @type:	kvm device type
155  */
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)156 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
157 {
158 	int ret;
159 
160 	mutex_init(&kvm->arch.config_lock);
161 
162 #ifdef CONFIG_LOCKDEP
163 	/* Clue in lockdep that the config_lock must be taken inside kvm->lock */
164 	mutex_lock(&kvm->lock);
165 	mutex_lock(&kvm->arch.config_lock);
166 	mutex_unlock(&kvm->arch.config_lock);
167 	mutex_unlock(&kvm->lock);
168 #endif
169 
170 	kvm_init_nested(kvm);
171 
172 	ret = kvm_share_hyp(kvm, kvm + 1);
173 	if (ret)
174 		return ret;
175 
176 	if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) {
177 		ret = -ENOMEM;
178 		goto err_unshare_kvm;
179 	}
180 	cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
181 
182 	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
183 	if (ret)
184 		goto err_free_cpumask;
185 
186 	if (is_protected_kvm_enabled()) {
187 		/*
188 		 * If any failures occur after this is successful, make sure to
189 		 * call __pkvm_unreserve_vm to unreserve the VM in hyp.
190 		 */
191 		ret = pkvm_init_host_vm(kvm);
192 		if (ret)
193 			goto err_free_cpumask;
194 	}
195 
196 	kvm_vgic_early_init(kvm);
197 
198 	kvm_timer_init_vm(kvm);
199 
200 	/* The maximum number of VCPUs is limited by the host's GIC model */
201 	kvm->max_vcpus = kvm_arm_default_max_vcpus();
202 
203 	kvm_arm_init_hypercalls(kvm);
204 
205 	bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES);
206 
207 	return 0;
208 
209 err_free_cpumask:
210 	free_cpumask_var(kvm->arch.supported_cpus);
211 err_unshare_kvm:
212 	kvm_unshare_hyp(kvm, kvm + 1);
213 	return ret;
214 }
215 
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)216 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
217 {
218 	return VM_FAULT_SIGBUS;
219 }
220 
kvm_arch_create_vm_debugfs(struct kvm * kvm)221 void kvm_arch_create_vm_debugfs(struct kvm *kvm)
222 {
223 	kvm_sys_regs_create_debugfs(kvm);
224 	kvm_s2_ptdump_create_debugfs(kvm);
225 }
226 
kvm_destroy_mpidr_data(struct kvm * kvm)227 static void kvm_destroy_mpidr_data(struct kvm *kvm)
228 {
229 	struct kvm_mpidr_data *data;
230 
231 	mutex_lock(&kvm->arch.config_lock);
232 
233 	data = rcu_dereference_protected(kvm->arch.mpidr_data,
234 					 lockdep_is_held(&kvm->arch.config_lock));
235 	if (data) {
236 		rcu_assign_pointer(kvm->arch.mpidr_data, NULL);
237 		synchronize_rcu();
238 		kfree(data);
239 	}
240 
241 	mutex_unlock(&kvm->arch.config_lock);
242 }
243 
244 /**
245  * kvm_arch_destroy_vm - destroy the VM data structure
246  * @kvm:	pointer to the KVM struct
247  */
kvm_arch_destroy_vm(struct kvm * kvm)248 void kvm_arch_destroy_vm(struct kvm *kvm)
249 {
250 	bitmap_free(kvm->arch.pmu_filter);
251 	free_cpumask_var(kvm->arch.supported_cpus);
252 
253 	kvm_vgic_destroy(kvm);
254 
255 	if (is_protected_kvm_enabled())
256 		pkvm_destroy_hyp_vm(kvm);
257 
258 	kvm_destroy_mpidr_data(kvm);
259 
260 	kfree(kvm->arch.sysreg_masks);
261 	kvm_destroy_vcpus(kvm);
262 
263 	kvm_unshare_hyp(kvm, kvm + 1);
264 
265 	kvm_arm_teardown_hypercalls(kvm);
266 }
267 
kvm_has_full_ptr_auth(void)268 static bool kvm_has_full_ptr_auth(void)
269 {
270 	bool apa, gpa, api, gpi, apa3, gpa3;
271 	u64 isar1, isar2, val;
272 
273 	/*
274 	 * Check that:
275 	 *
276 	 * - both Address and Generic auth are implemented for a given
277          *   algorithm (Q5, IMPDEF or Q3)
278 	 * - only a single algorithm is implemented.
279 	 */
280 	if (!system_has_full_ptr_auth())
281 		return false;
282 
283 	isar1 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
284 	isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
285 
286 	apa = !!FIELD_GET(ID_AA64ISAR1_EL1_APA_MASK, isar1);
287 	val = FIELD_GET(ID_AA64ISAR1_EL1_GPA_MASK, isar1);
288 	gpa = (val == ID_AA64ISAR1_EL1_GPA_IMP);
289 
290 	api = !!FIELD_GET(ID_AA64ISAR1_EL1_API_MASK, isar1);
291 	val = FIELD_GET(ID_AA64ISAR1_EL1_GPI_MASK, isar1);
292 	gpi = (val == ID_AA64ISAR1_EL1_GPI_IMP);
293 
294 	apa3 = !!FIELD_GET(ID_AA64ISAR2_EL1_APA3_MASK, isar2);
295 	val  = FIELD_GET(ID_AA64ISAR2_EL1_GPA3_MASK, isar2);
296 	gpa3 = (val == ID_AA64ISAR2_EL1_GPA3_IMP);
297 
298 	return (apa == gpa && api == gpi && apa3 == gpa3 &&
299 		(apa + api + apa3) == 1);
300 }
301 
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)302 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
303 {
304 	int r;
305 
306 	if (kvm && kvm_vm_is_protected(kvm) && !kvm_pvm_ext_allowed(ext))
307 		return 0;
308 
309 	switch (ext) {
310 	case KVM_CAP_IRQCHIP:
311 		r = vgic_present;
312 		break;
313 	case KVM_CAP_IOEVENTFD:
314 	case KVM_CAP_USER_MEMORY:
315 	case KVM_CAP_SYNC_MMU:
316 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
317 	case KVM_CAP_ONE_REG:
318 	case KVM_CAP_ARM_PSCI:
319 	case KVM_CAP_ARM_PSCI_0_2:
320 	case KVM_CAP_READONLY_MEM:
321 	case KVM_CAP_MP_STATE:
322 	case KVM_CAP_IMMEDIATE_EXIT:
323 	case KVM_CAP_VCPU_EVENTS:
324 	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
325 	case KVM_CAP_ARM_NISV_TO_USER:
326 	case KVM_CAP_ARM_INJECT_EXT_DABT:
327 	case KVM_CAP_SET_GUEST_DEBUG:
328 	case KVM_CAP_VCPU_ATTRIBUTES:
329 	case KVM_CAP_PTP_KVM:
330 	case KVM_CAP_ARM_SYSTEM_SUSPEND:
331 	case KVM_CAP_IRQFD_RESAMPLE:
332 	case KVM_CAP_COUNTER_OFFSET:
333 	case KVM_CAP_ARM_WRITABLE_IMP_ID_REGS:
334 	case KVM_CAP_ARM_SEA_TO_USER:
335 		r = 1;
336 		break;
337 	case KVM_CAP_SET_GUEST_DEBUG2:
338 		return KVM_GUESTDBG_VALID_MASK;
339 	case KVM_CAP_ARM_SET_DEVICE_ADDR:
340 		r = 1;
341 		break;
342 	case KVM_CAP_NR_VCPUS:
343 		/*
344 		 * ARM64 treats KVM_CAP_NR_CPUS differently from all other
345 		 * architectures, as it does not always bound it to
346 		 * KVM_CAP_MAX_VCPUS. It should not matter much because
347 		 * this is just an advisory value.
348 		 */
349 		r = min_t(unsigned int, num_online_cpus(),
350 			  kvm_arm_default_max_vcpus());
351 		break;
352 	case KVM_CAP_MAX_VCPUS:
353 	case KVM_CAP_MAX_VCPU_ID:
354 		if (kvm)
355 			r = kvm->max_vcpus;
356 		else
357 			r = kvm_arm_default_max_vcpus();
358 		break;
359 	case KVM_CAP_MSI_DEVID:
360 		if (!kvm)
361 			r = -EINVAL;
362 		else
363 			r = kvm->arch.vgic.msis_require_devid;
364 		break;
365 	case KVM_CAP_ARM_USER_IRQ:
366 		/*
367 		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
368 		 * (bump this number if adding more devices)
369 		 */
370 		r = 1;
371 		break;
372 	case KVM_CAP_ARM_MTE:
373 		r = system_supports_mte();
374 		break;
375 	case KVM_CAP_STEAL_TIME:
376 		r = kvm_arm_pvtime_supported();
377 		break;
378 	case KVM_CAP_ARM_EL1_32BIT:
379 		r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1);
380 		break;
381 	case KVM_CAP_ARM_EL2:
382 		r = cpus_have_final_cap(ARM64_HAS_NESTED_VIRT);
383 		break;
384 	case KVM_CAP_ARM_EL2_E2H0:
385 		r = cpus_have_final_cap(ARM64_HAS_HCR_NV1);
386 		break;
387 	case KVM_CAP_GUEST_DEBUG_HW_BPS:
388 		r = get_num_brps();
389 		break;
390 	case KVM_CAP_GUEST_DEBUG_HW_WPS:
391 		r = get_num_wrps();
392 		break;
393 	case KVM_CAP_ARM_PMU_V3:
394 		r = kvm_supports_guest_pmuv3();
395 		break;
396 	case KVM_CAP_ARM_INJECT_SERROR_ESR:
397 		r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN);
398 		break;
399 	case KVM_CAP_ARM_VM_IPA_SIZE:
400 		r = get_kvm_ipa_limit();
401 		break;
402 	case KVM_CAP_ARM_SVE:
403 		r = system_supports_sve();
404 		break;
405 	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
406 	case KVM_CAP_ARM_PTRAUTH_GENERIC:
407 		r = kvm_has_full_ptr_auth();
408 		break;
409 	case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
410 		if (kvm)
411 			r = kvm->arch.mmu.split_page_chunk_size;
412 		else
413 			r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
414 		break;
415 	case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES:
416 		r = kvm_supported_block_sizes();
417 		break;
418 	case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES:
419 		r = BIT(0);
420 		break;
421 	case KVM_CAP_ARM_CACHEABLE_PFNMAP_SUPPORTED:
422 		if (!kvm)
423 			r = -EINVAL;
424 		else
425 			r = kvm_supports_cacheable_pfnmap();
426 		break;
427 
428 	default:
429 		r = 0;
430 	}
431 
432 	return r;
433 }
434 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)435 long kvm_arch_dev_ioctl(struct file *filp,
436 			unsigned int ioctl, unsigned long arg)
437 {
438 	return -EINVAL;
439 }
440 
kvm_arch_alloc_vm(void)441 struct kvm *kvm_arch_alloc_vm(void)
442 {
443 	size_t sz = sizeof(struct kvm);
444 
445 	if (!has_vhe())
446 		return kzalloc(sz, GFP_KERNEL_ACCOUNT);
447 
448 	return kvzalloc(sz, GFP_KERNEL_ACCOUNT);
449 }
450 
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)451 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
452 {
453 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
454 		return -EBUSY;
455 
456 	if (id >= kvm->max_vcpus)
457 		return -EINVAL;
458 
459 	return 0;
460 }
461 
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)462 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
463 {
464 	int err;
465 
466 	spin_lock_init(&vcpu->arch.mp_state_lock);
467 
468 #ifdef CONFIG_LOCKDEP
469 	/* Inform lockdep that the config_lock is acquired after vcpu->mutex */
470 	mutex_lock(&vcpu->mutex);
471 	mutex_lock(&vcpu->kvm->arch.config_lock);
472 	mutex_unlock(&vcpu->kvm->arch.config_lock);
473 	mutex_unlock(&vcpu->mutex);
474 #endif
475 
476 	/* Force users to call KVM_ARM_VCPU_INIT */
477 	vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
478 
479 	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
480 
481 	/* Set up the timer */
482 	kvm_timer_vcpu_init(vcpu);
483 
484 	kvm_pmu_vcpu_init(vcpu);
485 
486 	kvm_arm_pvtime_vcpu_init(&vcpu->arch);
487 
488 	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
489 
490 	/*
491 	 * This vCPU may have been created after mpidr_data was initialized.
492 	 * Throw out the pre-computed mappings if that is the case which forces
493 	 * KVM to fall back to iteratively searching the vCPUs.
494 	 */
495 	kvm_destroy_mpidr_data(vcpu->kvm);
496 
497 	err = kvm_vgic_vcpu_init(vcpu);
498 	if (err)
499 		return err;
500 
501 	err = kvm_share_hyp(vcpu, vcpu + 1);
502 	if (err)
503 		kvm_vgic_vcpu_destroy(vcpu);
504 
505 	return err;
506 }
507 
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)508 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
509 {
510 }
511 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)512 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
513 {
514 	if (!is_protected_kvm_enabled())
515 		kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
516 	else
517 		free_hyp_memcache(&vcpu->arch.pkvm_memcache);
518 	kvm_timer_vcpu_terminate(vcpu);
519 	kvm_pmu_vcpu_destroy(vcpu);
520 	kvm_vgic_vcpu_destroy(vcpu);
521 	kvm_arm_vcpu_destroy(vcpu);
522 }
523 
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)524 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
525 {
526 
527 }
528 
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)529 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
530 {
531 
532 }
533 
vcpu_set_pauth_traps(struct kvm_vcpu * vcpu)534 static void vcpu_set_pauth_traps(struct kvm_vcpu *vcpu)
535 {
536 	if (vcpu_has_ptrauth(vcpu) && !is_protected_kvm_enabled()) {
537 		/*
538 		 * Either we're running an L2 guest, and the API/APK bits come
539 		 * from L1's HCR_EL2, or API/APK are both set.
540 		 */
541 		if (unlikely(is_nested_ctxt(vcpu))) {
542 			u64 val;
543 
544 			val = __vcpu_sys_reg(vcpu, HCR_EL2);
545 			val &= (HCR_API | HCR_APK);
546 			vcpu->arch.hcr_el2 &= ~(HCR_API | HCR_APK);
547 			vcpu->arch.hcr_el2 |= val;
548 		} else {
549 			vcpu->arch.hcr_el2 |= (HCR_API | HCR_APK);
550 		}
551 
552 		/*
553 		 * Save the host keys if there is any chance for the guest
554 		 * to use pauth, as the entry code will reload the guest
555 		 * keys in that case.
556 		 */
557 		if (vcpu->arch.hcr_el2 & (HCR_API | HCR_APK)) {
558 			struct kvm_cpu_context *ctxt;
559 
560 			ctxt = this_cpu_ptr_hyp_sym(kvm_hyp_ctxt);
561 			ptrauth_save_keys(ctxt);
562 		}
563 	}
564 }
565 
kvm_vcpu_should_clear_twi(struct kvm_vcpu * vcpu)566 static bool kvm_vcpu_should_clear_twi(struct kvm_vcpu *vcpu)
567 {
568 	if (unlikely(kvm_wfi_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK))
569 		return kvm_wfi_trap_policy == KVM_WFX_NOTRAP;
570 
571 	return single_task_running() &&
572 	       (atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) ||
573 		vcpu->kvm->arch.vgic.nassgireq);
574 }
575 
kvm_vcpu_should_clear_twe(struct kvm_vcpu * vcpu)576 static bool kvm_vcpu_should_clear_twe(struct kvm_vcpu *vcpu)
577 {
578 	if (unlikely(kvm_wfe_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK))
579 		return kvm_wfe_trap_policy == KVM_WFX_NOTRAP;
580 
581 	return single_task_running();
582 }
583 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)584 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
585 {
586 	struct kvm_s2_mmu *mmu;
587 	int *last_ran;
588 
589 	if (is_protected_kvm_enabled())
590 		goto nommu;
591 
592 	if (vcpu_has_nv(vcpu))
593 		kvm_vcpu_load_hw_mmu(vcpu);
594 
595 	mmu = vcpu->arch.hw_mmu;
596 	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
597 
598 	/*
599 	 * Ensure a VMID is allocated for the MMU before programming VTTBR_EL2,
600 	 * which happens eagerly in VHE.
601 	 *
602 	 * Also, the VMID allocator only preserves VMIDs that are active at the
603 	 * time of rollover, so KVM might need to grab a new VMID for the MMU if
604 	 * this is called from kvm_sched_in().
605 	 */
606 	kvm_arm_vmid_update(&mmu->vmid);
607 
608 	/*
609 	 * We guarantee that both TLBs and I-cache are private to each
610 	 * vcpu. If detecting that a vcpu from the same VM has
611 	 * previously run on the same physical CPU, call into the
612 	 * hypervisor code to nuke the relevant contexts.
613 	 *
614 	 * We might get preempted before the vCPU actually runs, but
615 	 * over-invalidation doesn't affect correctness.
616 	 */
617 	if (*last_ran != vcpu->vcpu_idx) {
618 		kvm_call_hyp(__kvm_flush_cpu_context, mmu);
619 		*last_ran = vcpu->vcpu_idx;
620 	}
621 
622 nommu:
623 	vcpu->cpu = cpu;
624 
625 	/*
626 	 * The timer must be loaded before the vgic to correctly set up physical
627 	 * interrupt deactivation in nested state (e.g. timer interrupt).
628 	 */
629 	kvm_timer_vcpu_load(vcpu);
630 	kvm_vgic_load(vcpu);
631 	kvm_vcpu_load_debug(vcpu);
632 	kvm_vcpu_load_fgt(vcpu);
633 	if (has_vhe())
634 		kvm_vcpu_load_vhe(vcpu);
635 	kvm_arch_vcpu_load_fp(vcpu);
636 	kvm_vcpu_pmu_restore_guest(vcpu);
637 	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
638 		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
639 
640 	if (kvm_vcpu_should_clear_twe(vcpu))
641 		vcpu->arch.hcr_el2 &= ~HCR_TWE;
642 	else
643 		vcpu->arch.hcr_el2 |= HCR_TWE;
644 
645 	if (kvm_vcpu_should_clear_twi(vcpu))
646 		vcpu->arch.hcr_el2 &= ~HCR_TWI;
647 	else
648 		vcpu->arch.hcr_el2 |= HCR_TWI;
649 
650 	vcpu_set_pauth_traps(vcpu);
651 
652 	if (is_protected_kvm_enabled()) {
653 		kvm_call_hyp_nvhe(__pkvm_vcpu_load,
654 				  vcpu->kvm->arch.pkvm.handle,
655 				  vcpu->vcpu_idx, vcpu->arch.hcr_el2);
656 		kvm_call_hyp(__vgic_v3_restore_vmcr_aprs,
657 			     &vcpu->arch.vgic_cpu.vgic_v3);
658 	}
659 
660 	if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus))
661 		vcpu_set_on_unsupported_cpu(vcpu);
662 }
663 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)664 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
665 {
666 	if (is_protected_kvm_enabled()) {
667 		kvm_call_hyp(__vgic_v3_save_aprs, &vcpu->arch.vgic_cpu.vgic_v3);
668 		kvm_call_hyp_nvhe(__pkvm_vcpu_put);
669 	}
670 
671 	kvm_vcpu_put_debug(vcpu);
672 	kvm_arch_vcpu_put_fp(vcpu);
673 	if (has_vhe())
674 		kvm_vcpu_put_vhe(vcpu);
675 	kvm_timer_vcpu_put(vcpu);
676 	kvm_vgic_put(vcpu);
677 	kvm_vcpu_pmu_restore_host(vcpu);
678 	if (vcpu_has_nv(vcpu))
679 		kvm_vcpu_put_hw_mmu(vcpu);
680 	kvm_arm_vmid_clear_active();
681 
682 	vcpu_clear_on_unsupported_cpu(vcpu);
683 	vcpu->cpu = -1;
684 }
685 
__kvm_arm_vcpu_power_off(struct kvm_vcpu * vcpu)686 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
687 {
688 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
689 	kvm_make_request(KVM_REQ_SLEEP, vcpu);
690 	kvm_vcpu_kick(vcpu);
691 }
692 
kvm_arm_vcpu_power_off(struct kvm_vcpu * vcpu)693 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
694 {
695 	spin_lock(&vcpu->arch.mp_state_lock);
696 	__kvm_arm_vcpu_power_off(vcpu);
697 	spin_unlock(&vcpu->arch.mp_state_lock);
698 }
699 
kvm_arm_vcpu_stopped(struct kvm_vcpu * vcpu)700 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
701 {
702 	return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
703 }
704 
kvm_arm_vcpu_suspend(struct kvm_vcpu * vcpu)705 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
706 {
707 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED);
708 	kvm_make_request(KVM_REQ_SUSPEND, vcpu);
709 	kvm_vcpu_kick(vcpu);
710 }
711 
kvm_arm_vcpu_suspended(struct kvm_vcpu * vcpu)712 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
713 {
714 	return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED;
715 }
716 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)717 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
718 				    struct kvm_mp_state *mp_state)
719 {
720 	*mp_state = READ_ONCE(vcpu->arch.mp_state);
721 
722 	return 0;
723 }
724 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)725 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
726 				    struct kvm_mp_state *mp_state)
727 {
728 	int ret = 0;
729 
730 	spin_lock(&vcpu->arch.mp_state_lock);
731 
732 	switch (mp_state->mp_state) {
733 	case KVM_MP_STATE_RUNNABLE:
734 		WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
735 		break;
736 	case KVM_MP_STATE_STOPPED:
737 		__kvm_arm_vcpu_power_off(vcpu);
738 		break;
739 	case KVM_MP_STATE_SUSPENDED:
740 		kvm_arm_vcpu_suspend(vcpu);
741 		break;
742 	default:
743 		ret = -EINVAL;
744 	}
745 
746 	spin_unlock(&vcpu->arch.mp_state_lock);
747 
748 	return ret;
749 }
750 
751 /**
752  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
753  * @v:		The VCPU pointer
754  *
755  * If the guest CPU is not waiting for interrupts or an interrupt line is
756  * asserted, the CPU is by definition runnable.
757  */
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)758 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
759 {
760 	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF | HCR_VSE);
761 
762 	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
763 		&& !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
764 }
765 
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)766 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
767 {
768 	return vcpu_mode_priv(vcpu);
769 }
770 
771 #ifdef CONFIG_GUEST_PERF_EVENTS
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)772 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
773 {
774 	return *vcpu_pc(vcpu);
775 }
776 #endif
777 
kvm_init_mpidr_data(struct kvm * kvm)778 static void kvm_init_mpidr_data(struct kvm *kvm)
779 {
780 	struct kvm_mpidr_data *data = NULL;
781 	unsigned long c, mask, nr_entries;
782 	u64 aff_set = 0, aff_clr = ~0UL;
783 	struct kvm_vcpu *vcpu;
784 
785 	mutex_lock(&kvm->arch.config_lock);
786 
787 	if (rcu_access_pointer(kvm->arch.mpidr_data) ||
788 	    atomic_read(&kvm->online_vcpus) == 1)
789 		goto out;
790 
791 	kvm_for_each_vcpu(c, vcpu, kvm) {
792 		u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
793 		aff_set |= aff;
794 		aff_clr &= aff;
795 	}
796 
797 	/*
798 	 * A significant bit can be either 0 or 1, and will only appear in
799 	 * aff_set. Use aff_clr to weed out the useless stuff.
800 	 */
801 	mask = aff_set ^ aff_clr;
802 	nr_entries = BIT_ULL(hweight_long(mask));
803 
804 	/*
805 	 * Don't let userspace fool us. If we need more than a single page
806 	 * to describe the compressed MPIDR array, just fall back to the
807 	 * iterative method. Single vcpu VMs do not need this either.
808 	 */
809 	if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE)
810 		data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries),
811 			       GFP_KERNEL_ACCOUNT);
812 
813 	if (!data)
814 		goto out;
815 
816 	data->mpidr_mask = mask;
817 
818 	kvm_for_each_vcpu(c, vcpu, kvm) {
819 		u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
820 		u16 index = kvm_mpidr_index(data, aff);
821 
822 		data->cmpidr_to_idx[index] = c;
823 	}
824 
825 	rcu_assign_pointer(kvm->arch.mpidr_data, data);
826 out:
827 	mutex_unlock(&kvm->arch.config_lock);
828 }
829 
830 /*
831  * Handle both the initialisation that is being done when the vcpu is
832  * run for the first time, as well as the updates that must be
833  * performed each time we get a new thread dealing with this vcpu.
834  */
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)835 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
836 {
837 	struct kvm *kvm = vcpu->kvm;
838 	int ret;
839 
840 	if (!kvm_vcpu_initialized(vcpu))
841 		return -ENOEXEC;
842 
843 	if (!kvm_arm_vcpu_is_finalized(vcpu))
844 		return -EPERM;
845 
846 	if (likely(vcpu_has_run_once(vcpu)))
847 		return 0;
848 
849 	kvm_init_mpidr_data(kvm);
850 
851 	if (likely(irqchip_in_kernel(kvm))) {
852 		/*
853 		 * Map the VGIC hardware resources before running a vcpu the
854 		 * first time on this VM.
855 		 */
856 		ret = kvm_vgic_map_resources(kvm);
857 		if (ret)
858 			return ret;
859 	}
860 
861 	ret = kvm_finalize_sys_regs(vcpu);
862 	if (ret)
863 		return ret;
864 
865 	if (vcpu_has_nv(vcpu)) {
866 		ret = kvm_vcpu_allocate_vncr_tlb(vcpu);
867 		if (ret)
868 			return ret;
869 
870 		ret = kvm_vgic_vcpu_nv_init(vcpu);
871 		if (ret)
872 			return ret;
873 	}
874 
875 	/*
876 	 * This needs to happen after any restriction has been applied
877 	 * to the feature set.
878 	 */
879 	kvm_calculate_traps(vcpu);
880 
881 	ret = kvm_timer_enable(vcpu);
882 	if (ret)
883 		return ret;
884 
885 	if (kvm_vcpu_has_pmu(vcpu)) {
886 		ret = kvm_arm_pmu_v3_enable(vcpu);
887 		if (ret)
888 			return ret;
889 	}
890 
891 	if (is_protected_kvm_enabled()) {
892 		ret = pkvm_create_hyp_vm(kvm);
893 		if (ret)
894 			return ret;
895 
896 		ret = pkvm_create_hyp_vcpu(vcpu);
897 		if (ret)
898 			return ret;
899 	}
900 
901 	mutex_lock(&kvm->arch.config_lock);
902 	set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
903 	mutex_unlock(&kvm->arch.config_lock);
904 
905 	return ret;
906 }
907 
kvm_arch_intc_initialized(struct kvm * kvm)908 bool kvm_arch_intc_initialized(struct kvm *kvm)
909 {
910 	return vgic_initialized(kvm);
911 }
912 
kvm_arm_halt_guest(struct kvm * kvm)913 void kvm_arm_halt_guest(struct kvm *kvm)
914 {
915 	unsigned long i;
916 	struct kvm_vcpu *vcpu;
917 
918 	kvm_for_each_vcpu(i, vcpu, kvm)
919 		vcpu->arch.pause = true;
920 	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
921 }
922 
kvm_arm_resume_guest(struct kvm * kvm)923 void kvm_arm_resume_guest(struct kvm *kvm)
924 {
925 	unsigned long i;
926 	struct kvm_vcpu *vcpu;
927 
928 	kvm_for_each_vcpu(i, vcpu, kvm) {
929 		vcpu->arch.pause = false;
930 		__kvm_vcpu_wake_up(vcpu);
931 	}
932 }
933 
kvm_vcpu_sleep(struct kvm_vcpu * vcpu)934 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
935 {
936 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
937 
938 	rcuwait_wait_event(wait,
939 			   (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
940 			   TASK_INTERRUPTIBLE);
941 
942 	if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
943 		/* Awaken to handle a signal, request we sleep again later. */
944 		kvm_make_request(KVM_REQ_SLEEP, vcpu);
945 	}
946 
947 	/*
948 	 * Make sure we will observe a potential reset request if we've
949 	 * observed a change to the power state. Pairs with the smp_wmb() in
950 	 * kvm_psci_vcpu_on().
951 	 */
952 	smp_rmb();
953 }
954 
955 /**
956  * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
957  * @vcpu:	The VCPU pointer
958  *
959  * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
960  * the vCPU is runnable.  The vCPU may or may not be scheduled out, depending
961  * on when a wake event arrives, e.g. there may already be a pending wake event.
962  */
kvm_vcpu_wfi(struct kvm_vcpu * vcpu)963 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
964 {
965 	/*
966 	 * Sync back the state of the GIC CPU interface so that we have
967 	 * the latest PMR and group enables. This ensures that
968 	 * kvm_arch_vcpu_runnable has up-to-date data to decide whether
969 	 * we have pending interrupts, e.g. when determining if the
970 	 * vCPU should block.
971 	 *
972 	 * For the same reason, we want to tell GICv4 that we need
973 	 * doorbells to be signalled, should an interrupt become pending.
974 	 */
975 	preempt_disable();
976 	vcpu_set_flag(vcpu, IN_WFI);
977 	kvm_vgic_put(vcpu);
978 	preempt_enable();
979 
980 	kvm_vcpu_halt(vcpu);
981 	vcpu_clear_flag(vcpu, IN_WFIT);
982 
983 	preempt_disable();
984 	vcpu_clear_flag(vcpu, IN_WFI);
985 	kvm_vgic_load(vcpu);
986 	preempt_enable();
987 }
988 
kvm_vcpu_suspend(struct kvm_vcpu * vcpu)989 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
990 {
991 	if (!kvm_arm_vcpu_suspended(vcpu))
992 		return 1;
993 
994 	kvm_vcpu_wfi(vcpu);
995 
996 	/*
997 	 * The suspend state is sticky; we do not leave it until userspace
998 	 * explicitly marks the vCPU as runnable. Request that we suspend again
999 	 * later.
1000 	 */
1001 	kvm_make_request(KVM_REQ_SUSPEND, vcpu);
1002 
1003 	/*
1004 	 * Check to make sure the vCPU is actually runnable. If so, exit to
1005 	 * userspace informing it of the wakeup condition.
1006 	 */
1007 	if (kvm_arch_vcpu_runnable(vcpu)) {
1008 		memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
1009 		vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
1010 		vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
1011 		return 0;
1012 	}
1013 
1014 	/*
1015 	 * Otherwise, we were unblocked to process a different event, such as a
1016 	 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
1017 	 * process the event.
1018 	 */
1019 	return 1;
1020 }
1021 
1022 /**
1023  * check_vcpu_requests - check and handle pending vCPU requests
1024  * @vcpu:	the VCPU pointer
1025  *
1026  * Return: 1 if we should enter the guest
1027  *	   0 if we should exit to userspace
1028  *	   < 0 if we should exit to userspace, where the return value indicates
1029  *	   an error
1030  */
check_vcpu_requests(struct kvm_vcpu * vcpu)1031 static int check_vcpu_requests(struct kvm_vcpu *vcpu)
1032 {
1033 	if (kvm_request_pending(vcpu)) {
1034 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu))
1035 			return -EIO;
1036 
1037 		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
1038 			kvm_vcpu_sleep(vcpu);
1039 
1040 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1041 			kvm_reset_vcpu(vcpu);
1042 
1043 		/*
1044 		 * Clear IRQ_PENDING requests that were made to guarantee
1045 		 * that a VCPU sees new virtual interrupts.
1046 		 */
1047 		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
1048 
1049 		/* Process interrupts deactivated through a trap */
1050 		if (kvm_check_request(KVM_REQ_VGIC_PROCESS_UPDATE, vcpu))
1051 			kvm_vgic_process_async_update(vcpu);
1052 
1053 		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
1054 			kvm_update_stolen_time(vcpu);
1055 
1056 		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
1057 			/* The distributor enable bits were changed */
1058 			preempt_disable();
1059 			vgic_v4_put(vcpu);
1060 			vgic_v4_load(vcpu);
1061 			preempt_enable();
1062 		}
1063 
1064 		if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
1065 			kvm_vcpu_reload_pmu(vcpu);
1066 
1067 		if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu))
1068 			kvm_vcpu_pmu_restore_guest(vcpu);
1069 
1070 		if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
1071 			return kvm_vcpu_suspend(vcpu);
1072 
1073 		if (kvm_dirty_ring_check_request(vcpu))
1074 			return 0;
1075 
1076 		check_nested_vcpu_requests(vcpu);
1077 	}
1078 
1079 	return 1;
1080 }
1081 
vcpu_mode_is_bad_32bit(struct kvm_vcpu * vcpu)1082 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
1083 {
1084 	if (likely(!vcpu_mode_is_32bit(vcpu)))
1085 		return false;
1086 
1087 	if (vcpu_has_nv(vcpu))
1088 		return true;
1089 
1090 	return !kvm_supports_32bit_el0();
1091 }
1092 
1093 /**
1094  * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
1095  * @vcpu:	The VCPU pointer
1096  * @ret:	Pointer to write optional return code
1097  *
1098  * Returns: true if the VCPU needs to return to a preemptible + interruptible
1099  *	    and skip guest entry.
1100  *
1101  * This function disambiguates between two different types of exits: exits to a
1102  * preemptible + interruptible kernel context and exits to userspace. For an
1103  * exit to userspace, this function will write the return code to ret and return
1104  * true. For an exit to preemptible + interruptible kernel context (i.e. check
1105  * for pending work and re-enter), return true without writing to ret.
1106  */
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu,int * ret)1107 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
1108 {
1109 	struct kvm_run *run = vcpu->run;
1110 
1111 	/*
1112 	 * If we're using a userspace irqchip, then check if we need
1113 	 * to tell a userspace irqchip about timer or PMU level
1114 	 * changes and if so, exit to userspace (the actual level
1115 	 * state gets updated in kvm_timer_update_run and
1116 	 * kvm_pmu_update_run below).
1117 	 */
1118 	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1119 		if (kvm_timer_should_notify_user(vcpu) ||
1120 		    kvm_pmu_should_notify_user(vcpu)) {
1121 			*ret = -EINTR;
1122 			run->exit_reason = KVM_EXIT_INTR;
1123 			return true;
1124 		}
1125 	}
1126 
1127 	if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
1128 		run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1129 		run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
1130 		run->fail_entry.cpu = smp_processor_id();
1131 		*ret = 0;
1132 		return true;
1133 	}
1134 
1135 	return kvm_request_pending(vcpu) ||
1136 			xfer_to_guest_mode_work_pending();
1137 }
1138 
1139 /*
1140  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
1141  * the vCPU is running.
1142  *
1143  * This must be noinstr as instrumentation may make use of RCU, and this is not
1144  * safe during the EQS.
1145  */
kvm_arm_vcpu_enter_exit(struct kvm_vcpu * vcpu)1146 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
1147 {
1148 	int ret;
1149 
1150 	guest_state_enter_irqoff();
1151 	ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
1152 	guest_state_exit_irqoff();
1153 
1154 	return ret;
1155 }
1156 
1157 /**
1158  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
1159  * @vcpu:	The VCPU pointer
1160  *
1161  * This function is called through the VCPU_RUN ioctl called from user space. It
1162  * will execute VM code in a loop until the time slice for the process is used
1163  * or some emulation is needed from user space in which case the function will
1164  * return with return value 0 and with the kvm_run structure filled in with the
1165  * required data for the requested emulation.
1166  */
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)1167 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
1168 {
1169 	struct kvm_run *run = vcpu->run;
1170 	int ret;
1171 
1172 	if (run->exit_reason == KVM_EXIT_MMIO) {
1173 		ret = kvm_handle_mmio_return(vcpu);
1174 		if (ret <= 0)
1175 			return ret;
1176 	}
1177 
1178 	vcpu_load(vcpu);
1179 
1180 	if (!vcpu->wants_to_run) {
1181 		ret = -EINTR;
1182 		goto out;
1183 	}
1184 
1185 	kvm_sigset_activate(vcpu);
1186 
1187 	ret = 1;
1188 	run->exit_reason = KVM_EXIT_UNKNOWN;
1189 	run->flags = 0;
1190 	while (ret > 0) {
1191 		/*
1192 		 * Check conditions before entering the guest
1193 		 */
1194 		ret = kvm_xfer_to_guest_mode_handle_work(vcpu);
1195 		if (!ret)
1196 			ret = 1;
1197 
1198 		if (ret > 0)
1199 			ret = check_vcpu_requests(vcpu);
1200 
1201 		/*
1202 		 * Preparing the interrupts to be injected also
1203 		 * involves poking the GIC, which must be done in a
1204 		 * non-preemptible context.
1205 		 */
1206 		preempt_disable();
1207 
1208 		kvm_nested_flush_hwstate(vcpu);
1209 
1210 		if (kvm_vcpu_has_pmu(vcpu))
1211 			kvm_pmu_flush_hwstate(vcpu);
1212 
1213 		local_irq_disable();
1214 
1215 		kvm_vgic_flush_hwstate(vcpu);
1216 
1217 		kvm_pmu_update_vcpu_events(vcpu);
1218 
1219 		/*
1220 		 * Ensure we set mode to IN_GUEST_MODE after we disable
1221 		 * interrupts and before the final VCPU requests check.
1222 		 * See the comment in kvm_vcpu_exiting_guest_mode() and
1223 		 * Documentation/virt/kvm/vcpu-requests.rst
1224 		 */
1225 		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1226 
1227 		if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
1228 			vcpu->mode = OUTSIDE_GUEST_MODE;
1229 			isb(); /* Ensure work in x_flush_hwstate is committed */
1230 			if (kvm_vcpu_has_pmu(vcpu))
1231 				kvm_pmu_sync_hwstate(vcpu);
1232 			if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
1233 				kvm_timer_sync_user(vcpu);
1234 			kvm_vgic_sync_hwstate(vcpu);
1235 			local_irq_enable();
1236 			preempt_enable();
1237 			continue;
1238 		}
1239 
1240 		kvm_arch_vcpu_ctxflush_fp(vcpu);
1241 
1242 		/**************************************************************
1243 		 * Enter the guest
1244 		 */
1245 		trace_kvm_entry(*vcpu_pc(vcpu));
1246 		guest_timing_enter_irqoff();
1247 
1248 		ret = kvm_arm_vcpu_enter_exit(vcpu);
1249 
1250 		vcpu->mode = OUTSIDE_GUEST_MODE;
1251 		vcpu->stat.exits++;
1252 		/*
1253 		 * Back from guest
1254 		 *************************************************************/
1255 
1256 		/*
1257 		 * We must sync the PMU state before the vgic state so
1258 		 * that the vgic can properly sample the updated state of the
1259 		 * interrupt line.
1260 		 */
1261 		if (kvm_vcpu_has_pmu(vcpu))
1262 			kvm_pmu_sync_hwstate(vcpu);
1263 
1264 		/*
1265 		 * Sync the vgic state before syncing the timer state because
1266 		 * the timer code needs to know if the virtual timer
1267 		 * interrupts are active.
1268 		 */
1269 		kvm_vgic_sync_hwstate(vcpu);
1270 
1271 		/*
1272 		 * Sync the timer hardware state before enabling interrupts as
1273 		 * we don't want vtimer interrupts to race with syncing the
1274 		 * timer virtual interrupt state.
1275 		 */
1276 		if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
1277 			kvm_timer_sync_user(vcpu);
1278 
1279 		if (is_hyp_ctxt(vcpu))
1280 			kvm_timer_sync_nested(vcpu);
1281 
1282 		kvm_arch_vcpu_ctxsync_fp(vcpu);
1283 
1284 		/*
1285 		 * We must ensure that any pending interrupts are taken before
1286 		 * we exit guest timing so that timer ticks are accounted as
1287 		 * guest time. Transiently unmask interrupts so that any
1288 		 * pending interrupts are taken.
1289 		 *
1290 		 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
1291 		 * context synchronization event) is necessary to ensure that
1292 		 * pending interrupts are taken.
1293 		 */
1294 		if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
1295 			local_irq_enable();
1296 			isb();
1297 			local_irq_disable();
1298 		}
1299 
1300 		guest_timing_exit_irqoff();
1301 
1302 		local_irq_enable();
1303 
1304 		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
1305 
1306 		/* Exit types that need handling before we can be preempted */
1307 		handle_exit_early(vcpu, ret);
1308 
1309 		kvm_nested_sync_hwstate(vcpu);
1310 
1311 		preempt_enable();
1312 
1313 		/*
1314 		 * The ARMv8 architecture doesn't give the hypervisor
1315 		 * a mechanism to prevent a guest from dropping to AArch32 EL0
1316 		 * if implemented by the CPU. If we spot the guest in such
1317 		 * state and that we decided it wasn't supposed to do so (like
1318 		 * with the asymmetric AArch32 case), return to userspace with
1319 		 * a fatal error.
1320 		 */
1321 		if (vcpu_mode_is_bad_32bit(vcpu)) {
1322 			/*
1323 			 * As we have caught the guest red-handed, decide that
1324 			 * it isn't fit for purpose anymore by making the vcpu
1325 			 * invalid. The VMM can try and fix it by issuing  a
1326 			 * KVM_ARM_VCPU_INIT if it really wants to.
1327 			 */
1328 			vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
1329 			ret = ARM_EXCEPTION_IL;
1330 		}
1331 
1332 		ret = handle_exit(vcpu, ret);
1333 	}
1334 
1335 	/* Tell userspace about in-kernel device output levels */
1336 	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1337 		kvm_timer_update_run(vcpu);
1338 		kvm_pmu_update_run(vcpu);
1339 	}
1340 
1341 	kvm_sigset_deactivate(vcpu);
1342 
1343 out:
1344 	/*
1345 	 * In the unlikely event that we are returning to userspace
1346 	 * with pending exceptions or PC adjustment, commit these
1347 	 * adjustments in order to give userspace a consistent view of
1348 	 * the vcpu state. Note that this relies on __kvm_adjust_pc()
1349 	 * being preempt-safe on VHE.
1350 	 */
1351 	if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
1352 		     vcpu_get_flag(vcpu, INCREMENT_PC)))
1353 		kvm_call_hyp(__kvm_adjust_pc, vcpu);
1354 
1355 	vcpu_put(vcpu);
1356 	return ret;
1357 }
1358 
vcpu_interrupt_line(struct kvm_vcpu * vcpu,int number,bool level)1359 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1360 {
1361 	int bit_index;
1362 	bool set;
1363 	unsigned long *hcr;
1364 
1365 	if (number == KVM_ARM_IRQ_CPU_IRQ)
1366 		bit_index = __ffs(HCR_VI);
1367 	else /* KVM_ARM_IRQ_CPU_FIQ */
1368 		bit_index = __ffs(HCR_VF);
1369 
1370 	hcr = vcpu_hcr(vcpu);
1371 	if (level)
1372 		set = test_and_set_bit(bit_index, hcr);
1373 	else
1374 		set = test_and_clear_bit(bit_index, hcr);
1375 
1376 	/*
1377 	 * If we didn't change anything, no need to wake up or kick other CPUs
1378 	 */
1379 	if (set == level)
1380 		return 0;
1381 
1382 	/*
1383 	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1384 	 * trigger a world-switch round on the running physical CPU to set the
1385 	 * virtual IRQ/FIQ fields in the HCR appropriately.
1386 	 */
1387 	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1388 	kvm_vcpu_kick(vcpu);
1389 
1390 	return 0;
1391 }
1392 
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_level,bool line_status)1393 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1394 			  bool line_status)
1395 {
1396 	u32 irq = irq_level->irq;
1397 	unsigned int irq_type, vcpu_id, irq_num;
1398 	struct kvm_vcpu *vcpu = NULL;
1399 	bool level = irq_level->level;
1400 
1401 	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1402 	vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1403 	vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1404 	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1405 
1406 	trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level);
1407 
1408 	switch (irq_type) {
1409 	case KVM_ARM_IRQ_TYPE_CPU:
1410 		if (irqchip_in_kernel(kvm))
1411 			return -ENXIO;
1412 
1413 		vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1414 		if (!vcpu)
1415 			return -EINVAL;
1416 
1417 		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1418 			return -EINVAL;
1419 
1420 		return vcpu_interrupt_line(vcpu, irq_num, level);
1421 	case KVM_ARM_IRQ_TYPE_PPI:
1422 		if (!irqchip_in_kernel(kvm))
1423 			return -ENXIO;
1424 
1425 		vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1426 		if (!vcpu)
1427 			return -EINVAL;
1428 
1429 		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1430 			return -EINVAL;
1431 
1432 		return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL);
1433 	case KVM_ARM_IRQ_TYPE_SPI:
1434 		if (!irqchip_in_kernel(kvm))
1435 			return -ENXIO;
1436 
1437 		if (irq_num < VGIC_NR_PRIVATE_IRQS)
1438 			return -EINVAL;
1439 
1440 		return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL);
1441 	}
1442 
1443 	return -EINVAL;
1444 }
1445 
system_supported_vcpu_features(void)1446 static unsigned long system_supported_vcpu_features(void)
1447 {
1448 	unsigned long features = KVM_VCPU_VALID_FEATURES;
1449 
1450 	if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1))
1451 		clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features);
1452 
1453 	if (!kvm_supports_guest_pmuv3())
1454 		clear_bit(KVM_ARM_VCPU_PMU_V3, &features);
1455 
1456 	if (!system_supports_sve())
1457 		clear_bit(KVM_ARM_VCPU_SVE, &features);
1458 
1459 	if (!kvm_has_full_ptr_auth()) {
1460 		clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features);
1461 		clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features);
1462 	}
1463 
1464 	if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT))
1465 		clear_bit(KVM_ARM_VCPU_HAS_EL2, &features);
1466 
1467 	return features;
1468 }
1469 
kvm_vcpu_init_check_features(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1470 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu,
1471 					const struct kvm_vcpu_init *init)
1472 {
1473 	unsigned long features = init->features[0];
1474 	int i;
1475 
1476 	if (features & ~KVM_VCPU_VALID_FEATURES)
1477 		return -ENOENT;
1478 
1479 	for (i = 1; i < ARRAY_SIZE(init->features); i++) {
1480 		if (init->features[i])
1481 			return -ENOENT;
1482 	}
1483 
1484 	if (features & ~system_supported_vcpu_features())
1485 		return -EINVAL;
1486 
1487 	/*
1488 	 * For now make sure that both address/generic pointer authentication
1489 	 * features are requested by the userspace together.
1490 	 */
1491 	if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) !=
1492 	    test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features))
1493 		return -EINVAL;
1494 
1495 	if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features))
1496 		return 0;
1497 
1498 	/* MTE is incompatible with AArch32 */
1499 	if (kvm_has_mte(vcpu->kvm))
1500 		return -EINVAL;
1501 
1502 	/* NV is incompatible with AArch32 */
1503 	if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features))
1504 		return -EINVAL;
1505 
1506 	return 0;
1507 }
1508 
kvm_vcpu_init_changed(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1509 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu,
1510 				  const struct kvm_vcpu_init *init)
1511 {
1512 	unsigned long features = init->features[0];
1513 
1514 	return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features,
1515 			     KVM_VCPU_MAX_FEATURES);
1516 }
1517 
kvm_setup_vcpu(struct kvm_vcpu * vcpu)1518 static int kvm_setup_vcpu(struct kvm_vcpu *vcpu)
1519 {
1520 	struct kvm *kvm = vcpu->kvm;
1521 	int ret = 0;
1522 
1523 	/*
1524 	 * When the vCPU has a PMU, but no PMU is set for the guest
1525 	 * yet, set the default one.
1526 	 */
1527 	if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu)
1528 		ret = kvm_arm_set_default_pmu(kvm);
1529 
1530 	/* Prepare for nested if required */
1531 	if (!ret && vcpu_has_nv(vcpu))
1532 		ret = kvm_vcpu_init_nested(vcpu);
1533 
1534 	return ret;
1535 }
1536 
__kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1537 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1538 				 const struct kvm_vcpu_init *init)
1539 {
1540 	unsigned long features = init->features[0];
1541 	struct kvm *kvm = vcpu->kvm;
1542 	int ret = -EINVAL;
1543 
1544 	mutex_lock(&kvm->arch.config_lock);
1545 
1546 	if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) &&
1547 	    kvm_vcpu_init_changed(vcpu, init))
1548 		goto out_unlock;
1549 
1550 	bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES);
1551 
1552 	ret = kvm_setup_vcpu(vcpu);
1553 	if (ret)
1554 		goto out_unlock;
1555 
1556 	/* Now we know what it is, we can reset it. */
1557 	kvm_reset_vcpu(vcpu);
1558 
1559 	set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags);
1560 	vcpu_set_flag(vcpu, VCPU_INITIALIZED);
1561 	ret = 0;
1562 out_unlock:
1563 	mutex_unlock(&kvm->arch.config_lock);
1564 	return ret;
1565 }
1566 
kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1567 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1568 			       const struct kvm_vcpu_init *init)
1569 {
1570 	int ret;
1571 
1572 	if (init->target != KVM_ARM_TARGET_GENERIC_V8 &&
1573 	    init->target != kvm_target_cpu())
1574 		return -EINVAL;
1575 
1576 	ret = kvm_vcpu_init_check_features(vcpu, init);
1577 	if (ret)
1578 		return ret;
1579 
1580 	if (!kvm_vcpu_initialized(vcpu))
1581 		return __kvm_vcpu_set_target(vcpu, init);
1582 
1583 	if (kvm_vcpu_init_changed(vcpu, init))
1584 		return -EINVAL;
1585 
1586 	kvm_reset_vcpu(vcpu);
1587 	return 0;
1588 }
1589 
kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu * vcpu,struct kvm_vcpu_init * init)1590 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1591 					 struct kvm_vcpu_init *init)
1592 {
1593 	bool power_off = false;
1594 	int ret;
1595 
1596 	/*
1597 	 * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid
1598 	 * reflecting it in the finalized feature set, thus limiting its scope
1599 	 * to a single KVM_ARM_VCPU_INIT call.
1600 	 */
1601 	if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) {
1602 		init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF);
1603 		power_off = true;
1604 	}
1605 
1606 	ret = kvm_vcpu_set_target(vcpu, init);
1607 	if (ret)
1608 		return ret;
1609 
1610 	/*
1611 	 * Ensure a rebooted VM will fault in RAM pages and detect if the
1612 	 * guest MMU is turned off and flush the caches as needed.
1613 	 *
1614 	 * S2FWB enforces all memory accesses to RAM being cacheable,
1615 	 * ensuring that the data side is always coherent. We still
1616 	 * need to invalidate the I-cache though, as FWB does *not*
1617 	 * imply CTR_EL0.DIC.
1618 	 */
1619 	if (vcpu_has_run_once(vcpu)) {
1620 		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1621 			stage2_unmap_vm(vcpu->kvm);
1622 		else
1623 			icache_inval_all_pou();
1624 	}
1625 
1626 	vcpu_reset_hcr(vcpu);
1627 
1628 	/*
1629 	 * Handle the "start in power-off" case.
1630 	 */
1631 	spin_lock(&vcpu->arch.mp_state_lock);
1632 
1633 	if (power_off)
1634 		__kvm_arm_vcpu_power_off(vcpu);
1635 	else
1636 		WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
1637 
1638 	spin_unlock(&vcpu->arch.mp_state_lock);
1639 
1640 	return 0;
1641 }
1642 
kvm_arm_vcpu_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1643 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1644 				 struct kvm_device_attr *attr)
1645 {
1646 	int ret = -ENXIO;
1647 
1648 	switch (attr->group) {
1649 	default:
1650 		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1651 		break;
1652 	}
1653 
1654 	return ret;
1655 }
1656 
kvm_arm_vcpu_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1657 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1658 				 struct kvm_device_attr *attr)
1659 {
1660 	int ret = -ENXIO;
1661 
1662 	switch (attr->group) {
1663 	default:
1664 		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1665 		break;
1666 	}
1667 
1668 	return ret;
1669 }
1670 
kvm_arm_vcpu_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1671 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1672 				 struct kvm_device_attr *attr)
1673 {
1674 	int ret = -ENXIO;
1675 
1676 	switch (attr->group) {
1677 	default:
1678 		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1679 		break;
1680 	}
1681 
1682 	return ret;
1683 }
1684 
kvm_arm_vcpu_get_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1685 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1686 				   struct kvm_vcpu_events *events)
1687 {
1688 	memset(events, 0, sizeof(*events));
1689 
1690 	return __kvm_arm_vcpu_get_events(vcpu, events);
1691 }
1692 
kvm_arm_vcpu_set_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1693 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1694 				   struct kvm_vcpu_events *events)
1695 {
1696 	int i;
1697 
1698 	/* check whether the reserved field is zero */
1699 	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1700 		if (events->reserved[i])
1701 			return -EINVAL;
1702 
1703 	/* check whether the pad field is zero */
1704 	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1705 		if (events->exception.pad[i])
1706 			return -EINVAL;
1707 
1708 	return __kvm_arm_vcpu_set_events(vcpu, events);
1709 }
1710 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1711 long kvm_arch_vcpu_ioctl(struct file *filp,
1712 			 unsigned int ioctl, unsigned long arg)
1713 {
1714 	struct kvm_vcpu *vcpu = filp->private_data;
1715 	void __user *argp = (void __user *)arg;
1716 	struct kvm_device_attr attr;
1717 	long r;
1718 
1719 	switch (ioctl) {
1720 	case KVM_ARM_VCPU_INIT: {
1721 		struct kvm_vcpu_init init;
1722 
1723 		r = -EFAULT;
1724 		if (copy_from_user(&init, argp, sizeof(init)))
1725 			break;
1726 
1727 		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1728 		break;
1729 	}
1730 	case KVM_SET_ONE_REG:
1731 	case KVM_GET_ONE_REG: {
1732 		struct kvm_one_reg reg;
1733 
1734 		r = -ENOEXEC;
1735 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1736 			break;
1737 
1738 		r = -EFAULT;
1739 		if (copy_from_user(&reg, argp, sizeof(reg)))
1740 			break;
1741 
1742 		/*
1743 		 * We could owe a reset due to PSCI. Handle the pending reset
1744 		 * here to ensure userspace register accesses are ordered after
1745 		 * the reset.
1746 		 */
1747 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1748 			kvm_reset_vcpu(vcpu);
1749 
1750 		if (ioctl == KVM_SET_ONE_REG)
1751 			r = kvm_arm_set_reg(vcpu, &reg);
1752 		else
1753 			r = kvm_arm_get_reg(vcpu, &reg);
1754 		break;
1755 	}
1756 	case KVM_GET_REG_LIST: {
1757 		struct kvm_reg_list __user *user_list = argp;
1758 		struct kvm_reg_list reg_list;
1759 		unsigned n;
1760 
1761 		r = -ENOEXEC;
1762 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1763 			break;
1764 
1765 		r = -EPERM;
1766 		if (!kvm_arm_vcpu_is_finalized(vcpu))
1767 			break;
1768 
1769 		r = -EFAULT;
1770 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1771 			break;
1772 		n = reg_list.n;
1773 		reg_list.n = kvm_arm_num_regs(vcpu);
1774 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1775 			break;
1776 		r = -E2BIG;
1777 		if (n < reg_list.n)
1778 			break;
1779 		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1780 		break;
1781 	}
1782 	case KVM_SET_DEVICE_ATTR: {
1783 		r = -EFAULT;
1784 		if (copy_from_user(&attr, argp, sizeof(attr)))
1785 			break;
1786 		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1787 		break;
1788 	}
1789 	case KVM_GET_DEVICE_ATTR: {
1790 		r = -EFAULT;
1791 		if (copy_from_user(&attr, argp, sizeof(attr)))
1792 			break;
1793 		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1794 		break;
1795 	}
1796 	case KVM_HAS_DEVICE_ATTR: {
1797 		r = -EFAULT;
1798 		if (copy_from_user(&attr, argp, sizeof(attr)))
1799 			break;
1800 		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1801 		break;
1802 	}
1803 	case KVM_GET_VCPU_EVENTS: {
1804 		struct kvm_vcpu_events events;
1805 
1806 		if (!kvm_vcpu_initialized(vcpu))
1807 			return -ENOEXEC;
1808 
1809 		if (kvm_arm_vcpu_get_events(vcpu, &events))
1810 			return -EINVAL;
1811 
1812 		if (copy_to_user(argp, &events, sizeof(events)))
1813 			return -EFAULT;
1814 
1815 		return 0;
1816 	}
1817 	case KVM_SET_VCPU_EVENTS: {
1818 		struct kvm_vcpu_events events;
1819 
1820 		if (!kvm_vcpu_initialized(vcpu))
1821 			return -ENOEXEC;
1822 
1823 		if (copy_from_user(&events, argp, sizeof(events)))
1824 			return -EFAULT;
1825 
1826 		return kvm_arm_vcpu_set_events(vcpu, &events);
1827 	}
1828 	case KVM_ARM_VCPU_FINALIZE: {
1829 		int what;
1830 
1831 		if (!kvm_vcpu_initialized(vcpu))
1832 			return -ENOEXEC;
1833 
1834 		if (get_user(what, (const int __user *)argp))
1835 			return -EFAULT;
1836 
1837 		return kvm_arm_vcpu_finalize(vcpu, what);
1838 	}
1839 	default:
1840 		r = -EINVAL;
1841 	}
1842 
1843 	return r;
1844 }
1845 
kvm_arch_vcpu_unlocked_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1846 long kvm_arch_vcpu_unlocked_ioctl(struct file *filp, unsigned int ioctl,
1847 				  unsigned long arg)
1848 {
1849 	return -ENOIOCTLCMD;
1850 }
1851 
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)1852 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1853 {
1854 
1855 }
1856 
kvm_vm_ioctl_set_device_addr(struct kvm * kvm,struct kvm_arm_device_addr * dev_addr)1857 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1858 					struct kvm_arm_device_addr *dev_addr)
1859 {
1860 	switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
1861 	case KVM_ARM_DEVICE_VGIC_V2:
1862 		if (!vgic_present)
1863 			return -ENXIO;
1864 		return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
1865 	default:
1866 		return -ENODEV;
1867 	}
1868 }
1869 
kvm_vm_has_attr(struct kvm * kvm,struct kvm_device_attr * attr)1870 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1871 {
1872 	switch (attr->group) {
1873 	case KVM_ARM_VM_SMCCC_CTRL:
1874 		return kvm_vm_smccc_has_attr(kvm, attr);
1875 	default:
1876 		return -ENXIO;
1877 	}
1878 }
1879 
kvm_vm_set_attr(struct kvm * kvm,struct kvm_device_attr * attr)1880 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1881 {
1882 	switch (attr->group) {
1883 	case KVM_ARM_VM_SMCCC_CTRL:
1884 		return kvm_vm_smccc_set_attr(kvm, attr);
1885 	default:
1886 		return -ENXIO;
1887 	}
1888 }
1889 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1890 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1891 {
1892 	struct kvm *kvm = filp->private_data;
1893 	void __user *argp = (void __user *)arg;
1894 	struct kvm_device_attr attr;
1895 
1896 	switch (ioctl) {
1897 	case KVM_CREATE_IRQCHIP: {
1898 		int ret;
1899 		if (!vgic_present)
1900 			return -ENXIO;
1901 		mutex_lock(&kvm->lock);
1902 		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1903 		mutex_unlock(&kvm->lock);
1904 		return ret;
1905 	}
1906 	case KVM_ARM_SET_DEVICE_ADDR: {
1907 		struct kvm_arm_device_addr dev_addr;
1908 
1909 		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1910 			return -EFAULT;
1911 		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1912 	}
1913 	case KVM_ARM_PREFERRED_TARGET: {
1914 		struct kvm_vcpu_init init = {
1915 			.target = KVM_ARM_TARGET_GENERIC_V8,
1916 		};
1917 
1918 		if (copy_to_user(argp, &init, sizeof(init)))
1919 			return -EFAULT;
1920 
1921 		return 0;
1922 	}
1923 	case KVM_ARM_MTE_COPY_TAGS: {
1924 		struct kvm_arm_copy_mte_tags copy_tags;
1925 
1926 		if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1927 			return -EFAULT;
1928 		return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1929 	}
1930 	case KVM_ARM_SET_COUNTER_OFFSET: {
1931 		struct kvm_arm_counter_offset offset;
1932 
1933 		if (copy_from_user(&offset, argp, sizeof(offset)))
1934 			return -EFAULT;
1935 		return kvm_vm_ioctl_set_counter_offset(kvm, &offset);
1936 	}
1937 	case KVM_HAS_DEVICE_ATTR: {
1938 		if (copy_from_user(&attr, argp, sizeof(attr)))
1939 			return -EFAULT;
1940 
1941 		return kvm_vm_has_attr(kvm, &attr);
1942 	}
1943 	case KVM_SET_DEVICE_ATTR: {
1944 		if (copy_from_user(&attr, argp, sizeof(attr)))
1945 			return -EFAULT;
1946 
1947 		return kvm_vm_set_attr(kvm, &attr);
1948 	}
1949 	case KVM_ARM_GET_REG_WRITABLE_MASKS: {
1950 		struct reg_mask_range range;
1951 
1952 		if (copy_from_user(&range, argp, sizeof(range)))
1953 			return -EFAULT;
1954 		return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range);
1955 	}
1956 	default:
1957 		return -EINVAL;
1958 	}
1959 }
1960 
nvhe_percpu_size(void)1961 static unsigned long nvhe_percpu_size(void)
1962 {
1963 	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1964 		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1965 }
1966 
nvhe_percpu_order(void)1967 static unsigned long nvhe_percpu_order(void)
1968 {
1969 	unsigned long size = nvhe_percpu_size();
1970 
1971 	return size ? get_order(size) : 0;
1972 }
1973 
pkvm_host_sve_state_order(void)1974 static size_t pkvm_host_sve_state_order(void)
1975 {
1976 	return get_order(pkvm_host_sve_state_size());
1977 }
1978 
1979 /* A lookup table holding the hypervisor VA for each vector slot */
1980 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1981 
kvm_init_vector_slot(void * base,enum arm64_hyp_spectre_vector slot)1982 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1983 {
1984 	hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1985 }
1986 
kvm_init_vector_slots(void)1987 static int kvm_init_vector_slots(void)
1988 {
1989 	int err;
1990 	void *base;
1991 
1992 	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1993 	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1994 
1995 	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1996 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1997 
1998 	if (kvm_system_needs_idmapped_vectors() &&
1999 	    !is_protected_kvm_enabled()) {
2000 		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
2001 					       __BP_HARDEN_HYP_VECS_SZ, &base);
2002 		if (err)
2003 			return err;
2004 	}
2005 
2006 	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
2007 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
2008 	return 0;
2009 }
2010 
cpu_prepare_hyp_mode(int cpu,u32 hyp_va_bits)2011 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits)
2012 {
2013 	struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2014 	unsigned long tcr;
2015 
2016 	/*
2017 	 * Calculate the raw per-cpu offset without a translation from the
2018 	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
2019 	 * so that we can use adr_l to access per-cpu variables in EL2.
2020 	 * Also drop the KASAN tag which gets in the way...
2021 	 */
2022 	params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
2023 			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
2024 
2025 	params->mair_el2 = read_sysreg(mair_el1);
2026 
2027 	tcr = read_sysreg(tcr_el1);
2028 	if (cpus_have_final_cap(ARM64_KVM_HVHE)) {
2029 		tcr &= ~(TCR_HD | TCR_HA | TCR_A1 | TCR_T0SZ_MASK);
2030 		tcr |= TCR_EPD1_MASK;
2031 	} else {
2032 		unsigned long ips = FIELD_GET(TCR_IPS_MASK, tcr);
2033 
2034 		tcr &= TCR_EL2_MASK;
2035 		tcr |= TCR_EL2_RES1 | FIELD_PREP(TCR_EL2_PS_MASK, ips);
2036 		if (lpa2_is_enabled())
2037 			tcr |= TCR_EL2_DS;
2038 	}
2039 	tcr |= TCR_T0SZ(hyp_va_bits);
2040 	params->tcr_el2 = tcr;
2041 
2042 	params->pgd_pa = kvm_mmu_get_httbr();
2043 	if (is_protected_kvm_enabled())
2044 		params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
2045 	else
2046 		params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
2047 	if (cpus_have_final_cap(ARM64_KVM_HVHE))
2048 		params->hcr_el2 |= HCR_E2H;
2049 	params->vttbr = params->vtcr = 0;
2050 
2051 	/*
2052 	 * Flush the init params from the data cache because the struct will
2053 	 * be read while the MMU is off.
2054 	 */
2055 	kvm_flush_dcache_to_poc(params, sizeof(*params));
2056 }
2057 
hyp_install_host_vector(void)2058 static void hyp_install_host_vector(void)
2059 {
2060 	struct kvm_nvhe_init_params *params;
2061 	struct arm_smccc_res res;
2062 
2063 	/* Switch from the HYP stub to our own HYP init vector */
2064 	__hyp_set_vectors(kvm_get_idmap_vector());
2065 
2066 	/*
2067 	 * Call initialization code, and switch to the full blown HYP code.
2068 	 * If the cpucaps haven't been finalized yet, something has gone very
2069 	 * wrong, and hyp will crash and burn when it uses any
2070 	 * cpus_have_*_cap() wrapper.
2071 	 */
2072 	BUG_ON(!system_capabilities_finalized());
2073 	params = this_cpu_ptr_nvhe_sym(kvm_init_params);
2074 	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
2075 	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
2076 }
2077 
cpu_init_hyp_mode(void)2078 static void cpu_init_hyp_mode(void)
2079 {
2080 	hyp_install_host_vector();
2081 
2082 	/*
2083 	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
2084 	 * at EL2.
2085 	 */
2086 	if (this_cpu_has_cap(ARM64_SSBS) &&
2087 	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
2088 		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
2089 	}
2090 }
2091 
cpu_hyp_reset(void)2092 static void cpu_hyp_reset(void)
2093 {
2094 	if (!is_kernel_in_hyp_mode())
2095 		__hyp_reset_vectors();
2096 }
2097 
2098 /*
2099  * EL2 vectors can be mapped and rerouted in a number of ways,
2100  * depending on the kernel configuration and CPU present:
2101  *
2102  * - If the CPU is affected by Spectre-v2, the hardening sequence is
2103  *   placed in one of the vector slots, which is executed before jumping
2104  *   to the real vectors.
2105  *
2106  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
2107  *   containing the hardening sequence is mapped next to the idmap page,
2108  *   and executed before jumping to the real vectors.
2109  *
2110  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
2111  *   empty slot is selected, mapped next to the idmap page, and
2112  *   executed before jumping to the real vectors.
2113  *
2114  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
2115  * VHE, as we don't have hypervisor-specific mappings. If the system
2116  * is VHE and yet selects this capability, it will be ignored.
2117  */
cpu_set_hyp_vector(void)2118 static void cpu_set_hyp_vector(void)
2119 {
2120 	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
2121 	void *vector = hyp_spectre_vector_selector[data->slot];
2122 
2123 	if (!is_protected_kvm_enabled())
2124 		*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
2125 	else
2126 		kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
2127 }
2128 
cpu_hyp_init_context(void)2129 static void cpu_hyp_init_context(void)
2130 {
2131 	kvm_init_host_cpu_context(host_data_ptr(host_ctxt));
2132 	kvm_init_host_debug_data();
2133 
2134 	if (!is_kernel_in_hyp_mode())
2135 		cpu_init_hyp_mode();
2136 }
2137 
cpu_hyp_init_features(void)2138 static void cpu_hyp_init_features(void)
2139 {
2140 	cpu_set_hyp_vector();
2141 
2142 	if (is_kernel_in_hyp_mode()) {
2143 		kvm_timer_init_vhe();
2144 		kvm_debug_init_vhe();
2145 	}
2146 
2147 	if (vgic_present)
2148 		kvm_vgic_init_cpu_hardware();
2149 }
2150 
cpu_hyp_reinit(void)2151 static void cpu_hyp_reinit(void)
2152 {
2153 	cpu_hyp_reset();
2154 	cpu_hyp_init_context();
2155 	cpu_hyp_init_features();
2156 }
2157 
cpu_hyp_init(void * discard)2158 static void cpu_hyp_init(void *discard)
2159 {
2160 	if (!__this_cpu_read(kvm_hyp_initialized)) {
2161 		cpu_hyp_reinit();
2162 		__this_cpu_write(kvm_hyp_initialized, 1);
2163 	}
2164 }
2165 
cpu_hyp_uninit(void * discard)2166 static void cpu_hyp_uninit(void *discard)
2167 {
2168 	if (!is_protected_kvm_enabled() && __this_cpu_read(kvm_hyp_initialized)) {
2169 		cpu_hyp_reset();
2170 		__this_cpu_write(kvm_hyp_initialized, 0);
2171 	}
2172 }
2173 
kvm_arch_enable_virtualization_cpu(void)2174 int kvm_arch_enable_virtualization_cpu(void)
2175 {
2176 	/*
2177 	 * Most calls to this function are made with migration
2178 	 * disabled, but not with preemption disabled. The former is
2179 	 * enough to ensure correctness, but most of the helpers
2180 	 * expect the later and will throw a tantrum otherwise.
2181 	 */
2182 	preempt_disable();
2183 
2184 	cpu_hyp_init(NULL);
2185 
2186 	kvm_vgic_cpu_up();
2187 	kvm_timer_cpu_up();
2188 
2189 	preempt_enable();
2190 
2191 	return 0;
2192 }
2193 
kvm_arch_disable_virtualization_cpu(void)2194 void kvm_arch_disable_virtualization_cpu(void)
2195 {
2196 	kvm_timer_cpu_down();
2197 	kvm_vgic_cpu_down();
2198 
2199 	if (!is_protected_kvm_enabled())
2200 		cpu_hyp_uninit(NULL);
2201 }
2202 
2203 #ifdef CONFIG_CPU_PM
hyp_init_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)2204 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
2205 				    unsigned long cmd,
2206 				    void *v)
2207 {
2208 	/*
2209 	 * kvm_hyp_initialized is left with its old value over
2210 	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
2211 	 * re-enable hyp.
2212 	 */
2213 	switch (cmd) {
2214 	case CPU_PM_ENTER:
2215 		if (__this_cpu_read(kvm_hyp_initialized))
2216 			/*
2217 			 * don't update kvm_hyp_initialized here
2218 			 * so that the hyp will be re-enabled
2219 			 * when we resume. See below.
2220 			 */
2221 			cpu_hyp_reset();
2222 
2223 		return NOTIFY_OK;
2224 	case CPU_PM_ENTER_FAILED:
2225 	case CPU_PM_EXIT:
2226 		if (__this_cpu_read(kvm_hyp_initialized))
2227 			/* The hyp was enabled before suspend. */
2228 			cpu_hyp_reinit();
2229 
2230 		return NOTIFY_OK;
2231 
2232 	default:
2233 		return NOTIFY_DONE;
2234 	}
2235 }
2236 
2237 static struct notifier_block hyp_init_cpu_pm_nb = {
2238 	.notifier_call = hyp_init_cpu_pm_notifier,
2239 };
2240 
hyp_cpu_pm_init(void)2241 static void __init hyp_cpu_pm_init(void)
2242 {
2243 	if (!is_protected_kvm_enabled())
2244 		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
2245 }
hyp_cpu_pm_exit(void)2246 static void __init hyp_cpu_pm_exit(void)
2247 {
2248 	if (!is_protected_kvm_enabled())
2249 		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
2250 }
2251 #else
hyp_cpu_pm_init(void)2252 static inline void __init hyp_cpu_pm_init(void)
2253 {
2254 }
hyp_cpu_pm_exit(void)2255 static inline void __init hyp_cpu_pm_exit(void)
2256 {
2257 }
2258 #endif
2259 
init_cpu_logical_map(void)2260 static void __init init_cpu_logical_map(void)
2261 {
2262 	unsigned int cpu;
2263 
2264 	/*
2265 	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
2266 	 * Only copy the set of online CPUs whose features have been checked
2267 	 * against the finalized system capabilities. The hypervisor will not
2268 	 * allow any other CPUs from the `possible` set to boot.
2269 	 */
2270 	for_each_online_cpu(cpu)
2271 		hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
2272 }
2273 
2274 #define init_psci_0_1_impl_state(config, what)	\
2275 	config.psci_0_1_ ## what ## _implemented = psci_ops.what
2276 
init_psci_relay(void)2277 static bool __init init_psci_relay(void)
2278 {
2279 	/*
2280 	 * If PSCI has not been initialized, protected KVM cannot install
2281 	 * itself on newly booted CPUs.
2282 	 */
2283 	if (!psci_ops.get_version) {
2284 		kvm_err("Cannot initialize protected mode without PSCI\n");
2285 		return false;
2286 	}
2287 
2288 	kvm_host_psci_config.version = psci_ops.get_version();
2289 	kvm_host_psci_config.smccc_version = arm_smccc_get_version();
2290 
2291 	if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
2292 		kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
2293 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
2294 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
2295 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
2296 		init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
2297 	}
2298 	return true;
2299 }
2300 
init_subsystems(void)2301 static int __init init_subsystems(void)
2302 {
2303 	int err = 0;
2304 
2305 	/*
2306 	 * Enable hardware so that subsystem initialisation can access EL2.
2307 	 */
2308 	on_each_cpu(cpu_hyp_init, NULL, 1);
2309 
2310 	/*
2311 	 * Register CPU lower-power notifier
2312 	 */
2313 	hyp_cpu_pm_init();
2314 
2315 	/*
2316 	 * Init HYP view of VGIC
2317 	 */
2318 	err = kvm_vgic_hyp_init();
2319 	switch (err) {
2320 	case 0:
2321 		vgic_present = true;
2322 		break;
2323 	case -ENODEV:
2324 	case -ENXIO:
2325 		/*
2326 		 * No VGIC? No pKVM for you.
2327 		 *
2328 		 * Protected mode assumes that VGICv3 is present, so no point
2329 		 * in trying to hobble along if vgic initialization fails.
2330 		 */
2331 		if (is_protected_kvm_enabled())
2332 			goto out;
2333 
2334 		/*
2335 		 * Otherwise, userspace could choose to implement a GIC for its
2336 		 * guest on non-cooperative hardware.
2337 		 */
2338 		vgic_present = false;
2339 		err = 0;
2340 		break;
2341 	default:
2342 		goto out;
2343 	}
2344 
2345 	if (kvm_mode == KVM_MODE_NV &&
2346 		!(vgic_present && (kvm_vgic_global_state.type == VGIC_V3 ||
2347 				   kvm_vgic_global_state.has_gcie_v3_compat))) {
2348 		kvm_err("NV support requires GICv3 or GICv5 with legacy support, giving up\n");
2349 		err = -EINVAL;
2350 		goto out;
2351 	}
2352 
2353 	/*
2354 	 * Init HYP architected timer support
2355 	 */
2356 	err = kvm_timer_hyp_init(vgic_present);
2357 	if (err)
2358 		goto out;
2359 
2360 	kvm_register_perf_callbacks(NULL);
2361 
2362 out:
2363 	if (err)
2364 		hyp_cpu_pm_exit();
2365 
2366 	if (err || !is_protected_kvm_enabled())
2367 		on_each_cpu(cpu_hyp_uninit, NULL, 1);
2368 
2369 	return err;
2370 }
2371 
teardown_subsystems(void)2372 static void __init teardown_subsystems(void)
2373 {
2374 	kvm_unregister_perf_callbacks();
2375 	hyp_cpu_pm_exit();
2376 }
2377 
teardown_hyp_mode(void)2378 static void __init teardown_hyp_mode(void)
2379 {
2380 	bool free_sve = system_supports_sve() && is_protected_kvm_enabled();
2381 	int cpu;
2382 
2383 	free_hyp_pgds();
2384 	for_each_possible_cpu(cpu) {
2385 		if (per_cpu(kvm_hyp_initialized, cpu))
2386 			continue;
2387 
2388 		free_pages(per_cpu(kvm_arm_hyp_stack_base, cpu), NVHE_STACK_SHIFT - PAGE_SHIFT);
2389 
2390 		if (!kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu])
2391 			continue;
2392 
2393 		if (free_sve) {
2394 			struct cpu_sve_state *sve_state;
2395 
2396 			sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state;
2397 			free_pages((unsigned long) sve_state, pkvm_host_sve_state_order());
2398 		}
2399 
2400 		free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
2401 
2402 	}
2403 }
2404 
do_pkvm_init(u32 hyp_va_bits)2405 static int __init do_pkvm_init(u32 hyp_va_bits)
2406 {
2407 	void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
2408 	int ret;
2409 
2410 	preempt_disable();
2411 	cpu_hyp_init_context();
2412 	ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
2413 				num_possible_cpus(), kern_hyp_va(per_cpu_base),
2414 				hyp_va_bits);
2415 	cpu_hyp_init_features();
2416 
2417 	/*
2418 	 * The stub hypercalls are now disabled, so set our local flag to
2419 	 * prevent a later re-init attempt in kvm_arch_enable_virtualization_cpu().
2420 	 */
2421 	__this_cpu_write(kvm_hyp_initialized, 1);
2422 	preempt_enable();
2423 
2424 	return ret;
2425 }
2426 
get_hyp_id_aa64pfr0_el1(void)2427 static u64 get_hyp_id_aa64pfr0_el1(void)
2428 {
2429 	/*
2430 	 * Track whether the system isn't affected by spectre/meltdown in the
2431 	 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs.
2432 	 * Although this is per-CPU, we make it global for simplicity, e.g., not
2433 	 * to have to worry about vcpu migration.
2434 	 *
2435 	 * Unlike for non-protected VMs, userspace cannot override this for
2436 	 * protected VMs.
2437 	 */
2438 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2439 
2440 	val &= ~(ID_AA64PFR0_EL1_CSV2 |
2441 		 ID_AA64PFR0_EL1_CSV3);
2442 
2443 	val |= FIELD_PREP(ID_AA64PFR0_EL1_CSV2,
2444 			  arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED);
2445 	val |= FIELD_PREP(ID_AA64PFR0_EL1_CSV3,
2446 			  arm64_get_meltdown_state() == SPECTRE_UNAFFECTED);
2447 
2448 	return val;
2449 }
2450 
kvm_hyp_init_symbols(void)2451 static void kvm_hyp_init_symbols(void)
2452 {
2453 	kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1();
2454 	kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
2455 	kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
2456 	kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2457 	kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
2458 	kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
2459 	kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2460 	kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
2461 	kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1);
2462 	kvm_nvhe_sym(__icache_flags) = __icache_flags;
2463 	kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
2464 
2465 	/* Propagate the FGT state to the nVHE side */
2466 	kvm_nvhe_sym(hfgrtr_masks)  = hfgrtr_masks;
2467 	kvm_nvhe_sym(hfgwtr_masks)  = hfgwtr_masks;
2468 	kvm_nvhe_sym(hfgitr_masks)  = hfgitr_masks;
2469 	kvm_nvhe_sym(hdfgrtr_masks) = hdfgrtr_masks;
2470 	kvm_nvhe_sym(hdfgwtr_masks) = hdfgwtr_masks;
2471 	kvm_nvhe_sym(hafgrtr_masks) = hafgrtr_masks;
2472 	kvm_nvhe_sym(hfgrtr2_masks) = hfgrtr2_masks;
2473 	kvm_nvhe_sym(hfgwtr2_masks) = hfgwtr2_masks;
2474 	kvm_nvhe_sym(hfgitr2_masks) = hfgitr2_masks;
2475 	kvm_nvhe_sym(hdfgrtr2_masks)= hdfgrtr2_masks;
2476 	kvm_nvhe_sym(hdfgwtr2_masks)= hdfgwtr2_masks;
2477 
2478 	/*
2479 	 * Flush entire BSS since part of its data containing init symbols is read
2480 	 * while the MMU is off.
2481 	 */
2482 	kvm_flush_dcache_to_poc(kvm_ksym_ref(__hyp_bss_start),
2483 				kvm_ksym_ref(__hyp_bss_end) - kvm_ksym_ref(__hyp_bss_start));
2484 }
2485 
kvm_hyp_init_protection(u32 hyp_va_bits)2486 static int __init kvm_hyp_init_protection(u32 hyp_va_bits)
2487 {
2488 	void *addr = phys_to_virt(hyp_mem_base);
2489 	int ret;
2490 
2491 	ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
2492 	if (ret)
2493 		return ret;
2494 
2495 	ret = do_pkvm_init(hyp_va_bits);
2496 	if (ret)
2497 		return ret;
2498 
2499 	free_hyp_pgds();
2500 
2501 	return 0;
2502 }
2503 
init_pkvm_host_sve_state(void)2504 static int init_pkvm_host_sve_state(void)
2505 {
2506 	int cpu;
2507 
2508 	if (!system_supports_sve())
2509 		return 0;
2510 
2511 	/* Allocate pages for host sve state in protected mode. */
2512 	for_each_possible_cpu(cpu) {
2513 		struct page *page = alloc_pages(GFP_KERNEL, pkvm_host_sve_state_order());
2514 
2515 		if (!page)
2516 			return -ENOMEM;
2517 
2518 		per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = page_address(page);
2519 	}
2520 
2521 	/*
2522 	 * Don't map the pages in hyp since these are only used in protected
2523 	 * mode, which will (re)create its own mapping when initialized.
2524 	 */
2525 
2526 	return 0;
2527 }
2528 
2529 /*
2530  * Finalizes the initialization of hyp mode, once everything else is initialized
2531  * and the initialziation process cannot fail.
2532  */
finalize_init_hyp_mode(void)2533 static void finalize_init_hyp_mode(void)
2534 {
2535 	int cpu;
2536 
2537 	if (system_supports_sve() && is_protected_kvm_enabled()) {
2538 		for_each_possible_cpu(cpu) {
2539 			struct cpu_sve_state *sve_state;
2540 
2541 			sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state;
2542 			per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state =
2543 				kern_hyp_va(sve_state);
2544 		}
2545 	}
2546 }
2547 
pkvm_hyp_init_ptrauth(void)2548 static void pkvm_hyp_init_ptrauth(void)
2549 {
2550 	struct kvm_cpu_context *hyp_ctxt;
2551 	int cpu;
2552 
2553 	for_each_possible_cpu(cpu) {
2554 		hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu);
2555 		hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long();
2556 		hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long();
2557 		hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long();
2558 		hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long();
2559 		hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long();
2560 		hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long();
2561 		hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long();
2562 		hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long();
2563 		hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long();
2564 		hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long();
2565 	}
2566 }
2567 
2568 /* Inits Hyp-mode on all online CPUs */
init_hyp_mode(void)2569 static int __init init_hyp_mode(void)
2570 {
2571 	u32 hyp_va_bits;
2572 	int cpu;
2573 	int err = -ENOMEM;
2574 
2575 	/*
2576 	 * The protected Hyp-mode cannot be initialized if the memory pool
2577 	 * allocation has failed.
2578 	 */
2579 	if (is_protected_kvm_enabled() && !hyp_mem_base)
2580 		goto out_err;
2581 
2582 	/*
2583 	 * Allocate Hyp PGD and setup Hyp identity mapping
2584 	 */
2585 	err = kvm_mmu_init(&hyp_va_bits);
2586 	if (err)
2587 		goto out_err;
2588 
2589 	/*
2590 	 * Allocate stack pages for Hypervisor-mode
2591 	 */
2592 	for_each_possible_cpu(cpu) {
2593 		unsigned long stack_base;
2594 
2595 		stack_base = __get_free_pages(GFP_KERNEL, NVHE_STACK_SHIFT - PAGE_SHIFT);
2596 		if (!stack_base) {
2597 			err = -ENOMEM;
2598 			goto out_err;
2599 		}
2600 
2601 		per_cpu(kvm_arm_hyp_stack_base, cpu) = stack_base;
2602 	}
2603 
2604 	/*
2605 	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
2606 	 */
2607 	for_each_possible_cpu(cpu) {
2608 		struct page *page;
2609 		void *page_addr;
2610 
2611 		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
2612 		if (!page) {
2613 			err = -ENOMEM;
2614 			goto out_err;
2615 		}
2616 
2617 		page_addr = page_address(page);
2618 		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
2619 		kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
2620 	}
2621 
2622 	/*
2623 	 * Map the Hyp-code called directly from the host
2624 	 */
2625 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
2626 				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
2627 	if (err) {
2628 		kvm_err("Cannot map world-switch code\n");
2629 		goto out_err;
2630 	}
2631 
2632 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_data_start),
2633 				  kvm_ksym_ref(__hyp_data_end), PAGE_HYP);
2634 	if (err) {
2635 		kvm_err("Cannot map .hyp.data section\n");
2636 		goto out_err;
2637 	}
2638 
2639 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
2640 				  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
2641 	if (err) {
2642 		kvm_err("Cannot map .hyp.rodata section\n");
2643 		goto out_err;
2644 	}
2645 
2646 	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
2647 				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
2648 	if (err) {
2649 		kvm_err("Cannot map rodata section\n");
2650 		goto out_err;
2651 	}
2652 
2653 	/*
2654 	 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
2655 	 * section thanks to an assertion in the linker script. Map it RW and
2656 	 * the rest of .bss RO.
2657 	 */
2658 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
2659 				  kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
2660 	if (err) {
2661 		kvm_err("Cannot map hyp bss section: %d\n", err);
2662 		goto out_err;
2663 	}
2664 
2665 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
2666 				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
2667 	if (err) {
2668 		kvm_err("Cannot map bss section\n");
2669 		goto out_err;
2670 	}
2671 
2672 	/*
2673 	 * Map the Hyp stack pages
2674 	 */
2675 	for_each_possible_cpu(cpu) {
2676 		struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2677 		char *stack_base = (char *)per_cpu(kvm_arm_hyp_stack_base, cpu);
2678 
2679 		err = create_hyp_stack(__pa(stack_base), &params->stack_hyp_va);
2680 		if (err) {
2681 			kvm_err("Cannot map hyp stack\n");
2682 			goto out_err;
2683 		}
2684 
2685 		/*
2686 		 * Save the stack PA in nvhe_init_params. This will be needed
2687 		 * to recreate the stack mapping in protected nVHE mode.
2688 		 * __hyp_pa() won't do the right thing there, since the stack
2689 		 * has been mapped in the flexible private VA space.
2690 		 */
2691 		params->stack_pa = __pa(stack_base);
2692 	}
2693 
2694 	for_each_possible_cpu(cpu) {
2695 		char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
2696 		char *percpu_end = percpu_begin + nvhe_percpu_size();
2697 
2698 		/* Map Hyp percpu pages */
2699 		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2700 		if (err) {
2701 			kvm_err("Cannot map hyp percpu region\n");
2702 			goto out_err;
2703 		}
2704 
2705 		/* Prepare the CPU initialization parameters */
2706 		cpu_prepare_hyp_mode(cpu, hyp_va_bits);
2707 	}
2708 
2709 	kvm_hyp_init_symbols();
2710 
2711 	if (is_protected_kvm_enabled()) {
2712 		if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) &&
2713 		    cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH))
2714 			pkvm_hyp_init_ptrauth();
2715 
2716 		init_cpu_logical_map();
2717 
2718 		if (!init_psci_relay()) {
2719 			err = -ENODEV;
2720 			goto out_err;
2721 		}
2722 
2723 		err = init_pkvm_host_sve_state();
2724 		if (err)
2725 			goto out_err;
2726 
2727 		err = kvm_hyp_init_protection(hyp_va_bits);
2728 		if (err) {
2729 			kvm_err("Failed to init hyp memory protection\n");
2730 			goto out_err;
2731 		}
2732 	}
2733 
2734 	return 0;
2735 
2736 out_err:
2737 	teardown_hyp_mode();
2738 	kvm_err("error initializing Hyp mode: %d\n", err);
2739 	return err;
2740 }
2741 
kvm_mpidr_to_vcpu(struct kvm * kvm,unsigned long mpidr)2742 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2743 {
2744 	struct kvm_vcpu *vcpu = NULL;
2745 	struct kvm_mpidr_data *data;
2746 	unsigned long i;
2747 
2748 	mpidr &= MPIDR_HWID_BITMASK;
2749 
2750 	rcu_read_lock();
2751 	data = rcu_dereference(kvm->arch.mpidr_data);
2752 
2753 	if (data) {
2754 		u16 idx = kvm_mpidr_index(data, mpidr);
2755 
2756 		vcpu = kvm_get_vcpu(kvm, data->cmpidr_to_idx[idx]);
2757 		if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu))
2758 			vcpu = NULL;
2759 	}
2760 
2761 	rcu_read_unlock();
2762 
2763 	if (vcpu)
2764 		return vcpu;
2765 
2766 	kvm_for_each_vcpu(i, vcpu, kvm) {
2767 		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2768 			return vcpu;
2769 	}
2770 	return NULL;
2771 }
2772 
kvm_arch_irqchip_in_kernel(struct kvm * kvm)2773 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2774 {
2775 	return irqchip_in_kernel(kvm);
2776 }
2777 
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)2778 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2779 				      struct irq_bypass_producer *prod)
2780 {
2781 	struct kvm_kernel_irqfd *irqfd =
2782 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2783 	struct kvm_kernel_irq_routing_entry *irq_entry = &irqfd->irq_entry;
2784 
2785 	/*
2786 	 * The only thing we have a chance of directly-injecting is LPIs. Maybe
2787 	 * one day...
2788 	 */
2789 	if (irq_entry->type != KVM_IRQ_ROUTING_MSI)
2790 		return 0;
2791 
2792 	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2793 					  &irqfd->irq_entry);
2794 }
2795 
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)2796 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2797 				      struct irq_bypass_producer *prod)
2798 {
2799 	struct kvm_kernel_irqfd *irqfd =
2800 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2801 	struct kvm_kernel_irq_routing_entry *irq_entry = &irqfd->irq_entry;
2802 
2803 	if (irq_entry->type != KVM_IRQ_ROUTING_MSI)
2804 		return;
2805 
2806 	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq);
2807 }
2808 
kvm_arch_update_irqfd_routing(struct kvm_kernel_irqfd * irqfd,struct kvm_kernel_irq_routing_entry * old,struct kvm_kernel_irq_routing_entry * new)2809 void kvm_arch_update_irqfd_routing(struct kvm_kernel_irqfd *irqfd,
2810 				   struct kvm_kernel_irq_routing_entry *old,
2811 				   struct kvm_kernel_irq_routing_entry *new)
2812 {
2813 	if (old->type == KVM_IRQ_ROUTING_MSI &&
2814 	    new->type == KVM_IRQ_ROUTING_MSI &&
2815 	    !memcmp(&old->msi, &new->msi, sizeof(new->msi)))
2816 		return;
2817 
2818 	/*
2819 	 * Remapping the vLPI requires taking the its_lock mutex to resolve
2820 	 * the new translation. We're in spinlock land at this point, so no
2821 	 * chance of resolving the translation.
2822 	 *
2823 	 * Unmap the vLPI and fall back to software LPI injection.
2824 	 */
2825 	return kvm_vgic_v4_unset_forwarding(irqfd->kvm, irqfd->producer->irq);
2826 }
2827 
kvm_arch_irq_bypass_stop(struct irq_bypass_consumer * cons)2828 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2829 {
2830 	struct kvm_kernel_irqfd *irqfd =
2831 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2832 
2833 	kvm_arm_halt_guest(irqfd->kvm);
2834 }
2835 
kvm_arch_irq_bypass_start(struct irq_bypass_consumer * cons)2836 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2837 {
2838 	struct kvm_kernel_irqfd *irqfd =
2839 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2840 
2841 	kvm_arm_resume_guest(irqfd->kvm);
2842 }
2843 
2844 /* Initialize Hyp-mode and memory mappings on all CPUs */
kvm_arm_init(void)2845 static __init int kvm_arm_init(void)
2846 {
2847 	int err;
2848 	bool in_hyp_mode;
2849 
2850 	if (!is_hyp_mode_available()) {
2851 		kvm_info("HYP mode not available\n");
2852 		return -ENODEV;
2853 	}
2854 
2855 	if (kvm_get_mode() == KVM_MODE_NONE) {
2856 		kvm_info("KVM disabled from command line\n");
2857 		return -ENODEV;
2858 	}
2859 
2860 	err = kvm_sys_reg_table_init();
2861 	if (err) {
2862 		kvm_info("Error initializing system register tables");
2863 		return err;
2864 	}
2865 
2866 	in_hyp_mode = is_kernel_in_hyp_mode();
2867 
2868 	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2869 	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2870 		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2871 			 "Only trusted guests should be used on this system.\n");
2872 
2873 	err = kvm_set_ipa_limit();
2874 	if (err)
2875 		return err;
2876 
2877 	err = kvm_arm_init_sve();
2878 	if (err)
2879 		return err;
2880 
2881 	err = kvm_arm_vmid_alloc_init();
2882 	if (err) {
2883 		kvm_err("Failed to initialize VMID allocator.\n");
2884 		return err;
2885 	}
2886 
2887 	if (!in_hyp_mode) {
2888 		err = init_hyp_mode();
2889 		if (err)
2890 			goto out_err;
2891 	}
2892 
2893 	err = kvm_init_vector_slots();
2894 	if (err) {
2895 		kvm_err("Cannot initialise vector slots\n");
2896 		goto out_hyp;
2897 	}
2898 
2899 	err = init_subsystems();
2900 	if (err)
2901 		goto out_hyp;
2902 
2903 	kvm_info("%s%sVHE%s mode initialized successfully\n",
2904 		 in_hyp_mode ? "" : (is_protected_kvm_enabled() ?
2905 				     "Protected " : "Hyp "),
2906 		 in_hyp_mode ? "" : (cpus_have_final_cap(ARM64_KVM_HVHE) ?
2907 				     "h" : "n"),
2908 		 cpus_have_final_cap(ARM64_HAS_NESTED_VIRT) ? "+NV2": "");
2909 
2910 	/*
2911 	 * FIXME: Do something reasonable if kvm_init() fails after pKVM
2912 	 * hypervisor protection is finalized.
2913 	 */
2914 	err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2915 	if (err)
2916 		goto out_subs;
2917 
2918 	/*
2919 	 * This should be called after initialization is done and failure isn't
2920 	 * possible anymore.
2921 	 */
2922 	if (!in_hyp_mode)
2923 		finalize_init_hyp_mode();
2924 
2925 	kvm_arm_initialised = true;
2926 
2927 	return 0;
2928 
2929 out_subs:
2930 	teardown_subsystems();
2931 out_hyp:
2932 	if (!in_hyp_mode)
2933 		teardown_hyp_mode();
2934 out_err:
2935 	kvm_arm_vmid_alloc_free();
2936 	return err;
2937 }
2938 
early_kvm_mode_cfg(char * arg)2939 static int __init early_kvm_mode_cfg(char *arg)
2940 {
2941 	if (!arg)
2942 		return -EINVAL;
2943 
2944 	if (strcmp(arg, "none") == 0) {
2945 		kvm_mode = KVM_MODE_NONE;
2946 		return 0;
2947 	}
2948 
2949 	if (!is_hyp_mode_available()) {
2950 		pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
2951 		return 0;
2952 	}
2953 
2954 	if (strcmp(arg, "protected") == 0) {
2955 		if (!is_kernel_in_hyp_mode())
2956 			kvm_mode = KVM_MODE_PROTECTED;
2957 		else
2958 			pr_warn_once("Protected KVM not available with VHE\n");
2959 
2960 		return 0;
2961 	}
2962 
2963 	if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2964 		kvm_mode = KVM_MODE_DEFAULT;
2965 		return 0;
2966 	}
2967 
2968 	if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) {
2969 		kvm_mode = KVM_MODE_NV;
2970 		return 0;
2971 	}
2972 
2973 	return -EINVAL;
2974 }
2975 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2976 
early_kvm_wfx_trap_policy_cfg(char * arg,enum kvm_wfx_trap_policy * p)2977 static int __init early_kvm_wfx_trap_policy_cfg(char *arg, enum kvm_wfx_trap_policy *p)
2978 {
2979 	if (!arg)
2980 		return -EINVAL;
2981 
2982 	if (strcmp(arg, "trap") == 0) {
2983 		*p = KVM_WFX_TRAP;
2984 		return 0;
2985 	}
2986 
2987 	if (strcmp(arg, "notrap") == 0) {
2988 		*p = KVM_WFX_NOTRAP;
2989 		return 0;
2990 	}
2991 
2992 	return -EINVAL;
2993 }
2994 
early_kvm_wfi_trap_policy_cfg(char * arg)2995 static int __init early_kvm_wfi_trap_policy_cfg(char *arg)
2996 {
2997 	return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfi_trap_policy);
2998 }
2999 early_param("kvm-arm.wfi_trap_policy", early_kvm_wfi_trap_policy_cfg);
3000 
early_kvm_wfe_trap_policy_cfg(char * arg)3001 static int __init early_kvm_wfe_trap_policy_cfg(char *arg)
3002 {
3003 	return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfe_trap_policy);
3004 }
3005 early_param("kvm-arm.wfe_trap_policy", early_kvm_wfe_trap_policy_cfg);
3006 
kvm_get_mode(void)3007 enum kvm_mode kvm_get_mode(void)
3008 {
3009 	return kvm_mode;
3010 }
3011 
3012 module_init(kvm_arm_init);
3013