xref: /linux/drivers/gpu/drm/xe/xe_guc_pc.c (revision 42bb9b630c4c6c0964cddca98d9d30aa992826de)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_guc_pc.h"
7 
8 #include <linux/cleanup.h>
9 #include <linux/delay.h>
10 #include <linux/jiffies.h>
11 #include <linux/ktime.h>
12 #include <linux/wait_bit.h>
13 
14 #include <drm/drm_managed.h>
15 #include <drm/drm_print.h>
16 #include <generated/xe_wa_oob.h>
17 
18 #include "abi/guc_actions_slpc_abi.h"
19 #include "regs/xe_gt_regs.h"
20 #include "regs/xe_regs.h"
21 #include "xe_bo.h"
22 #include "xe_device.h"
23 #include "xe_force_wake.h"
24 #include "xe_gt.h"
25 #include "xe_gt_idle.h"
26 #include "xe_gt_printk.h"
27 #include "xe_gt_throttle.h"
28 #include "xe_gt_types.h"
29 #include "xe_guc.h"
30 #include "xe_guc_ct.h"
31 #include "xe_map.h"
32 #include "xe_mmio.h"
33 #include "xe_pcode.h"
34 #include "xe_pm.h"
35 #include "xe_sriov.h"
36 #include "xe_wa.h"
37 
38 #define MCHBAR_MIRROR_BASE_SNB	0x140000
39 
40 #define RP_STATE_CAP		XE_REG(MCHBAR_MIRROR_BASE_SNB + 0x5998)
41 #define   RP0_MASK		REG_GENMASK(7, 0)
42 #define   RP1_MASK		REG_GENMASK(15, 8)
43 #define   RPN_MASK		REG_GENMASK(23, 16)
44 
45 #define FREQ_INFO_REC	XE_REG(MCHBAR_MIRROR_BASE_SNB + 0x5ef0)
46 #define   RPE_MASK		REG_GENMASK(15, 8)
47 #define   RPA_MASK		REG_GENMASK(31, 16)
48 
49 #define GT_PERF_STATUS		XE_REG(0x1381b4)
50 #define   CAGF_MASK	REG_GENMASK(19, 11)
51 
52 #define GT_FREQUENCY_MULTIPLIER	50
53 #define GT_FREQUENCY_SCALER	3
54 
55 #define LNL_MERT_FREQ_CAP	800
56 #define BMG_MERT_FREQ_CAP	2133
57 #define BMG_MIN_FREQ		1200
58 #define BMG_MERT_FLUSH_FREQ_CAP	2600
59 
60 #define SLPC_RESET_TIMEOUT_MS 5 /* roughly 5ms, but no need for precision */
61 #define SLPC_RESET_EXTENDED_TIMEOUT_MS 1000 /* To be used only at pc_start */
62 #define SLPC_ACT_FREQ_TIMEOUT_MS 100
63 
64 /**
65  * DOC: GuC Power Conservation (PC)
66  *
67  * GuC Power Conservation (PC) supports multiple features for the most
68  * efficient and performing use of the GT when GuC submission is enabled,
69  * including frequency management, Render-C states management, and various
70  * algorithms for power balancing.
71  *
72  * Single Loop Power Conservation (SLPC) is the name given to the suite of
73  * connected power conservation features in the GuC firmware. The firmware
74  * exposes a programming interface to the host for the control of SLPC.
75  *
76  * Frequency management:
77  * =====================
78  *
79  * Xe driver enables SLPC with all of its defaults features and frequency
80  * selection, which varies per platform.
81  *
82  * Render-C States:
83  * ================
84  *
85  * Render-C states is also a GuC PC feature that is now enabled in Xe for
86  * all platforms.
87  *
88  */
89 
pc_to_guc(struct xe_guc_pc * pc)90 static struct xe_guc *pc_to_guc(struct xe_guc_pc *pc)
91 {
92 	return container_of(pc, struct xe_guc, pc);
93 }
94 
pc_to_ct(struct xe_guc_pc * pc)95 static struct xe_guc_ct *pc_to_ct(struct xe_guc_pc *pc)
96 {
97 	return &pc_to_guc(pc)->ct;
98 }
99 
pc_to_gt(struct xe_guc_pc * pc)100 static struct xe_gt *pc_to_gt(struct xe_guc_pc *pc)
101 {
102 	return guc_to_gt(pc_to_guc(pc));
103 }
104 
pc_to_xe(struct xe_guc_pc * pc)105 static struct xe_device *pc_to_xe(struct xe_guc_pc *pc)
106 {
107 	return guc_to_xe(pc_to_guc(pc));
108 }
109 
pc_to_maps(struct xe_guc_pc * pc)110 static struct iosys_map *pc_to_maps(struct xe_guc_pc *pc)
111 {
112 	return &pc->bo->vmap;
113 }
114 
115 #define slpc_shared_data_read(pc_, field_) \
116 	xe_map_rd_field(pc_to_xe(pc_), pc_to_maps(pc_), 0, \
117 			struct slpc_shared_data, field_)
118 
119 #define slpc_shared_data_write(pc_, field_, val_) \
120 	xe_map_wr_field(pc_to_xe(pc_), pc_to_maps(pc_), 0, \
121 			struct slpc_shared_data, field_, val_)
122 
123 #define SLPC_EVENT(id, count) \
124 	(FIELD_PREP(HOST2GUC_PC_SLPC_REQUEST_MSG_1_EVENT_ID, id) | \
125 	 FIELD_PREP(HOST2GUC_PC_SLPC_REQUEST_MSG_1_EVENT_ARGC, count))
126 
wait_for_pc_state(struct xe_guc_pc * pc,enum slpc_global_state state,int timeout_ms)127 static int wait_for_pc_state(struct xe_guc_pc *pc,
128 			     enum slpc_global_state state,
129 			     int timeout_ms)
130 {
131 	int timeout_us = 1000 * timeout_ms;
132 	int slept, wait = 10;
133 
134 	xe_device_assert_mem_access(pc_to_xe(pc));
135 
136 	for (slept = 0; slept < timeout_us;) {
137 		if (slpc_shared_data_read(pc, header.global_state) == state)
138 			return 0;
139 
140 		usleep_range(wait, wait << 1);
141 		slept += wait;
142 		wait <<= 1;
143 		if (slept + wait > timeout_us)
144 			wait = timeout_us - slept;
145 	}
146 
147 	return -ETIMEDOUT;
148 }
149 
wait_for_flush_complete(struct xe_guc_pc * pc)150 static int wait_for_flush_complete(struct xe_guc_pc *pc)
151 {
152 	const unsigned long timeout = msecs_to_jiffies(30);
153 
154 	if (!wait_var_event_timeout(&pc->flush_freq_limit,
155 				    !atomic_read(&pc->flush_freq_limit),
156 				    timeout))
157 		return -ETIMEDOUT;
158 
159 	return 0;
160 }
161 
wait_for_act_freq_limit(struct xe_guc_pc * pc,u32 freq)162 static int wait_for_act_freq_limit(struct xe_guc_pc *pc, u32 freq)
163 {
164 	int timeout_us = SLPC_ACT_FREQ_TIMEOUT_MS * USEC_PER_MSEC;
165 	int slept, wait = 10;
166 
167 	for (slept = 0; slept < timeout_us;) {
168 		if (xe_guc_pc_get_act_freq(pc) <= freq)
169 			return 0;
170 
171 		usleep_range(wait, wait << 1);
172 		slept += wait;
173 		wait <<= 1;
174 		if (slept + wait > timeout_us)
175 			wait = timeout_us - slept;
176 	}
177 
178 	return -ETIMEDOUT;
179 }
pc_action_reset(struct xe_guc_pc * pc)180 static int pc_action_reset(struct xe_guc_pc *pc)
181 {
182 	struct xe_guc_ct *ct = pc_to_ct(pc);
183 	u32 action[] = {
184 		GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST,
185 		SLPC_EVENT(SLPC_EVENT_RESET, 2),
186 		xe_bo_ggtt_addr(pc->bo),
187 		0,
188 	};
189 	int ret;
190 
191 	ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0);
192 	if (ret)
193 		xe_gt_err(pc_to_gt(pc), "GuC PC reset failed: %pe\n",
194 			  ERR_PTR(ret));
195 
196 	return ret;
197 }
198 
pc_action_query_task_state(struct xe_guc_pc * pc)199 static int pc_action_query_task_state(struct xe_guc_pc *pc)
200 {
201 	struct xe_guc_ct *ct = pc_to_ct(pc);
202 	u32 action[] = {
203 		GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST,
204 		SLPC_EVENT(SLPC_EVENT_QUERY_TASK_STATE, 2),
205 		xe_bo_ggtt_addr(pc->bo),
206 		0,
207 	};
208 	int ret;
209 
210 	if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING,
211 			      SLPC_RESET_TIMEOUT_MS))
212 		return -EAGAIN;
213 
214 	/* Blocking here to ensure the results are ready before reading them */
215 	ret = xe_guc_ct_send_block(ct, action, ARRAY_SIZE(action));
216 	if (ret)
217 		xe_gt_err(pc_to_gt(pc), "GuC PC query task state failed: %pe\n",
218 			  ERR_PTR(ret));
219 
220 	return ret;
221 }
222 
pc_action_set_param(struct xe_guc_pc * pc,u8 id,u32 value)223 static int pc_action_set_param(struct xe_guc_pc *pc, u8 id, u32 value)
224 {
225 	struct xe_guc_ct *ct = pc_to_ct(pc);
226 	u32 action[] = {
227 		GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST,
228 		SLPC_EVENT(SLPC_EVENT_PARAMETER_SET, 2),
229 		id,
230 		value,
231 	};
232 	int ret;
233 
234 	if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING,
235 			      SLPC_RESET_TIMEOUT_MS))
236 		return -EAGAIN;
237 
238 	ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0);
239 	if (ret)
240 		xe_gt_err(pc_to_gt(pc), "GuC PC set param[%u]=%u failed: %pe\n",
241 			  id, value, ERR_PTR(ret));
242 
243 	return ret;
244 }
245 
pc_action_unset_param(struct xe_guc_pc * pc,u8 id)246 static int pc_action_unset_param(struct xe_guc_pc *pc, u8 id)
247 {
248 	u32 action[] = {
249 		GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST,
250 		SLPC_EVENT(SLPC_EVENT_PARAMETER_UNSET, 1),
251 		id,
252 	};
253 	struct xe_guc_ct *ct = &pc_to_guc(pc)->ct;
254 	int ret;
255 
256 	if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING,
257 			      SLPC_RESET_TIMEOUT_MS))
258 		return -EAGAIN;
259 
260 	ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0);
261 	if (ret)
262 		xe_gt_err(pc_to_gt(pc), "GuC PC unset param failed: %pe",
263 			  ERR_PTR(ret));
264 
265 	return ret;
266 }
267 
pc_action_setup_gucrc(struct xe_guc_pc * pc,u32 mode)268 static int pc_action_setup_gucrc(struct xe_guc_pc *pc, u32 mode)
269 {
270 	struct xe_guc_ct *ct = pc_to_ct(pc);
271 	u32 action[] = {
272 		GUC_ACTION_HOST2GUC_SETUP_PC_GUCRC,
273 		mode,
274 	};
275 	int ret;
276 
277 	ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0);
278 	if (ret)
279 		xe_gt_err(pc_to_gt(pc), "GuC RC enable mode=%u failed: %pe\n",
280 			  mode, ERR_PTR(ret));
281 	return ret;
282 }
283 
decode_freq(u32 raw)284 static u32 decode_freq(u32 raw)
285 {
286 	return DIV_ROUND_CLOSEST(raw * GT_FREQUENCY_MULTIPLIER,
287 				 GT_FREQUENCY_SCALER);
288 }
289 
encode_freq(u32 freq)290 static u32 encode_freq(u32 freq)
291 {
292 	return DIV_ROUND_CLOSEST(freq * GT_FREQUENCY_SCALER,
293 				 GT_FREQUENCY_MULTIPLIER);
294 }
295 
pc_get_min_freq(struct xe_guc_pc * pc)296 static u32 pc_get_min_freq(struct xe_guc_pc *pc)
297 {
298 	u32 freq;
299 
300 	freq = FIELD_GET(SLPC_MIN_UNSLICE_FREQ_MASK,
301 			 slpc_shared_data_read(pc, task_state_data.freq));
302 
303 	return decode_freq(freq);
304 }
305 
pc_set_manual_rp_ctrl(struct xe_guc_pc * pc,bool enable)306 static void pc_set_manual_rp_ctrl(struct xe_guc_pc *pc, bool enable)
307 {
308 	struct xe_gt *gt = pc_to_gt(pc);
309 	u32 state = enable ? RPSWCTL_ENABLE : RPSWCTL_DISABLE;
310 
311 	/* Allow/Disallow punit to process software freq requests */
312 	xe_mmio_write32(&gt->mmio, RP_CONTROL, state);
313 }
314 
pc_set_cur_freq(struct xe_guc_pc * pc,u32 freq)315 static void pc_set_cur_freq(struct xe_guc_pc *pc, u32 freq)
316 {
317 	struct xe_gt *gt = pc_to_gt(pc);
318 	u32 rpnswreq;
319 
320 	pc_set_manual_rp_ctrl(pc, true);
321 
322 	/* Req freq is in units of 16.66 Mhz */
323 	rpnswreq = REG_FIELD_PREP(REQ_RATIO_MASK, encode_freq(freq));
324 	xe_mmio_write32(&gt->mmio, RPNSWREQ, rpnswreq);
325 
326 	/* Sleep for a small time to allow pcode to respond */
327 	usleep_range(100, 300);
328 
329 	pc_set_manual_rp_ctrl(pc, false);
330 }
331 
pc_set_min_freq(struct xe_guc_pc * pc,u32 freq)332 static int pc_set_min_freq(struct xe_guc_pc *pc, u32 freq)
333 {
334 	/*
335 	 * Let's only check for the rpn-rp0 range. If max < min,
336 	 * min becomes a fixed request.
337 	 */
338 	if (freq < pc->rpn_freq || freq > pc->rp0_freq)
339 		return -EINVAL;
340 
341 	/*
342 	 * GuC policy is to elevate minimum frequency to the efficient levels
343 	 * Our goal is to have the admin choices respected.
344 	 */
345 	pc_action_set_param(pc, SLPC_PARAM_IGNORE_EFFICIENT_FREQUENCY,
346 			    freq < pc->rpe_freq);
347 
348 	return pc_action_set_param(pc,
349 				   SLPC_PARAM_GLOBAL_MIN_GT_UNSLICE_FREQ_MHZ,
350 				   freq);
351 }
352 
pc_get_max_freq(struct xe_guc_pc * pc)353 static int pc_get_max_freq(struct xe_guc_pc *pc)
354 {
355 	u32 freq;
356 
357 	freq = FIELD_GET(SLPC_MAX_UNSLICE_FREQ_MASK,
358 			 slpc_shared_data_read(pc, task_state_data.freq));
359 
360 	return decode_freq(freq);
361 }
362 
pc_set_max_freq(struct xe_guc_pc * pc,u32 freq)363 static int pc_set_max_freq(struct xe_guc_pc *pc, u32 freq)
364 {
365 	/*
366 	 * Let's only check for the rpn-rp0 range. If max < min,
367 	 * min becomes a fixed request.
368 	 * Also, overclocking is not supported.
369 	 */
370 	if (freq < pc->rpn_freq || freq > pc->rp0_freq)
371 		return -EINVAL;
372 
373 	return pc_action_set_param(pc,
374 				   SLPC_PARAM_GLOBAL_MAX_GT_UNSLICE_FREQ_MHZ,
375 				   freq);
376 }
377 
mtl_update_rpa_value(struct xe_guc_pc * pc)378 static void mtl_update_rpa_value(struct xe_guc_pc *pc)
379 {
380 	struct xe_gt *gt = pc_to_gt(pc);
381 	u32 reg;
382 
383 	if (xe_gt_is_media_type(gt))
384 		reg = xe_mmio_read32(&gt->mmio, MTL_MPA_FREQUENCY);
385 	else
386 		reg = xe_mmio_read32(&gt->mmio, MTL_GT_RPA_FREQUENCY);
387 
388 	pc->rpa_freq = decode_freq(REG_FIELD_GET(MTL_RPA_MASK, reg));
389 }
390 
mtl_update_rpe_value(struct xe_guc_pc * pc)391 static void mtl_update_rpe_value(struct xe_guc_pc *pc)
392 {
393 	struct xe_gt *gt = pc_to_gt(pc);
394 	u32 reg;
395 
396 	if (xe_gt_is_media_type(gt))
397 		reg = xe_mmio_read32(&gt->mmio, MTL_MPE_FREQUENCY);
398 	else
399 		reg = xe_mmio_read32(&gt->mmio, MTL_GT_RPE_FREQUENCY);
400 
401 	pc->rpe_freq = decode_freq(REG_FIELD_GET(MTL_RPE_MASK, reg));
402 }
403 
tgl_update_rpa_value(struct xe_guc_pc * pc)404 static void tgl_update_rpa_value(struct xe_guc_pc *pc)
405 {
406 	struct xe_gt *gt = pc_to_gt(pc);
407 	struct xe_device *xe = gt_to_xe(gt);
408 	u32 reg;
409 
410 	/*
411 	 * For PVC we still need to use fused RP0 as the approximation for RPa
412 	 * For other platforms than PVC we get the resolved RPa directly from
413 	 * PCODE at a different register
414 	 */
415 	if (xe->info.platform == XE_PVC) {
416 		reg = xe_mmio_read32(&gt->mmio, PVC_RP_STATE_CAP);
417 		pc->rpa_freq = REG_FIELD_GET(RP0_MASK, reg) * GT_FREQUENCY_MULTIPLIER;
418 	} else {
419 		reg = xe_mmio_read32(&gt->mmio, FREQ_INFO_REC);
420 		pc->rpa_freq = REG_FIELD_GET(RPA_MASK, reg) * GT_FREQUENCY_MULTIPLIER;
421 	}
422 }
423 
tgl_update_rpe_value(struct xe_guc_pc * pc)424 static void tgl_update_rpe_value(struct xe_guc_pc *pc)
425 {
426 	struct xe_gt *gt = pc_to_gt(pc);
427 	struct xe_device *xe = gt_to_xe(gt);
428 	u32 reg;
429 
430 	/*
431 	 * For PVC we still need to use fused RP1 as the approximation for RPe
432 	 * For other platforms than PVC we get the resolved RPe directly from
433 	 * PCODE at a different register
434 	 */
435 	if (xe->info.platform == XE_PVC) {
436 		reg = xe_mmio_read32(&gt->mmio, PVC_RP_STATE_CAP);
437 		pc->rpe_freq = REG_FIELD_GET(RP1_MASK, reg) * GT_FREQUENCY_MULTIPLIER;
438 	} else {
439 		reg = xe_mmio_read32(&gt->mmio, FREQ_INFO_REC);
440 		pc->rpe_freq = REG_FIELD_GET(RPE_MASK, reg) * GT_FREQUENCY_MULTIPLIER;
441 	}
442 }
443 
pc_update_rp_values(struct xe_guc_pc * pc)444 static void pc_update_rp_values(struct xe_guc_pc *pc)
445 {
446 	struct xe_gt *gt = pc_to_gt(pc);
447 	struct xe_device *xe = gt_to_xe(gt);
448 
449 	if (GRAPHICS_VERx100(xe) >= 1270) {
450 		mtl_update_rpa_value(pc);
451 		mtl_update_rpe_value(pc);
452 	} else {
453 		tgl_update_rpa_value(pc);
454 		tgl_update_rpe_value(pc);
455 	}
456 
457 	/*
458 	 * RPe is decided at runtime by PCODE. In the rare case where that's
459 	 * smaller than the fused min, we will trust the PCODE and use that
460 	 * as our minimum one.
461 	 */
462 	pc->rpn_freq = min(pc->rpn_freq, pc->rpe_freq);
463 }
464 
465 /**
466  * xe_guc_pc_get_act_freq - Get Actual running frequency
467  * @pc: The GuC PC
468  *
469  * Returns: The Actual running frequency. Which might be 0 if GT is in Render-C sleep state (RC6).
470  */
xe_guc_pc_get_act_freq(struct xe_guc_pc * pc)471 u32 xe_guc_pc_get_act_freq(struct xe_guc_pc *pc)
472 {
473 	struct xe_gt *gt = pc_to_gt(pc);
474 	struct xe_device *xe = gt_to_xe(gt);
475 	u32 freq;
476 
477 	/* When in RC6, actual frequency reported will be 0. */
478 	if (GRAPHICS_VERx100(xe) >= 1270) {
479 		freq = xe_mmio_read32(&gt->mmio, MTL_MIRROR_TARGET_WP1);
480 		freq = REG_FIELD_GET(MTL_CAGF_MASK, freq);
481 	} else {
482 		freq = xe_mmio_read32(&gt->mmio, GT_PERF_STATUS);
483 		freq = REG_FIELD_GET(CAGF_MASK, freq);
484 	}
485 
486 	freq = decode_freq(freq);
487 
488 	return freq;
489 }
490 
get_cur_freq(struct xe_gt * gt)491 static u32 get_cur_freq(struct xe_gt *gt)
492 {
493 	u32 freq;
494 
495 	freq = xe_mmio_read32(&gt->mmio, RPNSWREQ);
496 	freq = REG_FIELD_GET(REQ_RATIO_MASK, freq);
497 	return decode_freq(freq);
498 }
499 
500 /**
501  * xe_guc_pc_get_cur_freq_fw - With fw held, get requested frequency
502  * @pc: The GuC PC
503  *
504  * Returns: the requested frequency for that GT instance
505  */
xe_guc_pc_get_cur_freq_fw(struct xe_guc_pc * pc)506 u32 xe_guc_pc_get_cur_freq_fw(struct xe_guc_pc *pc)
507 {
508 	struct xe_gt *gt = pc_to_gt(pc);
509 
510 	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
511 
512 	return get_cur_freq(gt);
513 }
514 
515 /**
516  * xe_guc_pc_get_cur_freq - Get Current requested frequency
517  * @pc: The GuC PC
518  * @freq: A pointer to a u32 where the freq value will be returned
519  *
520  * Returns: 0 on success,
521  *         -EAGAIN if GuC PC not ready (likely in middle of a reset).
522  */
xe_guc_pc_get_cur_freq(struct xe_guc_pc * pc,u32 * freq)523 int xe_guc_pc_get_cur_freq(struct xe_guc_pc *pc, u32 *freq)
524 {
525 	struct xe_gt *gt = pc_to_gt(pc);
526 	unsigned int fw_ref;
527 
528 	/*
529 	 * GuC SLPC plays with cur freq request when GuCRC is enabled
530 	 * Block RC6 for a more reliable read.
531 	 */
532 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
533 	if (!xe_force_wake_ref_has_domain(fw_ref, XE_FW_GT)) {
534 		xe_force_wake_put(gt_to_fw(gt), fw_ref);
535 		return -ETIMEDOUT;
536 	}
537 
538 	*freq = get_cur_freq(gt);
539 
540 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
541 	return 0;
542 }
543 
544 /**
545  * xe_guc_pc_get_rp0_freq - Get the RP0 freq
546  * @pc: The GuC PC
547  *
548  * Returns: RP0 freq.
549  */
xe_guc_pc_get_rp0_freq(struct xe_guc_pc * pc)550 u32 xe_guc_pc_get_rp0_freq(struct xe_guc_pc *pc)
551 {
552 	return pc->rp0_freq;
553 }
554 
555 /**
556  * xe_guc_pc_get_rpa_freq - Get the RPa freq
557  * @pc: The GuC PC
558  *
559  * Returns: RPa freq.
560  */
xe_guc_pc_get_rpa_freq(struct xe_guc_pc * pc)561 u32 xe_guc_pc_get_rpa_freq(struct xe_guc_pc *pc)
562 {
563 	pc_update_rp_values(pc);
564 
565 	return pc->rpa_freq;
566 }
567 
568 /**
569  * xe_guc_pc_get_rpe_freq - Get the RPe freq
570  * @pc: The GuC PC
571  *
572  * Returns: RPe freq.
573  */
xe_guc_pc_get_rpe_freq(struct xe_guc_pc * pc)574 u32 xe_guc_pc_get_rpe_freq(struct xe_guc_pc *pc)
575 {
576 	pc_update_rp_values(pc);
577 
578 	return pc->rpe_freq;
579 }
580 
581 /**
582  * xe_guc_pc_get_rpn_freq - Get the RPn freq
583  * @pc: The GuC PC
584  *
585  * Returns: RPn freq.
586  */
xe_guc_pc_get_rpn_freq(struct xe_guc_pc * pc)587 u32 xe_guc_pc_get_rpn_freq(struct xe_guc_pc *pc)
588 {
589 	return pc->rpn_freq;
590 }
591 
xe_guc_pc_get_min_freq_locked(struct xe_guc_pc * pc,u32 * freq)592 static int xe_guc_pc_get_min_freq_locked(struct xe_guc_pc *pc, u32 *freq)
593 {
594 	int ret;
595 
596 	lockdep_assert_held(&pc->freq_lock);
597 
598 	/* Might be in the middle of a gt reset */
599 	if (!pc->freq_ready)
600 		return -EAGAIN;
601 
602 	ret = pc_action_query_task_state(pc);
603 	if (ret)
604 		return ret;
605 
606 	*freq = pc_get_min_freq(pc);
607 
608 	return 0;
609 }
610 
611 /**
612  * xe_guc_pc_get_min_freq - Get the min operational frequency
613  * @pc: The GuC PC
614  * @freq: A pointer to a u32 where the freq value will be returned
615  *
616  * Returns: 0 on success,
617  *         -EAGAIN if GuC PC not ready (likely in middle of a reset).
618  */
xe_guc_pc_get_min_freq(struct xe_guc_pc * pc,u32 * freq)619 int xe_guc_pc_get_min_freq(struct xe_guc_pc *pc, u32 *freq)
620 {
621 	guard(mutex)(&pc->freq_lock);
622 
623 	return xe_guc_pc_get_min_freq_locked(pc, freq);
624 }
625 
xe_guc_pc_set_min_freq_locked(struct xe_guc_pc * pc,u32 freq)626 static int xe_guc_pc_set_min_freq_locked(struct xe_guc_pc *pc, u32 freq)
627 {
628 	int ret;
629 
630 	lockdep_assert_held(&pc->freq_lock);
631 
632 	/* Might be in the middle of a gt reset */
633 	if (!pc->freq_ready)
634 		return -EAGAIN;
635 
636 	ret = pc_set_min_freq(pc, freq);
637 	if (ret)
638 		return ret;
639 
640 	pc->user_requested_min = freq;
641 
642 	return 0;
643 }
644 
645 /**
646  * xe_guc_pc_set_min_freq - Set the minimal operational frequency
647  * @pc: The GuC PC
648  * @freq: The selected minimal frequency
649  *
650  * Returns: 0 on success,
651  *         -EAGAIN if GuC PC not ready (likely in middle of a reset),
652  *         -EINVAL if value out of bounds.
653  */
xe_guc_pc_set_min_freq(struct xe_guc_pc * pc,u32 freq)654 int xe_guc_pc_set_min_freq(struct xe_guc_pc *pc, u32 freq)
655 {
656 	guard(mutex)(&pc->freq_lock);
657 
658 	return xe_guc_pc_set_min_freq_locked(pc, freq);
659 }
660 
xe_guc_pc_get_max_freq_locked(struct xe_guc_pc * pc,u32 * freq)661 static int xe_guc_pc_get_max_freq_locked(struct xe_guc_pc *pc, u32 *freq)
662 {
663 	int ret;
664 
665 	lockdep_assert_held(&pc->freq_lock);
666 
667 	/* Might be in the middle of a gt reset */
668 	if (!pc->freq_ready)
669 		return -EAGAIN;
670 
671 	ret = pc_action_query_task_state(pc);
672 	if (ret)
673 		return ret;
674 
675 	*freq = pc_get_max_freq(pc);
676 
677 	return 0;
678 }
679 
680 /**
681  * xe_guc_pc_get_max_freq - Get Maximum operational frequency
682  * @pc: The GuC PC
683  * @freq: A pointer to a u32 where the freq value will be returned
684  *
685  * Returns: 0 on success,
686  *         -EAGAIN if GuC PC not ready (likely in middle of a reset).
687  */
xe_guc_pc_get_max_freq(struct xe_guc_pc * pc,u32 * freq)688 int xe_guc_pc_get_max_freq(struct xe_guc_pc *pc, u32 *freq)
689 {
690 	guard(mutex)(&pc->freq_lock);
691 
692 	return xe_guc_pc_get_max_freq_locked(pc, freq);
693 }
694 
xe_guc_pc_set_max_freq_locked(struct xe_guc_pc * pc,u32 freq)695 static int xe_guc_pc_set_max_freq_locked(struct xe_guc_pc *pc, u32 freq)
696 {
697 	int ret;
698 
699 	lockdep_assert_held(&pc->freq_lock);
700 
701 	/* Might be in the middle of a gt reset */
702 	if (!pc->freq_ready)
703 		return -EAGAIN;
704 
705 	ret = pc_set_max_freq(pc, freq);
706 	if (ret)
707 		return ret;
708 
709 	pc->user_requested_max = freq;
710 
711 	return 0;
712 }
713 
714 /**
715  * xe_guc_pc_set_max_freq - Set the maximum operational frequency
716  * @pc: The GuC PC
717  * @freq: The selected maximum frequency value
718  *
719  * Returns: 0 on success,
720  *         -EAGAIN if GuC PC not ready (likely in middle of a reset),
721  *         -EINVAL if value out of bounds.
722  */
xe_guc_pc_set_max_freq(struct xe_guc_pc * pc,u32 freq)723 int xe_guc_pc_set_max_freq(struct xe_guc_pc *pc, u32 freq)
724 {
725 	if (XE_WA(pc_to_gt(pc), 22019338487)) {
726 		if (wait_for_flush_complete(pc) != 0)
727 			return -EAGAIN;
728 	}
729 
730 	guard(mutex)(&pc->freq_lock);
731 
732 	return xe_guc_pc_set_max_freq_locked(pc, freq);
733 }
734 
735 /**
736  * xe_guc_pc_c_status - get the current GT C state
737  * @pc: XE_GuC_PC instance
738  */
xe_guc_pc_c_status(struct xe_guc_pc * pc)739 enum xe_gt_idle_state xe_guc_pc_c_status(struct xe_guc_pc *pc)
740 {
741 	struct xe_gt *gt = pc_to_gt(pc);
742 	u32 reg, gt_c_state;
743 
744 	if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) {
745 		reg = xe_mmio_read32(&gt->mmio, MTL_MIRROR_TARGET_WP1);
746 		gt_c_state = REG_FIELD_GET(MTL_CC_MASK, reg);
747 	} else {
748 		reg = xe_mmio_read32(&gt->mmio, GT_CORE_STATUS);
749 		gt_c_state = REG_FIELD_GET(RCN_MASK, reg);
750 	}
751 
752 	switch (gt_c_state) {
753 	case GT_C6:
754 		return GT_IDLE_C6;
755 	case GT_C0:
756 		return GT_IDLE_C0;
757 	default:
758 		return GT_IDLE_UNKNOWN;
759 	}
760 }
761 
762 /**
763  * xe_guc_pc_rc6_residency - rc6 residency counter
764  * @pc: Xe_GuC_PC instance
765  */
xe_guc_pc_rc6_residency(struct xe_guc_pc * pc)766 u64 xe_guc_pc_rc6_residency(struct xe_guc_pc *pc)
767 {
768 	struct xe_gt *gt = pc_to_gt(pc);
769 	u32 reg;
770 
771 	reg = xe_mmio_read32(&gt->mmio, GT_GFX_RC6);
772 
773 	return reg;
774 }
775 
776 /**
777  * xe_guc_pc_mc6_residency - mc6 residency counter
778  * @pc: Xe_GuC_PC instance
779  */
xe_guc_pc_mc6_residency(struct xe_guc_pc * pc)780 u64 xe_guc_pc_mc6_residency(struct xe_guc_pc *pc)
781 {
782 	struct xe_gt *gt = pc_to_gt(pc);
783 	u64 reg;
784 
785 	reg = xe_mmio_read32(&gt->mmio, MTL_MEDIA_MC6);
786 
787 	return reg;
788 }
789 
mtl_init_fused_rp_values(struct xe_guc_pc * pc)790 static void mtl_init_fused_rp_values(struct xe_guc_pc *pc)
791 {
792 	struct xe_gt *gt = pc_to_gt(pc);
793 	u32 reg;
794 
795 	xe_device_assert_mem_access(pc_to_xe(pc));
796 
797 	if (xe_gt_is_media_type(gt))
798 		reg = xe_mmio_read32(&gt->mmio, MTL_MEDIAP_STATE_CAP);
799 	else
800 		reg = xe_mmio_read32(&gt->mmio, MTL_RP_STATE_CAP);
801 
802 	pc->rp0_freq = decode_freq(REG_FIELD_GET(MTL_RP0_CAP_MASK, reg));
803 
804 	pc->rpn_freq = decode_freq(REG_FIELD_GET(MTL_RPN_CAP_MASK, reg));
805 }
806 
tgl_init_fused_rp_values(struct xe_guc_pc * pc)807 static void tgl_init_fused_rp_values(struct xe_guc_pc *pc)
808 {
809 	struct xe_gt *gt = pc_to_gt(pc);
810 	struct xe_device *xe = gt_to_xe(gt);
811 	u32 reg;
812 
813 	xe_device_assert_mem_access(pc_to_xe(pc));
814 
815 	if (xe->info.platform == XE_PVC)
816 		reg = xe_mmio_read32(&gt->mmio, PVC_RP_STATE_CAP);
817 	else
818 		reg = xe_mmio_read32(&gt->mmio, RP_STATE_CAP);
819 	pc->rp0_freq = REG_FIELD_GET(RP0_MASK, reg) * GT_FREQUENCY_MULTIPLIER;
820 	pc->rpn_freq = REG_FIELD_GET(RPN_MASK, reg) * GT_FREQUENCY_MULTIPLIER;
821 }
822 
pc_init_fused_rp_values(struct xe_guc_pc * pc)823 static void pc_init_fused_rp_values(struct xe_guc_pc *pc)
824 {
825 	struct xe_gt *gt = pc_to_gt(pc);
826 	struct xe_device *xe = gt_to_xe(gt);
827 
828 	if (GRAPHICS_VERx100(xe) >= 1270)
829 		mtl_init_fused_rp_values(pc);
830 	else
831 		tgl_init_fused_rp_values(pc);
832 }
833 
pc_max_freq_cap(struct xe_guc_pc * pc)834 static u32 pc_max_freq_cap(struct xe_guc_pc *pc)
835 {
836 	struct xe_gt *gt = pc_to_gt(pc);
837 
838 	if (XE_WA(gt, 22019338487)) {
839 		if (xe_gt_is_media_type(gt))
840 			return min(LNL_MERT_FREQ_CAP, pc->rp0_freq);
841 		else
842 			return min(BMG_MERT_FREQ_CAP, pc->rp0_freq);
843 	} else {
844 		return pc->rp0_freq;
845 	}
846 }
847 
848 /**
849  * xe_guc_pc_raise_unslice - Initialize RPx values and request a higher GT
850  * frequency to allow faster GuC load times
851  * @pc: Xe_GuC_PC instance
852  */
xe_guc_pc_raise_unslice(struct xe_guc_pc * pc)853 void xe_guc_pc_raise_unslice(struct xe_guc_pc *pc)
854 {
855 	struct xe_gt *gt = pc_to_gt(pc);
856 
857 	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
858 	pc_set_cur_freq(pc, pc_max_freq_cap(pc));
859 }
860 
861 /**
862  * xe_guc_pc_init_early - Initialize RPx values
863  * @pc: Xe_GuC_PC instance
864  */
xe_guc_pc_init_early(struct xe_guc_pc * pc)865 void xe_guc_pc_init_early(struct xe_guc_pc *pc)
866 {
867 	struct xe_gt *gt = pc_to_gt(pc);
868 
869 	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
870 	pc_init_fused_rp_values(pc);
871 }
872 
pc_adjust_freq_bounds(struct xe_guc_pc * pc)873 static int pc_adjust_freq_bounds(struct xe_guc_pc *pc)
874 {
875 	struct xe_tile *tile = gt_to_tile(pc_to_gt(pc));
876 	int ret;
877 
878 	lockdep_assert_held(&pc->freq_lock);
879 
880 	ret = pc_action_query_task_state(pc);
881 	if (ret)
882 		goto out;
883 
884 	/*
885 	 * GuC defaults to some RPmax that is not actually achievable without
886 	 * overclocking. Let's adjust it to the Hardware RP0, which is the
887 	 * regular maximum
888 	 */
889 	if (pc_get_max_freq(pc) > pc->rp0_freq) {
890 		ret = pc_set_max_freq(pc, pc->rp0_freq);
891 		if (ret)
892 			goto out;
893 	}
894 
895 	/*
896 	 * Same thing happens for Server platforms where min is listed as
897 	 * RPMax
898 	 */
899 	if (pc_get_min_freq(pc) > pc->rp0_freq)
900 		ret = pc_set_min_freq(pc, pc->rp0_freq);
901 
902 	if (XE_WA(tile->primary_gt, 14022085890))
903 		ret = pc_set_min_freq(pc, max(BMG_MIN_FREQ, pc_get_min_freq(pc)));
904 
905 out:
906 	return ret;
907 }
908 
pc_adjust_requested_freq(struct xe_guc_pc * pc)909 static int pc_adjust_requested_freq(struct xe_guc_pc *pc)
910 {
911 	int ret = 0;
912 
913 	lockdep_assert_held(&pc->freq_lock);
914 
915 	if (pc->user_requested_min != 0) {
916 		ret = pc_set_min_freq(pc, pc->user_requested_min);
917 		if (ret)
918 			return ret;
919 	}
920 
921 	if (pc->user_requested_max != 0) {
922 		ret = pc_set_max_freq(pc, pc->user_requested_max);
923 		if (ret)
924 			return ret;
925 	}
926 
927 	return ret;
928 }
929 
needs_flush_freq_limit(struct xe_guc_pc * pc)930 static bool needs_flush_freq_limit(struct xe_guc_pc *pc)
931 {
932 	struct xe_gt *gt = pc_to_gt(pc);
933 
934 	return  XE_WA(gt, 22019338487) &&
935 		pc->rp0_freq > BMG_MERT_FLUSH_FREQ_CAP;
936 }
937 
938 /**
939  * xe_guc_pc_apply_flush_freq_limit() - Limit max GT freq during L2 flush
940  * @pc: the xe_guc_pc object
941  *
942  * As per the WA, reduce max GT frequency during L2 cache flush
943  */
xe_guc_pc_apply_flush_freq_limit(struct xe_guc_pc * pc)944 void xe_guc_pc_apply_flush_freq_limit(struct xe_guc_pc *pc)
945 {
946 	struct xe_gt *gt = pc_to_gt(pc);
947 	u32 max_freq;
948 	int ret;
949 
950 	if (!needs_flush_freq_limit(pc))
951 		return;
952 
953 	guard(mutex)(&pc->freq_lock);
954 
955 	ret = xe_guc_pc_get_max_freq_locked(pc, &max_freq);
956 	if (!ret && max_freq > BMG_MERT_FLUSH_FREQ_CAP) {
957 		ret = pc_set_max_freq(pc, BMG_MERT_FLUSH_FREQ_CAP);
958 		if (ret) {
959 			xe_gt_err_once(gt, "Failed to cap max freq on flush to %u, %pe\n",
960 				       BMG_MERT_FLUSH_FREQ_CAP, ERR_PTR(ret));
961 			return;
962 		}
963 
964 		atomic_set(&pc->flush_freq_limit, 1);
965 
966 		/*
967 		 * If user has previously changed max freq, stash that value to
968 		 * restore later, otherwise use the current max. New user
969 		 * requests wait on flush.
970 		 */
971 		if (pc->user_requested_max != 0)
972 			pc->stashed_max_freq = pc->user_requested_max;
973 		else
974 			pc->stashed_max_freq = max_freq;
975 	}
976 
977 	/*
978 	 * Wait for actual freq to go below the flush cap: even if the previous
979 	 * max was below cap, the current one might still be above it
980 	 */
981 	ret = wait_for_act_freq_limit(pc, BMG_MERT_FLUSH_FREQ_CAP);
982 	if (ret)
983 		xe_gt_err_once(gt, "Actual freq did not reduce to %u, %pe\n",
984 			       BMG_MERT_FLUSH_FREQ_CAP, ERR_PTR(ret));
985 }
986 
987 /**
988  * xe_guc_pc_remove_flush_freq_limit() - Remove max GT freq limit after L2 flush completes.
989  * @pc: the xe_guc_pc object
990  *
991  * Retrieve the previous GT max frequency value.
992  */
xe_guc_pc_remove_flush_freq_limit(struct xe_guc_pc * pc)993 void xe_guc_pc_remove_flush_freq_limit(struct xe_guc_pc *pc)
994 {
995 	struct xe_gt *gt = pc_to_gt(pc);
996 	int ret = 0;
997 
998 	if (!needs_flush_freq_limit(pc))
999 		return;
1000 
1001 	if (!atomic_read(&pc->flush_freq_limit))
1002 		return;
1003 
1004 	mutex_lock(&pc->freq_lock);
1005 
1006 	ret = pc_set_max_freq(&gt->uc.guc.pc, pc->stashed_max_freq);
1007 	if (ret)
1008 		xe_gt_err_once(gt, "Failed to restore max freq %u:%d",
1009 			       pc->stashed_max_freq, ret);
1010 
1011 	atomic_set(&pc->flush_freq_limit, 0);
1012 	mutex_unlock(&pc->freq_lock);
1013 	wake_up_var(&pc->flush_freq_limit);
1014 }
1015 
pc_set_mert_freq_cap(struct xe_guc_pc * pc)1016 static int pc_set_mert_freq_cap(struct xe_guc_pc *pc)
1017 {
1018 	int ret;
1019 
1020 	if (!XE_WA(pc_to_gt(pc), 22019338487))
1021 		return 0;
1022 
1023 	guard(mutex)(&pc->freq_lock);
1024 
1025 	/*
1026 	 * Get updated min/max and stash them.
1027 	 */
1028 	ret = xe_guc_pc_get_min_freq_locked(pc, &pc->stashed_min_freq);
1029 	if (!ret)
1030 		ret = xe_guc_pc_get_max_freq_locked(pc, &pc->stashed_max_freq);
1031 	if (ret)
1032 		return ret;
1033 
1034 	/*
1035 	 * Ensure min and max are bound by MERT_FREQ_CAP until driver loads.
1036 	 */
1037 	ret = pc_set_min_freq(pc, min(pc->rpe_freq, pc_max_freq_cap(pc)));
1038 	if (!ret)
1039 		ret = pc_set_max_freq(pc, min(pc->rp0_freq, pc_max_freq_cap(pc)));
1040 
1041 	return ret;
1042 }
1043 
1044 /**
1045  * xe_guc_pc_restore_stashed_freq - Set min/max back to stashed values
1046  * @pc: The GuC PC
1047  *
1048  * Returns: 0 on success,
1049  *          error code on failure
1050  */
xe_guc_pc_restore_stashed_freq(struct xe_guc_pc * pc)1051 int xe_guc_pc_restore_stashed_freq(struct xe_guc_pc *pc)
1052 {
1053 	int ret = 0;
1054 
1055 	if (IS_SRIOV_VF(pc_to_xe(pc)) || pc_to_xe(pc)->info.skip_guc_pc)
1056 		return 0;
1057 
1058 	mutex_lock(&pc->freq_lock);
1059 	ret = pc_set_max_freq(pc, pc->stashed_max_freq);
1060 	if (!ret)
1061 		ret = pc_set_min_freq(pc, pc->stashed_min_freq);
1062 	mutex_unlock(&pc->freq_lock);
1063 
1064 	return ret;
1065 }
1066 
1067 /**
1068  * xe_guc_pc_gucrc_disable - Disable GuC RC
1069  * @pc: Xe_GuC_PC instance
1070  *
1071  * Disables GuC RC by taking control of RC6 back from GuC.
1072  *
1073  * Return: 0 on success, negative error code on error.
1074  */
xe_guc_pc_gucrc_disable(struct xe_guc_pc * pc)1075 int xe_guc_pc_gucrc_disable(struct xe_guc_pc *pc)
1076 {
1077 	struct xe_device *xe = pc_to_xe(pc);
1078 	struct xe_gt *gt = pc_to_gt(pc);
1079 	unsigned int fw_ref;
1080 	int ret = 0;
1081 
1082 	if (xe->info.skip_guc_pc)
1083 		return 0;
1084 
1085 	ret = pc_action_setup_gucrc(pc, GUCRC_HOST_CONTROL);
1086 	if (ret)
1087 		return ret;
1088 
1089 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL);
1090 	if (!xe_force_wake_ref_has_domain(fw_ref, XE_FORCEWAKE_ALL)) {
1091 		xe_force_wake_put(gt_to_fw(gt), fw_ref);
1092 		return -ETIMEDOUT;
1093 	}
1094 
1095 	xe_gt_idle_disable_c6(gt);
1096 
1097 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
1098 
1099 	return 0;
1100 }
1101 
1102 /**
1103  * xe_guc_pc_override_gucrc_mode - override GUCRC mode
1104  * @pc: Xe_GuC_PC instance
1105  * @mode: new value of the mode.
1106  *
1107  * Return: 0 on success, negative error code on error
1108  */
xe_guc_pc_override_gucrc_mode(struct xe_guc_pc * pc,enum slpc_gucrc_mode mode)1109 int xe_guc_pc_override_gucrc_mode(struct xe_guc_pc *pc, enum slpc_gucrc_mode mode)
1110 {
1111 	int ret;
1112 
1113 	xe_pm_runtime_get(pc_to_xe(pc));
1114 	ret = pc_action_set_param(pc, SLPC_PARAM_PWRGATE_RC_MODE, mode);
1115 	xe_pm_runtime_put(pc_to_xe(pc));
1116 
1117 	return ret;
1118 }
1119 
1120 /**
1121  * xe_guc_pc_unset_gucrc_mode - unset GUCRC mode override
1122  * @pc: Xe_GuC_PC instance
1123  *
1124  * Return: 0 on success, negative error code on error
1125  */
xe_guc_pc_unset_gucrc_mode(struct xe_guc_pc * pc)1126 int xe_guc_pc_unset_gucrc_mode(struct xe_guc_pc *pc)
1127 {
1128 	int ret;
1129 
1130 	xe_pm_runtime_get(pc_to_xe(pc));
1131 	ret = pc_action_unset_param(pc, SLPC_PARAM_PWRGATE_RC_MODE);
1132 	xe_pm_runtime_put(pc_to_xe(pc));
1133 
1134 	return ret;
1135 }
1136 
pc_init_pcode_freq(struct xe_guc_pc * pc)1137 static void pc_init_pcode_freq(struct xe_guc_pc *pc)
1138 {
1139 	u32 min = DIV_ROUND_CLOSEST(pc->rpn_freq, GT_FREQUENCY_MULTIPLIER);
1140 	u32 max = DIV_ROUND_CLOSEST(pc->rp0_freq, GT_FREQUENCY_MULTIPLIER);
1141 
1142 	XE_WARN_ON(xe_pcode_init_min_freq_table(gt_to_tile(pc_to_gt(pc)), min, max));
1143 }
1144 
pc_init_freqs(struct xe_guc_pc * pc)1145 static int pc_init_freqs(struct xe_guc_pc *pc)
1146 {
1147 	int ret;
1148 
1149 	mutex_lock(&pc->freq_lock);
1150 
1151 	ret = pc_adjust_freq_bounds(pc);
1152 	if (ret)
1153 		goto out;
1154 
1155 	ret = pc_adjust_requested_freq(pc);
1156 	if (ret)
1157 		goto out;
1158 
1159 	pc_update_rp_values(pc);
1160 
1161 	pc_init_pcode_freq(pc);
1162 
1163 	/*
1164 	 * The frequencies are really ready for use only after the user
1165 	 * requested ones got restored.
1166 	 */
1167 	pc->freq_ready = true;
1168 
1169 out:
1170 	mutex_unlock(&pc->freq_lock);
1171 	return ret;
1172 }
1173 
pc_action_set_strategy(struct xe_guc_pc * pc,u32 val)1174 static int pc_action_set_strategy(struct xe_guc_pc *pc, u32 val)
1175 {
1176 	int ret = 0;
1177 
1178 	ret = pc_action_set_param(pc,
1179 				  SLPC_PARAM_STRATEGIES,
1180 				  val);
1181 
1182 	return ret;
1183 }
1184 
1185 /**
1186  * xe_guc_pc_start - Start GuC's Power Conservation component
1187  * @pc: Xe_GuC_PC instance
1188  */
xe_guc_pc_start(struct xe_guc_pc * pc)1189 int xe_guc_pc_start(struct xe_guc_pc *pc)
1190 {
1191 	struct xe_device *xe = pc_to_xe(pc);
1192 	struct xe_gt *gt = pc_to_gt(pc);
1193 	u32 size = PAGE_ALIGN(sizeof(struct slpc_shared_data));
1194 	unsigned int fw_ref;
1195 	ktime_t earlier;
1196 	int ret;
1197 
1198 	xe_gt_assert(gt, xe_device_uc_enabled(xe));
1199 
1200 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
1201 	if (!xe_force_wake_ref_has_domain(fw_ref, XE_FW_GT)) {
1202 		xe_force_wake_put(gt_to_fw(gt), fw_ref);
1203 		return -ETIMEDOUT;
1204 	}
1205 
1206 	if (xe->info.skip_guc_pc) {
1207 		if (xe->info.platform != XE_PVC)
1208 			xe_gt_idle_enable_c6(gt);
1209 
1210 		/* Request max possible since dynamic freq mgmt is not enabled */
1211 		pc_set_cur_freq(pc, UINT_MAX);
1212 
1213 		ret = 0;
1214 		goto out;
1215 	}
1216 
1217 	xe_map_memset(xe, &pc->bo->vmap, 0, 0, size);
1218 	slpc_shared_data_write(pc, header.size, size);
1219 
1220 	earlier = ktime_get();
1221 	ret = pc_action_reset(pc);
1222 	if (ret)
1223 		goto out;
1224 
1225 	if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING,
1226 			      SLPC_RESET_TIMEOUT_MS)) {
1227 		xe_gt_warn(gt, "GuC PC start taking longer than normal [freq = %dMHz (req = %dMHz), perf_limit_reasons = 0x%08X]\n",
1228 			   xe_guc_pc_get_act_freq(pc), get_cur_freq(gt),
1229 			   xe_gt_throttle_get_limit_reasons(gt));
1230 
1231 		if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING,
1232 				      SLPC_RESET_EXTENDED_TIMEOUT_MS)) {
1233 			xe_gt_err(gt, "GuC PC Start failed: Dynamic GT frequency control and GT sleep states are now disabled.\n");
1234 			ret = -EIO;
1235 			goto out;
1236 		}
1237 
1238 		xe_gt_warn(gt, "GuC PC excessive start time: %lldms",
1239 			   ktime_ms_delta(ktime_get(), earlier));
1240 	}
1241 
1242 	ret = pc_init_freqs(pc);
1243 	if (ret)
1244 		goto out;
1245 
1246 	ret = pc_set_mert_freq_cap(pc);
1247 	if (ret)
1248 		goto out;
1249 
1250 	if (xe->info.platform == XE_PVC) {
1251 		xe_guc_pc_gucrc_disable(pc);
1252 		ret = 0;
1253 		goto out;
1254 	}
1255 
1256 	ret = pc_action_setup_gucrc(pc, GUCRC_FIRMWARE_CONTROL);
1257 	if (ret)
1258 		goto out;
1259 
1260 	/* Enable SLPC Optimized Strategy for compute */
1261 	ret = pc_action_set_strategy(pc, SLPC_OPTIMIZED_STRATEGY_COMPUTE);
1262 
1263 out:
1264 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
1265 	return ret;
1266 }
1267 
1268 /**
1269  * xe_guc_pc_stop - Stop GuC's Power Conservation component
1270  * @pc: Xe_GuC_PC instance
1271  */
xe_guc_pc_stop(struct xe_guc_pc * pc)1272 int xe_guc_pc_stop(struct xe_guc_pc *pc)
1273 {
1274 	struct xe_device *xe = pc_to_xe(pc);
1275 
1276 	if (xe->info.skip_guc_pc) {
1277 		xe_gt_idle_disable_c6(pc_to_gt(pc));
1278 		return 0;
1279 	}
1280 
1281 	mutex_lock(&pc->freq_lock);
1282 	pc->freq_ready = false;
1283 	mutex_unlock(&pc->freq_lock);
1284 
1285 	return 0;
1286 }
1287 
1288 /**
1289  * xe_guc_pc_fini_hw - Finalize GuC's Power Conservation component
1290  * @arg: opaque pointer that should point to Xe_GuC_PC instance
1291  */
xe_guc_pc_fini_hw(void * arg)1292 static void xe_guc_pc_fini_hw(void *arg)
1293 {
1294 	struct xe_guc_pc *pc = arg;
1295 	struct xe_device *xe = pc_to_xe(pc);
1296 	unsigned int fw_ref;
1297 
1298 	if (xe_device_wedged(xe))
1299 		return;
1300 
1301 	fw_ref = xe_force_wake_get(gt_to_fw(pc_to_gt(pc)), XE_FORCEWAKE_ALL);
1302 	xe_guc_pc_gucrc_disable(pc);
1303 	XE_WARN_ON(xe_guc_pc_stop(pc));
1304 
1305 	/* Bind requested freq to mert_freq_cap before unload */
1306 	pc_set_cur_freq(pc, min(pc_max_freq_cap(pc), pc->rpe_freq));
1307 
1308 	xe_force_wake_put(gt_to_fw(pc_to_gt(pc)), fw_ref);
1309 }
1310 
1311 /**
1312  * xe_guc_pc_init - Initialize GuC's Power Conservation component
1313  * @pc: Xe_GuC_PC instance
1314  */
xe_guc_pc_init(struct xe_guc_pc * pc)1315 int xe_guc_pc_init(struct xe_guc_pc *pc)
1316 {
1317 	struct xe_gt *gt = pc_to_gt(pc);
1318 	struct xe_tile *tile = gt_to_tile(gt);
1319 	struct xe_device *xe = gt_to_xe(gt);
1320 	struct xe_bo *bo;
1321 	u32 size = PAGE_ALIGN(sizeof(struct slpc_shared_data));
1322 	int err;
1323 
1324 	if (xe->info.skip_guc_pc)
1325 		return 0;
1326 
1327 	err = drmm_mutex_init(&xe->drm, &pc->freq_lock);
1328 	if (err)
1329 		return err;
1330 
1331 	bo = xe_managed_bo_create_pin_map(xe, tile, size,
1332 					  XE_BO_FLAG_VRAM_IF_DGFX(tile) |
1333 					  XE_BO_FLAG_GGTT |
1334 					  XE_BO_FLAG_GGTT_INVALIDATE |
1335 					  XE_BO_FLAG_PINNED_NORESTORE);
1336 	if (IS_ERR(bo))
1337 		return PTR_ERR(bo);
1338 
1339 	pc->bo = bo;
1340 
1341 	return devm_add_action_or_reset(xe->drm.dev, xe_guc_pc_fini_hw, pc);
1342 }
1343 
pc_get_state_string(struct xe_guc_pc * pc)1344 static const char *pc_get_state_string(struct xe_guc_pc *pc)
1345 {
1346 	switch (slpc_shared_data_read(pc, header.global_state)) {
1347 	case SLPC_GLOBAL_STATE_NOT_RUNNING:
1348 		return "not running";
1349 	case SLPC_GLOBAL_STATE_INITIALIZING:
1350 		return "initializing";
1351 	case SLPC_GLOBAL_STATE_RESETTING:
1352 		return "resetting";
1353 	case SLPC_GLOBAL_STATE_RUNNING:
1354 		return "running";
1355 	case SLPC_GLOBAL_STATE_SHUTTING_DOWN:
1356 		return "shutting down";
1357 	case SLPC_GLOBAL_STATE_ERROR:
1358 		return "error";
1359 	default:
1360 		return "unknown";
1361 	}
1362 }
1363 
1364 /**
1365  * xe_guc_pc_print - Print GuC's Power Conservation information for debug
1366  * @pc: Xe_GuC_PC instance
1367  * @p: drm_printer
1368  */
xe_guc_pc_print(struct xe_guc_pc * pc,struct drm_printer * p)1369 void xe_guc_pc_print(struct xe_guc_pc *pc, struct drm_printer *p)
1370 {
1371 	drm_printf(p, "SLPC Shared Data Header:\n");
1372 	drm_printf(p, "\tSize: %x\n", slpc_shared_data_read(pc, header.size));
1373 	drm_printf(p, "\tGlobal State: %s\n", pc_get_state_string(pc));
1374 
1375 	if (pc_action_query_task_state(pc))
1376 		return;
1377 
1378 	drm_printf(p, "\nSLPC Tasks Status:\n");
1379 	drm_printf(p, "\tGTPERF enabled: %s\n",
1380 		   str_yes_no(slpc_shared_data_read(pc, task_state_data.status) &
1381 			      SLPC_GTPERF_TASK_ENABLED));
1382 	drm_printf(p, "\tDCC enabled: %s\n",
1383 		   str_yes_no(slpc_shared_data_read(pc, task_state_data.status) &
1384 			      SLPC_DCC_TASK_ENABLED));
1385 	drm_printf(p, "\tDCC in use: %s\n",
1386 		   str_yes_no(slpc_shared_data_read(pc, task_state_data.status) &
1387 			      SLPC_IN_DCC));
1388 	drm_printf(p, "\tBalancer enabled: %s\n",
1389 		   str_yes_no(slpc_shared_data_read(pc, task_state_data.status) &
1390 			      SLPC_BALANCER_ENABLED));
1391 	drm_printf(p, "\tIBC enabled: %s\n",
1392 		   str_yes_no(slpc_shared_data_read(pc, task_state_data.status) &
1393 			      SLPC_IBC_TASK_ENABLED));
1394 	drm_printf(p, "\tBalancer IA LMT enabled: %s\n",
1395 		   str_yes_no(slpc_shared_data_read(pc, task_state_data.status) &
1396 			      SLPC_BALANCER_IA_LMT_ENABLED));
1397 	drm_printf(p, "\tBalancer IA LMT active: %s\n",
1398 		   str_yes_no(slpc_shared_data_read(pc, task_state_data.status) &
1399 			      SLPC_BALANCER_IA_LMT_ACTIVE));
1400 }
1401