xref: /linux/arch/x86/kernel/e820.c (revision 00c010e130e58301db2ea0cec1eadc931e1cb8cf)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Low level x86 E820 memory map handling functions.
4  *
5  * The firmware and bootloader passes us the "E820 table", which is the primary
6  * physical memory layout description available about x86 systems.
7  *
8  * The kernel takes the E820 memory layout and optionally modifies it with
9  * quirks and other tweaks, and feeds that into the generic Linux memory
10  * allocation code routines via a platform independent interface (memblock, etc.).
11  */
12 #include <linux/crash_dump.h>
13 #include <linux/memblock.h>
14 #include <linux/suspend.h>
15 #include <linux/acpi.h>
16 #include <linux/firmware-map.h>
17 #include <linux/sort.h>
18 #include <linux/memory_hotplug.h>
19 
20 #include <asm/e820/api.h>
21 #include <asm/setup.h>
22 
23 /*
24  * We organize the E820 table into three main data structures:
25  *
26  * - 'e820_table_firmware': the original firmware version passed to us by the
27  *   bootloader - not modified by the kernel. It is composed of two parts:
28  *   the first 128 E820 memory entries in boot_params.e820_table and the remaining
29  *   (if any) entries of the SETUP_E820_EXT nodes. We use this to:
30  *
31  *       - the hibernation code uses it to generate a kernel-independent CRC32
32  *         checksum of the physical memory layout of a system.
33  *
34  * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version
35  *   passed to us by the bootloader - the major difference between
36  *   e820_table_firmware[] and this one is that e820_table_kexec[]
37  *   might be modified by the kexec itself to fake an mptable.
38  *   We use this to:
39  *
40  *       - kexec, which is a bootloader in disguise, uses the original E820
41  *         layout to pass to the kexec-ed kernel. This way the original kernel
42  *         can have a restricted E820 map while the kexec()-ed kexec-kernel
43  *         can have access to full memory - etc.
44  *
45  *         Export the memory layout via /sys/firmware/memmap. kexec-tools uses
46  *         the entries to create an E820 table for the kexec kernel.
47  *
48  *         kexec_file_load in-kernel code uses the table for the kexec kernel.
49  *
50  * - 'e820_table': this is the main E820 table that is massaged by the
51  *   low level x86 platform code, or modified by boot parameters, before
52  *   passed on to higher level MM layers.
53  *
54  * Once the E820 map has been converted to the standard Linux memory layout
55  * information its role stops - modifying it has no effect and does not get
56  * re-propagated. So its main role is a temporary bootstrap storage of firmware
57  * specific memory layout data during early bootup.
58  */
59 static struct e820_table e820_table_init		__initdata;
60 static struct e820_table e820_table_kexec_init		__initdata;
61 static struct e820_table e820_table_firmware_init	__initdata;
62 
63 struct e820_table *e820_table __refdata			= &e820_table_init;
64 struct e820_table *e820_table_kexec __refdata		= &e820_table_kexec_init;
65 struct e820_table *e820_table_firmware __refdata	= &e820_table_firmware_init;
66 
67 /* For PCI or other memory-mapped resources */
68 unsigned long pci_mem_start = 0xaeedbabe;
69 #ifdef CONFIG_PCI
70 EXPORT_SYMBOL(pci_mem_start);
71 #endif
72 
73 /*
74  * This function checks if any part of the range <start,end> is mapped
75  * with type.
76  */
_e820__mapped_any(struct e820_table * table,u64 start,u64 end,enum e820_type type)77 static bool _e820__mapped_any(struct e820_table *table,
78 			      u64 start, u64 end, enum e820_type type)
79 {
80 	int i;
81 
82 	for (i = 0; i < table->nr_entries; i++) {
83 		struct e820_entry *entry = &table->entries[i];
84 
85 		if (type && entry->type != type)
86 			continue;
87 		if (entry->addr >= end || entry->addr + entry->size <= start)
88 			continue;
89 		return true;
90 	}
91 	return false;
92 }
93 
e820__mapped_raw_any(u64 start,u64 end,enum e820_type type)94 bool e820__mapped_raw_any(u64 start, u64 end, enum e820_type type)
95 {
96 	return _e820__mapped_any(e820_table_firmware, start, end, type);
97 }
98 EXPORT_SYMBOL_GPL(e820__mapped_raw_any);
99 
e820__mapped_any(u64 start,u64 end,enum e820_type type)100 bool e820__mapped_any(u64 start, u64 end, enum e820_type type)
101 {
102 	return _e820__mapped_any(e820_table, start, end, type);
103 }
104 EXPORT_SYMBOL_GPL(e820__mapped_any);
105 
106 /*
107  * This function checks if the entire <start,end> range is mapped with 'type'.
108  *
109  * Note: this function only works correctly once the E820 table is sorted and
110  * not-overlapping (at least for the range specified), which is the case normally.
111  */
__e820__mapped_all(u64 start,u64 end,enum e820_type type)112 static struct e820_entry *__e820__mapped_all(u64 start, u64 end,
113 					     enum e820_type type)
114 {
115 	int i;
116 
117 	for (i = 0; i < e820_table->nr_entries; i++) {
118 		struct e820_entry *entry = &e820_table->entries[i];
119 
120 		if (type && entry->type != type)
121 			continue;
122 
123 		/* Is the region (part) in overlap with the current region? */
124 		if (entry->addr >= end || entry->addr + entry->size <= start)
125 			continue;
126 
127 		/*
128 		 * If the region is at the beginning of <start,end> we move
129 		 * 'start' to the end of the region since it's ok until there
130 		 */
131 		if (entry->addr <= start)
132 			start = entry->addr + entry->size;
133 
134 		/*
135 		 * If 'start' is now at or beyond 'end', we're done, full
136 		 * coverage of the desired range exists:
137 		 */
138 		if (start >= end)
139 			return entry;
140 	}
141 
142 	return NULL;
143 }
144 
145 /*
146  * This function checks if the entire range <start,end> is mapped with type.
147  */
e820__mapped_all(u64 start,u64 end,enum e820_type type)148 bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type)
149 {
150 	return __e820__mapped_all(start, end, type);
151 }
152 
153 /*
154  * This function returns the type associated with the range <start,end>.
155  */
e820__get_entry_type(u64 start,u64 end)156 int e820__get_entry_type(u64 start, u64 end)
157 {
158 	struct e820_entry *entry = __e820__mapped_all(start, end, 0);
159 
160 	return entry ? entry->type : -EINVAL;
161 }
162 
163 /*
164  * Add a memory region to the kernel E820 map.
165  */
__e820__range_add(struct e820_table * table,u64 start,u64 size,enum e820_type type)166 static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type)
167 {
168 	int x = table->nr_entries;
169 
170 	if (x >= ARRAY_SIZE(table->entries)) {
171 		pr_err("too many entries; ignoring [mem %#010llx-%#010llx]\n",
172 		       start, start + size - 1);
173 		return;
174 	}
175 
176 	table->entries[x].addr = start;
177 	table->entries[x].size = size;
178 	table->entries[x].type = type;
179 	table->nr_entries++;
180 }
181 
e820__range_add(u64 start,u64 size,enum e820_type type)182 void __init e820__range_add(u64 start, u64 size, enum e820_type type)
183 {
184 	__e820__range_add(e820_table, start, size, type);
185 }
186 
e820_print_type(enum e820_type type)187 static void __init e820_print_type(enum e820_type type)
188 {
189 	switch (type) {
190 	case E820_TYPE_RAM:		pr_cont("usable");			break;
191 	case E820_TYPE_RESERVED:	pr_cont("reserved");			break;
192 	case E820_TYPE_SOFT_RESERVED:	pr_cont("soft reserved");		break;
193 	case E820_TYPE_ACPI:		pr_cont("ACPI data");			break;
194 	case E820_TYPE_NVS:		pr_cont("ACPI NVS");			break;
195 	case E820_TYPE_UNUSABLE:	pr_cont("unusable");			break;
196 	case E820_TYPE_PMEM:		/* Fall through: */
197 	case E820_TYPE_PRAM:		pr_cont("persistent (type %u)", type);	break;
198 	default:			pr_cont("type %u", type);		break;
199 	}
200 }
201 
e820__print_table(char * who)202 void __init e820__print_table(char *who)
203 {
204 	int i;
205 
206 	for (i = 0; i < e820_table->nr_entries; i++) {
207 		pr_info("%s: [mem %#018Lx-%#018Lx] ",
208 			who,
209 			e820_table->entries[i].addr,
210 			e820_table->entries[i].addr + e820_table->entries[i].size - 1);
211 
212 		e820_print_type(e820_table->entries[i].type);
213 		pr_cont("\n");
214 	}
215 }
216 
217 /*
218  * Sanitize an E820 map.
219  *
220  * Some E820 layouts include overlapping entries. The following
221  * replaces the original E820 map with a new one, removing overlaps,
222  * and resolving conflicting memory types in favor of highest
223  * numbered type.
224  *
225  * The input parameter 'entries' points to an array of 'struct
226  * e820_entry' which on entry has elements in the range [0, *nr_entries)
227  * valid, and which has space for up to max_nr_entries entries.
228  * On return, the resulting sanitized E820 map entries will be in
229  * overwritten in the same location, starting at 'entries'.
230  *
231  * The integer pointed to by nr_entries must be valid on entry (the
232  * current number of valid entries located at 'entries'). If the
233  * sanitizing succeeds the *nr_entries will be updated with the new
234  * number of valid entries (something no more than max_nr_entries).
235  *
236  * The return value from e820__update_table() is zero if it
237  * successfully 'sanitized' the map entries passed in, and is -1
238  * if it did nothing, which can happen if either of (1) it was
239  * only passed one map entry, or (2) any of the input map entries
240  * were invalid (start + size < start, meaning that the size was
241  * so big the described memory range wrapped around through zero.)
242  *
243  *	Visually we're performing the following
244  *	(1,2,3,4 = memory types)...
245  *
246  *	Sample memory map (w/overlaps):
247  *	   ____22__________________
248  *	   ______________________4_
249  *	   ____1111________________
250  *	   _44_____________________
251  *	   11111111________________
252  *	   ____________________33__
253  *	   ___________44___________
254  *	   __________33333_________
255  *	   ______________22________
256  *	   ___________________2222_
257  *	   _________111111111______
258  *	   _____________________11_
259  *	   _________________4______
260  *
261  *	Sanitized equivalent (no overlap):
262  *	   1_______________________
263  *	   _44_____________________
264  *	   ___1____________________
265  *	   ____22__________________
266  *	   ______11________________
267  *	   _________1______________
268  *	   __________3_____________
269  *	   ___________44___________
270  *	   _____________33_________
271  *	   _______________2________
272  *	   ________________1_______
273  *	   _________________4______
274  *	   ___________________2____
275  *	   ____________________33__
276  *	   ______________________4_
277  */
278 struct change_member {
279 	/* Pointer to the original entry: */
280 	struct e820_entry	*entry;
281 	/* Address for this change point: */
282 	unsigned long long	addr;
283 };
284 
285 static struct change_member	change_point_list[2*E820_MAX_ENTRIES]	__initdata;
286 static struct change_member	*change_point[2*E820_MAX_ENTRIES]	__initdata;
287 static struct e820_entry	*overlap_list[E820_MAX_ENTRIES]		__initdata;
288 static struct e820_entry	new_entries[E820_MAX_ENTRIES]		__initdata;
289 
cpcompare(const void * a,const void * b)290 static int __init cpcompare(const void *a, const void *b)
291 {
292 	struct change_member * const *app = a, * const *bpp = b;
293 	const struct change_member *ap = *app, *bp = *bpp;
294 
295 	/*
296 	 * Inputs are pointers to two elements of change_point[].  If their
297 	 * addresses are not equal, their difference dominates.  If the addresses
298 	 * are equal, then consider one that represents the end of its region
299 	 * to be greater than one that does not.
300 	 */
301 	if (ap->addr != bp->addr)
302 		return ap->addr > bp->addr ? 1 : -1;
303 
304 	return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr);
305 }
306 
e820_nomerge(enum e820_type type)307 static bool e820_nomerge(enum e820_type type)
308 {
309 	/*
310 	 * These types may indicate distinct platform ranges aligned to
311 	 * numa node, protection domain, performance domain, or other
312 	 * boundaries. Do not merge them.
313 	 */
314 	if (type == E820_TYPE_PRAM)
315 		return true;
316 	if (type == E820_TYPE_SOFT_RESERVED)
317 		return true;
318 	return false;
319 }
320 
e820__update_table(struct e820_table * table)321 int __init e820__update_table(struct e820_table *table)
322 {
323 	struct e820_entry *entries = table->entries;
324 	u32 max_nr_entries = ARRAY_SIZE(table->entries);
325 	enum e820_type current_type, last_type;
326 	unsigned long long last_addr;
327 	u32 new_nr_entries, overlap_entries;
328 	u32 i, chg_idx, chg_nr;
329 
330 	/* If there's only one memory region, don't bother: */
331 	if (table->nr_entries < 2)
332 		return -1;
333 
334 	BUG_ON(table->nr_entries > max_nr_entries);
335 
336 	/* Bail out if we find any unreasonable addresses in the map: */
337 	for (i = 0; i < table->nr_entries; i++) {
338 		if (entries[i].addr + entries[i].size < entries[i].addr)
339 			return -1;
340 	}
341 
342 	/* Create pointers for initial change-point information (for sorting): */
343 	for (i = 0; i < 2 * table->nr_entries; i++)
344 		change_point[i] = &change_point_list[i];
345 
346 	/*
347 	 * Record all known change-points (starting and ending addresses),
348 	 * omitting empty memory regions:
349 	 */
350 	chg_idx = 0;
351 	for (i = 0; i < table->nr_entries; i++)	{
352 		if (entries[i].size != 0) {
353 			change_point[chg_idx]->addr	= entries[i].addr;
354 			change_point[chg_idx++]->entry	= &entries[i];
355 			change_point[chg_idx]->addr	= entries[i].addr + entries[i].size;
356 			change_point[chg_idx++]->entry	= &entries[i];
357 		}
358 	}
359 	chg_nr = chg_idx;
360 
361 	/* Sort change-point list by memory addresses (low -> high): */
362 	sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL);
363 
364 	/* Create a new memory map, removing overlaps: */
365 	overlap_entries = 0;	 /* Number of entries in the overlap table */
366 	new_nr_entries = 0;	 /* Index for creating new map entries */
367 	last_type = 0;		 /* Start with undefined memory type */
368 	last_addr = 0;		 /* Start with 0 as last starting address */
369 
370 	/* Loop through change-points, determining effect on the new map: */
371 	for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) {
372 		/* Keep track of all overlapping entries */
373 		if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) {
374 			/* Add map entry to overlap list (> 1 entry implies an overlap) */
375 			overlap_list[overlap_entries++] = change_point[chg_idx]->entry;
376 		} else {
377 			/* Remove entry from list (order independent, so swap with last): */
378 			for (i = 0; i < overlap_entries; i++) {
379 				if (overlap_list[i] == change_point[chg_idx]->entry)
380 					overlap_list[i] = overlap_list[overlap_entries-1];
381 			}
382 			overlap_entries--;
383 		}
384 		/*
385 		 * If there are overlapping entries, decide which
386 		 * "type" to use (larger value takes precedence --
387 		 * 1=usable, 2,3,4,4+=unusable)
388 		 */
389 		current_type = 0;
390 		for (i = 0; i < overlap_entries; i++) {
391 			if (overlap_list[i]->type > current_type)
392 				current_type = overlap_list[i]->type;
393 		}
394 
395 		/* Continue building up new map based on this information: */
396 		if (current_type != last_type || e820_nomerge(current_type)) {
397 			if (last_type) {
398 				new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr;
399 				/* Move forward only if the new size was non-zero: */
400 				if (new_entries[new_nr_entries].size != 0)
401 					/* No more space left for new entries? */
402 					if (++new_nr_entries >= max_nr_entries)
403 						break;
404 			}
405 			if (current_type) {
406 				new_entries[new_nr_entries].addr = change_point[chg_idx]->addr;
407 				new_entries[new_nr_entries].type = current_type;
408 				last_addr = change_point[chg_idx]->addr;
409 			}
410 			last_type = current_type;
411 		}
412 	}
413 
414 	/* Copy the new entries into the original location: */
415 	memcpy(entries, new_entries, new_nr_entries*sizeof(*entries));
416 	table->nr_entries = new_nr_entries;
417 
418 	return 0;
419 }
420 
__append_e820_table(struct boot_e820_entry * entries,u32 nr_entries)421 static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
422 {
423 	struct boot_e820_entry *entry = entries;
424 
425 	while (nr_entries) {
426 		u64 start = entry->addr;
427 		u64 size = entry->size;
428 		u64 end = start + size - 1;
429 		u32 type = entry->type;
430 
431 		/* Ignore the entry on 64-bit overflow: */
432 		if (start > end && likely(size))
433 			return -1;
434 
435 		e820__range_add(start, size, type);
436 
437 		entry++;
438 		nr_entries--;
439 	}
440 	return 0;
441 }
442 
443 /*
444  * Copy the BIOS E820 map into a safe place.
445  *
446  * Sanity-check it while we're at it..
447  *
448  * If we're lucky and live on a modern system, the setup code
449  * will have given us a memory map that we can use to properly
450  * set up memory.  If we aren't, we'll fake a memory map.
451  */
append_e820_table(struct boot_e820_entry * entries,u32 nr_entries)452 static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
453 {
454 	/* Only one memory region (or negative)? Ignore it */
455 	if (nr_entries < 2)
456 		return -1;
457 
458 	return __append_e820_table(entries, nr_entries);
459 }
460 
461 static u64 __init
__e820__range_update(struct e820_table * table,u64 start,u64 size,enum e820_type old_type,enum e820_type new_type)462 __e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
463 {
464 	u64 end;
465 	unsigned int i;
466 	u64 real_updated_size = 0;
467 
468 	BUG_ON(old_type == new_type);
469 
470 	if (size > (ULLONG_MAX - start))
471 		size = ULLONG_MAX - start;
472 
473 	end = start + size;
474 	printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1);
475 	e820_print_type(old_type);
476 	pr_cont(" ==> ");
477 	e820_print_type(new_type);
478 	pr_cont("\n");
479 
480 	for (i = 0; i < table->nr_entries; i++) {
481 		struct e820_entry *entry = &table->entries[i];
482 		u64 final_start, final_end;
483 		u64 entry_end;
484 
485 		if (entry->type != old_type)
486 			continue;
487 
488 		entry_end = entry->addr + entry->size;
489 
490 		/* Completely covered by new range? */
491 		if (entry->addr >= start && entry_end <= end) {
492 			entry->type = new_type;
493 			real_updated_size += entry->size;
494 			continue;
495 		}
496 
497 		/* New range is completely covered? */
498 		if (entry->addr < start && entry_end > end) {
499 			__e820__range_add(table, start, size, new_type);
500 			__e820__range_add(table, end, entry_end - end, entry->type);
501 			entry->size = start - entry->addr;
502 			real_updated_size += size;
503 			continue;
504 		}
505 
506 		/* Partially covered: */
507 		final_start = max(start, entry->addr);
508 		final_end = min(end, entry_end);
509 		if (final_start >= final_end)
510 			continue;
511 
512 		__e820__range_add(table, final_start, final_end - final_start, new_type);
513 
514 		real_updated_size += final_end - final_start;
515 
516 		/*
517 		 * Left range could be head or tail, so need to update
518 		 * its size first:
519 		 */
520 		entry->size -= final_end - final_start;
521 		if (entry->addr < final_start)
522 			continue;
523 
524 		entry->addr = final_end;
525 	}
526 	return real_updated_size;
527 }
528 
e820__range_update(u64 start,u64 size,enum e820_type old_type,enum e820_type new_type)529 u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
530 {
531 	return __e820__range_update(e820_table, start, size, old_type, new_type);
532 }
533 
e820__range_update_table(struct e820_table * t,u64 start,u64 size,enum e820_type old_type,enum e820_type new_type)534 u64 __init e820__range_update_table(struct e820_table *t, u64 start, u64 size,
535 				    enum e820_type old_type, enum e820_type new_type)
536 {
537 	return __e820__range_update(t, start, size, old_type, new_type);
538 }
539 
540 /* Remove a range of memory from the E820 table: */
e820__range_remove(u64 start,u64 size,enum e820_type old_type,bool check_type)541 u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type)
542 {
543 	int i;
544 	u64 end;
545 	u64 real_removed_size = 0;
546 
547 	if (size > (ULLONG_MAX - start))
548 		size = ULLONG_MAX - start;
549 
550 	end = start + size;
551 	printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1);
552 	if (check_type)
553 		e820_print_type(old_type);
554 	pr_cont("\n");
555 
556 	for (i = 0; i < e820_table->nr_entries; i++) {
557 		struct e820_entry *entry = &e820_table->entries[i];
558 		u64 final_start, final_end;
559 		u64 entry_end;
560 
561 		if (check_type && entry->type != old_type)
562 			continue;
563 
564 		entry_end = entry->addr + entry->size;
565 
566 		/* Completely covered? */
567 		if (entry->addr >= start && entry_end <= end) {
568 			real_removed_size += entry->size;
569 			memset(entry, 0, sizeof(*entry));
570 			continue;
571 		}
572 
573 		/* Is the new range completely covered? */
574 		if (entry->addr < start && entry_end > end) {
575 			e820__range_add(end, entry_end - end, entry->type);
576 			entry->size = start - entry->addr;
577 			real_removed_size += size;
578 			continue;
579 		}
580 
581 		/* Partially covered: */
582 		final_start = max(start, entry->addr);
583 		final_end = min(end, entry_end);
584 		if (final_start >= final_end)
585 			continue;
586 
587 		real_removed_size += final_end - final_start;
588 
589 		/*
590 		 * Left range could be head or tail, so need to update
591 		 * the size first:
592 		 */
593 		entry->size -= final_end - final_start;
594 		if (entry->addr < final_start)
595 			continue;
596 
597 		entry->addr = final_end;
598 	}
599 	return real_removed_size;
600 }
601 
e820__update_table_print(void)602 void __init e820__update_table_print(void)
603 {
604 	if (e820__update_table(e820_table))
605 		return;
606 
607 	pr_info("modified physical RAM map:\n");
608 	e820__print_table("modified");
609 }
610 
e820__update_table_kexec(void)611 static void __init e820__update_table_kexec(void)
612 {
613 	e820__update_table(e820_table_kexec);
614 }
615 
616 #define MAX_GAP_END 0x100000000ull
617 
618 /*
619  * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB).
620  */
e820_search_gap(unsigned long * gapstart,unsigned long * gapsize)621 static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize)
622 {
623 	unsigned long long last = MAX_GAP_END;
624 	int i = e820_table->nr_entries;
625 	int found = 0;
626 
627 	while (--i >= 0) {
628 		unsigned long long start = e820_table->entries[i].addr;
629 		unsigned long long end = start + e820_table->entries[i].size;
630 
631 		/*
632 		 * Since "last" is at most 4GB, we know we'll
633 		 * fit in 32 bits if this condition is true:
634 		 */
635 		if (last > end) {
636 			unsigned long gap = last - end;
637 
638 			if (gap >= *gapsize) {
639 				*gapsize = gap;
640 				*gapstart = end;
641 				found = 1;
642 			}
643 		}
644 		if (start < last)
645 			last = start;
646 	}
647 	return found;
648 }
649 
650 /*
651  * Search for the biggest gap in the low 32 bits of the E820
652  * memory space. We pass this space to the PCI subsystem, so
653  * that it can assign MMIO resources for hotplug or
654  * unconfigured devices in.
655  *
656  * Hopefully the BIOS let enough space left.
657  */
e820__setup_pci_gap(void)658 __init void e820__setup_pci_gap(void)
659 {
660 	unsigned long gapstart, gapsize;
661 	int found;
662 
663 	gapsize = 0x400000;
664 	found  = e820_search_gap(&gapstart, &gapsize);
665 
666 	if (!found) {
667 #ifdef CONFIG_X86_64
668 		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
669 		pr_err("Cannot find an available gap in the 32-bit address range\n");
670 		pr_err("PCI devices with unassigned 32-bit BARs may not work!\n");
671 #else
672 		gapstart = 0x10000000;
673 #endif
674 	}
675 
676 	/*
677 	 * e820__reserve_resources_late() protects stolen RAM already:
678 	 */
679 	pci_mem_start = gapstart;
680 
681 	pr_info("[mem %#010lx-%#010lx] available for PCI devices\n",
682 		gapstart, gapstart + gapsize - 1);
683 }
684 
685 /*
686  * Called late during init, in free_initmem().
687  *
688  * Initial e820_table and e820_table_kexec are largish __initdata arrays.
689  *
690  * Copy them to a (usually much smaller) dynamically allocated area that is
691  * sized precisely after the number of e820 entries.
692  *
693  * This is done after we've performed all the fixes and tweaks to the tables.
694  * All functions which modify them are __init functions, which won't exist
695  * after free_initmem().
696  */
e820__reallocate_tables(void)697 __init void e820__reallocate_tables(void)
698 {
699 	struct e820_table *n;
700 	int size;
701 
702 	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries;
703 	n = kmemdup(e820_table, size, GFP_KERNEL);
704 	BUG_ON(!n);
705 	e820_table = n;
706 
707 	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries;
708 	n = kmemdup(e820_table_kexec, size, GFP_KERNEL);
709 	BUG_ON(!n);
710 	e820_table_kexec = n;
711 
712 	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries;
713 	n = kmemdup(e820_table_firmware, size, GFP_KERNEL);
714 	BUG_ON(!n);
715 	e820_table_firmware = n;
716 }
717 
718 /*
719  * Because of the small fixed size of struct boot_params, only the first
720  * 128 E820 memory entries are passed to the kernel via boot_params.e820_table,
721  * the remaining (if any) entries are passed via the SETUP_E820_EXT node of
722  * struct setup_data, which is parsed here.
723  */
e820__memory_setup_extended(u64 phys_addr,u32 data_len)724 void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len)
725 {
726 	int entries;
727 	struct boot_e820_entry *extmap;
728 	struct setup_data *sdata;
729 
730 	sdata = early_memremap(phys_addr, data_len);
731 	entries = sdata->len / sizeof(*extmap);
732 	extmap = (struct boot_e820_entry *)(sdata->data);
733 
734 	__append_e820_table(extmap, entries);
735 	e820__update_table(e820_table);
736 
737 	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
738 	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
739 
740 	early_memunmap(sdata, data_len);
741 	pr_info("extended physical RAM map:\n");
742 	e820__print_table("extended");
743 }
744 
745 /*
746  * Find the ranges of physical addresses that do not correspond to
747  * E820 RAM areas and register the corresponding pages as 'nosave' for
748  * hibernation (32-bit) or software suspend and suspend to RAM (64-bit).
749  *
750  * This function requires the E820 map to be sorted and without any
751  * overlapping entries.
752  */
e820__register_nosave_regions(unsigned long limit_pfn)753 void __init e820__register_nosave_regions(unsigned long limit_pfn)
754 {
755 	int i;
756 	u64 last_addr = 0;
757 
758 	for (i = 0; i < e820_table->nr_entries; i++) {
759 		struct e820_entry *entry = &e820_table->entries[i];
760 
761 		if (entry->type != E820_TYPE_RAM)
762 			continue;
763 
764 		if (last_addr < entry->addr)
765 			register_nosave_region(PFN_DOWN(last_addr), PFN_UP(entry->addr));
766 
767 		last_addr = entry->addr + entry->size;
768 	}
769 
770 	register_nosave_region(PFN_DOWN(last_addr), limit_pfn);
771 }
772 
773 #ifdef CONFIG_ACPI
774 /*
775  * Register ACPI NVS memory regions, so that we can save/restore them during
776  * hibernation and the subsequent resume:
777  */
e820__register_nvs_regions(void)778 static int __init e820__register_nvs_regions(void)
779 {
780 	int i;
781 
782 	for (i = 0; i < e820_table->nr_entries; i++) {
783 		struct e820_entry *entry = &e820_table->entries[i];
784 
785 		if (entry->type == E820_TYPE_NVS)
786 			acpi_nvs_register(entry->addr, entry->size);
787 	}
788 
789 	return 0;
790 }
791 core_initcall(e820__register_nvs_regions);
792 #endif
793 
794 /*
795  * Allocate the requested number of bytes with the requested alignment
796  * and return (the physical address) to the caller. Also register this
797  * range in the 'kexec' E820 table as a reserved range.
798  *
799  * This allows kexec to fake a new mptable, as if it came from the real
800  * system.
801  */
e820__memblock_alloc_reserved(u64 size,u64 align)802 u64 __init e820__memblock_alloc_reserved(u64 size, u64 align)
803 {
804 	u64 addr;
805 
806 	addr = memblock_phys_alloc(size, align);
807 	if (addr) {
808 		e820__range_update_table(e820_table_kexec, addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED);
809 		pr_info("update e820_table_kexec for e820__memblock_alloc_reserved()\n");
810 		e820__update_table_kexec();
811 	}
812 
813 	return addr;
814 }
815 
816 #ifdef CONFIG_X86_32
817 # ifdef CONFIG_X86_PAE
818 #  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
819 # else
820 #  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
821 # endif
822 #else /* CONFIG_X86_32 */
823 # define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
824 #endif
825 
826 /*
827  * Find the highest page frame number we have available
828  */
e820__end_ram_pfn(unsigned long limit_pfn)829 static unsigned long __init e820__end_ram_pfn(unsigned long limit_pfn)
830 {
831 	int i;
832 	unsigned long last_pfn = 0;
833 	unsigned long max_arch_pfn = MAX_ARCH_PFN;
834 
835 	for (i = 0; i < e820_table->nr_entries; i++) {
836 		struct e820_entry *entry = &e820_table->entries[i];
837 		unsigned long start_pfn;
838 		unsigned long end_pfn;
839 
840 		if (entry->type != E820_TYPE_RAM &&
841 		    entry->type != E820_TYPE_ACPI)
842 			continue;
843 
844 		start_pfn = entry->addr >> PAGE_SHIFT;
845 		end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT;
846 
847 		if (start_pfn >= limit_pfn)
848 			continue;
849 		if (end_pfn > limit_pfn) {
850 			last_pfn = limit_pfn;
851 			break;
852 		}
853 		if (end_pfn > last_pfn)
854 			last_pfn = end_pfn;
855 	}
856 
857 	if (last_pfn > max_arch_pfn)
858 		last_pfn = max_arch_pfn;
859 
860 	pr_info("last_pfn = %#lx max_arch_pfn = %#lx\n",
861 		last_pfn, max_arch_pfn);
862 	return last_pfn;
863 }
864 
e820__end_of_ram_pfn(void)865 unsigned long __init e820__end_of_ram_pfn(void)
866 {
867 	return e820__end_ram_pfn(MAX_ARCH_PFN);
868 }
869 
e820__end_of_low_ram_pfn(void)870 unsigned long __init e820__end_of_low_ram_pfn(void)
871 {
872 	return e820__end_ram_pfn(1UL << (32 - PAGE_SHIFT));
873 }
874 
early_panic(char * msg)875 static void __init early_panic(char *msg)
876 {
877 	early_printk(msg);
878 	panic(msg);
879 }
880 
881 static int userdef __initdata;
882 
883 /* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */
parse_memopt(char * p)884 static int __init parse_memopt(char *p)
885 {
886 	u64 mem_size;
887 
888 	if (!p)
889 		return -EINVAL;
890 
891 	if (!strcmp(p, "nopentium")) {
892 #ifdef CONFIG_X86_32
893 		setup_clear_cpu_cap(X86_FEATURE_PSE);
894 		return 0;
895 #else
896 		pr_warn("mem=nopentium ignored! (only supported on x86_32)\n");
897 		return -EINVAL;
898 #endif
899 	}
900 
901 	userdef = 1;
902 	mem_size = memparse(p, &p);
903 
904 	/* Don't remove all memory when getting "mem={invalid}" parameter: */
905 	if (mem_size == 0)
906 		return -EINVAL;
907 
908 	e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
909 
910 #ifdef CONFIG_MEMORY_HOTPLUG
911 	max_mem_size = mem_size;
912 #endif
913 
914 	return 0;
915 }
916 early_param("mem", parse_memopt);
917 
parse_memmap_one(char * p)918 static int __init parse_memmap_one(char *p)
919 {
920 	char *oldp;
921 	u64 start_at, mem_size;
922 
923 	if (!p)
924 		return -EINVAL;
925 
926 	if (!strncmp(p, "exactmap", 8)) {
927 		e820_table->nr_entries = 0;
928 		userdef = 1;
929 		return 0;
930 	}
931 
932 	oldp = p;
933 	mem_size = memparse(p, &p);
934 	if (p == oldp)
935 		return -EINVAL;
936 
937 	userdef = 1;
938 	if (*p == '@') {
939 		start_at = memparse(p+1, &p);
940 		e820__range_add(start_at, mem_size, E820_TYPE_RAM);
941 	} else if (*p == '#') {
942 		start_at = memparse(p+1, &p);
943 		e820__range_add(start_at, mem_size, E820_TYPE_ACPI);
944 	} else if (*p == '$') {
945 		start_at = memparse(p+1, &p);
946 		e820__range_add(start_at, mem_size, E820_TYPE_RESERVED);
947 	} else if (*p == '!') {
948 		start_at = memparse(p+1, &p);
949 		e820__range_add(start_at, mem_size, E820_TYPE_PRAM);
950 	} else if (*p == '%') {
951 		enum e820_type from = 0, to = 0;
952 
953 		start_at = memparse(p + 1, &p);
954 		if (*p == '-')
955 			from = simple_strtoull(p + 1, &p, 0);
956 		if (*p == '+')
957 			to = simple_strtoull(p + 1, &p, 0);
958 		if (*p != '\0')
959 			return -EINVAL;
960 		if (from && to)
961 			e820__range_update(start_at, mem_size, from, to);
962 		else if (to)
963 			e820__range_add(start_at, mem_size, to);
964 		else if (from)
965 			e820__range_remove(start_at, mem_size, from, 1);
966 		else
967 			e820__range_remove(start_at, mem_size, 0, 0);
968 	} else {
969 		e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
970 	}
971 
972 	return *p == '\0' ? 0 : -EINVAL;
973 }
974 
parse_memmap_opt(char * str)975 static int __init parse_memmap_opt(char *str)
976 {
977 	while (str) {
978 		char *k = strchr(str, ',');
979 
980 		if (k)
981 			*k++ = 0;
982 
983 		parse_memmap_one(str);
984 		str = k;
985 	}
986 
987 	return 0;
988 }
989 early_param("memmap", parse_memmap_opt);
990 
991 /*
992  * Called after parse_early_param(), after early parameters (such as mem=)
993  * have been processed, in which case we already have an E820 table filled in
994  * via the parameter callback function(s), but it's not sorted and printed yet:
995  */
e820__finish_early_params(void)996 void __init e820__finish_early_params(void)
997 {
998 	if (userdef) {
999 		if (e820__update_table(e820_table) < 0)
1000 			early_panic("Invalid user supplied memory map");
1001 
1002 		pr_info("user-defined physical RAM map:\n");
1003 		e820__print_table("user");
1004 	}
1005 }
1006 
e820_type_to_string(struct e820_entry * entry)1007 static const char *__init e820_type_to_string(struct e820_entry *entry)
1008 {
1009 	switch (entry->type) {
1010 	case E820_TYPE_RAM:		return "System RAM";
1011 	case E820_TYPE_ACPI:		return "ACPI Tables";
1012 	case E820_TYPE_NVS:		return "ACPI Non-volatile Storage";
1013 	case E820_TYPE_UNUSABLE:	return "Unusable memory";
1014 	case E820_TYPE_PRAM:		return "Persistent Memory (legacy)";
1015 	case E820_TYPE_PMEM:		return "Persistent Memory";
1016 	case E820_TYPE_RESERVED:	return "Reserved";
1017 	case E820_TYPE_SOFT_RESERVED:	return "Soft Reserved";
1018 	default:			return "Unknown E820 type";
1019 	}
1020 }
1021 
e820_type_to_iomem_type(struct e820_entry * entry)1022 static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry)
1023 {
1024 	switch (entry->type) {
1025 	case E820_TYPE_RAM:		return IORESOURCE_SYSTEM_RAM;
1026 	case E820_TYPE_ACPI:		/* Fall-through: */
1027 	case E820_TYPE_NVS:		/* Fall-through: */
1028 	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1029 	case E820_TYPE_PRAM:		/* Fall-through: */
1030 	case E820_TYPE_PMEM:		/* Fall-through: */
1031 	case E820_TYPE_RESERVED:	/* Fall-through: */
1032 	case E820_TYPE_SOFT_RESERVED:	/* Fall-through: */
1033 	default:			return IORESOURCE_MEM;
1034 	}
1035 }
1036 
e820_type_to_iores_desc(struct e820_entry * entry)1037 static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry)
1038 {
1039 	switch (entry->type) {
1040 	case E820_TYPE_ACPI:		return IORES_DESC_ACPI_TABLES;
1041 	case E820_TYPE_NVS:		return IORES_DESC_ACPI_NV_STORAGE;
1042 	case E820_TYPE_PMEM:		return IORES_DESC_PERSISTENT_MEMORY;
1043 	case E820_TYPE_PRAM:		return IORES_DESC_PERSISTENT_MEMORY_LEGACY;
1044 	case E820_TYPE_RESERVED:	return IORES_DESC_RESERVED;
1045 	case E820_TYPE_SOFT_RESERVED:	return IORES_DESC_SOFT_RESERVED;
1046 	case E820_TYPE_RAM:		/* Fall-through: */
1047 	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1048 	default:			return IORES_DESC_NONE;
1049 	}
1050 }
1051 
do_mark_busy(enum e820_type type,struct resource * res)1052 static bool __init do_mark_busy(enum e820_type type, struct resource *res)
1053 {
1054 	/* this is the legacy bios/dos rom-shadow + mmio region */
1055 	if (res->start < (1ULL<<20))
1056 		return true;
1057 
1058 	/*
1059 	 * Treat persistent memory and other special memory ranges like
1060 	 * device memory, i.e. reserve it for exclusive use of a driver
1061 	 */
1062 	switch (type) {
1063 	case E820_TYPE_RESERVED:
1064 	case E820_TYPE_SOFT_RESERVED:
1065 	case E820_TYPE_PRAM:
1066 	case E820_TYPE_PMEM:
1067 		return false;
1068 	case E820_TYPE_RAM:
1069 	case E820_TYPE_ACPI:
1070 	case E820_TYPE_NVS:
1071 	case E820_TYPE_UNUSABLE:
1072 	default:
1073 		return true;
1074 	}
1075 }
1076 
1077 /*
1078  * Mark E820 reserved areas as busy for the resource manager:
1079  */
1080 
1081 static struct resource __initdata *e820_res;
1082 
e820__reserve_resources(void)1083 void __init e820__reserve_resources(void)
1084 {
1085 	int i;
1086 	struct resource *res;
1087 	u64 end;
1088 
1089 	res = memblock_alloc_or_panic(sizeof(*res) * e820_table->nr_entries,
1090 			     SMP_CACHE_BYTES);
1091 	e820_res = res;
1092 
1093 	for (i = 0; i < e820_table->nr_entries; i++) {
1094 		struct e820_entry *entry = e820_table->entries + i;
1095 
1096 		end = entry->addr + entry->size - 1;
1097 		if (end != (resource_size_t)end) {
1098 			res++;
1099 			continue;
1100 		}
1101 		res->start = entry->addr;
1102 		res->end   = end;
1103 		res->name  = e820_type_to_string(entry);
1104 		res->flags = e820_type_to_iomem_type(entry);
1105 		res->desc  = e820_type_to_iores_desc(entry);
1106 
1107 		/*
1108 		 * Don't register the region that could be conflicted with
1109 		 * PCI device BAR resources and insert them later in
1110 		 * pcibios_resource_survey():
1111 		 */
1112 		if (do_mark_busy(entry->type, res)) {
1113 			res->flags |= IORESOURCE_BUSY;
1114 			insert_resource(&iomem_resource, res);
1115 		}
1116 		res++;
1117 	}
1118 
1119 	/* Expose the kexec e820 table to the sysfs. */
1120 	for (i = 0; i < e820_table_kexec->nr_entries; i++) {
1121 		struct e820_entry *entry = e820_table_kexec->entries + i;
1122 
1123 		firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry));
1124 	}
1125 }
1126 
1127 /*
1128  * How much should we pad the end of RAM, depending on where it is?
1129  */
ram_alignment(resource_size_t pos)1130 static unsigned long __init ram_alignment(resource_size_t pos)
1131 {
1132 	unsigned long mb = pos >> 20;
1133 
1134 	/* To 64kB in the first megabyte */
1135 	if (!mb)
1136 		return 64*1024;
1137 
1138 	/* To 1MB in the first 16MB */
1139 	if (mb < 16)
1140 		return 1024*1024;
1141 
1142 	/* To 64MB for anything above that */
1143 	return 64*1024*1024;
1144 }
1145 
1146 #define MAX_RESOURCE_SIZE ((resource_size_t)-1)
1147 
e820__reserve_resources_late(void)1148 void __init e820__reserve_resources_late(void)
1149 {
1150 	int i;
1151 	struct resource *res;
1152 
1153 	res = e820_res;
1154 	for (i = 0; i < e820_table->nr_entries; i++) {
1155 		if (!res->parent && res->end)
1156 			insert_resource_expand_to_fit(&iomem_resource, res);
1157 		res++;
1158 	}
1159 
1160 	/*
1161 	 * Try to bump up RAM regions to reasonable boundaries, to
1162 	 * avoid stolen RAM:
1163 	 */
1164 	for (i = 0; i < e820_table->nr_entries; i++) {
1165 		struct e820_entry *entry = &e820_table->entries[i];
1166 		u64 start, end;
1167 
1168 		if (entry->type != E820_TYPE_RAM)
1169 			continue;
1170 
1171 		start = entry->addr + entry->size;
1172 		end = round_up(start, ram_alignment(start)) - 1;
1173 		if (end > MAX_RESOURCE_SIZE)
1174 			end = MAX_RESOURCE_SIZE;
1175 		if (start >= end)
1176 			continue;
1177 
1178 		printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end);
1179 		reserve_region_with_split(&iomem_resource, start, end, "RAM buffer");
1180 	}
1181 }
1182 
1183 /*
1184  * Pass the firmware (bootloader) E820 map to the kernel and process it:
1185  */
e820__memory_setup_default(void)1186 char *__init e820__memory_setup_default(void)
1187 {
1188 	char *who = "BIOS-e820";
1189 
1190 	/*
1191 	 * Try to copy the BIOS-supplied E820-map.
1192 	 *
1193 	 * Otherwise fake a memory map; one section from 0k->640k,
1194 	 * the next section from 1mb->appropriate_mem_k
1195 	 */
1196 	if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) {
1197 		u64 mem_size;
1198 
1199 		/* Compare results from other methods and take the one that gives more RAM: */
1200 		if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) {
1201 			mem_size = boot_params.screen_info.ext_mem_k;
1202 			who = "BIOS-88";
1203 		} else {
1204 			mem_size = boot_params.alt_mem_k;
1205 			who = "BIOS-e801";
1206 		}
1207 
1208 		e820_table->nr_entries = 0;
1209 		e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM);
1210 		e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM);
1211 	}
1212 
1213 	/* We just appended a lot of ranges, sanitize the table: */
1214 	e820__update_table(e820_table);
1215 
1216 	return who;
1217 }
1218 
1219 /*
1220  * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader
1221  * E820 map - with an optional platform quirk available for virtual platforms
1222  * to override this method of boot environment processing:
1223  */
e820__memory_setup(void)1224 void __init e820__memory_setup(void)
1225 {
1226 	char *who;
1227 
1228 	/* This is a firmware interface ABI - make sure we don't break it: */
1229 	BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20);
1230 
1231 	who = x86_init.resources.memory_setup();
1232 
1233 	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
1234 	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
1235 
1236 	pr_info("BIOS-provided physical RAM map:\n");
1237 	e820__print_table(who);
1238 }
1239 
e820__memblock_setup(void)1240 void __init e820__memblock_setup(void)
1241 {
1242 	int i;
1243 	u64 end;
1244 
1245 #ifdef CONFIG_MEMORY_HOTPLUG
1246 	/*
1247 	 * Memory used by the kernel cannot be hot-removed because Linux
1248 	 * cannot migrate the kernel pages. When memory hotplug is
1249 	 * enabled, we should prevent memblock from allocating memory
1250 	 * for the kernel.
1251 	 *
1252 	 * ACPI SRAT records all hotpluggable memory ranges. But before
1253 	 * SRAT is parsed, we don't know about it.
1254 	 *
1255 	 * The kernel image is loaded into memory at very early time. We
1256 	 * cannot prevent this anyway. So on NUMA system, we set any
1257 	 * node the kernel resides in as un-hotpluggable.
1258 	 *
1259 	 * Since on modern servers, one node could have double-digit
1260 	 * gigabytes memory, we can assume the memory around the kernel
1261 	 * image is also un-hotpluggable. So before SRAT is parsed, just
1262 	 * allocate memory near the kernel image to try the best to keep
1263 	 * the kernel away from hotpluggable memory.
1264 	 */
1265 	if (movable_node_is_enabled())
1266 		memblock_set_bottom_up(true);
1267 #endif
1268 
1269 	/*
1270 	 * At this point only the first megabyte is mapped for sure, the
1271 	 * rest of the memory cannot be used for memblock resizing
1272 	 */
1273 	memblock_set_current_limit(ISA_END_ADDRESS);
1274 
1275 	/*
1276 	 * The bootstrap memblock region count maximum is 128 entries
1277 	 * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries
1278 	 * than that - so allow memblock resizing.
1279 	 *
1280 	 * This is safe, because this call happens pretty late during x86 setup,
1281 	 * so we know about reserved memory regions already. (This is important
1282 	 * so that memblock resizing does no stomp over reserved areas.)
1283 	 */
1284 	memblock_allow_resize();
1285 
1286 	for (i = 0; i < e820_table->nr_entries; i++) {
1287 		struct e820_entry *entry = &e820_table->entries[i];
1288 
1289 		end = entry->addr + entry->size;
1290 		if (end != (resource_size_t)end)
1291 			continue;
1292 
1293 		if (entry->type == E820_TYPE_SOFT_RESERVED)
1294 			memblock_reserve(entry->addr, entry->size);
1295 
1296 		if (entry->type != E820_TYPE_RAM)
1297 			continue;
1298 
1299 		memblock_add(entry->addr, entry->size);
1300 	}
1301 
1302 	/*
1303 	 * At this point memblock is only allowed to allocate from memory
1304 	 * below 1M (aka ISA_END_ADDRESS) up until direct map is completely set
1305 	 * up in init_mem_mapping().
1306 	 *
1307 	 * KHO kernels are special and use only scratch memory for memblock
1308 	 * allocations, but memory below 1M is ignored by kernel after early
1309 	 * boot and cannot be naturally marked as scratch.
1310 	 *
1311 	 * To allow allocation of the real-mode trampoline and a few (if any)
1312 	 * other very early allocations from below 1M forcibly mark the memory
1313 	 * below 1M as scratch.
1314 	 *
1315 	 * After real mode trampoline is allocated, we clear that scratch
1316 	 * marking.
1317 	 */
1318 	memblock_mark_kho_scratch(0, SZ_1M);
1319 
1320 	/*
1321 	 * 32-bit systems are limited to 4BG of memory even with HIGHMEM and
1322 	 * to even less without it.
1323 	 * Discard memory after max_pfn - the actual limit detected at runtime.
1324 	 */
1325 	if (IS_ENABLED(CONFIG_X86_32))
1326 		memblock_remove(PFN_PHYS(max_pfn), -1);
1327 
1328 	/* Throw away partial pages: */
1329 	memblock_trim_memory(PAGE_SIZE);
1330 
1331 	memblock_dump_all();
1332 }
1333